IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エフエフイーアイ リミテッドの特許一覧

<>
  • 特表-細胞堆積及び撮像装置 図1a
  • 特表-細胞堆積及び撮像装置 図1b
  • 特表-細胞堆積及び撮像装置 図2
  • 特表-細胞堆積及び撮像装置 図3a
  • 特表-細胞堆積及び撮像装置 図3b
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-10-18
(54)【発明の名称】細胞堆積及び撮像装置
(51)【国際特許分類】
   C12M 1/00 20060101AFI20231011BHJP
   C12M 1/26 20060101ALI20231011BHJP
   G02B 21/00 20060101ALI20231011BHJP
   C12M 1/34 20060101ALI20231011BHJP
   C12M 1/36 20060101ALI20231011BHJP
【FI】
C12M1/00 A
C12M1/26
G02B21/00
C12M1/34 Z
C12M1/36
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023543470
(86)(22)【出願日】2021-09-27
(85)【翻訳文提出日】2023-05-25
(86)【国際出願番号】 GB2021052508
(87)【国際公開番号】W WO2022069878
(87)【国際公開日】2022-04-07
(31)【優先権主張番号】2015366.4
(32)【優先日】2020-09-29
(33)【優先権主張国・地域又は機関】GB
(81)【指定国・地域】
(71)【出願人】
【識別番号】523112194
【氏名又は名称】エフエフイーアイ リミテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【弁理士】
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100224672
【弁理士】
【氏名又は名称】深田 孝徳
(72)【発明者】
【氏名】サモン リチャード マイケル
【テーマコード(参考)】
2H052
4B029
【Fターム(参考)】
2H052AD01
2H052AD16
2H052AE11
2H052AF14
2H052AF21
4B029AA07
4B029AA09
4B029AA23
4B029AA27
4B029BB02
4B029BB04
4B029BB06
4B029BB11
4B029BB12
4B029CC02
4B029CC08
4B029FA15
4B029HA09
(57)【要約】
【課題】複雑な生物学実験を準備し、結果として得られる堆積物を撮像することのできる細胞堆積及び撮像装置を提供する。
【解決手段】細胞堆積及び撮像装置は、少なくとも1つのチャネルを備える印刷機構であって、印刷機構の少なくとも1つのチャネルが、少なくとも1つの細胞型を備える細胞運搬流体の試料を受け取り、その細胞運搬流体の試料を基板の対象領域の上に堆積させるように配置された印刷機構と;対象領域が印刷機構に実質的に隣接して位置する印刷位置と、対象領域が撮像システムに実質的に隣接して位置する撮像位置との間で、対象領域を移動させるように配置された搬送システムと;を備え、撮像システムは、対象領域よりも小さい、基板の領域を撮像することのできる撮像装置を備え、撮像システムは、撮像装置に対して対象領域を移動させることによって、対象領域の全てを撮像するように配置される。
【選択図】図1
【特許請求の範囲】
【請求項1】
細胞堆積及び撮像装置であって、
少なくとも1つのチャネルを備える印刷機構であって、前記印刷機構の前記少なくとも1つのチャネルは、
少なくとも1つの細胞型を備える細胞運搬流体の試料を受け取り、
前記細胞運搬流体の前記試料を基板の対象領域の上に堆積させる、
ように配置された、印刷機構と、
前記対象領域を撮像するように配置された撮像システムと、
前記対象領域が前記印刷機構に実質的に隣接して位置する印刷位置と、前記対象領域が前記撮像システムに実質的に隣接して位置する撮像位置との間で、前記対象領域を移動させるように配置された搬送システムと、
を備え、
前記撮像システムは、前記対象領域よりも小さい前記基板の領域を撮像することのできる撮像装置を備え、前記撮像システムは、前記撮像装置に対して前記対象領域を移動させることによって、前記対象領域の全てを撮像するように配置される、細胞堆積及び撮像装置。
【請求項2】
前記印刷機構は、前記細胞運搬流体の複数の試料を受け取り、前記細胞運搬流体の前記複数の試料を前記基板の前記対象領域の上に堆積させるように配置される、請求項1に記載の装置。
【請求項3】
前記撮像システムは、前記対象領域内の前記複数の試料を実質的に同時に撮像するように配置される、請求項2に記載の装置。
【請求項4】
前記印刷機構は、印刷ヘッドの配列として配置された複数の印刷ヘッドを備え、前記印刷ヘッドの各々はチャネルを備えている、請求項1から3のいずれか1項に記載の装置。
【請求項5】
前記複数の印刷ヘッドは、単一ユニットとして一緒に移動するように配置される、請求項4に記載の装置。
【請求項6】
前記印刷ヘッドの配列内の各チャネルは、基板上に堆積させるそれぞれの細胞運搬流体を受け取るように配置され、細胞運搬流体の各々は少なくとも1つの細胞を備える、請求項4又は5に記載の装置。
【請求項7】
前記印刷機構は、トラック上に載置されるように配置され、前記印刷機構は、前記搬送システムに対して前記トラックに沿って動くことができるようになっている、請求項1から6のいずれか1項に記載の装置。
【請求項8】
前記対象領域が前記撮像位置にある時に、前記対象領域と前記撮像システムとの間の距離を調整するように構成されたリフト機構をさらに備える、請求項1から7のいずれか1項に記載の装置。
【請求項9】
少なくとも1つの基板を保管するように構成された培養器をさらに備える、請求項1から8のいずれか1項に記載の装置。
【請求項10】
前記搬送システムは、前記印刷位置及び/又は前記撮像位置と、前記対象領域が実質的に前記培養器内に位置する培養位置との間で前記対象領域を動かすように配置される、請求項9に記載の装置。
【請求項11】
前記培養器は、実質的に前記印刷システムと前記撮像システムとの間に位置決めすることができる。請求項9又は10に記載の装置。
【請求項12】
少なくとも1つの光源は、暗視野顕微鏡法又は赤外分光法を実行することができる、請求項1から11のいずれか1項に記載の装置。
【請求項13】
前記撮像システムは複数の光源を備える、請求項1から12のいずれか1項に記載の装置。
【請求項14】
前記装置はハウジング内に格納される、請求項1から13のいずれか1項に記載の装置。
【請求項15】
例えば温度、圧力、湿度などの、前記ハウジング内の少なくとも1つの環境パラメータを制御するように配置された制御システムをさらに備える、請求項14に記載の装置。
【請求項16】
前記印刷機構、前記搬送機構、及び前記撮像システムを含む、前記装置の個々の構成要素を制御するように配置されたコンピュータシステムをさらに備える、請求項1から15のいずれか1項に記載の装置。
【請求項17】
前記コンピュータシステムは、前記印刷機構、前記搬送機構、及び前記撮像システムを含む、前記装置の少なくとも1つの構成要素とユーザが相互作用することができるように構成されたユーザインタフェースをさらに備える、請求項16に記載の装置。
【請求項18】
基板上に細胞を堆積させて撮像する方法であって、
少なくとも1つのチャネルを備える印刷機構を介して、少なくとも1つの細胞を含む細胞運搬流体の試料を受け取るステップと、
前記印刷機構の前記少なくとも1つのチャネルを介して、前記細胞運搬流体の試料を基板の対象領域の上に堆積させるステップと、
前記対象領域が前記印刷機構の実質的に向かい側に位置する印刷位置と、前記対象領域が撮像システムの実質的に向かい側に位置する撮像位置との間で、前記対象領域を移動させるステップと、
撮像装置に対して前記対象領域を移動させることにより、実質的に瞬時に前記対象領域の全てを撮像するステップと、
を含み、前記撮像装置は前記撮像システムの一部であり、前記撮像装置は、前記対象領域及び前記撮像システムよりも小さい、基板の領域を撮像することができる、方法。
【請求項19】
コンピュータによって実行されると、前記コンピュータに請求項18の方法を実行させる命令を備えたコンピュータプログラム。
【請求項20】
コンピュータによって実行されると、前記コンピュータに請求項18の方法を実行させる命令を備えたコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体物質を堆積し走査するための細胞堆積及び撮像装置に関する。
【背景技術】
