(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-11-09
(54)【発明の名称】可変パルスレーザビームを被処置部位に照射することによって処置を施す外科用レーザ装置
(51)【国際特許分類】
A61B 18/22 20060101AFI20231101BHJP
A61N 5/067 20060101ALI20231101BHJP
【FI】
A61B18/22
A61N5/067
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023548548
(86)(22)【出願日】2021-12-15
(85)【翻訳文提出日】2023-06-08
(86)【国際出願番号】 US2021063497
(87)【国際公開番号】W WO2022087547
(87)【国際公開日】2022-04-28
(81)【指定国・地域】
(71)【出願人】
【識別番号】523148137
【氏名又は名称】エフエー コーポレーション
(74)【代理人】
【識別番号】100112737
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100136168
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100196117
【氏名又は名称】河合 利恵
(72)【発明者】
【氏名】シュロモ アッサ
(72)【発明者】
【氏名】インユァン ファン
【テーマコード(参考)】
4C026
4C082
【Fターム(参考)】
4C026AA01
4C026AA02
4C026AA03
4C026BB10
4C026FF17
4C082RA01
4C082RA05
4C082RC10
4C082RE17
(57)【要約】
可変パルスレーザビームを被処置部位に照射することによって処置を施す外科用レーザ装置が開示される。本装置は、可変波形出力の処置レーザビームパルスを放射するレーザ源と、レーザ源から放射される処置レーザビームを伝達するためのフレキシブルビーム伝達部とを含み、フレキシブル伝達部は2つの移動ミラーからなる自動光スキャナを遠位端に含み、外科用器具はスキャナの端部に接続され、処置部位に伝達される処置レーザビームをそこに照射するために使用される。レーザの出力パルス周波数、パルス幅及びパルスエネルギーを変化させることができるようにすることで、1つの外科用レーザ装置を用いて複数の組織効果が達成可能となる。
【特許請求の範囲】
【請求項1】
可変パルスレーザビームを被処置部位に照射することによって処置を施す外科用レーザ装置であって、
a.レーザ波長の光エネルギーを放射するレーザ源であって、水中での前記レーザ波長の吸光率がピーク吸光率であり、前記レーザ波長は2700nm~3500nmの範囲にある、前記レーザ源と、
b.前記レーザ源からヒト生体組織の対象領域に放射される集束光ビームを伝達するフラクショナル光学処置システムであって、ヒト組織表面における光ビームのサイズ、処置密度調整値及びヒト皮膚表面における群形状からなる群から選択される前記光ビームの1以上のパラメータを調整する調整機構を備えるフラクショナル光学処置システムと、
c.前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記集束光ビームを伝達するフラクショナル光学処置システムであって、前記集束光ビームをヒト組織の前記対象領域にランダムな順序で配置する前記調整機構を備えるフラクショナル光学処置システムと、
d.前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記光ビームを伝達するフラクショナル光学処置システムであって、各パルスが異なる予めプログラムされたパルスあたりのフルエンス値を有して、処置される前記ヒト組織の同じ位置に伝達されるパルス間の設定時間間隔の複数の予めプログラムされたパルスを伝達するようにレーザビームに対する前記調整機構を備えるフラクショナル光学処置システムと、
を備える装置。
【請求項2】
前記調整機構によって調整される前記パラメータは、前記ヒト組織表面における前記光ビームのサイズである、請求項1に記載の装置。
