(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-11-02
(54)【発明の名称】生体細胞と共に使用するための磁性粒子処理システム及び関連する方法
(51)【国際特許分類】
C12M 1/00 20060101AFI20231026BHJP
C12N 5/071 20100101ALI20231026BHJP
C12N 1/02 20060101ALI20231026BHJP
C12N 15/10 20060101ALI20231026BHJP
A61K 39/00 20060101ALI20231026BHJP
C12N 5/0783 20100101ALN20231026BHJP
C07K 16/28 20060101ALN20231026BHJP
【FI】
C12M1/00 A
C12N5/071
C12N1/02
C12N15/10 Z
A61K39/00 A
C12N5/0783
C07K16/28
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023547326
(86)(22)【出願日】2021-10-12
(85)【翻訳文提出日】2023-06-05
(86)【国際出願番号】 US2021054490
(87)【国際公開番号】W WO2022081519
(87)【国際公開日】2022-04-21
(32)【優先日】2020-10-12
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-01-14
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】523135746
【氏名又は名称】ライフ・テクノロジーズ・アクシェセルスカプ
【氏名又は名称原語表記】Life Technologies AS
(71)【出願人】
【識別番号】514078933
【氏名又は名称】ライフ テクノロジーズ コーポレイション
(71)【出願人】
【識別番号】520468106
【氏名又は名称】ライフ テクノロジーズ ホールディングス プライベート リミテッド
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100189555
【氏名又は名称】徳山 英浩
(74)【代理人】
【識別番号】100100479
【氏名又は名称】竹内 三喜夫
(72)【発明者】
【氏名】ルーハー,モルテン
(72)【発明者】
【氏名】ゴードン,マイケル
(72)【発明者】
【氏名】シア,ミン ティオン
(72)【発明者】
【氏名】チョン,コック ション
(72)【発明者】
【氏名】ソー,ウーン リアン テレンス
(72)【発明者】
【氏名】リム,セン レオン
(72)【発明者】
【氏名】シュレーダー,イーダ キャロライン
(72)【発明者】
【氏名】アルフスネス,ケイトリン
(72)【発明者】
【氏名】リム,テリー ジャンホイ
(72)【発明者】
【氏名】ボスネス,マリー
(72)【発明者】
【氏名】ノイラウター,アクセル アロイス
(72)【発明者】
【氏名】ペーダシェン,ケティル ヴィンテル
(72)【発明者】
【氏名】ウィルバー,オータム デイ
(72)【発明者】
【氏名】ジマーマン,ショーン
【テーマコード(参考)】
4B029
4B065
4C085
4H045
【Fターム(参考)】
4B029AA27
4B029BB11
4B029CC01
4B029DG08
4B029GA08
4B029GB10
4B065AA94X
4B065AB10
4B065AC20
4B065BA30
4B065CA46
4C085AA03
4C085BB11
4H045AA11
4H045AA20
4H045AA30
4H045BA10
4H045CA40
4H045DA75
4H045EA65
(57)【要約】
磁気ビーズを生体細胞および他の生物学的材料に付着させ、及び/又は、磁気ビーズを生体細胞および他の生物学的材料から分離する際に使用するためのビーズ処理アセンブリであって、ハウジングと、ハウジング上に配置されて前面を有する支持パネルと、支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、を備えるベースアセンブリを含む。ロッカアセンブリが、ベースアセンブリ上に支持され、ベースアセンブリ上に支持されるマウントアセンブリと、マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、マウントアセンブリに対してプラットフォームアセンブリを繰り返し揺動させるためのロッカドライバと、を含む。
【特許請求の範囲】
【請求項1】
磁気ビーズを生体細胞に付着させ、及び/又は、磁気ビーズを生体細胞から分離する際に使用するためのビーズ処理アセンブリであって、
ベースアセンブリであって、
ハウジングと、
ハウジング上に配置されて前面を有する支持パネルと、
該支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、
該支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、を備えるベースアセンブリと、
該ベースアセンブリ上に支持されるロッカアセンブリであって、
該ベースアセンブリ上に支持されるマウントアセンブリと、
該マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、
該マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されたロッカドライバと、を備えるロッカアセンブリと、
を備えるビーズ処理アセンブリ。
【請求項2】
ベースアセンブリは、ハウジングアセンブリにヒンジ式に取り付けられたカバーパネルを更に備え、
該カバーパネルは、支持パネルの前面が開放的に露出される開位置と、カバーパネルが支持パネルの前面を覆う閉位置との間で移動可能である、請求項1に記載のビーズ処理アセンブリ。
【請求項3】
カバーパネルは、ハウジングにヒンジ式に取り付けられ、開口を取り囲む外周フレームと、
開口内に配置される透明窓と、を備える請求項2に記載のビーズ処理アセンブリ。
【請求項4】
支持パネルは、前面を有するベースパネルであって、第1ピンチバルブ及び第1ポンプがベースパネルの前面から少なくとも部分的に外側に突出するようにベースパネルに取り付けられる、ベースパネルと、
ベースパネルの前面に配置されるオーバーレイパネルであって、該オーバーレイパネルは、それを貫通して延びる開口を有し、該開口を通じて第1ピンチバルブ及び第1ポンプの少なくとも一部が突出する、オーバーレイパネルと、を備える請求項1に記載のビーズ処理アセンブリ。
【請求項5】
支持パネルの前面は、ハウジングアセンブリが水平面上に載置されている場合に30°~70°の範囲の角度で配置される、請求項1に記載のビーズ処理アセンブリ。
【請求項6】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、
複数のピンチバルブは、少なくとも2つ、3つ、4つ、6つ、又は8つのピンチバルブを備える、請求項1に記載のビーズ処理アセンブリ。
【請求項7】
第1ポンプは、蠕動ポンプを備える、請求項1に記載のビーズ処理アセンブリ。
【請求項8】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備える、請求項1に記載のビーズ処理アセンブリ。
【請求項9】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数の気泡センサを更に備え、
複数の気泡センサは、少なくとも2つ、3つ、又は4つの気泡センサを備える、請求項1に記載のビーズ処理アセンブリ。
【請求項10】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する圧力センサを更に備える、請求項1に記載のビーズ処理アセンブリ。
【請求項11】
ベースアセンブリは、支持パネルの前面を貫通して延びる開口と、
支持パネルに取り付けられる第1回転アセンブリと、を更に備え、
該第1回転アセンブリは、
キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、
受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータと、を備える、請求項1に記載のビーズ処理アセンブリ。
【請求項12】
ベースアセンブリは、ビーズバイアルリテーナを更に備え、
該ビーズバイアルリテーナは、
バイアルを受けるように構成される本体と、
本体から延在する長尺アームと、
ベースアセンブリのハウジング内に少なくとも部分的に配置され、アームの自由端に接続されるモータであって、モータに取り付けられた本体を少なくとも60°の角度に渡って垂直に往復回転させるように構成される、モータと、を含む、請求項1に記載のビーズ処理アセンブリ。
【請求項13】
ビーズバイアルリテーナの本体は、C字形チャネルを境界付ける内面と、
該内面から径方向内側に突出する肩部と、を備える、請求項12に記載のビーズ処理アセンブリ。
【請求項14】
ロッカアセンブリのマウントアセンブリは、ベースアセンブリに取り付けられた第1ライザ及び離間した第2ライザを備え、
プラットフォームアセンブリは、第1ライザ及び第2ライザに回動可能に結合され、第1ライザと第2ライザとの間に少なくとも部分的に配置される、請求項1に記載のビーズ処理アセンブリ。
【請求項15】
ロッカドライバは、クランクと、
該クランクを選択的に回転させるモータと、
該クランクからプラットフォームアセンブリまで延在する接続アームと、を備える、請求項1に記載のビーズ処理アセンブリ。
【請求項16】
プラットフォームアセンブリは、区画室を境界付けるハウジングアセンブリと、
該ハウジングアセンブリに取り付けられたプラットフォームと、
該ハウジングアセンブリと該プラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、
作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるように構成されたリフトと、を備える、請求項1に記載のビーズ処理アセンブリ。
【請求項17】
リフトは、ハウジングアセンブリの区画室内に少なくとも部分的に配置されたシザーリフトと、
該シザーリフトを動作させるモータと、を備える、請求項16に記載のビーズ処理アセンブリ。
【請求項18】
シザーリフトは、磁石アセンブリが上に配置される棚と、
ハウジングアセンブリと棚との間で延在する第1シザーアーム対と、
ハウジングアセンブリと棚との間で延在して第1シザーアーム対から離間される第2シザーアーム対と、
モータに結合されるねじ付きシャフトと、
カラーであって、モータによるねじ付きシャフトの回転がねじ付きシャフトに沿うカラーの直線動作を容易にするようにねじ付きシャフトと係合するとともに、第1シザーアーム対及び第2シザーアーム対とも係合する、カラーと、を備える、請求項17に記載のビーズ処理アセンブリ。
【請求項19】
上面及び反対側の底面を有する支持プレートを備えるプラットフォームを更に備え、
磁石アセンブリが作動位置まで持ち上げられた場合、支持プレートの底面は、磁石アセンブリの上面から1cm、0.5cm、又は0.2cm以内にある、請求項16に記載のビーズ処理アセンブリ。
【請求項20】
磁石アセンブリが非作動位置まで下げられた場合、支持プレートの底面は、磁石アセンブリの上面から少なくとも4cm、5cm、又は6cm離れている、請求項19に記載のビーズ処理アセンブリ。
【請求項21】
プラットフォームは、
ハウジングアセンブリに固定されるとともに、導電性材料で形成され、上面を有する支持プレートと、
連続ループを形成するとともに、支持プレートの少なくとも一部を取り囲むように支持プレートの上面に配置され、電気絶縁材料で形成される絶縁シールと、
連続ループを形成するとともに、支持プレートから離間されるように絶縁シールの上に配置された接点とを備え、
支持プレート及び接点は、接点と支持プレートとの間に電位を生み出すことができる電気回路と電気的に連通している、請求項16に記載のビーズ処理アセンブリ。
【請求項22】
プラットフォームは、上面を有し、ハウジングアセンブリに固定される支持プレートと、
支持プレートの上面の上方に位置決めされる抑制部と、を備え、
該抑制部は、
支持プレートの上面を部分的に取り囲むとともに、対向する端部間で延在する境界壁と、
該境界壁の対向する端部間で延在するトレイと、を備え、
該トレイは、境界壁から外方に突出する上向きに傾斜した床と、床から上方に突出する一対の離間したポストとを有する、請求項16に記載のビーズ処理アセンブリ。
【請求項23】
プラットフォームは、支持ハウジングに固定された保持フレームであって、開口を取り囲む環状内壁と、内壁を取り囲む環状外壁とを備える保持フレームと、内壁と外壁との間に形成されるスロットと、
保持フレームのスロット内に固定され、チャネルを境界付けるガイドと、
ガイドのチャネル内に摺動可能に配置された電気ラッチと、を備える、請求項16に記載のビーズ処理アセンブリ。
【請求項24】
磁石アセンブリは、磁石を備える、請求項16に記載のビーズ処理アセンブリ。
【請求項25】
磁石アセンブリは、外周縁部まで延在する上面及び反対側の底面を有する非磁性ケーシングであって、凹部が上面に形成されて外周縁部を有する、非磁性ケーシングと、
ケーシングの凹部内に配置される磁石と、を備える、請求項24に記載のビーズ処理アセンブリ。
【請求項26】
磁石は、ハルバッハ配列を生成するように複数の交互の向きに配置された複数の別個の離散した磁石を備える、請求項25に記載のビーズ処理アセンブリ。
【請求項27】
凹部の外周縁部は、ケーシングの外周縁部から少なくとも0.5cm、1cm、1.5cm又は2cm挿入されている、請求項25に記載のビーズ処理アセンブリ。
【請求項28】
ケーシング及び磁石は、それぞれ長方形の形態を有する、請求項25に記載のビーズ処理アセンブリ。
【請求項29】
プラットフォームアセンブリは、プラットフォームを少なくとも部分的に覆うとともにプラットフォームに対して移動可能なカバーアセンブリを更に備える、請求項16に記載のビーズ処理アセンブリ。
【請求項30】
カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、プラットフォームの少なくとも一部がカバーハウジングの開口内に位置合わせされる、カバーハウジングと、
開位置と閉位置との間で移動可能にカバーハウジングに取り付けられた蓋であって、閉位置にある場合にカバーハウジングの開口を少なくとも実質的に覆う蓋と、を備える、請求項29に記載のビーズ処理アセンブリ。
【請求項31】
蓋は、カバーハウジングにヒンジ式に取り付けられる、請求項30に記載のビーズ処理アセンブリ。
【請求項32】
蓋は、開口を取り囲むとともに上端及び反対側の下端を有する外周壁と、
上面及び反対側の底面を有し、開口の上に延在するように外周壁の下端に固定された蓋板であって、外周壁の少なくとも一部が蓋板の上面の上方に直立して、蓋板によって部分的に境界付けられて外周壁によって囲まれる上側キャビティが形成されている、蓋板とを備える、請求項30に記載のビーズ処理アセンブリ。
【請求項33】
外周壁は、上側キャビティと連通するように蓋板の上面に隣接して外周壁を貫通して延在するチャネルを有する、請求項32に記載のビーズ処理アセンブリ。
【請求項34】
蓋が閉位置にある場合、蓋をカバーハウジングに固定するための第1ラッチを更に備える、請求項30に記載のビーズ処理アセンブリ。
【請求項35】
プラットフォームから離れるカバーアセンブリの移動を弾性的に抑制するための手段を更に備える、請求項29に記載のビーズ処理アセンブリ。
【請求項36】
移動を弾性的に抑制するための手段は、第1端部及び反対側の第2端部を有するロッドであって、第1端部は、カバーアセンブリに固定されてカバーアセンブリから突出している、ロッドと、
該ロッドと係合されるばねであって、カバーアセンブリをプラットフォームから離れるように移動させる力が使用されると、ばねは、カバーアセンブリをプラットフォームに向けて後方に弾性的に付勢するようにした、ばねとを備える、請求項35に記載のビーズ処理アセンブリ。
【請求項37】
抑制位置と非抑制位置との間で移動可能なストッパを更に備え、
抑制位置において、ストッパは、プラットフォームに対するロッドのいくらかの移動を妨げるように位置決めされ、
非抑制位置において、ストッパは、ロッドの移動を妨げない、請求項36に記載のビーズ処理アセンブリ。
【請求項38】
ハウジングアセンブリに取り付けられたソレノイドバルブを更に備え、
ソレノイドバルブは、ストッパを抑制位置と非抑制位置との間で移動させる、請求項37に記載のビーズ処理アセンブリ。
【請求項39】
ハウジングアセンブリに形成された穴であって、ロッドは、穴の内部に摺動可能に配置される、穴と、
ロッドの第2端部から外向きに突出するフランジと、を更に備え、
ばねは、フランジとハウジングアセンブリとの間で延在し、ロッドがカバーアセンブリと同時に持ち上げられると、ばねは弾性的に圧縮される、請求項36に記載のビーズ処理アセンブリ。
【請求項40】
抑制位置と非抑制位置との間で移動可能なストッパを更に備え、
抑制位置において、ストッパは、フランジと位置合わせされて、フランジ及びフランジに取り付けられたロッドのいくらかの動きを阻止し、
非抑制位置において、ストッパは、フランジと位置合わせされず、フランジ又はフランジに取り付けられたロッドの動きを妨げない、請求項39に記載のビーズ処理アセンブリ。
【請求項41】
カバーハウジングに形成され、カバーハウジングの開口と連通する凹部と、
凹部内に摺動可能に配置されるクランプアセンブリと、を更に備え、
該クランプアセンブリは、
下側クランプ溝が形成されたベースクランプと、
上側クランプ溝が形成されたクランプクロージャと、
上側クランプ溝が下側クランプ溝と位置合わせされるように、クランプクロージャをベースクランプに選択的に固定する締結具と、を備える、請求項30に記載のビーズ処理アセンブリ。
【請求項42】
カバーハウジングは、凹部の対向する各端部に形成されたU字形チャネルを更に備え、クランプアセンブリの対向する端部は、U字形チャネルと共に摺動可能に配置される、請求項41に記載のビーズ処理アセンブリ。
【請求項43】
プラットフォームは、上面及び反対側の底面を有する支持プレートと、
該支持プレートから離れて突出するとともに、ハウジングアセンブリに固定される側壁とを備え、
支持プレート及び側壁は、磁石アセンブリが上昇作動位置にある場合に磁石アセンブリが受け入れられるキャビティを少なくとも部分的に結合する、請求項16に記載のビーズ処理アセンブリ。
【請求項44】
磁気ビーズを生体細胞に付着させるため、及び/又は、磁気ビーズを生体細胞から分離するためのビーズ処理システムであって、
ビーズ処理アセンブリであって、
ハウジングと、
ハウジング上に配置されて前面を有する支持パネルと、
該支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、
該支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、を備えるベースアセンブリと、
該ベースアセンブリ上に支持されるロッカアセンブリであって、
該ベースアセンブリ上に支持されるマウントアセンブリと、
該マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、
該マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されたロッカドライバと、を備えるロッカアセンブリと、を備えるビーズ処理アセンブリと、
消耗キットであって、
前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイであって、第1ピンチバルブ及び第1ポンプが複数の開口のうちの対応する開口を通じて突出するように支持パネルの前面に取り外し可能に入れ子にされるトレイと、
トレイの前面に固定されたラインセットであって、
トレイの前面に固定されるとともに第1ピンチバルブ及び第1ポンプと係合する可撓性チューブと、
チューブに結合された複数の可撓性バッグ流体であって、複数の可撓性バッグがプラットフォームアセンブリのプラットフォーム上に支持された処理バッグを備える、複数の可撓性バッグ流体と、を備えるラインセットと、
を備える消耗キットと、
を備えるビーズ処理システム。
【請求項45】
ベースアセンブリは、ハウジングアセンブリにヒンジ式に取り付けられたカバーパネルを更に備え、
カバーパネルは、トレイの前面が開放的に露出される開位置と、カバーパネルがトレイの前面を覆う閉位置との間で移動可能である、請求項44に記載のビーズ処理システム。
【請求項46】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、
複数のピンチバルブは、少なくとも2つ、3つ、4つ、6つ、又は8つのピンチバルブを備え、
複数のピンチバルブのそれぞれは、トレイ上の複数の開口のうちの対応する開口を通じて突出して可撓性チューブと係合する、請求項44に記載のビーズ処理システム。
【請求項47】
ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備え、
第1気泡センサは、トレイ上の複数の開口のうちの対応する開口を通じ突出して可撓性チューブと係合する、請求項44に記載のビーズ処理システム。
【請求項48】
支持パネルの前面を貫通して延びる開口と、
支持パネルに取り付けられた第1回転アセンブリと、を更に含み、
該第1回転アセンブリは、
キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、
受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータと、
ラインセットのチューブに結合されたストップコック流体であって、ストップコックが受け部のキー付きソケット内に受けられる回転可能なハンドルを有する、ストップコック流体と、
ストップコックと結合されたエアフィルタ流体と、を備える、請求項44に記載のビーズ処理システム。
【請求項49】
ビーズバイアルリテーナを更に備え、
該ビーズバイアルリテーナは、
バイアルを受けるように構成されるチャネルを有する本体と、
本体から延在する長尺アームと、
ベースアセンブリのハウジングアセンブリ内に少なくとも部分的に配置されるとともにアームの自由端に接続されるモータであって、モータに取り付けられた本体を少なくとも60°の角度にわたって垂直に往復回転させるように構成される、モータと、
本体のチャネル内に受けられるバイアルであって、磁気ビーズ及び媒体を収容し、ラインセットのチューブがバイアルと流体結合されているバイアルと、を含む、請求項44に記載のビーズ処理システム。
【請求項50】
プラットフォームアセンブリは、
区画室を境界付けるハウジングアセンブリと、
ハウジングアセンブリに取り付けられたプラットフォームと、
ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、
作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるためにハウジングアセンブリの区画室内に配置されるリフトと、を備える、請求項44に記載のビーズ処理システム。
【請求項51】
プラットフォームアセンブリは、プラットフォーム及びプラットフォーム上の処理バッグを少なくとも部分的に覆うカバーアセンブリを更に備え、
該カバーアセンブリは、処理バッグが拡張するときにプラットフォームに対して移動可能である、請求項50に記載のビーズ処理システム。
【請求項52】
プラットフォームから離れるカバーアセンブリの移動を弾性的に抑制するための手段を更に備える、請求項51に記載のビーズ処理システム。
【請求項53】
カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、処理バッグが少なくとも部分的にカバーハウジングの開口内に配置される、カバーハウジングと、
開位置と閉位置との間で移動可能にカバーハウジングに取り付けられた蓋であって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆う蓋と、を備える、請求項51に記載のビーズ処理システム。
【請求項54】
カバーハウジングに形成されてカバーハウジングの開口と連通する凹部と、
凹部内に摺動可能に配置されるクランプアセンブリと、を更に備え、
該クランプアセンブリは、
下側クランプ溝が形成されたベースクランプと、
上側クランプ溝が形成されたクランプクロージャと、
上側クランプ溝が下側クランプ溝と位置合わせされるようにクランプクロージャをベースクランプに選択的に固定する締結具と、を備え、
プラットフォーム上に配置された処理バッグは、位置合わせされた上側クランプ溝及び下側クランプ溝の中に少なくとも部分的に配置されるとともにベースクランプとクランプクロージャとの間にクランプされるポートを有する、請求項53に記載のビーズ処理システム。
【請求項55】
ラインセットのチューブに結合され、媒体を収容する第1媒体バッグ流体を更に備える、請求項44に記載のビーズ処理システム。
【請求項56】
ビーズ処理アセンブリは、ベースアセンブリから直立するとともにそこから外側に突出するキャッチを有するスタンドを更に備え、
媒体バッグは、該キャッチ上に支持される、請求項55に記載のビーズ処理システム。
【請求項57】
ラインセットのチューブは、生体細胞分離器と流体結合される、請求項44に記載のビーズ処理システム。
【請求項58】
ラインセットのチューブは、生体細胞増殖システムと流体結合される、請求項44に記載のビーズ処理システム。
【請求項59】
処理バッグは、ビーズ分離バッグを備え、
該ビーズ分離バッグは、
ポリマーフィルムから構成されるとともに区画室を境界付ける折り畳み可能な袋体と、
袋体に結合されて区画室と連通する一対の離間したポートと、
一対の離間したポート間の位置で袋体の区画室内に配置される仕切りであって、ポートの一方に入る流体が他方のポートを通じて出ることができる前に、仕切りの周りを流れるように袋体に固定される、仕切りと、を備える、請求項44に記載のビーズ処理システム。
【請求項60】
磁気ビーズ処理アセンブリと共に使用するための消耗キットであって、
前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイと、
トレイの前面に固定されるラインセットと、を備え、
該ラインセットは、
複数の開口の少なくとも幾つかと位置合わせするように、トレイの前面に固定される可撓性チューブと、
チューブと結合された複数の可撓性バッグ流体と、
チューブに結合されたエアフィルタと、を備える、消耗キット。
【請求項61】
チューブに結合されたエアフィルタアセンブリをさらに備え、
該エアフィルタアセンブリは、
チューブと結合されるストップコック流体であって、該ストップコックは、
トレイの前面から外側に突出するスリーブと、
スリーブ内に回転可能に配置されるバルブと、
バルブを選択的に回転させるためにバルブに固定され、トレイの背面から外側に突出するハンドルと、を備える、ストップコック流体と、
スリーブと結合されるエアフィルタ流体と、を備える、請求項60に記載の消耗キット。
【請求項62】
トレイの前面に配置され、チューブと流体結合される混合バッグを更に備える、請求項61に記載の消耗キット。
【請求項63】
ラインセットのチューブに結合されたビーズバイアルカプラ流体と、
ビーズバイアルカプラに固定され、磁気ビーズ及びキャリア液体を含む懸濁液を収容するバイアルと、を更に備える、請求項61に記載の消耗キット。
【請求項64】
マウントアセンブリと、
該マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、
該マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されるロッカドライバと、を備え、
該プラットフォームアセンブリは、
区画室を境界付けるハウジングアセンブリと、
該ハウジングアセンブリに取り付けられたプラットフォームと、
該ハウジングアセンブリと該プラットフォームとの間に配置された磁石アセンブリと、
作動位置と非作動位置との間で磁石アセンブリをプラットフォームに対して選択的に上昇及び下降させるように構成されたリフトと、
プラットフォームを少なくとも部分的に覆うとともにプラットフォームに対して移動可能であるカバーアセンブリとを備える、ロッカアセンブリ。
【請求項65】
カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、プラットフォームの少なくとも一部がカバーハウジングの開口内に位置合わせされる、カバーハウジングと、
開位置と閉位置との間で移動可能にカバーハウジングに取り付けられる蓋であって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆う蓋とを備える、請求項64に記載のロッカアセンブリ。
【請求項66】
磁気ビーズを生体細胞に付着させるのに、及び/又は、磁気ビーズを生体細胞から分離するのに用いるビーズ処理アセンブリであって、
ベースアセンブリを備え、
該ベースアセンブリは、
ハウジングと、
ハウジング上に配置されて前面を有する支持パネルと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、を備える、ビーズ処理アセンブリ。
【請求項67】
磁気ビーズを生体細胞に付着させるため、及び/又は、磁気ビーズを生体細胞から分離するためのビーズ処理システムを動作させるための方法であって、
第1ピンチバルブ及び支持パネルから突出する第1ポンプがトレイに形成された対応する開口を通過するようにトレイをビーズ処理アセンブリの支持パネルの前面に取り外し可能に入れ子にするステップと、
トレイ上に配置されたラインセットのチューブを第1ピンチバルブ及び第1ポンプに係合させるステップと、
ラインセットと結合された処理バッグ流体をビーズ処理アセンブリのプラットフォーム上に配置するステップと、を含む方法。
【請求項68】
バイアル又は可撓性バッグをラインセットのチューブに結合する流体を更に備え、
バイアル又は可撓性バッグは、磁気ビーズ及びキャリア液体を含む懸濁液を収容する、請求項67に記載の方法。
【請求項69】
ビーズ処理アセンブリのバッグスタンド上に液体媒体を収容する媒体バッグを支持するステップを更に含む、請求項67に記載の方法。
【請求項70】
ラインセットのチューブを生体細胞分離器に流体結合するステップを更に含む、請求項67に記載の方法。
【請求項71】
ラインセットのチューブを生体細胞増殖システムに流体結合するステップを更に含む、請求項67に記載の方法。
【請求項72】
ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームの揺動をコンピュータプロセッサが促進するように作動させるステップを更に含む、請求項67に記載の方法。
【請求項73】
ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームに対する磁石の上昇及び下降をコンピュータプロセッサが促進するように作動させるステップを更に含む、請求項67に記載の方法。
【請求項74】
ビーズ処理アセンブリのコンピュータプロセッサを、プラットフォーム上の処理バッグに流体を配送するために第1ピンチバルブ及び第1ポンプの制御をコンピュータプロセッサが促進するように作動させるステップを更に含む、請求項67に記載の方法。
【請求項75】
ビーズ処理アセンブリのコンピュータプロセッサを、ラインセットのチューブと結合されたバイアル流体の移動をコンピュータプロセッサが促進してバイアル内に配置された懸濁液を混合するように作動させるステップを更に含み、
懸濁液は、磁気ビーズ及びキャリア液体を含む、請求項67に記載の方法。
【請求項76】
生体細胞は、T細胞である、請求項67に記載の方法。
【請求項77】
生体細胞は、抗原-抗体相互作用を介して磁気ビーズに付着される、請求項67に記載の方法。
【請求項78】
生体細胞は、抗原-抗体相互作用の破壊によって磁気ビーズから分離される、請求項77に記載の方法。
【請求項79】
抗原-抗体相互作用の破壊は、抗体の切断によって媒介される、請求項78に記載の方法。
【請求項80】
抗体を磁気ビーズから分離することによって、生体細胞は、磁気ビーズから分離される、請求項77に記載の方法。
【請求項81】
抗体は、リガンドによって磁気ビーズに連結される、請求項77に記載の方法。
【請求項82】
生体細胞は、抗体又は磁気ビーズとのリガンド相互作用の破壊によって磁気ビーズから分離される、請求項81に記載の方法。
【請求項83】
生体細胞は、T細胞である、請求項67に記載の方法。
【請求項84】
ビーズ処理システムを使用して第1細胞型の生体細胞を第2細胞型の生体細胞から分離するための方法であって、
a.第1細胞型及び第2細胞型の生体細胞を含む試料を、磁気ビーズが抗体結合を介して第1細胞型の生体細胞に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズが、プラットフォーム上に載置された処理バッグ内に配置される、ステップと、
b.プラットフォームに対して磁石を上昇させて、プラットフォームに対して所定の位置に磁気ビーズを強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1細胞型の生体細胞が付着される、ステップと、
c.磁気ビーズに磁場が印加された状態で流体を試料及び磁気ビーズに通過させるステップであって、第1細胞型の生体細胞から第2細胞型の生体細胞を洗い流すのに十分強い力で流体が通過する、ステップと、
d.第1細胞型の生体細胞が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないようにプラットフォームに対して磁石を下降させるステップと、を含む方法。
【請求項85】
抗体は、CD3、CD4、CD5、CD6、CD8、CD25、CD27、CD28、CD137及びCD278から成るグループから選択されるタンパク質に対する結合親和性を有する、請求項84に記載の方法。
【請求項86】
抗体は、CD3又はCD28を含むタンパク質に対して結合親和性を有する、請求項85に記載の方法。
【請求項87】
第1細胞型は、T細胞である、請求項86に記載の方法。
【請求項88】
第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから分離するステップと、
磁気ビーズを定位置に強固に固定するために磁気ビーズに磁場を印加するステップと、
磁場が印加されている間に磁気ビーズ及び第1細胞型の分離された生体細胞に流体を通過させるステップであって、磁気ビーズの少なくとも大部分が磁場によって定位置に固定されたままの状態で第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから洗い流すのに十分強い力で流体が通過する、ステップと、を更に含む請求項84に記載の方法。
【請求項89】
第1細胞型の生体細胞の少なくとも大部分が磁気ビーズから洗い流される間に、95%を超える磁気ビーズが磁場によって定位置に保持される、請求項88に記載の方法。
【請求項90】
95%を超える磁気ビーズが、第1細胞型の生体細胞から分離される、請求項89に記載の方法。
【請求項91】
第1細胞型の生体細胞から分離された95%を超える磁気ビーズが、第1細胞型の生体細胞から分離される、請求項84に記載の方法。
【請求項92】
磁気ビーズは、直径が約0.5μm~約3μmである、請求項84に記載の方法。
【請求項93】
処理バッグが載置されているプラットフォームを水平に対して第1方向に傾けるステップを更に含み、
磁場は、プラットフォームが第1方向に傾けられる間に、処理バッグ内の磁気ビーズに印加される、請求項84に記載の方法。
【請求項94】
磁石は、プラットフォームが第1方向に傾けられた後に持ち上げられる、請求項93に記載の方法。
【請求項95】
プラットフォームが第1方向に傾斜される間に、処理バッグのポートを通じて気体又は液体を注入するステップを更に含む、請求項93に記載の方法。
【請求項96】
処理バッグが載置されているプラットフォームが水平に対して傾斜されるように、プラットフォームを第1方向とは反対の第2方向に傾けるステップと、
プラットフォームが第2方向に傾けられる間に、処理バッグから液体を取り出すステップと、を更に含む請求項93に記載の方法。
【請求項97】
ビーズ処理システムを使用して第1生物学的材料を第2生物学的材料から分離する方法であって、
a.第1生物学的材料及び第2生物学的材料を含む試料を、磁気ビーズが親和性結合を介して第1生物学的材料に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズは、プラットフォーム上に載置された処理バッグ内に配置される、ステップと、
b.プラットフォームに対して磁石を上昇させて、プラットフォームに対して磁気ビーズを所定の位置に強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1生物学的材料が付着される、ステップと、
c.磁場が磁気ビーズに印加される状態で、試料及び磁気ビーズに第1流体を通過させることにより、第1生物学的材料を第2生物学的材料から分離するステップと、を含む方法。
【請求項98】
d.磁場が磁気ビーズに印加される間に、第2流体を試料及び磁気ビーズに通過させるステップを更に含み、
第2流体は、磁気ビーズからの第1生物学的材料の放出を誘導する、請求項97に記載の方法。
【請求項99】
d.第1生物学的材料が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないように、プラットフォームに対して磁石を下降させるステップを更に含む、請求項97に記載の方法。
【請求項100】
第2生物学的材料は、細胞溶解物又は培地である、請求項97に記載の方法。
【請求項101】
第1生物学的材料は、
a.核酸分子、
b.タンパク質、
c.細胞、
d.細胞外小胞、および
e.ウイルス様粒子(VLP)から成るグループから選択される、請求項97に記載の方法。
【請求項102】
核酸分子は、リボ核酸(RNA)分子である、請求項101に記載の方法。
【請求項103】
細胞は、哺乳動物細胞である、請求項101に記載の方法。
【請求項104】
細胞は、T細胞である、請求項103に記載の方法。
【請求項105】
タンパク質は、抗体である、請求項101に記載の方法。
【請求項106】
抗体との親和性結合は、プロテインA、プロテインG、プロテインL、又はこれらのタンパク質のうちの1つの機能的変異体によって形成される、請求項105に記載の方法。
【請求項107】
細胞外小胞は、エキソソームである、請求項101に記載の方法。
【請求項108】
エキソソームは、T細胞によって生成される、請求項107に記載の方法。
【請求項109】
T細胞は、キメラ抗原受容体を発現するように遺伝子操作される、項108に記載の方法。
【請求項110】
エキソソームとの親和性結合は、抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体によって形成される、請求項107に記載の方法。
【請求項111】
抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体は、ビオチン又はビオチン誘導体結合によって磁気ビーズに付着される、請求項110に記載の方法。
【請求項112】
抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体のうちの1つ以上が、VHH(variable heavy-heavy)抗体である、請求項110に記載の方法。
【請求項113】
精製リボ核酸(RNA)分子を製造するための方法であって、
a.磁場によって第1磁気ビーズを適所に固定するステップであって、インビトロ転写(IVT)鋳型が第1磁気ビーズに連結される、ステップと、
b.IVTが起こる条件下で、ステップ(a)の第1磁気ビーズを鋳型のIVTに適した試薬混合物と接触させて、RNA分子を生成するステップと、
c.第1磁気ビーズからRNA分子を分離して、精製RNA分子を生成するステップと、を含む方法。
【請求項114】
(d)洗浄中に精製RNA分子が第2磁気ビーズと会合したままであることを可能にする条件下で、ステップ(c)の精製RNA分子を第2磁気ビーズと接触させるステップと、
(e)第2磁石ビーズが磁場によって適所に固定される間に第2磁気ビーズを洗浄するステップと、
(f)精製RNA分子を第2磁気ビーズとの会合から放出することによって高度に精製されたRNA分子を生成するステップと、を更に含む請求項113に記載の方法。
【請求項115】
IVT鋳型は、ポリメラーゼ連鎖反応(PCR)によって生成される、請求項113に記載の方法。
【請求項116】
1つ以上のビオチン化プライマーが、PCRに使用されて、ビオチン化IVT鋳型の形成をもたらす、請求項115に記載の方法。
【請求項117】
ビオチン化IVT鋳型は、ビオチン化IVT鋳型のビオチンと、ビオチンに対する親和性を有する磁気ビーズ上の基との間の相互作用を介して磁気ビーズに付着される、請求項116に記載の方法。
【請求項118】
IVT鋳型は、タンパク質をコードするオープンリーディングフレームと、オープンリーディングフレームに作動可能に接続されたプロモータとを含む、請求項113に記載の方法。
【請求項119】
遊離カルボン酸基が、第2磁気ビーズの表面に存在する、請求項114に記載の方法。
【請求項120】
精製RNA又は高度に精製されたRNAは、メッセンジャーRNA(mRNA)である、請求項113又は114に記載の方法。
【請求項121】
mRNAは、病原体のタンパク質をコードする、請求項120に記載の方法。
【請求項122】
請求項121に記載のmRNA又はこのmRNAによってコードされるタンパク質を含むワクチン組成物。
【請求項123】
1つ以上のプログラムを記憶する非一時的コンピュータ可読記憶媒体であって、
該1つ以上のプログラムは、ディスプレイを有する電子デバイスによって実行される場合に、電子デバイスに、
ディスプレイ上に、少なくとも1つの一次仮想バイオプロセスパラメータ入力を含む一次選択領域と、一次仮想バイオプロセスパラメータ入力をオーバーライド又は複製する少なくとも1つの二次仮想入力を含む二次選択領域とを備えるグラフィカルユーザインタフェースを表示させる、命令を含む、非一時的コンピュータ可読記憶媒体。
【請求項124】
二次仮想入力は、キャンセルステップ、一時停止ステップ、停止ステップ、スキップステップ、又は重複ステップの入力を含む、請求項123に記載の記憶媒体。
【請求項125】
一次仮想バイオプロセスパラメータ入力は、請求項1から43及び66のいずれか一項に記載のビーズ処理アセンブリの動作を制御するバイオプロセスパラメータを含む、請求項123に記載の記憶媒体。
【請求項126】
一次仮想バイオプロセスパラメータ入力は、請求項44~59のいずれか一項に記載のビーズ処理システムの動作を制御するバイオプロセスパラメータを含む、請求項123に記載の記憶媒体。
【請求項127】
一次仮想バイオプロセスパラメータ入力は、請求項64~65のいずれか一項に記載のロッカアセンブリの動作を制御するバイオプロセスパラメータを含む、請求項123に記載の記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、部分的には、生体細胞(例えば、哺乳動物細胞、例えばT細胞、B細胞及びNK細胞)を選択的に単離及び/又は活性化するための精選された使い捨て消耗キットと共に動作可能な磁気支持(例えば、ビーズ)処理装置、並びに他の生物学的材料の精製に関する。また、本発明は、例えば、磁気ビーズを使用してT細胞を選択的に単離及び/又は活性化するための、又はT細胞の活性化後にT細胞から磁気ビーズを分離するための精選された使い捨て消耗キットと共に動作可能な磁気ビーズ処理装置に関する。
【背景技術】
【0002】
細胞の単離及び/又は活性化のために磁気引力を使用する多くのデバイス、方法及び試薬が開発されている。多くの場合、ワークフローのある時点で磁性材料を細胞から分離することが望ましい。
【0003】
部分的には、磁性材料(例えば、ビーズなどの磁性支持体)の使用を伴う細胞関連ワークフローの改善を可能にするデバイス及び試薬が本明細書で提供される。
【0004】
本明細書に記載のビーズ処理アセンブリ及びシステムの幾つかの利点は、それらがステップに関して柔軟であり、スケーラブルで自動化されたワークフローで使用できることである。更に、これらの磁気処理システムは、閉鎖システム及び使い捨てワークフロー用に設計される場合もある。本明細書に記載のビーズ処理アセンブリ及びシステムが他の多くのタイプの磁気処理システムに優る1つの更なる利点は、本明細書に記載のアセンブリ及びシステムの磁石を磁性粒子に近づけることができる点である。これらの利点により、これらの磁気処理システムは商業的製造によく適している。
【発明の概要】
【課題を解決するための手段】
【0005】
(発明の概要)
本開示の1つの独立した態様では、磁気ビーズを生体細胞に付着させ、及び/又は、磁気ビーズを生体細胞から分離する際に使用するためのビーズ処理アセンブリが提供され、ビーズ処理アセンブリは、
ベースアセンブリであって、
ハウジングアセンブリと、
ハウジングアセンブリ上に配置されて前面を有する支持パネルと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、
を備えるベースアセンブリと、
ベースアセンブリ上に支持されるロッカアセンブリであって、
ベースアセンブリ上に支持されるマウントアセンブリと、
マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、
マウントアセンブリに対してプラットフォームアセンブリを繰り返し揺動させるための手段と、
を備えるロッカアセンブリと、を備える。
【0006】
1つの代替の実施形態において、ベースアセンブリは、ハウジングアセンブリにヒンジ式に取り付けられたカバーパネルを更に備え、カバーパネルは、支持パネルの前面が開放的に露出される開位置と、カバーパネルが支持パネルの前面を覆う閉位置との間で移動可能である。
【0007】
他の代替のノズル実施形態において、カバーパネルは、
ハウジングにヒンジ式に取り付けられ、開口を取り囲む外周フレームと、
開口内に配置される透明窓と、を備える。
【0008】
他の代替の実施形態において、支持パネルは、
前面を有するベースパネルであって、第1ピンチバルブ及び第1ポンプがベースパネルの前面から少なくとも部分的に外側に突出するようにベースパネルに取り付けられる、ベースパネルと、
ベースパネルの前面に配置されるオーバーレイパネルであって、該オーバーレイパネルは、それを貫通して延びる開口を有し、該開口を通じて第1ピンチバルブ及び第1ポンプの少なくとも一部が突出する、オーバーレイパネルと、を備える。
【0009】
他の代替の実施形態において、支持パネルの前面は、ハウジングアセンブリが水平面上に載置されている場合に30°~70°の範囲の角度で配置される。
【0010】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、複数のピンチバルブは、少なくとも2つ、3つ、4つ、6つ又は8つのピンチバルブを備える。
【0011】
他の代替の実施形態では、第1ポンプは、蠕動ポンプを備える。
【0012】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備える。
【0013】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数の気泡センサを更に備え、複数の気泡センサは、少なくとも2つ、3つ、又は4つの気泡センサを備える。
【0014】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する圧力センサを更に備える。
【0015】
他の代替の実施形態において、ベースアセンブリは、
支持パネルの前面を貫通して延びる開口と、
支持パネルに取り付けられる第1回転アセンブリと、
を更に備え、第1回転アセンブリは、
キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、
受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータと、を備える。
【0016】
他の代替の実施形態において、ベースアセンブリは、ビーズバイアルリテーナを更に備え、ビーズバイアルリテーナは、
バイアルを受けるように構成される本体と、
本体から延在する長尺アームと、
ベースアセンブリのハウジングアセンブリ内に少なくとも部分的に配置され、アームの自由端に接続されるモータであって、モータに取り付けられた本体を少なくとも60°の角度に渡って垂直に往復回転させるように構成される、モータと、を含む。
【0017】
他の代替の実施形態において、ビーズバイアルリテーナの本体は、
C字形チャネルを境界付ける内面と、
内面から径方向内側に突出する肩部と、を備える。
【0018】
他の代替の実施形態において、ロッカアセンブリのマウントアセンブリは、ベースアセンブリに取り付けられた第1ライザ及び離間した第2ライザを備え、プラットフォームアセンブリは、第1ライザ及び第2ライザに回動可能に結合され、第1ライザと第2ライザとの間に少なくとも部分的に配置される。
【0019】
他の代替の実施形態において、マウントアセンブリに対してプラットフォームアセンブリを繰り返し揺動させるための手段は、
クランクと、
クランクを選択的に回転させるモータと、
クランクからプラットフォームアセンブリまで延在する接続アームと、を備える。
【0020】
他の代替の実施形態において、プラットフォームアセンブリは、
区画室を境界付けるハウジングアセンブリと、
ハウジングアセンブリに取り付けられたプラットフォームと、
ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、
作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるためにハウジングアセンブリの区画室内に少なくとも部分的に配置される手段と、を備える。
【0021】
他の代替の実施形態において、磁石アセンブリを選択的に上昇及び下降させるため手段は、
ハウジングアセンブリの区画室内に少なくとも部分的に配置されたシザーリフトと、
シザーリフトを動作させるモータと、を備える。
【0022】
他の代替の実施形態において、シザーリフトは、
磁石アセンブリが上に配置される棚と、
ハウジングアセンブリと棚との間で延在する第1シザーアーム対と、
ハウジングアセンブリと棚との間で延在して第1シザーアーム対から離間される第2シザーアーム対と、
モータに結合されるねじ付きシャフトと、
カラーであって、モータによるねじ付きシャフトの回転がねじ付きシャフトに沿うカラーの直線動作を容易にするようにねじ付きシャフトと係合するとともに、第1シザーアーム対及び第2シザーアーム対とも係合する、カラーと、を備える。
【0023】
他の代替の実施形態は、上面及び反対側の底面を有する支持プレートを備えるプラットフォームを更に備え、
磁石アセンブリが作動位置まで持ち上げられた場合、支持プレートの底面は、磁石アセンブリの上面から1cm、0.5cm、又は0.2cm以内にある。
【0024】
他の代替の実施形態において、磁石アセンブリが非作動位置まで下げられた場合、支持プレートの底面は、磁石アセンブリの上面から少なくとも4cm、5cm、又は6cm離れている。
【0025】
他の代替の実施形態では、磁石アセンブリが磁石を備える。
【0026】
他の代替の実施形態において、磁石アセンブリは、
外周縁部まで延在する上面及び反対側の底面を有する非磁性ケーシングを備え、凹部が上面に形成されて外周縁部を有し、
磁石がケーシングの凹部内に配置される。
【0027】
他の代替の実施形態において、磁石は、ハルバッハ配列を生成するように複数の交互の向きに配置された複数の別個の離散した磁石を備える。
【0028】
他の代替の実施形態において、凹部の外周縁部がケーシングの外周縁部から少なくとも0.5cm、1cm、1.5cm又は2cm挿入されている。
【0029】
他の代替の実施形態では、ケーシング及び磁石がそれぞれ長方形の形態を有する
【0030】
他の代替の実施形態において、プラットフォームアセンブリは、プラットフォームを少なくとも部分的に覆うとともにプラットフォームに対して移動可能なカバーアセンブリを更に備える。
【0031】
他の代替の実施形態において、カバーアセンブリは、
開口を少なくとも部分的に取り囲むカバーハウジングであって、プラットフォームが少なくとも部分的にカバーハウジングの開口内に配置される、カバーハウジングと、
開位置と閉位置との間で移動可能にカバーハウジングに取り付けられた蓋であって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆う、蓋と、を備える。
【0032】
他の代替の実施形態において、カバープレートは、カバーハウジングにヒンジ式に取り付けられる。
【0033】
他の代替の実施形態は、カバープレートが閉位置にあるときにカバープレートをカバーハウジングに固定するための第1ラッチを更に含む。
【0034】
他の代替の実施形態は、プラットフォームから離れるカバーアセンブリの動作を弾性的に抑制するための手段を更に含む。
【0035】
他の代替の実施形態において、動作を弾性的に抑制する手段は、
第1端部及び反対側の第2端部を有し、第1端部がカバーアセンブリに固定されてカバーアセンブリから突出するロッドと、
ロッドと係合されるばねであって、カバーアセンブリをプラットフォームから離れるように移動させるべく力が使用される際にばねがカバーアセンブリをプラットフォームに向けて弾性的に付勢するようになっている、ばねと、を備える。
【0036】
他の代替の実施形態は、抑制位置と非抑制位置との間で移動可能なストッパを更に備え、抑制位置において、ストッパは、プラットフォームに対するロッドのいくらかの移動を妨げるように位置され、非抑制位置では、ストッパがロッドの移動を妨げない。
【0037】
他の代替の実施形態は、ハウジングアセンブリに取り付けられたソレノイドバルブを更に備え、ソレノイドバルブは、ストッパを抑制位置と非抑制位置との間で移動させる。
【0038】
他の代替の実施形態は、ハウジングアセンブリに形成された穴であって、ロッドが穴内に摺動可能に配置されている、穴と、
ロッドの第2端部から外向きに突出するフランジと、
を更に備え、ばねは、ロッドがカバーアセンブリと同時に持ち上げられるときにばねが弾性的に圧縮されるように、フランジとハウジングアセンブリとの間で延在する。
【0039】
他の代替の実施形態は、抑制位置と非抑制位置との間で移動可能なストッパを更に含み、抑制位置において、ストッパは、フランジ及びフランジに取り付けられたロッドのいくらかの動きを阻止するようにフランジと位置合わせされ、非抑制位置において、ストッパは、フランジと位置合わせされず、したがってフランジ又はフランジに取り付けられたロッドの動きを妨げない。
【0040】
他の代替の実施形態は、カバーハウジングに形成されてカバーハウジングの開口と連通する凹部と、
凹部内に摺動可能に配置されるクランプアセンブリと、
を更に備え、クランプアセンブリは、
下側クランプ溝が形成されたベースクランプと、
上側クランプ溝が形成されたクランプクロージャと、
上側クランプ溝が下側クランプ溝と位置合わせされるようにクランプクロージャをベースクランプに選択的に固定する締結具と、を備える。
