(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-10-17
(54)【発明の名称】冷媒漏れセンサ電力制御システムおよび方法
(51)【国際特許分類】
F24F 11/36 20180101AFI20231010BHJP
F25B 49/02 20060101ALI20231010BHJP
【FI】
F24F11/36
F25B49/02 520M
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023519563
(86)(22)【出願日】2021-09-21
(85)【翻訳文提出日】2023-05-26
(86)【国際出願番号】 US2021051262
(87)【国際公開番号】W WO2022072174
(87)【国際公開日】2022-04-07
(32)【優先日】2020-09-29
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】511158339
【氏名又は名称】コープランド エルピー
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】アルファノ,デイビッド・エイ
(72)【発明者】
【氏名】モーガン,スチュアート・ケイ
(72)【発明者】
【氏名】ハング,ファム・エム
(72)【発明者】
【氏名】ボイス,ネイサン・オゥ
【テーマコード(参考)】
3L260
【Fターム(参考)】
3L260AB01
3L260BA52
3L260CB22
3L260EA09
3L260HA01
(57)【要約】
センサ制御システムは、電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、熱交換器は、冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、冷媒漏れセンサに連続的に電力を供給するか、熱交換器を通過して空気を移動させる送風機がオンであるときに、冷媒漏れセンサの電力供給を遮断するかのどちらかを行うように構成されている、電力制御モジュールと、を備える。
【特許請求の範囲】
【請求項1】
センサ制御システムであって、
電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、
前記熱交換器を通過して空気を移動させる送風機がオンであるときに、前記冷媒漏れセンサの電力供給を遮断するように構成された電力制御モジュールと、を備える、センサ制御システム。
【請求項2】
前記電力制御モジュールは、前記送風機の電気モータへの電流が所定の電流よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項3】
前記電力制御モジュールは、前記送風機の電気モータに印加される電圧が所定の電圧よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項4】
前記電力制御モジュールは、前記送風機の電気モータの速度が所定の速度よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項5】
前記電力制御モジュールは、前記熱交換器の下流の空気の圧力が所定の圧力よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項6】
前記電力制御モジュールは、冷却中に前記熱交換器の下流の空気の温度が所定の温度未満であるときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項7】
前記電力制御モジュールは、加熱中に前記熱交換器の下流の空気の温度が所定の温度よりも高いときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項8】
前記電力制御モジュールは、前記熱交換器の下流の空気の湿度が所定の湿度よりも高いときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項9】
前記電力制御モジュールは、ダクトを通る空気の流量が所定の流量よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項10】
前記電力制御モジュールは、前記送風機をオンにするためのコマンドが受信されたときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項11】
前記冷媒は軽度に可燃性として分類される、請求項1に記載のセンサ制御システム。
【請求項12】
前記電力制御モジュールは、前記送風機がオフであるときに前記冷媒漏れセンサを電力に接続するように構成される、請求項1に記載のセンサ制御システム。
【請求項13】
前記電力制御モジュールは、前記送風機がオフであるとき、各第2の所定の期間のうちの第1の所定の期間にわたって前記冷媒漏れセンサを電力に接続し、各第2の所定の期間の残りの期間にわたって前記冷媒漏れセンサの電力供給を遮断するように構成され、
前記第2の所定の期間は前記第1の所定の期間よりも長い、請求項12に記載のセンサ制御システム。
【請求項14】
センサ制御システムであって、
電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、
前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、
次の(a)および(b)のうちの一方に構成された電力制御モジュールであって、
(a)前記電力制御モジュールが電力を受け取っている間、前記冷媒漏れセンサに連続的に電力を供給し、前記冷媒漏れセンサを電力から切断しないことを含む、
(b)
(b1)前記冷媒漏れセンサを各第2の所定の期間のうちの第1の所定の期間にわたって電力に接続すること、および
(b2)前記冷媒漏れセンサを各第2の所定の期間の残りの期間にわたって電力から切断することを含み、
前記第2の所定の期間は前記第1の所定の期間よりも長い、
電力制御モジュールと、
を備える、センサ制御システム。
【請求項15】
センサ制御方法であって、
冷媒漏れセンサによって、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定することであって、
前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、測定することと、
前記熱交換器を通過して空気を移動させる送風機がオンであるときに、前記冷媒漏れセンサの電力を選択的に切断することと、を含む、センサ制御方法。
【請求項16】
前記送風機の電気モータへの電流が所定の電流より大きいとき、
前記送風機の電気モータに印加される電圧が所定の電圧よりも大きいとき、
前記送風機の電気モータの速度が所定の速度よりも大きいとき、
前記熱交換器の下流の空気の圧力が所定の圧力よりも大きいとき、
冷却中に前記熱交換器の下流の空気の温度が所定の温度未満であるとき、
加熱中に前記熱交換器の下流の空気の前記温度が所定の温度よりも高いとき、
前記熱交換器の下流の空気の湿度が所定の湿度よりも高いとき、
ダクトを通る空気の流量が所定の流量よりも大きいとき、および
前記送風機をオンにするためのコマンドが受信されたとき、
の少なくとも1つであるときに、送風機がオンであるかどうかを決定することをさらに含む、請求項15に記載のセンサ制御方法。
【請求項17】
前記冷媒は軽度に可燃性として分類される、請求項15に記載のセンサ制御方法。
【請求項18】
前記送風機がオフであるときに前記冷媒漏れセンサを電力に接続することをさらに含む、請求項15に記載のセンサ制御方法。
【請求項19】
前記送風機がオフであるときに、各第2の所定の期間のうちの第1の所定の期間にわたって前記冷媒漏れセンサを電力に接続し、各第2の所定の期間の残りの期間にわたって前記冷媒漏れセンサの電力供給を遮断することをさらに含み、
前記第2の所定の期間は前記第1の所定の期間よりも長い、請求項18に記載のセンサ制御方法。