【請求項3】
前記調整機構によって調整される前記パラメータは、前記ヒト組織表面における前記光ビームの形状である、請求項1に記載の装置。
【請求項4】
前記調整機構によって調整される前記パラメータは、前記ヒト組織表面における前記光ビームの密度である、請求項1に記載の装置。
【請求項5】
前記調整機構によって調整される前記パラメータは、デカルト座標の順序での前記ヒト組織の前記対象領域に対する前記集束光ビームの配置である、請求項1に記載の装置。
【請求項6】
前記調整機構によって調整される前記パラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、パルスあたり0.5~100ジュール/cm
2の各パルスフルエンスを有する、請求項1に記載の装置。
【請求項7】
前記調整機構によって調整される前記パラメータは、50~5000マイクロ秒のパルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものである、請求項1に記載の装置。
【請求項8】
前記調整機構によって調整される前記パラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、各交番パルスはパルスあたり2~100ジュール/cm
2の第1のフルエンスを有し、その後の次の交番パルスは0.1~2.0ジュール/cm
2のフルエンスを有し、これらが前記複数のパルスに対して反復される、請求項1に記載の装置。
【請求項9】
前記レーザ源から放射される前記集束光ビームは中赤外ファイバレーザであり、該ファイバレーザの波長範囲は2800nm~2950nmである、請求項1に記載の装置。
【請求項10】
可変パルスレーザビームを被処置部位に照射することによって処置を施す外科用レーザ装置であって、
a.レーザ波長の光エネルギーを放射するレーザ源であって、水中での前記レーザ波長の吸光率がピーク吸光率であり、前記レーザ波長は2700nm~3500nmの範囲にある、前記レーザ源と、
b.前記レーザ源からヒト生体組織の対象領域に放射される光ビームを伝達する光学処置システムであって、ファイバ光学系を備える光学処置システムと、
c.前記レーザ源からヒト組織の前記対象領域に放射される前記光ビームを伝達する光学処置システムであって、各パルスが異なる予めプログラムされたパルスあたりのフルエンス値を有して、処置される皮膚の位置に伝達されるパルス間の設定時間間隔の複数の予めプログラムされたパルスを伝達するようにレーザビームに対する調整機構を備える光学処置システムと、
を備える装置。
【請求項11】
前記調整機構によって調整されるパラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、パルスあたり0.5~100ジュール/cm
2の各パルスフルエンスを有する、請求項10に記載の装置。
【請求項12】
前記調整機構によって調整されるパラメータは、50~5000マイクロ秒のパルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものである、請求項10に記載の装置。
【請求項13】
前記調整機構によって調整されるパラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、各交番パルスはパルスあたり2~100ジュール/cm
2の第1のフルエンスを有し、その後の次の交番パルスは0.1~2.0ジュール/cm
2のフルエンスを有し、これらが前記複数のパルスに対して反復される、請求項10に記載の装置。
【請求項14】
前記レーザ源から放射される集束光ビームは中赤外ファイバレーザであり、該ファイバレーザの波長範囲は2800nm~2950nmである、請求項10に記載の装置。
【請求項15】
前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記光ビームを伝達する光学処置システムは、サファイアからなる前記ファイバ光学系を備える、請求項10に記載の装置。
【請求項16】
前記サファイアのファイバ径は、100μm~250μmの範囲にある、請求項10に記載の装置。