【0041】
他の代替の実施形態において、カバーハウジングは、凹部の対向する各端部に形成されたU字形チャネルを更に備え、クランプアセンブリの対向する端部が、U字形チャネルと共に摺動可能に配置されている。
【0042】
他の代替の実施形態において、プラットフォームは、
上面及び反対側の底面を有する支持プレートと、
支持プレートから離れて突出するとともにハウジングアセンブリに固定される側壁と、
を備え、支持プレート及び側壁は、磁石アセンブリが上昇作動位置にあるときに磁石アセンブリが受けられるキャビティを少なくとも部分的に結合する。
【0043】
本開示の第2独立した態様は、磁気ビーズを生体細胞に付着させるため、及び/又は、磁気ビーズを生体細胞から分離するためのビーズ処理システムを含み、ビーズ処理システムは、
ビーズ処理アセンブリであって、
ハウジングアセンブリと、
ハウジングアセンブリ上に配置されて前面を有する支持パネルと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、
支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプと、
を備えるベースアセンブリと、
ベースアセンブリ上に支持されるとともに、
ベースアセンブリ上に支持されるマウントアセンブリと、
マウントアセンブリに回動可能に固定されてプラットフォームを備えるプラットフォームアセンブリと、
マウントアセンブリに対してプラットフォームアセンブリを繰り返し揺動させるための手段と、
を備えるロッカアセンブリと、
を備える、ビーズ処理アセンブリと、
消耗キットであって、
前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイであって、第1ピンチバルブ及び第1ポンプが複数の開口のうちの対応する開口を通じて突出するように支持パネルの前面に取り外し可能に入れ子にされるトレイと、
トレイの前面に固定されたラインセットであって、
トレイの前面に固定されるとともに第1ピンチバルブ及び第1ポンプと係合する可撓性チューブと、
チューブに結合された複数の可撓性バッグ流体であって、複数の可撓性バッグがプラットフォームアセンブリのプラットフォーム上に支持された処理バッグを備える、複数の可撓性バッグ流体と、
を備えるラインセットと、
を備える、消耗キットと、を備える。
【0044】
1つの代替の実施形態において、ベースアセンブリは、ハウジングアセンブリにヒンジ式に取り付けられたカバーパネルを更に備え、カバーパネルは、トレイの前面が開放的に露出される開位置と、カバーパネルがトレイの前面を覆う閉位置との間で移動可能である。
【0045】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、複数のピンチバルブは、少なくとも2、3、4、6、又は8つのピンチバルブを備え、複数のピンチバルブのそれぞれは、トレイ上の複数の開口のうちの対応する開口を通じて突出して可撓性チューブと係合する。
【0046】
他の代替の実施形態において、ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備え、第1気泡センサは、トレイ上の複数の開口のうちの対応する開口を通じ突出して可撓性チューブと係合する。
【0047】
他の代替の実施形態は、支持パネルの前面を貫通して延びる開口と、
支持パネルに取り付けられた第1回転アセンブリと、
を更に含み、第1回転アセンブリは、
キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、
受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータと、
ラインセットのチューブに結合されたストップコック流体であって、ストップコックが受け部のキー付きソケット内に受けられる回転可能なハンドルを有する、ストップコック流体と、
ストップコックと結合されたエアフィルタ流体と、を備える。
【0048】
他の代替の実施形態は、ビーズバイアルリテーナを更に備え、該ビーズバイアルリテーナは、
バイアルを受けるように構成されるチャネルを有する本体と、
本体から延在する長尺アームと、
ベースアセンブリのハウジングアセンブリ内に少なくとも部分的に配置されるとともにアームの自由端に接続されるモータであって、モータに取り付けられた本体を少なくとも60°の角度にわたって垂直に往復回転させるように構成される、モータと、
本体のチャネル内に受けられるバイアルであって、磁気ビーズ及び媒体を収容し、ラインセットのチューブがバイアルと流体結合されている、バイアルと、を含む。
【0049】
他の代替の実施形態において、プラットフォームアセンブリは、
区画室を境界付けるハウジングアセンブリと、
ハウジングアセンブリに取り付けられたプラットフォームと、
ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、
作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるためにハウジングアセンブリの区画室内に少なくとも部分的に配置される手段と、を備える。
【0050】
他の代替の実施形態において、プラットフォームアセンブリは、プラットフォーム及びプラットフォーム上の処理バッグを少なくとも部分的に覆うカバーアセンブリを更に備え、カバーアセンブリは、処理バッグが拡張するときにプラットフォームに対して移動可能である。
【0051】
他の代替の実施形態は、プラットフォームから離れるカバーアセンブリの動作を弾性的に抑制するための手段を更に含む。
【0052】
他の代替の実施形態において、カバーアセンブリは、
開口を少なくとも部分的に取り囲むカバーハウジングであって、処理バッグが少なくとも部分的にカバーハウジングの開口内に配置される、カバーハウジングと、
開位置と閉位置との間で移動可能にカバーハウジングに取り付けられたカバープレートであって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆うカバープレートと、を備える。
【0053】
他の代替の実施形態は、
カバーハウジングに形成されてカバーハウジングの開口と連通する凹部と、
凹部内に摺動可能に配置されるクランプアセンブリと、
を更に備え、クランプアセンブリは、
下側クランプ溝が形成されたベースクランプと、
上側クランプ溝が形成されたクランプクロージャと、
上側クランプ溝が下側クランプ溝と位置合わせされるようにクランプクロージャをベースクランプに選択的に固定する締結具と、
を備え、プラットフォーム上に配置された処理バッグは、位置合わせされた上側クランプ溝及び下側クランプ溝の中に少なくとも部分的に配置されるとともにベースクランプとクランプクロージャとの間にクランプされるポートを有する。
【0054】
他の代替の実施形態は、ラインセットのチューブに結合され、媒体を収容する第1媒体バッグ流体を更に含む。
【0055】
他の代替の実施形態において、ビーズ処理アセンブリは、ベースアセンブリから直立するとともにそこから外側に突出するキャッチを有するスタンドを更に備え、媒体バッグがキャッチ上に支持される。
【0056】
他の代替の実施形態において、ラインセットのチューブは、生体細胞分離器と流体結合される。
【0057】
他の代替の実施形態において、ラインセットのチューブは、生体細胞増殖システムと流体結合される。
【0058】
他の代替の実施形態では、処理バッグがビーズ分離バッグを備え、ビーズ分離バッグは、
ポリマーフィルムから構成されるとともに区画室を境界付ける折り畳み可能な袋体と、
袋体に結合されて区画室と連通する一対の離間したポートと、
一対の離間したポート間の位置で袋体の区画室内に配置される長尺な仕切りであって、ポートの一方に入る流体が他方のポートを通じて出ることができる前に仕切りの周りを流れなければならないように袋体に固定される、仕切りと、を備える。
【0059】
本開示の第3の独立した態様においては、磁気ビーズ処理アセンブリと共に使用するための消耗キットが提供され、消耗キットは、
前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイと、
トレイの前面に固定されるラインセットと、
を備え、ラインセットは、
トレイの前面に固定される可撓性チューブと、
チューブと結合された複数の可撓性バッグ流体と、
チューブに結合されたエアフィルタアセンブリと、を備える。
【0060】
1つの代替の実施形態において、エアフィルタアセンブリは、
チューブと結合されるストップコック流体であって、ストップコックは、
トレイの前面から外側に突出するスリーブと、
スリーブ内に回転可能に配置されるバルブと、
バルブを選択的に回転させるためにバルブに固定され、トレイの背面から外側に突出するハンドルと、を備える、ストップコック流体と、
スリーブと結合されるエアフィルタ流体と、を備える。
【0061】
他の代替の実施形態は、トレイの前面に配置され、チューブと流体結合される混合バッグを更に含む。
【0062】
他の代替の実施形態は、ラインセットのチューブに結合されたビーズバイアルカプラ流体と、
ビーズバイアルカプラに固定され、磁気ビーズ及びキャリア液体を含む懸濁液を収容するバイアルと、を更に含む。
【0063】
本開示の第3の独立した態様は、磁気ビーズを生体細胞に付着させるため及び/又は磁気ビーズを生体細胞から分離するためのビーズ処理システムを動作させるための方法を含み、該方法は、
第1ピンチバルブ及び支持パネルから突出する第1ポンプがトレイに形成された対応する開口を通過するようにトレイをビーズ処理アセンブリの支持パネルの前面に取り外し可能に入れ子にするステップと、
トレイ上に配置されたラインセットのチューブを第1ピンチバルブ及び第1ポンプに係合させるステップと、
ラインセットと結合された処理バッグ流体をビーズ処理アセンブリのプラットフォーム上に配置するステップと、
を含む。
【0064】
他の代替の実施形態は、バイアルをラインセットのチューブに結合する流体を更に含み、バイアルは、磁気ビーズ及びキャリア液体を含む懸濁液を収容する。
【0065】
他の代替の実施形態は、液体媒体を収容する媒体バッグをビーズ処理アセンブリのバッグスタンド上に支持することを更に含む。
【0066】
他の代替の実施形態は、ラインセットのチューブを生体細胞分離器に結合する流体を更に含む。
【0067】
他の代替の実施形態は、ラインセットのチューブを生体細胞増殖システムに結合する流体を更に含む。
【0068】
他の代替の実施形態は、ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームの揺動をコンピュータプロセッサが容易にするように作動させるステップを更に含む。
【0069】
他の代替の実施形態は、ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームに対する磁石の上昇及び下降をコンピュータプロセッサが容易にするように作動させるステップを更に含む。
【0070】
他の代替の実施形態は、ビーズ処理アセンブリのコンピュータプロセッサを、プラットフォーム上の処理バッグに流体を送達するために第1ピンチバルブ及び第1ポンプの制御をコンピュータプロセッサが容易にするように作動させるステップを更に含む。
【0071】
他の代替の実施形態は、ビーズ処理アセンブリのコンピュータプロセッサを、ラインセットのチューブと結合されたバイアル流体の移動をコンピュータプロセッサが容易にしてバイアル内に配置された懸濁液を混合するように作動させるステップを更に含み、懸濁液が磁気ビーズ及びキャリア液体を含む。
【0072】
他の代替の実施形態は、T細胞である生体細胞を更に含む。
【0073】
他の代替の実施形態では、生体細胞が抗原-抗体相互作用を介して磁気ビーズに付着される。
【0074】
他の代替の実施形態では、生体細胞が抗原-抗体相互作用の破壊によって磁気ビーズから分離される
【0075】
他の代替の実施形態では、抗原-抗体相互作用の破壊は、抗体の切断によって媒介される。
【0076】
他の代替の実施形態では、抗体を磁気ビーズから分離することによって生体細胞が磁気ビーズから分離される。
【0077】
他の代替の実施形態では、抗体がリガンドによって磁気ビーズに連結される。
【0078】
他の代替の実施形態において、生体細胞は、抗体又は磁気ビーズとのリガンド相互作用の破壊によって磁気ビーズから分離される。
【0079】
他の代替の実施形態では、生体細胞がT細胞である。
【0080】
本開示の第5の独立した態様では、ビーズ処理システムを使用して第1細胞型の生体細胞を第2細胞型の生体細胞から分離するための方法が提供され、該方法は、
第1細胞型及び第2細胞型の生体細胞を含む試料を、磁気ビーズが抗体結合を介して第1細胞型の生体細胞に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズが、プラットフォーム上に載置された処理バッグ内に配置される、ステップと、
プラットフォームに対して磁石を上昇させて、プラットフォームに対して所定の位置に磁気ビーズを強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1細胞型の生体細胞が付着される、ステップと、
磁気ビーズに磁場が印加された状態で流体を試料及び磁気ビーズに通過させるステップであって、第1細胞型の生体細胞から第2細胞型の生体細胞を洗い流すのに十分強いが第1細胞型の生体細胞を磁気ビーズから分離するには不十分な力で流体が通過する、ステップと、
第1細胞型の生体細胞が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないようにプラットフォームに対して磁石を下降させるステップと、を含む。
【0081】
1つの代替の実施形態において、抗体は、CD3、CD4、CD5、CD6、CD8、CD25、CD27、CD28、CD137及びCD278から成るグループから選択されるタンパク質に対する結合親和性を有する。
【0082】
他の代替の実施形態において、抗体は、CD3又はCD28を含むタンパク質に対する結合親和性を有する
【0083】
他の代替の実施形態において、第1細胞型は、T細胞、B細胞、又はNK細胞である。
【0084】
他の代替の実施形態は、第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから分離するステップと、
磁気ビーズを定位置に強固に固定するために磁気ビーズに磁場を印加するステップと、
磁場が印加されている間に磁気ビーズ及び第1細胞型の分離された生体細胞に流体を通過させるステップであって、磁気ビーズの少なくとも大部分が磁場によって定位置に固定されたままの状態で第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから洗い流すのに十分強い力で流体が通過する、ステップと、を含む。
【0085】
他の代替の実施形態では、第1細胞型の生体細胞の少なくとも大部分が磁気ビーズから洗い流されている間に、95%を超える(例えば、約95%~約99.999999%、約95%~約99.9999%、約98%~約99.999999%、約99%~約99.999999%、約99.5%~約99.999999%、約99.9%~約99.999999%など)磁気ビーズが磁場によって定位置に保持される。
【0086】
他の代替の実施形態では、95%を超える(例えば、約95%~約99.999999%、約95%~約99.9999%、約98%~約99.999999%、約99%~約99.999999%、約99.5%~約99.999999%、約99.9%~約99.999999%など)磁気ビーズが、第1細胞型の生体細胞から分離される。
【0087】
他の代替の実施形態では、第1細胞型の生体細胞から分離された95%を超える(例えば、約95%~約99.999999%、約95%~約99.9999%、約98%~約99.999999%、約99%~約99.999999%、約99.5%~約99.999999%、約99.9%~約99.999999%など)磁気ビーズが、第1細胞型の生体細胞から分離される。
【0088】
他の代替の実施形態において、磁気ビーズは、直径が約0.01μm~約3μm、約0.01μm~約1μm、約0.02μm~約2μm、約0.04μm~約3μm、約0.4μm~約1.5μm、約0.5μm~約3μm、約0.1μm~約3μm、約0.2μm~約3μm、約0.1μm~約20μm、約0.1μm~約10μm、約0.2μm~約5μm、約0.3μm~約15μm、約0.3μm~約10μm、又は約0.5μm~約3μmである。
【0089】
本明細書では、部分的に、ビーズ処理システムを使用して第1生物学的材料(例えば、核酸分子、タンパク質、細胞、細胞外小胞、ウイルス様粒子(VLP)など)を第2生物学的材料(例えば、細胞溶解物、培地、IVT反応混合物など)から分離するための組成物及び方法が更に提供される。ある場合には、そのような方法は、(a)第1生物学的材料及び第2生物学的材料を含む試料を、磁気ビーズが親和性結合を介して第1生物学的材料に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズがプラットフォーム上に載置された処理バッグ内に配置される、ステップと、(b)プラットフォームに対して磁石を移動させて(例えば、上昇させて)、プラットフォームに対して磁気ビーズを所定の位置に強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1生物学的材料が付着される、ステップと、(c)磁場が磁気ビーズに印加される状態で試料及び磁気ビーズに第1流体を通過させることにより、第1生物学的材料を第2生物学的材料から分離するステップとを含んでもよい。多くの場合、第1流体は、第1生物学的材料から第2生物学的材料を洗い流すのに十分強い力で通過され得る。
【0090】
上記のような方法は、(d)磁場が磁気ビーズに印加される間に第2流体を試料及び磁気ビーズに通過させるステップを更に含み、第2流体が磁気ビーズからの第1生物学的材料の放出を誘導する。
【0091】
上記のような方法は、(d)第1生物学的材料が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないようにプラットフォームに対して磁石を下降させるステップを更に含んでもよい。幾つかの例では、次いで、磁気ビーズを収集することができる。
【0092】
更に、第1生物学的材料が核酸分子である場合、核酸分子は、デオキシリボ核酸(DNA)(例えば、cDNA、ゲノムDNA、無細胞DNA、一本鎖DNA、二本鎖DNA、プラスミドDNA、ウイルスDNA、ミトコンドリアDNAなど。)又はリボ核酸(RNA)分子(例えば、メッセンジャーRNA(mRNA)、リボソームRNA、転移RNA、ガイドRNA、tracr RNA、crRNAなど)であってもよい。更に、第1生物学的材料がmRNA分子である場合、mRNA分子は、病原体の1つ以上のタンパク質(例えば、ウイルス)をコードし得る。病原体剤の1つ以上のタンパク質をコードするmRNA分子は、ワクチン組成物の成分であり得る。したがって、本明細書では、ワクチンを産生するために使用され得るmRNA分子の産生方法が提供される。
【0093】
第1生物学的材料が1つ又は複数の細胞である場合、これらの細胞は、B細胞、赤血球、単球、幹細胞、総T細胞、ヘルパーTヘルパー細胞、制御性T細胞、細胞傷害性T細胞、ナチュラルキラー細胞、樹状細胞、血小板、並びに他の細胞型であり得る。更に、細胞は哺乳動物(例えば、ヒト、マウス、ラット、ブタ、ウシ、ゴリラ、ラマ、ラクダ、チンパンジーなど)に由来し得る。
【0094】
第1生物学的材料がタンパク質である場合、タンパク質は、抗体、酵素、受容体(例えば、細胞表面受容体)などであり得る。更に、プロテインA、プロテインG、プロテインL、又はこれらのタンパク質の1つの機能的変異体を使用して、本明細書に記載の方法を使用して精製された抗体と親和性結合を形成することができる。
【0095】
第1生物学的材料が細胞外小胞である場合、この小胞は、エキソソーム、微小胞、アポトーシス小体などであり得る。更に、小胞(例えば、エキソソーム)は、キメラ抗原受容体(例えば、CD19-CAR)を発現するように操作されたT細胞などのT細胞によって生成され得る。そのような小胞(例えば、エキソソーム)は、特定の細胞(例えば、腫瘍細胞)に対して細胞傷害性を示し得る。
【0096】
T細胞によって生成された小胞(例えば、エキソソーム)は、CD3、CD4及び/又はCD8受容体と親和性結合を形成する磁気ビーズを使用して他の生物学的材料から分離され得る。多くの場合、そのような方法は、抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体を使用し得る。更に、そのような抗体は、例えば、モノクローナル抗体又は可変重(VHH)抗体であり得る。更に、そのような抗体は、ビオチン又はビオチン誘導体ベースの結合によって磁気ビーズに付着され得る。
【0097】
精製リボ核酸(RNA)分子を生成するための組成物及び方法を、本明細書中に更に提供する。そのような方法は、(a)磁場によって第1磁気ビーズを適所に固定するステップであって、インビトロ転写(IVT)鋳型が第1磁気ビーズに連結される、ステップと、(b)IVTが起こる条件下でステップ(a)の第1磁気ビーズを鋳型のIVTに適した試薬混合物と接触させることによってRNA分子を生成するステップと、(c)第1磁気ビーズからRNA分子を分離することによって精製RNA分子を生成するステップとを含む。
【0098】
ある場合には、(d)洗浄中に精製RNA分子が第2磁気ビーズと会合したままであることを可能にする条件下で、ステップ(c)の精製RNA分子を第2磁気ビーズと接触させるステップと、(e)第2磁石ビーズが磁場によって適所に固定される間に第2磁気ビーズを洗浄するステップと、(f)精製RNA分子を第2磁気ビーズとの会合から放出することによって高度に精製されたRNA分子を生成するステップとを更に含む方法が提供される。
【0099】
幾つかの例では、IVT鋳型はポリメラーゼ連鎖反応(PCR)によって産生され得る。更に、1つ以上のビオチン化プライマーをPCRに使用して、ビオチン化IVT鋳型を形成することができる。更に、ビオチン化IVT鋳型は、ビオチン化IVT鋳型のビオチンと、ビオチンに対する親和性を有する磁気ビーズ上の基との間の相互作用を介して磁気ビーズに付着され得る。
【0100】
ある場合には、IVT鋳型は、タンパク質をコードするオープンリーディングフレームと、オープンリーディングフレームに作動可能に接続されたプロモータとを含んでもよい。
【0101】
第2磁気ビーズは、幾つかの異なる方法でRNAと会合し得るが、幾つかの例では、遊離カルボン酸基がこれらのビーズの表面に存在し得る。
【0102】
更に、本明細書に記載のように生成される精製RNA又は高度に精製されたRNAは、病原体の1つ以上のタンパク質をコードするmRNAなどのメッセンジャーRNA(mRNA)であり得る。そのようなmRNA又はそのようなmRNAによってコードされるタンパク質を含むワクチン組成物を、本明細書中に更に提供する。
【0103】
そのようなワクチン組成物に使用されるmRNAは、例えば、脂質ナノ粒子に含まれ得る(例えば、国際公開第2021/159130号パンフレット参照)
【図面の簡単な説明】
【0104】
次に、本発明の様々な実施形態を、添付図面を参照して説明する。これらの図面は、本発明の典型的な実施形態のみを示しており、したがって、その範囲を限定するものと見なされるべきではないことが理解される。
【0105】
【
図1】所望のT細胞の産生に使用するための機器ワークフローシステムのフロー図である。
【
図2】
図1のシステムで使用される磁気ビーズ処理装置の正面斜視図である。
【
図5】フロントカバーを取り外した状態の
図2に示される装置の正面斜視図である。
【
図6】
図5の装置に示されるピンチバルブの斜視図である。
【
図7】
図5の装置と共に使用するための回転アセンブリ及びエアフィルタアセンブリの斜視図である。
【
図9】装置と共に動作する使い捨て消耗キットを伴う
図5に示される装置の斜視図である。
【
図10】
図9に示される消耗キットの分解図である。
【
図11】
図9に示される装置の支持パネルに取り付けられた消耗キットの上面図である。
【
図12】
図2に示される装置のビーズバイアルリテーナの斜視図である。
【
図13】回転位置にある
図12に示されるビーズバイアルリテーナの斜視図である。
【
図14】
図10の消耗キットと共に使用されるビーズバイアルカプラに取り付けられたビーズバイアルの斜視図である。
【
図15】
図2に示される装置のロッカアセンブリの斜視図である。
【
図16】
図15に示されるロッカアセンブリのロッカドライバの斜視図である。
【
図17】磁石アセンブリを示す15に示されるロッカアセンブリの部分分解図である。
【
図18A】
図17に示される磁石アセンブリの磁石の一部の一実施形態の斜視図である。
【
図18B】ハルバッハ配列、及びそのような配列を生成するために使用される磁石が互いに対してどのように配置され得るかの概略図である。
【
図19】
図15に示されるロッカアセンブリのリフトアセンブリの上面斜視図である。
【
図20】第1位置にあるリフトアセンブリを示す
図15に示されるロッカアセンブリの断面側面図である。
【
図21】第2位置にあるリフトアセンブリを示す
図20に示されるロッカアセンブリの断面側面図である。
【
図22】そのカバーアセンブリが分解された
図15に示されるロッカアセンブリの部分分解図である。
【
図23】
図22に示されるばねアセンブリの拡大斜視図である。
【
図24】そのフランジがストッパに当接した
図23に示されるばねアセンブリの斜視図である。
【
図25】ストッパがフランジから引き込まれた
図24に示されるばねアセンブリの斜視図である。
【
図26】バッグが第1拡張位置にある
図15に示されるロッカアセンブリの断面側面図である。
【
図27】
図22に示されるクランプアセンブリの拡大斜視図である。
【
図28】単離バッグと結合された
図27に示されるクランプアセンブリの斜視図である。
【
図30】
図29に示される単離バッグの上面図であり、横方向に延びるシールラインを有する。
【
図31】
図29に示される単離バッグの上面図であり、長手方向に横切って延びる一対の平行なシール線を有する。
【
図32】一対のシールラインが外側に広がる、
図31に示される単離バッグの上面図である。
【
図33】
図5に示される磁気ビーズ処理装置と共に使用することができる別の消耗キットの上面図である。
【
図34】
図33に示される消耗キットのビーズ分離バッグの上面図である。
【
図35】
図5に示される装置の支持パネルに取り付けられた
図33に示される消耗キットの上面図である。
【
図36】
図34に示されるビーズ分離バッグと共に使用するためのクランプアセンブリの拡大斜視図である。
【
図37】ビーズ分離バッグと結合された
図36に示されるクランプアセンブリの斜視図である。
【
図38】多くの場合自動化されたワークフロー(したがって、点線ボックス)の一部ではない採血から始まり、ワークフロー中に生成された細胞の製剤化で終わる一連のステップを含む例示的な細胞処理ワークフローの概略図である。ステップ3とステップ4のボックスは、それらの別々のステップが幾つかのワークフローで単一のステップに組み合わされ得るので、点線で接続される。
【
図39】ビーズに結合した細胞の概略図を示す。この概略図では、抗体は、抗体の抗原結合部位によって細胞の表面受容体(「R」と標識される)に結合される。更に、抗体のFc領域は、抗体をビーズに接続するリンカー(「L」と標識される)に連結される。「切断部位」は、抗体を切断し、それによってリンカーに関連する抗体の領域から抗体結合部位を分離するために使用され得る抗体中の位置を指す。
【
図40】
図33に示される消耗キットのビーズ分離バッグ600の上面図である。
【
図41】
図2に示されるビーズ処理装置の別の実施形態の正面斜視図である。
【
図42】
図41に示されるビーズ処理装置の背面斜視図である。
【
図43】マウントアセンブリ及びそのロッカドライバを示す、
図41に示されるビーズ処理装置のロッカアセンブリの部分分解背面図である。
【
図44】そのハウジングアセンブリ、リフト、棚、及び磁石アセンブリを示す、
図43のロッカアセンブリの部分分解斜視図である。
【
図45】
図43に示されるロッカアセンブリのプラットフォームの分解斜視図である。
【
図46】
図43に示されるロッカアセンブリの上端の横断面図である。
【
図47】
図43に示されるロッカアセンブリのカバーハウジングの分解斜視図である。
【
図48】
図43に示されるロッカアセンブリの蓋の分解斜視図である。
【
図49】
図43に示されるロッカアセンブリの上端の前後断面図である。
【
図50】蓋が取り外され、その上にバッグが取り付けられた、
図43に示されるロッカアセンブリの上面斜視図である。
【
図51】
図41に示されるビーズ処理装置のバッグスタンドの上端の斜視図である。
【
図52】
図41に示されるビーズ処理装置と共に使用することができる消耗キットの一実施形態の上面図である。
【
図53】
図41に示されるビーズ処理装置に取り付けられた
図52に示される消耗キットの正面図である。
【
図54】
図41に示されるビーズ処理装置のチューブ抑制の斜視図である。
【
図55】
図53に示される消耗キットと共に使用することができるビーズを有するビーズバッグの正面図である。
【
図56】
図41に示されるビーズ処理装置と共に使用することができる消耗キットの他の実施形態の平面図である。
【
図57】
図41に示されるビーズ処理装置に取り付けられた
図56に示される消耗キットの正面図である。
【
図58】本明細書に開示される処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェースを示す。
【
図59】本明細書に開示される処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェースを示す。
【
図60】本明細書に開示される処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェースを示す。
【
図61】本明細書に開示される処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェースを示す。
【
図62】本明細書に開示される処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェースを示す。
【
図63】実施例5に記載のワークフローの一部の概略図であり、ストレプトアビジン(StA)ビーズへの鋳型固定化に関する。
【
図64】実施例5に記載されるワークフローの一部の概略図であり、固相インビトロ転写(IVT)に関する。
【
図65】実施例5に記載されたワークフローの一部の概略図であり、一般的な取り込みに関する。
【発明を実施するための形態】
【0106】
本開示を詳細に説明する前に、本開示は、当然のことながら変化し得る特に例示された装置、システム、方法、又はプロセスパラメータに限定されないことを理解されたい。本明細書で使用される用語は、本開示の特定の実施形態を説明するためのものにすぎず、本開示の範囲を限定することを意図するものではないことも理解されたい。
【0107】
本明細書で引用される全ての刊行物、特許、及び特許出願は、上記であろうと下記であろうと、個々の刊行物、特許、又は特許出願が参照により組み込まれることが具体的かつ個別に示されているのと同程度に、その全体が参照により本明細書に組み込まれる。更に、以下の米国特許文献が参照により具体的に組み込まれる:米国仮特許出願第63/090,399号(2020年10月12日出願)及び第63/137,389号(2021年1月14日出願);米国特許出願公開第2017/0313772号明細書;2019年1月10日に公開された米国特許公開第2019/0010435号、並びに米国特許第9,567,346号及び第10,196,631号、並びにPCT公開WO2021/159130A2。
【0108】
用語「備える(comprising)」は、「含む(including)」、「含有する(containing)」、「有する(having)」又は「特徴とする(characterized by)」と同義であり、包括的又はオープンエンドであり、追加の列挙されていない要素又は方法ステップを排除しない。
【0109】
本明細書及び添付の特許請求の範囲で使用される場合、単数形「1つの(a)」、「1つの(an)」及び「その(the)」は、内容が明らかにそうでないことを指示しない限り、複数の指示対象を含むことに留意されたい。したがって、例えば、「ポート」への言及は、1つ、2つ、又はそれ以上のポートを含む。
【0110】
本明細書及び添付の特許請求の範囲で使用される場合、「上端(top)」、「下端(bottom)」、「左(left)」、「右(right)」、「上方(up)」、「下方(down)」、「上側(upper)」、「下側(lower)」、「内側(inner)」、「外側(outer)」、「内部(internal)」、「外部(exterior)」、「近位(proximal)」、「遠位(distal)」などの方向を表す用語は、本明細書では相対的な方向を示すためにのみ使用され、本開示又は特許請求の範囲を限定することを意図するものではない。
【0111】
本明細書で使用される「支持体」は、抗体を付着させることができる任意の非水溶性材料を指し、金属、ガラス、プラスチック、コポリマー、コロイド、脂質などが含まれるが、これらに限定されない。本質的に、結合又は付着した抗体を保持することができる任意の非水溶性材料。
【0112】
本明細書で使用される場合、「磁性支持体」という用語は、磁場に引き付けられることが可能な構造材料を指す。多くの場合、磁性支持体は、1つ以上の磁性金属(例えば、鉄、コバルト、ニッケルなど)を含む。多くの場合、磁性支持体は磁気ビーズである。市販の磁気ビーズの例は、Dynabeads(商標)Human T-Expander CD3/CD28(Thermo Fisher Scientific、カタログ番号.11141D)、CTS(商標)Dynabeads(商標)CD3/CD28(Thermo Fisher Scientific、カタログ番号.40203D)、CTS(商標)Dynabeads(商標)Treg Xpander(Thermo Fisher Scientific、カタログ番号.46000D号)、及びMACS(商標)GMP ExpAct Treg Kit(Miltenyi Biotec、カタログ番号.第170-076-119号)に含まれる粒子である。
【0113】
本明細書で使用される場合、「リガンド」という用語は、1つ以上の定義された細胞集団(例えば、T細胞亜集団のメンバー)に結合する分子を指す。リガンド結合は、それが結合する細胞の単離のために使用され得るか、単独で又は1つもしくはそれを超える更なるリガンドと組み合わせて結合した場合に細胞応答を誘導し得る。例えば、CD3及びCD28受容体に結合するリガンドを使用して、T細胞を活性化することができる
【0114】
リガンドは、任意の細胞表面部分、例えば、受容体、抗原決定基、又は標的細胞集団上に存在する他の結合部位に結合し得る。薬剤は、タンパク質、ペプチド、抗体及びその抗体断片、融合タンパク質、合成分子、有機分子(例えば、小分子)などであり得る。本明細書内及びT細胞刺激の文脈において、抗体は、そのような薬剤のプロトタイプの例として使用される。
【0115】
本明細書で使用される場合、「分離」という用語は、混合物の1つの成分を同じ混合物の別の成分から分割することを指す。
【0116】
本明細書で使用される場合、「精製」は、別の材料との関係で増加した材料の量を意味する。例として、タンパク質Xの元の濃度が1μg/mlであり、プロセスの終わりにタンパク質Xの最終濃度が依然として1μg/mlであるが、タンパク質Yの濃度が2μg/mlから2μg/mlになったようにタンパク質Xが処理される場合、タンパク質Xは精製されている。更に、「精製」は、材料(例えば、タンパク質、核酸など。)が精製されるプロセスを指す。
【0117】
本明細書で使用される場合、「抗体」という用語は、(a)免疫グロブリン(例えば、任意の動物、例えば、従来使用されている任意の動物、例えば、ヒツジ、ウサギ、ヤギ、マウス、ラクダ科動物、又は卵黄に由来するIgG、IgA、IgM、IgD又はIgE)の様々なクラス又はサブクラスのいずれか、(b)モノクローナル又はポリクローナル抗体、(c)インタクトな抗体又は抗体の断片、モノクローナル又はポリクローナルであり、断片は、抗体の結合領域を含むもの、例えば、Fc部分を欠く断片(例えば、Fab、Fab’、F(ab’)2、scFv、VHH抗体、VHH抗体断片、並びに他の単一ドメイン抗体)、インタクトな抗体の重鎖成分を連結するジスルフィド結合の還元的切断によって得られるいわゆる「半分子」断片(Fvは、二本鎖として発現される軽鎖の可変領域及び重鎖の可変領域を含む断片として定義され得る)、及び(d)組換えDNA又は他の合成技術によって産生又は改変された抗体、例えばモノクローナル抗体、抗体の断片、「ヒト化抗体」、キメラ抗体、又は合成的に作製又は改変された抗体様構造を含む。
【0118】
本明細書に記載の組成物及び方法で使用され得る抗CD3抗体には、以下のクローンによって発現されるものが含まれる:OKT3(eBioscience、カタログ番号.14-0037-82)、BC3(American Type Culture Collection,寄託番号HB-10166)、HIT3a(eBioscience、カタログ番号.16-0039-81)、F7.2.38(Thermo Fisher Scientific、カタログ番号.番号MA5-12577)、MEM-57(Thermo Fisher Scientific、カタログ番号.MA1-19454)、及びUCHT1(eBioscience、カタログ番号.16-0038-81)。本明細書に記載の組成物及び方法で使用され得る抗CD28抗体には、以下のクローンによって発現されるものが含まれる:IC6(Gravesら、Transplantation,91:833-840(2011)、CD28.6(Thermo Fisher Scientific、カタログ番号16-0288-81)、CD28.2(Thermo Fisher Scientific、カタログ番号MA1-10166)、10F3(Thermo Fisher Scientific、カタログ番号CD2800)、及びBT3(mIgG2a、antihuCD28、Diaclone、ベサンコン、フランス)。
【0119】
本明細書で使用される場合、「VHH抗体」という用語は、2つの重鎖のみからなり、したがって軽鎖を欠く抗体を指す。このタイプの抗体は、軟骨魚類及びラクダ科動物(例えば、アルパカ、ヒトコブラクダ、ラクダ、ラマ)によって産生され得る
【0120】
VHH抗体は、両方の重鎖ドメインが同じタンパク質分子内にあり(一本鎖抗体)、定常領域を含まないように操作されることが多い。操作されたVHH抗体は、モノクローナル抗体(例えば、Harmsen and De Haard,「ラクダ科の単一ドメイン抗体断片の特性、産生、及び用途」Applied Microbiol.Biotech.,77:13-22(2007)、米国特許第9,040,666号参照)と比較してサイズが比較的小さい(例えば、12から15kDa、約120アミノ酸)場合がある。そのような抗体は、本明細書ではVHH抗体とも呼ばれる。VHH抗体は、1つ又は2つの抗原結合部位を有してもよく、一価又は二価であり得る。二価とは、2つの異なるエピトープに対する結合親和性を有することを指す。
【0121】
本明細書で使用される「プロテインA」という用語は、5つの非常に類似したドメイン(ドメインE、D、A、B及びC)から構成される黄色ブドウ球菌の細胞表面タンパク質を指し、各ドメインは約58アミノ酸、並びにその機能的変異体及び機能的誘導体(ドメインZを含む)から構成される。プロテインAは、抗体(例えば、IgG分子)に結合する機能活性を有し、抗体精製に使用することができる。
【0122】
多くの場合、プロテインAは、抗体精製に使用される場合、固体支持体(例えば、ビーズ)に連結される。これにより、固体支持体に結合した抗体を未結合材料から分離することが可能になる。更に、多くの場合(例えば、商業規模の抗体産生)、固体支持体に結合したプロテインAを定位置(CIP)で洗浄できることが望ましい。多くの場合、CIPは水酸化ナトリウム(例えば、0.5M NaOH)を用いて行われる。
【0123】
全長の野生型プロテインAは、アルカリ条件に対してある程度の耐性を示すが、アルカリ耐性を増強するための様々なプロテインAドメインに対する幾つかの改変を示す(例えば、Linhult等、“Improving the Tolerance of a Protein A Analogue to Repeated Alkaline Exposures Using a Bypass Mutagenesis Approach,”Proteins,55:407-416(2004)参照)。更に、アルカリ感受性/耐性は個々のプロテインAドメインによって異なる。これらの線に沿って、ドメインCはかなり耐アルカリ性であることが分かっている。
【0124】
ドメインごとに野生型プロテインA分子の結合容量の少なくとも50%を保持する1つ以上のプロテインAドメイン(例えば、野生型ドメインBの5回の反復)のリピートを含むタンパク質も、プロテインA分子であると見なされる。また、プロテインA分子であると見なされるのは、野生型プロテインAドメインE、D、A、B及びCのいずれか1つの任意の20アミノ酸のストレッチに対して少なくとも90%の配列決定された同一性を共有し、ドメインごとに野生型プロテインA分子の結合容量の少なくとも50%を保持するドメインを含有するタンパク質である。例として、野生型プロテインA分子が指定された一連の条件下で50単位の抗体に結合し、4つの反復ドメインを有するプロテインA誘導体が同じ条件下で20単位の抗体に結合する場合、プロテインA誘導体は野生型プロテインA分子の結合容量の50%を有すると言われる。
【0125】
本明細書で使用される場合、「ウイルス様粒子」又はVLPという用語は、ウイルスに似ているが複製欠損であるウイルスタンパク質複合体を指す。VLPは、核酸分子を細胞に送達するために使用することができ、アデノ随伴ウイルスなどの天然に存在する複製欠損ウイルスタンパク質複合体を含む。VLPは、エンベロープされていてもエンベロープされていなくてもよい。エンベロープレンチウイルス粒子の一例は、BLOCK-iT(商標)Lentiviral RNAi Zeo Gateway(商標)Vector Kit(Thermo Fisher Scientific、カタログ番号.V48820)を使用して産生されたものである。
【0126】
本明細書で使用される場合、「ハルバッハ配列」は、配列の一方の側で増強された磁場を示し、配列の他方の側で磁場をゼロ付近まで少なくとも部分的に相殺する磁石の配列(
図18A及び
図18Bを参照)である。ハルバッハ配列の幾つかの利点は、磁場が配列の一方の側で強く、配列の他方の側で弱いことである。これにより、より小型でより軽量な磁石アセンブリを使用して、所望の磁力を達成することが可能になる。ハルバッハ配列の片側に磁場を集束させることにより、磁場を「閉じ込める」ことが可能になり、それによって磁場干渉が減少し、磁場勾配がもたらされて磁性粒子の捕捉が促進される。
【0127】
可能であれば、様々な図において同様の要素の番号付けが使用されている。更に、特定の要素の代替構成はそれぞれ、要素番号に付加された別個の文字を含むことができる。したがって、添付の文字を使用して、添付の文字なしの要素又は特徴の代替の設計、構造、機能、実装、及び/又は実施形態を指定することができる。例えば、要素「80」は、代替構成で具体化され、「80a」と指定されてもよい。同様に、親要素の要素及び/又はサブ要素の複数のインスタンスはそれぞれ、要素番号に付加された別個の文字を含むことができる。いずれの場合も、要素ラベルは、要素の全てのインスタンス又は代替要素のいずれか1つを一般的に参照するために、添字なしで使用され得る。添付の文字を含む要素ラベルは、要素の特定のインスタンスを参照するために、又は要素の複数の使用を区別又は注意を引くために使用することができる。
【0128】
本デバイス、システム、及び方法の様々な態様は、1つ以上の例示的な実施形態を参照して説明することができる。本明細書で使用される場合、用語「実施形態」は「例、事例、又は例示としての役割を果たすこと」を意味し、本明細書に開示される他の実施形態よりも好ましい又は有利であると必ずしも解釈されるべきではない。
【0129】
本デバイス及びシステムの様々な態様は、互いに結合、取り付け、及び/又は接合された構成要素を説明することによって例示することができる。本明細書で使用される場合、「結合された(coupled)」、「取り付けられた(attached)」、「接続された(connected)」、及び/又は「接合された(joined)」という用語は、2つの構成要素間の直接的な接続、又は適切な場合には、介在又は中間の構成要素を介した互いに間接的な接続のいずれかを示すために使用される。対照的に、ある構成要素が別の構成要素に「直接結合される」、「直接取り付けられる」、「直接接続される」、及び/又は「直接接合される」と言及される場合、介在する要素は存在しない。
【0130】
他に定義されない限り、本明細書で使用される全ての技術用語及び科学用語は、本開示が属する技術分野の当業者によって一般的に理解されるのと同じ意味を有する。本明細書に記載されたものと類似又は同等の多数の方法及び材料を本開示の実施に使用することができるが、好ましい材料及び方法を本明細書に記載する。
【0131】
図1には、所望のT細胞の産生に使用するための機器ワークフローシステム8の一実施形態が示されている。最初に、所望のT細胞を含む生体試料10が提供される。生体試料10は、典型的には、ヒト血液試料、又は細胞と増殖媒体との混合物からなる調製された生物学的懸濁液を含む。生物学的懸濁液中の細胞は、バイオリアクタなどで増殖されていてもよく、又は他の方法で処理されていてもよい。最初に、望ましくない細胞の少なくとも一部を除去するために、生体試料10を細胞分離器12を通して処理することができる。例えば、生体試料10がヒト血液試料である場合、細胞分離器12は、所望のT細胞を含む白血球を赤血球から分離することができる。細胞分離器12の一例は、Thermo Fisher Scientificから入手可能なGibco(商標)CTS(商標)Rotea(商標)Counterflow Centrifugation Systemである。生体試料10の組成に応じて、他の細胞分離プロセス及び機器も使用することができる。更に、細胞分離器はまた、例えば、磁性粒子から放出された細胞を洗浄するために、及び/又は細胞が付着したもしくは付着していない磁性粒子を洗浄するために、後のステップで使用され得る。他の実施形態では、生物学的懸濁液の形態に応じて、細胞分離器12は必要とされない場合がある。
【0132】
次いで、細胞分離器12を出る細胞培養物は、所望のT細胞の単離及び活性化のために第1ビーズ処理システム14を介して処理される。すなわち、以下に詳細に論じるように、第1ビーズ処理システム14は、細胞培養物を、特異的抗体(例えば、抗CD3、抗CD28、抗CD137など)と共有結合した磁石ビーズと混合するように機能し、その結果、磁気ビーズは所望のT細胞に自動的に結合して活性化する。次いで、磁気ビーズに結合したT細胞を磁場によって単離バッグに保持し、残りの不要な細胞を洗い流す。
【0133】
次いで、磁気ビーズに結合した単離T細胞を洗浄し、磁場から解放し、細胞増殖システム16に移す。細胞増殖システム16は、T細胞が予め確立された条件下で増殖媒体中で増殖される従来のバイオリアクタシステムを含むことができる。細胞増殖システム16は、ロッカもしくは連続撹拌バイオリアクタ、又は細胞を増殖させることができるガス透過性バッグを使用するものなどの任意の他のバイオリアクタシステムを含むことができる。T細胞が所望の密度まで成長するか、又は別の予め確立された条件に達すると、T細胞は磁気ビーズから自動的に分離するか、又はT細胞からの磁気ビーズの分離を引き起こす分離試薬を懸濁液に添加することができる。例えば、活性化T細胞は、自然にCD3を下方制御し、したがって、典型的には約5日で磁気ビーズから分離する。幾つかの態様では、T細胞、磁気ビーズ、及び媒体の懸濁液は、磁気ビーズからのT細胞の分離を促進するのを助けるために、バッグ内などで手動又は機械的に操作することができる。次いで、T細胞、磁気ビーズ及び媒体の懸濁液は、第2ビーズ処理システム18に移送され、そこで以下により詳細に記載されるように、所望のT細胞が磁気ビーズから分離される。以下で更に詳細に説明するように、一実施形態では、ビーズ処理システム18は、ビーズ処理システム14の装置を異なる消耗キットで再使用することを含むことができる。
【0134】
最後に、磁気ビーズから分離されたT細胞を、必要に応じて細胞を遺伝子改変するための遺伝子編集システム20に移すことができる。例えば、DNAは、例えば、相同組換え及び/又は非相同末端結合によって細胞に組み込まれ得る。遺伝子編集は、細胞内核酸(例えば、染色体核酸)の部位特異的切断によって媒介され得る。T細胞の更なる下流処理及び/又はパッケージングも提供することができる。
【0135】
機器ワークフローシステム8は、生体試料が滅菌条件下でシステムの各構成要素間を連続的に流れることができる閉鎖滅菌システムを含むことができる。或いは、生体試料は、システム8の各又は選択された構成要素間で別々に移送することができる。システム8の各構成要素は、自動的に実行されるようにプログラムすることができ、又は手動で操作することができる。特定の条件に応じて、機器ワークフローシステム8の特定の構成要素を排除することができ、又は追加の構成要素を追加することができる。
【0136】
次に、ビーズ処理システム14、18の構成要素及び動作について詳細に説明する。一実施形態では、ビーズ処理システム14及び18は、同じ再使用可能なハードウェアを備えることができるが、それらの異なる意図された機能を達成するために異なる使い捨ての消耗可能な構成要素を使用することができる。この設計は、設備コストを削減し、必要な保管スペースを最小限に抑えるという利点を有する。しかしながら、他の実施形態では、別個のタイプのビーズ処理システムを使用することができる。
【0137】
ビーズ処理システム14は、
図2及び
図3に示すように、
図9に示すように、使い捨て消耗キット170Aと共に使用することができる再使用可能なビーズ処理装置22を備える。
図2及び
図3に戻ると、一般に、ビーズ処理装置22は、ベースアセンブリ32と、ベースアセンブリ32に取り付けられ、ベースアセンブリ32に対して選択的に揺動するように構成されたロッカアセンブリ34と、ロッカアセンブリ34の両側でベースアセンブリ32から直立した一対のバッグスタンド36A及び36Bとを含む。
【0138】
ベースアセンブリ32は、前端部40と反対側の後端部42との間に延在し、区画室44(
図5)を境界付けるハウジング38を備える。ハウジング38は様々な異なる構成を有することができるが、一実施形態では、
図4に示すように、ハウジング38は、使用中に典型的には水平に配置され、対向する端部40と42との間に延在する上面51を有する床パネル50を含む。ビーズ処理装置22の動作を制御し、プログラム可能なコンピュータプロセッサ55及び非一時的メモリを含む電気回路53が、区画室44内に収容されるように上面51上に配置されている。ビーズ処理装置22の動作に使用される他の従来の電子機器も、床パネル50上に配置することができる。例えば、ビーズ処理装置22に送達される電気を受け取って変換するために、床パネル50上に変圧器57を配置することができる。
【0139】
ハウジング38は、床パネル50の対向する側面から直立し、対向する側面に沿って延在する対向する側面パネル52A及び52Bを更に含む。フロントパネル54は、床パネル50の前端部40に配置され、サイドパネル52Aと52Bとの間に延在する。一実施形態では、フロントパネル54は、典型的には約25°~65°の範囲、より一般的には35°~55°の範囲の水平に対してある角度で傾斜している。他の角度も使用することができる。スクリーン56は、フロントパネル54上に配置され、電気回路53と電気的に連通している。一実施形態では、スクリーン56は、ビーズ処理装置22を操作するためのユーザ入力を可能にするタッチスクリーンを含むことができる。代替的な実施形態では、スクリーン56は、ビーズ処理装置22の動作を表示するための表示スクリーンを単に備えることができる。任意選択的に、電気インタフェースポート58及び作動スイッチ60(
図2)をフロントパネル54に配置し、電気回路53と通信することができる。電気インタフェースポート58は、電気回路53からのデータを制御、プログラミング、及び/又は収集するために使用することができる。作動スイッチ60は、ビーズ処理装置22をオン及びオフにするため、及び/又はビーズ処理装置22を異なる動作モード又は動作段階の間で切り替えるために使用することができる。代替的な実施形態では、インタフェースポート58及び/又は作動スイッチ60は、ビーズ処理装置22又はハウジング38上の他の位置に配置することができる。
【0140】
引き続き
図3及び
図4を参照すると、ハウジング38は、後端部42で床パネル50から直立し、サイドパネル52の間に延在するバックパネル62を更に含む。通気開口64は、バックパネル62を貫通して延び、電気回路53及び区画室44内の他の構成要素を冷却するために使用される。
図4にも示すように、ファン80は、通気開口64に隣接する区画室44内に配置することができる。ファン80は、電気回路53に電気的に結合され、ビーズ処理装置22の電気部品を冷却するのを助けるために使用される
【0141】
バックパネル62には、ビーズ処理装置22に電力を供給するための電気ケーブルと結合するように構成された電力入口66も形成されている。バックパネル62の上端部において前端部40に向かって前方に突出するのが棚パネル68である。棚パネル68は、典型的には、水平に配置され、したがって、一般に、床パネル50に平行に、及び/又はバックパネル62に垂直に配置される。棚パネル68は、ロッカアセンブリ34が配置される開口70を貫通している。棚パネル68の前方端部から直立しているのは、ライザパネル72である。ライザパネル72は、ビーズ処理装置22の上縁部74で終端し、サイドパネル52の間に延在する。一実施形態では、ライザパネル72は、バックパネル62に平行及び/又は棚パネル68に垂直になるように垂直に配置することができる。
【0142】
バッグスタンド36A及び36Bは、ロッカアセンブリ34の両側で棚パネル68から直立している。各バッグスタンド36は、上端に複数の留め具99が形成されたポール98を備える。ポール98は、固定長を有することができ、又は伸縮自在に長く又は短くするように構成することができる。留め具99は、流体を収容する可撓性バッグを保持及び支持するように構成され、バッグを保持することができるフック又は他の構造の形態とすることができる。
【0143】