【請求項20】
前記冷媒は軽度に可燃性として分類される、請求項1に記載のセンサ制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年9月29日に出願された米国特許出願第17/036,448号の優先権を主張する。上記で参照された出願の開示全体は、参照により本明細書に組み込まれる。
【0002】
分野
本開示は、冷媒漏れセンサに関し、より詳細には、冷媒漏れセンサの電力供給を制御するためのシステムおよび方法に関する。
【背景技術】
【0003】
背景
本明細書で提供される背景技術の説明は、本開示の文脈を一般的に提示することを目的としている。本発明者らの研究は、この背景技術の項に記載されている限りにおいて、ならびに出願時に先行技術として認められない可能性がある説明の態様は、本開示に対する先行技術として明示的にも暗示的にも認められない。
【0004】
冷却および空調用途は、使用する冷媒の地球温暖化係数を低減するために、規制圧力が高まっている。より低い地球温暖化係数の冷媒を使用するために、冷媒の可燃性が増加する可能性がある。
【0005】
低い地球温暖化の潜在力の選択肢と考えられるいくつかの冷媒が開発されており、それらはASHRAE(米国暖房冷却空調学会)のA2L分類を有し、軽度に可燃性であることを意味する。UL(アンダーライターズラボラトリーズ)60335-2-40規格および同様の規格は、A2L(または軽度に可燃性の)冷媒の所定の(M1)レベルを指定し、所定のレベルを下回るA2L冷媒充填レベルは漏れ検出および緩和を必要としないことを示す。
【発明の概要】
【課題を解決するための手段】
【0006】
概要
特徴において、センサ制御システムは、電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、熱交換器は、冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、電力制御モジュールが電力を受け取っている間、冷媒漏れセンサに連続的に電力を供給し、冷媒漏れセンサが電力から切断されないように構成された電力制御モジュールと、を備える。
【0007】
特徴において、センサ制御システムは、電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、熱交換器は、冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、熱交換器を通過して空気を移動させる送風機がオンであるときに、冷媒漏れセンサの電力供給を遮断するように構成された電力制御モジュールと、を備える。
【0008】
さらなる特徴において、電力制御モジュールは、送風機の電気モータへの電流が所定の電流よりも大きいときに送風機がオンであると決定するように構成される。
【0009】
さらなる特徴において、電力制御モジュールは、送風機の電気モータに印加される電圧が所定の電圧よりも大きいときに送風機がオンであると決定するように構成される。
【0010】
さらなる特徴において、電力制御モジュールは、送風機の電気モータの速度が所定の速度よりも大きいときに送風機がオンであると決定するように構成される。
【0011】
さらなる特徴において、電力制御モジュールは、熱交換器の下流の空気の圧力が所定の圧力よりも大きいときに送風機がオンであると決定するように構成される。
【0012】
さらなる特徴において、電力制御モジュールは、冷却中に熱交換器の下流の空気の温度が所定の温度未満であるときに送風機がオンであると決定するように構成される。
【0013】
さらなる特徴において、電力制御モジュールは、加熱中に熱交換器の下流の空気の温度が所定の温度よりも高いときに送風機がオンであると決定するように構成される。
【0014】
さらなる特徴において、電力制御モジュールは、熱交換器の下流の空気の湿度が所定の湿度よりも高いときに送風機がオンであると決定するように構成される。
【0015】
さらなる特徴において、電力制御モジュールは、ダクトを通る空気の流量が所定の流量よりも大きいときに送風機がオンであると決定するように構成される。
【0016】
さらなる特徴において、電力制御モジュールは、送風機をオンにするためのコマンドが受信されたときに送風機がオンであると決定するように構成される。
【0017】
さらなる特徴において、冷媒は軽度に可燃性として分類される。
さらなる特徴において、電力制御モジュールは、送風機がオフであるときに冷媒漏れセンサを電力に接続するように構成される。
【0018】
さらなる特徴において、電力制御モジュールは、送風機がオフであるとき、各第2の所定の期間のうちの第1の所定の期間にわたって冷媒漏れセンサを電力に接続し、各第2の所定の期間の残りの期間にわたって冷媒漏れセンサの電力供給を遮断するように構成され、第2の所定の期間は第1の所定の期間よりも長い。
【0019】
特徴において、センサ制御システムは、電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、熱交換器は、冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、電力制御モジュールであって、冷媒漏れセンサを各第2の所定の期間のうちの第1の所定の期間にわたって電力に接続し、冷媒漏れセンサを各第2の所定の期間の残りの期間にわたって電力から切断するように構成され、第2の所定の期間は第1の所定の期間よりも長い、電力制御モジュールと、を備える。
【0020】
特徴において、センサ制御方法は、冷媒漏れセンサによって、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定することであって、熱交換器は、冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、測定することと、熱交換器を通過して空気を移動させる送風機がオンであるときに、冷媒漏れセンサの電力を選択的に切断することと、を含む。
【0021】
さらなる特徴において、センサ制御方法は、送風機の電気モータへの電流が所定の電流よりも大きいとき、送風機の電気モータに印加される電圧が所定の電圧よりも大きいとき、送風機の電気モータの速度が所定の速度よりも大きいとき、熱交換器の下流の空気の圧力が所定の圧力よりも大きいとき、冷却中に熱交換器の下流の空気の温度が所定の温度未満であるとき、加熱中に熱交換器の下流の空気の温度が所定の温度よりも高いとき、熱交換器の下流の空気の湿度が所定の湿度よりも高いとき、ダクトを通る空気の流量が所定の流量よりも大きいとき、送風機をオンにするためのコマンドが受信されたとき、の少なくとも1つであるときに、送風機がオンであるかどうかを決定することをさらに含む。
【0022】
さらなる特徴において、冷媒は軽度に可燃性として分類される。
さらなる特徴において、センサ制御方法は、送風機がオフであるときに冷媒漏れセンサを電力に接続することをさらに含む。
【0023】
さらなる特徴において、センサ制御方法は、送風機がオフであるときに、各第2の所定の期間のうちの第1の所定の期間にわたって冷媒漏れセンサを電力に接続し、各第2の所定の期間の残りの期間にわたって冷媒漏れセンサの電力供給を遮断することをさらに含み、第2の所定の期間は第1の所定の期間よりも長い。
【0024】
本開示のさらなる適用領域は、詳細な説明、特許請求の範囲および図面から明らかになるであろう。詳細な説明および特定の例は、例示のみを目的とするものであり、本開示の範囲を限定するものではない。
【0025】
本開示は、詳細な説明および添付の図面からより完全に理解されるであろう。
【図面の簡単な説明】
【0026】
【
図1】例示的な冷却システムの機能ブロック図である。
【
図2】
図1の冷却システムの例示的な部分の機能ブロック図である。
【
図3】制御モジュールの例示的な実装態様の機能ブロック図である。および
【
図4】冷媒漏れセンサの電力供給を制御する例示的な方法を示すフローチャートである。