【請求項17】
前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記光ビームを伝達する光学処置システムは、フォーカスハンドピースを備える、請求項10に記載の装置。
【請求項18】
可変パルスレーザビームを被処置部位に照射することによって処置を施すレーザ外科手術の方法であって、
a.レーザ波長の光エネルギーを放射するレーザ源であって、水中での前記レーザ波長の吸光率がピーク吸光率であり、前記レーザ波長は2700nm~3500nmの範囲にある、前記レーザ源と、
b.前記レーザ源からヒト生体組織の対象領域に放射される集束光ビームを伝達するフラクショナル光学処置システムであって、ヒト組織表面における光ビームのサイズ、処置密度調整値及びヒト皮膚表面における群形状からなる群から選択される前記光ビームの1以上のパラメータを調整する調整機構を備えるフラクショナル光学処置システムと、
c.前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記集束光ビームを伝達するフラクショナル光学処置システムであって、前記集束光ビームをヒト組織の前記対象領域にランダムな順序で配置する前記調整機構を備えるフラクショナル光学処置システムと、
d.前記レーザ源から前記ヒト生体組織の前記対象領域に放射される前記光ビームを伝達するフラクショナル光学処置システムであって、各パルスが異なる予めプログラムされたパルスあたりのエネルギー値を有して、処置される前記ヒト組織の同じ位置に伝達されるパルス間の設定時間間隔の複数の予めプログラムされたパルスを伝達するようにレーザビームに対する前記調整機構を備えるフラクショナル光学処置システムと、
を備える方法。
【請求項19】
前記調整機構によって調整される前記パラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、パルスあたり0.5~100ジュール/cm
2の各パルスフルエンスを有する、請求項18に記載の方法。
【請求項20】
前記調整機構によって調整される前記パラメータは、パルス間の設定時間間隔を有する予めプログラムされた複数のパルスについてのものであり、各交番パルスはパルスあたり2~100ジュール/cm
2の第1のフルエンスを有し、その後の次の交番パルスは0.1~2.0ジュール/cm
2のフルエンスを有し、これらが前記複数のパルスに対して反復される、請求項18に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、放射線ベースの皮膚科処置装置及び方法、例えば、フラクショナル処置を提供するためのレーザベースの装置又は他の任意の適切な種類の皮膚科処置を提供するための他の任意の種類の放射線源を使用する装置に関する。一部の実施形態は、顔、首並びに従来から皮膚のしわ、線、たるみ及び他の歪みを生じやすい他の領域を含む様々な身体部位の皮膚に影響を与える美容上の状態を処置するために、特に皮膚上の複数の位置にビームを走査するための自動走査システムを含む。
【0002】
本明細書は、光学スキャナを用いて複数の処置パルスを放射する能力を有する外科用レーザ装置及び軟質ヒト生体組織に対する外科手術に使用される様々な種類の外科用器具に関する。
【背景技術】
【0003】
皮膚の環境的力への曝露によって、時間とともに、皮膚がたるみ、しわとなり、線を形成し、又はその他の望ましくない歪みを生じ得る。顔及び首の筋肉の正常な収縮でも、例えば、顔をしかめる又は目を細めることによって、時間とともに顔及び首の領域に深いしわ又はすじも形成され得る。通常の老化プロセスのこれらの及び他の効果が、審美的に嫌な美容的外観を呈し得る。
【0004】
したがって、このような皮膚の歪みの可視的な効果を軽減するための美容整形に対する需要があることが知られている。特に顔及び首の領域で、たるみ及びしわを除去するために皮膚を「引き締める」ことに対する大きな需要が残されている。
【0005】
従来から、レーザビームを被処置部位に照射することにより処置を施す外科用レーザ装置が知られている。例えば、赤外波長を有する二酸化炭素レーザビームを放射するレーザ処置装置は、患者のしわ、あざなどを除去する形成外科手術処置に用いられてきた。