スタンド82は、区画室44内に配置され、床パネル50に取り付けられる。一実施形態では、スタンド82は、U字形であり、床パネル50上に配置された変圧器57又は他の構成要素にまたがるように配置することができる。ロッカアセンブリ34は、棚パネル68の開口70を通過するようにスタンド82に配置されている。更に、区画室44内に配置され、一対の三角ブラケット84A及び84Bが床パネル50に取り付けられる。ブラケット84は、スタンド82の前方に配置され、前端部40まで又は前端部40に向かって延在する。一実施形態では、各ブラケット84は、垂直後部レール86と、床パネル50に固定された水平基部レール88と、基部レール88の前端部と後部レール86の上端部との間の角度で延在する前部レール90とを含む。以下でより詳細に説明するように、ブラケット84の間、より具体的には前部レール90の間にまたがるのが支持パネル92である。支持パネル92は、典型的には、水平に対して、典型的には約25°~65°の範囲、より一般的には35°~55°の範囲の角度で配置される。他の角度も使用することができる。
【0144】
図2~
図4を参照すると、ビーズ処理装置22はまた、ヒンジ102A及び102Bによってサイドパネル52Bにヒンジ式に取り付けられ、支持パネル92上に延びる任意選択のカバーパネル100を含む。一実施形態では、カバーパネル100は、対向するサイドパネル52の間にまたがり、フロントパネル54とライザパネル72の上縁部74との間に配置される。カバーパネル100は、フロントパネル54に関して前述したのと同じ角度範囲内に配置することができ、フロントパネル54と同じ平面内に配置することができる。一実施形態では、カバーパネル100は、透明窓106を取り囲む外周フレーム104を含む。窓106は、典型的には透明ポリマー材料から構成されるが、ガラスから形成することもできる。カバーパネル100は、
図2に示すように、カバーパネル100が支持パネル92を覆う閉位置と、支持パネル92が自由にかつ開いて露出する開位置との間で自由に回転することができる。
【0145】
説明を容易にするために、
図5は、支持パネル92が自由に露出されるようにカバーパネル100及びフロントパネル54が取り外されたビーズ処理装置22を示す。この図に示すように、ラッチ107を使用して、カバーパネル100を閉位置に固定することができる。
図4及び
図5に示すように、一実施形態では、支持パネル92は、ブラケット84の間に延在し、ブラケットに固定されるベースパネル93と、ベースパネル93の上に位置し、ベースパネルに固定されるオーバーレイパネル94とを備える。ベースパネル93は、オーバーレイパネル94が配置される上面76を有する。オーバーレイパネル94は、支持パネル92の上面も形成する上面77を有する。図示のように、複数のピンチバルブ、ポンプ、及び他の機構が、支持パネル92に取り付けられ、支持パネルから直立している。より具体的には、ピンチバルブ、ポンプ、及び他の機構は、ベースパネル93に直接取り付けられ、オーバーレイパネル94に形成された開口を通して突出する。例えば、
図5に示すように、第1ポンプ124A及び第2ポンプ124Bがベースパネル93に取り付けられ、そこから突出している。ポンプ124A及び124Bは、それぞれ、オーバーレイパネル94の上面77を越えて突出するように、オーバーレイパネル94の開口126A及び126Bを通って突出する。一実施形態では、ポンプ124A及び124Bは、流体に直接接触することなくチューブを通して液体を圧送することができる蠕動ポンプ又は他のタイプのポンプである。複数の離間したピンチバルブ128A~128Kもベースパネル93に取り付けられ、そこから突出している。ピンチバルブ128A~128Kは、オーバーレイパネル94の上面77を越えて突出するように、オーバーレイパネル94上の対応する開口130A~130Kをそれぞれ通って突出する。
【0146】
図6には、ピンチバルブ128Aの拡大図が示されている。ピンチバルブ128Aは、電気回路53(
図4)によって制御され、締結具109によってベースパネル93の底面、すなわち支持パネル92の底面に取り付けられたソレノイドバルブ108を含む。典型的には円筒形の構成を有する本体110は、ソレノイドバルブ108と結合され、ベースパネル93及びオーバーレイパネル94を外向きに通過する。本体110は、側面111内に陥凹し、本体110を横方向に貫通するスロット112を有する包囲側面111を有する。スロット112は、本体110の中央に形成されたC字形チャネル113と、C字形チャネル113から側面111まで延在する外側に広がる口114とを含む。後述するように、口114のフレアは、チューブをチャネル113内に案内するのに役立つ。ボア115は、ソレノイドバルブ108からC字形チャネル113まで本体110を中央で通過する。シャフト116は、ボア115内に配置され、丸みを帯びたヘッド117で終端する。ソレノイドバルブ108は、ボア115内のシャフト116の動きを制御する。したがって、以下で更に詳細に説明するように、可撓性チューブがC字形チャネル113内に配置され、それを通過するとき、ソレノイドバルブ108は、シャフト116を下降位置と上昇位置との間で選択的に移動させることができる。下降位置では、シャフト116は、流体がチューブを通過することを可能にするように、C字形チャネル113から少なくとも部分的に除去される。上昇位置では、シャフト116がC字形チャネル113内に前進し、シャフト116が丸みを帯びたヘッド117とC字形チャネル113の上面119との間でチューブを挟み込み、それによってチューブを閉じ、流体がそこを通って流れるのを防止する。可撓性チューブを選択的に開閉することができる他の従来のタイプのピンチバルブも使用できることが理解される。例えば、Emerson Electric Co.から入手可能なような空気圧ピンチバルブも使用することができる。残りのピンチバルブ128B~128Kは、典型的にはピンチバルブ128Aと同一であり、したがって、異なるピンチバルブ間の同様の要素は、同様の参照符号によって識別される。
【0147】
図5に戻ると、対応するエアフィルタアセンブリ218A及び218Bをそれぞれ受け入れて動作させるように構成された一対の回転アセンブリ132A及び132Bが、支持パネル92に更に取り付けられている(
図11)。
図7及び
図8には、エアフィルタアセンブリ218Aに結合された回転アセンブリ132Aが示されている。回転アセンブリ132Aは、駆動シャフト95を選択的に回転させる駆動モータ160を備える。多くの場合、使用されるエアフィルタは、フィルタの片側で滅菌環境を維持するために生物学的薬剤の通過を防止するように設計される。駆動モータ160は、電気回路53(
図4)によって制御される。一実施形態では、駆動モータ160は、駆動シャフト95を反対方向に選択的に回転させることができるステッパモータである。駆動シャフト95の自由端には、キー付きソケット97が形成された受け部96が取り付けられている。
【0148】
エアフィルタアセンブリ218Aは、エアフィルタ221が結合されたストップコック220を備える。図示の実施形態では、ストップコック220は、そこから外側に突出するポート223A、223B、及び223Cと、それに結合された流体とを有するステム222を含む二方向ストップコックを備える。バルブ224は、ステム222内に回転可能に配置され、その中に配置された外側に突出するハンドル225を有する。ハンドル225の第1位置への回転は、流体がポート223Aとポート233Bとの間を流れることができるようにバルブ224を方向付ける。ハンドル225の第2位置への回転は、流体がポート223Aと233Cとの間でのみ流れることができるようにバルブ224を配向させる。エアフィルタ221は、ポート223Cに結合され、典型的には空気殺菌フィルタを備える。一実施形態では、エアフィルタ221は、0.2μ以下の平均孔径を有することができる。以下でより詳細に説明するように、ハンドル225は、それらの間に確実な係合が形成されるように、受け部96のキー付きソケット97内に取り外し可能に嵌合するように構成される。結果として、駆動モータ160による受け部96の回転は、2つの動作位置の間のステム222に対するハンドル225の回転を容易にすることができる。回転アセンブリ132Bは、回転アセンブリ132Aと同じ構成及び動作を有することができ、エアフィルタアセンブリ218Bは、エアフィルタアセンブリ218Aと同じ構成及び動作を有することができる。したがって、構成要素間の同様の要素は、同様の参照文字によって識別される。
【0149】
組み立て中、回転アセンブリ132A及び132Bの駆動モータ160は、受け部96がオーバーレイパネル94の対応する開口134A及び134B内にそれぞれ受け入れられるように、ベースパネル93/支持パネル92に固定することができる。この実施形態では、
図5に示すように、受け部96は、必ずしも必要ではないが、オーバーレイパネル94/支持パネル92の上面77を越えて突出することができる。
【0150】
引き続き
図5を参照すると、気泡センサ136A、136B、及び136Cは、ポンプ124Aと124Bとの間の支持パネル92に取り付けられている。各気泡センサ136には、チューブを確実に受け入れるように構成された溝137が形成されている。一実施形態では、溝137は、C字形又はU字形の構成を有することができる。気泡センサ136は、ベースパネル93に取り付けられ、オーバーレイパネル94、支持パネル92の上面を越えて突出するように、オーバーレイパネル94上の対応する開口138A、138B、及び138Cをそれぞれ通って突出する。以下により詳細に説明するように、気泡センサ136は、電気回路53によって制御され、ビーズ処理システム14の動作に使用されるチューブ内のガス流と液体流とを識別する。本開示において使用され得る気泡センサの例には、INTROTEK INTERNATIONAL製のIntrotek AD9-0075-E04及びSonotec GMBHから入手可能なものなどの超音波気泡検出器が含まれる。他の気泡センサも使用することができる。
【0151】
最後に、圧力センサ140は、支持パネル92/ベースパネル93に取り付けられ、オーバーレイパネル94の対応する開口142を通って突出するか、又は位置合わせされ得る。圧力センサ140は、気泡センサ136Aと136Cとの間に配置されて示されているが、他の場所に配置することもできる。また、以下により詳細に論じるように、圧力センサ140は、ビーズ処理システム14のチューブ内の流体の圧力を検出するために使用される。圧力を監視することは、動作障害を検出し、消耗キット170Aのチューブ及び/又はバッグが過剰に加圧されるのを防ぐのに役立ち得る。本開示で使用できる圧力センサの一例は、INTROTEK INTERNATIONAL製のPRO-3000-904である。
【0152】
オーバーレイパネル94は、主に、通常動作中にアクセスする必要がないベースパネル93上に配置された締結具及び/又は他の要素を覆うように機能することに留意されたい。したがって、代替の実施形態では、
図9に示すように、オーバーレイパネル94を省略することができる。したがって、支持パネル92は、ベースパネル93のみ、又はベースパネル93とオーバーレイパネル94との組み合わせを含むことができる
【0153】
引き続き
図9を参照すると、単回使用の使い捨て消耗キット170Aは、ビーズ処理装置22に供給されたT細胞を単離し活性化するためにビーズ処理装置22と共に使用することができる。消耗キット170Aは、トレイ172Aと、それに取り付けられたラインセット174Aとを備える。消耗性キット170Aは、ラインセット174Aが前述のように支持パネル92上に配置された様々な機械的構成要素と係合又は相互作用することができるように、支持パネル92の上に取り外し可能に入れ子になるべく構成される。そのために、
図10に示すように、トレイ172Aは、典型的には平行に整列して配置され、典型的には0.2cm~1cmの範囲にある厚さをそれらの間に有する上面176及び反対側の底面178を有し、0.2cm~0.6cmがより一般的である。トレイ172Aは、典型的には剛性であり、例えば、ラインセット174Aのチューブよりも剛性が高く、一般に、ポリカーボネート-ABS(PC/ABS)、アクリロニトリルブタジエンスチレン(ABS)、又はポリプロピレン(PP)などのポリマーで作られる。複数の開口185は、面176と178との間でトレイ172Aを貫通して延在する。例えば、そのような開口185は、支持トレイ172Aが支持パネル92上に配置されたときにピンチバルブ128A~128K(
図11)が開口180A~180Kと整列して通過するように、トレイ172A上に配置され構成された開口180A~180Kを含む。同様に、開口182A及び182Bは、トレイ172Aを通って延び、トレイ172Aが支持パネル92上に配置されたときにポンプ124A及び124B(
図11)がそれぞれ整列して通過するように配置及び構成される。更に、開口183A及び183Bは、トレイ172Aを通って延び、回転アセンブリ132A及び132Bと整列するように配置及び構成され、一方、開口133A~133Cは、バブルセンサ136A~136Cとそれぞれ整列するように配置及び構成される。最後に、開口134がトレイ172Aを通って延在し、圧力センサ140と整列するように配置され構成される。
【0154】
トレイ172Aはまた、上面176に取り付けられ、上面から外側に突出する複数の離間したチューブ抑制部186を含む。チューブ抑制部186は様々な異なる構成を有することができるが、図示の実施形態では、各チューブ抑制部186は、貫通するスロット190を有する基部188を備える。スロット190は、典型的には、ラインセット174Aのチューブ200をぴったりと、しかし取り外し可能に受け入れるように構成されたC字形又はU字形の横断面を有する。チューブ抑制部190は、チューブ200を輪郭付けて保持するように機能し、ラインセット174Aが移動するトレイ172A上の任意の所望の位置に形成することができる。しかしながら、チューブ抑制部186は、最も一般的には、チューブ200が曲げられているか操作されている場所に配置されるか、又はそれに隣接する。トレイ172Aはまた、トレイ172Aから中央に直立したバッグ抑制部192を含む。図示の実施形態では、バッグ抑制部192は、トレイ172Aから直立し、受け取り領域196を取り囲む外周壁194を含む。受け入れ領域196は、混合バッグ210が外周壁194によって支持され保持されるように、ラインセット174Aの混合バッグ210を受け入れるように構成される。
【0155】
図10及び
図11に示すように、ラインセット174Aは、一般に、複数のバッグ及びエアフィルタアセンブリ218A及び218Bと結合された可撓性チューブ200流体を含む。製造中、ラインセット174A及びトレイ172Aは、ユニットとして予め組み立てられ、滅菌され得る。或いは、ラインセット174A及びトレイ172Aを独立して滅菌し、次いで互いに結合することができる。製造中、ラインセット174Aは密閉されるように形成されることが理解される。次いで、トレイ172Aの有無にかかわらず、ラインセット174Aを照射プロセスによって滅菌することができる。次に、生産システム8(
図1)の他の構成要素との流体結合は、無菌流体接続によってもたらされる。
【0156】
使用中、組み立てられた消耗キット170Aは、支持パネル92上の機械的構成要素がトレイ172A上に形成された関連開口と整列するように、支持パネル92の上に配置される。以下でより詳細に説明するように、チューブ200は、その後、エアフィルタアセンブリ218が回転アセンブリ132に取り付けられている間に、ピンチバルブ128、ポンプ124、気泡センサ136及び圧力センサ140のそれぞれと連結するように操作される。
【0157】
チューブ200は、様々な異なる構成を有することができる。一実施形態では、チューブ200は、2.0mm~5.0mmの範囲、又は2.5mm~5.0mmの範囲、又はより一般的には3.0mm~5.0mmの範囲の内径を有する。他の範囲も使用することができる。チューブ200は、チューブ200が塑性変形せずに容易に曲げられることを可能にし、チューブ200が(ピンチバルブ128を使用するなどして)選択的に挟持されて閉じられて流体の流れを防止することを可能にするが、挟持力が解放されたときに流体がそれを通って流れることを可能にするために開放位置に弾性的にリバウンドする材料で作られる。一般に、チューブ200は、塑性変形なしに少なくとも90°、180°又は360°の角度にわたって曲げることができる。チューブを構成することができる材料の例には、シリコーン、ポリ塩化ビニル(PVC)、及びC-FLEX配合物374チューブなどの熱可塑性エラストマー(TPE)が含まれる。チューブ200の異なる部分はまた、それらの意図された機能に応じて異なる材料で作製することができる。本実施形態では、チューブ200は、前述したように、シャフト116の移動によって閉状態及び開状態を選択的に挟むために、ピンチバルブ128(
図6)のスロット112内に受け入れることができるようなサイズになっている。
【0158】
チューブ200は、一体的に互いに接続されているか、又は継手によって互いに接続されている複数のセクションを含む。例えば、
図11を参照すると、チューブ200は、入口端202で終端する第1端部を有するチューブセクション204Aを含む。入口端202は、細胞分離器12(
図1)又は所望のT細胞を含む細胞培養物をラインセット174Aに送達するための何らかの他の供給源と連結することを意図している。例えば、入口端202は、無菌コネクタなどの閉鎖コネクタ203がそこに形成され得るか、又は入口端202が切断され、次いで、細胞培養物が送達される別のチューブセクション上に封止され得るように、溶着などによって単純に封止され得る。セクション204Aは、それに結合されたエアフィルタアセンブリ218Aを有する。使用のための組み立て中、セクション204Aはピンチバルブ128Aと結合され、エアフィルタアセンブリ218Aは前述のように回転アセンブリ132A(
図5)と結合される。
図10を参照すると、狭いスロット207A及び207Bが、それぞれ開口183A及び183Bに隣接するトレイ172A上に形成されていることに留意されたい。スロット207は、ハンドル225が回転アセンブリ132によって回転されるときにエアフィルタ221及びステム220(
図8)が回転するのを防止するのに役立つように、エアフィルタ221を受け入れるように形成される。
【0159】
図11に戻ると、ラインセット174Aはまた、単離バッグ206に接続されてこれと連通する第1端部を有するチューブセクション204Bを含む。単離バッグ206は、通常、チューブセクション204Bに恒久的に固定されるが、コネクタを介して結合することができる。いずれの場合も、単離バッグ206及びチューブセクション204Bは、典型的には、照射前に互いに結合される。単離バッグ206の構成は、以下でより詳細に説明されるが、ロッカアセンブリ34(
図2)に固定されるように構成される。単離用バッグは加工用バッグの一例である。使用のための組み立て中、チューブセクション204Bはピンチバルブ128Bと結合される。チューブ200のチューブセクション204Cは、ビーズバイアルカプラ208と接続される第1端部と、継手を使用して両方のチューブセクション204A及び204Bと接続する反対側の第2端部とを有する。ビーズバイアルカプラ208については、以下でより詳細に説明する。チューブセクション204Cは、ピンチバルブ128C及び128Dと結合する。
【0160】
チューブ200はまた、バッグ抑制部192内に配置された混合バッグ210と流体結合された第1端部をそれぞれ有するチューブセクション204D及び204Eを含む。混合バッグ210は、チューブセクション204D及び204Eに恒久的又は取り外し可能に流体結合され得るが、それらは全て典型的には閉じた状態で一緒に滅菌される。チューブセクション204Dは、ピンチバルブ128Eと結合する。チューブセクション204Eは、気泡センサ136B、ピンチバルブ128F及びエアフィルタアセンブリ218Bと結合する。
【0161】
チューブ200のチューブセクション204Fは、出口端211で終端する。出口端211は、典型的には、単離されたT細胞の増殖のために細胞増殖システム16(
図1)と結合することが意図されている。しかしながら、他の実施形態では、出口端211は、容器又は他の何らかの下流処理システムと結合することができる。結合を容易にするために、出口端211は、滅菌コネクタなどの閉鎖コネクタ205がそこに形成されていてもよく、又は溶着などによって単純に封止されて閉じていてもよく、その結果、出口端211を切断し、次いで別のライン上に封止して単離された細胞を送達することができる。チューブセクション204Fは、ピンチバルブ128Kと連結されている。
【0162】
チューブ200のチューブセクション204Gは、収集バッグ212に結合された第1端部を有する。収集バッグ212は、単離バッグ206内の所望のT細胞及び他の陰性画分から洗浄された不要な細胞を収集するために使用される。チューブセクション204Gは、ピンチバルブ128Jと結合され、チューブセクション204Eの第2端部と接続する。チューブ200のチューブセクション204H、204I、及び204Jはそれぞれ、別個の媒体バッグ216A、216B、及び216Cにそれぞれ恒久的又は取り外し可能に結合された第1端部と、チューブセクション204Gに直接的又は間接的に流体結合された対向する送出端部とを有する。媒体バッグ216は、後述するように、細胞の洗浄及び他の処理に使用される媒体を収容する。チューブセクション205H、205I、及び205Jは、それぞれピンチバルブ128G、128H、及び128Iに結合されている。使用される媒体バッグ216の数は、バッグ216の用途及びサイズに依存し得ることが理解される。したがって、他の実施形態では、3つの媒体バッグ216を有するのではなく、1つ、2つ、又は4つ以上の媒体バッグ216をチューブ200の対応する部分と共に使用することができる。
【0163】
チューブ200のチューブセクション204Kは、チューブセクション204A、204B、204D、204F及び204Gの第2端部と結合する。使用のための組み立て中、チューブセクション204Kは、ポンプ124A及び124B、並びに気泡センサ136A及び136C並びに圧力センサ140と結合される。ポンプ124A及び124Bは、ラインセット174Aを通る流体の制御された流れを容易にするために使用される。
【0164】
前述のように、チューブセクション204Cの第1端部は、ビーズバイアルカプラ208に接続される。
図14を参照すると、第1端部164及び反対側の第2端部165を有するビーズバイアルカプラ208の一実施形態が示されている。第2端部165は、チューブセクション204Cの第1端部に流体結合されている。バイアル166は、ビーズバイアルカプラ208の第1端部164に取り付けられて示されている。バイアル166は、円筒形本体167と、開口を取り囲む狭窄ネック168と、ネック168から本体167まで径方向外側に広がる環状肩部169とを含む。バイアル166は、ビーズ混合物177が配置されている区画室175を境界付けている。ビーズ混合物177は、複数のビーズ179と、キャリア液体181とを含む。キャリア液体181は、ビーズ179がバイアル166からラインセット174Aを通って流れることを可能にするように機能する。キャリア液体181は、細胞培地又は細胞に悪影響を及ぼさない他の自由流動液体を含むことができる。代替実施形態では、バイアル166は、可撓性バッグ又はビーズ混合物177を収容する他のタイプの容器と交換することができる。バイアル及び可撓性バッグは、ビーズ混合物177を収容するための代替的な利点を有する。例えば、剛性バイアルは、ビーズの再懸濁のために容易に揺動され、穿刺のリスクが低い。しかしながら、可撓性バッグの使用は、以下で更に論じるように、ビーズ混合物177が取り出されるときの容器内の負圧の形成を排除する。
【0165】
以下により詳細に論じるように、ビーズ179は、所望のT細胞の単離及び活性化に使用される。ビーズ179は、典型的には、磁性材料及びポリマーから構成される。ビーズの実際の構造は大きく変化し得るが、ビーズは、例として、磁性コア及びポリマー外装を有してもよく、又は磁性粒子が埋め込まれたポリマー材料から構成されてもよい。例示的な磁気ビーズは、CTS(商標)Dynabeads(商標)CD3/CD28(Thermo Fisher Scientific、カタログ番号40203D)である。例えば、一実施形態では、ビーズ179は、ナノ粒子又はマイクロ粒子などの磁性粒子が埋め込まれたポリマーマトリックスを含むことができる。他の実施形態では、ビーズ179は、磁性シェルによって覆われたポリマーコアを含むことができる。磁性材料は、磁性金属(例えば、鉄、コバルト、ニッケルなど。)を含むことができる。他の構成も使用することができる。一実施形態では、ビーズ179は、常磁気ビーズ又は超常磁気ビーズを含むことができる。ビーズ179はまた、コアに結合された1つ以上の抗体(例えば、抗CD3、抗CD4、抗CD8、抗CD28、及び/又は抗CD137)を含む。抗体は、治療機能又は他の目的のために所望のT細胞と結合し、それを活性化する。ビーズ179は、典型的には、50nm~1mm、100nm~1mm、500nm~100μm、1μm~10μm、1μm~5μm、又は4μm~5μmの範囲の平均直径を有する実質的に球形の構成を有する。ビーズ179の例は、Thermo Fisher Scientific製のDYNABEADSである。市販の磁気ビーズの具体例としては、Dynabeads(商標)Human T-Expander CD3/CD28(Thermo Fisher Scientific、カタログ番号11141D)、CTS(商標)Dynabeads(商標)CD3/CD28(Thermo Fisher Scientific、カタログ番号40203D)、CTS(商標)Dynabeads(商標)Treg Xpander(Thermo Fisher Scientific、カタログ番号46000D号)、MACS(商標)GMP ExpAct Treg Kit(Miltenyi Biotec、カタログ番号170-076-119号)に含まれる粒子などが挙げられる。
【0166】
ビーズバイアルカプラ208は、第1端部164と対向する第2端部165との間に延在する管状ステム173を備える。第1端部164は、バイアル166のネック168と結合するように構成され、それにより、バイアル166の区画室175と第1端部164との間に確実な流体結合が形成される。第2端部165は、チューブ200のチューブセクション204Cと流体結合されている。図示の実施形態では、ビーズバイアルカプラ208は、ステム173から外側に突出する拡張チャンバ171を更に含む。ビーズ混合物177がラインセット174A内に分配されると、拡張チャンバ171は、バイアル166の区画室175内の圧力を自動的に等しくするように構成され、それによって流体の流れを妨げる可能性があるチャンバ171内の真空の形成を防止する。拡張チャンバ171を組み込んだビーズバイアルカプラ208の二例は、Becton Dickinsonによって製造されたPHASEAL(商標)薬物バイアルアクセスデバイス及びOriGen Biomedical(カタログ番号.VSV)から入手可能な無針バイアルスパイクバルブである。代替的な実施形態では、ビーズバイアルカプラ208は拡張チャンバ171を含む必要はなく、他の構成のビーズバイアルカップリングを使用することができる。
【0167】
図5を参照すると、スロット144は、区画室146と連通するようにパネル52Bと並んで支持パネル92を貫通する。区画室146は、ビーズバイアルカプラ208を受け入れるように構成される。より具体的には、ビーズバイアルリテーナ148が区画室146内に配置されている。
図5及び
図12に示すように、ビーズバイアルリテーナ148は、上面152と、反対側の底面154と、それらの間に延在するC字形チャネル156を境界付ける内面155とを有する本体150を有する。肩部157は、チャネル156の直径を収縮させるように、内面155から底面154に向かって内側に突出している。スロット159は、チャネル156と連通するように上面152と底面154との間で本体150の前面を貫通する。ビーズバイアルリテーナ148は、本体150に接続された第1端部と、底面154の下に下方に突出する対向する第2端部161とを有する長尺アーム158を更に含む。
【0168】
ビーズ処理装置22の区画室44内には、電気回路53(
図4)によって制御され、駆動シャフト163を回転させる駆動モータ162が支持されている。一実施形態では、駆動モータ162は、駆動シャフト163を反対方向に選択的に回転させることができるステッパモータを備える。駆動シャフト163の自由端は、アーム158の第2端部161に連結され、支持する。駆動シャフト163及びアーム158は、典型的には直交して延びる。このように、駆動モータ162による駆動シャフト163の選択的な回転は、ビーズバイアルリテーナ148を駆動シャフト163の回転軸の周りに選択的に回転させる。
【0169】
組み立て及び使用中、バイアル166が取り付けられたビーズバイアルカプラ208は、バイアル166(
図14)の肩部169がビーズバイアルリテーナ148の肩部157上に載置されるまで、ビーズバイアルリテーナ148のチャネル156を通って下方に前進する。ビーズバイアルリテーナ148の本体150は、摩擦係合下でチャネル156内にバイアル166をぴったりと強固に受容するように構成される。この組み立て中、拡張チャンバ171は、ビーズバイアルリテーナ148のスロット159を通って突出することができる。
【0170】
ビーズ混合物177は、ビーズ179がキャリア液体181に懸濁されている場合、バイアル166からラインセット174Aにより効率的に分注される。しかしながら、ビーズバイアルリテーナ148に取り付けられた反転バイアル166が一定期間垂直方向に静止したままである場合、ビーズ179はバイアル166のネック168に沈降し、それによってバイアル166からの流れを制限又は遮断することができる。したがって、バイアル166を備えたビーズバイアルカプラ208がビーズバイアルリテーナ148に取り付けられ、ビーズ混合物177をラインセット174A内に分配することが所望されると、駆動モータ162を作動させて駆動シャフト163を回転させることができ、その結果、ビーズバイアルリテーナ148は、
図13に示すように前方位置に回転し、次いで、
図12に示すように直立位置に戻るように回転する。バイアル166のこの回転により、ビーズ179が混合され、効率的な分注のためにキャリア液体181内に再懸濁される。一実施形態では、バイアル166を前方位置に回転させ、バイアルが直立位置に回転して戻される前に、ビーズ179がバイアル166の底端部、すなわちネック168の反対側の端部に向かって沈降するのに十分な期間放置することができる。他の実施形態では、バイアル166は、所望の再懸濁を容易にするために、前方位置と直立位置との間で迅速に及び/又は繰り返し前後に移動することができる。直立位置にあるとき、バイアル166は、典型的には反転されるが、垂直方向にある。バイアル166が前方位置に移動すると、バイアル166は、典型的には、垂直に対して90°、120°、160°又は180°の角度にわたって、又は前述のいずれか2つの間の範囲で回転する。他の角度も使用することができる。
【0171】
消耗キット170Aの更なる使用及び動作は、ロッカアセンブリ34を説明した後に後述する。
図15を参照すると、ロッカアセンブリ34は、ビーズ処理装置22の残りの部分から分離され、スタンド82上に載置されている。一般に、ロッカアセンブリ34は、スタンド82上に配置されたマウントアセンブリ230と、マウントアセンブリ230に移動可能に結合されたプラットフォームアセンブリ232と、マウントアセンブリ230に対してプラットフォームアセンブリ232を選択的に揺動させるために使用されるロッカドライブ234(
図16)とを備える。マウントアセンブリ230は、スタンド82上に配置され、ロッカドライブ234を部分的に覆う外側ハウジング236を含む。
図16を参照すると、外側ハウジング236及び他の構成要素は、マウントアセンブリ230がスタンド82から上方に延在する第1ライザ238A及び離間した第2ライザ238Bを更に含むことをよりよく明らかにするために取り外されている。
図15を参照すると、ライザ238Aは、スタンド82に固定された下端240Aと、対向する上端242Aとを有する。
【0172】
プラットフォームアセンブリ232は、上端242Aに回動可能に接続されている。より具体的には、プラットフォームアセンブリ232は、前壁250A及び対向する後壁250Bを有し、それらの間に対向する側壁248A及びBが延在するハウジングアセンブリ246を部分的に含む。壁240及び250は、床252(
図16)から立ち上がっており、区画室254を境界付けている。図示の実施形態では、ライザ238Aの上端242Aは、ハウジングアセンブリ246に中心に回転可能に結合される。より具体的には、上端242Aは、側壁248Aに中心に回転可能に結合される。一実施形態では、軸258Aは、側壁248Aから外側に突出し、ライザ238Aの上端242に回転可能に結合される。軸受260Aは、車軸258Aを受け入れて容易に回転させるために、ライザ238Aの上端242Aに配置することができる。当然のことながら、ハウジングアセンブリ246/プラットフォームアセンブリ232をライザ238Aに回転可能に取り付けることができる様々な代替方法があることが理解される。
【0173】
図16に戻ると、ライザ238Bはまた、スタンド82及び対向する上端242Bに固定された下端240Bを有する。再び、プラットフォームアセンブリ232は、上端242Bに回動可能に接続され、より具体的には、上端242Bは、ハウジングアセンブリ246/側壁248Bに中央に回動可能に接続される。車軸258Bは、側壁248Bから突出し、ベアリング260Bを使用するなどして上端242Bに回転可能に取り付けることができる。車軸258A及び258Bは、プラットフォームアセンブリ232がライザ238に対して回転する共通の回転軸上に配置される。
【0174】
引き続き
図16を参照すると、ロッカドライブ234は、スタンド82(
図13)に取り付けられたモータ270を含む。モータ270は、電気回路53(
図4)によって制御され、駆動シャフト272を回転させる。リンク276は、駆動シャフト272と直交して延び、回転する。図示の実施形態では、リンク276は、駆動シャフト272に接続された第1端部274と、長尺接続アーム282上の第1端部280に接続された対向する第2端部278とを有する長尺形状である。代替的な実施形態では、リンク276は円形であってもよく、又は他の形状を有してもよい。接続アーム282が取り付けられたクランク273からの駆動シャフト272及びリンク276。接続アーム282は、プラットフォームアセンブリ232に回転可能に接続された対向する第2端部284を有する。より具体的には、第2端部284は、側壁248Bの一端で、又は側壁248Bの一端に向かってハウジングアセンブリ246に回転可能に結合される。したがって、モータ270が作動すると、駆動シャフト272及びリンク276、すなわちクランク273が回転する。次に、リンク276の回転により、接続アーム282が選択的に上昇及び下降し、これにより、プラットフォームアセンブリ232/ハウジングアセンブリ246が、車軸258A及び258Bを通る共通軸を中心に前後に揺動する。揺動動作は、駆動シャフト272を連続的に又は往復動作で回転させることによって促進することができる。
【0175】
本発明の一実施形態では、プラットフォームアセンブリ232/ハウジングアセンブリ246を選択的に揺動させるための手段が設けられる。揺動手段の一例は、ロッカドライブ234である。代替的な実施形態では、ロッカドライブ234は、同じ機能を達成する様々な異なる機械的機構で置き換えることができる。例えば、ロッカドライブ234は、モータ270がカムを回転させ、カムに接続された従動子がカムが回転するにつれて上昇及び下降し、プラットフォームアセンブリ232/ハウジングアセンブリ246の端部を回転させるカムフォロアシステムと置き換えることができる。他の実施形態では、モータ270は、プラットフォームアセンブリ232/ハウジングアセンブリ246の端部を選択的に上昇及び下降させるウォームギヤを往復駆動することができる。他の実施形態では、油圧又は空気圧システムを使用してピストンを上昇又は下降させることができ、ピストンはプラットフォームアセンブリ232/ハウジングアセンブリ246の端部を選択的に上昇及び下降させる。他の従来のシステムも使用することができる。
【0176】
図17を参照すると、プラットフォームアセンブリ232は、一般に、単離バッグ206(
図10)が取り外し可能に支持されるプラットフォーム290と、前述したように、プラットフォーム290が固定及び支持されるハウジングアセンブリ246と、ハウジングアセンブリ246の区画室254内に少なくとも部分的に配置されるリフトアセンブリ292と、リフトアセンブリ292によって支持及び昇降される磁石アセンブリ294と、単離バッグ206を少なくとも部分的に覆う抑制アセンブリ296(
図22に示す)とを備える。これらの様々な構成要素については、これ以上詳細には説明しない。
【0177】
引き続き
図17を参照すると、プラットフォーム290は、それぞれが外周縁部386まで延在する上面382及び反対側の底面384を有する支持プレート380を備える。支持プレート380は、典型的には、面382及び384が平行に整列して配置された長方形の構成を有する。磁石アセンブリ294は支持プレート380を介して磁力を生成する必要があるので、支持プレート380は、典型的には、5mm、3mm、2mm又は1mm未満であるか、又は前述の値のいずれか2つの間の範囲内であり得る面382と384との間の厚さを有する。外周縁部386から下方に突出しているのは側壁388である。支持プレート380の側壁388及び底面384は、キャビティ390(
図21)を少なくとも部分的に境界付けている。側壁388は、キャビティ390を完全に取り囲むことができ、又は図示のように、キャビティ390を部分的にのみ取り囲むように、角部などに貫通するスロット392を有することができる。側壁388は、前壁394及び対向する後壁396を含み、それらの間に対向する側壁398及び400が延在する。側壁388の下端にはフランジ401が配置されている。側壁388は、ハウジングアセンブリ246の上部外周縁部389に位置し、その区画室254を横切って少なくとも部分的に覆う。フランジ391はまた、フランジ391及び401を貫通するか又は互いに接続するねじ、ボルト、クリップなどの締結具によるハウジングアセンブリ246とプラットフォーム290との間の取り付けを容易にするために、ハウジングアセンブリ246の外周縁部389に形成することができる。プラットフォーム290は、典型的には、磁石アセンブリ294に取り付けられない材料で作られる。例えば、プラットフォーム290は、一般に、アルミニウム又はポリマーで作られる。
【0178】
引き続き
図17を参照すると、磁石アセンブリ294は、典型的には正方形又は長方形の構成を有するプレートの形態で示されている。一実施形態では、磁石アセンブリ294は、磁石299が配置された非磁性ケーシング297を含む。ケーシング297は、周囲の側壁302まで延在する上面298及び反対側の底面300を有する正方形又は長方形の構成を有する。上面298及び底面300は、典型的には平坦であり、平行に整列して配置される。磁石299が配置されて固定される凹部301(
図20)が上面298に形成される。凹部301は、上面298の中心にあり、ケーシング297と相補的であるがそれよりも小さい正方形又は長方形の構成を有する。磁石299は、凹部301の全体を実質的に占めるように、凹部301と相補的な正方形又は長方形の構成を有する。磁石299は、典型的にはケーシング297の上面298と同じ平面内に配置される平坦な上面303を有する。この組み立てられた構成では、磁石299を取り囲むケーシング297によって非磁性縁部304が形成される。すなわち、ケーシング297/上面298は外周縁部308を有し、凹部301/磁石299は外周縁部309を有する。非磁性縁部304は、典型的には0.2cm~2cmの範囲、より一般的には0.3cm~1.5cm又は0.4cm~1cmの範囲である外周縁部308と309との間に延びる厚さTを有する。磁石299は、その正又は引力の磁力が上面303からプラットフォーム290に向かって上方に延びるように配置される。後述するように、これにより、磁石は、プラットフォーム209上に配置された単離バッグ206内に配置されたときにビーズ179(
図14)を引き付けることができる。
【0179】
一実施形態では、磁石299は、単一の連続磁石を含むことができる。代替的な実施形態では、磁石299は、凹部301と隣接して配置された複数の別個の磁石を含むことができる。例えば、一実施形態では、磁石299は、ハルバッハ配列を形成するように隣接して配置された複数の磁石を含むことができる。ハルバッハ配列は、配列の一方の側で磁場を増強し、他方の側で磁場をゼロ付近に打ち消す永久磁石の特別な配置である。これは、磁化の空間的に回転するパターンを有することによって達成される。永久磁石(前面に;左、上、右、下)の回転パターンは、無期限に継続することができ、同じ効果を有する。
図18Aには、底部から見た磁石299の一部の例が示されており、隣接して配置された複数の別個の磁石305A~305Eからなる。磁石305は、ハルバッハ配列の形態で配置されている。各磁石305に示される矢印は、各磁石305の磁場の向きを識別する。図示の向きは、上面303からプラットフォーム290に向かって上方に延びる強い磁場を生成するが、磁石305の下の磁場は相殺される。凹部301を占有し、磁石305の形成を完了するために、同じ繰り返しパターンで追加の磁石299を追加することができる。磁石299をハルバッハ配列として形成することにより、磁石299の下の磁場を除去しながら、ビーズ処理装置22の構成要素又は動作に潜在的に干渉する可能性があり、ビーズ179をより良好に引き付けるための磁力が増加する。しかしながら、ハルバッハ配列を達成するために磁石305を回転パターンに配置すると、磁石305は互いに押しのけることを望む。ケーシング297は、磁石305を機械的に一緒に保持するのを助けるために使用することができる。代替的又は追加的に、磁石305は、接着剤によって、又は他の結合技術を使用することによって互いに固定することができる。
図18Bは、本開示と共に使用することができ、磁石の向き並びに強磁場及び弱磁場の相対位置の両方を特定するハルバッハ配列の概略図である。
【0180】
図17に戻ると、リフトアセンブリ292は、ハウジングアセンブリ246の区画室254内に少なくとも部分的に配置され、磁石アセンブリ294を支持し、また上昇及び下降させるために使用される。リフトアセンブリ292は、前端部316と対向する後端部318との間に延在する上面312及び反対側の底面314を有する棚310を含む。磁石アセンブリ294を棚310の上面312に固定するために、複数の離間した締結具319が使用される。シザーリフト321は、棚310の底面314に固定され、下方に突出している。
【0181】
図19を参照すると、シザーリフト321は、第1シザーアーム対320と、離間した第2シザーアーム対322とを備える。第1シザーアーム対320は、中心に交差し、第2アーム326Aに回動可能に連結された第1アーム324Aを含む。第1アーム324A及び第2アーム326Aは、第2シザーアーム対322に直交して延びる軸377によって互いに回動可能に連結されている。第1アーム324Aは、第1端部328A及び対向する第2端部329Aを有する。第1端部328Aは、その前端部でヒンジジョイント330Aによってハウジングアセンブリ246の床252にヒンジ結合される。第2端部329Aは、ガイド332Aによって後端部318で棚310の底面314に摺動可能及びヒンジ結合される。(
図20の対応するガイド332Bの第2シザーアーム322での使用を参照されたい。)すなわち、ガイド332Aは、後端部318において棚310の底面314に強固に固定され、長尺水平に延びるスロット336Aを有する下方に突出するフランジ334Aを含む。ガイドバー338は、第1アーム324Aの第2端部329Aからスロット336Aを通って第2シザーアーム対322に向かって直角に突出している。この構成では、第1アーム324Aの第2端部329Aは、スロット336内で摺動するガイドバー338によって棚310に対して水平に摺動することができ、所望の構成に応じて、スロット336内で回転するガイドバー338及び/又はガイドバー338に対して回転する第2端部329Aのいずれかによって自由に回転することができる。
【0182】
第2アーム326Aはまた、第1端部342A及び対向する第2端部344Aを有する。第1端部342Aは、ヒンジ結合部345Aによって前端部316で棚310の底面314にヒンジ結合される。第2アーム326Aの第2端部344Aは、ガイド346Aによって後端でハウジングアセンブリ246の床252に摺動可能かつヒンジ結合される。すなわち、ガイド332Aは、後端で床252の252の内面に強固に固定され、長尺水平に延びるスロット350Aが形成された上方に突出するフランジ348Aを含む。ガイドピン352Aは、第2アーム326Aの第2端部344Aからスロット350Aを通って第2シザーアーム対322に向かって直角に突出する。この構成では、第2アーム326Aの第2端部344Aは、スロット350A内で摺動するガイドピン352Aによって床252に対して水平に摺動することができ、スロット350A内で回転するガイドピン352A及び/又はガイドピン352Aに対して回転する第2端部344Aのいずれかによって自由に回転することができる。
【0183】
第2シザーアーム対322は、第1シザーアーム対320と同じ構成、構造要素及び床252及び棚310への取り付け部を有する。したがって、上記の説明は、第2シザーアーム対322にも適用可能であり、第1シザーアーム対320と第2シザーアーム対322との間の同様の要素は、第2シザーアーム対322の参照符号が添え字「B」を含むことを除いて同様の参照符号によって識別される。
【0184】
引き続き
図19を参照すると、リフトアセンブリ292は、ベアリング362A及び362Bによって床252に対向する端部に回転可能に取り付けられたねじ付きシャフト360を更に含む。シャフト360にはカラー364がねじ式に取り付けられている。カラー364は、シャフト360が反対方向に回転すると、カラー364がシャフト360の長さに沿って反対方向に移動するように構成され取り付けられる。シャフト360は、床252に取り付けられ、電気回路(
図4)に電気的に結合され、電気回路53によって制御されるモータ366によって選択的に回転される。図示の実施形態では、モータ366は、ユニオン370を介してシャフト360に結合された駆動シャフト368を回転させる。ユニオン370は、駆動シャフト368とシャフト360との間の適切な位置合わせを容易にする遊びを提供する。しかしながら、他の実施形態では、ユニオン370を排除することができ、駆動シャフト368をシャフト360に直接接続することができる。カラー364は、第1シザーアーム320のガイドピン352A及び第2シザーアーム322のガイドピン353Bに接続される。より具体的には、一実施形態では、第1延在部372Aはカラー364とガイドピン352Aとの間に延在し、第2延在部372Bはカラー364とガイドピン352Bとの間に延在する。必要に応じて、カラー364とガイドピン352との間の適切な位置合わせを容易にするために、延在部372を調整することができる。代替的な実施形態では、カラー364は、ガイドピン352に直接結合することができる。
【0185】
モータ366の制御された動作により、リフトアセンブリ292を使用して、上昇位置と下降位置との間で移動棚310/磁石アセンブリ294を選択的に制御することができる。例えば、
図20に示すように、リフトアセンブリ292は、作動位置においてプラットフォーム290に対して持ち上げられた磁石アセンブリ294を有する。すなわち、第1シザーアーム対320及び第2シザーアーム対322は、磁石アセンブリ294の上面298が支持プレート380/プラットフォーム290の底面384に対して又はそれに直接隣接して配置されるように配置される。一実施形態では、磁石アセンブリ294が作動位置まで上昇したときの磁石アセンブリ294の上面298と支持プレート380/プラットフォーム290の底面384との間の距離は、10mm、7mm、4mm、又は2mm未満、又は前述の値のいずれか2つの間の範囲である。すなわち、以下で更に説明するように、磁石アセンブリ294は、単離バッグ206がプラットフォーム290によって支持されているときに、単離バッグ206内に配置されたビーズ179を引き付けて保持するために、プラットフォーム290に十分に接近していなければならない。
【0186】
磁石アセンブリ294をプラットフォーム290に対して下方に非作動位置に移動させるために、モータ366は、カラー364をモータ366から離れるように水平に前進させるねじ付きシャフト360を回転させるように作動される。次に、カラー364は、延在部372及びガイドピン352をガイド346に沿って水平に後方に同時に移動させ、次に、第1アーム324の第2端部344Aを第2アーム326Aの第1端部328Aから水平に離れるように移動させる。端部344A及び328Aが水平方向に分離すると、アーム324及び326は軸377において互いに対して回動し、これにより、アーム324及び326の上端が水平方向に分離して下方に移動し、それにより、
図21に示すように、棚310及び磁石アセンブリ294が支持プレート380に対して下降する。リフトアセンブリが磁石アセンブリ294を下降した非作動位置に移動させたときの磁石アセンブリ294の上面298と支持プレート380/プラットフォーム290の底面384との間の距離は、典型的には、3cm、3.5cm、4cm、4.5cm、5cm又は6cmよりも大きく、或いは前述の値のいずれか2つの間の範囲内である。モータ366が駆動シャフト368を回転させる方向を逆にすることによって、上記のプロセスは逆になり、リフトアセンブリ292を上昇位置に戻すことができる。
【0187】
本発明の一実施形態は、上昇した作動位置と下降した非作動位置との間でプラットフォーム290に対して磁石アセンブリ294を選択的に上昇及び下降させるために、ハウジングアセンブリ246の区画室内に少なくとも部分的に配置された手段を含む。そのような手段の一例は、前述のようなシザーリフト321を含む。代替実施形態では、シザーリフト21は、同じ機能を達成することができる様々な代替機構で置き換えることができる。限定ではなく例として、棚310は、棚310が水平に配置されたままでプラットフォーム290に対して上下に垂直に摺動することを可能にするトラックに取り付けることができる。次いで、様々な機械的システムを使用して、棚310をトラックに沿って移動させることができる。一例として、モータ366を使用して、棚310に接続された接続アームを昇降させるクランクを回転させることができる。或いは、カムが回転すると、モータ366がカムを回転させ、カムに接続され、棚310に延びる従動子が棚310を昇降させるカムフォロアシステムを使用することができる。他の実施形態では、モータ366は、棚310を選択的に昇降させるウォームギヤを往復駆動することができる。他の実施形態では、油圧、空気圧、ケーブル又はチェーンシステムを使用して、棚310をトラックに沿って上昇及び下降させることができる。他の従来のシステムも使用することができる。
【0188】
図22を参照すると、抑制アセンブリ296は、一般に、ハウジングアセンブリ246上に配置された4つの離間したばねアセンブリ420A~420Dと、それに結合されたカバーアセンブリ421とを含む。カバーアセンブリ421は、ばねアセンブリ420のそれぞれに結合され、プラットフォーム290を取り囲むカバーハウジング422と、プラットフォーム290とカバーハウジング422との間に配置された任意選択のスリーブ424と、カバーハウジング422にヒンジ式に取り付けられた蓋426とを備える。次に、抑制アセンブリ296の様々な構成要素について説明する。
【0189】
ばねアセンブリ420Aは、ハウジングアセンブリ246に取り付けられ、ハウジングアセンブリから外向きに突出するブラケット430Aを備える。ブラケット430Aはまた、ハウジングアセンブリ246の一部を形成することができる。ブラケット430Aは、垂直に貫通する穴432Aを有する。ロッド434Aは、孔432A内に摺動可能に受容され、第1端部436Aと対向する第2端部438Aとの間に延在する。第1端部426Aは、ブラケット430Aの上方に突出し、ブラケット430Aに強固に結合されたカラー440Aを有する。カラー440の外径は孔432Aの外径よりも大きく、カラー440によってロッド434Aが孔432Aを通過することが防止される。フランジ442Aは、ロッド434Aの第2端部438Aから外向きに突出する。ばね444Aは、フランジ442Aとブラケット430Aの底面との間に延在し、ロッド434Aが穴432Aを通って上方に押されると、ばね444Aは、ロッド434Aを下方に付勢するように弾性的に圧縮される。ロッド434Aの第1端部436Aは、ねじ付きソケット448Aが形成された端面446Aで終端する。以下により詳細に説明するように、ソケット448Aは、ねじ締結具450Aを受け入れるように構成される。ばねアセンブリ420B、420C、及び420Dは、ばねアセンブリ420Aと同一であり、それぞれカバーハウジング422の対応する角に隣接して配置される。したがって、ばねアセンブリ420Aの上記の説明は、ばねアセンブリ420B~420Dにも同様に適用可能である。更に、ばねアセンブリ420A及びばねアセンブリ420B~420Dの同様の要素は、ばねアセンブリ420B~420Dの参照符号のそれぞれがそれぞれ添え字B、C、及びDを含むことを除いて、同様の参照符号によって識別される。
【0190】
カバーハウジング422は、上縁部460と対向する下縁部462との間に延在する内面456及び対向する外面458を有する環状外周壁454を含む。内面456は、上縁部460と下縁部462との間で外周壁454を貫通する開口464を取り囲む。開口464は、プラットフォーム290を受け入れるように構成される。外周壁454は、前壁466と、側壁470及び472がその間に延在する対向する後壁468とを備える。カバーハウジング422の外面458から外側に突出するのは、4つのマウント474A~474Dである。マウント474A及び474Bは、それぞれその前端及び後端において側壁470から外側に突出している。同様に、マウント474C及び474Dは、それぞれその前方端部及び後方端部において側壁472の外面458から外側に突出する。マウント474は、カバーハウジング422がプラットフォーム290上に受け入れられたときにばねアセンブリ420と整列するように配置される。マウント474Aは、ロッド434Aの第1端部436Aと結合するように構成される。例えば、一実施形態では、マウント474Aは、上面478A及び反対側の底面480Aを有する。凹部482Aは、底面480Aに形成され、ロッド434Aの第1端部436Aを受け入れるように構成される。上面478Aには、凹部482Aに連通する開口484Aが形成されている。開口484Aの直径は、第1端部436Aであるロッド434Aの外径よりも小さい。締結具450Aは、ロッド434Aの第1端部436Aをマウント474Aに固定するように、開口484Aを通過してソケット448Aにねじ込まれるように構成される。ロッド434Aとマウント474Aとを互いに固定するために、様々な代替技術を使用できることが理解される。例えば、構造は、圧入接続、接着剤、溶着、又は様々な他の種類の機械的締結具によって互いに固定することができる。マウント474B~474Dは全て、マウント474Aと同じ構造要素及び構成を有し、ばねアセンブリ420B~420Dのロッド434B~434Dとそれぞれ結合するように同様に構成される。マウント474Aとマウント474B~474Dとの間の同様の要素は、マウント474B~474Dの参照文字がそれぞれ添え字B、C、及びDを含むことを除いて、同様の参照文字によって識別される。