【0002】
現在、医療撮像及びデジタル印刷エンジン用の明視野デジタル病理スライドスキャナを作製するために、機械技術及び光技術が使用されている。低コピー数試料に関して、蛍光性/発色性信号で評価されるマルチドロップ式マイクロアレイ技術(バイオチップ、ゲノム配列決定)とデジタル明視野撮像(デジタル顕微鏡、共焦点顕微鏡、WSIスキャナ)は、現在、別個の独立した形態の市販品として存在する。
【0003】
現代の産業的生命科学研究は、治療薬を迅速且つ確実に発見、開発、及び製造するために高スループットの方法論に焦点を合わせている。ほとんどの生命科学プロセスは、溶液中の生体分子(DNA及びタンパク質)と細胞を対象としている。最高のスループット及び統計的関連性は、同じ場所で同時に複数回分析される種々の対象に関する数千の小規模実験によって得られる。
【0004】
現行の技術は、生物学的分析を実行するために、単一機能技術を備えた独立したプロセスを用いる。蛍光及び比色分析の2次マーカは、タンパク質/DNAマイクロアレイ及び単一細胞技術に関する相対定量を提供することが多く、直接のリアルタイム観察をほとんど伴わずに信号解釈によって結果を推測する。薬物/生体分子が生細胞に及ぼす正確な形態変化は、高スループット法ではめったに記録されず、通常は単一試料の調査に限定される。
【0005】
デジタル顕微鏡又は手動顕微鏡などの可視化方法では、従来、顕微鏡スライド又は6~24ウェルのトレイといった個々の又は低コピー数の試料を受け入れ、その際に比較サンプルを一度に一つ測定する。その結果は、時間的な変動を受ける「生きている」実験での独立した試料、従って合意形成のためにより広範な統計的反復を必要とするものとなるか、不変な/「死んだ」試料となって時間的な変動を排除するが以後の研究を妨げるものとなるか、のいずれかである。
【発明の概要】
【発明が解決しようとする課題】
【0006】
試料間の変数としての時間を排除することに対処する現行技術は、1センサ/1試料を組み込むことでそれを実現するため、スループットに比例してコストが大幅に増大する。これらのドロップアレイと検出のプロセスは一般に異なっており、複数のデバイスで実行されるので、試験所のワークフローは最適以下であり、技術者を訓練して、しばしば同時に多数の機械を操作させることを必要とする。
【課題を解決するための手段】
【0007】
本開示の態様及び実施形態は、添付の特許請求の範囲に規定される細胞堆積装置を提供する。
【0008】
本発明の第1の態様によれば、少なくとも1つのチャネルを備える印刷機構であって、印刷機構の少なくとも1つのチャネルが、少なくとも1つの細胞型を備える細胞運搬流体の試料を受け取り、その細胞運搬流体の試料を基板の対象領域の上に堆積させるように配置された印刷機構と;対象領域を撮像するように配置された撮像システムと;対象領域が印刷機構の実質的に向かい側に位置する印刷位置と、対象領域が撮像システムの実質的に向かい側に位置する撮像位置との間で、対象領域を移動させるように配置された搬送システムと;を備える細胞堆積及び撮像装置が提供され、撮像システムは、対象領域よりも小さい、基板の領域を撮像することができる撮像装置を備え、撮像システムは、撮像装置に対して対象領域を移動させることによって、対象領域の全てを撮像するように配置される。
【0009】
好ましくは、撮像装置によって撮像される基板の領域は、対象領域よりも実質的に小さく、さらに好ましくは、撮像システムは、基板の対象領域に堆積された試料の撮像に適合した少なくとも1つの光源を使用する。
【0010】
従って、細胞堆積装置は、高精度の印刷機構を用いて複数の試料を堆積させることで複雑な生物学実験を準備し、結果として得られる堆積物を撮像することのできる、完全な「ラボインアボックス(lab-in-a-box)」システムを提供する。従って、細胞堆積装置は、完全な自動実験システムを提供する。
【0011】
印刷機構は、細胞、生体分子、又は微小粒子の運搬流体(ここでは全て「細胞運搬流体」として言及する)の複数の試料を受け取り、細胞運搬流体の複数試料を基板の対象領域の上に堆積させるように配置することができる。試料は、液滴の形で対象領域の上に堆積させることができる。これらの液滴は、各液滴が他の液滴から離れて別個であるように、離散的に堆積させることができる。別個の液滴により、印刷前に各液滴内の流体量を選択することが可能となるので、ユーザの実験に応じて各液滴内の流体の相対量を選択できる。
【0012】
他の例では、1滴或いは2又は3以上の繋がった滴の形で試料を堆積させて、幅のある楕円形状を有する細長い液滴を形成することができる。他の例では、投入流体は、細胞の有無を問わず、生体適合性構造で基板の表面をカスタム化するために、堆積後にゲル化又は固化することができる。
【0013】
一部の例では、印刷機構は、液滴の広がりを防ぐために基板表面を調製又は被覆するために使用される溶液などの溶液を受け取って堆積させるように(シリコーン処理など)、又は、生態を維持する栄養素(ペトリ皿内の増殖培地又は寒天など)又は基板の表面をカスタム化し構造化するためにゲル化又は固化する溶液を導入するように配置することができる。
【0014】
撮像システムは、対象領域内の複数試料を実質的に同時に撮像するように構成することができる。この場合、実質的に同時にとは、最初の試料を撮像する時間が最後の試料を撮像する時間と実質的に同じであることを意味する。例えば、15mm×15mmの領域内で撮像され収集される最初の試料と最後の試料との時間差は、1分未満であることが好ましい。
【0015】
印刷機構は、印刷ヘッドの配列として配置された複数の個別印刷ヘッドを備えることができる。個別印刷ヘッドは、n×mの個別印刷ヘッドを備える2次元配列に配置することができる。これにより、細胞運搬流体の複数試料を、1回の印刷動作で対象領域の複数の異なる位置に一括で堆積させることができる。これにより、基板の対象領域上への細胞運搬流体のより迅速で、より効率的な印刷が可能となり、これは、非常に多数の液滴を印刷する必要がある場合に重要である。代わりに、個別印刷ヘッドは、n個の個別印刷ヘッドを備える1次元配列に配置することができる。
【0016】
印刷ヘッドの配列内にある複数の個別印刷ヘッドは、配列内の個別印刷ヘッド間に相対的な動きがないように、単一ユニットとして一緒に移動するように配置することができる。これにより、各個別印刷ヘッド間に、ひいては対象領域に堆積した各液滴間に、一定の間隔が確保される。従って、対象領域上の液滴は、基板上の対象領域に亘って規則的且つ等間隔に配置される。これにより、装置の動作中に移動する必要のある機構の数も減少する。
【0017】
一部の例では、印刷ヘッドの配列内にある個別印刷ヘッドは、配列内で互いに対して移動することができる。例えば、複数の印刷ヘッドは、互いに対して独立して移動するように配置することができる。これにより、個別印刷ヘッド間の間隔、ひいては各堆積液滴間の間隔は、対象領域上で変化することができる。これは、各印刷ヘッドから堆積される液滴のサイズが等しくなく、液滴のサイズに応じて異なる液滴間の間隔を変える必要がある場合に有利となる可能性がある。
【0018】
各個別印刷ヘッドは、細胞運搬流体を受け取り、印刷機構を介して基板の上に移すように配置されたチャネルを備えることができる。場合によっては、限定するものではないが、この受け取りチャネルは、蛍光活性化セルソータ(FACS)、磁気活性化セルソータ(MACS)又はフローサイトメータなどの、自立型又は一体型の細胞選別及び細胞識別デバイスからの出口に接続することができる。
【0019】
印刷機構の各チャネルは、基板の対象領域上に堆積させるそれぞれの細胞運搬流体を受け取るように配置することができる。細胞運搬流体は、典型的にはキャリア流体と少なくとも1つの細胞とを含む。一部の事例では、細胞運搬流体は、少なくとも1つの細胞、生体分子、又は非生体微粒子を含む。しかしながら、別の事例では、細胞運搬流体は細胞を全く含まず、キャリア流体と、任意で非細胞生体分子(例えば、タンパク質/抗体/酵素、核酸、薬物、抗生物質、レポータ化学物質、阻害物質など)だけを含む。印刷機構内のチャネルの各々が受け取るそれぞれの細胞運搬流体は、それぞれの組成が異なることができる。例えば、各細胞運搬流体は、異なる細胞及び/又は異なるキャリア流体を含むことができる。これにより、単一の基板上で種々の実験を行って比較することが可能となる。例えば、同じ細胞に対する異なる薬物の作用を調べること又は異なる細胞に対する同じ薬物の作用を調べることもできる。
【0020】
別の実施形態では、生物学実験をシミュレートするために、又は製造及び較正プロセスを目的として、非生体の細胞模倣微粒子を含む流体を使用することができる。
【0021】
一部の実験では、基板の対象領域内で細胞運搬流体の複数試料を組み合わせることが有利な場合がある。従って、印刷機構は、対象領域の同じ部分に細胞運搬流体の複数試料を堆積させることができる場合がある。