【
図5】冷媒漏れセンサの電力供給を制御する例示的な方法を示すフローチャートである。
【発明を実施するための形態】
【0027】
図面では、類似および/または同一の要素を識別するために参照番号を再利用することができる。
【0028】
詳細な説明
冷却システムで使用されるいくつかの冷媒は、軽度に可燃性(例えば、A2L冷媒)として分類することができる。軽度に可燃性の冷媒を使用する冷却システムは、冷却システムによってサービスされる建物内の冷却システムの外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサを備えることができる。この冷媒量は、冷却システムから漏れた冷媒量に相当する。
【0029】
冷媒漏れセンサは、所定の速度でオンおよびオフにパルス化されてもよい。しかし、冷媒漏れセンサをオンおよびオフにパルス化すると、冷媒漏れセンサの寿命が短くなるおそれがある。例えば、冷媒漏れセンサの1つ以上の光学部品(例えば、電球)は、冷媒漏れセンサがオンされる度に破損する可能性がある。そのため、冷媒漏れセンサをオンおよびオフにパルス化すると、冷媒漏れセンサの寿命が短くなるおそれがある。
【0030】
本出願によれば、電力制御モジュールは、冷媒漏れセンサを連続的にオンのままにすることができる。これにより、冷媒漏れセンサの寿命を延ばすことができる。あるいは、電力制御モジュールは、冷媒漏れセンサをオンのままにし、冷媒漏れセンサからの測定が必要でないとき、例えば送風機がオンであるときにのみ冷媒漏れセンサをオフにすることができる。送風機がオンになっていると、起こり得る漏れを軽減することができる。
【0031】
図1は、圧縮機102、凝縮器104、膨張弁106、および蒸発器108を備える例示的な冷却システム100の機能ブロック図である。冷却システム100は、逆転弁またはフィルタ乾燥機などの追加および/または代替の構成要素を備えることができる。さらに、本開示は、暖房、換気、および空調(HVAC)、ヒートポンプ、冷房、およびチラーシステムを備えるがこれらに限定されない他のタイプの冷却システムに適用可能である。例えば、冷却システム100は、ヒートポンプシステム内の冷媒流れの方向を反転させるように構成された逆転弁(図示せず)を備えることができる。
【0032】
圧縮機102は、蒸気形態の冷媒を受け取って圧縮する。圧縮機102は、蒸気形態の加圧冷媒を凝縮器104に供給する。圧縮機102は、ポンプを駆動する電気モータを備える。例えば、単に、圧縮機102のポンプは、スクロール圧縮機および/または往復圧縮機を含むことができる。
【0033】
加圧冷媒の全部または一部は、凝縮器104内で液体形態に変換される。凝縮器104は、冷媒から熱を移動させて冷媒を冷却する。冷媒蒸気が飽和温度未満の温度まで冷却されると、冷媒は液体(または液化)冷媒に変化する。凝縮器104は、冷媒から離れる熱伝達の速度を増加させる電動ファンを含むことができる。
【0034】
凝縮器104は、膨張弁106を介して蒸発器108に冷媒を供給する。膨張弁106は、蒸発器108への冷媒の供給流量を制御する。膨張弁106は、サーモスタット膨張弁を含んでもよく、または例えば制御モジュール130によって電子的に制御されてもよい。膨張弁106によって引き起こされる圧力降下は、液化冷媒の一部を蒸気形態に戻し得る。このようにして、蒸発器108は、冷媒蒸気と液化冷媒との混合物を受け取ることができる。
【0035】
冷媒は、蒸発器108にて吸熱する。液体冷媒は、冷媒の飽和温度よりも高い温度に温められると蒸気形態に移行する。蒸発器108は、冷媒への熱伝達の速度を増加させる電動ファンを含むことができる。
【0036】
ユーティリティ120は、冷却システム100に電力を供給する。例えば、単に、ユーティリティ120は、約230ボルトの二乗平均平方根(VRMS)で単相交流(AC)電力を提供することができる。他の実施態様では、ユーティリティ120は、例えば50または60Hzのライン周波数で約400VRMS、480VRMS、または600VRMSの3相AC電力を供給することができる。3相交流電力が名目上600VRMSである場合、電力の実際の利用可能電圧は575VRMSであり得る。
【0037】
ユーティリティ120は、2つ以上の導体を含むACラインを介してAC電力を制御モジュール130に供給することができる。AC電力はまた、ACラインを介して駆動装置132に供給されてもよい。制御モジュール130は、冷却システム100を制御する。例えば、単に、制御モジュール130は、ユーザ入力および/または様々なセンサ(図示せず)によって測定されたパラメータに基づいて冷却システム100を制御することができる。センサは、圧力センサ、温度センサ、電流センサ、電圧センサなどを含むことができる。センサはまた、シリアルデータバスまたは他の適切なデータバスを介して、モータ電流またはトルクなどの駆動制御装置からのフィードバック情報を含むことができる。
【0038】
ユーザインターフェース134は、制御モジュール130にユーザ入力を提供する。ユーザインターフェース134は、追加的または代替的に、ユーザ入力を駆動装置132に直接提供することができる。ユーザ入力は、例えば、所望の温度、ファンの動作に関する要求(例えば、蒸発器ファンの連続運転の要求)、および/または他の適切な入力を含むことができる。ユーザインターフェース134は、サーモスタットの形態をとることができ、制御モジュールの一部またはすべての機能(例えば、熱源を作動させることを含む)をサーモスタットに組み込むことができる。
【0039】
制御モジュール130は、凝縮器104のファン、蒸発器108のファン、および膨張弁106の動作を制御することができる。制御モジュール130はまた、逆転弁の作動を制御してもよい。
【0040】
駆動装置132は、制御モジュール130からのコマンドに基づいて圧縮機102を制御することができる。例えば、単に、制御モジュール130は、圧縮機102のモータを特定の速度で動作させるように、または圧縮機102を特定の容量で動作させるように駆動装置132に指示することができる。様々な実施態様において、駆動装置132は、凝縮器ファンを制御することもできる。
【0041】
蒸発器108は、冷却システムによってサービスされる建物内に配置されてもよい。凝縮器104は、建物の外側に配置されてもよい。ヒートポンプシステムでは、建物内で暖房を行うか、建物内で冷房を行うかによって、蒸発器108および凝縮器104の機能が切り替えられる。冷房が行われるとき、凝縮器104および蒸発器108は上述のように機能する。暖房が行われるとき、冷却液の流れが反転し、凝縮器104と蒸発器108とが逆に動作する。したがって、凝縮器104および蒸発器108は、より一般的には熱交換器と呼ぶことができる。
【0042】
冷媒漏れセンサ140は、建物の内部に配置されており、冷媒漏れセンサに存在する空気(冷却システムの外部)中の冷媒量(例えば、濃度)を計測する。冷媒漏れセンサ140は、例えば、蒸発器108を横切ってダクトを介して建物内に空気を吹き付ける送風機の下流など、蒸発器108の近くに配置することができる。冷媒漏れセンサ140は、蒸発器108の下流に配置されてもよい。
【0043】
冷媒漏れセンサ140は、計測した冷媒量に基づいて信号を生成する。例えば、冷媒漏れセンサ140は、冷媒量を制御モジュール130に送信することができる。あるいは、冷媒漏れセンサ140は、量が所定の量よりも大きい場合に信号を第1の状態とし、量が所定の量よりも小さい場合に信号を第2の状態としてもよい。所定の量は、例えば、冷媒の可燃度の低い方の25%であってもよいし、他の適切な値であってもよい。様々な実施態様において、冷媒は、1つまたは複数の基準の下で軽度に可燃性であるとして分類される。例えば、単に、上記のように、冷媒は、A2L冷媒またはより一般的に軽度に可燃性と分類されてもよい。分類は、例えば、ASHRAE(米国暖房冷凍空調学会)、UL(アンダーライターズラボラトリー)60335-2-40規格によるものであってもよく、あるいはASHRAE、UL、または別の規制機関によるものであってもよい別の規格によるものであってもよい。