【0006】
組織の光ベースの処置は、脱毛、皮膚回春、しわ処置、にきび処置、血管病変(例えば、クモ状静脈、拡散性発赤など)の処置、セルライトの処置、色素性病変(例えば、しみ、日光性色素斑、ホクロなど)の処置、刺青除去及びその他の様々な処置など、種々の用途に用いられる。このような処置は、一般に、人間の身体上の組織の領域、例えば、皮膚又は内部組織に光又はレーザ照射を伝達して、光化学的、光生物学的、熱的又は他の態様で組織を処置することを含み、それは特定の用途に応じて、他の特性の中でも切除的又は非切除的であり得る。
【0007】
光ベースの処置装置は、レーザ、LED、フラッシュランプなどの様々なタイプの放射線源を含む。例えば、レーザダイオードは、このような処置を提供するための特定の光ベースの処置及び装置に特に適している。レーザダイオードは、通常は電源以外に光生成に必要な主要構成要素を含む1つのチップ上に構築されるため、コンパクトである。また、レーザダイオードは、通常は最大50%以上の効率を提供するため、他の特定のレーザと比較して、低電力で駆動することができる。
【0008】
レーザダイオードは低電流で直接励起することができるため、従来のトランジスタベースの回路がレーザに給電するのに使用可能である。
【0009】
レーザダイオードのその他の標準的な特徴は、他の特定のレーザと比較して高い温度感度/同調性及び高い発散性のビームを含む。レーザダイオードは、通常はレーザの光軸に対して横方向の面内で軸非対称なプロファイルを有するビームを放射する。特に、放射されたビームは、直交する第2軸(「低速軸」と呼ばれる)よりも第1軸(「高速軸」と呼ばれる)において顕著に速く発散する。これに対して、他のタイプのレーザ、例えばファイバレーザは、通常は横断面において軸対称のプロファイルを有するビームを放射する。
【0010】
レーザベースの処置装置は通常、レーザ源の下流に、所望により対象組織にレーザ照射を走査し、成形し、調整し、指向させ及び/又はそれ以外には影響を与えるための光学系を含む。このような光学系は、例えば、ビームの方向、伝搬特性又は形状(例えば、収束、発散、コリメート)、スポットサイズ、角度分布、時間的及び空間的コヒーレンス並びに/又は強度プロファイルなどのビームの光学パラメータを制御するためのレンズ、ミラー並びに他の反射性及び/又は透過性素子を含み得る。一部の装置は、組織内に照射領域(例えば、スポット、線又は他の形状)のパターンを生成するために、レーザビームを走査するためのシステムを含む。一部の用途では、組織の対象領域の完全な被覆を提供するために、照射領域の走査パターンは相互に重なり合い、実質的に相互に当接又は連続する。他の用途、例えば、特定のしわ処置、血管処置、色素沈着処置、抗炎症処置及び他の皮膚回春処置については、組織の全体的な対象領域の一部のみが処置セッション中に照射されるように、走査された照射領域は非照射領域によって相互に離間され得る。したがって、このような用途では、一般に、処置済み組織の領域の間に未処置の組織の領域が存在する。この種の処置は、処置セッション中に対象領域の一部のみが照射されるため、「フラクショナル」処置(又はより具体的には場合によってはフラクショナル光熱融解)として知られている。
【0011】
一部の周知の走査システムは、照射領域の走査パターンを形成するために、放射線源自体を装置のハウジング又は構造体に対して移動させる。他の周知の走査システムは、放射線源を装置のハウジング又は構造体に対して移動させるのではなく、照射ビームを照射領域のパターンに走査するために、1以上の移動光学素子(例えば、ミラー及び/又はレンズ)を利用する。
【0012】
Liu他の特許文献1は、レーザベースの皮膚科処置を提供するためのハンドヘルド装置であり、装置本体に支持されたレーザビーム源、自動走査システム及び制御電子機器を含む。自動走査システムは、レーザビーム源によって生成された入力ビームを受け、その入力ビームを走査して、装置の適用端部を介して皮膚への伝達のための一連の出力ビームを提供し、皮膚上に処置スポットのパターンを形成するように構成される。
【0013】