【0191】
カバーハウジング422の前壁466には、上縁部460から下方に延びる凹部486が形成されている。後述するように、凹部486は、クランプアセンブリ402を受け入れるように構成される。
【0192】
スリーブ424はまた、プラットフォーム290を取り囲み、カバーハウジング422の開口464内に受け入れられるように構成された外周壁490を含む。スリーブ424は、スリーブ424がカバーハウジング422と同時に移動するように、締結具及び他の従来技術などによってカバーハウジング422に結合される。スリーブ424はまた、凹部486と整列し、クランプアセンブリ402を受け入れるように構成された凹部492をその中に形成している。スリーブ424は、部分的に、構造的完全性カバーハウジング422を増加させるように機能することができる。例えば、一実施形態では、カバーハウジング422はプラスチックで作ることができ、スリーブ424はアルミニウムなどの金属で形成される。この設計は、コストを削減するが、所望の強度を達成する。代替的な実施形態では、カバーハウジング422の構造的完全性を高めることができ、スリーブ424を排除することができる。
【0193】
蓋426は、前縁504、後縁506、及び対向する側縁508及び510の間に延在する内面500及び対向する外側面502を有する蓋板499を備える。一対の離間したヒンジ512A及び512Bは、蓋板499の側縁508とカバーハウジング422の側壁470との間に延在する。これにより、蓋426/蓋板499がカバーハウジング422にヒンジ式に取り付けられる。蓋426は、側縁部510において又はそれに向かって蓋板499から上方に延在するハンドル514を更に含む。
図15によりよく示されるように、一対のラッチ518A及び518Bは、カバーハウジング422の側壁472に取り付けられ、一対の対応するキャッチ520A及び520Bは、蓋板499の側縁部510に取り付けられる。ラッチ518A及びBは、キャッチ520に解放可能に係合して、蓋426/蓋板499を閉位置に選択的に保持するように構成される。すなわち、カバーハウジング422がばねアセンブリ420に固定された状態で、蓋426は、蓋板499がヒンジ512を中心にして回転されて、プラットフォーム290が開放的に露出され、自由にアクセス可能である開放位置と、蓋板499の内面500がプラットフォーム290の支持プレート380の上面382に対して又はそれに隣接して配置される閉鎖位置との間で選択的に移動することができる。一実施形態では、蓋板499の内面500は、支持プレート380の上面382と平行に整列して配置することができる。閉位置にあるとき、ラッチ518は、蓋426を閉位置に固定するためにキャッチ520に固定することができる。
【0194】
図23を参照すると、抑制アセンブリ296は、ばねアセンブリ420Aと共に動作する停止アセンブリ526Aを更に含むことができる。停止アセンブリ526Aは、電気回路(
図4)と電気的に連通し、電気回路53によって操作されるソレノイドバルブ528Aを備える。ソレノイドバルブ528Aは、ハウジング530Aと、ハウジング530Aに対して選択的に移動されるピストン532Aとを含む。ピストン532Aにはストッパ534Aが取り付けられている。図示の実施形態では、ストッパ534Aは長尺プレートの形態である。他の実施形態では、ストッパ534は異なる構成を有することができる。更に他の実施形態では、ストッパ534を排除することができ、ピストン532Aはストッパとして機能することができる。ストッパ534Aは、ロッド434と平行に整列して配置され、ブラケット430Aとフランジ442Aとの間に配置される。ソレノイドバルブ528Aがピストン532Aを内外に移動させることにより、ストッパ534Aを前進抑制位置と後退非抑制位置との間で移動させることができる。前進抑制位置では、
図23に示すように、ストッパ534Aはフランジ442Aと垂直に位置合わせされる。結果として、ロッド434Aは、
図24に示すように、フランジ442Aがストッパ534Aと接触するまで、垂直上方にのみ移動することができる。
図25に示すように、ストッパ534Aが後退した非抑制位置に移動すると、ストッパ534Aはフランジ442Aから水平方向にオフセットされる。したがって、ロッド434A及びフランジ442Aは、ストッパ534Aによる制限なしに上方に自由に前進することができる。
【0195】
停止アセンブリ526は、各ばねアセンブリ420又は選択されたばねアセンブリのみに関連付けることができる。図示の本実施形態では、
図15に示すように、停止アセンブリ526Bがばねアセンブリ420Dに関連付けられている。停止アセンブリ526Bは、停止アセンブリ526Aがばねアセンブリ420Aと共に動作するのと同じように、ばねアセンブリ420Dの全ての要素を含み、ばねアセンブリ420Dと同じように動作する。したがって、停止アセンブリ526Aと526Bとの間の同様の要素は、停止アセンブリ526Bの要素が添え字Bを含むことを除いて、同様の参照符号によって識別される。
【0196】
以下で更に詳細に説明するように、動作中、単離バッグ206はプラットフォーム290の上に配置される。その後、蓋426は閉位置に移動され、ラッチ528は、蓋426を閉位置にロックするために使用される。この位置では、流体は単離バッグ206の中に送られ、そこから取り出される。単離バッグ206を出入りする流体によって単離バッグ206が拡張及び収縮すると、カバーアセンブリ421はプラットフォーム290に対して異なる位置の間を移動する。例えば、単離バッグ206が空であるとき、ばね444は、各ばねアセンブリ420のカラー440がブラケット430の上に載るように、ロッド434をブラケット430から離れるように下方に弾性的に付勢する。この構成では、蓋板499とプラットフォーム290との間に最小隙間が形成される。流体が単離バッグ206に入ると、単離バッグ206は拡張し始め、これにより、カバーアセンブリ421及びロッド434を上方にかつプラットフォーム290から離れるように押す力が生じる。ロッド434が持ち上げられると、ばね444は、単離バッグ206の拡張及びカバーアセンブリ421の上方への移動にますます抵抗するように圧縮される。単離バッグ206が拡張及び収縮するときにカバーアセンブリ421とプラットフォーム290との間で単離バッグ206を弾性的に圧縮するためにばね444を使用することは、中央で膨らむのとは対照的に、単離バッグ206をより均一な厚さに維持するのに役立つ。結果として、単離バッグ206内に配置されたビーズ179は、プラットフォーム290の近くに、したがって磁石アセンブリ294によって生成された磁場の近くに維持され、それによって磁石アセンブリ294によるビーズ179の保持が改善される。
【0197】
ストッパ534Aが前進抑制位置にある場合、カバーアセンブリ421は、
図24に関して前述したように、フランジ444がストッパ534に当接するプラットフォーム290に対して第1上昇位置までしか上昇することができない。その結果、蓋426/蓋板499とプラットフォーム290との間の単離バッグ206の拡張が制限される。これは、磁石アセンブリ294によってその中のビーズ179に印加される磁場を更に増加させるように、単離バッグ206又はその中に配置された他のバッグが拡張することができる厚さを更に最小限に抑えるのに役立つ。
図25に示すように、ストッパ534が後退した非抑制位置に移動すると、カバーアセンブリ421の上方への移動はストッパ534によって抑制されない。したがって、単離バッグ206は、単離バッグ206が充填容量に達するまで、又はばね444の圧縮が単離バッグ206に入る流体によって生じる外向きの拡張力よりも大きくなるまで、蓋板499とプラットフォーム290との間で拡張し続けることができる。
【0198】
本開示の一実施形態は、カバーアセンブリ421のプラットフォーム290から離れる動きを弾性的に抑制するための手段を含む。そのような手段の一例は、前述のばねアセンブリ420及びその代替例である。しかしながら、様々な他の構造が同じ機能を達成することができることが理解される。例えば、一代替形態では、ばね444は、ロッド434又は他の形態のエラストマー材料を取り囲むエラストマースリーブで置き換えることができる。別の代替形態では、フランジ442とブラケット430の底部との間で各ばね444を圧縮するのとは対照的に、ばね444は、ロッド434が垂直上方に移動するにつれてばね444が弾性的に引き伸ばされるように、カラー440とブラケット430の上部との間に延在し、それらに接続することができる。他の実施形態では、弾性部材は、カバーアセンブリ421とハウジングアセンブリ246との間に延在し、それらに離間した位置で直接的又は間接的に接続することができる。したがって、弾性部材は、カバーアセンブリがプラットフォーム290に対して持ち上げられると、再び弾性的に伸張する。弾性部材は、ばね、弾性バンド、又は他の形態のエラストマー材料を含むことができる。他の構成も使用することができる。
【0199】
図22に戻ると、クランプアセンブリ402は、カバーハウジング422の前壁466に取り外し可能に配置される。クランプアセンブリ402は、単離バッグ206をプラットフォーム290の上に固定してセンタリングするために部分的に使用される。より具体的には、
図27を参照すると、上縁部460から下方に延在するカバーハウジング422の前壁466の中央に凹部486が形成されている。凹部486は、床540と、床540から立ち上がる対向する側面542A及び542Bとによって境界を定められる長尺U字形の構成を有する。U字形チャネル544A及び544Bは、それぞれ各側面542A及び542B内に垂直に窪んでいる。
【0200】
クランプアセンブリ402は、対向する端部552Aと552Bとの間に延在する上面548及び反対側の底面550を有する長尺クランプベース403を備える。端部552A及び552Bは、それぞれカバーハウジング422のチャネル544A及び544B内に摺動可能に受け入れられ、クランプベース403は、チャネル544内で垂直に摺動することができるが、横方向の動きから再訓練される。クランプベース403の上面548の中央に凹んでいるのは、下側捕捉溝554である。クランプアセンブリ402はまた、クランプベース403に取り外し可能に結合することができるクランプクロージャ407を含む。クランプクロージャ407は、上面556及び反対側の底面558を有する。上側捕捉溝555は、底面558の中央に凹んでいる。ねじ又はボルトなどの締結具410A及び410Bは、上側捕捉溝555の両側のクランプクロージャ407を通過し、ねじ又は他の係合によってクランプベース403に選択的に固定することができる。上側捕捉溝555は、クランプクロージャ407がクランプベース403に固定されたときに下側捕捉溝554と整列する。下側捕捉溝554及び上側捕捉溝555はそれぞれ、典型的には、同じサイズ及び形状とすることができる半円筒形の構成を有する。したがって、整列した捕捉溝554,555は、円筒状開口を形成することができる。他の実施形態では、捕捉溝554,555は、半多角形構成などの他の形状であってもよい。
【0201】
前述のように、クランプアセンブリ402は、単離バッグ206をプラットフォーム290の上部にセンタリングして固定するために部分的に使用される。
図29は、単離バッグ206の一実施形態を示す。単離バッグ206は、それに結合されたポート416を有する袋体411を含む。袋体411は、典型的には、底部シート413を覆う上部シート412からなる折り畳み式ピロー型の袋である。シート412及び413は、外周シール414を形成するためにそれらの外周縁部の周りで互いに接合される。接合は、熱エネルギー、高周波(RF)エネルギー、音波エネルギーもしくは音波、又は他の封止エネルギーによる溶着、又は接着剤の使用などの当技術分野で公知の方法を使用することを含むことができる。外周縁部は、前縁部427A、後縁部427B、及びそれらの間に延在する対向する側縁部428A及び428Bを含むことができる。区画室415が、シート412と413との間に境界付けられ、外周シール414によって実質的に囲まれる。また、前縁427A上のシート412と413との間で部分的にシールされているのは、筒状であり、区画室415と連通しているポート416である。図示の実施形態では、ポート416は、カラー417と、そこから外側に突出するステム418とを含む。ステム418は、典型的には有刺され、使用中、ラインセット174Aと単離バッグ206の区画室415との間の流体連通を提供するように、ラインセット174A(
図11)のチューブセクション204Bへの端部と結合される。区画室415のサイズは、意図される用途に依存し、典型的には、少なくとも10mL、40mL、100mL、200mL、400mL、600mL、800mL、1,200mL、1,400mL以下の体積を有するか、又は前述の体積のいずれか2つの間の範囲にある。意図される用途に応じて、他の体積も使用することができる。
【0202】
シート412及び413は、典型的には可撓性ポリマーフィルムから構成される。フィルムは単層であってもよいが、より一般的には、積層又は共押出された複数の層を含む。例えば、各シートは3~9層を含むことができる。シート412及び413用のフィルムは、一般に、4ミル~15ミルの範囲の厚さを有し、4ミル~10ミルがより一般的である。更に、フィルムは、典型的には、十分に可撓性であり、塑性変形せずにチューブに圧延することができ、及び/又は塑性変形せずに少なくとも90°、180°、270°、又は360°の角度にわたって折り畳むことができる。フィルムは、典型的には、生細胞との接触が承認されており、照射によって滅菌することができる。本発明で使用することができる押出材料の一例は、Thermo Fisher Scientificから入手可能なThermo Scientific CX3-9フィルムである。Thermo Scientific CX3-9フィルムは、cGMP設備で製造された3層9ミルキャストフィルムである。外層は、超低密度ポリエチレン製品接触層と共押出されたポリエステルエラストマーである。別の例は、Thermo Fisher Scientificからも入手可能なThermo Scientific CX5-14キャストフィルムである。Thermo Scientific CX5-14キャストフィルムは、ポリエステルエラストマー外層、超低密度ポリエチレン接触層、及びそれらの間に配置されたエチレンビニルアルコール(EVOH)バリア層を含む。
【0203】
単離バッグ206の形成、材料及び特性に関する上記の議論は、混合バッグ210、収集バッグ212及び媒体バッグ216を含む本明細書に開示される他のバッグにも適用可能である。しかしながら、バッグ及び意図される用途に応じて、バッグはまた、複数のポート及び異なるポート構成を有することができる。更に、幾つかの用途では、バッグは、ピロータイプのバッグとは対照的に三次元バッグとなることができ、異なる容積を有し得る。
【0204】
単離バッグ206は、典型的にはプラットフォーム290の支持プレート380の外周縁部386に匹敵するサイズ及び形状を有する外周縁部419を有する。この同様の構成を有することにより、単離バッグ206を支持プレート380上に適切に位置決めして位置合わせすることが容易になる。例えば、一実施形態では、単離バッグ206が支持プレート380上の中心にあるとき、外周縁部386と外周縁部419との間の任意の間隙は、典型的には10mm、8mm、6mm、4mm又は2mm未満である。しかしながら、他のギャップも使用することができる。
【0205】
組み立て中、
図28に示すように、単離バッグ206は、カラー417/ポート416がクランプベース403の下側捕捉溝405A内に受け入れられている間に、プラットフォーム290/支持プレート380上に配置される。カラー417/ポート416の後部は、プラットフォーム290上の単離バッグ206の適切なセンタリング及び位置合わせを確保するのを助けるために、プラットフォーム290の前壁394の面に突き当たることができる。次に、クランプクロージャ407は、前述のようにクランプベース403に固定され、カラー417/ポート416がクランプクロージャ407とクランプベース403との間に強固にクランプされ、それにより、単離バッグ206をプラットフォーム290上にセンタリングし、使用中の望ましくない動きを制限するのに役立つ。単離バッグ206をプラットフォーム290上に適切にセンタリングすることは、磁石アセンブリ294によって生成された磁場が単離バッグ206内のビーズ179に印加される効率を改善するのに役立つ。
【0206】
単離バッグ206がプラットフォーム290上に適切に配置され、クランプアセンブリ402に固定されると、蓋426は、
図2に示すように、閉位置に移動され、ラッチ518によって定位置に固定される。突起431A及び431Bは、
図15に示すように、蓋板499から突出し、クランプアセンブリ402を凹部486内にロックするようにチャネル544A及び544B(
図28)の上部にわたって延在する。単離バッグ206が流体で満たされると、単離バッグ206が拡張し、カラー417/ポート416がプラットフォーム290に対して上昇する。単離バッグ206が充填され空にされるときにクランプアセンブリ402がカバーハウジング422のチャネル544A及び544B内で垂直に上下に自由に摺動する能力は、ポート416が単離バッグ206の残りの部分に対して適切に配向されたままであることを可能にし、例えば、単離バッグのねじれ又は折り畳みを防止するのに役立つ。これは、流体が単離バッグ206に適切に流入及び流出できることを確保するのに役立つ。前述したように、カバーハウジング422/カバーアセンブリ421はまた、単離バッグ206が充填及び空にされるときに上下に調整するが、ポート416は、単離バッグ206の重なり合うシート412及び413の間の中央に維持されるため、ポート416は、カバーハウジング422/カバーアセンブリ421とは異なる速度で垂直に移動する。
【0207】
気泡センサ562A及び562Bなどの1つ以上の気泡センサも、カバーハウジング422の前壁466に固定することができる。気泡センサ562は、電気回路53(
図4)と通信し、U字形チャネル566が貫通した本体564を有する。チャネル566は、単離バッグ206から延びるチューブセクション204Bなどのチューブ200をぴったりと取り外し可能に受け入れるように構成され、空気又は液体が、単離バッグ206に流入及び/又はそこから流出する流体の量を計算する際に使用するために、チューブセクション204Bを通って流れているときを検出するように機能する。
【0208】
幾つかの用途では、より小さい容積を有する単離バッグを使用することが望ましい場合がある。例えば、少量の細胞培養物が処理されている場合、状況によっては、単離バッグ206よりも小さい体積を有する単離バッグに細胞を濃縮することが望ましい場合がある。処理される細胞培養物の容量を小さくするためにより小さいバッグを使用することにより、バッグ内の細胞培養物の流れを制御することがより容易になり、それにより、以下で論じられるように、細胞とビーズとの混合が最適化される。より小さいバッグの使用はまた、バッグからの細胞培養物の流れを制御するのを助けることができる。更に、細胞に損傷を与える可能性があるバッグ内のデッドスペースのリスクが低い。
【0209】
より小さい容積及び対応するより小さい全体形状を有する単離バッグを使用することができるが、そのようなバッグは、プラットフォーム290上に適切に中心合わせして保持することが困難であり得るという点で問題となり得る。更に、異なるサイズのバッグを設計し、製造し、保管することは費用がかかる可能性がある。したがって、本開示の一実施形態の特有の特徴の1つは、単離バッグの全てが同じ外寸及びジオメータを有するが、バッグの一部が区画室415の内部容積を減少させるために更に処理されている単離バッグの形態である。例えば、
図30には、代替的な単離バッグ206Aが示されており、単離バッグ206と206Aとの間の同様の要素は、同様の参照符号によって識別される。単離バッグ206Aは、シート412及び413を一緒にシールし、区画室415を横切って横方向に延びる追加のシールライン423が形成されていることを除いて、サイズ、形状、材料、及び特性が単離バッグ206と同一である。具体的には、シールライン423は、シールされた側縁428Aと428Bとの間で横方向に延在する。シールライン423は、区画室415を活性区画室451と不活性区画室452とに分割する。すなわち、シールライン423の結果として、ポート416を通って単離バッグ206Aに入る流体は、シールライン423と前縁部427Aとの間で境界付けられた活性区画室451のみを占有することができる。流体は、シールライン423によって不活性区画室452内への通過が防止される。活性区画室451は、区画室415の一部のみを含み、したがってそれよりも小さい。
【0210】
シールライン423は、単離バッグ206の外周縁部をシールすることに関して前述したような従来のフィルム接着技術を使用して形成することができる。更に、シールライン423は、単離バッグ206Aを形成する最初の製造プロセスの一部として形成することができ、又は最初の単離バッグ206が形成された後に後に追加することができる。単離バッグ206Aはまた、シート412及び/又は413を通過して不活性区画室452に入る1つ以上の通気孔429を含む。通気孔429は、製造中に不活性区画室452内に捕捉された可能性のある空気が逃げることを可能にし、その結果、単離バッグ206Aは平らになる。意図される用途に応じて、活性区画室451の容積は、シールライン423を前縁427A又は後縁427Bに向かって移動させることによって、製造中に選択的に調整することができる。
【0211】
他の代替的な単離バッグも、1つ以上のシールラインを異なる位置として配置することによって形成することができる。例えば、
図31には、単離バッグ206と206Bとの間の同様の要素が同様の参照符号によって識別される単離バッグ206Bが示されている。ここでも、単離バッグ206Bは、サイズ、形状、材料、及び特性において、シート412及び413を一緒にシールし、ポート416の両側でシールされた前縁部427Aとシールされた後縁部427Bとの間に延在する追加の離間したシールライン423A及び423Bが形成されていることを除いて、単離バッグ206と同一であり得る。シールライン423A及び423Bは、区画室415を活性区画室451と2つの非活性区画室452A及び452Bとに分割する。活性区画室は、シールライン423Aと423Bとの間で境界付けられている。不活性区画室452Aは、シールライン423Aと側縁428Aとの間で境界付けられ、不活性区画室452Bは、シールライン423Bと側縁428Bとの間で境界付けられる。シールライン423A及び423Bの結果として、ポート416を通って単離バッグ206Bに入る流体は、活性区画室451のみを占有することができ、非活性区画室452A及び452Bにアクセスすることができない。
【0212】
単離バッグ206Bはまた、シート412及び/又は413を通過して不活性区画室452Aに入る少なくとも1つの通気孔429Aと、シート412及び/又は413を通過して不活性区画室452Bに入る少なくとも1つの通気孔429Bとを含む。通気孔429は、製造中に不活性区画室452A及び452B内に捕捉された可能性のある空気が、単離バッグ206Bが平らになるように逃げることを可能にする。意図される用途に応じて、活性区画室451の容積は、シールライン423A及び423Bを互いに向かって、又は側縁428A及び428Bに向かって横方向外側に移動させることによって、製造中に選択的に調整することができる。
【0213】
単離バッグ206Bの図示の実施形態では、シールライン423A及び423Bは平行に整列して配置される。
図32には、単離バッグ206Bと206Cとの間の同様の要素が同様の参照符号によって識別される、単離バッグ206Cの別の代替実施形態が示されている。単離バッグ206Cは、平行であるのとは対照的に、シールライン423A及び423Bが、ここではそれらが前縁部427Aから後縁部427Bまで延在するにつれて互いに外方に傾斜することを除いて、単離バッグ206Bと同一である。したがって、単離バッグ206Bに関する上記の議論の残りの部分は、単離バッグ206Cにも適用可能である。他の実施形態では、区画室415の容積を減少させるように、前述のシールラインの組み合わせを使用することができ、又はシールラインを他の向き又は構成で形成することができる。しかしながら、各実施形態では、典型的には、バッグに印加することができる磁石アセンブリ294によって生成される磁場の効果を最大にするのを助けるために、活性区画室をバッグの中心に保つことが好ましい。
【0214】
上記に加えて、様々な開示された単離バッグはまた、幾つかの他の固有の特徴を有する。例えば、幾つかの実施形態では、各単離バッグは、2つ以上のポートを有するのとは対照的に、単一のポート416のみで形成される。全ての流体が流入及び流出する単一のポートを有することは、液体、ビーズ、及び/又は細胞が望ましくないときに停滞及び/又は潜在的に放出する可能性がある未使用のポートに液体、ビーズ、及び/又は細胞が集まっていないことを確保するのに役立つ。更に、シールライン、特に
図32に示すV字形構成を有するものは、液体、ビーズ、及び細胞をポート416に案内して、材料の全てがバッグから容易かつ効率的に除去されることを確保するのに役立つ。単離バッグ及び他のバッグとして使用され得る市販の製品は、OriGen Biomedical(カタログ番号.CSD400Y9、CSD2500Y14号)から入手可能である。そのようなバッグの利点の1つは、ビーズ及び流体が集まることができるポート416の近くにコーナー空間が殆ど又は全くないことであり、潜在的にバッグ内に保持される。
【0215】
ビーズ処理システム14の構成要素に関する上記の議論に照らして、ビーズ処理システム14を使用する方法の一例をここで説明する。まず、ビーズ処理装置22のカバーパネル100を開放位置に移動させて支持パネル92を露出させる。次いで、滅菌消耗キット170Aを支持パネル92上に入れ子にする。この入れ子プロセスの一部として、ラインセット174Aのチューブ200は、ピンチバルブ128、ポンプ124及び気泡センサ136と係合する。同様に、エアフィルタアセンブリ218は、回転アセンブリ132に結合される。ビーズ混合物177を含むバイアル166は、ビーズバイアルカプラ208と流体結合され、ビーズバイアルリテーナ148に取り付けられる。ロッカドライブ234の蓋426も開放位置に移動され、単離バッグ206はプラットフォーム290/支持プレート380上に配置され、クランプアセンブリ402に固定されてその上に適切にセンタリングされる。その後、蓋426は閉位置に移動され、ラッチ518によって閉じられて固定される。カバーパネル100は、消耗キット170Aを覆うように閉位置に移動することもできる。以前に行われていない場合、媒体を含む所望の数の媒体バッグ216は、チューブセクション204H~204Jに流体結合され、バッグスタンド36の留め具99から吊り下げられるか、そうでなければ吊り下げられ得る。最後に、チューブセクション204Aの入口端202は、細胞培養物をラインセット174Aに送達するための供給源に流体結合することができる。供給源は、細胞分離器12又は何らかの他の容器もしくは供給源であり得る。流体が細胞増殖システム16、容器、又はビーズ処理システム14によって産生された単離及び活性T細胞を回収又は処理するための他の何らかの下流処理システムと結合される場合の、チューブセクション204Fの出口端211。前述の組み立てステップのそれぞれは、様々な異なる順序で実行することができることが理解される。
【0216】
次に、ビーズ処理装置22は、ディスプレイスクリーン56又は何らかの他のユーザインタフェースなどを介して起動される。以下のプロセスステップのそれぞれは、予めプログラムされた電気回路53の制御によって自動的に実行することができ、又はユーザインタフェースへの手動入力によって手動で制御することができる。ビーズ処理装置22の起動時に、ピンチバルブ128の全ては、典型的には、ピンチバルブと連結されたチューブセクションを通る流体の流れを妨げるように閉位置に動かされる。選択ピンチバルブが開かれることが議論される以下の方法ステップでは、ラインセット174Aを通る流体の流れを制御するために、残りのピンチバルブは閉じたままであることが理解される。以下のステップは、主に
図11を参照して行われる。
【0217】
ステップ1:部分的に拡張させるために単離バッグ206内に空気を注入する。これは、ピンチバルブ128B及びエアフィルタアセンブリ218Aを開き、ポンプ124Aを作動させることによって達成することができる。ポンプ124Aは、エアフィルタ221Aを通ってチューブセクション204Aに空気を引き込み、次いで、チューブセクション204Bを通って単離バッグ206に空気を送り込む。単離バッグ206内に空気を注入することは、液体と単離バッグ206の表面との間の接触を減少させることによって、単離バッグ206内の液体の流れ及び動きを実質的に改善することができる。したがって、注入された空気は、後述するように、細胞と磁気ビーズとの混合を助けることができる。
【0218】
異なるピンチバルブ128の動作に基づいて、流体は、意図された機能を達成するために様々な異なる経路を通って移動することができることが理解される。したがって、本明細書に記載のプロセスステップは単なる例であり、他のプロセスステップを使用して同じ機能を達成することができる。
【0219】
ステップ2:チューブ及び単離バッグ206を媒体でプライミングする。ピンチバルブ128B及び128Gは、ポンプ124Bを使用して媒体を媒体バッグ216Cからポンプ124B、気泡センサ136A及び136Cを通ってチューブセクション204Bを介して上方へと単離バッグ206に送る間に開くことができる。
【0220】
ステップ3:混合バッグ210に空気を注入する。エアフィルタアセンブリ218B及びピンチバルブ128Eを開くことができ、ポンプ124Bを使用してエアフィルタ221Bからポンプ124B及びピンチバルブ128Eを介して混合バッグ120に空気を圧送することができる。やはり、混合バッグ120内に空気を注入することは、その中の流体の混合を容易にするのに役立ち得る。
【0221】
ステップ4:ビーズ179をバイアル166内に懸濁する。これは、前述のように、モータ162を作動させてバイアルリテーナ148及びバイアル166の回転を容易にすることによって達成することができる。ビーズ179が懸濁バッグ又は他の容器内に保持される場合などの他の実施形態では、注入前に手動又は機械的にビーズ179を懸濁する必要はない場合がある。
【0222】
ステップ4:懸濁ビーズ179をバイアル166から混合バッグ210に注入する。ピンチバルブ128C、128D、及び128Fを開くことができ、ポンプ124Bを使用して、ビーズ混合物177をバイアル166からピンチバルブ128C、128D、及び128Fを通って混合バッグ210に送り込むことができる。
【0223】
ステップ5:混合バッグ210に媒体を注入する。ピンチバルブ128G及び128Eを開くことができ、ポンプ124Bを使用して、媒体バッグ216Cからピンチバルブ128G及び128Eを通って混合バッグ210に媒体を送り込むことができる。媒体は、媒体バッグ216A~216Cのいずれか又はそれらの任意の組み合わせから引き出され得ることが理解される。簡単にするために、本ステップにおける媒体は、同様に媒体バッグ216A~216Cのいずれかから引き出すことができるという理解の下で、媒体バッグ216Cから引き出される。
【0224】
流体又は懸濁液がチューブを通過してバッグ又は容器に入る本明細書に開示される各ステップでは、送達される流体/懸濁液の量は、チューブの長さ、チューブのサイズ、ポンプ動作の持続時間、及びチューブを通る気体の流れと液体の流れとの間の移行に関して気泡センサによって行われる検出などの既知の要因に基づいて測定することができる。これらの要因に基づいて、フィルタリングされた空気をチューブ内に分配するためにエアフィルタアセンブリのうちの1つをいつ開くかを決定することができる。次いで、1つ以上のポンプを使用して空気を圧送して、容器内の流体/懸濁液の測定量を押すと同時に管から液体を除去するのを助けることができる。チューブから液体を除去するために空気を使用することは、チューブを通過してバッグ又は容器に入る液体/懸濁液の将来の量の正確な測定を容易にするのに役立つ。
【0225】
ステップ6:混合バッグ120内でビーズ179を混合する。ピンチバルブ128E及び128Fを開くことができ、ポンプ124Bを使用して、混合バッグ210内の混合物を連続的なループでチューブセクション204Eを通って流出させ、ポンプ124Bを通って流出させ、チューブセクション204Dを通って混合バッグ120に戻すことができる。この流れは、ビーズ179を媒体に均一に懸濁させる。
【0226】
ステップ7:ビーズ179を混合ループから単離バッグ206に移す。ピンチバルブ128F及び128Bを開くことができ、使用されるポンプ124Bは、ビーズ179を含む懸濁液を混合バッグ210からピンチバルブ128F及びピンチバルブ128Bを介して単離バッグ206に移送する。単離バッグ206内に分配されるビーズ179の数は、細胞分離器12又は他の容器から単離バッグ206内に送達される細胞の数に依存し得ることに留意されたい。したがって、混合バッグ210及び/又はバイアル166内のビーズ179の全てが単離バッグ206内に配置されるわけではない。むしろ、一実施形態では、単離バッグ206内に送達されるビーズ179の数は、単離バッグ206内に送達される細胞の数と実質的に等しいか、わずかに大きいだけであり得る。更に、代替の一実施形態では、混合バッグ210を排除することができ、ビーズ179をバイアル166から、又はビーズ179及びチューブに結合された流体を収容する何らかの他のバッグ又は容器から単離バッグ206に直接分配することができる。単離バッグ206が流体で満たされ始めると、単離バッグ206は、カバーアセンブリ421を持ち上げるように、カバーアセンブリ421とプラットフォーム290/支持プレート380との間で拡張する。
【0227】
ステップ8:ビーズ179を含むチューブを単離バッグにフラッシングする。ピンチバルブ128B及び128Gを開くことができ、ポンプ124Bを使用して、媒体を媒体バッグ216Cからチューブを通って単離バッグ206に送ることができる。
【0228】
ステップ9:磁石アセンブリ294を上昇した作動位置に移動させ、揺動を作動させる。リフトアセンブリ292は、磁石アセンブリ294をプラットフォーム290/支持プレート380に対して上昇した作動位置に上昇させるように作動される。磁石アセンブリ294の移動と同時に又は連続して、ロッカドライブ234が作動されて、その上に取り付けられた単離バッグ206を有するプラットフォームアセンブリ232の反復的な揺動を容易にする。ビーズ179が揺動によって単離バッグ206内で混合すると、それらは磁石アセンブリ294に生成された磁力によってプラットフォーム290/単離バッグ206に引き付けられ、それに対して保持される。必要に応じて、ストッパ534Aは、単離バッグ206を充填する前に前進抑制位置に移動させることができる。これは、ビーズ179がプラットフォーム290/支持プレート380に引き付けられる速度を増加させ得るが、単離バッグ206内で処理することができる流体の量も制限し得る。
【0229】
1つの動作方法では、揺動の完了後に磁場を印加することができる。例えば、媒体を単離バッグ206内に圧送する前に、圧送するのと同時に、又は圧送した後に、ロッカドライブ234を作動させて、単離バッグ206が取り付けられたプラットフォームアセンブリ232の繰り返しの揺動を容易にすることができる。この揺動は、ビーズ179のいかなる凝集も結合解除し、あらゆる望ましくない物質を懸濁させるのに役立ち得る。次いで、ロッカドライブ234を停止させ、リフトアセンブリ292を作動させて、磁石アセンブリ294をプラットフォーム290/支持プレート380に対して上昇した作動位置に上昇させることができる。ビーズ179は重力下で沈降し、磁石アセンブリ294に生成された磁力によって単離バッグ206//支持プレート380に引き付けられ、それに対して保持される。一実施形態では、ロッカドライブ234は、単離バッグ206のポート416が上昇するように、プラットフォームアセンブリ232/単離バッグ206を後方又は負に傾斜させることができる。次いで、ビーズ179がポート416内に保持されないことを確保するのを助けるために、少量の空気又は媒体をポート416を通過させて単離バッグ206に入れることができる。次いで、この後方傾斜位置にある間に磁場を単離バッグ206に印加することができる。
【0230】
ステップ10:液体を単離バッグ206から収集バッグ212に移す。ロッカドライブ234は、ポート416が単離バッグ206の残りの部分よりも低く配置されるように、傾斜プラットフォーム290を前方又は正にするように制御することができる。この向きは、流体がポート416を通って単離バッグ206から自由に流出することを確保するのに役立つ。ピンチバルブ128B及び128Jを開くことができ、ポンプ124を使用して単離バッグ206内からピンチバルブ128B及び128Jを通って収集バッグ212内に流体を移送することができる。ビーズ179は、磁石アセンブリ294の磁力下で単離バッグ206内に保持される。上記のステップは、ビーズ179に共有結合していない混合物中の遊離抗体を除去するための予備洗浄ビーズ179として使用される。ビーズ179の上記洗浄は、必要に応じて繰り返すことができる。
【0231】
ステップ11:媒体を単離バッグ206に移す。ピンチバルブ128B及び128Gを開き、ビーズ179が所望の濃度に希釈されるように、規定量の媒体を媒体バッグ216Cから単離バッグ206に移送するためにポンプ124Bを使用することができる。
【0232】
ステップ12:単離バッグ206内でビーズ179を混合する。リフトアセンブリ292を作動させて磁石アセンブリ294を非作動位置まで下降させ、ロッカドライブ234を作動させてプラットフォーム290/支持プレート380及びその上に配置された単離バッグ206を繰り返し揺動させ、それによって媒体内でビーズ179を均一に混合する。
【0233】
ステップ13:細胞培養物を単離バッグ206に移す。ピンチバルブ128A及び128Bを開き、ポンプ124Aを使用して、細胞培養物を細胞分離器12又は入口端202に接続された他の何らかの容器又は供給源から単離バッグ206に移送することができる。
【0234】
ステップ14:所望のT細胞の単離及び活性化を促進する。ロッカドライブ234は、ビーズ179を所望のT細胞を含有する細胞培養物と混合するプラットフォーム290/支持プレート380及びその上の単離バッグ206の揺動を容易にするために、ステップ12から活性化され得るか、又は活性化されたままであり得る。その上に所望の抗体を有するビーズ179は、ビーズ179が混合プロセス中に所望のT細胞と接触すると、所望のT細胞に結合して活性化する。そのような混合は、長期間にわたって起こり得る。限定ではなく例として、混合は、15分~60分、より一般的には20分~40分であり得る。他の持続時間も使用することができる。
【0235】
ステップ15:洗浄ポート416。ロッカドライブ234が停止されると、ピンチバルブ128B及び128Gを開くことができ、ポンプ124Bを使用して媒体バッグ216から単離バッグ206に少量の媒体を圧送し、ポート416内に捕捉された可能性のある細胞及び/又はビーズ179を除去することができる。ポート416のこのフラッシングは、ポート416が上昇するようにロッカドライブ234がプラットフォーム290/支持プレート380及び単離バッグ206を後方に傾斜させている間に起こり得る。
【0236】
ステップ16:ビーズ179と結合したT細胞を捕捉する。次いで、リフトアセンブリ292を作動させて、プラットフォーム290/支持プレート380に対して磁石アセンブリ294を作動位置まで上昇させることができる。磁石アセンブリ294によって生成された磁力により、ビーズ179及びビーズ179に結合したT細胞は、単離バッグ206内に保持されながらプラットフォーム290/支持プレート380に対して保持される。
【0237】
ステップ17:液体を単離バッグ206から収集バッグ212に移す。ロッカドライブ234は、ポート416が下方に配置されるようにプラットフォーム290を積極的に傾けることができる。ビーズ179及びそれに付着した細胞が磁石アセンブリ294によって生成された磁力下で単離バッグ206内に強固に保持されたままである間に、ピンチバルブ128B及び128Jを開き、単離バッグ206から収集バッグ212に流体を圧送するためにポンプ124Bを使用することができる。このステップは、単離バッグ206から陰性細胞画分、すなわちビーズに結合しなかった細胞を除去することである。
【0238】
ステップ18:媒体を単離バッグ206に送達する。ピンチバルブ128B及び128Gを開くことができ、ポンプ124Bを使用して媒体を媒体バッグ216から単離バッグ206に送り込むことができる。
【0239】
ステップ19:洗浄細胞をビーズ179と結合させた。リフトアセンブリ292は、磁石アセンブリ294を非作動位置まで下方に移動させるように作動される。連続的に又は同時に、ロッカドライブ234を作動させて、ビーズ179と新たに送達された媒体中の結合T細胞との混合を促進する。この混合は、長期間にわたって再び起こり得る。しかしながら、この揺動/混合の主な目的は、単離バッグ206内に意図せずに捕捉された可能性のある細胞又は他の生物学的材料を除去して除去することである。
【0240】
ステップ20:単離バッグ206から液体を除去する。リフトアセンブリ292を作動させて、磁石アセンブリ294を活性化位置まで移動させて、ビーズ179及びそれに結合したT細胞を再び捕捉する。ロッカドライブ234は、ポート416が下方に配置されるようにプラットフォーム290を積極的に傾ける。ピンチバルブ128B及び128Gを開き、ポンプ124Bを使用して単離バッグ206から収集バッグ212に液体を圧送することができる。ステップ18~20に記載の洗浄は、所望の回数繰り返すことができる。
【0241】
ステップ21:媒体を単離バッグ206内に送達する。ロッカドライブ234は、チルトを係合解除するように制御され、リフトアセンブリ292は、磁石アセンブリ294を係合解除位置に下げるように作動される。ピンチバルブ128B及び128Gを開くことができ、ポンプ124Bを使用して媒体を媒体バッグ216から単離バッグ206に送り込むことができる。送達される媒体の量は、T細胞が系から分注されるときのT細胞の所望の濃度に依存する。
【0242】
ステップ22:単離バッグ206内の細胞を混合する。ロッカドライブ234を作動させて、ビーズ179とそれに付着したT細胞とを新たに送達された媒体内で混合し、均一な混合物を生成する。
【0243】
ステップ23:単離バッグ206内の懸濁液を細胞増殖システム16又は他の下流処理機器又は収集容器に移す。ピンチバルブ128A及び128Kを開き、ポンプ124Bを使用して、単離バッグ206内の懸濁液を、チューブセクション204Fを介して細胞増殖システム16又は他の下流の処理機器又は収集容器に移送することができる。更に別の代替法では、懸濁液は、ビーズと混合する前に細胞培養物を元々保持していた容器に戻され、その後、細胞増殖システム16に移され得る。上記のステップ21~23は、下流機器内の細胞濃度が所望のレベルに達するまで繰り返すことができる。
【0244】
図1に戻ると、細胞が所望の密度まで増殖した後、又は細胞増殖システム16内の他の所定の条件に達した後、1つ以上の剥離試薬を細胞培養物に添加して、細胞をビーズ179から剥離させることができる。或いは、前述のように、細胞は、細胞がビーズ179から自動的に分離するまで増殖させることができる。この場合、剥離試薬は不要である。他の実施形態では、ビーズ179を有する細胞は、ビーズ179からの細胞の剥離を容易にするのを助けるために、バッグ内などで手動又は機械的に撹拌することができる。次いで、ビーズ、細胞及び媒体の得られた懸濁液をビーズ処理システム18に移して、細胞からビーズ179を分離する。一実施形態では、ビーズ処理システム18は、ビーズ処理システム14が消耗キット170Aに対して変更された消耗キット170Bと共に使用されることを除いて、ビーズ処理システム18と同じである。しかしながら、同じビーズ処理装置22を依然として使用することができる。例えば、懸濁液は、異なる消耗キット170Bが取り付けられた同じビーズ処理システム14にループバックされ得るか、又は同一のビーズ処理装置22を含むが消耗キット170Bが取り付けられた異なるビーズ処理システム18に移送され得る。他の実施形態では、ビーズ処理システム18は、ビーズ処理システム14に対して別の方法で変更することができる。
【0245】
図33に示すように、消耗キット170Bは、トレイ172B及びラインセット174Bを含む。トレイ172Bは、トレイ172Aと実質的に同様であり、トレイ172Aとトレイ172Bとの間の同様の要素は、同様の参照文字によって識別される。トレイ172Bは、やはり、支持パネル92(
図4)の上に入れ子になるように構成されたプレートの形態である。したがって、トレイ172Bは、上面176と、ピンチバルブ128を受け入れるための開口180、ポンプ124を受け入れるための開口182、回転アセンブリ132を受け入れるための開口183、気泡センサ136を受け入れるための開口133、及び圧力センサ140を受け入れるための開口134を有する反対側の底面178とを有する。ここでも、支持パネル92及びその上に取り付けられた構成要素が変更されると、トレイ172も同様に変更することができる。トレイ172Bは、上面176から直立するバッグ抑制部192を含まないという点でトレイ172Aとは異なり、ラインセットの変化のために、チューブ抑制部186の位置が変更されている。
【0246】
ラインセット174Bもラインセット174Aと実質的に同様であり、ラインセット174Aと174Bとの間の同様の要素は同様の参照文字によって識別される。ラインセット174Bは、入口端202とチューブセクション204Kとの間に延在するチューブセクション204Aを含む。入口端202にはコネクタ203Cが配置されており、この場合、コネクタ203Cは、細胞増殖システム16、例えばバイオリアクタ又はその容器と結合することができ、又は細胞、ビーズ179及び液体媒体で構成される培養物を受け入れるための別個の容器又は別個の供給源と結合することができる。エアフィルタアセンブリ218Aは、チューブセクション204Aに配置される。ここで、チューブセクション204Bは、液体媒体を収容する媒体バッグ216Dに結合された第1端部と、チューブセクション204Kに結合された反対側の第2端部とを有する。同様に、チューブセクション204Cは、液体媒体を収容する媒体バッグ216Eと結合された第1端部と、チューブセクション204Bではなくチューブセクション204Kと直接結合されている反対側の第2端部とを有する。
【0247】
ラインセット174Bはまた、他の新しいチューブセクションも含む。具体的には、ラインセット174Bは、ビーズ分離バッグ570の第1ポート568に接続する第1端部と、チューブセクション204Kの端部に接続された反対側の第2端部とを有するチューブセクション204Lを含む。チューブセクション204Mは、ビーズ分離バッグ570の第2ポート569に接続された第1端部と、チューブセクション204Lとの接続の上流でチューブセクション204Kに接続された反対側の第2端部とを有する。ビーズ分離バッグ570は、以下により詳細に説明され、処理バッグの別の例である。チューブセクション204Nは、ビーズ廃棄バッグ572に接続された第1端部と、チューブセクション204Mに接続された対向する第2端部とを有する。最後に、チューブセクション204O及び204Pが設けられる。チューブセクション204Pは、コネクタ203Dに結合された第1端部と、チューブセクション204Lに結合された対向する第2端部とを有し、チューブセクション204Pは、コネクタ203Eに結合された第1端部と、チューブセクション204Lに結合された対向する第2端部とを有する。コネクタ203C~203Dは、コネクタ203Aに関して前述したコネクタのいずれかを含むことができる。コネクタ203D及びEは、ビーズ179から分離された細胞を受容することが望ましい遺伝子編集システム20、容器、又は他の下流処理装置と連結することができる。代替的な実施形態では、チューブセクション204O及び204Pの一方のみが必要とされ得る。ラインセット174Aと同様に、ラインセット174Bは、典型的には、チューブ200とバッグ216,570及び572と事前に組み立てられ、照射などによって閉鎖系として滅菌される。トレイ172Bは、滅菌前又は滅菌後にラインセット174Bに取り付けることができる。使用中、無菌接続プロセスを使用して、コネクタ203C~203Eをそれらの対応する容器又は機器に接続することができる。代替的な実施形態では、チューブ200が滅菌された後、滅菌接続プロセスを使用して、バッグ216,570,572のうちの1つ以上をチューブ200に取り付けることができる。バッグ216,570及び572は、同じ特性を有することができ、単離バッグ206に関して前述したのと同じ材料及びプロセスを使用して製造することができる。
【0248】
図34を参照すると、ビーズ分離バッグ570は、袋体576と、ポート568及び569と、仕切り578とを備える。ビーズ分離バッグ570の袋体576は、単離バッグ206の袋体411と同じ又は実質的に同じサイズ、構成、材料、特性及び代替物であり得る。したがって、袋体411と576との間の同様の要素は、同様の参照符号によって識別される。例えば、袋体576は、典型的には、底部シート413を覆う上部シート412からなる折り畳み式のピロータイプのバッグである。シート412及び413は、外周シール414を形成するためにそれらの外周縁部の周りで互いに接合される。外周縁部は、前縁部427A、後縁部427B、及びそれらの間に延在する対向する側縁部428A及び428Bを含むことができる。接合は、熱エネルギー、高周波(RF)エネルギー、音波エネルギーもしくは音波、又は他の封止エネルギーでの溶着、又は接着剤の使用などの当技術分野で公知の方法を使用することを含むことができる。区画室415が、シート412と413との間に境界付けられ、外周シール414によって実質的に囲まれる。
【0249】
前縁427A上のシート412と413との間で部分的にシールされているのは、ポート568とポート569である。ポート568及び569は、離間され、仕切り578の両側に配置される。更に、ポート568及び569は管状であり、区画室415と連通している。図示の実施形態では、各ポート568及び569は、カラー417と、そこから外側に突出するステム418とを含む。各ステム418は、典型的にはバーブ付きであるが、必須ではない。使用中、ラインセット174Bとビーズ分離バッグ570の区画室415との間の流体連通を提供するように、ポート568のステム418はチューブセクション204Lと結合され、ポート569のステム418はラインセット174B(
図33)のチューブセクション204Mと結合される。ポート568及び569のみが袋体576上に示されているが、他の実施形態では、3つ、4つ、又はそれ以上のポートを、区画室415と連通するように袋体576上に配置することができる。
【0250】
仕切り578は、前縁427Aの外周シール414に接続され、後縁427Bに向かって終端の第2端部582まで延在する第1端部580を有する。一実施形態では、仕切り578は直線状であり、側縁428Aと428Bとの間の中央に配置され、区画室415を二分する直線軸584に沿って延在する。仕切り578は、対向する端部580と582との間の仕切りの長さL
1に沿って延在する対向する側面586及び588を有する。一実施形態では、対向する側面586及び588の少なくとも一部は、平行に整列して配置される。別の実施形態では、仕切りの長さL
1の少なくとも大部分について、対向する側面586及び588は平行に整列して配置される。第2端部582は、仕切り578に対して垂直に突出する拡大領域590を含むことができ、この拡大領域は、拡大領域590から離間した対向する側面586と588との間の幅よりも少なくとも75%、100%、150%、200%又は250%広い。拡大領域590は、仕切り578の長さに沿って移動する流体を区画室415の中心から離れるように偏向させるように設計されている。この撓みは、流体がポート568と569との間を移動する必要がある距離を増加させる。説明のために
図34の概略図を使用すると、ポート568と569の中心間の距離が25mmであり、仕切り578の長さが30mmであると仮定すると、流体がポート568と569の間のビーズ分離バッグ570の区画室415内を移動することができる最短距離は、仕切り578が存在しない場合は25mmであるが、仕切り578が存在する場合は約66mmである。したがって、仕切り578は、流体がポート568と569との間の区画室415内を移動することができる最短距離を2.64倍増加させる。拡大領域590の使用は、流体がポート568と569との間を通過するために移動しなければならない最小距離を更に増加させる。仕切り578は、流体がポート568と569との間の区画室415内を移動することができる最短距離の増加をもたらす任意の数の形状とすることができる。流体がポート568と569との間の区画室415内を移動することができる最短距離のそのような増加は、約1~約50倍(例えば、約1~約50倍、約2~約50倍、約3~約50倍、約4~約50倍、約8~約50倍、約2~約20倍、約2~約30倍、約2.5~約10倍、約8~約30倍、約10~約50倍などで)であり得る。
【0251】
仕切り578の長さL1は、流体流量、ポート568及び569のサイズ、並びに区画室415のサイズなどの幾つかの要因に依存し得る。L1は、少なくとも5mm、10mm、20mm、40mm、50mm、60mm、65mm、70mm、75mm、80mm、100mm、150mm、175mm、もしくは200mmであるか、又は前述の値のいずれか2つの間の範囲にある。別の実施形態では、区画室415は、前縁427Aの外周シール414と後縁427Bの外周シール414との間に延在する長さL2を有する。仕切り578の長さL1は、L2の少なくとも5%、10%、15%、20%、25%、30%、35%、40%、50%、もしくは60%、又は前述のいずれか2つの間の範囲であり得る。他の実施形態では、仕切り578の長さL1は、区画室415の長さL2の約10%~約90%(例えば、約25%~約85%、約25%~約80%、約25%~約75%、約25%~約70%、約25%~約65%、約25%~約60%、約25%~約55%、約25%~約50%、約25%~約45%、約25%~約40%、約25%~約35%、約40%~約90%、約40%~約80%、約40%~約70%、約50%~約90%、約55%~約85%など)まで延在してもよい。
【0252】