【0044】
制御モジュール130は、冷媒の量が所定の量よりも多いことを示す冷媒漏れセンサ140の出力を受信する。出力が漏れの存在を示す(例えば、信号が、量が所定の値よりも大きいこと、または信号が第1の状態にあることを示す)場合、1つまたは複数の改善措置をとることができる。例えば、制御モジュール130は、漏れが存在するときに送風機(蒸発器108を横切って空気を吹き付ける)をオンにすることができる。送風機をオンにすると、漏れた冷媒を放散させることができる。さらに、制御モジュール130は、圧縮機102をオフにし、漏れが改善されるまで圧縮機102をオフのままにすることができる。さらに、制御モジュール130は、ロックアウト装置を作動させて、建物内での1つまたは複数の点火装置による点火を防止することができる。追加的または代替的に、制御モジュール130は、建物の外側の冷媒を遮断するために、1つまたは複数の遮断弁を閉じることができる。
【0045】
追加的または代替的に、制御モジュール130は、漏れが存在する場合に、1つまたは複数のインジケータを生成してもよい。例えば、制御モジュール130は、インジケータを1つまたは複数の外部装置に送信し、1つまたは複数の視覚インジケータを生成し(例えば、1つまたは複数のライトをオンにする、1つまたは複数のディスプレイに情報を表示するなど)、および/または1つまたは複数のスピーカなどを介して1つまたは複数の可聴インジケータを生成してもよい。
【0046】
冷媒漏れセンサ140は、例えば、非分散型赤外線(NDIR)冷媒センサ、熱伝導性冷媒センサ、水晶振動子マイクロバランス(QCM)センサ、または別の適切なタイプの冷媒漏れセンサであってもよい。NDIRセンサは、管を通して光を送る赤外線(IR)ランプを含む。ファンまたは送風機は、管を通して気体(例えば、空気、および漏れが存在する場合には冷媒)を押すかまたは引っ張ることができる。光学センサは、IRランプから管を介して光を受け取り、光の1つまたは複数の特性に基づいてガス中の冷媒の量を測定する。熱伝導性センサは、その間で気体が送風機またはファンによって押し引きされ得る導電性プレートを含む。送風機またはファンは、様々な実施態様において省略されてもよい。異なる量の冷媒は、異なる熱伝導率を有する。熱伝導性センサは、2つの温度センサ(例えば、加熱要素の1つ前および1つ後)を含む。熱伝導性センサは、2つのセンサからの測定値間の温度差を決定する。加熱要素からの既知の加熱入力が与えられると、熱伝導性センサは、温度差に基づいて冷媒の量を決定する。異なる量の冷媒は異なる密度を有し、したがって異なる振動を引き起こす可能性がある。QCMセンサは、振動に基づいて気体中の冷媒の量を測定する。冷媒漏れセンサ140の他の例としては、金属酸化物冷媒センサ、音響冷媒センサ、水晶共振(例えば、QCM)冷媒センサ、カーボンナノチューブ冷媒センサ等が挙げられる。金属酸化物冷媒センサは、ホットプレートによって加熱された表面酸化剤にわたる抵抗を測定する。冷媒の存在下では、酸化層の抵抗が低下することがある。冷媒が放散するにつれて、酸化層の抵抗は増加し得る。金属酸化物冷媒センサは、抵抗に基づいて冷媒の量を決定することができる。
【0047】
冷媒漏れセンサ140の電力消費を最小限に抑えるために、制御モジュール130は、冷媒漏れセンサ140のオン/オフを同じ所定の期間にわたって切り替えることができる。言い換えれば、制御モジュール130は、漏れセンサ140に直接電力を印加したり電力から直接切断したりすることなどによって、冷媒漏れセンサ140をオンおよびオフにパルス化することができる。制御モジュール130は、冷媒漏れセンサ140に電力を印加することによって、冷媒漏れセンサ140をオンにする。制御モジュール130は、冷媒漏れセンサ140の電力から切断することによって、冷媒漏れセンサ140をオフにする。
【0048】
様々な実施態様では、冷媒漏れセンサ140は、デジタルセンサであってもよい。そのような実施態様では、冷媒漏れセンサ140は、制御モジュール130からの待機コマンドの受信に応答して待機(または電力低減/スリープ)モードに入るように構成することができる。制御モジュール130は、冷媒漏れセンサ140をそれぞれ非待機状態と待機状態との間で往復させることによって、冷媒漏れセンサ140をオンおよびオフに切り替えることができる。本明細書で使用される「オン」という用語は、非待機モードでの動作を指すことができ、本明細書で使用される「オフ」という用語は、待機モードでの動作を指すことができる。一般的に言えば、冷媒漏れセンサ140をオフにするとき、制御モジュール130は、冷媒漏れセンサ140のプロセッサに印加される電力を(例えば、ピーク電力の0%まで)減少させることができる。冷媒漏れセンサ140をオンにするとき、制御モジュール130は、冷媒漏れセンサ140のプロセッサに(例えば、ピーク電力の最大100%の)電力を印加することができる。
【0049】
しかし、冷媒漏れセンサ140をオンおよびオフにパルス化すると、冷媒漏れセンサ140が破損するおそれがある。例えば、IRランプは、点灯する度に劣化することがある。
【0050】
本出願は、冷媒漏れセンサ140をオンおよびオフにパルス化することに対して冷媒漏れセンサ140の寿命を延ばすように冷媒漏れセンサ140への電力を制御する制御モジュール130を備える。例えば、制御モジュール130は、冷媒漏れセンサ140をオンのままにすることができる。これにより、消費電力を増加させることができるが、冷媒センサの寿命を延ばすこともできる。寿命の増加に関連するコストは、消費電力の増加のコストを上回る可能性がある。
【0051】
様々な実施態様では、制御モジュール130は、1つまたは複数の所定の条件が満たされた場合にのみ冷媒漏れセンサ140をオフにする(およびそうでなければ冷媒漏れセンサ140をオンのままにする)ことができる。例えば、制御モジュール130は、蒸発器108を通過して空気を吹き付ける送風機がオンである場合に、冷媒漏れセンサ140をオフにすることができる(そして、起こり得る漏れが軽減される)。制御モジュール130は、制御モジュール130が送風機をオンにするために送風機に電力を印加した(またはコマンドを送信した)ときに送風機がオンであると推測することができる。様々な実施態様では、制御モジュール130は、送風機がオンであるときに冷媒漏れセンサ140をオンにするかまたはオンのままにし、漏れが放散/低減されていることを検証するなどのために、1つまたは複数の測定値を取得することができる。
【0052】
様々な実施態様では、送風機がオンであるかどうかを決定するために、1つまたは複数の測定されたパラメータを使用することができ、制御モジュール130は、送風機がオンであるときに冷媒漏れセンサ140をオフにすることができる。例えば、制御モジュール130は、空気圧、気温、空気の湿度、送風機のモータの電流、送風機のモータの電圧、送風機のモータの消費電力、送風機のモータの速度、および/または送風機によって出力される空気の流量に基づいて、送風機がオンであるかどうかを決定することができる。
【0053】
冷媒漏れセンサ140をオフからオンまたはオンからオフに移行させるとき、制御モジュール130は、冷媒漏れセンサ140に印加される電力を変化させることができる。例えば、制御モジュール130は、冷媒漏れセンサ140をオフにするときに冷媒漏れセンサ140に印加される電力をランプダウンすることができる。制御モジュール130は、冷媒漏れセンサ140をオンにするときに冷媒漏れセンサ140に印加される電力を増加させることができる。ランプの例が説明されているが、制御モジュール130は、正弦波、三角、所定の増分などの別の適切なパターンで印加される電力を変化させることができる。
【0054】
図2は、
図1の冷却システムの例示的な部分の機能ブロック図である。オンにすると、送風機204は、建物内から1つまたは複数の戻り空気ダクトを通して空気を引き込む。送風機204は、空気に蒸発器108を通過させる。蒸発器108は、空気が蒸発器108を通過する際に空気と熱をやりとりする。加熱または冷却された空気は、蒸発器108から1つまたは複数の給気ダクトを通って建物内に流れる。