【0022】
印刷ヘッドの配列内の各チャネルは、フローサイトメータ、蛍光活性化セルソータ(FACS)、又は磁気活性化セルソータ(MACS)などの自立型又は一体型のセルソータによって前処理された細胞運搬流体を受け取ることができる。
【0023】
印刷機構は、撮像システムへの搬送の実質的に直前に、予め堆積させた未染色又は未ラベル付けの生物学実験に対して、細胞の染色又はラベル付け用溶液を重ね印刷するように配置することができる。
【0024】
搬送システムに対して印刷機構を動かすことができるように、印刷機構は、キャリア機構に載置されるように配置することができる。詳細には、キャリア機構により、印刷機構を対象領域に対して移動させることが可能となる。キャリア機構は、印刷機構がそれに沿って移動するトラックを含むことができる。移動は横方向の移動であり、典型的には水平面に限定された左右の往復動である。トラックにより、印刷機構は水平面内でx方向及びy方向に移動することができる。有利には、搬送システムに対して印刷機構を移動させること、特に対象領域に対して印刷機構を移動させることにより、印刷機構を対象領域の異なる部分の上に位置決めすることが可能となるので、印刷機構は、対象領域の異なる部分の上に細胞運搬流体を堆積させることができる。別の例では、印刷機構は静止したままとすることができるが、対象領域の異なる部分の上に細胞運搬流体が堆積するのを助けるために、キャリア及び対象領域が印刷機構の真下でx方向及び/又はy方向に移動する。
【0025】
細胞堆積装置は、搬送システムと撮像システムとの間の距離を調整するように構成されたリフト機構をさらに備えることができる。特に、リフト機構は、対象領域と撮像システムとの間の距離を調整するように構成することができ、好ましくは、対象領域が撮像位置にある時に距離を調整する。撮像プロセス中の対象領域の安定性に影響を与える可能性がある、搬送システムから対象領域を切り離すことに加えて、対象領域を撮像システムに向かって移動させることで、対象領域の画像を撮影する前に対象領域に焦点を合わせることが保証される。
【0026】
各基板に対して複数の実験を次々に自動的に実行できるように、複数の基板を次々に細胞堆積装置に装填して撮像することができることは好都合であろう。従って、本装置は、好ましくは少なくとも1つの基板を保管するように構成された培養器を備えることができる。複数の基板を保管することで、最初の基板を細胞堆積装置から取り出し、2番目の基板を印刷の準備ができた細胞堆積装置に自動的に装填することができるので、実験の変更の間にユーザが介入する必要性が低減する。さらに、培養器は、実験の終りに基板上の液滴を撮像できるようになるまで、実験中に培養時間を必要とする基板の保管用環境を提供する。
【0027】
印刷機構、撮像システム、及び培養器の間で対象領域を備えた基板を移動させるために、搬送システムは、印刷位置及び/又は撮像位置と、対象領域が実質的に培養器内に位置する培養位置との間で対象領域を動かすように配置することができる。また、培養器は密閉され、長期に亘る培養のために取外し可能であり、ワークフローを再開又は変更するために、占有されていない又は部分部に占有された培養器と交換可能とすることができる。別の実施形態では、撮像が終点である場合に印刷及び培養の繰り返し期間を促進するために、培養器は、印刷システムと撮像システムの間に位置決めすることができる。
【0028】
培養器は密閉され、取外し可能であり、必要に応じて基板で占有されていない又は部分的に占有された培養器と交換することができる。培養器は、実質的に印刷システムと撮像システムの間に位置決めすることができる。
【0029】
少なくとも1つの光源は、暗視野顕微鏡法又は赤外分光法を実行することができる。少なくとも1つの光源は、明視野、蛍光、赤外線、X線、UV、及びラマン光源とすることができるが、これらに限定されない。撮像システムは、複数の光源を備えることができる。
【0030】
先に説明した装置は、データ取得の速度及び試料のスループットの向上、より複雑なワークフロー、並びに他のシステムが動作している間の代わりの印刷ヘッドシステム、撮像システム、培養器及び搬送システムの継続使用を可能にするために、相互に接続された複数の印刷システム、複数の撮像システム、複数の培養器及び複数の搬送システムの使用を排除するものではない。従って、一部の例では、本装置は、相互に接続することのできる複数の印刷システム、複数の撮像システム、複数の培養器、及び複数の搬送システムを備える。
【0031】
本装置は、一般的にハウジング内に格納されるので、ハウジングは、搬送システム、印刷機構、及び撮像システムを含む、細胞堆積装置を取り囲む。ハウジングを設けることは、細胞堆積装置の個々の構成要素の周りで、ハウジング内の一定環境を維持するのに役立つ。有利には、細胞運搬流体が蒸発する速度、並びに堆積した細胞運搬流体が変形する速度を制限することができる。従って、実験の完全性を維持できると共に、ユーザは、行われている実験に応じて、ハウジングの内部環境条件を設定し制御することができる。
【0032】
本装置は、温度、圧力、湿度など、ハウジング内の少なくとも1つの環境パラメータを制御するように配置された制御システムを備えることができる。制御システムは、実験開始前にユーザが最初にプログラムできるコンピュータ制御システムとすることができる。制御システムは、ハウジングの内部環境を制御するだけでなく、搬送システム、印刷機構、及び撮像システムを含む、細胞堆積装置の個々の構成要素を制御するように配置することができる。従って、細胞堆積装置の個々の構成要素は全て、コンピュータで制御することができる。個々の構成要素は、制御システム上で実行されるコンピュータプログラムで制御することができ、コンピュータプログラムは、最初にユーザによってプログラムされる。これにより、ユーザは最初に実験を設定することができ、プログラムの実行が始まると、ユーザからの相互作用はそれ以上必要とされない。このように、完全に自動化されたコンピュータ制御システムを提供することができる。
【0033】
ユーザは、制御システムの一部を構成することができるユーザインタフェースを介して制御システムと相互作用することができる。従って、ユーザインタフェースは、ユーザが本装置の少なくとも1つの構成要素と相互作用することができるように構成することができるので、その少なくとも1つの構成要素は、実施される実験に従ってユーザがプログラムすることができる。
【0034】
基板は典型的には剛性基板である。通常、基板は個別物体であるが、場合によっては、直列に配置された複数の個別物、材料のロールからのベルト又はセクションといった、連続トラックの形態を有する。基板は、光が透過できるように透明とすることができる。基板は、明視野顕微鏡法を用いて基板上の細胞運搬流体を撮像できるように、可視光に対して透明とすることができる。基板は、他の形態の照明で使用するために不透明又は反射性とすることができる。
【0035】
撮像システムはスキャナを備えることができ、一般的にはデジタルスキャナである。好ましくは、デジタルスキャナは、高解像度の明視野顕微鏡法を実行するように構成可能なデジタル顕微鏡から形成される。
【0036】
撮像システムは、少なくとも1つの光源を備えることができる。好ましくは、少なくとも1つの光源は、撮像システムのスキャナの実質的に向かい側に配置することができる。この場合、向かい側とは、スキャナが縦軸を有する見通し線を持ち、光源がこの縦軸に沿って位置することを意味する。他の主光源又は付加的な2次光源の例には、蛍光、赤外線、X線、UV、及びラマン光源が含まれまるが、これらに限定されない。
【0037】
細胞運搬流体に曝される本装置の構成要素は、滅菌可能又は使い捨て(例えば、生分解性又はリサイクル可能)とすることができ、これにより、本装置は、複数の異なる連続した実験に使用することができる。
【0038】
本発明の第2の態様によれば、基板上に細胞を堆積させて撮像する方法が提供され、この方法は、少なくとも1つのチャネルを備える印刷機構を介して、少なくとも1つの細胞を含む細胞運搬流体の試料を受け取るステップと;印刷機構の少なくとも1つのチャネルを介して、細胞運搬流体の試料を基板の対象領域の上に堆積させるステップと;対象領域が印刷機構の実質的に向かい側に位置する印刷位置と、対象領域が撮像システムの実質的に向かい側に位置する撮像位置との間で、対象領域を移動させるステップと;撮像装置に対して対象領域を移動させることにより、実質的に瞬時に対象領域の全てを撮像するステップと、を含み、撮像装置は撮像システムの一部であり、撮像装置は、対象領域及び撮像システムよりも小さい、基板の領域を撮像することができる。
【0039】
好ましくは、撮像装置が撮像する基板の領域は、対象領域よりも実質的に小さく、さらに好ましくは、撮像システムは、基板の対象領域に堆積した試料の撮像に適合する少なくとも1つの光源を使用する。
【0040】