一実施形態では、仕切り578は、外周シール414を形成するための前述のプロセスのうちの1つ以上を使用して、重なり合うシート412及び413を互いに溶着することによって形成される。代替的な実施形態では、ポリマーインサートなどのインサートを、重なり合うシート412と413との間に配置することができる。次いで、シート412及び413は、仕切り578を形成するように、溶着又は接着剤などによってインサートの対向する側面に固定することができる。仕切り578はまた、シート412と413との間に密封係合を形成するように、仕切り578の位置でシート412及び413を互いに解放可能に押圧することによって形成することができる。例えば、これはクランプの使用によって達成することができる。特定の構成にかかわらず、仕切り578は、ポート568とポート569との間の流体連通を制限するように構成される。具体的には、仕切り578は、ビーズ179が通過できないように構成され、より一般的な実施形態では、仕切り578は、区画室415内に配置されたビーズ179、細胞、液体媒体及び他の生物学的成分が仕切り578を通過できないように液密である。代わりに、入口ポート568を通って区画室415に流入する流体又は他の構成要素は、ポート569を通って区画室578を出るために、仕切り415(例えば、第2端部582)の周りを通過し(又は流れ)なければならない。したがって、ポート568とポート569との間の直接的な線形アクセスは、仕切り578によって防止される。
【0253】
仕切り578の結果として、区画室415は、ポート568から、仕切り578の第2端部582の周りに、ポート569まで延在する流体経路を有するか、又は形成する。前述のように、仕切り578の追加によって引き起こされる流体経路の延長された長さは、仕切り578を含まないバッグと比較して、区画室415内の流体の保持又は滞留時間を増加させる。以下により詳細に説明するように、この滞留時間の増加は、区画室415内の磁石アセンブリ294によって生成された磁場への流体中に配置されたビーズ179の曝露を誘発及び/又は増加させ、したがってビーズ分離バッグ570内のビーズ179の捕捉を増加させる。ビーズ分離バッグ570及びその仕切り578は、様々な異なる構成を有し、様々な異なる方法で使用することができることが理解される。ビーズ分離バッグ570の代替的な構成、材料、特性、設計、及び使用の例は、2019年1月10日に公開された米国特許出願公開第2019/0010435号明細書に開示されている。
【0254】
図40は、
図34と同様であるが、バッグを通る蛇行流路603を有するビーズ分離バッグ600を示す。蛇行流路603は、2つの下部流路仕切部601と、2つの上部流路仕切部607と、中央流路仕切部609とが組み合わされて構成されている。ビーズ分離バッグ600は、第1ポート568から第2ポート569に行くためにバッグを通って長い距離を移動する材料を必要とする設計である。
【0255】
図40に示すタイプのビーズ分離用バッグの蛇行流路603の最小距離は、長さD2の2倍、長さD3の2倍、長さD4の5倍、長さD2の4倍で算出できる。これは、蛇行流路603ビーズ分離バッグ600は、5つの流路仕切りによって生成されるからである。
【0256】
図40に示すタイプの実施形態を使用して、滞留時間を増加させ、流体中に配置されたビーズの区画室内の磁石アセンブリによって生成された磁場への曝露を誘導及び/又は増加させ、したがってビーズ分離バッグ内のビーズの捕捉を増加させることができる。
図40に示す実施形態は、ビーズ分離バッグ600を通過する材料が、D1よりも大きい第1ポート568から第2ポート569までの最小距離を移動することを可能にする。材料が移動する必要がある距離は、バッグ内の仕切りの数及びそれらの仕切りの長さによって決定される。仕切りの数は、約1~約50(例えば、約2~約50、約3~約50、約4~約50、約5~約50、約6~約50、約7~約50、約8~約50、約3~約30、約4~約20、約5~約10、約5~約12、約5~約25、約10~約20、約10~約30、約15~約40など)まで変動し得る。仕切りの長さは、独立して、ビーズ分離バッグの内部長さの約60%~約98%(例えば、約60%~約98%、約70%~約98%、約75%~約98%、約80%~約98%、約85%~約98%、約90%~約98%、約60%~約90%、約70%~約90%、約80%~約90%、約60%~約80%、約70%~約80%など)で変化し得る。
【0257】
更に、ビーズ分離バッグは、蛇行流路603による第1ポート568と第2ポート569との間の蛇行流路603の最小距離が、D1の距離の少なくとも20(例えば、約20~約1000、約30~約1000、約40~約1000、約50~約1000、約60~約1000、約70~約1000、約80~約1000、約80~約500、約60~約300、約60~約200など)倍であるように設計されてもよい。
【0258】
図35を参照すると、使用中、消耗キット170Bは、前述したように、消耗キット170Aが支持パネル92に取り付けられたのと同じ態様で支持パネル92の上に入れ子にされる。ラインセット174Bは、支持パネル92の機械的構成要素と結合される。例えば、チューブセクション204Aはピンチバルブ128Aと結合され、エアフィルタアセンブリ218Aは回転アセンブリ132Aと結合される(
図5)。コネクタ203Cは、細胞増殖システム16、又は前述のように、細胞及び分離されたビーズ179を含む培養物を受け入れるための別の供給源に接続される。チューブセクション204Bは、媒体バッグ216Dがバッグスタンド36の一方で支持されているか、そうでなければ支持されている間、ピンチバルブ128F内に結合される。チューブセクション204Cは、媒体バッグ216Eがスタンド36の一方で同様に支持されているか、別の方法で支持されている間、ピンチバルブ128C及び128Dと結合される。チューブセクション204Kは、ポンプ124A及び124B、気泡センサ136A及び136C、並びに圧力センサ140に結合される。チューブセクション204Lはピンチバルブ128Gに連結され、チューブセクション204Mはピンチバルブ128Fに連結される。以下で更に論じるように、ビーズ分離バッグ570の流体は、チューブセクション204L及び204Mと結合され、プラットフォーム290に取り付けられる。最後に、チューブセクション204O及び204Pは、それぞれピンチバルブ128H及び128Iと連結され、そのコネクタ203D及び203Eは、遺伝子編集システム20又は何らかの他の下流の容器又は処理システムと連結される。
【0259】
図36を参照すると、クランプアセンブリ605が、カバーハウジング422の前壁466に取り外し可能に配置されている。クランプアセンブリ605は、
図27に関して前述したクランプアセンブリ402と設計が類似しているが、ビーズ分離バッグ570と係合するように特に設計されている。クランプアセンブリ605は、ビーズ分離バッグ570をプラットフォーム290の上に固定してセンタリングするために部分的に使用される。より具体的には、クランプアセンブリ605は、対向する端部608Aと608Bとの間に延在する上面604及び反対側の底面606を有する長尺クランプベース602を含む。端部608A及び608Bは、それぞれカバーハウジング422のチャネル544A及び544B内に摺動可能に受け入れられ、クランプベース602は、チャネル544内で垂直に摺動することができるが、横方向の動きから再訓練される。クランプベース602の上面604には、第1下側捕捉溝610A及び離間した第2下側捕捉溝610Bが凹んでいる。
【0260】
クランプアセンブリ605はまた、クランプベース602に取り外し可能に結合することができるクランプクロージャ612を含む。クランプクロージャ612は、上面614及び反対側の底面616を有する。第1上側捕捉溝618A及び離間した第2上側捕捉溝618Bは底面558内に陥凹している。締結具620A及び620Cは、上側捕捉溝618A及び618Bの両側のクランプクロージャ612を通過し、ねじ又は他の係合によってクランプベース602に選択的に固定することができる。同様に、締結具620Bは、上側捕捉溝618Aと618Bとの間のクランプクロージャ612を通過し、ねじ又は他の係合によってクランプベース602に選択的に固定することができる。締結具620は、ボルト、ねじ、クランプ、ピン、又は他の種類の取り外し可能な締結具を含むことができる。組み立て中、クランプクロージャ612がクランプベース602に固定されると、上側捕捉溝618A及び618Bはそれぞれ下側捕捉溝610A及び610Bと整列する。下側捕捉溝610及び上側捕捉溝618はそれぞれ、典型的には、同じサイズ及び形状とすることができる半円筒形の構成を有する。したがって、整列した捕捉溝610及び618は、円筒状開口を形成することができる。他の実施形態では、捕捉溝610及び618は、半多角形構成などの他の形状であってもよい。
【0261】
クランプアセンブリ605の全体は、チャネル544A及び544B内で自由に摺動可能であることが理解される。したがって、クランプアセンブリ605は、カバーハウジング422から容易に取り外され、プラットフォーム290上に配置されているバッグの構成に応じてクランプアセンブリ402などの異なるクランプアセンブリと交換することができる。
【0262】
組み立て中、
図37に示すように、ポート568及びポート569のカラー417がクランプベース602の下部捕捉溝610A及び610B内にそれぞれ受け入れられている間に、ビーズ分離バッグ570がプラットフォーム290/支持プレート380上に配置される。この例示的な実施形態ではビーズ分離バッグ570が使用されているが、ビーズ分離バッグ600又は本明細書で論じられる任意の他のビーズ分離バッグも同様に使用できることが理解される。カラー417の後部を前壁394の面に突き当てて、プラットフォーム290/支持プレート380上のビーズ分離バッグ570の適切なセンタリング及び位置合わせを確保するのを助けることができる。次に、クランプクロージャ612は、前述のようにクランプベース602に固定され、それにより、カラー417がクランプクロージャ612とクランプベース602との間に強固にクランプされ、それにより、ビーズ分離バッグ570をプラットフォーム290/支持プレート380上にセンタリングし、使用中の望ましくない動きを制限するのに役立つ。ビーズ分離バッグ570が流体で満たされると、ビーズ分離バッグ570が拡張し、カラー417/ポート568,569がプラットフォーム290/支持プレート380に対して上昇する。ビーズ分離バッグ570が充填され空にされるときにクランプアセンブリ605がカバーハウジング422のチャネル544A及び544B内で垂直に上下に自由に摺動する能力は、ポート568及び569がビーズ分離バッグ570の残りの部分に対して適切に配向されたままであることを可能にし、例えば、ビーズ分離バッグ570のねじれ又は折り畳みを防止するのに役立つ。これは、流体がビーズ分離バッグ570に適切に流入及び流出できることを確保するのに役立つ。カバーハウジング422はまた、ビーズ分離バッグ570が充填され空になるにつれて上下に調整するが、前述のように、ポート568及び569はビーズ分離バッグ570の重なり合うシート412及び413の間の中央に維持されるので、ポート568,569はカバーハウジング422とは異なる速度で垂直に移動する。組み立てられた位置では、ポート568及び569にそれぞれ結合されたチューブセクション204L及び204Mは、気泡センサ562A及び562Bに取り外し可能に固定することができる。分離バッグ570がプラットフォーム290/支持プレート380上に適切に配置されると、蓋426が閉じられ、ラッチ518(
図15)によって所定の位置に固定される。
【0263】
前述のように、消耗キット170Bがビーズ処理装置22に結合されると、ビーズ処理システム18は、ディスプレイスクリーン56又は何らかの他のユーザインタフェースなどを介して起動される。以下のプロセスステップのそれぞれは、予めプログラムされた電気回路53の制御によって自動的に実行することができ、又はユーザインタフェースへの手動入力によって手動で制御することができる。ビーズ処理システム18の起動時に、ピンチバルブ128の全ては、典型的には、ピンチバルブと連結されたチューブセクションを通る流体の流れを妨げるように閉位置に動かされる。選択ピンチバルブが開かれることが議論される以下の方法ステップでは、ラインセット174Bを通る流体の流れを制御するために、残りのピンチバルブは閉じたままであることが理解される。
【0264】
ステップ1:磁石アセンブリ241を持ち上げる。リフトアセンブリ292は、プラットフォーム290/支持プレート380に対して上昇した作動位置まで磁石アセンブリ294を上昇させるために使用される。ストッパ534Aは、カバーアセンブリ421がプラットフォーム290/支持プレート380に対して上昇する能力を制限するように、高度な再訓練位置に移動することができる。
【0265】
ステップ2:細胞、ビーズ179及び媒体からなる懸濁液をビーズ分離バッグ570に移す。
図35を参照すると、ピンチバルブ128A、128F、128G、及び128Hを開くことができる。次いで、ポンプ124Aを使用して、細胞、ビーズ179及び媒体で構成される培養物を、チューブセクション204A、204K及び204Mを介してコネクタ203Cに連結された細胞増殖システム16又は他の容器内に収容し、ポート569を介してビーズ分離バッグ570に移すことができる。
図34を参照すると、次いで懸濁液は、仕切り578の第2端部582の周りでビーズ分離バッグ570の区画室415内を流れ、次いでポート568を通って区画室415から出る。懸濁液が区画室415を通過するとき、ビーズ179は、磁石アセンブリ294によって生成された磁場によってプラットフォーム290/支持プレート380に引き付けられ、それに対して固定される。一実施形態では、懸濁液の混合は、磁場によってより良好に捕捉されるプラットフォーム290/支持プレート380にビーズ179を近づけるのを助けることができるロッカドライブ234の作動によってもたらすことができる。しかしながら、他の実施形態では、デビーディングは、ロッカドライブ234を作動させることなく実行することができる。ストッパ534Aを前進抑制位置に位置決めすることにより、ビーズ179に対する磁場の力を更に最適化するようにビーズ分離バッグ570の拡張を制限する。上記により、懸濁液がビーズ分離バッグ570を連続的に流れる際に、プラットフォーム290/支持プレート380に対するビーズ179の効率的な収集が可能になる。ポート568を通って分離バッグ570を出る媒体及び細胞は、チューブセクション204Lに沿って移動し、次いでチューブセクション204Oを通って遺伝子編集システム20又は他の何らかの容器又はシステムに移動する。
【0266】
ステップ2の1つの修正バージョンでは、ピンチバルブ128G及び128Hは、ビーズ分離バッグ570が細胞、ビーズ179及び媒体の混合物で少なくとも30%、40%、又は50%満たされるまで閉じたままであり得る。次いで、ロッカドライブ234は、ポート568及び569が上方に傾斜するようにプラットフォーム290/支持プレート380を傾斜させる。その後、ピンチバルブ128G及び128Hが開かれる。追加の懸濁液がポート569を通ってビーズ分離バッグ570に送り込まれると、ビーズ分離バッグ570内の任意の空気がポート568を通って流出する。空気の全てが除去されると、ロッカドライブ234はプラットフォーム290/支持プレート380を水平に傾ける。次いで、懸濁液の残りは、ビーズ分離バッグ570を通してポンプ輸送され、ビーズ除去された流体が遺伝子編集システム20又は他の何らかの容器に流入する。
【0267】
ステップ3:出力する流動媒体。ピンチバルブ128C、128F、128G及び128Hを開くことができる。ポンプ124Aを使用して、媒体を媒体バッグ216Eからビーズ分離バッグ570を通して、遺伝子編集システム20又は細胞が収集された他の何らかの容器もしくはシステムに圧送することができる。このプロセスは、ビーズ分離バッグ570及び/又はチューブ内の残りの細胞を洗い流すのに役立つ。
【0268】
ステップ4:ビーズ179をビーズ廃棄バッグ572に移送する。リフトアセンブリ292は、磁石アセンブリ294を下降した非作動位置まで下降させる。ピンチバルブ128E、128G及び128Bが開かれ、ポンプ124Bを使用して、媒体を媒体バッグ216Dからポンプ124Bを介してチューブセクション204Lに沿って、ポート568を介してビーズ分離バッグ570に移送する。次いで、媒体は、仕切り578の第2端部582の周りのビーズ分離バッグ570の区画室415内を流れ、次いでポート569を通って区画室415から出る。媒体が区画室415を通過するとき、ビーズ179はもはや磁力下でプラットフォーム290に固定されない。したがって、ビーズ179は、流動媒体と共にポート569を通って運び出される。ビーズ分離バッグ570を出る媒体及びビーズ179は、チューブセクション204Nを通ってビーズ廃棄バッグ572に流れ続ける。一動作方法では、媒体がビーズ分離バッグ570を通って圧送されるときにプラットフォーム290/プラットフォームアセンブリ232及びビーズ分離バッグ570が連続的に揺動するようにロッカドライブ234を作動させることができ、それによってビーズ179をビーズ分離バッグ570から取り外して除去するのを助けることができる。更に、媒体がビーズ分離バッグ570を通って圧送され終わると、エアフィルタアセンブリ218Aからの濾過された空気をビーズ分離バッグ570を通って圧送して、ビーズ179を更に除去するのを助けることができる。
【0269】
追加の任意選択のステップとして、一実施形態では、回収容器がコネクタ203D及び203Eに結合され、そこでビーズ除去細胞が回収される。上記ステップ4が完了すると、ピンチバルブ128I、128D及び128Aを開くことができ、ポンプ124Bを使用して細胞を回収容器からコネクタ203Cに結合された元の容器に戻すことができる。次いで、上記のプロセスステップ1~4を繰り返して、細胞と混合された残留ビーズ179を除去することができる。
【0270】
本開示の実施形態は、従来のシステムを超える幾つかの固有の利点を有する。例として、細胞の活性化及び単離を達成するために磁気ビーズ及び/又は細胞を複数の異なる装置を通して処理又は移送しなければならない従来のシステムとは対照的に、本開示の一実施形態は、単一の装置内でT細胞の単離及び活性化を達成する。更に、幾つかの従来のシステムは、細胞の単離及び活性化を達成するためにビーズ及び/又は細胞の反復手動操作を必要とする。対照的に、本開示の一実施形態は、システムのロード及び始動以外の手動操作又は入力なしに起動及び分離に必要な全てのステップを達成する。
【0271】
本開示の一実施形態はまた、例えば、磁気ビーズからのT細胞の分離に対するT細胞の活性化及び単離などの異なる機能を達成するために、複数の異なる使い捨て消耗性キットを有する単一のビーズ処理装置を使用する。そのようなシステムは、同じ装置に対して複数の異なる用途を有することによってコスト及び記憶要件を最小化する。更に、廃棄することができる使い捨て消耗性キットは、洗浄又は滅菌の必要性を排除し、交差汚染のリスクを回避する。
【0272】
更に、本開示の一実施形態は、装置の必要な構成要素が消耗キットを通過する間に装置のフロントパネル上に簡単かつ容易に入れ子になるように消耗キットを設計することによって、使い捨て消耗キットを処理装置と組み合わせる簡単で洗練された解決策を提供する。組み立ては簡単で直感的であり、それによって組み立ての誤差を制限し、使用効率を改善する。更に、消耗キットを通過する構成要素、例えばピンチバルブ、ポンプ、及びセンサは、容易にアクセス及び検査され、消耗キットのラインセットと容易に結合することができる。
【0273】
本開示は、特にバイアルが長期間セットされている場合に、バイアルから分注しようとするときに磁気ビーズが詰まるという一般的な問題に対する固有の解決策を提供する。すなわち、分配の直前に開示されたバイアル保持システムを使用してバイアルを自動的に又は選択的に回転させ、磁気ビーズを再懸濁し、目詰まりを排除するのに役立つ。
【0274】
本開示の自動リフトアセンブリはまた、手動操作又はビーズを異なる装置に移送する必要なく、磁石ビーズの最適な処理のために磁石の容易な作動及び非作動を可能にするという点で独特であり、利点である。
【0275】
カバーアセンブリと共に使用される開示された抑制装置はまた、不規則なビーズ分離を妨げるか又は生じさせる可能性がある処理バッグの膨らみを受動的に抑制するという点で、既知の技術よりも大幅に改善されている。すなわち、幾つかの用途では、バッグを通過するビーズが磁石によって生成される十分な磁場にさらされることを確保するために、ばねはバッグを特定の最大高さに保つのに役立つ。更に、システムにおけるばねの使用は、バッグの拡張が増加するにつれて抑制力が増加するという点で、幾つかの実施形態において有益である。更に、ばねの弾力性は、バッグから流体を分配するのに役立つ力をバッグに加えるのを助ける。更に、バッグ内の全ての流体が磁気ビーズを内部に引き付けるのに十分な磁力にさらされることを確保するために、ばねを使用してバッグを指定の最大高さに保つことができる。
【0276】
ストッパを選択的に作動させる能力は、幾つかの実施形態においても特に有用である。状況及び処理条件に応じて、ストッパの使用は、ビーズへの磁力の印加を最適化するようにバッグ拡張を所定の厚さに制限するか、又は処理可能な流体の量を最適化するようにバッグの自由な拡張を可能にするかをオペレータが迅速かつ容易に選択することを可能にすることによって、システムに著しい汎用性を提供することができる。
【0277】
本開示のクランプアセンブリはまた、バッグの拡張及び収縮によるバッグ及びポートの動きを考慮するために自由に浮動し、磁力の最適な印加のためにバッグをプラットフォーム上にセンタリングするための単純な機構を提供し、異なるバッグで使用するように設計された他のクランプアセンブリと共に使用するために容易に切り替えることができるという点で独特である。
【0278】
開示されたシステム及び部品並びにそれらの使用には、他にも多くの利点がある。
【0279】
図53には、ビーズ処理システム14(
図1)の代替として使用することができるビーズ処理システム14Aの代替の例示的な実施形態が示されている。ビーズ処理システム14Aと14との間の同様の要素は、同様の参照文字によって識別される。ビーズ処理システム14Aは、再使用可能なビーズ処理装置642と、それと共に使用される使い捨て消耗キット890Aとを備える。
図41及び
図42を参照すると、ビーズ処理装置642は、前述のビーズ処理装置22(
図2及び
図3)の代替の例示的な実施形態である。ビーズ処理装置642とビーズ処理装置22との間の同様の要素も同様の参照符号で識別される。更に、ビーズ処理装置642で使用されるビーズ処理装置22の同様の要素は、ビーズ処理装置22に関して前述したように、構成要素、代替物、及び機能的使用の全てを含むことができる。一般に、ビーズ処理装置642は、ベースアセンブリ646と、ベースアセンブリ646に取り付けられ、それに対して選択的に揺動するように構成されたロッカアセンブリ648と、ベースアセンブリ646から直立した一対のバッグスタンド650A及び650Bとを含む。
【0280】
ベースアセンブリ646は、区画室を境界付けるハウジング652を備える。ビーズ処理装置22のハウジング38内に配置された電気回路53(
図4)を含む同じ電気部品及び他のハードウェアを、ハウジング652の区画室内に配置することができる。ハウジング652は、一般に、主ハウジング654と、そこから外側に突出するステージ656とを備える。より具体的には、主ハウジング654は、前端部658と反対側の後端部660との間に延在する。前端部658には、支持パネル662が配置されている。支持パネル662は、同じ構成要素を有することができ、支持パネル92(
図4)と同じ角度で配置することができる。後端部660には、ビーズ処理装置22に関して前述したように、電力入口66、通気開口64及び電気インタフェースポート58を配置することができるバックパネル664が配置されている。対向するサイドパネル666A及び666Bは、支持パネル662とバックパネル664との間に延在する。
【0281】
ステージ656は、サイドパネル666Bから外側に突出している。ステージ656は、ユーザインタフェース56及び作動スイッチ60が配置される前面668を含む。スクリーン56及び作動スイッチ60は、ビーズ処理装置22で前述したのと同じ設計、代替、及び機能を有することができる。一般に、ユーザインタフェース56(
図58~
図62に関して説明したディスプレイ及びグラフィカルユーザインタフェースを有する)は、ビーズ処理装置642の動作の制御及び/又はその動作特徴及びバイオプロセスパラメータの表示に使用することができる。緊急遮断スイッチ670はまた、前面668に配置することができ、或いはハウジング652に配置することができる。
図43によりよく示されているように、ステージ656はまた、間に棚パネル674が延在するバックパネル672を含む。ステージ656/棚パネル674は、サイドパネル666Bから外側に突出し、典型的には水平に配置される。以下に説明するように、ロッカアセンブリ648は、棚パネル674/ステージ656から立ち上がるか、そうでなければ上方に突出する。ロッカアセンブリ648の一部は、棚パネル674の下のステージ656内に延在してもよい。
【0282】
ビーズ処理装置22は、ステージが突出する主ハウジングを有することに関して同様に説明することができることが理解される。具体的には、
図2~
図4を参照すると、ビーズ処理装置22は、支持パネル92とライザパネル72(本明細書ではバックパネルとも呼ぶことができる)とを含みそれらの間に延在する主ハウジング39と、棚パネル68と、ライザ/バックパネル72から後方に突出するハウジング38のリマインダとを含むステージ41とを含むことができる。ここでも、ロッカアセンブリ34は、棚パネル68/ステージ41から立ち上がるか、そうでなければ上方に突出する。したがって、用途に応じて、ビーズ処理装置は、主ハウジングの後方又は主ハウジングの側方に突出するステージで形成することができる。幾つかの実施形態では、主ハウジングの側面から突出するステージを有することは、利点をもたらすことができる。例えば、ステージ/ロッカアセンブリを主ハウジングの側面に対して横方向に有することにより、そこからバッグを出し入れすることを含む、ロッカアセンブリを操作するためのより容易なアクセスが提供される。更に、主ハウジングの側方にステージを有することにより、スクリーン56をその前面に取り付けることができ、これにより、システム全体のサイズを増大させることなく支持パネルを拡大することができる。支持パネルのサイズを大きくすると、以下で更に説明するように、その上の使い捨てキットの取り付け、取り外し、及び操作を簡単にすることができる。
【0283】
図43に示すように、ロッカアセンブリ648は、ステージ656上に配置されたマウントアセンブリ230と、マウントアセンブリ230に移動可能に結合されたプラットフォームアセンブリ678と、マウントアセンブリ230に対してプラットフォームアセンブリ678を選択的に揺動させるために使用されるロッカドライブ234とを備える。マウントアセンブリ230及びロッカドライブ234は、ビーズ処理装置22に関して前述したのと同じ構成要素、代替物、及び動作機能を有することができる。外側ハウジング679を使用して、マウントアセンブリ230、ロッカドライブ234、及びプラットフォームアセンブリ678の少なくとも一部を取り囲んで、偶発的な損傷から保護するのを助けることができる。
【0284】
図43及び
図44を参照すると、プラットフォームアセンブリ678は、ロッカアセンブリ34に関して前述したように、ハウジングアセンブリ246、リフトアセンブリ292、及び磁石アセンブリ294を部分的に含む。ここでも、ハウジングアセンブリ246、リフトアセンブリ292、及び磁石アセンブリ294は、ロッカアセンブリ34で前述したのと同じ構成要素、代替物、及び動作機能を有することができる。したがって、ハウジングアセンブリ246は、前述のようにマウントアセンブリ230に旋回可能/回転可能に取り付けられ、区画室254を境界付ける。同様に、ロッカアセンブリ648のリフトアセンブリ292は、棚310と、棚310をマウントアセンブリ230に対して選択的に上昇及び下降させるシザーリフト321と、前述のようにリフトアセンブリ292の他の構成要素とを含む。図示のように、シザーリフト321は、ハウジングアセンブリ246の区画室254内に少なくとも部分的に配置される。磁石アセンブリ294は、棚310(
図45)に取り付けられ、したがってリフトアセンブリ292によってマウントアセンブリ230に対して選択的に昇降させることができる。具体的には、前述したように、磁石アセンブリ294は、上昇した作動位置と下降した非作動位置との間で移動することができる。
【0285】
図45を参照すると、プラットフォームアセンブリ678(
図43)は、単離バッグ206(
図10)を取り外し可能に支持することができ、かつハウジングアセンブリ246に固定されるプラットフォーム682を更に含む。図示の例示的な実施形態では、プラットフォーム682は、抑制部686、接点688、絶縁シール690、支持プレート692、及び保持フレーム694を含む。保持フレーム694は、連続ループを形成することができる内壁710と、スロット714がその間に形成されるように内壁710を取り囲む外壁712とを備える。床716(
図49)は、外壁712の下端と内壁710とを互いに接続するようにそれらの間に延在する。内壁710は、保持フレーム694を通過する開口719を取り囲む内面718を有する。フランジ721は、内面718から開口719内に内向きに突出する。
【0286】
以下で更に詳細に説明するように、離間した管状スリーブ720がスロット714内に配置され固定される。
図46に示すように、各管状スリーブ720は、下端で開口し、対向する上端で端壁724によって閉栓された通路722を境界付けている。狭窄開口726は、通路722と連通するように端壁724を通って延在する。図示の実施形態では、保持フレーム694の各対向する側に2つずつ、四つの管状スリーブ720が形成されている。他の実施形態では、他の数のスリーブ720を形成することができる。保持フレーム694はまた、保持フレーム694の前端で内壁710の上端を通過する通路727を含む。ガイド729A及び729Bは、通路727の両側に隣接してスロット714内に形成される。各ガイド729A及び729Bは、それぞれ下方に延在するチャネル731A及び731Bを取り囲む。
【0287】
組み立て中、保持フレーム694は、開口719が磁石アセンブリ294と整列するようにハウジングアセンブリ246に固定される。例えば、床716又は保持フレーム694の他の部分は、ハウジングアセンブリ246のフランジ391に固定することができる。
【0288】
支持プレート692は、保持フレーム694の開口719内に固定され、使用目的に応じて単離バッグ206(
図29)又はビーズ分離バッグ570(
図34)を直接支持するために使用される。例えば、支持プレート692は、開口719内に配置されるように、保持フレーム694のフランジ721上に配置することができる。溶着、締結具又は接着剤などの従来の締結技術を使用して、支持プレート692をフランジ721に固定することができる。例示的な一実施形態では、支持プレート692は、典型的には、導電性金属などの導電性材料で作られる。しかしながら、支持プレート692は、磁石アセンブリ294によって生成された磁場が通過することを可能にしなければならない。支持プレート692は、前述の支持プレート380の特性、寸法、及び/又は代替形態の全部又は一部を有することができる。
【0289】
図45及び
図46を参照すると、絶縁シール690は、連続ループの形態であり、支持プレート692の外周縁部の上に配置される。絶縁シール690は、典型的には、支持プレート692に対して液密シールを形成することができる非導電性材料から作製される。例えば、絶縁シール690は、エラストマー材料、ゴム、又は同様の特性を有する他の材料から形成することができる。必要に応じて、絶縁シール690と絶縁シール690との間に接着剤又はシーラントを配置して、それらの間に液密シールを形成することができる。一実施形態では、1つ以上の保持リブ728は、絶縁シール690の上面から上方に突出することができる。
【0290】
接点688は、支持プレート692から離間するように、より具体的には、支持プレートの上方に上昇するように、絶縁シール690の上に配置される。接点688も連続ループを形成し、絶縁シール690と同様の構成を有することができる。例えば、接点688は、典型的には、絶縁シール690の幅と同じ又はそれよりも小さい幅を有し、それにより、配置されたときに接点688が絶縁シール690を越えて突出しないようになっている。接点688はまた、支持プレート692を作製することができる同じ種類の材料などの導電性材料から作製される。絶縁シール690と接点688との間に液密シールを形成することもできる。絶縁シール690と接点688との間のシールは、絶縁シール690及び/又はそれらの間に配置された接着剤又はシーラントの材料特性の結果であり得る。
【0291】
接点688を貫通して延在する1つ以上のスロット730を形成することができる。スロット730は、接点688が絶縁シール690の上に配置されたときに、絶縁シール690の上に接点688を固定するようにリブ728がスロット730を通過するか、又はそれを通って押圧され、それによって絶縁シール690に対する接点688の横方向の移動を防止又は制限するように構成することができる。
図46は、フランジ721上に支持された支持プレート692と、支持プレート692の外周に配置された絶縁シール690及び接点688とのアセンブリを示す。
【0292】
図45及び
図46にも示すように、抑制部686は、絶縁シール690及び接点688の上に配置される。抑制部686は、典型的には「h」字形の構成を有し、開口736を部分的に取り囲む境界壁734を備える。より具体的には、境界壁734は、内側脚部738と、外側に離間した外側脚部740と、外側脚部740の上部から内側脚部738の中央部分まで延在する座部744とを有する。外側脚部740は、内側脚部738よりも下方に突出する。抑制部686はまた、開口736から外向きに突出する境界壁734の対向する端部の間に延在する746を含む。
図49に示すように、トレイ746は、開口736から外方に離れて突出する上向きに傾斜した床748を備える。床748は、境界壁734に接続された直立側壁750Aと750Bとの間で横方向に延在する。リップ752は、床748の終端部から直立し、側壁750Aと750Bとの間に延在する。一対の離間したポスト754A及び754Bは、それぞれ側壁750A及び750Bに隣接するが、側壁750A及び750Bから離間して、床748の内側端部から上方に突出する。トレイ746の機能については後述する。
【0293】
抑制部686は、絶縁シール690及び接点688を適切に位置決めして固定するように部分的に機能する。
図46に示すように、外側脚部740は、絶縁シール690及び/又は接点688が外側脚部740の内面に当接又は隣接した状態で支持プレート692上に直接着座する。抑制部686/外側脚部740の間の係合は、液密シールを形成することができる。外側脚部740は、絶縁シール690及び接点688の外側への移動を抑制するように機能する。内側脚部738は、接点688を通過したリブ728の内側で接点688の上に位置する。リブ728は、絶縁シール690及び/又は接点688が内側への移動を抑制されるように、内側脚部738に当接又は隣接する。抑制部686はまた、トレイ746が保持フレーム694の通路727を通って突出するように配置される。これにより、トレイ746の両側にガイド729A、729Bが配置される。
【0294】
図57に示すように、プラットフォーム682は、単離バッグ260及びビーズ分離バッグ570を受容するように構成されたキャビティ696を境界付ける。具体的には、以下で更に説明するように、キャビティ696は、支持プレート692と、そこから取り囲んで直立する抑制部686とによって少なくとも部分的に境界付けられる。
【0295】
プラットフォームアセンブリ678はまた、その上に配置されたときに支持プレート692及び単離バッグ206/ビーズ分離バッグ570を少なくとも部分的に覆う抑制アセンブリ760(
図48に示す)を含む。抑制アセンブリ760は、一般に、4つの離間したばねアセンブリ762A~762D(
図45)と、それに結合されたカバーアセンブリ764(
図48)とを備える。カバーアセンブリ764は、ばねアセンブリ762のそれぞれに結合されたカバーハウジング766(
図47)と、カバーハウジング766にヒンジ式に取り付けられた蓋768(
図48)とを備える。次に、抑制アセンブリ296のこれらの様々な構成要素について更に詳細に説明する。
【0296】
図46を参照すると、各ばねアセンブリ762は、コイルばね772によって囲まれた長尺ロッド770を含む。フランジ774は、ロッド770の下端から外向きに突出し、ばね772をロッド770の下端に固定する。組み立て中、各ばねアセンブリ762は、各ロッド770の上端が対応する狭窄開口726を通過するように、保持フレーム694の対応する管状スリーブ720内に受け入れられる。しかしながら、ばね772は、狭窄開口726よりも大きい直径を有し、したがって、ばね772は、スリーブ720の通路722内に捕捉され、端壁724に対して付勢する。一実施形態では、フランジ774は、ロッド770が通路722内を摺動するときに通路722内を自由に摺動することができるが、狭窄開口726を通過することができないようなサイズである。したがって、ロッド770が狭窄開口726を通って引き上げられると、ばね772が端壁724に対して圧縮され、それによってロッド770に対する弾性付勢力が生じる。
【0297】
図47を参照すると、カバーハウジング766は、上部カバー778と、下部カバー780と、それらの間に配置された中間カバー782とを含む。下部カバー780は、中央開口786を部分的に取り囲み、典型的には水平に配置される座部784と、座部784の外側縁部から垂直に突出するサイドパネル788とを含む。取付穴790は、座部784を貫通している。組み立て中、
図46に示すように、下部カバー780は、各ロッド700の上端が対応する取付穴790を通過するように、保持フレーム694の上に配置される。この位置では、支持プレート692は中央開口786と位置合わせされる。次に、締結具又は別の取り付け機構を使用して、ロッド700の上端を下部カバー780に固定する。例えば、図示の実施形態では、Cクリップ792A及びBは、下部カバー780に対するロッド700の移動を排除又は少なくとも制限するように、座部784の上方及び下方の位置でロッド700に固定される。スロット787は、前端下部カバー780において座部784及びサイドパネル788を貫通して延在する。トレイ746は、下部カバー780が保持フレーム694上に配置され固定されると、スロット787内に受け入れられる。組み立てられた構成では、下部カバー780(及びそれに接続された他の構成要素)は、ロッド700が狭窄開口726を通って上方に摺動することによって、保持フレーム694に対して手動で上昇させることができる。しかしながら、ロッド700が上昇すると、前述したようにばね772が圧縮され、それにより、下部カバー780を保持フレーム694に向かって戻したい弾性付勢力が生じる。
【0298】
図47にも示すように、電子ラッチ796A及び796Bは、それぞれガイド729A及び729Bのチャネル731A及び731B内に着座している。各電子ラッチ796は、チャネル731内で自由に並べられ得る長尺下端795と、上端799がガイド729の上部に載るようにチャネル731よりも大きい寸法を有する拡大上端799とを有する。ラッチ要素798は、以下に説明するように、蓋768を選択的にロック及び解放するために電子的に開閉することができる上端799に配置される。上記を考慮して、電子ラッチ796は、ガイド729によって案内されながらチャネル731内で上下に自由に摺動することができる。しかしながら、ラッチ796は、チャネル731を完全に通過することが停止される。電子ラッチ796A及び796Bは、ハウジング652内の電気回路53に結合され、所望に応じて動作するようにプログラムすることができる。
【0299】
中間カバー782は、開口801を部分的に取り囲むレール800を含む。レール800は、その底部に形成されたチャネル807を境界付けるU字形横断面を有する(
図46)。レール800の両端部には、ラッチカバー811A、811Bが配置されている。スロット813は、ラッチカバー811Aと811Bとの間に形成され、トレイ746を受け入れるように構成される。レール800上には、ハウジング652内の電気回路53と電気的に結合され、蓋768が開位置にあるか閉位置にあるかを決定するために使用される近接センサ816が配置される。組み立て中、中間カバー782は、取付穴790を覆うように下部カバー780の座部784の上に配置される。この位置では、ロッド770の上端はチャネル807内に配置される。中間カバー782は、従来の締結技術を使用して下部カバー780に固定することができる。ラッチカバー811A及び811Bは、トレイ746がそれらの間のスロット813内に配置されている間、電子ラッチ796の一部を覆う。
【0300】
引き続き
図46及び
図47を参照すると、上部カバー778は、開口809を部分的に取り囲むキャップレール808を含む。スロット810は、上部カバー778の前端部でキャップレール808を貫通して延在し、一方、後部パネル812は、上部カバー778の後部でキャップレール808から下方に突出する。キャップレール808はまた、その底部に形成されたチャネル814を境界付ける実質的にU字形の横断面を有する。
図46に示すアセンブリでは、キャップレール808は、中間カバー782を覆うように下部カバー780の座部784の上に位置する。上部カバー778は、下部カバー780に固定され、それにより、上部カバー778、中間カバー782、及び下部カバー780は、互いに接合され、前述したように、ロッド770の移動によって一体に上下に垂直に移動することができる。
【0301】
図48を参照すると、蓋768は、ヒンジ818A及び818Bによって上部カバー778にヒンジ式に取り付けられる。このように、蓋768は、支持プレート692が露出する開位置と、支持プレート692が蓋768によって覆われる閉位置との間で回動することができる(
図41)。蓋768は、蓋体820と、蓋板822と、キャッチ824とを有する。蓋板822は、典型的には長方形の形状を有し、蓋体820とは別個かつ別個のフラットパネルを備える。一実施形態では、蓋板822は、ガラス又は透光性ポリマーなどの透光性材料から作製される。他の実施形態では、蓋板822は、半透明である必要はなく、蓋体820と一体要素として一体的に形成することができる。
【0302】
蓋体820は、貫通する開口828を取り囲む連続ループに形成された外周壁826を備える。
図46に示すように、例示的な一実施形態では、外周壁826は、開口828を取り囲む内壁830と、内壁830を取り囲む離間した外壁832と、それらの間に延在する移行壁834とを含む実質的にU字形の横断面を有する。外周壁826は、カバーハウジング766及び抑制部686を受容及び/又は覆う凹部チャネル835を境界付ける。必須ではないが、移行壁834は、外壁832から内側に突出する環状上壁836と、上壁836から内壁830に下方に傾斜する環状保持壁838とを含むことができる。蓋板822は、開口828を覆うように、蓋体820の中央に取り付けられている。より具体的には、一実施形態では、蓋板822は、開口828を覆うように、ねじ又は他の締結具又は締結技術などによって内壁830の下端に固定される。組み立てられた蓋768は、蓋板822及びそこから直立する外周壁826によって境界付けられた上側キャビティ829を形成する。
図49に示すように、複数の離間したチャネル840は、上側キャビティ829と連通するように、内壁830の底縁に沿って、すなわち蓋板822に対して直接、内壁830を通過する。
【0303】
図48に戻ると、スロット842は、蓋体820の前端で外壁832の下端を通って延在する。キャッチ824は、蓋体820の前端でスロット842内の外周壁826に固定されている。キャッチ824は、その対向する端部に配置されたキャッチ要素844A及び844Bを有するキャッチ本体843を備える。キャッチ要素844A及び844Bは、それぞれラッチ796A及び796Bのラッチ要素798に係合して、閉位置にあるときに蓋768の選択的ロックを容易にするように構成される。
【0304】
蓋768が閉位置にあるとき、
図1に示すように、出口776は、蓋768とキャビティ696と連通するトレイ746との間を通過して形成される。保持フレーム694の外側には、長尺トラック777が固定されている。
図50によりよく示されているように、一対の溝付きチャネル779A及び779Bは、その長さに沿って延在する。トラック777の一端はトレイ746と位置合わせされて交差し、反対側の端部は主ハウジング654に向かって配置されている。
【0305】
ロッカアセンブリ648は、前述のロッカアセンブリ34と実質的に同じ方法で動作する。例えば、最初に蓋768が開放位置に移動され、
図50に示すように、単離バッグ206が、支持プレート692上に直接載置され、抑制部686によって取り囲まれるように、キャビティ696内に配置される。使用目的に応じて、単離バッグ206をビーズ分離バッグ570に置き換えることができる。しかしながら、この実施形態では、単離バッグ206は、ポート416の両側の外周シール414又は外周シール414の外側で袋体411を貫通する穴850A及び850Bを有する。支柱754A及び754Bは、それぞれ穴850A及び850Bを通過して、支持プレート692上に単離バッグ206を適切に位置決めし、強固に保持する。バッグ848のポート416から延在するチューブ200は、トレイ746上に支持されている間に出口767を通ってキャビティ969から出る。次いで、チューブ200は、トラック777の溝付きチャネル779A及び779Bの一方の中に受け入れられ、それに沿って主ハウジング654に向かって延びる。
【0306】
単離バッグ206が適切に位置決めされると、蓋768は手動で閉位置に移動され、それにより、単離バッグ206は、蓋768と支持プレート692との間、より具体的には、蓋768の蓋板822と支持プレート692との間に位置決めされる。ロッカアセンブリ648は、蓋768が閉位置に移動したときに自動的にロックするように構成することができ、又はロックするために手動の作動を必要とすることができる。例示的な実施形態では、ロックは、キャッチ824と係合するラッチ796、より具体的には、キャッチ要素844と係合するラッチ要素798によって達成される。代替の実施形態では、単一のラッチ要素798及びキャッチ要素844を使用することができ、又は代替のロック構造を使用することができる。
【0307】
蓋768がロック位置になると、液体は、チューブ200を通って単離バッグ206内に送達され得る。単離バッグ206が液体で拡張すると、カバーアセンブリ764及びトラック777が支持プレート692に対して上昇する。具体的には、蓋768が閉位置にある状態で、単離バッグ206を支持プレート692と蓋板822との間に押し込むか、又はそれらに直接隣接して配置することができる。したがって、単離バッグ206が液体で拡張すると、単離バッグ206は蓋768/蓋板822を外側に押し、ロッド770が上方に移動することによって、カバーアセンブリ764/トラック777の全てを支持プレート692に対して上昇させる。しかしながら、前述したように、ロッド770が上方に移動すると、ばね772が圧縮され、これにより、蓋768/蓋板822によって単離バッグ206上に弾性的な下向きの力が生じる。この下向きの力は、単離バッグ206を固定して移動を制限することと、単離バッグ206を平らにする、すなわち中央の膨らみを制限することとの両方に役立ち、その結果、単離バッグはより均一な厚さを有する。ロッカアセンブリ34に関して前述したように、単離バッグ206のこの平坦化は、単離バッグ206内の液体への磁場の印加に役立つことができる。
【0308】
ロッカアセンブリ648の例示的な一実施形態では、抑制アセンブリ760はまた、各ばねアセンブリ762A~Dと共にそれぞれ動作するロッカアセンブリ34(
図22~
図25)の停止アセンブリ526A~Dを含むことができる。具体的には、ロッカアセンブリ34で前述したのと同じ態様で、停止アセンブリ526A~526Dを管状スリーブ720に隣接して保持フレーム694に取り付けて、管状スリーブ720を通して選択的に突出させることによってばねアセンブリ762(
図46)のフランジ774と選択的に係合することができる。ロッカアセンブリ34と同様に、停止アセンブリ526は、ばねアセンブリ762のフランジ774に選択的に係合するか、又は係合しないように電子的に制御することができる。停止アセンブリ526とフランジ774との係合は、ロッド770及びカバーアセンブリ764の上方への移動を制限し、それによって単離バッグ206/ビーズ分離バッグ570の拡張を制限する。或いは、停止アセンブリ526がフランジ774と係合しないとき、ロッド770及びカバーアセンブリ764は、ばね772によって提供される制限を除いて、抑制されずに自由に上方に移動する。
【0309】
ロッカアセンブリ648は、クランプアセンブリ402(
図28)が排除されているという点でロッカアセンブリ34とは部分的に異なる。具体的には、一実施形態では、交差するトラック777を有するトレイ746は、クランプアセンブリ402の必要性を排除するために、単離バッグ206のポート416及びそこから延びるチューブ200の十分な支持及び整列を維持し、それによってロッカアセンブリの設計及び動作を単純化する。
【0310】
ロッカアセンブリ34に関して前述したのと同じ態様で、ロッカアセンブリ648のロッカドライブ234は、意図された用途に必要に応じて、マウントアセンブリ230に対してプラットフォームアセンブリ232/単離バッグ206を傾けるように、及び/又はプラットフォームアセンブリ232/単離バッグ206を繰り返し揺動させるように選択的又は自動的に作動させることができる。更に、ロッカアセンブリ34に関して前述したのと同じ態様で、ロッカアセンブリ648のリフトアセンブリ292を選択的又は自動的に作動させて、意図する用途に必要に応じて、磁石アセンブリ294を支持プレート692に対して上昇及び下降させることができる。
【0311】
例示的な一実施形態では、ロッカアセンブリ648のカバーアセンブリ764は、支持プレート692上に配置された単離バッグ206又は任意の他のバッグからの液体の漏れを自動的に検出し、そこから漏れている液体を捕捉することができる。例えば、
図46を参照すると、使用中、単離バッグ206(
図50)は、支持プレート692と蓋板822との間に配置される。絶縁シール690及び接点688は、単離バッグ206に隣接して配置される。前述のように、接点688は、支持プレート692から電気的に絶縁され、支持プレートよりも高い高さで離間するように絶縁シール690の上に位置する。絶縁シール690は支持プレート692を取り囲んで液密シールを形成するので、液体が単離バッグ206から漏れ始めると、液体は絶縁シール690によって取り囲まれたキャビティ、すなわちキャビティ969内に捕捉され、液体が漏れ続けると、高さ絶縁シール690に沿って上昇し始める。前述のように、支持プレート692及び接点688はそれぞれ、ハウジング652内の電気回路53に別々に電子的に接続される。絶縁シール690から漏れる液体は導電性になる。したがって、漏れた液体があるレベルまで上昇するか、又はプラットフォームアセンブリ678の揺動などによって他の方法で操作され、その結果、液体が接点688と接続すると、電気回路53に信号を提供する電気的短絡/電気回路が生成され、それによって漏れが発生していることを知らせる。次に、電気回路53は、ビーズ処理装置22の全ての動作を停止するか、又は動作を選択するように、及び/又は漏れをオペレータに通知する可聴及び/又は視覚インジケータを提供するように自動的にプログラムすることができる。
【0312】
漏れ検出構成要素は任意選択であり、排除することができることが理解される。その場合、絶縁シール、接触、及び/又は抑制部686を排除することができる。更に、漏れ検出構成要素が除去される場合、支持プレート692は、導電性材料から作製される必要はなく、プラスチック又は複合材料などの他の材料から作製することができる。液体がバッグ848から漏れ続けると、液体は、抑制部686によって横方向に抑制されることによってキャビティ969内に捕捉される。蓋板822が半透明であることにより、蓋板822の下方において漏れた液体を視認することができる。液体がキャビティ969と共に上昇し続けると、液体が蓋板822の上部、すなわち上側キャビティ829内に配置されるように最終的にチャネル840を通って流れるように、蓋768の内壁830を通してチャネル840が形成される。その結果、漏れた流体をより容易に視認することができる。蓋板822の上方に突出する蓋体820は、上側キャビティ829の外部への漏れ液のこぼれを抑制する。保持壁838の傾斜は、漏れた液体を検出するために上側キャビティ829に改善された視認性を提供する一方で、保持壁838上に跳ね返り得る液体を蓋板822に向けて戻す。
【0313】
図41及び
図42に戻ると、各バッグスタンド650は、ハウジング652に接続された下端及び対向する上端を有するポール860を備える。ポール860は固定長とすることができるが、図示の実施形態では、ポール860は、下部ポール862と、下部ポール862内に摺動可能に配置された上部ポール864とを含む調整可能な伸縮ポールである。クランプなどの解放可能な締結具866は、下部ポール862に配置され、上部ポール864を下部ポール862に対して選択的に抑制するように機能する。キャッチ868は、ポール860の上端にヒンジ式に取り付けられている。より具体的には、
図48に示すように、アーム876は、ポール860の上端から外側に突出している。例示的な一実施形態では、アーム876は、ポール860から径方向又は直交して外向きに突出することができる。アーム876は、ポール860に中心的に接続されたU字形本体878を有することができ、ステム880A及び880Bは、本体878の対向する端部から外向きに突出する、例えば直角に突出する。
【0314】
キャッチ868は、上端882及び反対側の下端884を有するプレート870を備える。一対の離間したC字形フィンガ886A及び886Bは、プレート870の上端886から突出している。フィンガ886A及び886Bは、ステム880A及び880Bに解放可能にスナップ嵌合するように構成される。この結合は、以下に説明するように、キャッチ868がアーム876に解放可能に固定されて、キャッチ868からのバッグの取り付け及び/又は取り外しを簡単にすることを可能にし、また、キャッチ868がアーム876上に保持されている間にキャッチ868がアーム876上で旋回して、キャッチ868上のバッグの取り付け、取り外し、又は操作を容易にすることを可能にする。キャッチ868の下端884は、その中に上方に窪んだ複数の離間した切り欠き872を有する底縁部888で終端する。プレート870はまた、複数のL字形フィンガ874を含み、各フィンガ874は対応する切り欠き872内に突出している。使用中、ゴミ袋、収集袋、及び/又は媒体、生物学的生成物、ビーズ及び/又は他の生成物を含む袋など、ビーズ処理装置642の動作に使用される袋は、対応するフィンガ874上で袋のハンガーを支持することによってキャッチ868上に隣接して支持することができる。ハンガーは、バッグから延びるか、又はバッグの外周を通って延びる穴によって形成されてもよい。各プレート870は、その中に対応するフィンガ874を有する少なくとも2、4、6、8、10又はそれ以上の切り欠き872を有することができる。他の数も使用することができる。
【0315】