【0055】
冷媒漏れセンサ140に加えて、1つまたは複数のセンサが実装されてもよい。例えば、モータ電流センサ208は、送風機204、より具体的には送風機204の電気モータへの電流を測定することができる。制御モジュール130は、電流が所定の電流よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0056】
追加的または代替的に、電圧センサは、送風機204の電気モータに印加される電圧を測定することができる。制御モジュール130は、電圧が所定の電圧よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0057】
追加的または代替的に、電力センサは、送風機204の電気モータの消費電力を測定することができる。制御モジュール130は、消費電力が所定の電力よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0058】
追加的または代替的に、速度センサ212は、送風機204の電気モータの回転速度を測定することができる。制御モジュール130は、速度が所定の速度よりも速い場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0059】
追加的または代替的に、蒸発器108の下流には、1つまたは複数のセンサが実装されてもよい。例えば、圧力センサ216は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の圧力を測定することができる。制御モジュール130は、圧力が所定の圧力(例えば、大気圧)よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。圧力は、送風機204がオフであるときに大気圧に近づくことができる。圧力は、送風機204がオンであるときに大気圧に対して増加し得る。
【0060】
追加的または代替的に、温度センサ220は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の温度を測定することができる。制御モジュール130は、加熱中に所定の温度(例えば、サーモスタットの設定圧力)よりも高いか、冷却中に所定の温度未満である場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0061】
追加的または代替的に、相対湿度センサ224は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の相対湿度(RH)を測定することができる。制御モジュール130は、相対湿度が所定の相対湿度より高いまたは未満である場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。加熱モードおよび冷却モードには、異なる所定の相対湿度を使用することができる。
【0062】
追加的または代替的に、空気流量(例えば、質量空気流量(MAF))センサ228は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の流量(例えば、質量流量)を測定することができる。制御モジュール130は、空気流量が所定の空気流量よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
【0063】
センサの例示的な位置が
図2に示されているが、センサは他の適切な位置に配置されてもよい。さらに、
図2のセンサのうちの1つまたは複数は、省略または複製されてもよい。
【0064】
図3は、制御モジュール130の例示的な実施態様の機能ブロック図である。圧縮機制御モジュール304は、圧縮機102の動作を制御する。例えば、圧縮機制御モジュール304は、サーモスタット308からのコマンドの受信に応答して圧縮機102をオンにすることができる。サーモスタット308は、例えば、建物内の空気の温度が設定温度よりも高い(冷房の例)か、または設定温度未満(暖房の例)の場合に、コマンドを生成することができる。圧縮機制御モジュール304は、圧縮機102がオンであるときに圧縮機102の速度および/または容量を変化させることができる。圧縮機制御モジュール304は、サーモスタット308がコマンドの生成を停止したときに圧縮機102をオフにすることができる。
【0065】
ファン制御モジュール312は、凝縮器ファン316の動作を制御する。凝縮器ファン316は、凝縮器ファン316がオンであるときに凝縮器104を通過する空気流を増加させる。例えば、ファン制御モジュール312は、サーモスタット308からのコマンドの受信に応答して凝縮器ファン316をオンにすることができる。ファン制御モジュール312は、サーモスタット308がコマンドの生成を停止したときに凝縮器ファン316をオフにすることができる。様々な実施態様では、ファン制御モジュール312は、圧縮機102がオンになる前に凝縮器ファン316をオンにし、圧縮機102がオフになった後の所定の期間にわたって凝縮器ファン316をオンのままにすることができる。
【0066】
送風機制御モジュール320は、送風機204の動作を制御する。例えば、ファン送風機制御モジュール320は、サーモスタット308からのコマンドの受信に応答して送風機204をオンにすることができる。送風機制御モジュール320は、サーモスタット308がコマンドの生成を停止したときに送風機204をオフにすることができる。様々な実施態様では、送風機制御モジュール320は、圧縮機102がオンになる前に送風機204をオンにし、圧縮機102がオフになった後の所定の期間にわたって送風機204をオンのままにすることができる。
【0067】
本明細書で説明する制御モジュールは、装置に電力を印加することによって装置をオンにする。制御モジュールは、装置の電力供給を遮断することによって装置をオフにする。
【0068】
また、送風機制御モジュール320は、冷媒漏れセンサ140を使用して冷媒漏れを検出したときに、送風機204をオンにすることができる。例えば、漏れモジュール324は、冷媒漏れセンサ140によって冷却システムの外側で測定された冷媒の量が所定の量よりも多い場合に、冷却システムに冷媒漏れがあると決定してもよい。漏れモジュール324は、その量が所定の量未満である場合、冷媒漏れがないと決定してもよい。
【0069】
上述したように、冷媒漏れが冷却システム内に存在する場合、1つまたは複数の他の改善措置をとることができる。例えば、圧縮機制御モジュール304は、冷媒漏れが存在する場合に、圧縮機102をオフにし、圧縮機102を所定の期間オフのままにすることができる。
【0070】
電力制御モジュール328は、冷媒漏れセンサ140への電力投入を制御する。すなわち、電力制御モジュール328は、冷媒漏れセンサ140をオンオフする。様々な実施態様では、電力制御モジュール328は、冷媒漏れセンサ140を連続的にオンのままにすることができる。冷媒漏れセンサ140をオンのままにすることにより、冷媒漏れセンサ140をオンオフすることに比べて冷媒漏れセンサ140の寿命を延ばすことができる。
【0071】
冷媒漏れセンサ140をオンのままにする代わりに、電力制御モジュール328は、冷媒漏れセンサ140をオンおよびオフにしてもよい。例えば、1つまたは複数の規制機関(例えば、アンダーライターズラボラトリーズ、UL)の要件は、冷媒漏れセンサが漏れ開始の所定の最大期間内に漏れを検出することを必要とする場合がある。しかし、冷媒漏れセンサ140は、オンにされた後、所定の測定期間内に信頼性の高い測定値を生成することが可能であってもよい。所定の測定期間は、所定の最大期間未満である。したがって、電力制御モジュール328は、冷媒漏れセンサ140を、各所定の最大期間のうちの所定の測定期間にわたって連続的にオンにすることができる。電力制御モジュール328は、そうでなければ冷媒漏れセンサ140をオフのままにすることができる。これは、冷媒漏れセンサ140がオンである期間を最小限に抑えながら、規制機関の要件を満たすことができる。所定の最大期間は、規制機関によって設定され、例えば、10秒または別の適切な期間であってもよい。所定の測定期間は、例えば、2秒であってもよいし、冷媒漏れセンサ140が正確な測定値を生成するための別の適切な期間であってもよい。所定の測定期間は、例えば実験的に決定されてもよいし、例えば冷媒漏れセンサ140の製造者等によって特定されてもよい。