細胞運搬流体の試料は、少なくとも1つの細胞、生体分子、又は非生体微粒子を含むことができる。
【0041】
堆積させるステップは、印刷機構の少なくとも1つのチャネルを介して、細胞運搬流体の試料を基板の対象領域の上に離散的な又は同一位置の座標で堆積させるステップを備えることができる。
【0042】
一部の代替例では、実質的に瞬時に対象領域の全てを撮像するステップは、対象領域に対して撮像装置を移動させるステップを備える。
【0043】
好ましくは、撮像時間は、同じ領域に亘って試料を堆積させる時間に相応しい。
【0044】
一部の例では、この方法は、先の方法ステップを含む、基板上に生体分子を堆積させて撮像する方法とすることができる。
【0045】
好ましくは、上述の方法は、本発明の第1の態様の装置を使用して実行するように構成される。
【0046】
一部の例では、付加的な事前堆積ステップが存在する場合があり、その場合、印刷ヘッド用の受け取りチャネルは、限定するものではないが、FACS、MACS、又はフローサイトメータなどの細胞選別デバイスの一部を形成することができ、この細胞選別デバイスは、本装置に組み込まれる場合又は組み込まれない場合もある。
【0047】
コンピュータによって実行されると、コンピュータに上記の方法を実行させる命令を備えたコンピュータプログラムを提供することもできる。
【0048】
コンピュータによって実行されると、コンピュータに上記の方法を実行させる命令を備えたコンピュータ可読記憶媒体を提供することもできる。
【0049】
従って、細胞堆積装置は、デジタル印刷ヘッドの高精度、再現性、高スループットを利用して、複数の液体投入源から、フェムトリットルからマイクロリットルまでの範囲で数千の可変な液滴を堆積させて層状にすることによって複雑な生物学実験を準備することのできる、完全な「ラボインアボックス(lab-in-a-box)」システムを提供する。
【0050】
本装置は、細胞、生体分子、又は非生体細胞を模倣した微粒子の何百もの変数を、フェムトリットルからマイクロリットルまでの液滴量で、高精度印刷ヘッドで順次重ね合わせ、多数から成る通常1つの評価媒体(例えば基板)を使用して、同時に試験する能力を提供し、1つのプロセスで実験プログラム全体を完了させる能力をもたらす。有利には、1つの設定で2以上のパラメータを変更することができ、用量曲線/勾配反応は、可変的な反復式ドロップオンドロップ印刷によって簡単に組み込まれる。その結果、実験の複数の側面に関して統計的に妥当な何千回もの繰返しを1回の実行で同時に完了させることができる。未染色又は未ラベル付けの生物学実験を上述のように設定して、生物学的プロセスを阻止するか否かを問わず、バイオマーカ又は染色剤のインクジェット又はウォッシュインの前に所定の点まで前進させることができ、撮像に先立って直ちに且つ実質的に瞬時に重ね印刷をすることによって、正確に適用できるというさらなる利点が存在する。
【0051】
デジタルスワス走査による光学的評価は、複数の液滴を同時に測定する「スナップショット」を提供するので、個々の液滴の分析と比べた場合に、重要な変数としての時間が排除される。さらに、出力としてのデジタル画像は、自動化されたソフトウェアソリューションにうまく送り込まれ、このソフトウェアソリューションは、中核技術を補完してリアルタイムの分析及び傾向を提供し、実験の最適化又は新たな調査経路に対する洞察をもたらすように設計することができる。また、デジタル画像はデータ保存に好都合な媒体であり、共同研究者へ簡単に転送することができ、ソフトウェア解析に送り込むことができ(現場で又は遡及的に)、又は、新規の論文及び発表を目的として利用できる形式を提供する。
【0052】
フェムトリットルからマイクロリットルまでの体積の、複雑で、可変的に重ね合わせた、高スループットのバイオ印刷済み液滴をデジタルスワス走査と組み合わせることで、ワークフローの効率が高くなる。その理由は、これらの高度な技法を1つのシステムに組み合わせることで、ワークフローの妥協がなくなるからであり、出発材料を準備した後、(半)熟練した技術者は、デバイスのソフトウェアに実験の設計を入力するだけで立ち去ることができ、ブラックボックスのプロセスとして、所要の作業の完了を機械に任せることができる。このように、主要な実験室作業は、ブラックボックス的な利用と立ち去り時間の増大を可能にする反復可能な形式で組み合わされ、一方で、被検体の生存率を維持し、結果に対する注意事項としての分析時間の変動を排除する。
【0053】
従って、上記の装置は、ピコリットルからマイクロリットルまでの溶液滴をバイオ印刷することで「マイクロアレイ化」し(デジタルインクジェット印刷と同様)、実験の複雑さ及び効率を高めるために液滴を重ね合わせ、組織、細胞、生体分子、非生体微粒子の直接分析のために高解像度光学撮像を実行する、完全な高スループット製品を提供する。ここで提案する技術は、これら一般的な実験室プロセスの全てに関する自動化を促進して、実験室全体の作業に関するスループット、精度及びワークフローを改善し、現在の同等の実験ステップを完了させるのに必要とされる人手及び時間を削減することになる。
【0054】
以下、添付図面を参照しながら、本発明の好ましい特徴を単に例示的に説明する。
【図面の簡単な説明】
【0055】
図1a】細胞堆積装置の第1の例の概略断面図である。
図1b】取り付けられたバイオリアクタ及びユーザインタフェースを含む細胞堆積装置の第1の例の概略断面図である。
図2】インキュベータを含む細胞堆積装置の第2の例の概略断面図である。
図3a-3b】図3aは、細胞堆積装置の第3の例の概略断面図であり、図3bは、細胞堆積装置の第4の例の概略断面図である。
【発明を実施するための形態】
【0056】
図1aは、細胞堆積装置1000の一例を示す。装置1000はハウジング15を備え、ハウジング15は、流体形態の生体物質を受け取って印刷するための印刷機構3と、印刷された生体物質をハウジング15内で移動させるための搬送システム70と、印刷された生体物質を撮像するための撮像システム10とを取り囲む。使用中、印刷機構3は、撮像システム100によって撮像される基板5aの対象領域11(試料領域と呼ばれる場合もある)の上に生体物質を印刷する。
【0057】
生体液は印刷機構3に供給され、液滴6として基板5aの上に印刷される。生体液は、細胞投入物1と少なくとも1つの液状生化学投入物2とから構成される。場合によっては、3以上の液状生化学投入物が使用される。この投入物はまた、較正の目的で、細胞を模倣する微粒子を含んだ非生体液の形態をとることもできる(図示せず)。細胞投入物1は、独自のキャリア流体内にあり、これは細胞を生かし続ける液体培地である。生化学投入物2の各々は、独自のキャリア流体、すなわち生化学物質を安定させる溶液の中にあり、細胞投入物中の細胞に対して有毒である場合とない場合がある。一般に、実験の目的は、細胞投入物1に対する生化学投入物2の影響を調査することになる。しかしながら、投入物2にも細胞を含ませて、1つの細胞型が別型に与える影響を評価する実験を容易にすることができる。
【0058】
細胞投入物1は溶液中に保持され、これは印刷用インクとして機能するので、細胞を印刷することができる。従って、使用される溶液は、印刷に対して適合性があって、細胞投入物1の細胞を浮遊させるのに適した環境を提供する必要がある。これにより、溶液の特性、例えば溶液の粘性に或る一定の制限が課せられるため、細胞を基板5aに印刷することができる。細胞投入物1の細胞を溶液中に浮遊させることによって、細胞の凝集が防止され、必要に応じて撮像システム100で個々の細胞を確実に走査することができる。
【0059】
生化学投入物2の選択は、細胞投入物1に使用される細胞の特定の選択に依存する場合がある。例えば、哺乳動物細胞が細胞投入物1として使用される場合、生化学投入物2は、細胞を損傷することなく、哺乳動物細胞を運ぶための適切なキャリア流体中に存在する必要がある。例えば、核酸及びアミノ酸は、哺乳動物細胞に対するキャリア流体としての哺乳動物増殖培地内への投入物として使用される。生化学投入物2の具体的な選択は、細胞投入物1の特定の細胞が通常見つかる自然な環境及び状態を再現すべきである。例えば、肝細胞が細胞投入物1として使用される場合、液状生化学投入物2は、肝臓成長条件を再現すべきである。代わりに血液細胞が使用される場合、液状生化学投入物2は血液状態を再現すべきである。細胞の運命又は分化が調査中のパラメータでない限り、投入細胞1の同一性が、使用される生化学的キャリア流体の結果として変化するのではなく、印刷及び走査プロセスの全体に亘って同一であることを保証するために、投入細胞の自然な状態を再現することが重要である。
【0060】
投入細胞の特定の選択に対してこの生化学投入物2が選択されない場合、投入細胞の同一性又は生存率が変化する可能性がある。つまり、肝細胞が血液に似た液体で運ばれた場合、肝細胞はこれらの状態では生き残れない、或いは分化して、投入された肝細胞と同じではなくなる可能性がある。これが実験の目的でない限り、投入細胞が全体を通して一定に保たれないならば、生物学実験に明らかに有害な影響を及ぼすことになる。