図41に戻ると、ビーズ処理装置22の前述の支持パネル92と同様に、支持パネル662は、支持パネル92で前述したのと同じように機能するベースパネル及びオーバーリー(overly)パネルを含むことができる。更に、ビーズ処理装置22と同様に、複数の機械的構成要素が支持パネル662に接続されているか、そうでなければ外側に突出している。この例示的な実施形態では、機械的構成要素は、ピンチバルブ128A~128K、ポンプ124、気泡センサ136A及び136B、並びに圧力センサ140A及び140Bを含む。ビーズ処理装置642のピンチバルブ128、ポンプ124、気泡センサ136、及び圧力センサ140は、前述のビーズ処理装置22のピンチバルブ128、ポンプ124、気泡センサ136、及び圧力センサ140と同じ設計、機能、及び代替形態を有することができることが理解される。しかしながら、ビーズ処理装置624における機械的構成要素のレイアウト及び数は、設計及び動作を単純化するためにビーズ処理装置22におけるものに対して変更されている。例えば、ビーズ処理装置624の機械的構成要素は、単一のポンプ124のみを必要とする。更に、回転アセンブリ132は排除され、追加のピンチバルブ128と交換されている。したがって、管を通るガス流及び液体流は、ここでピンチバルブ128を使用して対応する管を選択的にピンチ及び解放することによってのみ制御することができる。
【0316】
図52を参照すると、単回使用使い捨て消耗キット890Aをビーズ処理装置642と共に使用して、供給されたT細胞を単離し活性化するためのビーズ処理システム14A(
図53)を形成することができる。消耗キット890Aは、トレイ892Aと、その上に取り付けられたラインセット894Aとを備える。消耗性キット890Aは、前述したように、ラインセット894Aが支持パネル662上に配置された様々な機械的構成要素と係合又は相互作用することができるように、支持パネル662(
図53)の上に取り外し可能に入れ子になるように構成される。以下に述べることを除いて、トレイ892A及びラインセット894Aは、同じ要素、同じ特性を有し、同じ材料で作られ、同じ寸法を有し、トレイ172A及びラインセット174Aで前述したのと同じ方法で使用することができる。トレイ892Aは、その対向する上面と底面との間に延在する複数の開口895を有する。しかしながら、トレイ172Aの開口185とは対照的に、開口895は、支持パネル662の上及び外側に突出して配置されるように、ピンチバルブ128A~128K、ポンプ124、気泡センサ136A及び136B、並びに圧力センサ140A及び140Bを受け入れるように配置及び構成される。
【0317】
トレイ892Aはまた、その上面に取り付けられ、その上面から外側に突出する前述のチューブ抑制部186を含む。チューブ抑制部186は、ラインセット894Aのチューブを支持し固定する。トレイ172Aとは対照的に、トレイ892Aは、バッグ抑制部192を含まない。
【0318】
図52及び
図53に示すように、ラインセット894Aは、一般に、複数のバッグと、前述のエアフィルタ221A及び221Bとに結合された可撓性チューブ200流体を含む。前のラインセット174Aのストップコック220及び混合バッグ210は、製造及び操作を単純化するためにラインセット894Aから排除されている。可撓性チューブ200は、支持パネル662から突出する選択された機械的構成要素と係合するように、トレイ892A上の選択開口895と整列するべく配置される。具体的には、使用中、
図53に示すように、組み立てられた消耗キット890Aは、支持パネル662上の機械的構成要素がトレイ892A上に形成された対応する開口895と整列するように、支持パネル662の上に配置される。次いで、チューブ200は、ピンチバルブ128A~128K、ポンプ124、気泡センサ136A及び136B、並びに圧力センサ140A及び140Bのそれぞれと結合するように操作される。
【0319】
ラインセット894Aは、トレイ892と対応するバッグとの間に延在するチューブセクション908A~908Iを含む。例えば、チューブセクション908Aは単離バッグ206に接続し、チューブセクション908B、908C、908E及び908Fはそれぞれ媒体バッグ216A~216Dに接続し、チューブセクション908Dは排出バッグ928に接続し、チューブセクション908Gは投入バッグ930に接続し、チューブセクション908Hはビーズバッグ932に接続し、チューブセクション908Iは排出バッグ934に接続する。
【0320】
ビーズ処理装置642はまた、チューブセクション908A~908Iを解放可能に固定及び編成するために使用されるチューブ抑制部910を含む。チューブ抑制部910は、支持パネル662の上方でハウジング652の上端に固定される。より具体的には、
図54を参照する。一対のマウント912A、912Bは、支持パネル662の上方においてハウジング652から外方に突出している。チューブ抑制部910は、ハウジング652からわずかに離間するようにマウント912A及び912Bに解放可能に接続する。チューブ抑制部910は、ハウジング652に面する内側縁部916と、反対側の外側縁部918とを有する長尺ブレース914を含む。ハンドル920A及び920Bは、ブレース914の対向する端部に形成することができる。一実施形態では、ブレース914は、対向する縁部916及び918を有する平坦なストリップを含むことができる。必要に応じて、補強フランジ923は、ブレース914の頂面及び/又は底面からその長さに沿って外側に延在して、ブレース914を補強して、故障又は過度の屈曲を防止するのを助けることができる。切り欠き922は、ブレース914の上面と反対側の底面との間に延在するように、ブレース914の縁部916及び/又は918内に陥凹している。切り欠き922は、チューブセクション908A~908Iを選択的に受け入れ、解放可能に固定するように構成される。例示的な一実施形態では、各切り欠き922は、狭窄口926を介してアクセスされる丸みを帯びた頭部924を含む。
【0321】
ビーズ処理装置642はまた、ビーズ処理装置22がビーズバイアルリテーナ148並びにバイアル166及びビーズバイアルカプラ208の関連する使用を排除するという点で、ビーズ処理装置642を区別する。バイアル166及び関連するハードウェアの使用とは対照的に、ラインセット894Aは、上記で参照したように、チューブセクション908Hと結合されたビーズバッグ932の使用を組み込んでいる。
図55を参照すると、一例示的実施形態では、ビーズバッグ932は、単離バッグ206に関して前述したものなどのポリマーフィルムの1つ以上のシートからなる可撓性袋体936を含む。袋体936は、上端940と反対側の下端942との間で延在する区画室938を境界付ける。下端942には、出口ポート944が形成されており、区画室938と連通している。出口ポート944はまた、チューブセクション908Hと直接的又は間接的に連通する。1つ以上の入口ポート946又は入口チューブ948は、袋体936の上端940に結合され、区画室938と連通する。区画室938内には、バイアル166で前述したように、ビーズ179及びキャリア液体181が配置されている。本明細書に開示される他のバッグと同様に、袋体936は、典型的には、区画室938を接合する外周シールを形成するように互いに接合された上にある上部シート及び下部シートから構成されるピロータイプのバッグである。本実施形態では、外周シールは、上縁部から出口ポート944まで延在する対向する側縁部428A及び428Bを含む。対向する側縁部428A及び428B、又は少なくともその下部は、それらが出口ポート944に延びるにつれて互いに向かって内向きに傾斜する。したがって、実質的にV字形の構成としての区画室の少なくとも下端は、出口ポート944への漏斗ビーズ179である。対向する側縁部428A及び428Bは、それらが出口ポート944に向かって内側に傾斜するにつれて直線状又は湾曲し得ることが理解される。
【0322】
ビーズ処理システム14Aの動作の前に、単離バッグ206(又は本明細書に開示される任意の他の単離バッグ)がロッカアセンブリ648内に封入され、残りのバッグは通常、前述のようにバッグスタンド650A及び/又は650Bに固定される。組み立てられたビーズ処理システム14Aの動作は、ビーズ処理システム14の前述の動作と同様である。例えば、主に
図53を参照すると、一実施形態では、ビーズ処理システム14Aは、以下のステップを使用して操作することができる。以下のプロセスステップのそれぞれは、予めプログラムされた電気回路53の制御によって自動的に実行することができ、及び/又はユーザインタフェースへの手動入力によって手動で制御することができる。ビーズ処理システム14Aの起動時に、ピンチバルブ128の全ては、典型的には、ピンチバルブと連結されたチューブセクションを通る流体の流れを妨げるように閉位置に動かされる。選択ピンチバルブが開かれることが議論される以下の方法ステップでは、ラインセット894Bを通る流体の流れを制御するために、残りのピンチバルブは閉じたままであることが理解される。幾つかの実施形態では、幾つかのステップを省略することができ、他のステップを追加することができ、ステップの順序を変更することができることが理解される。
【0323】
ステップ1:部分的に拡張させるために単離バッグ206内に空気を注入する。これは、ピンチバルブ128Jを開き、ポンプ124を作動させてエアフィルタアセンブリ218B単離バッグ206から空気を送り出すことによって達成することができる。単離バッグ206内に空気を注入することは、液体と単離バッグ206の表面との間の接触を減少させることによって、単離バッグ206内の液体の流れ及び動きを実質的に改善することができる。したがって、注入された空気は、後述するように、細胞と磁気ビーズとの混合を助けることができる。
【0324】
異なるピンチバルブ128の動作に基づいて、流体は、意図された機能を達成するために様々な異なる経路を通って移動することができることが理解される。したがって、本明細書に記載のプロセスステップは単なる例であり、他のプロセスステップを使用して同じ機能を達成することができる。
【0325】
ステップ2:チューブ及び単離バッグ206を媒体でプライミングする。ピンチバルブ128A及び128Fは、ポンプ124を使用して媒体を媒体バッグ216Dからポンプ124Bを通って単離バッグ206に送る間に開くことができる。媒体は、媒体バッグ216A、216B、216C又は216Dのいずれかから提供され得ることが理解される。したがって、本明細書では、媒体は主に媒体バッグ216Dから引き出されるものとして説明されているが、他の媒体バッグのうちの1つ以上から一般的に引き出すことができることが理解される。一般に、媒体は、空になるまで、又は空に近づくまで1つの媒体バッグから引き出され、次いで別の媒体バッグから引き出される。
【0326】
ステップ3:ビーズをビーズバッグ932内に懸濁させる。
図55に示すように、ビーズバッグ932が静止しているとき、ビーズ179は下端942に向かって沈降する。ビーズ179がキャリア液体181内に懸濁されている場合、ビーズ179はビーズバッグ932からより容易に流出し、ラインセット894Aを通って流れる。したがって、選択ピンチバルブ128を開くことにより、ポンプ124を使用して、エアフィルタ221Aからビーズバッグ932内に空気を圧送し、及び/又は媒体バッグ216Aからビーズバッグ932内に媒体を圧送することができる。空気又は媒体をビーズバッグ932に送り込むことは、キャリア液体181内にビーズ179を懸濁させるように機能する。代替的な実施形態では、ビーズ179は、ビーズバッグ932の機械的又は手動操作によってキャリア液体181内に懸濁させることができる。
【0327】
ステップ4:ビーズバッグ932から単離バッグ206に懸濁ビーズ179を注入する。ピンチバルブ128A及び128Hを開き、ポンプ124を使用して懸濁ビーズ179をビーズバッグ932から単離バッグ206に送り込むことができる。幾つかの実施形態では、一定量の懸濁ビーズ179がビーズバッグ932から送り出されると、追加の媒体をビーズバッグ932に送り込み、ビーズバッグ932内に保持されていてもよい任意のビーズ179を再懸濁することができる。次いで、この新しい懸濁液を単離バッグ206に送り込むことができる。ビーズバッグ932に媒体を添加する上記のプロセスは、ビーズ179の全てがビーズバッグ932及び関連するチューブから単離バッグ206に確実に洗い流されるように、複数回繰り返すことができる。
【0328】
ステップ5:単離バッグ206内の洗浄前ビーズ179。一実施形態では、単離バッグ206内から不要な物質を除去するのを助けるために、ビーズ179を単離バッグ206内で予備洗浄することができる。例えば、このステップは、ビーズ179に共有結合していない混合物中の遊離抗体を除去するために使用することができる。例示的な一実施形態では、ポンプ124を使用して、媒体バッグ216の一方から単離バッグ206内に媒体を圧送することができる。単離バッグ206内に媒体を圧送する前、圧送するのと同時に、又は圧送した後に、ロッカドライブ234を作動させて、単離バッグ206が取り付けられたプラットフォームアセンブリ232の繰り返しの揺動を容易にする。この揺動は、ビーズ179のいかなる凝集も結合解除し、あらゆる望ましくない物質を懸濁させるのに役立ち得る。次いで、ロッカドライブ234を停止させ、リフトアセンブリ292を作動させて、磁石アセンブリ294を支持プレート692に対して上昇した作動位置に上昇させることができる。ビーズ179は重力下で沈降し、磁石アセンブリ294に生成された磁力によって単離バッグ206/支持プレート692に引き付けられ、それに対して保持される。一実施形態では、ロッカドライブ234は、単離バッグ206のポート416が上昇するように、プラットフォームアセンブリ232/単離バッグ206を後方又は負に傾斜させることができる。次いで、ビーズ179がその中に保持されないことを確保するのを助けるために、少量の空気又は媒体をポート416に通過させることができる。次いで、この後方傾斜位置にある間に磁場を単離バッグ206に印加することができる。磁石アセンブリ294が依然として上昇作動位置にあり、それによってビーズ179が単離バッグ206に対して固定されている状態で、ロッカドライブ234は傾斜プラットフォームアセンブリ232/単離バッグ206を前方/積極的に動かすことができ、それによってポート416がここで下降される。この向きは、流体がポート416を通って単離バッグ206から自由に流出することを確保するのに役立つ。次に、ポンプ124を使用して、ピンチバルブ128A及び128Dを開くなどして、単離バッグ206から排出バッグ928又は他の容器に液体を圧送する。ビーズ179の上記の前洗浄プロセスは、少なくとも1回、2回、3回又はそれ以上など、任意の所望の回数繰り返すことができる。
【0329】
ステップ6:媒体を単離バッグ206に移す。ポンプ124は、ビーズ179が所望の濃度に希釈されるように、規定量の媒体を単離バッグ206に圧送するために使用される。例えば、ピンチバルブ128A及び128Fを開くことができ、ポンプ124を使用して媒体を媒体バッグ216Dから単離バッグ206に送り込むことができる。
【0330】
ステップ7:ビーズ179を単離バッグ206内に懸濁する。リフトアセンブリ292が作動されて磁石アセンブリ294を非作動位置まで下降させ、ロッカドライブ234が作動されてプラットフォーム290及びその上に配置された単離バッグ206を繰り返しロックし、それによって媒体内にビーズ179を均一に懸濁させる。
【0331】
ステップ8:細胞培養物を単離バッグ206に移す。ポンプ124は、細胞分離器12から生成された細胞培養物を単離バッグ206内に圧送するために使用される。図示の実施形態では、細胞培養物は投入バッグ930内に配置される。したがって、ピンチバルブ128A及び128Gを開き、ポンプ124を使用して細胞培養物を投入バッグ930から単離バッグ206に圧送することができる。他の実施形態では、ポンプ124を使用して、細胞分離器12又は他の何らかの容器から細胞培養物を直接圧送することができる。
【0332】
ステップ9:所望のT細胞の単離及び活性化を促進する。ロッカドライブ234は、ステップ8から活性化されるか、又は活性化されたままであり、プラットフォーム290及びその上の単離バッグ206の揺動を容易にし、ビーズ179を所望のT細胞を含む細胞培養物と混合する。所望の抗体をその上に有するビーズ179は、ビーズ179が混合プロセス中に所望のT細胞と接触すると、所望のT細胞に結合して活性化する。そのような混合は、長期間にわたって起こり得る。限定ではなく例として、混合は、15分~60分、より一般的には20分~40分であり得る。他の持続時間も使用することができる。
【0333】
ステップ10:ビーズ179と結合したT細胞を捕捉する。リフトアセンブリ292は、支持プレート692に対して磁石アセンブリ294を起動位置まで上昇させるように起動される。磁石アセンブリ294によって生成された磁力により、ビーズ179及びビーズ179に結合したT細胞は、単離バッグ206内に保持されながら、単離バッグ206/支持プレート692に対して保持される。予備洗浄ステップと同様に、例示的な一実施形態では、ロッカドライブ234は、まず、単離バッグ206のポート416が上昇するように、プラットフォームアセンブリ232/単離バッグ206を後方に傾斜させることができる。次いで、ビーズ179/細胞がその中に保持されないことを確保するのを助けるために、少量の空気又は媒体をポート416に通過させることができる。次いで、この後方傾斜位置にある間に磁場を単離バッグ206に印加することができる。
【0334】
ステップ11:液体を単離バッグ206から収集バッグ212に移す。ロッカドライブ234は、ポート416が下方に配置されるようにプラットフォーム290を積極的に傾けることができる。次いで、ポンプ124Bを使用して、磁石アセンブリ294によって生成された磁力下でビーズ179及びそれに取り付けられた細胞が単離バッグ206内に強固に保持されたままで、流体を単離バッグ206から排出バッグ928に圧送することができる。例えば、ピンチバルブ128A及び128Dを開くことができ、ポンプ124を使用して単離バッグ206から排出バッグ928に液体を圧送することができる。このステップは、単離バッグ206から陰性細胞画分、すなわちビーズ179に結合しなかった細胞を除去することである。
【0335】
ステップ12:洗浄細胞をビーズ179と結合させた。ポンプ124を使用して、媒体バッグ216の一方から単離バッグ206内に媒体を圧送することができる。リフトアセンブリ292は、磁石アセンブリ294を非作動位置まで下方に移動させるように作動される。連続的に又は同時に、ロッカドライブ234を作動させて、新たに送達された媒体中のT細胞と結合したビーズ179の混合を促進する。この混合は、長期間にわたって再び起こり得る。しかしながら、この揺動/混合の主な目的は、単離バッグ206内に意図せずに捕捉された可能性のある細胞又は他の生物学的材料を除去して除去することである。リフトアセンブリ292を作動させて、磁石アセンブリ294を活性化位置まで移動させて、ビーズ179及びそれに結合したT細胞を再び捕捉する。ここでも、一実施形態では、ロッカドライブ234は、単離バッグ206のポート416が上昇するように、プラットフォームアセンブリ232/単離バッグ206を後方又は負に傾斜させることができる。次いで、ビーズ179/細胞がその中に保持されないことを確保するのを助けるために、少量の空気又は媒体をポート416に通過させることができる。次いで、この後方傾斜位置にある間に磁場を単離バッグ206に印加することができる。次いで、ロッカドライブ234は、ポート416が下方に配置されるようにプラットフォーム290を正に傾斜させる。次いで、ポンプ124を使用して、単離バッグ206から収集バッグ212に液体を圧送する。この洗浄ステップは、少なくとも1回、2回、3回又はそれ以上など、必要に応じて何回でも繰り返すことができる。
【0336】
ステップ13:ビーズ179を結合細胞と共に再懸濁する。ロッカドライブ234は、チルトを係合解除するように制御され、リフトアセンブリ292は、磁石アセンブリ294を係合解除位置に下げるように作動される。ポンプ124Bは、媒体バッグ216から単離バッグ206内に媒体を圧送するために使用される。送達される媒体の量は、T細胞が系から分注されるときのT細胞の所望の濃度に依存する。ロッカドライブ234を作動させて、ビーズ179とそれに付着したT細胞とを新たに送達された媒体内で混合し、均一な混合物を生成する。
【0337】
ステップ14:単離バッグ206内の懸濁液を排出バッグ934に、又は細胞増殖システム16もしくは他の下流処理機器もしくは回収容器に直接移送する。例えば、ピンチバルブ128A及び128Kを開き、ポンプ124を使用して単離バッグ206内の懸濁液を排出バッグ934に移送するか、又は他の下流の機器又は容器に直接移送することができる。更に別の代替例では、懸濁液を投入バッグ930に戻すことができる。単離された細胞の全てが除去され、及び/又は下流のバッグ/機器内の細胞濃度が所望のレベルに達するまで、上記のステップ13及び14を繰り返すことができる。
【0338】
上記のプロセスでは、ビーズ処理装置22は、磁気ビーズ179を使用して所望のT細胞を単離及び活性化する。しかし、代替的な実施形態では、ビーズ処理装置22は、反対のプロセスで磁気ビーズ179と共に使用することができる。すなわち、ビーズ179を所望の細胞に結合させるのとは対照的に、ビーズ179は、細胞の混合物内に望ましくない細胞に結合するように設計することができる。結果として、上記のプロセスを使用することによって、望ましくない細胞をビーズ179に結合させ、磁石アセンブリ294によって単離バッグ206内に固定することができ、一方、所望の細胞は単離バッグ206から洗い流され、更なる処理のために収集バッグ又は他の下流装置に移される。
【0339】
ビーズ処理装置22と同様に、ビーズ処理装置642は、代替的なビーズ処理システム18(
図1)であるビーズ処理システム18Aの形成に使用することもできる。
図56及び
図57を参照すると、ビーズ処理システム18Aは、ビーズ処理装置642を消耗キット890Aに対して変更された消耗キット890Bと組み合わせることによって形成することができる。消耗キット890Bは、トレイ892Bと、ラインセット894Bとを含む。トレイ892Bは、トレイ892Aと同じ特性を有し、同じ材料で作ることができる。必須ではないが、図示の実施形態では、トレイ892Bは、トレイ892Aと同じ構成及び要素を有する。したがって、トレイ892Bは、対応する機械的構成要素を受け入れるために貫通する開口895に面する上面及び対向する底部を有し、その上にラインセット894Bを固定するためのチューブ抑制部186を有する。
【0340】
図56及び
図57に示すように、ラインセット894Bは、一般に、複数のバッグ及び前述のエアフィルタ221Aに結合された可撓性チューブ200流体を含む。可撓性チューブは、支持パネル662から突出する選択された機械的構成要素と係合するように、トレイ892B上の選択開口895と整列するように配置される。具体的には、使用中、
図56に示すように、組み立てられた消耗キット890Bは、支持パネル662上の機械的構成要素がトレイ892A上に形成された関連開口895と整列するように、支持パネル662の上に配置される。その後、チューブ200は、ピンチバルブ128A、128B、128D、128E、128G、128H、128I、128J、及び128Kのそれぞれ、ポンプ124、気泡センサ136A及び136B、及び圧力センサ140A及び140Bと結合するように操作される。
【0341】
ラインセット894Bは、トレイ892Bと対応するバッグとの間に延在するチューブセクション954A~954Fを含む。例えば、チューブセクション954A及び954Bは両方ともビーズ分離バッグ570(又は本明細書に開示される任意の他のビーズ分離バッグ)に接続し、チューブセクション954C及び954Eはそれぞれ媒体バッグ216A及び216Bに接続し、チューブセクション954Dは排出バッグ928に接続し、チューブセクション954Fは投入バッグ958に接続する。
【0342】
ビーズ処理システム18Aの動作前に、ビーズ分離バッグ570(又はビーズ分離バッグ600などの任意の他のビーズ分離バッグ)は、単離バッグ206で前述したのと同じロッカアセンブリ648内に封入され、残りのバッグは、前述したように、通常、バッグスタンド650A及び/又は650Bに固定される。組み立てられたビーズ処理システム18Aの動作は、ビーズ処理システム18の前述の動作と同様である。例えば、主に
図57を参照すると、一実施形態では、ビーズ処理システム18Aは、以下のステップを使用して操作することができる。以下のプロセスステップのそれぞれは、予めプログラムされた電気回路53の制御によって自動的に実行することができ、及び/又はユーザインタフェースへの手動入力によって手動で制御することができる。ビーズ処理システム18Aの起動時に、ピンチバルブ128の全ては、典型的には、ピンチバルブと連結されたチューブセクションを通る流体の流れを妨げるように閉位置に動かされる。選択ピンチバルブが開かれることが議論される以下の方法ステップでは、ラインセット894Bを通る流体の流れを制御するために、残りのピンチバルブは閉じたままであることが理解される。幾つかの実施形態では、幾つかのステップを省略することができ、他のステップを追加することができ、ステップの順序を変更することができることが理解される。
【0343】
ステップ1:磁石アセンブリ241を持ち上げる。リフトアセンブリ292は、プラットフォーム290/支持プレート692に対して上昇した作動位置まで磁石アセンブリ294を上昇させるために使用される。一実施形態では、停止アセンブリ526A~526Dは、ロッド770が上昇する能力を制限し、それによってカバーアセンブリ421/蓋板822がプラットフォーム290/支持プレート692に対して上昇する能力を制限する前進再訓練位置に移動するように作動させることができる。
【0344】
ステップ2:細胞、ビーズ179及び媒体からなる懸濁液をビーズ分離バッグ570に移す。ポンプ124は、細胞、ビーズ179及び細胞増殖システム16で処理された媒体からなる培養物を分離バッグ570を通して移送するために使用される。図示の実施形態では、処理された細胞、ビーズ179及び媒体は、投入バッグ958から分配されている。しかしながら、他の実施形態では、それらは、細胞増殖システム16又はチューブセクション954Fに結合された他の何らかの容器から直接分配することができる。懸濁液は、ポート569を通ってビーズ分離バッグ570に圧送される。次いで、懸濁液は、仕切り578の第2端部582の周りでビーズ分離バッグ570(
図34)の区画室415内を流れ、次いでポート568を通って区画室415から出る。懸濁液が区画室415を通過するとき、ビーズ179は、磁石アセンブリ294によって生成された磁場によってプラットフォーム290に引き付けられ、プラットフォームに固定される。一実施形態では、懸濁液の混合は、磁場によってより良好に捕捉されるプラットフォーム290/支持プレート692にビーズ179を近づけるのを助けることができるロッカドライブ234の作動によってもたらすことができる。しかしながら、他の実施形態では、デビーディングは、ロッカドライブ234を作動させることなく実行することができる。停止アセンブリ526A~526Dを前進抑制位置に任意選択的に配置することにより、ビーズ分離バッグ570の拡張が制限され、その中のビーズ179に対する磁場の力が更に最適化される。上記により、懸濁液がビーズ分離バッグ570を連続的に流れる際に、プラットフォーム290/支持プレート692に対するビーズ179の効率的な収集が可能になる。ポート568を通って分離バッグ570を出る媒体及び細胞は、チューブ200に沿って排出バッグ956に移動するか、又はチューブセクション954Dを通って遺伝子編集システム20もしくは他の何らかの容器もしくはシステムに直接移動する。
【0345】
ステップ2の1つの修正バージョンでは、ピンチバルブ128B、128I、及び/又は128Eは、ビーズ分離バッグ570が細胞、ビーズ179、及び媒体の混合物で少なくとも30%、40%、又は50%満たされるまで閉じたままであり得る。次いで、ロッカドライブ234は、ポート568及び569が上方に傾斜するようにプラットフォーム290を後方に傾斜させる。その後、ピンチバルブ128B、128I、及び/又は128Eが開かれる。追加の懸濁液がポート569を通ってビーズ分離バッグ570に送り込まれると、ビーズ分離バッグ570内の任意の空気がポート568を通って流出する。空気の全てが除去されると、ロッカドライブ234はプラットフォーム290を水平に傾ける。次いで、懸濁液の残りは、ビーズ分離バッグ570を通ってポンプ輸送され、ビーズ除去された流体が排出バッグ956又は他の何らかの容器又は機械に流入する。
【0346】
ステップ3:出力する流動媒体。次いで、ポンプ124を使用して、媒体を媒体バッグ216Bからビーズ分離バッグ570を通って排出バッグ956に送り込む。このプロセスは、ビーズ分離バッグ570及び/又はチューブ内の残りの細胞を洗い流すのに役立つ。
【0347】
ビーズ179は、分離バッグ570内に収容されたままとなることができ、ラインセット894Bで廃棄されるか、そうでなければ更に処理され得る。ビーズ処理装置642は、ビーズ処理装置22に関して前述したのと同じ利点及び機能特性を有する。しかし、ビーズ処理装置642は、ビーズ処理装置22に比べて、設計が簡単であり、運転が安全であり、運転が容易である。
【0348】
図58は、細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェース701を示す。ユーザインタフェース701は、制御機能及びプロトコル入力を容易にするために入力/出力制御部703を表示する画面及びディスプレイ702並びにグラフィカルユーザインタフェース704を含むことができる。ユーザインタフェース701は、タッチスクリーン/ディスプレイ702又は他の物理的なオペレータ入力を含むことができる。ユーザインタフェース701を用いて、オペレータは、磁気ビーズ(例えば、キャリア流体と共に)の流れを選択し、特定の機器、バイオプロセス容器又はフローラインに導くことができる。グラフィカルユーザインタフェース704は、例示的な細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける機器、バイオプロセスコンテナ、フローライン及び/又はプロセスパラメータ入力を表す1つ以上の仮想入力を示す一次選択領域705を含む。この実施形態では、一次選択領域705は、四つの媒体/緩衝液バッグ(媒体1緩衝液、媒体1緩衝液1、媒体1 CTS(商標)OpTmizer(商標)及び媒体3)、単離バッグ、排出バッグ、細胞分離器、ビーズバッグ及び廃棄物バッグを表す9個の仮想入力を含む。他の機器、バイオプロセスコンテナ、及びプロセスパラメータ入力の仮想表示もまた、一次選択領域705に含めることができる。オペレータは、一次選択領域704内の特定の仮想入力703を選択して、磁気ビーズの位置を示すか、又はプロセスワークフロー内の特定の機器又はバイオプロセス容器に磁気ビーズの流れを導くことができる。これにより、「RUN」プロトコル中の正確なビーズ計算が可能になる。グラフィカルユーザインタフェース704はまた、プロトコル設定及びワークフロー機器の動作のための追加の仮想入力を含む二次選択領域706を含むことができる。本実施形態では、二次選択領域706は、一次選択領域705で行われた入力をキャンセルするための「キャンセル(CANCEL)」入力を含む。二次選択領域706に入力された「キャンセル」はまた、プロトコル作成プロセスのキャンセル及び終了を確認するためのオペレータへのプロンプトをトリガすることができる。二次選択領域706はまた、「体積を入力(ENTER VOLUME)」入力を含み、これは、細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける選択された機器、バイオプロセス容器及びフローライン内の培養及び他のプロセス流体体積を入力するために次のユーザインタフェース801(
図59にて説明)に移動させる。他の入力を二次選択領域706に含めることができる。
【0349】
図59は、細胞処理ワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器、並びに本明細書に開示される他のワードフローを制御するための例示的なユーザインタフェース801を示す。ユーザインタフェース801は、制御機能及びプロトコル入力を容易にするために入力/出力制御部803を表示する画面及びディスプレイ802並びにグラフィカルユーザインタフェース804を含むことができる。ユーザインタフェース801は、タッチスクリーン/ディスプレイ802又は他の物理的なオペレータ入力を含むことができる。ユーザインタフェース801を用いて、オペレータは、本明細書に開示される細胞培養液、生物学的流体又は他のプロセス流体を特定の機器、バイオプロセス容器又はフローラインに圧送するためのプロトコルボリュームを選択することができる。グラフィカルユーザインタフェース804は、特定の流量又は体積でプロセス流体を流すための機器、バイオプロセスコンテナ、フローライン及び/又はプロセスパラメータ入力を表す1つ以上の仮想入力803を示す一次選択領域805を含む。この実施形態では、一次選択領域805は、オペレータによって入力され、4つの媒体/緩衝液バッグ(媒体1緩衝液、CTS(商標)OpTmizer(商標)及び媒体3)、単離バッグ、排出バッグ、及び細胞分離器に圧送されるプロセス流体量を表す6つの仮想入力803を含む。他の機器、バイオプロセスコンテナ、及びプロセスパラメータ入力の仮想表示もまた、一次選択領域805に含めることができる。オペレータは、その選択された量のプロセス流体を機器又は容器に流すために、プロセスプロトコル内の機器又はバイオプロセス容器の各ピースの特定の量を入力することを選択することができる。グラフィカルユーザインタフェース804はまた、プロトコル設定及びワークフロー機器の動作のための追加の仮想入力を含む二次選択領域806を含むことができる。本実施形態では、二次選択領域806は、ボリュームプロトコルを解除するための「キャンセル」入力又は一次選択領域805で行われた入力を含む。二次選択領域806に入力された「キャンセル」はまた、プロトコル作成プロセスのキャンセル及び終了を確認するためのオペレータへのプロンプトをトリガすることができる。二次選択領域806はまた、プロトコル作成プロセスにおける次のステップに移動するための「ステップを生成(CREATE STEPS)」入力を含む。標的細胞収率に入り、
図58のプロトコル設定ステップで行われた入力にも基づいてビーズ対細胞比及びビーズストック又はビーズ担体濃度を計算するための「ビーズ計算器(BEAD CALCULATOR)」入力を含む他の入力を二次選択領域806に含めることができる。
【0350】
図60は、細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェース901を示す。ユーザインタフェース901は、制御機能及びプロトコル入力を容易にするために、入力/出力制御部903A~903I及び流体流路907A~907Hを表示する画面及びディスプレイ902並びにグラフィカルユーザインタフェース904を含むことができる。ユーザインタフェース901は、タッチスクリーン/ディスプレイ902又は他の物理的入力を含むことができる。グラフィカルユーザインタフェース904は、特定のワークフロープロトコルのための機器、バイオプロセスコンテナ、フローライン及び/又はプロセス入力パラメータを表す1つ以上の仮想入力903A~903Eを示す一次選択領域905を含む。この実施形態では、一次選択領域905は、プロセスワークフローにおいてロッカ、磁石、及びポンプを動作させるための堅牢な仮想入力903A~903E、Iのセットを含む。例えば、仮想入力903Aは、ロッカの揺動の角度範囲、速度、及び持続時間に入り、制御するためのプロセスパラメータ入力である。仮想入力903Cは、ロッカをオンにするように作動させることができ、ロッカがオンであることを示すこともできる。仮想入力903Bは、磁石を回転させるように作動させることができ、磁石がオンであることを示すこともできる。仮想入力903Dは、強調表示された対応する流路907B、907Cを介してポンプでバルブを開閉し、プロセス流体を流すように作動させることができる。他の流体流路907A~907Hもまた、流体流路907A~907Hを通る同じ種類のバルブ作動及び流体流制御を容易にするように示されている。仮想入力903Eは、強調表示された流体経路907B、907Cを介して指定された流量及び体積で流体を処理するようにポンプを制御するための、流量及び流体体積を含むプロセスパラメータ入力である。仮想入力903Iは、ポンプの仮想表示の左にある仮想ペンアイコンである。そのペンアイコン/ボタン903Iは、バブルセンサと係合するように作動させることができる。オペレータは、ポンプが使用されているときに気泡センサを作動させるかどうかを決定して、乾燥時に気泡センサを停止させる(湿潤から乾燥)か、又は湿潤時に気泡センサを停止させる(乾燥から湿潤)かを選択することができる。気泡センサが作動している場合、気泡センサは、ポンプがいつ停止するかを制御し、したがって、ポンプフィールド903Eの入力を無効にする。一次選択領域905はまた、ロッカ、磁石、及びポンプハードウェアの虚像を提供することができる。他の機器、バイオプロセスコンテナ、及びプロセスパラメータ入力の仮想表示もまた、一次選択領域905に含めることができる。グラフィカルユーザインタフェース904はまた、プロトコル設定及びワークフロー機器の動作のための追加の仮想入力903F~903Hを含む二次選択領域906を含むことができる。この実施形態では、二次選択領域906は、プロトコルが開始される前に一次選択領域905で行われた入力を検討するための903G「検討(REVIEW)」入力を含む。二次選択領域906はまた、一次選択領域905で行われたプロトコル又は入力をキャンセルするための903F「キャンセル」入力を含む。二次選択領域906に入力された903G「キャンセル」はまた、キャンセルを確認してプロトコル作成プロセスから出るようにオペレータに促すプロンプトをトリガすることができる。ユーザインタフェース901を介して構成された図示のプロトコルステップを複製するための903H「複製(DUPLICATE)」入力を含む他の入力を、二次選択領域906に含めることができる。
【0351】
図61は、細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェース1001を示す。ユーザインタフェース1001は、制御機能及びプロトコル入力を容易にするために入力/出力制御1003A~1003C及びプロトコルパラメータ1008A~1008Bを表示する画面及びディスプレイ1002並びにグラフィカルユーザインタフェース1004を含むことができる。ユーザインタフェース1001は、タッチスクリーン/ディスプレイ1002又は他の物理的入力を含むことができる。グラフィカルユーザインタフェース1004は、特定のワークフロープロトコルのための機器、バイオプロセスコンテナ、フローライン及び/又はプロセス入力パラメータを表す1つ以上の仮想入力を示す一次選択領域1005を含む。この実施形態では、一次選択領域1005は、プロセスパラメータのセット1008A~1008Bを含む。例えば、時間プロセスパラメータ1008Aは、実行中の分離プロトコルの一次選択領域1005内の開始時間、ステップタイマ、及び終了時間を示すことができる。機器プロセスパラメータ1008Bは、ロッカ角度範囲、ロッカ速度、磁石オン/オフ状態、並びに一次選択領域1005内のポンプ流量及び流体量設定点を示すことができる。一次選択領域1005はまた、使用されているロッカ、磁石、ポンプ及び関連する流路B~Cの虚像に加えて、実行されているプロトコルのステップ(例えば、ステップ01又はステップ02)を示すことができる。他の機器、バイオプロセスコンテナ、及びプロセスパラメータ入力の仮想表示もまた、一次選択領域1005に含めることができる。グラフィカルユーザインタフェース1004はまた、プロトコル設定及びワークフロー機器の動作のための追加の仮想入力を含む二次選択領域1006を含むことができる。この実施形態では、二次選択領域1006は、分離プロトコル又はプロトコルステップを停止するための1003A「実行を停止(STOP RUN)」入力、現在のステップのプロトコルを一時停止するための1003B「実行を一時停止(PAUSE RUN)」入力、及び分離プロトコルをスキップするための1003C「ステップをスキップ(SKIP STEP)」入力を含む。1003A「実行を停止」入力はまた、操作者が運転及びプロトコルを停止及び終了したいことを確認するための操作者へのプロンプトをトリガすることができる。他の入力を二次選択領域1006に含めることができる。
【0352】
図62は、細胞処理ワークフロー並びに本明細書に開示される他のワークフローにおける例示的な磁気ビーズ処理装置、システム及び機器を制御するための例示的なユーザインタフェース1101を示す。ユーザインタフェース1101は、制御機能及びプロトコル入力を容易にするために、入力/出力制御部1103A~1103C、プロトコルパラメータ1108A~1108B及び流体流路1107A~1107Hを表示する画面及びディスプレイ1102並びにグラフィカルユーザインタフェース1104を含むことができる。ユーザインタフェース1101は、タッチスクリーン/ディスプレイ1102又は他の物理的入力を含むことができる。グラフィカルユーザインタフェース1104は、特定のワークフロープロトコルのための機器、バイオプロセスコンテナ、フローライン及び/又はプロセス入力パラメータを表す1つ以上の仮想入力1108A~1108Bを示す一次選択領域1105を含む。この実施形態では、一次選択領域1105は、一組のプロセスパラメータ1108A~1108Bと、プロセス流体が圧送される一組の仮想流路1107A~1107Hとを含む。例えば、プロセスパラメータ1108Aは、ロッカ及び磁石アセンブリの仮想表示、ロッカ角度範囲、揺動の速度及び持続時間、並びに磁石及びロッカがオン/オフであるかどうかを含む。一次選択領域1105内の機器プロセスパラメータ1108Bはまた、ポンプの仮想表示、圧送されるプロセス流体の体積、及び分離プロトコルの流体流量を示す。一次選択領域1105はまた、プロセス流体を圧送するために使用されている関連する流体流路1107A、C、及びワークフロー内の機器、容器、及びフローラインにプロセス流体を圧送するために使用することができる他の流体流路1107A~1107Hを示すことができる。他の機器、バイオプロセスコンテナ、及びプロセスパラメータ入力の仮想表示もまた、一次選択領域1105に含めることができる。グラフィカルユーザインタフェース1104はまた、プロトコル設定及びワークフロー機器の動作のための追加の仮想入力を含む二次選択領域1106を含むことができる。この実施形態では、二次選択領域1106は、分離プロトコルステップを停止するための1103A「STOP RUN」入力、現在のプロトコルステップを一時停止するための1103B「PAUSE RUN」入力、及び分離プロトコルステップをスキップするための1103C「SKIP STEP」入力を含む。1103A「STOP RUN」入力はまた、オペレータが運転及びプロトコルを停止及び終了したいことを確認するためのオペレータへのプロンプトをトリガすることができる。他の入力を二次選択領域1106に含めることができる。
【0353】
図58~62は、生体材料又は細胞単離プロトコルを設定及び実行するためのユーザインタフェースを示す。同様のユーザインタフェースを使用して、本明細書に開示される生物学的ワークフローに記載されるビーズ除去プロトコルを設定及び実行することができる。本明細書で開示されるユーザインタフェースは、ディスプレイと、タッチ感知面と、1つ以上のプロセッサと、メモリと、メモリに記憶され、1つ以上のプロセッサによって実行されるように構成された1つ以上のプログラムとを備える電子デバイスを含むことができる。1つ以上のプログラムは、ディスプレイ上に、本明細書に開示された1つ以上のグラフィカルユーザインタフェースを表示し、グラフィカルユーザインタフェースの機能を実行するための命令を含む。
【0354】
本明細書では、細胞処理(例えば、
図1参照)のための機器及びワークフローが提供される。
図38は、本明細書で提供される例示的なワークフローの概略図である。一実施形態では、
図38及び
図39を参照して以下に説明する生物学的ワークフローは、本明細書で前述し、
図1で具体的に特定されたハードウェアを使用して実行することができることが理解される。
図38に記載の概略的に表されたワークフローのステップは、細胞が異なる時点で異なる条件下で、場合によっては異なる種類の機器を使用して処理される場合に実行することができる。したがって、本明細書では、例えば、一連のステーションとして、及び/又は2つ以上の異なる機器を使用して、細胞を処理することができるモジュール式細胞処理ワークフローが提供される。
【0355】
更に、場合によっては、
図38に示すステップの順序を変更することができ、幾つかのステップをワークフロー内の連続的に又は別の場所で繰り返すことができる。例として、場合によっては、幾つかのワークフローは、以下のステップを順番に実行することを含むことができる。(A)ステップ3、ステップ4、ステップ5、ステップ6、及びステップ7;(B)ステップ3、ステップ5、ステップ6、ステップ7;又は(C)ステップ3、ステップ4、ステップ5、ステップ6、及びステップ8。更に、細胞が活性化される時間の長さに起因して、ステップ3及びステップ4は重複してもよく、又は同一であってもよい。これは、多くの場合、細胞が活性化されると増殖し始めるためである。更に、細胞は、長期間にわたって活性化刺激と接触したままであり得る。これは、多くの場合、活性化刺激(例えば、抗CD3抗体及び抗CD28抗体)がステップ5まで細胞と接触したままである場合に当てはまる。
【0356】
更に、
図38に示されている全てのステップのうちの幾つかは、閉鎖システムとして実行されてもよい。閉鎖系とは、単一のプロセス又は複数のプロセス中に細胞が閉鎖容器内に留まることを意味する。例えば、ステップ1~ステップ5において、細胞はバッグ間で移送され得るが、各バッグの内部は滅菌環境であってもよく、細胞は滅菌チューブ及びコネクタを使用してバッグ間で移送され得る。そのような場合、ステップ1からステップ5は閉鎖系と見なされ、更に滅菌閉鎖系と見なされる。場合によっては、ステップ2~ステップ9(又はそのようなステップのサブセット)は、閉じたシステムで実行される。
【0357】
多くの場合、本明細書中に記載されるワークフローは、CAR-T細胞集団の生成に向けられ得る。
【0358】
図38のワークフロー(ステップ1)における最初のステップは、個体(例えば、患者)からの血液の採取である。この個体は、採血に関連する治療的処置を必要としない場合がある。或いは、この個体は、例えば、処置がステップ9の製剤の投与を伴う症状に罹患している可能性がある。個体から得られた血液は、例えば、血液を個体の身体から取り出し、白血球を収集し、未収集の血液成分を個体に戻す白血球搬出法によって処理することができる。全血からのPMBC単離に使用され得る機器は、Cell Saver(商標)5+自家血液回収システム(Haemonetics Corporation、マサチューセッツ州ボストン)である。
【0359】
所望の数の白血球が採取されたら、得られた細胞集団を一般に洗浄して(ステップ2)、例えば抗凝固薬を除去する。初期段階では、例えば、サイズ及び密度によって細胞を分離することができる逆流遠心分離溶出システム(例えば、Gibco(商標)CTS(商標)Rotea(商標)カウンターフロー遠心分離システム、Thermo Fisher Scientific)を使用して、細胞集団をリンパ球について濃縮することができる(ステップ2)。
【0360】
所望の細胞型(ステップ3)(例えば、総T細胞及びT細胞サブセット、CD34+幹細胞、ナチュラルキラー細胞、並びに他の細胞型)の単離は、細胞表面受容体に対する結合親和性を有するリガンドを使用して行われ得る。そのような細胞表面受容体の例としては、CD3、CD4、CD5、CD6、CD8、CD25、CD27、CD28、CD137及びCD278(ICOS)が挙げられる。更に、単離及び活性化が同時に起こり得る。一例として、白血球の混合集団は、T細胞が他の白血球から分離され、抗CD3及び抗CD28抗体の組み合わせがT細胞活性化をもたらす条件下で、抗CD3及び抗CD28抗体に曝露され得る。
【0361】
具体的な例として、T細胞は、CD3マーカーの表面上の存在に基づいて単離され得る。幾つかの単離方法は、所望の表面マーカーを有する細胞の陽性単離を使用する。T細胞単離のための例示的な方法は以下の通りである。混合白血球集団を、ビーズが集団中のT細胞と会合するのに十分な時間、ビーズ表面(例えば、Dynabead(商標)CD3、Thermo Fisher Scientific、カタログ番号11151D)に位置する抗CD3抗体を有する磁気ビーズと共に培養(インキュベート)する(例えば、4℃で20~30分)。次いで、ビーズに結合した細胞を保持し、ビーズに結合していない細胞を除去できる条件下で、細胞を磁場と接触させる(例えば、洗浄によって)。これにより、白血球集団の非T細胞からT細胞が分離される。
【0362】
多くの場合、T細胞が単離されると、これらの細胞は、CD28受容体を刺激することができる抗CD28抗体と接触し、T細胞活性化をもたらす。抗CD28抗体は、磁気ビーズに結合され得る。更に、上記のように、幾つかの例では、抗CD3抗体によるT細胞の捕捉と、抗CD3及び抗CD28抗体の組み合わせによるT細胞の刺激とが同時に起こり得る。T細胞の単離及び活性化の両方に使用され得る市販の製品は、CTS(商標)Dynabeads(商標)CD3/CD28(Thermo Fisher Scientific、カタログ番号40203D)と題される。これらのビーズは、ヒトT細胞(例えば、ヒトT細胞)のエクスビボ単離、活性化及び増殖のために使用されてもよく、個々のビーズ上で抗CD3抗体及び抗CD28抗体を組み合わせ得る。したがって、他の細胞型からのT細胞の分離を可能にすることに加えて、これらのビーズは、T細胞の活性化及び増殖に必要な一次刺激シグナル及び共刺激シグナルの両方を提供する。
【0363】
抗CD3抗体及び/又は抗CD3抗体及び抗CD28抗体に曝露されたT細胞の試料を、活性化レベルについて分析することができる。活性化を測定するための1つのタイプのアッセイは、CD25(IL-2受容体のアルファ鎖)発現レベルについてスクリーニングされたT細胞に基づく。CD25マーカーは幾つかの末梢血リンパ球(例えば、調節性及び静止期メモリーT細胞)上に見られるが、CD25発現は一般に、顕著なT細胞活性化マーカーであると考えられている。したがって、本明細書で提供される方法は、集団中の活性化T細胞の割合を測定する方法を含む。このパーセンテージは、非活性化T細胞の数を活性化T細胞の数と比較することによって計算される。当然のことながら、活性化T細胞のパーセンテージは、活性化シグナルへの曝露の期間とともに、また、活性化T細胞が拡大するにつれて変化し得る。
【0364】
磁気ビーズは、任意の数の手段によって生体細胞の試料に添加され得る。多くの場合、ビーズは、装置とビーズバイアルとの相互作用によって生体細胞を含む容器に導入される。しかしながら、ビーズは、他の手段によって容器に導入されてもよい。例えば、バッグポートに接続されたシリンジを介した注入によってビーズをバッグに導入することができる。磁気ビーズがバイアルを使用しない手段によって生体細胞と接触する場合、ビーズバイアルカプラ208、並びに装置の他のビーズバイアル機構は存在しなくてもよい。
【0365】
図38の例示的なワークフローにおけるステップ4は、細胞増殖である。多くの場合、このステップはステップ3(細胞単離及び活性化)と重複する。これは、細胞が長期間(例えば、約1日間~約20日間、約2日間~約20日間、約4日間~約20日間、約4日間~約15日間、約4日間~約14日間、約6日間~約14日間など)活性化シグナルで曝露されることが多いためである。更に、この期間中、活性化された細胞はしばしば拡大し始める。
【0366】
増殖条件は条件を変化させ得るが、活性化T細胞は、細胞培地(例えば、CTS(商標)OpTmizer(商標)media without phenol red plus 2-5% CTS登録商標Immune Cell SR(Thermo Fisher Scientific、カタログ番号A3705001及び15710-049))中、例えば37℃及び5%CO2で培養され得る。更に、サイトカイン及び新鮮な媒体を1~3日毎に添加して、0.5~2×106細胞/mlの細胞濃度を維持することができる。制御性T細胞(Treg)は、100ng/mlのラパマイシン(例えば、Thermo Fisher Scientific、カタログ番号PHZ1235)及び300IUのIL-2/ml(例えば、Thermo Fisher Scientific、カタログ番号PHC0027)を含有する媒体中で増殖させ得る。CMV刺激T細胞は、100IUのIL2/mlで増殖させることができる。Th17細胞は、Paulosら(Paulosら、Science Transi.Med55:55ra78(2010))に記載されているように、抗IL-4及び抗IFN-γ中和抗体(例えば、Thermo Fisher Scientific,CA USからの両方)の存在下で、分極性サイトカイン(IL-6、IL-13、IL-23及びTGF-13、全て、例えば、Thermo Fisher Scientific CA USA製)を含有する媒体中で増殖させ得る。更に、活性化後3日目に100IUのIL-2/mlを添加することができる。IL2はまた、例えば単離バッグから排出物への細胞の希釈中に、0日目に添加され得る。
【0367】
細胞の増殖(ステップ4及び7)は、一般に、細胞分裂に適した条件下で行われる。増殖に使用され得る媒体としては、CTS(商標)OpTmizer(商標)T細胞増殖SFM(Thermo Fisher Scientific、カタログ番号A3705001)及びLymphoONE(商標)T細胞増殖ゼノフリー媒体(タカラバイオ、カタログ番号.WK552S)が挙げられる。
【0368】
幾つかの例では、磁性支持体を細胞から分離することは必要又は望ましくない場合がある。そのような場合、
図38に示すステップ5は省略されてもよい。
【0369】
一般に、ワークフローのある時点で、細胞から磁性支持体を分離することが望ましいであろう。幾つかの場合において、支持体が細胞に結合するとき、支持体の細胞への結合を破壊することが必要又は望ましいであろう。例えば、細胞及び磁性支持体は、抗体の磁性支持体へのコンジュゲーションによって互いに会合し得る。
図39は、支持体(すなわち、ビーズ)に結合した細胞の概略図を示す。「R」と標識された細胞表面受容体(例えば、CD3、CD4、CD8、CD11a、CD11b、CD14、CD15、CD16、CD19、CD20、CD22、CD24、CD25、CD28、CD30、CD31、CD34、CD38、CD45、CD56、CD61、CD91、CD114、CD117、CD182など)に結合した抗体を
図39に示す。更に、抗体によって結合される細胞型は、任意の数の細胞型(例えば、幹細胞、白血球一般、顆粒球、単球、総T細胞、ヘルパーTヘルパー細胞、制御性T細胞、細胞傷害性T細胞、B細胞、ナチュラルキラー細胞、血小板など)のうちの1つ以上であり得る。