Chan他の特許文献2は、フラクショナル処置システムを教示しており、調整可能な機構を、ビーム形状、ビーム開口数、ビーム焦点深度及び/又はビームサイズを調整するのに使用して、処置深度及び/又は結果として生じる病変の特徴に影響を与え得る。これらのパラメータの調整は、処置の効率及び効力を向上させることができる。
【0014】
他の方法は、レーザ又は化学薬品を用いて皮膚の外層(200μm~600μm)を切除することによって、外科的に顔の皮膚を表面再形成する。やがて新しい皮膚表面が発達する。皮膚を表面再形成するのに使用されたレーザ及び化学薬品は、真皮に存在するコラーゲン組織も刺激又は加熱する。所定の態様で刺激又は加熱されると、コラーゲン組織は部分的に解離し、その際に収縮する。コラーゲンの収縮は、望ましい「引き締まった」見た目にも繋がる。それでも、レーザ又は化学薬品を用いる表面再形成は、長期の皮膚の赤み、感染のリスク、色素沈着の増加又は減少及び瘢痕を引き起こす。
【0015】
Connors他の特許文献3のRapid Pulse Er:YAGレーザは、ヒト組織に使用することを目的として、パルスフラッシュランプによってパルス励起されたEr:YAGロッドを含む共振キャビティを有する新しいEr:YAGレーザシステムについて教示している。生物組織における主要成分である水の吸収ピークにより近くで一致する赤外波長の使用を通じて、組織の切除が強化され得ることは以前から知られている。
【0016】
皮膚へのレーザ照射の使用の多くは、PIH(炎症後色素沈着)として知られる望まれない副作用を生成する。これは、レーザ照射処置による熱損傷に触れる皮膚の反応である。濃い皮膚色の人の70%は、従来のレーザ処置に対して重度のPIHで応答し得るため、特にアジア系又はラテン系のような濃い皮膚色の患者には、処置が非常に困難となる。
【0017】
期待される結果を得るために及び患者の皮膚がPIHを発症することに関連するリスクを軽減又は排除するために、レーザベースではない代替処置が検討される。PIH合併症は、皮膚回春の目的でヒトの皮膚を処置するレーザシステムにとって重大な障壁である。PIHのリスクなしに全ての皮膚タイプを処置できるレーザシステムの導入が切望されている。
【0018】
Lax他の特許文献4に記載されているこれらの様々なアプローチの1つは、コラーゲン組織を収縮させる無線周波数エネルギーの使用について詳述している。この美容上有益な効果は、身体の顔及び首の領域において、外科的除去を要することなくかつここで列挙した付随する問題なしに、皮膚の外層を最小限の侵襲的な態様で達成することができる。当該システムのようなRFシステムの使用は、PIHを引き起こすことなく、濃い皮膚タイプを処置することを目的としている。
【0019】
Utely他の特許文献5も、電極アレイ構成を用いることにより、美容上有益な目的でコラーゲンを収縮させるためのシステムを教示している。
【0020】
しかし、以前から知られているシステムには、改善の余地が残されている。一例において、電極アレイの作製は隣接する電極間に形成する望ましくない直角通電経路を引き起こし、その結果、組織に印加されるエネルギー量が増加し得る。
【0021】
他の例では、アレイを組織に適用すると、医療従事者は「ベッドオブネイル(bed-of-nail)」を体験する。換言すると、アレイの電極の数及びそれらの配置は、電極アレイの総表面積を効果的に増加させる。そして、有効表面積の増加は、医療従事者に組織を侵入するために、より大きな力を電極アレイに付加することを必要とする。1以上の電極が皮膚内で非常に遠くに配置され得るため、このような欠点が付随的損傷を生成し得る。さらに、医療従事者が組織内にアレイを挿入するために付与する力を増加するため、患者は過度の力を経験し得る。
【0022】
カリフォルニア州ヘイワードのThermage,Inc.も特許を保有しており、制御された量の無線周波数エネルギーを伝達する電極の容量結合のためのシステムの装置を販売している。この無線周波数エネルギーの制御された伝達は、皮膚に「抵抗加熱」を発生させて美容効果を生じる電界を発生させ、一方で表皮を冷却して表皮の外部からの火傷を防止する。
【0023】