【0061】
印刷機構3は印刷ヘッドユニット3aを備え、これは、生体液を受け取って印刷するのに適しており、生体適合性印刷ヘッドユニットと呼ばれる場合がある。印刷ヘッドユニット3aは、個別的な印刷ヘッド3bの配列を備え、個別印刷ヘッド3bはそれぞれ単一の印刷チャネルを有する。従って、印刷ヘッドユニット3aは、マルチチャネル印刷ヘッドユニットと考えることができる。印刷ヘッドユニット3aの個別印刷ヘッド3bは、例えば2×2配列などの、2次元のn×m配列に配置され、ここでn及びmは、個別印刷ヘッド3aの数を表す。しかしながら、他の配列構成、例えば、n個の個別印刷ヘッド3bの1次元配列も使用することができる。マルチチャネル印刷ヘッドユニットは、人手を介さずに複数の投入物から複数の液滴を堆積させる能力を提供する。他の例では、その代わりに、印刷ヘッドユニット3aは、マルチチャネル印刷ヘッド(図示せず)、すなわち、複数の印刷チャネルを有する単一の個別印刷ヘッドを備えることができる。
【0062】
各印刷チャネルは、個別印刷ヘッド3bを通して対応する流体を運び、対応する流体を基板5aの上に選択的に印刷するために使用される。チャネルは、限定するものではないが、印刷ヘッドユニット3aの上流側にあるFACS、MACS、又はフローサイトメータなどの細胞選別デバイスの一部を形成することができ、この細胞選別デバイスは、本装置(図示せず)に組み込まれる場合又は組み込まれない場合もある。
【0063】
従って、細胞投入物1及び液状生化学投入物2を含む溶液は、印刷ヘッドユニット3a内の別個の印刷チャネルに供給され、これらの流体は印刷ヘッドユニット3aの内部で混ざることができない。その代わりに、2つの投入流体1、2は、各流体が選択的に印刷されると、基板5a上で混合する。従って、印刷ヘッドユニット3aは、前に印刷された液滴の上に又は隣に後続の流体液滴を印刷することによって、意図的に流体液滴を繋ぎ合わせる又は毛管作用で運ぶ能力を有する。これにより、印刷前に各流体1、2の量を選択できるので、基板5aに印刷される各流体の相対量は、ユーザの実験に応じて選ぶことができる。しかしながら、一部の例では、流体を印刷ヘッドユニット3a内で混合して、混合物として基板5aに印刷することができる。一部の例では、細胞投入物1又は生化学投入物2は、製造及び較正プロセスなどを目的として、細胞投入物1又は生化学投入物2を模倣する非生体微粒子を含む流体に置き換えることができる。
【0064】
印刷ヘッドユニット3aは、印刷トラック4の形をしたキャリア機構40に載置される。キャリア機構40により、印刷ヘッドユニット3aを基板5aの位置に対して移動させることができる。図1aに示すように、印刷ヘッドユニット3aは、ハウジング15内の水平面内を横方向に移動するように構成される。印刷ヘッドユニット3aは、x方向へ左右に移動すると共に、y方向へ前後に移動することができる。これにより、印刷ヘッドユニット3aの概ね下方に位置するが必ずしも印刷ヘッドユニット3aの真下にあるとは限らない、基板5aの種々の部分に亘って、印刷ヘッドユニット3aを位置決めすることができるので、印刷ヘッドユニット3aは、基板5a上の種々の対象領域11の上に印刷することができる。静止した基板に対して移動するものとして印刷ヘッドユニットを説明してきたが、設計によっては、静止した印刷ヘッドユニットに対して基板をx方向とy方向の両方に移動させることができる。
【0065】
基板5aの印刷可能な表面領域に対して印刷ヘッドユニット3aを移動させることができるということは、基板5a上の対象領域11のサイズ及び位置をユーザが選択できることを意味する。対象領域11が基材5aの総印刷可能表面積の小部分を表す場合もあれば、対象領域11が基材5aの総印刷可能表面積の大部分を表す場合もある。一般に、対象領域11は、個別液滴6の意図しない互いの毛管作用による吸い上げ又は濡れを生じることなく、各液滴6がナノリットルからピコリットルの範囲にある何千もの個別液滴6を受け取れる程度に大きいが、以下でより詳細に説明するように、対象領域11全体を最小回数の走査を用いて迅速に走査できる程度に小さい。
【0066】
印刷ヘッドユニット3aを構成する全ての個別印刷ヘッド3bは、印刷ヘッドユニット3a全体が単一のユニットとして移動するように、それぞれに対して固定される。従って、印刷ヘッドユニット3aの全ての個別印刷ヘッド3bは、単一の印刷トラック4に載置される。これにより、全ての個別印刷ヘッド3aが一緒に移動し、基板5a上の対象領域11に対して同時に同じ位置にあることが保証される。これにより、装置の動作中に移動する必要のある機構の数も減少する。一部の実施形態では、印刷ヘッドユニット3a内の個別印刷ヘッド3bは、互いに対して移動することができる。これにより、個別印刷ヘッド3b間の間隔、ひいては各堆積液滴間の間隔は、対象領域11上で変化することができる。これは、各印刷ヘッド3bから堆積させた液滴のサイズが等しくなく、それゆえ、液滴のサイズに応じて標的11上で異なる液滴間の間隔を変える必要がある場合に有利となる可能性がある。
【0067】
基板5a上で流体を混合できるようにするために、印刷ヘッド3を印刷トラック4に載置することにより、各流体1、2を基板5a上の対象領域11内の同じ位置に互いに重ねて印刷することができる。従って、印刷トラック4により、複数の流体層を基板5aの上に印刷することができる。
【0068】
基板5a上の特定の印刷位置は、xy座標を用いて特定することができる。従って、基板5aに印刷された各液滴6は、一組のxy座標に関連付けられる。その後、これらの座標を用いて、印刷ヘッドユニット3aに対して、基板5a上の前に印刷された位置と同じ位置に又は異なる位置に流体1、2の液滴6を印刷するように仕向けることができる。
【0069】
印刷ヘッドユニット3aが印刷する液滴6のサイズは、細胞投入物1として使用される細胞のサイズに依存する。例えば、大きな細胞は、小さな細胞と比較して大きな液滴サイズを必要とする。通常は、ピコリットル又はナノリットルのオーダーの液滴が使用される。
【0070】
流体液滴が印刷される基板5aは、検討中の生物学実験に適合する剛性基板である。基板5aは、印刷ヘッド3の配列の下に位置決めされる場合に、交互の流体投入物1、2からナノ液滴6を多数回受け取るように寸法決めされる。基板5aが流体液滴6で印刷されると、それはバイオ印刷済み基板と呼ぶことができる。
【0071】
基板5aは、ホウケイ酸ガラスのスライドが容易に入手可能であり、ほとんどの一般的な用途に適しているので、例えば、ホウケイ酸ガラスのスライドに基づく、顕微鏡スライド形態の個別物体である。しかしながら、理解されるように、基板組成は、個々の実験に適合するように選択することができ、例えば、基板は、ガラス又はプラスチック、平坦な又はマイクロウェル及び構造を備える窪んだものとすることができる。さらに、細胞投入物1又は生化学投入物2は、堆積時にゲル化又は固化することのできる細胞含有又は非細胞含有の液体に置き換えて、基板表面を生体適合性構造でカスタム化できるようにすることができる(図示せず)。
【0072】
印刷された流体を受け取るスライドの印刷可能な表面を処理して、印刷後に液滴6が基板5aの表面上に広がるのを防止することは潜在的に有利である。処理の一例は、ガラスの表面を疎水性にし、ひいては光の透過を可能にしながら水滴の広がりを防止するための、ジクロロジメチルシランなどによるシリコーン処理である。しかしながら、基板との適合性、液滴内容物及び照明方法に応じて、種々の処理方法及び化学薬品が使用できることを理解されたい。例えば、流体がガラス基板の上に直接印刷された場合、液体の液滴は単一の離散液滴として十分に局在化したままとなるのではなく、ガラスの表面上に広がって、既に基板5aに印刷された他の液滴と合体する可能性がある。液体を疎水的にはじくシリコーン処理などによって、基板5aを最初に処理することで、液滴は離散液滴として残ることが保証される。結果として、基板5aの印刷可能な表面を処理することにより、表面エネルギを介して堆積後の液滴6の広がりが制御される。既に説明したように、必要に応じて、xy座標を用いて同じ印刷位置に同じ又は異なる流体の複数液滴を印刷することにより、混合を達成することができる。
【0073】
説明したように、生体材料が印刷されると、基板5aの対象領域11は、搬送システム70を使用して印刷位置から撮像位置に動かされる。搬送システム70は、基板5aを支持する支持機構7と、印刷位置と撮像位置の間で支持機構7を移動させるための運動システム80と、支持機構7及び運動システム80が取り付けられるフレーム基部9を有する主フレーム90とを含む。一部の開発では、搬送システム70による移動に先立ってさらなる任意の段階が存在し、未染色又は未ラベル付けの生物学実験を上述のように設定し、生物活動を阻止することができる、プリントヘッド3bによるバイオマーカ又は染色剤のインクジェット又はウォッシュインの前に所望の点まで前進させることができ、搬送システム70によって基板5aを撮像システム100へ移動させる直前に、重ね印刷によって適用することができる。