【0370】
細胞からの磁性支持体の会合の破壊は、幾つかの手段によって達成され得る。幾つかの例示的な細胞放出特徴を
図39に示す。1つは、細胞又は支持体との抗体会合の破壊を可能にする切断部位を抗体に含めることである。幾つかの例では、抗体会合の破壊は、ある部分が抗原結合ドメインを含み、別の部分が支持体と会合している異なる部分への抗体の切断に基づくことができる。例示的な切断機構は、抗体切断を含む。抗体切断は、例えば、天然に存在するプロテアーゼ切断部位又は抗体に導入されたプロテアーゼ切断部位によって媒介され得る。使用され得るプロテアーゼとしては、タバコエッチウイルス(TEV)プロテアーゼ、S219V修飾を有するTEVプロテアーゼ(例えば、AcTEV(商標)プロテアーゼ、Thermo Fisher Scientific、カタログ番号12575015)、ライノウイルス3Cプロテアーゼ、TVMVプロテアーゼ、プラムポックスウイルスプロテアーゼ、並びにカブモザイクウイルスプロテアーゼ、エンテロペプチダーゼ、トロンビン及び第Xa因子が挙げられる。したがって、本明細書中に記載される方法には、細胞及び支持体が、1つ又はそれを超えるプロテアーゼによって媒介される切断によって互いに解離される方法が含まれる。そのような方法(例えば、1つ以上のプロテアーゼ切断部位を含有するように操作された抗体)を行うための組成物も本明細書に含まれる。上記に関連する幾つかの方法は、米国特許出願公開第2017/0313772号明細書に記載されている。
【0371】
細胞からの磁性支持体の会合の破壊が達成され得る別の方法は、競合的放出によるものである。例えば、
図39の「L」は、互いに非共有結合している2つの成分から構成され得る。1つの具体例は、ビオチン(又はビオチン誘導体)及びストレプトアビジンである。ビオチンとストレプトアビジンは、高い親和性(解離定数(Kd)4×10
-14M)で互いに非共有結合する。本明細書に記載の方法には、細胞がビオチンとストレプトアビジンとの相互作用を介して支持体と会合しているものが含まれる(又はアビジンなどの類似のタンパク質)。幾つかの特定の方法では、ストレプトアビジンを支持体に共有結合させ、ビオチン(又はビオチン誘導体)を抗体に共有結合させる。幾つかの例では、ビオチンは、4×10
-14M(例えば、約4×10
-13M~約4×10
-7M、約4×10
-12M~約4×10
-7M、約4×10
-10M~約4×10
-7M、約4×10
-13M~約4×10
-8M、約4×10
-13M~約4×10
-9Mなど)より低いKdでストレプトアビジンと会合するビオチン誘導体である。例示的なビオチン誘導体には、N-エチルビオチン及びデスチオビオチンが含まれる。本明細書に記載の方法で使用され得る幾つかのビオチン誘導体は、米国特許第9,567,346号に記載されている。
【0372】
細胞及び支持体の解離に使用され得る1つのプロセスは、抗ビオチン抗体を利用する。例えば、細胞表面タンパク質(例えば、受容体)に対する結合親和性を有する第1ビオチン化抗体が使用される場合、2つの抗体連結系を使用することができる。第2抗ビオチン抗体は、支持体にコンジュゲートされ得る。したがって、細胞は、部分的には、ビーズに結合した第2抗体(抗ビオチン抗体)と第1抗体(ビオチン化抗細胞表面タンパク質抗体)との結合を介して、支持体と会合する。支持体と細胞との間の会合の破壊は、第1抗体のビオチンへの第2抗体の結合の破壊によって媒介され得る。これは、細胞/ビーズ複合体を放出剤(例えば、ビオチン又はビオチン誘導体)と接触させることによって達成され得る。上記に関連する組成物及び方法は、米国特許第10,196,631号に含まれている。
【0373】
ビーズが抗体を介して細胞の表面に結合すると、ビーズ上の抗体に結合した細胞表面マーカーの下方制御の結果として、細胞が増殖するにつれてビーズが細胞によって放出されることが多いことが分かった。したがって、多くの場合、細胞は、活性解離ステップの実施なしにビーズから分離され得る。多くのそのような例では、ビーズからの細胞の分離は、細胞(例えば、T細胞)を約4~約21日間(例えば、約4~約21、約5~約21、約6~約21、約5~約14、約5~約12、約5~約10、約6~約14、約6~約12、約6~約10日など)増殖させた後に行われる。また、多くのそのような例において、ビーズからの細胞の分離は、70%を超える(例えば、約70%~約99%、約70%~約98%、約70%~約95%、約70%~約90%、約70%~約85%、約75%~約99%、約80%~約99%、約85%~約99%、約85%~約95%、約85%~約90%、約90%~約99%、約90%~約97%など)細胞がビーズから解離した後に細胞(例えば、T細胞)の後に起こり得る。勿論、ユーザは、任意の時点で細胞からビーズを分離することができる。しかしながら、多くの場合、初期時点での細胞からのビーズの分離は、ビーズが後の時点で分離される場合よりも低い細胞収率で行われることになる。これは、より早い時点でより多くのビーズが磁石によって捕捉されることが多いためである。したがって、多くの場合、ビーズからの細胞の分離は、細胞収量が80%を超える(例えば、約80%~約99.5%、約85%~約99.5%、約88%~約99.5%、約90%~約99.5%、約95%~約99.5%、約98%~約99.5%、約80%~約98%、約85%~約98%、約90%~約98%など)時点で起こり得る。細胞収量は、そのような場合、存在する細胞の総数のパーセンテージがビーズから分離されることによって測定される。
【0374】
磁性支持体に結合又は会合していない細胞は、細胞が磁性材料と会合していない条件下で支持体を捕捉するために磁場を使用してこれらの支持体から分離され得る。以下の実施例は、磁気ビーズを使用した実験及びデータを示している。更に、本明細書に記載のものなどの機器を使用して、ビーズ/細胞混合物中に存在する磁気ビーズの99%超を除去することが可能であることが示されている。したがって、本明細書では、ビーズ/細胞混合物中に存在する細胞から磁気ビーズを分離する方法であって、最初に存在する95%を超える(例えば、約95%~約99.9999%、約97%~約99.9999%、約98%~約99.9999%、約99%~約99.9999%、約98%~約99.95%、約98%~約99.90%など)ビーズが細胞から分離される方法を提供する。
【0375】
以下の実施例に示すように、ビーズ/細胞混合物の脱ビーズは、本明細書で前述したように、例えば
図34に示す種類のバッグと共にビーズ処理システム18を使用して実施することができる。そのようなバッグは、通過する流体がデバイス磁石に「短絡」しないようにする。したがって、流体は、バッグを出る前に磁石のかなりの長さにわたって通過しなければならない。
【0376】
バッグを通る流量もまた、脱ビーズ効率に影響を及ぼすパラメータである。より遅い流速は、より効率的な脱ビーズ化をもたらし、したがって、脱ビーズ化後に存在するビーズの数に関してより高い細胞純度をもたらすことが見出された。
【0377】
流量は、約10ml/分~400ml/分(例えば、約10ml/分~400ml/分、約20ml/分~400ml/分、約30ml/分~400ml/分、約40ml/分~400ml/分、約40ml/分~300ml/分、約40ml/分~200ml/分、約40ml/分~100ml/分、約50ml/分~300ml/分、約50ml/分~200ml/分、約45ml/分~150ml/分など)で変動し得る。多くの場合、流量は、ビーズの少なくとも99%(約99%~約99.9999%、約99%~約99.99%、約99.5%~約99.9999%、約99.8%~約99.9999%、約99%~約100%など)の除去を可能にするように選択される。したがって、本明細書において、ビーズ/細胞混合物中に存在するビーズの少なくとも99%を分離するための方法が提供される。多くの場合、そのような分離方法により、ビーズ対細胞比を少なくとも7のファクタ(例えば、約2~約7、約3~約7、約4~約7、約2~約7、約5~約7、約2~約6、約3~約6、約4~約6、約5~約6、約2~約5、約3~約5、約3~約5のファクタなど)減少させることができる。例として、3:1のビーズ対細胞比から0.3:1のビーズ対細胞比に移行することは、1ファクタの減少となり得る。更に、3:1のビーズ対細胞比から0.03:1のビーズ対細胞比に移行することは、2ファクタの減少となり得る。
【0378】
実施例3は、本明細書に記載のビーズ処理システム及び方法を使用して生成されたデータを示す。これらのデータは、99.99%を超えるビーズがデビーディングプロセスで除去されたことを示している。更に、元のビーズ45万個当たり1個のビーズのみが、ビーズ除去細胞と共局在化して存在すると推定された。実施例3のものと同様であるが流速が200ml/分である条件を使用した3回の反復からの結果は、0、1及び2個の総ビーズであり、したがって、3×106個の溶解細胞あたり0個(0個のビーズ)、13個(1個のビーズ)、27個(2個のビーズ)の共局在化ビーズであった。したがって、幾つかの例では、細胞は、最初に存在する細胞の100%程度から分離され得る。
【0379】
図38に示されるステップ6は、細胞工学である。場合によっては、このステップは実行されない。更に、このステップが実施される場合、操作される細胞型及び細胞操作の目的によって大きく異なり得る。
【0380】
T細胞は、例えば、キメラ抗原受容体(CAR)を発現するように操作され得る。CARは、標的細胞上の細胞表面タンパク質(例えば、ヒト白血球抗原抗原抗原)に結合するように設計された受容体である。更に、T細胞は、それらの表面上にCARを発現するように操作されてもよく、それらが特異的抗原(例えば、腫瘍抗原)を認識することを可能にする。次いで、これらのCAR T細胞を本発明の方法によって増殖させ、患者に注入することができる。典型的には、これは、T細胞を洗浄し(
図38のステップ8)、患者投与のために製剤化した(
図38のステップ9)後に行われる。
【0381】
幾つかの例では、細胞(例えば、T細胞)を、CARを発現するように操作することができ、ここで、CAR T細胞は抗腫瘍特性を示す。CARは、T細胞抗原受容体複合体ζ鎖(例えば、CD3ゼータ)の細胞内シグナル伝達ドメインに融合した抗原結合ドメインを有する細胞外ドメインを含むように設計することができる。そのようなCARは、T細胞で発現された場合、抗原結合特異性に基づいて抗原認識を再誘導することができる。
【0382】
CARの抗原結合部分は、抗原結合部分とも呼ばれる標的特異的結合要素を含み得る。使用される部分の選択は、標的細胞の表面を規定するリガンドの種類及び数に依存することが多い。例えば、抗原結合ドメインは、特定の疾患状態に関連する標的細胞上の細胞表面マーカーとして作用するリガンドを認識するように選択され得る。したがって、CAR中の抗原部分ドメインは、ウイルス感染、細菌感染及び寄生虫感染、自己免疫疾患及び癌細胞に関連し得る。
【0383】
CARをコードする天然又は合成核酸の発現は、典型的には、CARポリペプチド又はその一部をコードする核酸をプロモータに作動可能に連結し、構築物を発現ベクターに組み込むことによって達成される。ベクターは、真核生物の複製及び組込みに適し得る。典型的なクローニングベクターは、転写ターミネーター及び翻訳ターミネーター、開始配列、並びに所望の核酸配列の発現の調節に有用なプロモータを含む。
【0384】
細胞を操作するために使用される幾つかの方法は、複製欠損レンチウイルスベクターを使用して核酸を細胞に送達する。例えば、CARをコードする核酸分子は、多くの場合、そのようなベクターを使用して細胞に導入される。特に、VSV-Gシュードタイプを有するレンチウイルスベクターは、自動化された製造方法の下で効率的な形質導入を可能にする。更に、モロニーマウス白血病ウイルス(MMLV)、テナガザル白血病ウイルス(GALV)、ネコ内因性レトロウイルス(FERV)、ヒヒ内因性レトロウイルス(BaEV)、及び様々なガンマ又はアルファレトロウイルスベクターなどの幾つかのウイルス系を使用して細胞工学を行うことができる。
【0385】
細胞工学はまた、エレクトロポレーションのトランスフェクションによる細胞への核酸分子の導入によって実施され得る。そのような方法において使用され得る1つの機器は、Neon(商標)(Thermo Fisher Scientific、カタログ番号MPK10025)トランスフェクションシステムであり、これは、トランスフェクションが困難な細胞で最大90%のトランスフェクションを可能にすることが見出されており、反応あたり6×106個の細胞をトランスフェクションするために使用され得る。
【0386】
細胞への核酸分子は、エピソームのままであってもよく、又は細胞核酸分子(例えば、染色体DNA、ミトコンドリアDNAなど)に組み込まれてもよい。多くの場合、核酸分子の組込みは、非相同末端結合又は相同組換えによって媒介される。更に、多くの場合、核酸分子が「セーフハーバー」などの特定の遺伝子座で細胞核酸に組み込まれることが望ましい。そのような場合、核酸中に一本鎖又は二本鎖の部位切断をもたらすことができる「核酸切断実体」を使用することができる。幾つかの核酸切断実体が当技術分野で公知である。例えば、幾つかの態様において、核酸切断実体は、1つ以上のジンクフィンガータンパク質、転写活性化因子様エフェクター(TALE)、CRISPR複合体(例えば、Cas9又はCPF1)、ホーミングエンドヌクレアーゼもしくはメガヌクレアーゼ、アルゴンオート核酸複合体又はマクロヌクレアーゼを含む。
【0387】
核酸分子の支持体(例えば、ビーズなどの磁性支持体)に基づく精製は、液相及び固定相に基づくことができ、核酸分子を互いに及び他の種類の分子から選択的に分離することを可能にする。
【0388】
核酸分子を精製するための組成物及び方法が本明細書で提供される。多くの場合、そのような方法は、核酸分子と支持体(例えば、ビーズなどの磁性支持体)との会合を伴いえる。次いで、これらの支持体は、支持体に関連する材料を支持体に関連しない材料から分離することを可能にする磁場によって定位置に保持され得る。
【0389】
核酸分子(並びに他の種類の分子、及び時としてそのような分子を含む細胞)は、例えば、共有結合、非共有結合(例えば、イオン相互作用)、沈殿、又はそのようなプロセスの組み合わせによって支持体と会合し得る。核酸精製のための例示的な方法は、(1)シリカ、(2)ガラス、(3)珪藻土、(4)陰イオン交換材料、(5)細胞ロース及び(6)親和性会合材料(例えば、オリゴdT、ビオチン-ストレプトアビジンなど)で構成されるか又はそれを含有する支持体の使用を含む。
【0390】
様々な材料及び基との核酸分子会合機構は様々である。例えば、シリカは、負に帯電した核酸分子の基と負に帯電したシリカの基との間の引力によって核酸分子と会合すると考えられている。作用機序は完全には知られていないが、負に帯電した基及び/又はシリカ表面とDNAとの間に塩架橋が形成されると考えられている。
【0391】
シリカと同様に、陰イオン交換材料は、負に帯電した基(例えば、カルボン酸基)を介して負に帯電した核酸分子と会合する。更に、支持体(例えば、ビーズなどの磁性支持体)と会合して、核酸分子(並びにタンパク質などの他の種類の分子)を沈殿させて、支持体との会合を増強することができる。沈殿は、支持体を例えば高塩アルコール溶液(例えば、70%エタノール)と接触させ、続いてアルコール溶液で洗浄して塩を除去することによって媒介され得る。核酸分子沈殿の1つの利点は、可溶化(例えば、エタノールを含まない水溶液による可溶化)による核酸放出の前に、支持体に結合した核酸分子から溶質(例えば、塩)を除去できることである。幾つかの例では、これは、塩を除去する必要がない低塩可溶性核酸分子溶液をもたらす(例えば、透析によって)。そのようなプロセスの例は、実施例4及び5において以下に示される。
【0392】
核酸分子が支持体(例えば、ビーズなどの磁性支持体)と会合し、他の材料から分離されると、一般に、会合した核酸分子を支持体から分離することが望ましい。これは、通常、支持体からの核酸分子の放出、それに続く核酸分子からの支持体の物理的分離を含む。放出は、pH、イオン強度、及び/又は重量オスモル濃度の変化を含む任意の数の方法で媒介され得る。放出はまた、金属イオンキレート化(例えば、EDTA、EGTAなどによって媒介される。)及び競合的リガンド結合の使用によって媒介され得る。
【0393】
試料中の全核酸の精製が望まれる場合、核酸分子は、多くの場合、核酸タイプ又は配列特異的ではない機構によって支持体と会合する。試料中の特定の種類の核酸の精製が所望される場合、核酸分子は、所望の核酸分子の1つ以上の特定の特徴との関連をもたらす機構によって支持体と会合することが多い。例として、mRNAは、3’ポリA領域の存在によって、他の核酸分子(例えば、ゲノムDNA分子、プラスミドDNA分子、リボソームRNA分子、tRNA分子など)を含む他の材料から分離され得る。したがって、mRNAは、ポリA核酸領域に結合することができる支持体(例えば、ビーズなどの磁性支持体)と接触させ、続いて支持体及び結合したmRNAを洗浄し、次いで支持体からmRNAを放出し、次いでmRNAから支持体を分離することによって精製され得る。そのようなプロセスで使用され得る多くの支持体が市販されている(例えば、Thermo Fisher Scientific、Dynabeads(商標)mRNA Purification Kit、カタログ番号61006及びNew England Biolabs、Magnetic mRNA Isolation Kit、カタログ番号S1550S)。
【0394】
mRNAの産生及び精製のための方法を実施例4及び5に示す。最初に、これらの例において、ビオチン化DNA分子は、ビオチン化プライマーを用いたポリメラーゼ連鎖反応(PCR)によって産生される。得られたビオチン化DNA分子は、T7プロモータに作動可能に連結され、表面結合ストレプトアビジンを有する磁気ビーズに結合したmRNA分子をコードする。磁気ビーズに結合すると、DNA分子/ビーズ複合体はPCR反応混合物成分から分離される。次いで、ビーズに結合したDNAをインビトロ転写(IVT)反応混合物によって転写する。得られたmRNAは磁気ビーズと会合せず、したがって、ビーズが磁場によって所定の位置に保持されることによってビーズから分離され得る。次いで、mRNA分子は、カルボン酸基を含む磁気ビーズとの会合によってIVT反応混合物成分から分離される。この場合、IVT反応混合物成分を洗浄によって除去しながら、mRNA分子を所定の位置に保持する。したがって、第1分離はネガティブ選択であり、第2分離はポジティブ選択である。
【0395】
更に、多くの場合、IVT転写鋳型は何度も再利用され得る。例えば、支持体に結合したT7プロモータ駆動IVT転写鋳型は、新鮮なIVT反応混合物成分を再添加することによって複数回(例えば、約2~約15回、約3~約15回、約4~約15回、約5~約15回、約2~約10回、約2~約8回など)再使用され得ることが見出された。
【0396】
本明細書に記載のビーズ処理アセンブリ及びシステムは、上記並びに実施例4及び5に記載のプロセス、並びに本明細書に記載の他のプロセスなどのプロセスを含むワークフローの全部又は一部に使用することができる。ここでも、例示のために実施例4及び5に記載されたプロセスを使用して、単一の溶液容器(例えば、バッグ)をmRNAの初期精製のために使用することができた。これは、精製のための転写鋳型を有する磁性支持体(ストレプトアビジンビーズ)が最初に適所に保持され、次いで転写鋳型が転写産物から分離されるときに再び適所に保持されるからである(すなわち、mRNA分子)。mRNAの更なる精製が望まれる場合、第2容器(例えば、バッグ)がしばしば使用される。これは、磁性支持体から放出され、容器から取り出されたmRNA分子が、他の磁性支持体(カルボン酸ビーズ)と会合することによって更に精製されてもよく、多くの場合、これらの他の磁性支持体は、mRNA分子の洗浄及び放出後に適所に保持され得るからである。
【0397】
多くの場合、試薬の添加及び除去は、本明細書に記載のビーズ処理アセンブリ及びシステムを使用して再度実行することができる。更に、固体支持体からの放出の増強及び/又は精製後の分子(例えば、沈殿した核酸分子)の可溶化を含む様々な目的のために反応温度を変更するために、本明細書に記載のビーズ処理アセンブリ及びシステムに加熱パッド又は要素を追加することもできる。加熱はまた、他の目的にも有用であり得る。例えば、本明細書に記載のビーズ処理アセンブリ及びシステムがインビトロ転写に使用される場合、一般に、反応混合物を37℃又は他の適切な温度に加熱することが有利であろう。更に、より高い温度(例えば、65℃)を使用して、固体支持体(例えば、カルボン酸基を有する磁気ビーズからのmRNA)から核酸分子を放出することができる。
【0398】
これらの線に沿って、本明細書に記載のビーズ処理アセンブリ及びシステムは、容器(例えば、バッグ)の温度を上昇又は低下させるための加熱及び/又は冷却要素を収容することができる。これらの加熱及び/又は冷却要素は、例えば、反応を加速し、反応を減速し、材料を可溶化し、又は材料を沈殿させるために使用することができる。
【0399】
更に、インライン又はリザーバ加熱及び/又は冷却は、本明細書に記載のビーズ処理アセンブリ及びシステムと共に、又はその一部として使用することができる。加熱及び冷却要素は、容器への導入前又は材料が容器から出た後のいずれかで材料の加熱又は冷却を可能にする。説明のために
図11に示す概略図を使用すると、バッグ216Aは加熱要素と接触するように収容することができ、バッグ216Bは冷却要素と接触するように収容することができ、バッグ216Cは室温に維持することができる。更に、混合バッグ210は、加熱又は冷却要素と接触するものを含んでもよい。更に、収集バッグ212はまた、加熱又は冷却要素と接触するものを含んでもよい。
【0400】
幾つかの例では、精製されることが求められる生物学的材料はタンパク質であり得る。そのような精製には、例えば、共有結合、非共有結合(例えば、イオン相互作用)、沈殿、又はそのようなプロセスの組み合わせを含む任意の数の方法を使用することができる。幾つかの例では、結合パートナー親和性を使用することができ、結合パートナー(リガンド)は、精製しようとするタンパク質によって変化する。
【0401】
本明細書に記載のビーズ処理アセンブリ及びシステムを使用してタンパク質を精製する場合、一方の結合パートナーは固体支持体(例えば、磁気ビーズ)と会合することが多く、他方の結合パートナーは精製されるタンパク質と会合する。
【0402】
本明細書に記載の方法によって精製され得るタンパク質は、大きく異なり得る。本明細書に記載の方法によって精製されたタンパク質はまた、タンパク質の天然に存在する領域又は外因的に付加されたタグのいずれかにタンパク質に結合する親和性試薬に結合され得る。抗体へのプロテインA結合などの例に加えて、そのような方法には、精製されるタンパク質に対する特異性を有する抗体を固体支持体に連結する方法が含まれる。例えば、タンパク質が抗体(例えば、IgG、IgA、IgD、IgM、IgEなど)又は抗体の混合物(例えば、血清中に存在するIgG抗体など)である場合、リガンドは、プロテインA、プロテインG、プロテインL、又はこれらのタンパク質の1つ以上の1つもしくは複数の機能的変異体であり得る。
【0403】
したがって、タンパク質精製方法はまた、外因的に付加された親和性タグとの会合に基づいてもよい。これは、アフィニティタグが天然に存在するタンパク質中に通常存在しないことを意味する。組成物中に存在し、本明細書に記載の方法で使用され得る例示的なタグ及び結合パートナーとしては、マルトース結合タンパク質(MBP)/アミロース、グルタチオン-S-トランスフェラーゼ(GST)/グルタチオンタグ、ポリヒスチジン(His)/金属イオン(例えば、銅及びコバルト)、ストレプトアビジン/ビオチン(例えば、N-エチル-ビオチン)、及び抗原抗体反応(エピトープ)タグ(例えば、c-Mycタグ/抗c-Myc抗体、FLAG/抗FLAG抗体、及びヘマグルチニン(HA)タグ/抗HA抗体が挙げられる。
【0404】
タンパク質精製ワークフローにおける方法、並びに他のワークフローは、広く変化し得るが、場合によっては、磁性粒子(例えば、磁気ビーズ)などの固体支持体を磁場によって所定の位置に保持し、次いでタンパク質結合パートナーと接触させることができる。他の例では、磁性粒子(例えば、磁気ビーズ)などの支持体をタンパク質結合パートナーと接触させ、次いで磁場によって定位置に保持することができる。そのような両方の場合において、支持体は、所定の位置に保持され、洗浄され得る。
【0405】
例えば、タンパク質が他の材料(例えば、細胞片)から分離されたプロセスの後に、支持体からタンパク質を放出することが望ましい場合がある。タンパク質が支持体から放出されるプロセスは、タンパク質及び/又はタンパク質と支持体との間の会合の性質によって決定される。
【0406】
支持体からのタンパク質放出は、タンパク質内又はタンパク質と外因的に付加されたタグとの間のプロテアーゼ切断の使用によって媒介され得る。使用され得る例示的なプロテアーゼとしては、ライノウイルス3Cプロテアーゼ、TVMVプロテアーゼ、プラムポックスウイルスプロテアーゼ、カブモザイクウイルスプロテアーゼ、タバコエッチウイルス(TEV)プロテアーゼ、トロンビン、第Xa因子、及びエンテロペプチダーゼが挙げられる。
【0407】
支持体からのタンパク質の精製及び放出の両方を可能にするタンパク質精製方法の1つのタイプは、ビオチン及びビオチン誘導体(例えば、ビオチン、デスチオビオチン、N-エチル-ビオチンなど)を併用し、ビオチン結合タンパク質を使用する。
【0408】
タンパク質は、化学的及び酵素的方法を含む幾つかの方法によってビオチン化され得る。化学的タンパク質のビオチン化は、アミン、カルボン酸及びスルフヒドリル基の非特異的ビオチン化をもたらすことが多い。酵素的タンパク質ビオチン化は、タンパク質内の特定の基のビオチン化をもたらすように設計され得る。タンパク質ビオチン化に使用され得る酵素の一例は、大腸菌ビオチンホロ酵素シンテターゼ、ビオチンリガーゼ(BirA)である。この酵素は、アセチル-CoAカルボキシラーゼビオチンカルボキシルキャリアタンパク質(BCCP)サブユニットの特定のリジンのアミノ基へのビオチンの転移を触媒する。
【0409】
幾つかの例において、リガンド結合活性を有する抗体又は他のタンパク質は、低親和性ビオチン誘導体(例えば、デスチオビオチン、N-エチル-ビオチンなど)/ビオチン結合タンパク質(例えば、アビジン、ストレプトアビジン、ニュートラアビジンなど)の会合によって支持体と会合する。ビオチン結合タンパク質からの低親和性ビオチン誘導体の放出は、高親和性ビオチン(例えば、d-ビオチン)との競合によって媒介される。
【0410】
タンパク質精製並びに細胞、ウイルス、ウイルス様粒子及び他の生物学的分子のために使用され得る細胞捕捉及び放出方法は、CaptureSelect(商標)N-エチルビオチン(NEB)抗CD4コンジュゲート(Thermo Fisher Scientific、カタログ番号7113762100)及びCaptureSelect(商標)N-エチルビオチン(NEB)抗CD8コンジュゲート(Thermo Fisher Scientific、カタログ番号7113772100)を使用する方法である。この場合、ビオチン化抗CD4抗体又は抗CD8抗体は、ビオチン/ストレプトアビジン会合を介して磁気ビーズに結合される。要約すると、この製品領域に記載された方法が以下に続く。最初に、NEBでビオチン化された抗CD4抗体又は抗CD8抗体をストレプトアビジン被覆磁気ビーズと接触させる。次いで、NEB/ストレプトアビジン会合を介したT細胞の結合を可能にする条件下で、ビーズをCD4+又はCD8+T細胞と接触させる。次いで、短時間のインキュベーション後にビーズを洗浄する。多くの場合、ビーズは洗浄中に磁場によって定位置に保持される。洗浄後、ビーズをd-ビオチンを含む放出試薬と接触させる。次いで、CD4+又はCD8+T細胞を含む上清を除去する。多くの場合、ビーズは洗浄中に磁場によって定位置に保持される。結果は、ビーズが殆ど又は全く存在しないCD4+T又はCD8+T細胞の精製集団である。
【0411】
上記のような方法は、多くの場合、閉鎖系で実行され、自動化され、閉鎖系で実行される。自動化に関して、全ての反応ステップは、試薬の添加及び除去のために接続されたチューブを有する1つ以上の容器(例えば、バッグ)で実行することができる。例として、本明細書に記載のものなどのビーズ処理アセンブリ及びシステムを使用して、ビーズの添加及び放出試薬とのインキュベーション後にビーズを定位置に保持することができる。
【0412】
細胞/ウイルス表面ディスプレイ法も本明細書で提供される。酵母(例えば、サッカロミセスセレビシエ(Saccharomyces cerevisiae))表面ディスプレイを例として使用すると、目的のタンパク質又はその一部をコードする核酸は、目的のタンパク質又はその一部が酵母細胞の外部に存在する条件下で、S.cerevisiae細胞表面タンパク質との融合物として発現され得る。この目的のために使用され得る1つの酵母遺伝子は、A-アグルチニン結合サブユニット(Aga2p)細胞表面タンパク質をコードする。結果として、発現後、目的のタンパク質又はその一部が、細胞表面融合タンパク質の成分として酵母細胞の表面に位置する。次いで、これらの細胞を、結合パートナーが結合している支持体と接触させ、その後、結合していない酵母細胞を洗浄によって除去する。次いで、関心のある潜在的なタンパク質をコードする核酸を単離し、クローニング及び/又は配列決定することができる。多くの場合、目的のタンパク質は、支持体に結合した抗原に対する特異性を有する抗体のライブラリーから単離された抗体である。
【0413】
同様のファージディスプレイ法を、本明細書中に提供されるビーズ処理アセンブリ及びシステムを使用して行うこともできる。
【0414】
本明細書で提供されるビーズ処理アセンブリ及びシステムはまた、ウイルス及びウイルス様粒子を精製するために使用され得る。本明細書に記載の方法を使用して精製されたウイルス及びウイルス様粒子は、エンベロープを持たないウイルス及びウイルス様粒子にエンベロープされ得る。
【0415】
ウイルス及びウイルス様粒子は、支持体(例えば、磁気ビーズ)との会合によって単離され得る。ウイルス及びウイルス様粒子が支持体と会合する様式は、個々のウイルス及びウイルス様粒子の構造によって異なり得る。例として、アデノ随伴ウイルス(AAV)はエンベロープを持たず、AAVカプシドタンパク質に対する結合親和性を有する抗体が開発されている。更に、AAVキャプシド変異(血清型)が知られており、異なる細胞及び組織特異性を有する異なるAAV血清型をもたらす。
【0416】
1つの市販のAAVキャプシド結合抗体は、AAVX抗体(CaptureSelect(商標)Biotin Anti-AAVX Conjugate,Thermo Fisher Scientific,カタログ番号7103522500参照)と呼ばれるVHH抗体である。AAVX抗体は、複数のキャプシド血清型に対して結合親和性を有する単一の抗体である。AAVX抗体、並びにAAVキャプシドタンパク質に対する特異性を有する他の抗体を使用して、AAVウイルス様粒子を精製することができる。勿論、他のAAV抗体も使用することができ、その多くは特異的AAVキャプシド(例えば、CaptureSelect(商標)Biotin Anti-AAV8 Conjugate、カタログ番号7103382500;CaptureSelect(商標)Biotin Anti-AAV9 Conjugate、カタログ番号7103332500;等)に対してより指向する活性を有する。多くのそのような方法では、AAVウイルス様粒子を含有する組成物は、AAV粒子の支持体への結合を可能にするのに十分な期間にわたって支持体(例えば、ビーズなどの磁性支持体)に結合する抗AAVキャプシド抗体を含み得る。多くの場合、支持体は、固体支持体を未結合材料から分離するために洗浄され、その後、AAV粒子が固体支持体から放出される。AAV粒子放出のために使用され得る一試薬は、50mMクエン酸、pH3.0である。次いで、AAV粒子を含有する得られた溶液を、例えば100mM Tris、pH9.0を使用して中和することができる。
【0417】
幾つかのAAV血清型(例えば、AAV2及びAAV6)の精製のための支持体はまた、ヘパリン(Auricchioら、「Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column」、Hum.Gene Ther.,12:71-76(2001))を含み得る。したがって、ヘパリンを含む支持体(例えば、ビーズなどの磁性支持体)を、本明細書に記載の方法で使用することができる。
【0418】
エンベロープウイルス及びウイルス様粒子はまた、本明細書で提供される組成物、方法及びデバイスを使用して精製され得る。エンベロープウイルス及びウイルス様粒子、並びに細胞及びエキソソームは、例えば親和性剤の使用によって精製され得る。そのような方法の一部として、エンベロープウイルス及びウイルス様粒子は、精製しようとするウイルス及びウイルス様粒子のエンベロープに存在するタンパク質とリガンドとの会合に基づいて精製されることが多い。そのような方法の一例は、Mekkaouiらの“Lentiviral Vector Purification Using Genetically Encoded Biotin Mimic in Packaging Cell”、Mol.Ther.Methods Clin.Dev.,11:155-165(2018)に記載される。この方法では、パッケージング細胞を、cTag8と呼ばれるCD8aアミノ酸配列に融合したビオチン模倣ペプチドを発現するように遺伝子操作した。出芽によって生成されたレンチウイルス粒子は、cTag8を含むエンベロープを獲得する。次いで、エンベロープされたレンチウイルス粒子は、ビオチン結合パートナー(例えばストレプトアビジン)を含む支持体との会合によって得ることができる。そのような方法の1つの利点は、使用されるビオチン結合パートナー(例えば、ストレプトアビジン、アビジン、ニトロ化アビジン、ニトロ化ストレプトアビジン)からの親和性がビオチン又はビオチン誘導体(例えば、デスチオビオチン、N-エチル-ビオチン、抗ビオチン抗体など。)よりも低いビオチン模倣ペプチドを使用できることである。ニトロ化アビジン及びストレプトアビジンは、それぞれの未修飾タンパク質(Moragら、「Immobilized nitro-avidin and nitro-streptavidin as reusable affinity matrices for application in avidin-biotin technology」、Anal。Biochem.,243:257-263(1996))よりも穏やかな条件下でリガンド放出を可能にする修飾タンパク質(例えば、ニトロ基がチロシンに付加されている)である。したがって、ビオチン及び/又はビオチン誘導体を使用して、競合的結合によってレンチウイルス粒子を放出することができる。勿論、そのようなタグはまた、それらが結合している分子を精製するために使用され得る(例えば、タンパク質)。
【0419】
ウイルス、ウイルス様粒子及び小胞(例えば、エキソソーム)の精製のための機器、組成物、方法及びワークフローが本明細書で提供される。多くの場合、そのような方法は、ウイルス及び/又はウイルス様粒子が支持体と会合することを可能にする条件下で、ウイルス、ウイルス様粒子及び小胞(例えば、エキソソーム)が会合する支持体(例えば、ビーズなどの磁性支持体)と組成物(例えば、細胞培養物、細胞培養上清、馴化細胞媒体、細胞溶解物など)を接触させ、続いて支持体を洗浄し、次いでウイルス及び/又はウイルス様粒子の支持体からの解離を誘導することを含む。
【0420】
ウイルス、ウイルス様粒子及び/又は小胞(例えば、エキソソーム)は、イオン性相互作用及び抗体/抗原相互作用などのリガンド/結合パートナー相互作用を含む任意の数の方法で媒介され得る。
【0421】
上記のように、支持体に関連するウイルス、ウイルス様粒子及び/又は小胞(例えば、エキソソーム)の放出は、幾つかの方法で媒介され得る。これらには、pH、イオン強度、イオン電荷、温度(例えば、温度を上昇させること、)及び溶液極性を変えることによって解離を誘導することが含まれる。
【0422】
多くの場合、支持体は、洗浄中及びウイルス、ウイルス様粒子及び/又は小胞(例えば、エキソソーム)の支持体からの解離後に磁場によって定位置に保持される。
【0423】
細胞外小胞(例えば、エキソソーム、微小胞、アポトーシス小体など)及びリポソームは、エンベロープウイルス及びウイルス様粒子について本明細書に記載される方法と同様の方法を用いて精製され得る。
【0424】
細胞外小胞は、殆ど全てのタイプの細胞から放出される複製欠損脂質二重層粒子である。細胞外小胞の大部分は200nm未満であるが、細胞外小胞のサイズは約20から10ミクロン以上の大きさの範囲である。
【0425】
エキソソームは細胞外小胞の一種であり、典型的には30nm~150nmである。エキソソームは、多数の哺乳動物細胞による多小胞体と細胞膜との融合時に放出されると考えられている。多種多様な分子が細胞外小胞及びエキソソームなどの細胞外小胞に関連することが見出されており、細胞間コミュニケーション及び標的細胞シグナル伝達経路の活性化などの目的のために核酸、タンパク質及び脂質を輸送すると考えられている。
【0426】
癌において、エキソソームなどの細胞外小胞は、免疫応答の調節及び血管新生の促進などの過程に関与すると考えられている。患者試料(例えば、血液)に由来するエキソソームなどの細胞外小胞は、がんの非侵襲的な早期検出及び診断に使用することができる。エキソソームなどの更なる細胞外小胞は、例えば癌治療のための天然薬物送達ビヒクルとして使用され得る。
【0427】
エキソソームなどの細胞外小胞は、支持体(例えば、ビーズなどの磁性支持体)との会合(例えば、非親和性又は親和性会合)によって精製され得る。非アフィニティーエキソソーム精製方法の一例は、イオン交換基の使用によるものである。核酸分子精製に使用されるものと同様の陰イオン交換基を細胞外小胞(例えば、エキソソーム)精製に使用することができる。
【0428】
Dynabeads(商標)Intact Virus Enrichment(SARS-CoV-2用に最適化された)(Thermo Fisher Scientific、カタログ番号10700D)市販品を使用してエキソソームを精製できることが分かっている。この製品中のDynabeads(商標)は、負に帯電した小胞及び分子に結合する1μm陰イオン交換磁気ビーズである。この実施例によって示されるように、本明細書に示される多くの精製方法は、異なる種類の生物学的材料(例えば、核酸分子、タンパク質、ウイルス様粒子、細胞など)を精製するために使用され得る。
【0429】
エキソソームの精製のために、幾つかの親和性に基づく方法が開発されている。1つのタイプの方法は、しばしばエキソソーム表面に濃縮されるテトラスパニンタンパク質(例えば、CD9、CD63及びCD81)を標的とする抗体を使用する(Liangsupree et al.,“Modern isolation and separation techniques for extracellular vesicles”、J.of Chromatography A 1636:461773(2021)を参照)。エキソソームの免疫親和性精製の2つの利点は、(1)精製選択性及び(2)異なる細胞型に由来するエキソソームを精製する能力である。例えば、上皮細胞接着分子(EpCAM CD326)は、肺癌細胞、胃癌細胞、結腸癌細胞、前立腺癌細胞及び卵巣癌細胞を含む特定の癌細胞において高度に発現されることが見出されている。
【0430】
幾つかの例では、細胞外小胞(例えば、エキソソーム)の親和性媒介精製は、以下のタンパク質、すなわち、CD1(例えば、CD1a、CD1b、CD1c、CD1d及びCD1e)、CD2、CD3(例えば、CD3d、CD3e及びCD3g)、CD4、CD5、CD6、CD7、CD8(例えば、CD8a及びCD8b)、CD14、CD16、CD19、CD21(補体受容体2)、CD23、CD24、CD27、CD28、CD29(インテグリンベータ1)、CD30、CD42(例えば、CD42a、CD42b、CD42c及びCD42d)、CD44、CD45、CD51、CD63、CD79(例えば、CD79a及びCD79b)、CD80、CD81、CD86、CD94(KLRD1)、CD95、CD97、CD114(G-CSF受容体)、CD115(CSF1受容体)、CD116、CD117、CD118、CD119、CD120(例えば、CD120a及びCD120b)、CD121(例えば、CD121a及びCD121b)、CD122、CD123、CD124、CD125、CD126、CD127、CD128、CD130、CD131、CD132、CD134、CD135、CD137、CD138、CD140(例えば、CD140a及びCD140b)、CD150、CD152、CD153、CD154、CD157、CD158(例えば、CD158a,CD158b1,CD158b2,CD158b,CD158c,CD158d,CD158e1,CD158e2,CD158f1,CD158f2,CD158g,CD158h,CD158i,CD158j,及びCD158k)、CD160、CD161、CD167(例えば、CD167a及びCD167b)、CD172(例えば、CD172a,CD172b,及びCD172g)、CD179(例えば、CD179a,CD179b,CD179c,及びCD179d)、CD181、CD182、CD183、CD191、CD194、CD200、CD202b、CD212、CD215、CD217、CD218(例えば、CD218a及び218b)、CD220、CD221、CD222、CD223、CD226、CD227、CD235a(Gly A)、CD244、CD247(CD3-Zeta)、CD252、CD253、CD254、CD256(APRIL)、CD257(BAFF)、CD258、CD261、CD262、CD263、CD264、CD265、CD266、CD267、CD268、CD269、CD263、CD264、CD265、CD266、CD267、CD272、CD273、CD274、CD275、CD276、CD278(ICOS)、CD279、CD304、CD305、CD314、CD326、CD331、CD332、CD333、CD335、CD336、CD337、CD357、CD358、CD360及びCD366のうちの1つ以上における結合親和性を有する親和性試薬(例えば、抗体)によって媒介され得る。
【0431】
エキソソームを精製するために使用され得る親和性精製試薬の例は、Thermo Fisher Scientific(カタログ番号10616D号)から入手可能なExosome-Human CD81 Isolation Reagent(細胞培養由来)製品である。
【0432】
培養で成長させた細胞から細胞外小胞(例えば、エキソソーム)を生成及び精製するための組成物及び方法が本明細書で提供される。幾つかのこのような方法では、細胞は、細胞外小胞(例えば、エキソソーム)形成のために十分な期間培養で増殖させ、次いで、細胞外小胞(例えば、エキソソーム)を細胞から分離する(例えば、遠心分離によって)。細胞から分離されると、次いで、細胞外小胞(例えば、エキソソーム)は、支持体(例えば、磁気ビーズ)との会合及び本明細書に記載のビーズ処理アセンブリ及びシステムを使用した処理によって周囲の物質(例えば、タンパク質、媒体など)から分離され得る。当然ながら、ビーズ処理アセンブリ及びシステムは、上記のようなワークフロー又はそのようなワークフローの少なくとも幾つかのステップなどのワークフローを自動化するように設計されてもよい。
【0433】
幾つかの例では、細胞外小胞(例えば、エキソソーム)の生成及び精製に使用される細胞は、細胞外小胞(例えば、エキソソーム)に含まれるか又はその成分である1つ以上の分子を含有又は発現する。そのような細胞は、(1)分子を天然に産生し得るか、(2)分子が細胞に取り込まれる条件下で分子に曝露され得るか、又は(3)分子(例えば、キメラ抗原受容体(CAR)などのタンパク質)を産生するように操作され得る。
【0434】
幾つかの例では、エキソソームが治療剤を含む、培養で増殖させた細胞のためのエキソソームの生成及び精製のための方法が本明細書で提供される。そのような方法の一例は、細胞が細胞によって取り込まれる治療剤に細胞を曝露し、続いてこれらの細胞によって生成されたエキソソームを精製することである。
【0435】
細胞外小胞(例えば、エキソソーム)には、エレクトロポレーション(例えば、Zhou et al.,“Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer”、Acta Pharm Sin.B.,10:1563-1575(2020)参照)によって分子(例えば、パクリタキ細胞、siRNA、タンパク質などの抗癌剤)を負荷することもできる。細胞外小胞(例えば、エキソソーム)には、トランスフェクションによって分子を負荷することもできる(例えば、脂質媒介性トランスフェクション)。更に、エキソソームは、支持体(例えば、ビーズなどの磁性支持体)媒介精製の前又は後に負荷され得る。
【0436】
特定の生物学的分子を含有又は含むように細胞工学から得られた細胞外小胞(例えば、エキソソーム)を精製する方法が本明細書で提供される。幾つかの例では、生物学的物質は、ゲノム編集複合体、又はそのような複合体(例えば、Cas9タンパク質及び/又はガイドRNA分子をコードするDNA又はRNA)を含む及び/又はそのような複合体をコードする核酸を含む1つ以上の成分(例えば、Cas9タンパク質、ガイドRNA分子/Cas9タンパク質複合体など)であり得る。幾つかの例では、生物学的物質はRNA分子(例えば、siRNA分子、マイクロRNA分子、mRNA分子など)であり得る。
【0437】
細胞外小胞(例えば、エキソソーム)の1つの治療適用は、癌処置である。キメラ抗原受容体T細胞(CAR-T細胞)によって放出されたエキソソームは、その表面にCARを有するエキソソームを放出することが示されている。これらのエキソソームは、細胞傷害性分子及び腫瘍に対する細胞傷害活性を含有することが見出されている(Fuら,“CAR exosomes derived from effector CAR-T cells have potent antitumour effect and low toxicity”、Nat。Commun.,10:4355(2019)及びYangら、“The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth”、Cell.Immunol.,360:104262(2021))。更に、そのようなエキソソームは、CAR-T細胞と比較して、それらが投与される個体(例えば、癌患者)において誘導される副作用が少ないと考えられている。
【0438】
T細胞によって生成された細胞外小胞(例えば、エキソソーム)の精製方法が本明細書で部分的に提供される。そのような方法は、細胞外小胞(例えば、エキソソーム)の生成に十分な期間にわたって媒体中でT細胞を維持し、続いてこれらの細胞外小胞(例えば、エキソソーム)上で精製することを含み得る。多くの場合、T細胞によって生成された細胞外小胞(例えば、エキソソーム)は、細胞外小胞(例えば、エキソソーム)の生成前にCARを発現するように操作される。幾つかの例において、そのような細胞外小胞(例えば、エキソソーム)は、個体(例えば、癌患者)に投与されるであろう。
【0439】
場合によっては、機器、組成物、方法及び/又はワークフローは、細胞外小胞(例えば、エキソソーム)の試料の枯渇を含み得る。そのような枯渇の一例は、試料が赤血球由来のエキソソームを含有する場合である。そのような場合、CD235aに対する結合親和性を有する支持体(Gly A)を使用して、赤血球及び/又は赤血球によって形成された細胞外小胞(例えば、エキソソーム)を試料から除去することができる。そのようなワークフローで使用され得る市販の製品は、CD235a(グリコホリンA)MicroBeads,Human(ミルテニー、カタログ番号.130-050-501)である。
【0440】
上記のような方法は、多くの場合、閉鎖系で実行され、自動化され、閉鎖系で実行される。自動化に関して、全ての反応ステップは、試薬の添加及び除去のために接続されたチューブを有する1つ以上の容器(例えば、バッグ)で実行することができる。一例として、本明細書に記載のものなどのビーズ処理アセンブリ及びシステムを使用して、バッグ内の条件を変更してウイルス及び/又はウイルス様粒子の支持体からの放出を誘導した後にビーズを定位置に保持することができる。
【実施例】
【0441】
本明細書に記載の主題は、例示として提供され、限定することを意図しない以下の実施例を参照することによって更に理解することができる。更に、以下の実験の一部は、図に例示された器具及び材料を使用して実施した。例えば、揺動条件下で行われる以下のT細胞の単離及び活性化は、前述のように、消耗キット170Aを備えたビーズ処理装置22を使用して達成された(
図9及び
図11)。同様に、以下に説明する脱ビーズは、前述のように、消耗キット170B(
図9及び
図35)を備えたビーズ処理装置22を使用して達成された。
【0442】
実施例1:T細胞単離及び生存性評価
【0443】
250×106個のCD3+細胞を、CTS(商標)Dynabeads(商標)CD3/CD28(Thermo Fisher Scientific、カタログ番号.40203D)と共に、PBS/1%ヒト血清アルブミン中、室温で30分間培養した。細胞-ビーズインキュベーション中の細胞密度は10×106 CD3+細胞/mLであり、ビーズ対細胞比は3:1であった。この間、細胞及びビーズを揺動(10度、5RPM)させながら混合した。同じ混合手順を使用して、CD3+単離後に細胞を洗浄し、未結合細胞を除去した。
【0444】
単離効率についてPBMCからのCD3+枯渇を分析するために、上記のアプローチに従って、単離前のPBMC及び陰性画分から試料を収集した。試料を蛍光標識抗CD3抗体で染色し、インプット画分及び陰性画分中のCD3+細胞の数をフローサイトメトリーによって分析した。単離効率(陰性画分からのCD3+細胞の枯渇)は、陰性画分中のCD3+細胞の画分を1から減算し、100%を掛けることによって計算した。
【0445】
実験実行の2つのレプリケートからの平均単離効率は93%であった(標準偏差(SD)0.47)。
【0446】
CD3+細胞単離後、T細胞をバイオリアクタに移し、100IU/mL IL-2(Thermo Fisher Scientific、カタログ番号PHC0021)を補充したCTS(商標)OpTmizer(商標)T Cell Expansion SFM(Thermo Fisher Scientific、カタログ番号A1048501)中で6日間増殖させた。生存率を評価するために、バイオリアクタから試料(2ml)を無菌的に収集し、再懸濁し、脱ビーズし、Sytox(商標)Blue Dead Cell Stain(Thermo Fisher Scientific、カタログ番号S34857)及びフローサイトメトリーを用いて生存率パーセントについて分析した。
【0447】
【0448】
実施例2:T細胞純度評価
【0449】
増殖の1日目及び6日目のT細胞純度をフローサイトメトリーによって評価した。
【0450】
T細胞は抗CD3+抗体を用いて染色し、単球は抗CD14抗体を用いて染色し、B細胞は抗CD19抗体を用いて染色し、ナチュラルキラー(NK)NK細胞は抗CD56抗体を用いて染色した。全ての抗体を蛍光色素に直接コンジュゲートさせ、フローサイトメトリーによる直接検出を可能にした。
【0451】
実験実行の2回の反復から得られたデータを以下の表2に示す。これらのデータは、揺動及び振盪条件下で培養した細胞を使用して生成した。
【0452】
【0453】
実施例3:デビーディング効率
【0454】
6日間の増殖後、
図34に示すものと同様のバッグ及び
図35に記載のフローシステムを使用して、46の連続流量での連続フローアプローチによって細胞を脱ビーズした。バイオリアクタからの細胞は、細胞を通過させながら、磁石上を通過して磁気ビーズを収集する。脱ビーズ細胞を排出バッグに収集する。
【0455】
ビーズ除去後、3×106個のCD3+細胞を含有する試料を排出バッグから取り出し、溶解し、次いで、少量(20μL)に濃縮する。3×106個のCD3+細胞あたりのビーズの数を推定するために、全溶解物中のビーズを計数する。ビーズは、製造業者のプロトコルに従って、光学顕微鏡及びKOVA(商標)ガラススライド計数チャンバ(Fisher Scientific、カタログ番号22-270141)を使用して計数している。実験実行の2回の反復から得られたデータを表3に示す。
【0456】
【0457】
ビーズが細胞と3:1の比で混合されることに基づいて、脱ビーズプロセスの前に存在するビーズの数は9×106個であると推定される。したがって、46ml/分の流速では、99.99%を超えるビーズが脱ビーズプロセスで除去されたと推定される。平均して、最初に存在した推定900万個のビーズのうち、45万個当たり1個のビーズのみが脱ビーズ細胞と共局在したと推定される。
【0458】
実施例4:固相インビトロ転写(IVT)
【0459】
パート1:IVT鋳型/磁気ビーズ複合体の製造
【0460】
材料及び方法:
【0461】
Dynabeads(商標)MyOne(商標)Streptavidin C1(Thermo Fisher Scientific、カタログ番号65002)、2xStreptavidin binding and washing buffer(10mM Tris-HCl(pH7.5)1mM EDTA 2M NaCl)、ヌクレアーゼフリー水、10mM Tris(pH7-8)、Tris-EDTA(pH7-8)(TE)、DynaMag(商標)-2磁石(Thermo Fisher Scientific、カタログ番号12321D)、Thermal Mixer(Thermo Fisher Scientific、カタログ番号12321D)。
【0462】
Dynabead(商標)ストレプトアビジンへのビオチン化PCR産物(鋳型)の固定化
【0463】
ビオチン化PCR産物の調製:
【0464】
UTR及びORFの上流にT7プロモータを含み、場合により末端に所定のポリAテールを有するビオチン化PCR産物を調製した。フォワードプライマーはビオチン化されており、少なくとも50~100塩基対のT7プロモータまでの距離を有していた。次いで、PCR産物を1×ストレプトアビジン結合及び洗浄緩衝液で20ng/μLに希釈した(2×Dynabeads(商標)ストレプトアビジン結合及び洗浄緩衝液は、使用前にヌクレアーゼフリー水中で1:1に希釈した)。反応条件は以下に示す通りであった。
【0465】
【0466】
ストレプトアビジンビーズの調製は以下のように行う:
【0467】
1.Dynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズをボルテックスによってチューブに懸濁した。
【0468】
2.Dynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズを含むチューブをローラー上に少なくとも20分間置いた。
【0469】
3.100μL(1mg)の再懸濁したDynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズをRNaseフリーチューブに移した。
【0470】
4.再懸濁したDynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズを含むチューブをDynaMag(商標)-2磁石上に1分間置き、次いで上清を除去した。