【0072】
追加的または代替的に、電力制御モジュール328は、(例えば、サーモスタット308からのコマンドによって示されるように)送風機204がオンであるときに冷媒漏れセンサ140をオフにすることができる。電力制御モジュール328は、そうでなければ(例えば、送風機204がオフであるとき)冷媒漏れセンサ140をオンのままにすることができる。
【0073】
様々な実施態様では、電力制御モジュール328は、上述した他のセンサ332のうちの1つまたは複数からの1つまたは複数の測定値に基づいて、送風機204がオンであるかどうかを決定し(または送風機204がオンであることを確認し)、送風機204がオンであるときに冷媒漏れセンサ140をオフにすることができる。例えば、電力制御モジュール328は、電流センサ208を使用して測定されたモータへの電流が所定の電流よりも大きい場合に冷媒漏れセンサ140をオフにしてもよい。
【0074】
追加的または代替的に、電力制御モジュール328は、送風機204の電気モータへの電圧が所定の電圧よりも大きい場合に冷媒漏れセンサ140をオフにすることができる。追加的または代替的に、電力制御モジュール328は、速度センサ212を使用して測定された送風機204の電気モータの速度が所定の速度よりも大きい場合に冷媒漏れセンサ140をオフにすることができる。
【0075】
追加的または代替的に、電力制御モジュール328は、圧力センサ216を使用して測定された圧力が所定の圧力よりも大きい場合に冷媒漏れセンサ140をオフにすることができる。追加的または代替的に、電力制御モジュール328は、加熱中に温度センサ220によって測定された温度が、所定の温度よりも高いか、または冷却中に所定の温度未満の場合に、冷媒漏れセンサ140をオフにすることができる。追加的または代替的に、電力制御モジュール328は、相対湿度センサ224によって測定された相対湿度が、現在のモード(例えば、加熱または冷却モード)に対して選択された所定の相対湿度よりも大きいかまたは小さい場合に、冷媒漏れセンサ140をオフにすることができる。追加的または代替的に、電力制御モジュール328は、空気流量センサ228によって測定された空気流量が所定の空気流量よりも大きい場合に冷媒漏れセンサ140をオフにすることができる。また、送風機204がオンであるときに冷媒漏れセンサ140をオフにすることで、冷媒漏れセンサ140の寿命を延ばすことができる。
【0076】
電力制御モジュール328は、ACラインから冷媒漏れセンサ140に電力を印加することができる。様々な実施態様では、コンバータモジュール340は、ACラインを冷媒漏れセンサ140への印加に適した電力に変換することができ、電力制御モジュール328は、コンバータモジュールによって出力された電力を冷媒漏れセンサ140に印加することができる。例えば、電力制御モジュール328は、1つまたは複数のスイッチを含んでもよい。電力制御モジュール328は、スイッチを閉じて冷媒漏れセンサ140に電力を印加することができる。電力制御モジュール328は、スイッチを開いて冷媒漏れセンサ140の電力供給を遮断することができる。様々な実施態様では、電力制御モジュール328は、冷媒漏れセンサ140のプロセッサの電力供給を制御することができる。
【0077】
図4は、冷媒漏れセンサ140の電力供給制御方法の一例を示すフローチャートである。様々な実施態様では、電力制御モジュール328は、冷媒漏れセンサ140を連続的にオンのままにすることができる。あるいは、404において、電力制御モジュール328は、送風機204に関するコマンド、送風機204への電流、送風機204に印加される電圧、送風機204の消費電力、送風機204の速度、蒸発器108の下流の空気の圧力、蒸発器108の下流の空気の温度、蒸発器108の下流の空気の相対湿度、および冷却システムのダクトを通る空気流量などの、1つまたは複数の現在の動作パラメータを取得することができる。
【0078】
408で、電力制御モジュール328は、送風機204がオンであるかどうかを決定する。例えば、電力制御モジュール328は、サーモスタットから送風機204をオンにするコマンドを受信した場合に、送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、電流センサ208を使用して測定されたモータへの電流が所定の電流よりも大きい場合に送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、送風機204の電気モータへの電圧が所定の電圧よりも大きい場合に送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、速度センサ212を使用して測定された送風機204の電気モータの速度が所定の速度よりも大きい場合に送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、圧力センサ216を使用して測定された圧力が所定の圧力よりも大きい場合に送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、加熱中に温度センサ220によって測定された温度が所定の温度よりも高いか、または冷却中に所定の温度未満の場合に、送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、相対湿度センサ224によって測定された相対湿度が所定の相対湿度よりも大きいかまたは小さい場合に送風機204がオンであると決定することができる。追加的または代替的に、電力制御モジュール328は、空気流量センサ228によって測定された空気流量が所定の空気流量よりも大きい場合に送風機204がオンであると決定することができる。
【0079】
408が真である場合、電力制御モジュール328は、412で冷媒漏れセンサ140をオフにし、制御は404に戻る。408が偽である場合、電力制御モジュール328は、416で冷媒漏れセンサ140をオンにすることができ、制御は404に戻ることができる。
【0080】
図5は、冷媒漏れセンサ140の電力供給制御方法の一例を示すフローチャートである。様々な実施態様では、電力制御モジュール328は、冷媒漏れセンサ140を連続的にオンのままにすることができる。あるいは、504で、電力制御モジュール328は、第1および第2のタイマ(タイマ1およびタイマ2)をリセットすることができる。508で、電力制御モジュール328は、冷媒漏れセンサ140をオンにする(またはそのままにする)。第1のタイマは、冷媒漏れセンサ140がオンであった期間を追跡する。第2のタイマは、冷媒漏れセンサ140が最後にオンされてからの期間を追跡する。
【0081】
512で、電力制御モジュール328は、冷媒漏れセンサ140が最後にオンにされてから冷媒漏れセンサ140の所定の測定期間が経過したかどうかを決定する。例えば、電力制御モジュール328は、第1のタイマが所定の測定期間よりも大きいかどうかを決定してもよい。512が偽である場合、電力制御モジュール328は、516で第1のおよび第2のタイマをインクリメントし、制御は508に戻る。このようにして、電力制御モジュール328は、冷媒漏れセンサ140を所定の測定期間、オンのままにする。512が偽である場合、制御は520に続く。
【0082】