【0074】
フレーム基部9は、印刷ヘッドユニット3a及び撮像システム100のそれぞれの真下にある、ハウジング15の内部領域を実質的に横切って延びるので、支持機構7は、支持機構7が印刷ヘッドユニット3aの下方に位置する印刷位置と、支持機構7が撮像システム100の下方に位置する走査位置との間を移動することができる。
【0075】
搬送システム70の主フレーム90は、複数の支持脚部を介してハウジングの床に載っている。フレーム基部9をハウジング15の床から持ち上げると、フレーム基部9の真下に空洞空間が作り出される。この空間は、コンピュータ化された制御システム14、及び装置1000に動力を供給するモータなどの主要部品を収容するために使用することができる。
【0076】
コンピュータ制御システム14は、印刷機構3、搬送システム70、撮像システム100、及びこれらのシステムの全ての副構成要素を含む細胞堆積装置1000のあらゆる個々の構成要素に接続される。従って、装置1000の個々の構成要素及び副構成要素は全てコンピュータ制御され、完全に自動化されたコンピュータ制御の装置を提供する。コンピュータプログラムは、コンピュータ制御システム上で実行され、ユーザがプログラムできる。ユーザは、初期条件と実験の詳細をコンピュータプログラムに入力することができるので、プログラムが実行されると、細胞堆積装置は、実験が完了するまで、ユーザからの何らかのさらなる相互作用なしに、必要とされる実験を実行する。
【0077】
図1aに示すように、支持機構7は受け台7aの形態であり、運動システム80は往復動機構8の形態である。従って、基板5aは、受け台7a上に位置決めされ、受け台7aによって支持される。受け台7aは、ハウジング15内で受け台7aを移動させる往復動機構8に取り付けられる。往復動機構8は、受け台7aを装置1000のハウジング15内で横方向に移動させ、その移動は単一水平面に限定されている。従って、受け台7aは、ハウジング15の側面間を左右に、並びにハウジング15の前後間を前後に移動するができる。結果として、往復動機構8は、主フレーム90のフレーム基部9に広がる多方向往復動機構、例えばX+Y往復動機構である。
【0078】
受け台7aによって支持されたバイオ印刷済み基板は、印刷ヘッドユニット3aと撮像システム100との間を前後に往復動する。往復動機構8は、基板5aを撮像システム100の真下に正確に位置決めすることを保証し、往復動機構8により、必要に応じて位置をx及びy方向に微調整することができる。
【0079】
撮像システム100はスキャナを含み、スキャナは、デジタル顕微鏡の形態のデジタルスキャナ10である。基板5a上に印刷された生体液の液滴6は、明視野顕微鏡法を用いて撮像され、その場合、光源12がデジタルスキャナ10の下に位置決めされ、鉛直光路5bに沿ってデジタルスキャナ10に光を当てるように配置される。光は基板上の生体試料を背後から照らし、明るい背景の上に透過画像を与える(デジタルスキャナ10を通して見られる)。生体材料の細胞の構造がはっきりと見えるように、一部の細胞は予め染色される場合がある。細胞を染色すると、光源として一般に入手できる白色スペクトル光の使用が可能となる。従って、明視野顕微鏡法は、一部の細菌を含む個々の細胞を判別できる高解像度画像(少なくとも40倍の光学倍率が可能)を提供する。
【0080】
場合によっては、細胞を染色する必要のない暗視野顕微鏡法が代わりに使用される。この技法は、高解像度の明視野顕微鏡法より解像度の低い撮像技法であるため、細胞の内部構造の詳細な画像は取り込まれない。しかしながら、暗視野顕微鏡法は、存在する細胞の数をすばやく計数し、細胞境界を特定することなど、必要とされる結果に高解像度があまり関係しない実験に対して、つまり、細胞構造の高レベルの詳細があまり重要でない実験には役に立つ。これは、赤外分光法の組込み及び適用によっても実現することができる。一部の事例では、限定するものではないが、蛍光、赤外線、X線、UV及びラマン光源など、他の光源を用いて、細胞をラベル付けし染色する他の方法を見つけることができる。
【0081】
従って、明視野顕微鏡法を成功させるためには、受け台7aが走査位置にある時に基板5aも受け台7aも光源12とデジタルスキャナ10との間の光路5bを遮らないように、基板5aと受け台7aの両方が光に対して透明であることが重要である。
【0082】
従って、受け台7a及び基板5aは、可視光を透過する材料から構成される。代わりに、受け台7aは、光路5bが受け台7aを通り抜け、続いて透明基板5aを通り抜けることを可能にする開口(図示せず)を含むことができる。従って、受け台7aが走査位置にある時、受け台7aの開口は光源12の真上にあり、受け台7aが光路5bを遮らず、代わりに光路5bが開口を透過するようになっている。
【0083】
一部の例では、受け台7aの表面及び基板5aの表面は、代わりに反射性とすることができ、光源12は、バイオ印刷された液滴6を上方から照らすために、デジタルスキャナ10に隣接して受け台7a及び基板5aの両方の上方に位置決めすることができる。
【0084】
基板5aに印刷される液滴6の数は、実施される実験に応じて変えることができる。例えば、同じ液滴に対して同じ実験を複数回実行すること、同じ薬物を異なる印刷済み液滴に対して使用すること、又は、種々の液滴に異なる濃度の薬物を使用することができる。液滴のサイズを利用して、特定の実験で使用される薬物の濃度を変更することができるので、相対的な液滴サイズも重要になる可能性がある。一般に、液滴当たりの所与の薬物質量に関して、液滴サイズが大きいほど、薬物の濃度が低くなるが、それは、液滴がより希釈されるからである。
【0085】
走査中に基板5aが水平であることを保証するために、リフト機構13が受け台7a及び基板5aと係合して、基板5aを水平位置にする。これは、印刷の前に基板5aが最初に置かれる受け台7aの上に複数の直立ピンを備えることによって達成される。受け台7aが走査位置にある時、リフト機構13は、基板5aをピンから鉛直方向に持ち上げ、必要に応じて、基板5aが水平になるように基板5aの位置を調整する。水平に対する基板の角度は、基板の平面が水平面と一致するまで、基板の平面のピッチ及びチルトを変えることによって調整される。
【0086】
リフト機構は、基板5a上の対象領域11を受け台7a(これは、撮像プロセス中に対象領域11の安定性に影響を与える場合がある)から切り離すだけでなく、対象領域11の撮像前にデジタルスキャナ10が対象領域に焦点を合わせるように、対象領域をデジタルスキャナ10に向かって移動させる。あるいは、デジタルスキャナ10は、鉛直方向へ機械的に動かして基板5aの上方位置にすることができる。どちらの実施形態においても、デジタルスキャナ10の焦点機構によって高精度焦点が達成される。
【0087】
次に、デジタルスキャナ10は、水平な基板5aを走査する。走査が完了した後で、リフト機構13は、基板5aを下降させて受け台7a上のピンの上に戻す。
【0088】
リフト機構13は光源12とデジタルスキャナ10の間に位置するので、リフト機構13は、光源12とデジタルスキャナ10との間の光路5bを遮らないように構成することが重要である。従って、光源12は、リフト機構13が干渉することなく、液滴6を保持する基板5aの背面を依然として照らすことができる。
【0089】
上述のように、生体液の液滴6が基板5aの上に印刷されると、受け台7aは、往復動機構8によって、印刷ヘッドユニット3aの真下からデジタルスキャナ10の真下に移動する。デジタルスキャナ10及び受け台7aの真下に位置決めされた光源12は、明視野走査に必要な照明を提供する。
【0090】
デジタルスキャナ10は、基板5aの試料領域11を横切るスワス走査(swathe-scanning)を実行するように構成される。スワス走査は、試料領域11がデジタルスキャナ10の視野(FOV)よりも大きい場合に、流体1、2の複数の液滴6を同時に走査するステップを伴う。
【0091】
デジタルスキャナ10が一度に視認できる基板5aの総表面積の割合は、デジタルスキャナ10のFOVで決定される。このように、デジタルスキャナ10は、基板5aが静止位置にある場合にのみ、基板5aの領域を撮像することができ、この領域は一般に、基板5aの総表面積よりも小さい。従って、デジタルスキャナ10のFOVは、基板5aが静止している時に基板5aの表面積の何パーセントを一度に撮像できるかを決める。一般に、液滴6を堆積させる対象領域11は、デジタルスキャナ10のFOVよりも大きいことになる。これは、デジタルスキャナ10が対象領域11内にある液滴6の総数の限られた割合しか一度に視認できないことを意味する。全ての液滴6を撮像するため、デジタルスキャナ10のFOVを試料領域11の全体に亘って移動させて、全ての液滴6を撮像できるようにする必要がある。