【0471】
5.ピペット又は短時間ボルテックスを使用して再懸濁することによって、100μLの1×ストレプトアビジン結合及び洗浄緩衝液中でビーズを1回洗浄した。
【0472】
6.チューブをDynaMag(商標)-2磁石上に1分間置いた。
【0473】
7.上清をチューブから取り出した。
【0474】
8.ビーズを50μLストレプトアビジン緩衝液に懸濁した。
【0475】
DNA固定化:
【0476】
1.ビオチン化PCR産物50μL(1×ストレプトアビジン結合及び洗浄緩衝液で希釈した1μg)を、洗浄及び再懸濁したDynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズに添加した。
【0477】
2.チューブを、サーマルミキサー1500RPMで室温(RT)にて30分間培養した。
【0478】
3.チューブをDynaMag(商標)-2磁石上に1分間置き、次いで上清を除去した(任意選択:Qubit(商標)1x dsDNA HS Assay Kit(Thermo Fisher Scientific、カタログ番号Q33230)を使用して、この上清中にどれだけ多くの未結合DNAが残っているかを定量する)。
【0479】
4.DNA-ビーズ複合体を、ピペット又は短時間ボルテックスを使用して、100μLのTE緩衝液(pH8)に再懸濁することによって4回洗浄した。
【0480】
5.チューブをDynaMag(商標)-2磁石上に1分間置き、次いで上清を廃棄した。
【0481】
6.洗浄を3回繰り返し、合計4回洗浄した。最後の洗浄ステップでは、上清を廃棄しなかった。
【0482】
7.固定化鋳型を有するDynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズを、以下に示すようにIVTのために保持した
【0483】
パート2:固定化鋳型IVT
【0484】
材料及び方法:
【0485】
MEGAscript(商標)T7 Transcription Kit(Thermo Fisher Scientific、カタログ番号AMB1334)、10mM Tris HCl pH8、ストレプトアビジン緩衝液(5mM Tris-HCl(pH7.5)0.5mM EDTA 1M NaCl)、Dynabeads(商標)MyOne(商標)カルボン酸ビーズ(Thermo Fisher Scientific、カタログ番号65012)、ヌクレアーゼフリー水
【0486】
固定化IVT鋳型:1μgのビオチン化DNA鋳型が固定化された1mgのDynabeads(商標)MyOne(商標)ストレプトアビジンC1ビーズ(上記ステップ6/7から)
【0487】
IVT反応混合物:以下に示す100μL反応にスケールアップされたMEGAscript(商標)キット試薬:
【0488】
【0489】
1.固定されたIVT鋳型を有するチューブをDynaMag(商標)-2磁石上に置き、上清を廃棄した(上記のステップ7)。
【0490】
2.固定化されたIVT鋳型を200μLの10mM Tris-HCl(pH8)に再懸濁することによって洗浄した。
【0491】
3.固定されたIVT鋳型を有するチューブをDynaMag(商標)-2磁石上に置き、上清を廃棄した。
【0492】
4.固定化されたIVT鋳型を100μLのMEGAscript(商標)反応混合物に再懸濁した。
【0493】
5.チューブを1500RPMのサーマルミキサー上で37℃で1~3時間(100μL)培養した。
【0494】
6.固定されたIVT鋳型を有するチューブをDynaMag(商標)-2磁石上に置き、インビトロ転写物を含有する上清を新しいRNase非含有チューブに移した。
【0495】
7.上清を含むチューブを氷上に置くか、将来の使用のために-70℃で凍結した。
【0496】
8.必要に応じて、次いで、mRNA濃度を、Qubit(商標)RNA HS Assay Kit(Thermo Fisher Scientific、カタログ番号Q32852)を使用して測定する。100μL、2時間の反応では、典型的には約4μg/μLのmRNAが得られ、反応当たり最大400μgが得られる。
【0497】
mRNAクリーンアップ
【0498】
Dynabeads(商標)MyOne(商標)カルボン酸ビーズ上への沈殿によるmRNA捕捉を以下のように行う:
【0499】
1.Dynabeads(商標)MyOne(商標)カルボン酸ビーズを、ビーズを10秒間ボルテックスすることによって混合し、次いで、室温(RT)で20分間ローラー上に置いた。
【0500】
2.30μL(300μg(濃度:10mg/mL))のビーズ懸濁液を各清浄なヌクレアーゼフリーチューブに添加した。
【0501】
3.溶液が透明に見えるまで(約30~60秒)チューブをDynaMag(商標)-2磁石上に置き、上清を廃棄した。
【0502】
4.Dynabeads(商標)MyOne(商標)カルボン酸ビーズを100μLのヌクレアーゼ非含有水中で1回洗浄し、DynaMag(商標)-2磁石上に置き、上清を捨てた。
【0503】
5.最大150μgのRNAを含有する100μLのmRNA溶液をチューブに添加し、ビーズが十分に再懸濁されるまで混合した。
【0504】
6.200μLの1.5×RNA結合緩衝液(RBB)(Thermo Fisher Scientific、カタログ番号37035D)を添加し、均一な懸濁液が形成されるまでピペッティングによって混合した。
【0505】
7.次いで、1000rpmの室温のサーマルミキサー上での10分間のインキュベーションを行った。
【0506】
8.溶液が透明に見えるまでチューブをDynaMag(商標)-2磁石上に置き(溶液は非常に粘性であるため、約2~3分)、上清を廃棄した。
【0507】
9.500μLのWB溶液(ヌクレアーゼフリー水中70%EtOH)を添加し、ビーズをボルテックスによって再懸濁した。
【0508】
10.溶液が透明に見えるまで(およそ30~60秒)チューブをDynaMag(商標)-2磁石上に置き、上清を捨てた。
【0509】
11.ステップ9~10を2回繰り返し、合計3回洗浄し、次いで、全ての残留WB溶液を除去した。
【0510】
12.DynaMag(商標)-2磁石上でビーズを室温で10分間乾燥させた。
【0511】
13.チューブをDynaMag(商標)-2磁石との接触から外し、100μLの溶出緩衝液(TEバッファpH7~8、10mM Tris HCl pH7~8)又はヌクレアーゼフリー水を加え、その後、ピペッティングによってビーズを再懸濁し、1000rpmのThermal mixer上で65℃で5分間培養した。
【0512】
14.インキュベーション後、場合により、チューブを短時間遠心分離し、蓋から液体を回収する
【0513】
15.溶液が透明になるまで(約30~60秒)、チューブをDynaMag(商標)-2磁石上に置いた。
【0514】
16.上清を回収し、ヌクレアーゼフリーのチューブを洗浄するために移し、将来の使用のために氷上又は凍結に置いた。
【0515】
実施例5:大規模mRNA生産及び精製
【0516】
パート1.Dynabeads(商標)MyOne(商標)ストレプトアビジンC1(Thermo Fisher Scientific、カタログ番号65002)、ビーズへの鋳型固定化:
【0517】
初期設定のために、緩衝液及び試薬をガラス製バイオリアクタに装填する。バッグはまた、反応器に移す前にDynabeads(商標)MyOne(商標)ストレプトアビジンC1を完全に再懸濁するために使用され得る。適切に再懸濁されるまでビーズをボルテックスし、ローラー上に20分間以上置く。また、10mgのビオチン化鋳型DNA/PCR産物を1Xストレプトアビジン結合及び洗浄緩衝液(5mM Tris-HCl(pH7.5)0.5mM EDTA 1M NaCl)中に総容量0.5リットル(L)まで希釈する。バッグが使用される場合、主区画室内の反応バッグ及び大きな廃棄物処理バッグを有するチューブ及びバッグの回路は、互いに溶着されてもよい。
【0518】
【0519】
1.Dynabeads(商標)MyOne(商標)C1ストレプトアビジンビーズ(1リットル、10mg/mL)10gを反応バッグに移す。
【0520】
2.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0521】
3.洗浄:磁石を取り出し、1×ストレプトアビジン結合緩衝液1リットルを反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を加えて混合を助ける。
【0522】
4.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0523】
5.磁石を取り出し、0.5リットルの1Xストレプトアビジン結合緩衝液を反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を加えて混合を補助する。
【0524】
6.0.5リットルの10mgビオチン化鋳型DNA希釈物(1×ストレプトアビジン結合緩衝液で予備希釈)を移す。
【0525】
7.十分に揺動させながら室温で30分間培養する。
【0526】
8.上清が完全に半透明になるまで磁石を適用し、上清を収集バッグに移し、4℃で保存する。上清を使用して、Dynabeads(商標)M-280ストレプトアビジンビーズ上に固定化されたビオチン化鋳型DNAの程度を定量することができる。
【0527】
9.洗浄:磁石を取り出し、1リットルの1Xストレプトアビジン結合洗浄緩衝液を反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を加えて混合を助ける。
【0528】
10.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0529】
11.ステップ9~10を更に3回繰り返す(合計4回洗浄)。
【0530】
12.磁石を取り外し、ビーズ-鋳型複合体を1リットルの洗浄緩衝液に再懸濁し、少量の空気を添加して混合を助ける。
【0531】
パート2.固相インビトロ転写:
【0532】
緩衝液及び試薬をバッグに入れ、MEGAscript MIXを調製し、バッグに移す前に氷上に保つ。MEGAscript(商標)キット試薬は、実施例4に記載の成分の比を使用するまでスケールアップされる。
【0533】
1.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0534】
2.洗浄:磁石を取り外し、1リットルの洗浄緩衝液を反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を加えて混合を助ける。
【0535】
3.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0536】
4.磁石を取り出し、1リットルのMEGAscript(商標)反応混合物を反応バッグに移す。
【0537】
5.十分に揺動させながら37℃の温度で培養し、転写されたmRNAの目標濃度が達成されるまで混合を助けるために少量の空気を添加する。
【0538】
6.上清が完全に半透明になるまで磁石を適用し、転写されたmRNAを収集バッグに移す。
【0539】
7.鋳型結合ビーズは複数回再使用することができる:ステップ3~6を更に5回まで繰り返す。
【0540】
パート3.一般的な捕捉、Dynabeads(商標)MyOne(商標)カルボン酸ビーズによるmRNA精製:
【0541】
緩衝液及び試薬をバッグに入れ、バッグに移す前にDynabeads(商標)MyOne(商標)カルボン酸ビーズ(Thermo Fisher Scientific、カタログ番号65012)を完全に再懸濁する。適切に再懸濁されるまでビーズをボルテックスし、ローラー上に20分間以上置く。333mgのIVT粗mRNAを10mM Tris緩衝液のTE緩衝液中で総体積333mLまで希釈する。大きな廃棄物処理バッグを有するチューブ及びバッグの回路を一緒に溶着する
【0542】
1. 1gのDynabeads(商標)MyOne(商標)カルボン酸ビーズ(100mL、10mg/mL)を反応バッグに移す。
【0543】
2.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0544】
3.洗浄:磁石を取り外し、1リットルのヌクレアーゼフリー水を反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を添加して混合を助ける。
【0545】
4.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0546】
5.磁石を取り外し、333mL、333mgのIVT粗mRNA混合物(1mg mRNA/mL希釈)を反応バッグに移し、十分に揺らしながら1分間混合し、少量の空気を添加して混合を助ける。
【0547】
6. 667mLの1.5×RNA結合緩衝液を反応バッグに移す。Dynabeads(商標)MyOne(商標)カルボン酸ビーズ上へのmRNAの最適な沈殿を確保するために、結合緩衝液が可能な限り迅速に反応バッグに移されることを確保するために、ポンプに高rpm設定を適用する。
【0548】
7.十分に揺動させながら室温で10分間培養し、少量の空気を添加して混合を助ける。
【0549】
8.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0550】
9.洗浄:磁石を取り外し、1リットルの洗浄緩衝液を反応バッグに移し、穏やかに揺らしながら1分間混合し、少量の空気を加えて混合を助ける。
【0551】
10.上清が完全に半透明になるまで磁石を適用し、上清をゴミ袋に移す。
【0552】
11.ステップ8~9を更に2回繰り返す(合計3回洗浄)。
【0553】
12.ビーズが完全に乾燥するまで、室温で10~20分間、ビーズを乾燥させる。濾過した空気を反応バッグを通してポンプ輸送して乾燥プロセスを助ける。
【0554】
13. 333mLの溶出緩衝液を反応バッグに移す。
【0555】
14.十分に揺動させながら室温65℃で5分間培養し、少量の空気を添加して混合を助ける。
【0556】
15.上清が完全に半透明になるまで磁石を適用し、精製mRNAを収集バッグに移す。
【0557】
本明細書に示されている本発明の特徴の様々な変更及び/又は修正、及び本明細書に示されている原理の追加の適用は、当業者が想到し、本開示を有するであろうものであり、特許請求の範囲によって定義される本発明の精神及び範囲から逸脱することなく、示されている実施形態に対して行うことができ、本開示の範囲内であると見なされるべきである。したがって、様々な態様及び実施形態が本明細書に開示されているが、他の態様及び実施形態も企図される。本明細書に記載されたものと類似又は同等の幾つかの方法及び構成要素を使用して本開示の実施形態を実施することができるが、特定の構成要素及び方法のみが本明細書に記載されている。
【0558】
本開示の特定の実施形態によるシステム、プロセス、及び/又は製品は、本明細書に開示及び/又は記載された他の実施形態に記載された特性特徴(例えば、構成要素、部材、要素、部品、及び/又は部分)を含む、組み込む、又は含むことができることも理解され得る。したがって、特定の実施形態の様々な特徴は、本開示の他の実施形態と互換性があり、本開示の他の実施形態と組み合わせられ、本開示の他の実施形態に含まれ、及び/又は本開示の他の実施形態に組み込まれ得る。したがって、本開示の特定の実施形態に対する特定の特徴の開示は、特定の実施形態への前記特徴の適用又は包含を限定すると解釈されるべきではない。むしろ、本開示の範囲から必ずしも逸脱することなく、他の実施形態も前記特徴を含むことができることが理解され得る。
【0559】
更に、特徴がそれと組み合わせて別の特徴を必要とすると記載されていない限り、本明細書の任意の特徴は、本明細書に開示された同じ又は異なる実施形態の任意の他の特徴と組み合わせることができる。更に、例示的なシステム、プロセス、製品などの様々な周知の態様は、例示的な実施形態の態様を不明瞭にすることを避けるために、本明細書では特に詳細に説明されない。しかしながら、そのような態様も本明細書で企図される。
【0560】
本開示は、その思想又は本質的な特徴から逸脱することなく、他の特定の形態で具体化されてもよい。記載された実施形態は、全ての点で例示的なものにすぎず、限定的なものではないと見なされるべきである。したがって、本発明の範囲は、上記の説明ではなく添付の特許請求の範囲によって示される。本開示の実施形態を例示する目的で、特定の実施形態及び詳細が本明細書及び添付の開示に含まれているが、当業者であれば分かるように、添付の特許請求の範囲で定義される本開示又は本発明の範囲から逸脱することなく、本明細書に開示される方法、製品、デバイス、及び装置の様々な変更を行うことができる。特許請求の範囲の均等物の意味及び範囲内にある全ての変更は、それらの範囲内に包含されるべきである。
【0561】
本発明の典型的な主題は、以下の項によって表される。
項1:磁気ビーズを生体細胞に付着させ、及び/又は、磁気ビーズを生体細胞から分離する際に使用するためのビーズ処理アセンブリであって、ハウジングと、ハウジング上に配置されて前面を有する支持パネルと、支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプとを備えるベースアセンブリと、ベースアセンブリ上に支持されるとともに、ベースアセンブリ上に支持されるマウントアセンブリと、マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されるロッカドライバとを備えるロッカアセンブリとを備える、ビーズ処理アセンブリ。
【0562】
項2:ベースアセンブリは、ハウジングにヒンジ式に取り付けられたカバーパネルを更に備え、カバーパネルは、支持パネルの前面が開放的に露出される開位置と、カバーパネルが支持パネルの前面を覆う閉位置との間で移動可能である、項1に記載のビーズ処理アセンブリ。
【0563】
項3:カバーパネルは、ハウジングにヒンジ式に取り付けられ、開口を取り囲む外周フレームと、開口内に配置される透明窓とを備える、項2に記載のビーズ処理アセンブリ。
【0564】
項4:支持パネルは、前面を有するベースパネルであって、第1ピンチバルブ及び第1ポンプがベースパネルの前面から少なくとも部分的に外側に突出するようにベースパネルに取り付けられる、ベースパネルと、ベースパネルの前面に配置されるオーバーレイパネルであって、該オーバーレイパネルは、それを貫通して延びる開口を有し、該開口を通じて第1ピンチバルブ及び第1ポンプの少なくとも一部が突出する、オーバーレイパネルとを備える、項1から3のいずれか一項に記載のビーズ処理アセンブリ。
【0565】
項5:支持パネルの前面は、ハウジングが水平面上に載置されている場合に30°~70°の範囲の角度で配置される、項1から4のいずれか一項に記載のビーズ処理アセンブリ。
【0566】
項6:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、複数のピンチバルブは、少なくとも2つ、3つ、4つ、6つ、又は8つのピンチバルブを備える、項1から5のいずれか一項に記載のビーズ処理アセンブリ。
【0567】
項7:第1ポンプは、蠕動ポンプを備える、項1から6のいずれか一項に記載のビーズ処理アセンブリ。
【0568】
項8:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備える、項1から7のいずれか一項に記載のビーズ処理アセンブリ。
【0569】
項9:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数の気泡センサを更に備え、複数の気泡センサは、少なくとも2つ、3つ、又は4つの気泡センサを備える、項1から8のいずれか一項に記載のビーズ処理アセンブリ。
【0570】
項10:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する圧力センサを更に備える、項1から9のいずれか一項に記載のビーズ処理アセンブリ。
【0571】
項11:ベースアセンブリは、支持パネルの前面を貫通して延びる開口と、支持パネルに取り付けられる第1回転アセンブリとを更に備え、第1回転アセンブリは、キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータとを備える、項1から10のいずれか一項に記載のビーズ処理アセンブリ。
【0572】
項12:ベースアセンブリは、ビーズバイアルリテーナを更に備え、ビーズバイアルリテーナは、
バイアルを受けるように構成される本体と、本体から延在する長尺アームと、ベースアセンブリのハウジング内に少なくとも部分的に配置され、アームの自由端に接続されるモータとを含み、モータは、モータに取り付けられた本体を少なくとも60°の角度に渡って垂直に往復回転させるように構成される、項1から11のいずれか一項に記載のビーズ処理アセンブリ。
【0573】
項13:ビーズバイアルリテーナの本体は、C字形チャネルを境界付ける内面と、内面から径方向内側に突出する肩部とを備える、項12に記載のビーズ処理アセンブリ。
【0574】
項14:ロッカアセンブリのマウントアセンブリは、ベースアセンブリに取り付けられた第1ライザ及び離間した第2ライザを備え、プラットフォームアセンブリは、第1ライザ及び第2ライザに回動可能に結合され、第1ライザと第2ライザとの間に少なくとも部分的に配置される、項1から13のいずれか一項に記載のビーズ処理アセンブリ。
【0575】
項15:ロッカドライバは、クランクと、クランクを選択的に回転させるモータと、クランクからプラットフォームアセンブリまで延在する接続アームとを備える、項1から14のいずれか一項に記載のビーズ処理アセンブリ。
【0576】
項16:プラットフォームアセンブリは、区画室を境界付けるハウジングアセンブリと、ハウジングアセンブリに取り付けられたプラットフォームと、ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるように構成されたリフトとを備える、項1から15のいずれか一項に記載のビーズ処理アセンブリ。
【0577】
項17:リフトは、ハウジングアセンブリの区画室内に少なくとも部分的に配置されたシザーリフトと、シザーリフトを動作させるモータとを備える、項16に記載のビーズ処理アセンブリ。
【0578】
項18:シザーリフトは、磁石アセンブリが上に配置される棚と、ハウジングアセンブリと棚との間で延在する第1シザーアーム対と、ハウジングアセンブリと棚との間で延在して第1シザーアーム対から離間される第2シザーアーム対と、モータに結合されるねじ付きシャフトと、カラーであって、モータによるねじ付きシャフトの回転がねじ付きシャフトに沿うカラーの直線動作を容易にするようにねじ付きシャフトと係合するとともに、第1シザーアーム対及び第2シザーアーム対とも係合する、カラーとを備える、項17に記載のビーズ処理アセンブリ。
【0579】
項19:上面及び反対側の底面を有する支持プレートを備えるプラットフォームを更に備え、磁石アセンブリが作動位置まで持ち上げられた場合、支持プレートの底面は、磁石アセンブリの上面から1cm、0.5cm、又は0.2cm以内にある、項16から18のいずれか一項に記載のビーズ処理アセンブリ。
【0580】
項20:磁石アセンブリが非作動位置まで下げられた場合、支持プレートの底面は、磁石アセンブリの上面から少なくとも4cm、5cm、又は6cm離れている、項19に記載のビーズ処理アセンブリ。
【0581】
項21:プラットフォームは、ハウジングアセンブリに固定されるとともに、導電性材料で形成され、上面を有する支持プレートと、連続ループを形成するとともに、支持プレートの少なくとも一部を取り囲むように支持プレートの上面に配置され、電気絶縁材料で形成される絶縁シールと、連続ループを形成するとともに、支持プレートから離間されるように絶縁シールの上に配置された接点とを備え、支持プレート及び接点は、接点と支持プレートとの間に電位を生み出すことができる電気回路と電気的に連通している、項16から20のいずれか一項に記載のビーズ処理アセンブリ。
【0582】
項22:プラットフォームは、上面を有し、ハウジングアセンブリに固定される支持プレートと、支持プレートの上面の上方に位置決めされる抑制部とを備え、抑制部は、
支持プレートの上面を部分的に取り囲むとともに、対向する端部間で延在する境界壁と、境界壁の対向する端部間で延在するトレイとを備え、トレイは、境界壁から外方に突出する上向きに傾斜した床と、床から上方に突出する一対の離間したポストとを有する、項16から21のいずれか一項に記載のビーズ処理アセンブリ。
【0583】
項23:プラットフォームは、支持ハウジングに固定された保持フレームであって、開口を取り囲む環状内壁と、内壁を取り囲む環状外壁とを備える保持フレームと、内壁と外壁との間に形成されるスロットと、保持フレームのスロット内に固定され、チャネルを境界付けるガイドと、ガイドのチャネル内に摺動可能に配置された電気ラッチとを備える、項16から22のいずれか一項に記載のビーズ処理アセンブリ。
【0584】
項24:磁石アセンブリは、磁石を備える、項16から23のいずれか一項に記載のビーズ処理アセンブリ。
【0585】
項25:磁石アセンブリは、外周縁部まで延在する上面及び反対側の底面を有する非磁性ケーシングであって、凹部が上面に形成されて外周縁部を有する、非磁性ケーシングと、ケーシングの凹部内に配置される磁石とを備える、項24に記載のビーズ処理アセンブリ。
【0586】
項26:磁石は、ハルバッハ配列(Halbach array)を生成するように複数の交互の向きに配置された複数の別個の離散した磁石を備える、項25に記載のビーズ処理アセンブリ。
【0587】
項27:凹部の外周縁部は、ケーシングの外周縁部から少なくとも0.5cm、1cm、1.5cm又は2cm挿入されている、項25に記載のビーズ処理アセンブリ。
【0588】
項28:ケーシング及び磁石は、それぞれ長方形の形態を有する、項25に記載のビーズ処理アセンブリ。
【0589】
項29:プラットフォームアセンブリは、プラットフォームを少なくとも部分的に覆うとともにプラットフォームに対して移動可能なカバーアセンブリを更に備える、項16から28のいずれか一項に記載のビーズ処理アセンブリ。
【0590】
項30:カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、プラットフォームの少なくとも一部がカバーハウジングの開口内に位置合わせされる、カバーハウジングと、開位置と閉位置との間で移動可能にカバーハウジングに取り付けられた蓋であって、閉位置にある場合にカバーハウジングの開口を少なくとも実質的に覆う蓋と、を備える、項29に記載のビーズ処理アセンブリ。
【0591】
項31:蓋は、カバーハウジングにヒンジ式に取り付けられる、項30に記載のビーズ処理アセンブリ。
【0592】
項32:蓋は、開口を取り囲むとともに上端及び反対側の下端を有する外周壁と、上面及び反対側の底面を有し、開口の上に延在するように外周壁の下端に固定された蓋板であって、外周壁の少なくとも一部が蓋板の上面の上方に直立して、蓋板によって部分的に境界付けられて外周壁によって囲まれる上側キャビティが形成されている、蓋板とを備える、項30に記載のビーズ処理アセンブリ。
【0593】
項33:外周壁は、上側キャビティと連通するように蓋板の上面に隣接して外周壁を貫通して延在するチャネルを有する、項32に記載のビーズ処理アセンブリ。
【0594】
項34:蓋が閉位置にある場合、蓋をカバーハウジングに固定するための第1ラッチを更に備える、項30から33のいずれか一項に記載のビーズ処理アセンブリ。
【0595】
項35:プラットフォームから離れるカバーアセンブリの移動を弾性的に抑制するための手段を更に備える、項29から34のいずれか一項に記載のビーズ処理アセンブリ。
【0596】
項36:移動を弾性的に抑制するための手段は、第1端部及び反対側の第2端部を有するロッドであって、第1端部は、カバーアセンブリに固定されてカバーアセンブリから突出している、ロッドと、ロッドと係合されるばねであって、カバーアセンブリをプラットフォームから離れるように移動させる力が使用されると、ばねは、カバーアセンブリをプラットフォームに向けて後方に弾性的に付勢するようにした、ばねとを備える、項35に記載のビーズ処理アセンブリ。
【0597】
項37:抑制位置と非抑制位置との間で移動可能なストッパを更に備え、抑制位置において、ストッパは、プラットフォームに対するロッドのいくらかの移動を妨げるように位置決めされ、非抑制位置において、ストッパは、ロッドの移動を妨げない、項36に記載のビーズ処理アセンブリ。
【0598】
項38:ハウジングアセンブリに取り付けられたソレノイドバルブを更に備え、ソレノイドバルブは、ストッパを抑制位置と非抑制位置との間で移動させる、項37に記載のビーズ処理アセンブリ。
【0599】
項39:ハウジングアセンブリに形成された穴であって、ロッドは、穴の内部に摺動可能に配置される、穴と、ロッドの第2端部から外向きに突出するフランジとを更に備え、ばねは、フランジとハウジングアセンブリとの間で延在し、ロッドがカバーアセンブリと同時に持ち上げられると、ばねは弾性的に圧縮される、項36から38のいずれか一項に記載のビーズ処理アセンブリ。
【0600】
項40:抑制位置と非抑制位置との間で移動可能なストッパを更に備え、抑制位置において、ストッパは、フランジと位置合わせされて、フランジ及びフランジに取り付けられたロッドのいくらかの動きを阻止し、非抑制位置において、ストッパは、フランジと位置合わせされず、フランジ又はフランジに取り付けられたロッドの動きを妨げない、項39に記載のビーズ処理アセンブリ。
【0601】
項41:カバーハウジングに形成され、カバーハウジングの開口と連通する凹部と、凹部内に摺動可能に配置されるクランプアセンブリとを更に備え、クランプアセンブリは、下側クランプ溝が形成されたベースクランプと、上側クランプ溝が形成されたクランプクロージャと、上側クランプ溝が下側クランプ溝と位置合わせされるように、クランプクロージャをベースクランプに選択的に固定する締結具と、を備える、項30から40のいずれか一項に記載のビーズ処理アセンブリ。
【0602】
項42:カバーハウジングは、凹部の対向する各端部に形成されたU字形チャネルを更に備え、クランプアセンブリの対向する端部は、U字形チャネルと共に摺動可能に配置されている、項41に記載のビーズ処理アセンブリ。
【0603】
項43:プラットフォームは、上面及び反対側の底面を有する支持プレートと、支持プレートから離れて突出するとともに、ハウジングアセンブリに固定される側壁とを備え、支持プレート及び側壁は、磁石アセンブリが上昇作動位置にある場合に磁石アセンブリが受け入れられるキャビティを少なくとも部分的に結合する、項16から42のいずれか一項に記載のビーズ処理アセンブリ。
【0604】
項44:磁気ビーズを生体細胞に付着させるため、及び/又は、磁気ビーズを生体細胞から分離するためのビーズ処理システムであって、該ビーズ処理システムがビーズ処理アセンブリを備え、ビーズ処理アセンブリは、ハウジングと、ハウジング上に配置されて前面を有する支持パネルと、支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプとを備えるベースアセンブリと、ベースアセンブリ上に支持されるとともに、ベースアセンブリ上に支持されるマウントアセンブリと、マウントアセンブリに回動可能に固定されてプラットフォームを備えるプラットフォームアセンブリと、マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されたロッカドライバとを備えるロッカアセンブリとを備え、ビーズ処理システムが消耗キットを備え、該消耗キットは、前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイであって、第1ピンチバルブ及び第1ポンプが複数の開口のうちの対応する開口を通じて突出するように支持パネルの前面に取り外し可能に入れ子にされるトレイと、トレイの前面に固定されたラインセットであって、トレイの前面に固定されるとともに第1ピンチバルブ及び第1ポンプと係合する可撓性チューブと、チューブに結合された複数の可撓性バッグ流体とを備え、複数の可撓性バッグがプラットフォームアセンブリのプラットフォーム上に支持された処理バッグを備える、ラインセットとを備える、ビーズ処理システム。
【0605】
項45:ベースアセンブリは、ハウジングアセンブリにヒンジ式に取り付けられたカバーパネルを更に備え、カバーパネルは、トレイの前面が開放的に露出される開位置と、カバーパネルがトレイの前面を覆う閉位置との間で移動可能である、項44に記載のビーズ処理システム。
【0606】
項46:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する複数のピンチバルブを更に備え、複数のピンチバルブは、少なくとも2つ、3つ、4つ、6つ、又は8つのピンチバルブを備え、複数のピンチバルブのそれぞれは、トレイ上の複数の開口のうちの対応する開口を通じて突出して可撓性チューブと係合する、項44又は45に記載のビーズ処理システム。
【0607】
項47:ベースアセンブリは、支持パネルの前面から少なくとも部分的に外側に突出する第1気泡センサを更に備え、第1気泡センサは、トレイ上の複数の開口のうちの対応する開口を通じ突出して可撓性チューブと係合する、項44から46のいずれか一項に記載のビーズ処理システム。
【0608】
項48:支持パネルの前面を貫通して延びる開口と、支持パネルに取り付けられた第1回転アセンブリとを更に備え、第1回転アセンブリは、キー付きソケットが形成された受け部であって、キー付きソケットが開口と位置合わせされる、受け部と、受け部に結合され、受け部を両方向に選択的に回転させるように構成される駆動モータと、ラインセットのチューブに結合されたストップコック流体であって、ストップコックが受け部のキー付きソケット内に受けられる回転可能なハンドルを有する、ストップコック流体と、ストップコックと結合されたエアフィルタ流体とを備える、項44から47のいずれか一項に記載のビーズ処理システム。
【0609】
項49:ビーズバイアルリテーナを更に備え、該ビーズバイアルリテーナは、バイアルを受けるように構成されるチャネルを有する本体と、本体から延在する長尺アームと、ベースアセンブリのハウジングアセンブリ内に少なくとも部分的に配置されるとともにアームの自由端に接続されるモータであって、モータに取り付けられた本体を少なくとも60°の角度にわたって垂直に往復回転させるように構成される、モータと、本体のチャネル内に受けられるバイアルであって、磁気ビーズ及び媒体を収容し、ラインセットのチューブがバイアルと流体結合されている、バイアルとを含む、項44から48のいずれか一項に記載のビーズ処理システム。
【0610】
項50:プラットフォームアセンブリは、区画室を境界付けるハウジングアセンブリと、ハウジングアセンブリに取り付けられたプラットフォームと、ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリであって、上面及び反対側の底面を有する磁石アセンブリと、作動位置と非作動位置との間でプラットフォームに対して磁石アセンブリを選択的に上昇及び下降させるためにハウジングアセンブリの区画室内に配置されるリフトとを備える、項44から49のいずれか一項に記載のビーズ処理システム
【0611】
項51:プラットフォームアセンブリは、プラットフォーム及びプラットフォーム上の処理バッグを少なくとも部分的に覆うカバーアセンブリを更に備え、カバーアセンブリは、処理バッグが拡張するときにプラットフォームに対して移動可能である、項50に記載のビーズ処理システム。
【0612】
項52:プラットフォームから離れるカバーアセンブリの移動を弾性的に抑制するための手段を更に備える、項51に記載のビーズ処理システム。
【0613】
項53:カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、処理バッグが少なくとも部分的にカバーハウジングの開口内に配置される、カバーハウジングと、開位置と閉位置との間で移動可能にカバーハウジングに取り付けられた蓋であって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆う蓋とを備える、項51に記載のビーズ処理アセンブリ。
【0614】
項54:カバーハウジングに形成されてカバーハウジングの開口と連通する凹部と、凹部内に摺動可能に配置されるクランプアセンブリとを更に備え、クランプアセンブリは、下側クランプ溝が形成されたベースクランプと、上側クランプ溝が形成されたクランプクロージャと、上側クランプ溝が下側クランプ溝と位置合わせされるようにクランプクロージャをベースクランプに選択的に固定する締結具とを備え、プラットフォーム上に配置された処理バッグは、位置合わせされた上側クランプ溝及び下側クランプ溝の中に少なくとも部分的に配置されるとともにベースクランプとクランプクロージャとの間にクランプされるポートを有する、項53に記載のビーズ処理アセンブリ。
【0615】
項55:ラインセットのチューブに結合されて媒体を収容する第1媒体バッグ流体を更に備える、項44から54のいずれか一項に記載のビーズ処理システム。
【0616】
項56:ビーズ処理アセンブリは、ベースアセンブリから直立するとともにそこから外側に突出するキャッチを有するスタンドを更に備え、媒体バッグがキャッチ上に支持される、項55に記載のビーズ処理システム。
【0617】
項57:ラインセットのチューブが生体細胞分離器と流体結合される、項44から56のいずれか一項に記載のビーズ処理システム。
【0618】
項56:ラインセットのチューブが生体細胞増殖システムと流体結合される、項44から57のいずれか一項に記載のビーズ処理システム。
【0619】
項58:処理バッグは、ビーズ分離バッグを備え、ビーズ分離バッグは、ポリマーフィルムから構成されるとともに区画室を境界付ける折り畳み可能な袋体と、袋体に結合されて区画室と連通する一対の離間したポートと、一対の離間したポート間の位置で袋体の区画室内に配置される仕切りであって、ポートの一方に入る流体が他方のポートを通じて出ることができる前に、仕切りの周りを流れるように袋体に固定される、仕切りとを備える、項44から58のいずれか一項に記載のビーズ処理システム。
【0620】
項60:磁気ビーズ処理アセンブリと共に使用するための消耗キットであって、前面及び反対側の背面を有し、それらの面間で複数の開口が延在するトレイと、トレイの前面に固定されるラインセットとを備え、ラインセットは、複数の開口の少なくとも幾つかと位置合わせするように、トレイの前面に固定される可撓性チューブと、チューブと結合された複数の可撓性バッグ流体と、チューブに結合されたエアフィルタとを備える、消耗キット。
【0621】
項61:チューブに結合されたエアフィルタアセンブリを更に備え、エアフィルタアセンブリは、チューブと結合されるストップコック流体を備え、ストップコックは、トレイの前面から外側に突出するスリーブと、スリーブ内に回転可能に配置されるバルブと、バルブを選択的に回転させるためにバルブに固定され、トレイの背面から外側に突出するハンドルとを備え、エアフィルタ流体がスリーブと結合される、項60に記載の消耗キット。
【0622】
項62:トレイの前面に配置されてチューブと流体結合される混合バッグを更に備える、項61に記載の消耗キット。
【0623】
項63:ラインセットのチューブに結合されたビーズバイアルカプラ流体と、ビーズバイアルカプラに固定され、磁気ビーズ及びキャリア液体を含む懸濁液を収容するバイアルとを更に備える、項61又は62に記載の消耗キット。
【0624】
項64:マウントアセンブリと、マウントアセンブリに回動可能に固定されるプラットフォームアセンブリと、マウントアセンブリに対してプラットフォームアセンブリを揺動させるように構成されるロッカドライバとを備え、プラットフォームアセンブリは、区画室を境界付けるハウジングアセンブリと、ハウジングアセンブリに取り付けられたプラットフォームと、ハウジングアセンブリとプラットフォームとの間に配置された磁石アセンブリと、作動位置と非作動位置との間で磁石アセンブリをプラットフォームに対して選択的に上昇及び下降させるように構成されたリフトと、プラットフォームを少なくとも部分的に覆うとともにプラットフォームに対して移動可能であるカバーアセンブリとを備える、ロッカアセンブリ。
【0625】
項65:カバーアセンブリは、開口を少なくとも部分的に取り囲むカバーハウジングであって、プラットフォームの少なくとも一部がカバーハウジングの開口内に位置合わせされる、カバーハウジングと、開位置と閉位置との間で移動可能にカバーハウジングに取り付けられる蓋であって、閉位置にあるときにカバーハウジングの開口を少なくとも実質的に覆う蓋とを備える、項64に記載のロッカアセンブリ。
【0626】
項66:磁気ビーズを生体細胞に付着させるのに及び/又は磁気ビーズを生体細胞から分離するのに用いるビーズ処理アセンブリであって、ベースアセンブリを備え、該ベースアセンブリは、ハウジングと、ハウジング上に配置されて前面を有する支持パネルと、支持パネルの前面から少なくとも部分的に外側に突出する第1ピンチバルブと、支持パネルの前面から少なくとも部分的に外側に突出する第1ポンプとを備える、ビーズ処理アセンブリ。
【0627】
項67:磁気ビーズを生体細胞に付着させるため及び/又は磁気ビーズを生体細胞から分離するためのビーズ処理システムを動作させるための方法であって、第1ピンチバルブ及び支持パネルから突出する第1ポンプがトレイに形成された対応する開口を通過するようにトレイをビーズ処理アセンブリの支持パネルの前面に取り外し可能に入れ子にするステップと、トレイ上に配置されたラインセットのチューブを第1ピンチバルブ及び第1ポンプに係合させるステップと、ラインセットと結合された処理バッグ流体をビーズ処理アセンブリのプラットフォーム上に配置するステップとを含む方法。
【0628】
項68:バイアル又は可撓性バッグをラインセットのチューブに結合する流体を更に備え、バイアル又は可撓性バッグが磁気ビーズ及びキャリア液体を含む懸濁液を収容する、項66に記載の方法。
【0629】
項69:ビーズ処理アセンブリのバッグスタンド上に液体媒体を収容する媒体バッグを支持するステップを更に含む、項66又は67に記載の方法。
【0630】
項70:ラインセットのチューブを生体細胞分離器に流体結合するステップを更に含む、項67から69のいずれか一項に記載の方法。
【0631】
項71:ラインセットのチューブを生体細胞増殖システムに流体結合するステップを更に含む、項67から70のいずれか一項に記載の方法。
【0632】
項72:ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームの揺動をコンピュータプロセッサが促進するように作動させるステップを更に含む、項67から71のいずれか一項に記載の方法。
【0633】
項73:ビーズ処理アセンブリのコンピュータプロセッサを、処理バッグが配置されるプラットフォームに対する磁石の上昇及び下降をコンピュータプロセッサが促進するように作動させるステップを更に含む、項67から72のいずれか一項に記載の方法。
【0634】
項74:ビーズ処理アセンブリのコンピュータプロセッサを、プラットフォーム上の処理バッグに流体を配送するために第1ピンチバルブ及び第1ポンプの制御をコンピュータプロセッサが促進するように作動させるステップを更に含む、項67から73のいずれか一項に記載の方法。
【0635】
項75:ビーズ処理アセンブリのコンピュータプロセッサを、ラインセットのチューブと結合されたバイアル流体の移動をコンピュータプロセッサが促進してバイアル内に配置された懸濁液を混合するように作動させるステップを更に含み、懸濁液は、磁気ビーズ及びキャリア液体を含む、項67から74のいずれか一項に記載の方法。
【0636】
項76:生体細胞は、T細胞である、項67から75のいずれか一項に記載の方法。
【0637】
項77:生体細胞は、抗原-抗体相互作用を介して磁気ビーズに付着される、項67から76のいずれか一項に記載の方法。
【0638】
項78:生体細胞は、抗原-抗体相互作用の破壊によって磁気ビーズから分離される、項77に記載の方法。
【0639】
項79:抗原-抗体相互作用の破壊は、抗体の切断によって媒介される、項78に記載の方法。
【0640】
項80:抗体を磁気ビーズから分離することによって、生体細胞は、磁気ビーズから分離される、項77から79のいずれか一項に記載の方法。
【0641】
項81:抗体は、リガンドによって磁気ビーズに連結される、項77から80のいずれか一項に記載の方法。
【0642】
項82:生体細胞は、抗体又は磁気ビーズとのリガンド相互作用の破壊によって磁気ビーズから分離される、項81に記載の方法。
【0643】
項83:生体細胞は、T細胞である、項67から82のいずれか一項に記載の方法。
【0644】
項84:ビーズ処理システムを使用して第1細胞型の生体細胞を第2細胞型の生体細胞から分離するための方法であって、(a)第1細胞型及び第2細胞型の生体細胞を含む試料を、磁気ビーズが抗体結合を介して第1細胞型の生体細胞に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズが、プラットフォーム上に載置された処理バッグ内に配置される、ステップと、(b)プラットフォームに対して磁石を上昇させて、プラットフォームに対して所定の位置に磁気ビーズを強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1細胞型の生体細胞が付着される、ステップと、(c)磁気ビーズに磁場が印加された状態で流体を試料及び磁気ビーズに通過させるステップであって、第1細胞型の生体細胞から第2細胞型の生体細胞を洗い流すのに十分強い力で流体が通過する、ステップと、(d)第1細胞型の生体細胞が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないようにプラットフォームに対して磁石を下降させるステップと、を含む方法。
【0645】
項85:抗体は、CD3、CD4、CD5、CD6、CD8、CD25、CD27、CD28、CD137及びCD278から成るグループから選択されるタンパク質に対する結合親和性を有する、項84に記載の方法。
【0646】
項86:抗体は、CD3又はCD28を含むタンパク質に対して結合親和性を有する、項85に記載の方法。
【0647】
項87:第1細胞型は、T細胞である、項86に記載の方法。
【0648】
項88:第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから分離するステップと、磁気ビーズを定位置に強固に固定するために磁気ビーズに磁場を印加するステップと、磁場が印加されている間に磁気ビーズ及び第1細胞型の分離された生体細胞に流体を通過させるステップであって、磁気ビーズの少なくとも大部分が磁場によって定位置に固定されたままの状態で第1細胞型の生体細胞の少なくとも大部分を磁気ビーズから洗い流すのに十分強い力で流体が通過する、ステップとを更に含む、項84から87のいずれか一項に記載の方法。
【0649】
項89:第1細胞型の生体細胞の少なくとも大部分が磁気ビーズから洗い流される間に95%を超える磁気ビーズが磁場によって定位置に保持される、項88に記載の方法。
【0650】
項90:95%を超える磁気ビーズが、第1細胞型の生体細胞から分離される、項89に記載の方法。
【0651】
項91:第1細胞型の生体細胞から分離された95%を超える磁気ビーズが、第1細胞型の生体細胞から分離される、項88から90のいずれか一項に記載の方法。
【0652】
項92:磁気ビーズは、直径約0.5μm~約3μmである、項84から91のいずれか一項に記載の方法。
【0653】
項93:処理バッグが載置されているプラットフォームを水平に対して第1方向に傾けるステップを更に含み、磁場は、プラットフォームが第1方向に傾けられる間に処理バッグ内の磁気ビーズに印加される、項84から92のいずれか一項に記載の方法。
【0654】
項94:磁石は、プラットフォームが第1方向に傾けられた後に持ち上げられる、項93に記載の方法。
【0655】
項95:プラットフォームが第1方向に傾斜される間に、処理バッグのポートを通じて気体又は液体を注入するステップを更に含む、項93又は94に記載の方法。
【0656】
項96:処理バッグが載置されているプラットフォームが水平に対して傾斜されるようにプラットフォームを第1方向とは反対の第2方向に傾けるステップと、プラットフォームが第2方向に傾けられる間に、処理バッグから液体を取り出すステップとを更に含む、項93から95のいずれか一項に記載の方法。
【0657】
項97:ビーズ処理システムを使用して第1生物学的材料を第2生物学的材料から分離する方法であって、(a)第1生物学的材料及び第2生物学的材料を含む試料を、磁気ビーズが親和性結合を介して第1生物学的材料に付着するように磁気ビーズと接触させるステップであって、試料及び磁気ビーズがプラットフォーム上に載置された処理バッグ内に配置される、ステップと、(b)プラットフォームに対して磁石を上昇させて、プラットフォームに対して磁気ビーズを所定の位置に強固に固定する磁場を磁石が生成するようにするステップであって、磁気ビーズには第1生物学的材料が付着される、ステップと、(c)磁場が磁気ビーズに印加される状態で試料及び磁気ビーズに第1流体を通過させることにより、第1生物学的材料を第2生物学的材料から分離するステップとを含む方法。
【0658】
項98:(d)磁場が磁気ビーズに印加される間に第2流体を試料及び磁気ビーズに通過させるステップを更に含み、第2流体は、磁気ビーズからの第1生物学的材料の放出を誘導する、項97に記載の方法。
【0659】
項99:(d)第1生物学的材料が付着された磁気ビーズがもはや磁石の磁場によってプラットフォームに対して定位置に強固に固定されないようにプラットフォームに対して磁石を下降させるステップを更に含む、項97又は98に記載の方法。
【0660】
項100:第2生物学的材料は、細胞溶解物又は培地である、項97から99のいずれか一項に記載の方法。
【0661】
項101:第1生物学的材料は、(a)核酸分子、(b)タンパク質、(c)細胞、(d)細胞外小胞、(e)ウイルス様粒子(VLP)から成るグループから選択される、項97から100のいずれか一項に記載の方法。
【0662】
項102:核酸分子は、リボ核酸(RNA)分子である、項101に記載の方法。
【0663】
項103:細胞は、哺乳動物細胞である、項101又は102に記載の方法。
【0664】
項104:細胞は、T細胞である、項101又は103に記載の方法。
【0665】
項105:タンパク質は、抗体である、項101に記載の方法。
【0666】
項106:抗体との親和性結合は、プロテインA、プロテインG、プロテインL、又はこれらのタンパク質のうちの1つの機能的変異体によって形成される、項105に記載の方法。
【0667】
項107:細胞外小胞は、エキソソームである、項101に記載の方法。
【0668】
項108:エキソソームは、T細胞によって生成された、項107に記載の方法。
【0669】
項109:T細胞は、キメラ抗原受容体を発現するように遺伝子操作される、項108に記載の方法。
【0670】
項110:エキソソームとの親和性結合は、抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体によって形成される、項107に記載の方法。
【0671】
項111:抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体は、ビオチン又はビオチン誘導体結合によって磁気ビーズに付着される、項110に記載の方法。
【0672】
項112:抗CD3抗体、抗CD4抗体、及び/又は抗CD8抗体のうちの1つ以上が、VHH(variable heavy-heavy)抗体である、項110に記載の方法。
【0673】
項113:精製リボ核酸(RNA)分子を製造するための方法であって、(a)磁場によって第1磁気ビーズを適所に固定するステップであって、インビトロ転写(IVT)鋳型が第1磁気ビーズに連結される、ステップと、(b)IVTが起こる条件下でステップ(a)の第1磁気ビーズを鋳型のIVTに適した試薬混合物と接触させて、RNA分子を生成するステップと、(c)第1磁気ビーズからRNA分子を分離して、精製RNA分子を生成するステップとを含む方法。
【0674】
項114:(d)洗浄中に精製RNA分子が第2磁気ビーズと会合したままであることを可能にする条件下で、ステップ(c)の精製RNA分子を第2磁気ビーズと接触させるステップと、(e)第2磁石ビーズが磁場によって適所に固定される間に第2磁気ビーズを洗浄するステップと、(f)精製RNA分子を第2磁気ビーズとの会合から放出することによって高度に精製されたRNA分子を生成するステップとを更に含む、項113に記載の方法。
【0675】
項115:IVT鋳型は、ポリメラーゼ連鎖反応(PCR)によって生成される、項113又は114に記載の方法。
【0676】
項116:1つ以上のビオチン化プライマーが、PCRに使用されて、ビオチン化IVT鋳型の形成をもたらす、項115に記載の方法。
【0677】
項117:ビオチン化IVT鋳型は、ビオチン化IVT鋳型のビオチンと、ビオチンに対する親和性を有する磁気ビーズ上の基との間の相互作用を介して磁気ビーズに付着される、項116に記載の方法。
【0678】
項118:IVT鋳型は、タンパク質をコードするオープンリーディングフレームと、オープンリーディングフレームに作動可能に接続されたプロモータとを含む、項113から117のいずれか一項に記載の方法。
【0679】
項119:遊離カルボン酸基が第2磁気ビーズの表面に存在する、項114から118のいずれか一項に記載の方法。
【0680】
項120:精製RNA又は高度に精製されたRNAは、メッセンジャーRNA(mRNA)である、項113又は114に記載の方法。
【0681】
項121:mRNAは、病原体のタンパク質をコードする、項120に記載の方法。
【0682】
項122:項113から121のいずれか一項に記載のmRNA又はこのmRNAによってコードされるタンパク質を含むワクチン組成物。
【0683】
項123:1つ以上のプログラムを記憶する非一時的コンピュータ可読記憶媒体であって、1つ以上のプログラムは、ディスプレイを有する電子デバイスによって実行される場合に、電子デバイスに、
ディスプレイ上に、少なくとも1つの一次仮想バイオプロセスパラメータ入力を含む一次選択領域と、一次仮想バイオプロセスパラメータ入力をオーバーライド又は複製する少なくとも1つの二次仮想入力を含む二次選択領域とを備えるグラフィカルユーザインタフェースを表示させる、
命令を含む、非一時的コンピュータ可読記憶媒体。
【0684】
項124:二次仮想入力は、キャンセルステップ、一時停止ステップ、停止ステップ、スキップステップ、又は重複ステップの入力を含む、項123に記載の記憶媒体。
【0685】
項125:一次仮想バイオプロセスパラメータ入力は、項1から43及び項66のいずれか一項に記載のビーズ処理アセンブリの動作を制御するバイオプロセスパラメータを含む、項123に記載の記憶媒体。
【0686】
項126:一次仮想バイオプロセスパラメータ入力は、項44~59のいずれか一項に記載のビーズ処理システムの動作を制御するバイオプロセスパラメータを含む、項123に記載の記憶媒体。
【0687】
項127:一次仮想バイオプロセスパラメータ入力は、項64から65のいずれか一項に記載のロッカアセンブリの動作を制御するバイオプロセスパラメータを含む、項123に記載の記憶媒体。
【国際調査報告】