非侵襲的な態様で処置するこのようなシステムでは、真皮で結果を生じさせるためにエネルギーを発生させると、望まれないエネルギーが表皮を通過することになる。したがって、過剰なエネルギー生成は、皮膚に望まれない付随的損傷を与えるリスクがある。
【0024】
アジア人の間で広く普及している他の装置は、マイクロニードルローラである。この装置は、彼らの顔の皮膚の上でニードルを転動させて表皮に多数の小さな開放創を生成し、その後皮膚を通じて(経皮的に)薬物を送達する方法を可能にする患者によって使用される。薬物は角質層をほとんど通過しないため、薬物の吸収率は非常に低い。特に、薬物の分子量が大きいほど、薬物の吸収率は低くなる。上記の問題を改善するために、マイクロニードルを用いる技術が提案されている。この技術によれば、マイクロニードルによって表皮層の一部又は全体を通過する流路が形成され、その後にその流路を介して表皮層又はその下層に薬物が伝達される。
【0025】
特許文献6「マイクロニードルローラアセンブリ」はその発明によるマイクロニードルローラアセンブリを提供し、その表面に複数のマイクロニードルが取り付けられた円筒形の外部部材及び外部部材の内部に位置決めされ、支持片によって外部部材に支持された内部部材を含む。ローラヘッド及び内部部材に結合されローラヘッドの内部部材を回転させるハンドル部を備え、マイクロニードル、円筒形の外部部材及び内部部材は、ポリマー樹脂で作られている。
【0026】
上記の観点から、向上したエネルギー伝達システムの必要性が残されている。このようなシステムは、組織の美容的処置のための向上した電極アレイ伝達システムを作製するために適用され得る。特に、このような電極アレイは、表皮の下の組織にエネルギーを付与することによって深く均一な加熱を提供して、皮膚の深部構造を直ちに引き締めるようにすることができる。時間とともに、新たな再構築されたコラーゲンはさらに皮膚の引き締めを生じさせ、皮膚の表面で望ましい視覚的外観をもたらし得る。
【先行技術文献】
【特許文献】
【0027】
【特許文献1】米国特許第9414888号明細書
【特許文献2】米国特許出願公開第2011/0098691号明細書
【特許文献3】米国特許第6193711号明細書
【特許文献4】米国特許第5458596号明細書
【特許文献5】米国特許第6277116号明細書
【特許文献6】特表2009-533197号公報
【発明の概要】
【0028】
本開示は、放射線ベースの皮膚科処置装置及び方法、例えば、フラクショナル処置を提供するためのレーザベースの装置に関する。
【0029】
したがって、上記の観点から、本発明の課題は、PIHのリスクを低減する、全ての皮膚の色のための安全な外科用レーザ処置のための解決手段を提供することである。アジア及びラテン生まれの皮膚タイプ3及び4は、最も一般的には、PIHを発症することによって従来の処置に応答する。C.A.Nanni&T S Alsterによる最近の研究、「Complications of carbon dioxide laser resurfacing.An evaluation of 500 patients」は、Golden Standard CO2フラクショナルレーザ装置で処置した後に合併症を起こした患者の大規模な集団を分析したものである。この研究では、白色皮膚の患者(皮膚タイプ1-2)の37%がレーザ処置後にPIHを発症することが明らかとなった。
【0030】
この報告書は、一般的に、濃い皮膚色のアジア系及びラテン系の患者の70%が、フラクショナルCO2レーザによる処置後にPIHを発症すると概説している。この統計は、市場において受け入れられている。従来のフラクショナルレーザ処置後のPIHのリスクは、業界参入の障壁として知られている。中国又は韓国のようなアジア諸国では、従来のフラクショナルレーザ装置は、患者がPIHを発症する確率が高いために濃いアジア系皮膚タイプ3-4に使用するのには適さない。
【0031】
従来のフラクショナルレーザ処置に対する反応としてPIHを発症することは、処置する医師及び患者の双方がこれらの装置を用いて濃い色の皮膚を若返らせることを妨げる業界の障壁である。しかし同時に、アジア人の人口は増加し続けており、今日ではアジア人が世界人口の約60%を占めている。中国、韓国などのようなアジア諸国は人口が大幅に増加し、経済成長も著しく、老化防止の審美処置を求める経済的余裕のある非常に裕福な中流階級が生まれている。従来の処置に関連するリスクにもかかわらずこのような傾向は続いており、今日アジア諸国に存在する満たされていないニーズを際立たせる。