【0092】
スワス走査中、対象領域11全体がデジタルスキャナ10の下を非常に迅速に移動する。スワスごとに走査される液滴6の総数は、視野ごとの液滴数に個別的な視野の数を掛けたもので与えられる。例えば、対象領域11が2列の液滴を含み、各列が100行を有し、スキャナ10のFOVは、一度に2滴(すなわち液滴の完全な1行)を視認することができる。スワス走査は、全100行に亘って、実質的に瞬時に各行にある液滴の各対を撮像するので、1回のスワス走査は、単一の画像スワスに取り込まれる2x100=200滴を示す。実際には、最初の行の2滴が走査された時間と、最後(つまり、100番目)の行の2滴が走査された時間との間の時間差は無視できることになる。
【0093】
デジタルスキャナ10は、対象領域11が占める基板5aの全ての部分を検出するので、スワス走査が実行されると、対象領域11全体が取り込まれる。従って、デジタルスキャナ10は、細胞が基板5a上の異なる位置に印刷された場合を検出することができ、堆積した細胞全てが走査されることを保証する。
【0094】
走査時間は、妥当なシステム時間枠内で同じ領域に堆積させるための相対時間に相応する。一部の例では、スワス走査像は、数マイクロ秒以内で取り込むことができる。これは、対象領域11の最初の部分が走査される時間が、対象領域11の最後の部分が走査される時間と実質的に同じであるという効果を有する。これにより、その堆積と比較して走査時間中に実質的な時間差のないことが保証されるので、全対象領域11によって表される実験全体を実質的に瞬時に走査することができる。これにより、薬物が各細胞に作用する時間の長さが変数ではなく今や実質的に一定となるため、異なる細胞に対する異なる薬物の影響をより効果的に分析することができる。
【0095】
無視できるほどの時間差は重要であり、それは、まず第1に、データを取り込む行為の結果としてのばらつきが少なくなることを意味するからである。例えば、ユーザが同じ実験を手動で実行する場合、全ての液滴6を確実に撮像するために、基板5a上の対象領域11の位置を調整し続けるのに長い時間が掛かることになる。従って、対象領域11全体に亘って撮像を複数回実行する必要があり、これには時間が掛かり、薬物が一部の細胞に対して他の細胞よりも長時間作用する結果として、異なる結果を収集する可能性が高くなる。その場合、ユーザは、これらの結果をフィルタ処理して、時間差が大きすぎるものを破棄するか、或る程度の不正確さを受け入れる必要があることになる。
【0096】
スワス走査は、連続した高速移動である。機器の部品が全て安定している限り、可視化の問題はない、つまり、取り込まれた走査画像は、スキャナ10の迅速な移動の結果としてぼやけることはない。理解されるように、異なるスワス走査のエッジを識別し、連続するスワス走査のエッジを一致させるアルゴリズムを用いて、異なるスワス走査を結合して、行われた実験全体の最終的な大きな全体画像を生成することができる。
【0097】
従って、デジタルスキャナは、基板の対象領域11全体の高解像度画像を帯状(swathe)に収集することができる。このスワス走査技法は、印刷された細胞の分析又は予め播種された(pre-seeded)細胞処理の分析を目的とする。
【0098】
またデジタルスキャナ10には、タンパク質間の相互作用、或いは細胞に由来する特定の遺伝子及びタンパク質の発現に関する検出など、生体分子研究用の蛍光顕微鏡観察機能を持たせることができる。蛍光光源は、マーカ生体分子の多波長信号検出に有利である。一部の事例では、限定するものではないが、赤外線、X線、UV及びラマン光源など、他の光源を用いて、細胞をラベル付けし染色する他の方法を見つけることができる。
【0099】
上述のように、ハウジング15は、搬送システム70、印刷機構3、及び撮像システム100を含む装置1000の全ての個々の構成要素を収容する。ハウジング15は、個々の構成要素を取り囲む一定の環境を維持するが、これは、特に、生体液の蒸発速度、並びに液滴の変形速度を制限できることを意味する。これは、実験の完全性を維持するのに役立ち、行われる特定の実験に応じて、ユーザは最初にハウジング15の内部環境条件を設定し制御することができる。図1bから分かるように、ハウジング15は高くなった脚部24に載っており、この脚部は、ハウジング15から周囲環境内への換気及び熱放散を可能にし、ハウジング15内の内部温度を維持するのを助ける。
【0100】
装置1000はハウジング15によって外部環境から密閉されるので、細胞投入物1内の細胞は、ハウジング15の外部からハウジング15の内部の印刷機構3に、ハウジングの内部状態を乱すことなく慎重に搬送する必要がある。
【0101】
この潜在的な問題を克服するために、細胞投入物1は細胞保管室17から取り出され、この細胞保管室は、バイオリアクタ17a、或いはFACS、MACS又はフローサイトメータ(図示せず)などのセルソータの形態とすることができ、図1bに示すように、ハウジング15の側面に取り付けられる。バイオリアクタ17aはまた、細胞運搬流体中の細胞に関して塊のない均等な分布を維持する役割を果たし、投入口18又は印刷ヘッド3bにおける閉塞を軽減する。保管室17は、例えばブラケット又はフレームなどのいずれか適切な取付け手段16を用いて取り付けられる。また、保管室17は、別の例では自立型とすることもできる。保管室17は、供給システム(図示せず)に接続されており、これにより、供給システムは、基板5a上の対象領域11の上に堆積させる又は印刷する準備のできた印刷機構3の投入口18に、並びに印刷ヘッドユニット3a内の個別印刷ヘッド3bのチャネルに直接供給することができる。供給システムは、保管室17を印刷機構3に接続する複数のチューブと、細胞投入物1中の細胞を保管室17からチューブを通して印刷機構3に移動させる少なくとも1つのポンプとを含む。
【0102】
一部の例では、保管室17から印刷ヘッドユニット3aに細胞投入物1を直接供給する代わりに、少量の生化学投入物を外部シリンジポート19又はマルチポートホイール20から直接取り出し、一連のチューブ(図示せず)を介して印刷ヘッド投入口に供給することができる。
【0103】
少なくとも1つの制御ハッチは、基板装填機構21への無菌アクセスを可能にすると共に、デジタルスキャナ制御パネル22への直接アクセスを可能にし、ユーザは、デジタルスキャナ10の機能を制御できるようになっている。基板装填機構21は一般に、基板を装置内部の所定の位置に押し込むこと又は引き込むことのいずれかを可能にするスロット又は開口部である。すなわち、基板装填機構21は、基板を装置の外側から内側に運ぶために使用できる何らかの適切な方法である。少なくとも1つの制御ハッチを設ける利点は、ユーザが、各構成要素及びそれに対応する制御パネルに個別に迅速にアクセスできることである。場合によっては、各制御パネルが異なる別個の制御ハッチと関係し、他の場合には、1つの制御ハッチを使用して複数の制御パネルに同時にアクセスできる。
【0104】
コンピュータモニタ23は、細胞堆積装置1000の制御パネル及び構成要素に接続され、ユーザがユーザインタフェースを介して様々な異なる構成要素と相互作用して制御することを可能にする。ユーザインタフェースは、タッチスクリーン、スクリーン及びマウス付属品、又は他の適切な相互作用機構の形態をとることができ、制御システムの一部を形成する。
【0105】
ユーザがアクセスできる制御ハッチだけでなく、多数のサービスハッチ25a~cもハウジング15に設けられる。これらにより、サービスエンジニアは装置の中心的構成要素に迅速且つ簡単にアクセスすることができる。
【0106】
別の例示的な装置2000では、図2に示すように、生体培養器26がハウジング15内に含まれる。培養器26は、装置構成要素の延長部を形成し、撮像システム100の隣に位置する。これにより、受け台7aは、受け台7aで支持されたバイオ印刷済み基板を、印刷機構3又は撮像システム100のいずれかから培養器26の内部に送達することができる。
【0107】
図2に示すように、培養器26は、搬送システム70のフレーム基部9が培養器26の空洞内に延びた、搬送システム70の延長部である。受け台7aがその上を移動する印刷トラック4も、フレーム基部9の上方で培養器の空洞内に延びるので、印刷機構3、撮像システム100、及び培養器26に対応できる1つの連続した印刷トラック4が存在する。
【0108】