520で、電力制御モジュール328は、冷媒漏れセンサ140をオフにし(またはそのままにし)、第2のタイマをインクリメントする。524で、電力制御モジュール328は、冷媒漏れセンサ140が最後にオンにされてから所定の最大期間が経過したかどうかを決定する。例えば、電力制御モジュール328は、第2のタイマが所定の最大期間よりも大きいかどうかを決定してもよい。524が偽である場合、電力制御モジュール328の制御は520に戻る。このようにして、電力制御モジュール328は、冷媒漏れセンサ140を所定の最大期間の残りの期間、オフのままにする。524が真である場合、制御は504に戻る。
【0083】
前述の説明は、本質的に単なる例示であり、決して本開示、その用途、または使用法を限定することを意図するものではない。本開示の広範な教示は、様々な形態で実施することができる。したがって、本開示は特定の例を含むが、図面、明細書、および添付の特許請求の範囲を検討すると他の修正が明らかになるので、本開示の真の範囲はそのように限定されるべきではない。本開示の原理を変更することなく、方法内の1つ以上のステップを異なる順序で(または同時に)実行することができることを理解されたい。さらに、各実施形態は特定の特徴を有するものとして上述されているが、本開示の任意の実施形態に関して説明されたそれらの特徴のうちの任意の1つ以上は、その組み合わせが明示的に説明されていなくても、他の実施形態のいずれかの特徴に実装および/またはそれらと組み合わせることができる。言い換えれば、記載された実施形態は相互に排他的ではなく、1つ以上の実施形態の互いの置換は、本開示の範囲内に留まる。
【0084】
要素間(例えば、モジュール間、回路要素間、半導体層間等)の空間的および機能的関係は、「接続された」、「係合された」、「結合された」、「隣接する」、「隣に」、「上に」、「上方に」、「下方に」、および「配置された」を含む様々な用語を使用して説明される。「直接的」であると明示的に記載されていない限り、第1の要素と第2の要素との間の関係が上記開示に記載されている場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接的な関係とすることができるが、第1の要素と第2の要素との間に(空間的または機能的に)1つ以上の介在要素が存在する間接的な関係とすることもできる。本明細書で使用される場合、A、B、およびCのうちの少なくとも1つという語句は、非排他的論理ORを使用して論理(A OR B OR C)を意味すると解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、およびCの少なくとも1つ」を意味すると解釈されるべきではない。
【0085】
図では、矢印によって示される矢印の方向は、一般に、図が対象とする情報(データまたは命令など)の流れを示している。例えば、要素Aおよび要素Bが様々な情報を交換するが、要素Aから要素Bに送信された情報が図に関連する場合、矢印は要素Aから要素Bを指すことができる。この一方向の矢印は、他の情報が要素Bから要素Aに送信されないことを意味しない。さらに、要素Aから要素Bに送信された情報について、要素Bは、情報の要求または受信確認を要素Aに送信することができる。
【0086】
以下の定義を含む本出願では、「モジュール」という用語または「制御装置」という用語は、「回路」という用語と置き換えることができる。「モジュール」という用語は、特定用途向け集積回路(ASIC)、デジタル、アナログ、またはアナログ/デジタル混合ディスクリート回路、デジタル、アナログ、またはアナログ/デジタル混合集積回路、組み合わせ論理回路、フィールドプログラマブルゲートアレイ(FPGA)、コードを実行するプロセッサ回路(共有、専用、またはグループ)、プロセッサ回路によって実行されるコードを記憶するメモリ回路(共有、専用、またはグループ)、記載された機能を提供する他の適切なハードウェア構成要素、または上記の一部または全部の組み合わせ、例えばシステムオンチップを指すか、その一部であるか、または含むことができる。
【0087】
モジュールは、1つ以上のインターフェース回路を含むことができる。いくつかの例では、インターフェース回路は、ローカルエリアネットワーク(LAN)、インターネット、ワイドエリアネットワーク(WAN)、またはそれらの組み合わせに接続された有線または無線インターフェースを含むことができる。本開示の任意の所与のモジュールの機能は、インターフェース回路を介して接続された複数のモジュール間で分散されてもよい。例えば、複数のモジュールは、負荷分散を可能にし得る。さらなる例では、サーバ(遠隔またはクラウドとしても知られている)モジュールは、クライアントモジュールに代わっていくつかの機能を達成することができる。
【0088】
モジュールの一部またはすべてのハードウェア機能は、IEEE規格1364-2005(一般に「Verilog」と呼ばれる)およびIEEE規格1076-2008(一般に「VHDL」と呼ばれる)などのハードウェア記述用の言語を使用して定義され得る。ハードウェア記述言語は、ハードウェア回路を製造および/またはプログラムするために使用され得る。いくつかの実装態様では、モジュールのいくつかまたはすべての機能は、IEEE 1666-2005(一般に「SystemC」と呼ばれる)などの、後述するようなコードとハードウェア記述の両方を包含する言語によって定義され得る。
【0089】
コードという用語は、上記で使用されるように、ソフトウェア、ファームウェア、および/またはマイクロコードを含むことができ、プログラム、ルーチン、機能、クラス、データ構造、および/またはオブジェクトを指すことができる。共有プロセッサ回路という用語は、複数のモジュールからのいくつかまたはすべてのコードを実行する単一のプロセッサ回路を包含する。グループプロセッサ回路という用語は、追加のプロセッサ回路と組み合わせて、1つ以上のモジュールからのいくつかまたはすべてのコードを実行するプロセッサ回路を包含する。複数のプロセッサ回路への言及は、個別のダイ上の複数のプロセッサ回路、単一のダイ上の複数のプロセッサ回路、単一のプロセッサ回路の複数のコア、単一のプロセッサ回路の複数のスレッド、または上記の組み合わせを包含する。共有メモリ回路という用語は、複数のモジュールからのいくつかまたはすべてのコードを記憶する単一のメモリ回路を包含する。グループメモリ回路という用語は、追加のメモリと組み合わせて、1つ以上のモジュールからのいくつかまたはすべてのコードを記憶するメモリ回路を包含する。
【0090】
メモリ回路という用語は、コンピュータ可読媒体という用語のサブセットである。本明細書で使用されるコンピュータ可読媒体という用語は、媒体を通って(搬送波上などで)伝播する一時的な電気信号または電磁信号を包含しない。したがって、コンピュータ可読媒体という用語は、有形かつ非一時的であると考えることができる。非一時的コンピュータ可読媒体の非限定的な例は、不揮発性メモリ回路(フラッシュメモリ回路、消去可能プログラマブル読み出し専用メモリ回路、またはマスク読み出し専用メモリ回路など)、揮発性メモリ回路(スタティックランダムアクセスメモリ回路またはダイナミックランダムアクセスメモリ回路など)、磁気記憶媒体(アナログまたはデジタル磁気テープまたはハードディスクドライブなど)、および光記憶媒体(CD、DVD、ブルーレイディスク等)である。
【0091】
本出願に記載された装置および方法は、コンピュータプログラムで具現化された1つ以上の特定の機能を実行するように汎用コンピュータを構成することによって作成された専用コンピュータによって部分的または完全に実装されてもよい。上述した機能ブロック、フローチャート要素は、ソフトウェア仕様として機能し、これは、熟練した技術者またはプログラマの日常業務によってコンピュータプログラムに変換することができる。
【0092】
コンピュータプログラムは、少なくとも1つの非一時的なコンピュータ可読媒体に記憶されたプロセッサ実行可能命令を含む。コンピュータプログラムはまた、記憶されたデータを含むか、またはそれに依存することができる。コンピュータプログラムは、専用コンピュータのハードウェアと対話する基本入出力システム(BIOS)、専用コンピュータの特定のデバイスと対話するデバイスドライバ、1つ以上のオペレーティングシステム、ユーザアプリケーション、バックグラウンドサービス、バックグラウンドアプリケーションなどを含むことができる。