【0032】
また、アジア文化では、社会的受容及び雇用機会のために、身体的外見が非常に重要である。人々は、就職面接の前に審美処置のためにクリニックに並ぶ。また、自撮りであっても投稿であっても彼らの最良な状態で見られることを望むアジア人の間でのソーシャルメディアの頻繁な利用のため、身体的外見の重要性が増している。
【0033】
この状況は、濃い皮膚タイプ3-4の人口の割合が高い両ラテン系及び中東系の国々でも同様である。
【0034】
アジア地域では、老化と戦うための代替解決手段として、多数の細孔により表皮を穿孔し、通常は皮膚を通じては有効でない皮膚の老化防止薬を送達するための迅速かつ効果的な態様を可能とするマイクロニードルローラのような解決手段が提供されている。マイクロニードルローラの使用は潜在的な健康被害及び高い可能性の汚染をもたらすため、本発明のさらに他の課題は、感染及び他のリスクを排除しかつ皮膚の細孔を通じて老化防止薬を送達する効果的な態様を提供する機械的な細孔を皮膚に生成することができる装置を提供することである。
【0035】
本発明のさらなる課題は、PIHのリスクを最小限にしつつも老化の兆候と戦うフラクショナルレーザ装置を用いて全ての皮膚タイプ、特にアジア人の皮膚タイプ3-4を処置するための装置及び方法を提供し、濃い皮膚タイプのそれら個人に対して、その機会を認識してフラクショナル回春処置を受ける可能性を開くことである。本発明のさらに他の課題は、皮膚を穿刺するマイクロニードルを適用する必要なく、皮膚に浸透する薬を適用することを可能にするために、当該レーザビームを使用することによって表皮に小さな開口を生成する態様で、レーザエネルギーをヒトの皮膚に付与することである。本発明の課題は、皮膚穿孔であるが接触をなくして汚染によるさらなる合併症を排除し、PIH反応を引き起こし得る熱傷を最小限する皮膚穿孔を提供することである。
【0036】
本発明のさらに他の課題は、表皮及び真皮内で小さな開口を切除し、様々な操作モダリティで当該レーザビームを使用して、自然治癒プロセスが若くて見栄えの良いヒトの皮膚を生成し、老化の兆候を逆行させるような態様で、機械的損傷に加えて制御された熱傷を生成することによって皮膚の処置を可能とすることである。それは同時に、PIHを含むがこれに限定されない、当該レーザ処置後のヒトの皮膚へのあらゆる形態の合併症を回避するための熱傷の高度な制御によるものである。本発明の特定の課題は、冷傷によりヒトの皮膚の効果的な切除をもたらす混合パルスレジームを作成し、PIHのような過剰な熱傷によるリスクを付加することはないが治癒結果を強化し得る制御された熱傷を付加することである。
【0037】
本発明のさらに他の課題は、全ての皮膚タイプに安全かつ効果的となり、副作用のリスクを最小限にする、特にPIHのリスクを最小限にするフラクショナルレーザベースの皮膚回春装置の最適化された解決手段を提供することである。
【0038】
本発明のさらに他の課題は、一般的な外科手術で使用可能な外科用レーザメスの安全かつ効果的な装置を提供することであり、効率的に組織をコールド切断し、当該切断時に止血するように当該切断組織を凝固するのに必要な制御された熱傷を付加するパルスを混合するのと同じ態様で当該レーザを使用して患者の治癒の見込みに対して顕著な効果を提供する。
【0039】
本発明のさらに他の課題は、ヒトの眼内部又はヒトの声帯組織の処置のように、非常に到達しにくい領域のヒト組織を切除及び凝固するために、非常に小径のツールを使用することである。このさらに他の課題では、レーザは、医師が小さな空洞に到達できるようにする非常に小型の光ファイバ装置を使用することによって処置済み組織に伝達される。同時に、必要な組織を切除し、不要な出血を排除するように制御された凝固をもたらすことができる混合パルスを用いる当該レーザを使用して、ヒトの眼組織又はヒトの声帯などの繊細で重要なヒトの組織を処置する際に特に副作用に繋がり得る無用かつ過剰な熱傷を引き起こすリスクをなくす。
【0040】