代替例では、2つの別個の印刷トラック、すなわち、印刷機構3及び撮像システム70を受け持つ第1のトラックと、培養器26を受け持つ第2のトラックとが存在することができる。この場合、受け台7aを培養器26内に移動させる必要がある場合、搬送システムは、受け台7aを第1のトラックから第2のトラックへ移す必要がある。この配置は、より多くの個別的な構成要素を必要とする可能性があるが、これは、モジュール式細胞堆積装置を可能にし、必要に応じて培養器26を細胞堆積装置の本体に取り付けること及びそこから取り外すことを可能にする。
【0109】
培養器26は、複数の基板5aを培養器26の空洞内に積み重ねることを可能にする自動積層システム29を含む。図2では鉛直方向に積み重なるように複数の基板5aが示されるが、基板5aは何らかの他の好都合な配置で体系化できることを理解されたい。培養器26内に複数の基板5aを保管することにより、多くの異なる基板を次々に装填し走査することが可能となり、後続の基板5aを交換する間にユーザの介入を必要とせずに、複数の実験を次々に自動的に実行することができる。
【0110】
培養器26は、基板5aを保管する培養器26の内部空洞の温度、湿度及び低酸素環境を維持する。例えば少なくとも1つのパイプ又はチューブを介して、外部ガスシリンダ31、例えば二酸化炭素シリンダを、ガス調節のために培養器26の内部空洞に流体接続(30)することができる。何らかの適切な取付け手段32、例えばブラケット又はフレームは、ガスシリンダ31を支持するためにハウジング15の外側に取り付けられる。例えば、蒸気圧、粉塵低減、及び大気圧を含む、培養器26内部の他の環境因子も制御することができる。
【0111】
培養器26内部の制御された環境を維持する一方で、依然として受け台7が培養器空洞に出入りできるようにするために、図2に示すように、印刷組立体3及び撮像システム100を含む主区画と培養器との間に流体密封ハッチ33が設けられる。主区画から培養器26に受け台7を移す準備ができると、このハッチ33が一時的に開放され、対応する基板5aを備えた受け台は、培養器26に入ることができる。
【0112】
この配置により、細胞を基板に付着させた後に自動分析を行う場合、又は経時変化分析で細胞処理の反復播種が必要な場合など、より広範な自動化された実験が可能となる。従って、この配置は、実行可能な考えられる実験の複雑さを増大させ、ワークフローを促進する。ユーザが、コンピュータ化された制御システム14を用いて最初に装置をプログラムすると、装置は、放置状態で、長期間に亘って人間と全く又はほとんど相互作用することなく複数の実験を自動的に処理することができる。
【0113】
装置のさらなる配置(図示せず)では、培養器26はまた、長期に亘る外部培養のために密閉され、取外し可能であり、ワークフローを再開又は変更するために、占有されていない又は部分的に占有された培養器26と交換可能である。別の配置では、撮像が終点である場合に印刷及び培養の繰り返し期間を促進するために、培養器26は、印刷ヘッド配列3と撮像システム34との間に位置決めすることができる。
【0114】
細胞堆積装置2000の別の配置が図3aに示してあり、同じ参照番号は、先に説明したものと同じ機能を備えた構成要素を表す。上述のように、この代替配置は、撮像システム34と少なくとも1つの光源35を含むが、これらは図1及び2に示す配置に対して反転している。従って、この場合、撮像システム34はフレーム基部9の下方に位置し、少なくとも1つの光源35がフレーム基部9の上方に位置する。撮像システム34は、鉛直経路36に沿って可動であるため、使用時には光源35に向かって上向きに伸び、非使用時にはフレーム基部9の真下の空洞内へ下向きに退避することができる。光源35も鉛直経路37に沿って可動であるため、走査中に必要な場合には、フレーム基部9に向かって下向きに移動し、走査が完了して光源がもはや必要とされない場合には、フレーム基部9から離れるように上向きに移動することができる。
【0115】
フレーム基部9の開口38は、基板5aを分析できるように、撮像システム34と光源35の間に遮られない明確な経路を提供する。
【0116】
光源35及び撮像システム34の構成を互いに対して回転させることにより、焦点面の一部が取り去られ、基板5aには深さがなくなるので、スキャナは基板5a上の細胞1を分析しやすくなる。このように、この構造の利点は、先に説明した配置での変動する表面深さとは対照的に、細胞1が直接沈降して付着する基板5aの平らな基部39によって一貫して平坦な焦点が存在することであり、これにより焦点の信頼性が高まる。従って、図3aの設計では光路が強化される。さらに、この設定には焦点面が1つしかないので、焦点追跡機構が行う計算が少なくなる。
【0117】
図3bは、本装置の配置における別の例を示しており、ここでも、同じ参照番号は、先に説明したものと同じ機能を備えた構成要素を表す。この配置では、光源35及び撮像システム34は、図1及び2の配置に対して反転している(すなわち、図3aに示すものと同じである)が、この場合には、装置の設置面積全体が小さくなっている。これは、水平方向に移動する印刷ヘッド配列3及び受け台7を、鉛直方向に垂直に移動する光源35及び撮像システム34と同じ容積に集約することによって達成される。この配置では、光路が通過するフレーム基部9内の開口38は、受け台7が移動する印刷トラック4と重なる。
【0118】
本装置の別の配置(図示せず)では、複数の印刷ヘッド配列3、複数の撮像システム34、及び複数の培養器26を複数の搬送システム70で接続することができる。これは、装置のスループットを増大させる目的に役立ち、ワークフローの複雑化を容易にし、他の印刷ヘッド配列3、撮像システム34、及び培養器26の運転使用中に、代わりの印刷ヘッド配列3、撮像システム34、及び培養器26の継続使用を容易にする。
【0119】
本装置を使用するには、ユーザは、コンピュータ制御システムのユーザインタフェースを用いて、実行する実験の種類を選択することから始める。その場合、コンピュータシステムは、培養器及びハウジング内の内部条件を含めて、取り掛かろうとする実験の初期開始条件を選択することになる。場合により、ユーザは、ユーザインタフェースを介して初期実験条件をさらに選択又は制御することができる。
【0120】
本装置がプログラムされると、ユーザは少なくとも1つの基板を本装置に装填し、その基板の上で実験が印刷され行われることになる。
【0121】
次いでユーザは、コンピュータプログラムを起動させて実験を実行することができ、実験が完了したこと、又は実験を完了させられないような問題が発生したことをコンピュータ制御システムがユーザに警告するまで、それ以上ユーザからの行為は必要とされない。
【0122】
実験を開始するために、基板を培養器から細胞堆積装置内の受け台7aの上に装填することができる。次いで、印刷機構3の印刷ヘッドユニット3aは、細胞投入物1の試料と液状生化学投入物2とを受け取り、細胞投入物1の試料は少なくとも1つの細胞を含んでいる。次に、印刷ヘッドユニット3aの個別印刷ヘッド3bは、基板5aの対象領域の上に一連の個別液滴6で試料を印刷する。
【0123】
必要な数の液滴6が対象領域11の上に印刷されると、基板5aは次に、受け台7aによって、印刷ヘッドユニット3aの真下から、主フレームのフレーム基部9を横切って、デジタルスキャナ10の真下に移動する。
【0124】
次に、リフト機構は基板5aと係合し、基板5aを受け台7aから持ち上げ、デジタルスキャナ10が基板5aに焦点を合わせるようにさせる。デジタルスキャナ10は、基板5a上の対象領域全体に亘って非常に迅速に移動することによって、基板5a上の対象領域全体をスワス走査する。代わりに、機械的に位置合わせされているが静止したデジタルスキャナ10の真下を、基板5aが架台7aに載って迅速に移動する。デジタルスキャナ10と対象領域との間に相対的な動きがない場合に対象領域がデジタルスキャナ10の視野よりも大きいにも拘わらず、迅速な移動は、走査がほぼ瞬時に行われるという効果を有する。
【0125】
走査が完了すると、基板5aは受け台7aの上に戻される。その後で、長期実験中の培養及び保管のために、基板を培養器に移動させることができる。
【0126】
次いで、必要な数の基板5aが全て印刷されるまで、次の基板5aについてこのプロセスが再び自動的に始まる。このように、一定のサイクル動作が自動的に実行され、ユーザは、実験を実行するために毎回本装置に再装填したり、本装置の異なる構成要素間で基板を手作業で動かしたりする必要はない。
【符号の説明】
【0127】
1 細胞投入物
2 液状生化学投入物
3 印刷機構
3a 印刷ヘッドユニット
3b 個別印刷ヘッド
4 印刷トラック
5a 基板
5b 鉛直光路
6 液滴
7 支持機構
7a 受け台
8 往復動機構
9 フレーム基部
10 デジタルスキャナ
11 対象領域
12 光源
13 リフト機構
14 コンピュータ化された制御システム
15 ハウジング
40 キャリア機構
70 搬送システム
80 運動システム
90 主フレーム
100 撮像システム
1000 細胞堆積装置
図1a
図1b
図2
図3a
図3b
【国際調査報告】