【0093】
コンピュータプログラムは、(i)HTML(ハイパーテキストマークアップ言語)、XML(拡張可能マークアップ言語)、またはJSON(JavaScript Object Notation)などの解析されるべき記述テキスト、(ii)アセンブリコード、(iii)コンパイラによってソースコードから生成されたオブジェクトコード、(iv)インタプリタによる実行のためのソースコード、(v)ジャストインタイムコンパイラによるコンパイルおよび実行のためのソースコードなどを吹くセットにして覚えてください。単なる例として、ソースコードは、C、C++、C#、Objective-C、Swift、Haskell、Go、SQL、R、Lisp、Java(登録商標)、Fortran、Perl、Pascal、Curl、OCaml、Javascript(登録商標)、HTML 5(ハイパーテキストマークアップ言語第5版)、Ada、ASP(Active Server Page)、PHP(PHP:ハイパーテキストプリプロセッサ)、Scala、Eiffel、Smalltalk、Ruby、Flash(登録商標)、Visual Basic(登録商標)、Lua、MATLAB(登録商標)、SIMULINK(登録商標)、およびPython(登録商標)。
【手続補正書】
【提出日】2022-02-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
センサ制御システムであって、
電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、
電力制御モジュールとを備え、前記電力制御モジュールは、
前記熱交換器を通過して空気を移動させる送風機がオンであるときに、前記冷媒漏れセンサの電力供給を遮断し、
前記送風機がオフであるとき、各第2の所定の期間のうちの第1の所定の期間にわたって、前記冷媒漏れセンサを電力に接続し、
前記各第2の所定の期間の残りの期間にわたって、前記冷媒漏れセンサの電力供給を遮断するように構成され、
前記第2の所定の期間は前記第1の所定の期間よりも長く、
前記第2の所定期間は、規制機関が冷媒に対して開始後に検出されることを必要とするとする最大期間であり、
前記第1の所定期間は、前記冷媒漏れセンサがオンにされた後に、信頼性の高い測定値の生成を開始する期間である、センサ制御システム。
【請求項2】
前記電力制御モジュールは、前記送風機の電気モータへの電流が所定の電流よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項3】
前記電力制御モジュールは、前記送風機の電気モータに印加される電圧が所定の電圧よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項4】
前記電力制御モジュールは、前記送風機の電気モータの速度が所定の速度よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項5】
前記電力制御モジュールは、前記熱交換器の下流の空気の圧力が所定の圧力よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項6】
前記電力制御モジュールは、冷却中に前記熱交換器の下流の空気の温度が所定の温度未満であるときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項7】
前記電力制御モジュールは、加熱中に前記熱交換器の下流の空気の温度が所定の温度よりも高いときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項8】
前記電力制御モジュールは、前記熱交換器の下流の空気の湿度が所定の湿度よりも高いときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項9】
前記電力制御モジュールは、ダクトを通る空気の流量が所定の流量よりも大きいときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項10】
前記電力制御モジュールは、前記送風機をオンにするためのコマンドが受信されたときに前記送風機がオンであると決定するように構成される、請求項1に記載のセンサ制御システム。
【請求項11】
前記冷媒は軽度に可燃性として分類される、請求項1に記載のセンサ制御システム。
【請求項12】
前記電力制御モジュールは、前記送風機がオフであるときに前記冷媒漏れセンサを電力に接続するように構成される、請求項1に記載のセンサ制御システム。
【請求項13】
センサ制御システムであって、
電力が供給されると、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定するように構成された冷媒漏れセンサであって、
前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、冷媒漏れセンサと、
電力制御モジュールであって、
前記冷媒漏れセンサを各第2の所定の期間のうちの第1の所定の期間にわたって電力に接続し、
前記冷媒漏れセンサを各第2の所定の期間の残りの期間にわたって電力から切断するように構成される、電力制御モジュールと、
を備え、
前記第2の所定の期間は前記第1の所定の期間よりも長い、
前記第2の所定期間は、規制機関が冷媒に対して開始後に検出されることを必要とするとする最大期間であり、
前記第1の所定期間は、前記冷媒漏れセンサがオンにされた後に、信頼性の高い測定値の生成を開始する期間である、センサ制御システム。
【請求項14】
センサ制御方法であって、
冷媒漏れセンサによって、冷却システムの熱交換器の外側の空気中に存在する冷媒の量を測定することであって、
前記熱交換器は、前記冷却システムによって加熱されるか冷却されるかの少なくとも一方である建物内に配置される、測定することと、
前記熱交換器を通過して空気を移動させる送風機がオンであるときに、前記冷媒漏れセンサの電力を選択的に切断することと、
前記送風機がオフであるとき、各第2の所定の期間のうちの第1の所定の期間にわたって、前記冷媒漏れセンサを電力に接続することと、
前記各第2の所定の期間の残りの期間にわたって、前記冷媒漏れセンサの電力供給を遮断することと、を含み、
前記第2の所定の期間は前記第1の所定の期間よりも長く、
前記第2の所定期間は、規制機関が冷媒に対して開始後に検出されることを必要とするとする最大期間であり、
前記第1の所定期間は、前記冷媒漏れセンサがオンにされた後に、信頼性の高い測定値の生成を開始する期間である、センサ制御方法。
【請求項15】
前記送風機の電気モータへの電流が所定の電流より大きいとき、
前記送風機の電気モータに印加される電圧が所定の電圧よりも大きいとき、
前記送風機の電気モータの速度が所定の速度よりも大きいとき、
前記熱交換器の下流の空気の圧力が所定の圧力よりも大きいとき、
冷却中に前記熱交換器の下流の空気の温度が所定の温度未満であるとき、
加熱中に前記熱交換器の下流の空気の前記温度が所定の温度よりも高いとき、
前記熱交換器の下流の空気の湿度が所定の湿度よりも高いとき、
ダクトを通る空気の流量が所定の流量よりも大きいとき、および
前記送風機をオンにするためのコマンドが受信されたとき、
の少なくとも1つであるときに、送風機がオンであるかどうかを決定することをさらに含む、請求項
14に記載のセンサ制御方法。
【請求項16】
前記冷媒は軽度に可燃性として分類される、請求項
14に記載のセンサ制御方法。
【請求項17】
前記送風機がオフであるときに前記冷媒漏れセンサを電力に接続することをさらに含む、請求項
14に記載のセンサ制御方法。
【請求項18】
前記冷媒は軽度に可燃性として分類される、請求項1に記載のセンサ制御システム。
【国際調査報告】