したがって、本発明の課題は、老化の兆候を逆行させるなどの肯定的な結果をもたらす同時に、望まれない熱傷を最小限にすることによって先行技術の欠点を克服する態様でヒト組織を処置する装置及び方法を提供することである。
【0041】
本発明のための方法に応じて動作する装置の平面図である添付図面を参照して、本発明をここに説明する。
【図面の簡単な説明】
【0042】
【
図1a】
図1aは、本発明に係るレーザシステムの好適な一実施形態を模式的に示す。
【
図1b】
図1bは、赤外線領域の光波長における水の吸光係数の模式図である。
【
図2】
図2は、本発明に係るレーザスキャナアプリケータのアタッチメントの好適な一実施形態の模式図である。
【
図3a】
図3aは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所の好適な一実施形態の模式図である。
【
図3b】
図3bは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所の好適な一実施形態の模式図である。
【
図3c】
図3cは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所の好適な一実施形態の模式図である。
【
図3d】
図3dは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所の好適な一実施形態の模式図である。
【
図4a】
図4aは、本発明に係るレーザパルスシーケンスを模式的に示すグラフである。
【
図4b】
図4bは、本発明に係るレーザパルスシーケンスを模式的に示すグラフである。
【
図4c】
図4cは、本発明に係るレーザパルスシーケンスを模式的に示すグラフである。
【
図5】
図5は、本発明に係るヒト組織を切断及び凝固するための外科用器具の模式図である。
【
図6】
図6は、本発明に係るヒト組織を切断及び凝固するための光ファイバを用いる他の外科用器具の模式図である。
【発明を実施するための形態】
【0043】
本開示の一部の実施形態は、以下の説明及び添付図面をある程度参照することによって理解され得る。図面において、同様の符号は同一又は類似の部分を指す。
【0044】
図1は、放射線ベースの処置装置24の好適な一実施形態の各種構成要素を示す。放射線ベースの処置装置24は、エネルギービームを生成するように構成された放射線源18を含み得る。他の好適な実施形態では、放射線ベースの装置はレーザ装置であり、他の実施形態では、放射線ベースの装置はファイバレーザ装置であり得る。当該放射線ベースの装置は、医療用電源20によって生成される直流(DC)によって給電される。電源20は、110V、60Hzの米国又は240V、50Hzを用いる独国などの様々な国において一般的に使用される広範囲の交流電源を許容するように構成される。当該電源20は、交流を直流に変換し、好適な一実施形態では、電源20によって生成された当該動作DC電圧は24ボルトとなる。放射線ベースの装置24全体を制御するのに必要な電気エネルギーは、DC配電印刷回路装置21において作製されたDC配電装置によって調整される。DC配電印刷回路装置21は、当該好適な実施形態の装置における全ての構成要素に電力を供給する。放射線ベースの照射装置18はDC配電印刷回路装置21によって供給された電気エネルギーによって給電され、一方でレーザエネルギー命令信号がリアルタイムCPU22によって供給される。この好適な実施形態では、リアルタイムCPU22の命令は、他のコンピュータであるGUIコンピュータ23によって制御される。この好適な実施形態では、GUIコンピュータ23は、放射線ベースの装置エネルギー設定などの所望の命令を入力する装置オペレータ25によって使用されるタッチパネルを有する。オペレータ25が所望の放射線ベースの所望装置設定を入力すると、GUIコンピュータ23は所望のプログラムをリアルタイムCPU22に通信して、放射線ベースの照射装置に、オペレータ25による所望のエネルギー設定で供給する。放射線ベースの照射装置は、所望のレーザエネルギーを生成する。動作時に、放射線ベースの照射装置18は、アクセス熱を生成し、それは周囲に放散されて装置を冷却する。好適な実施形態の1つでは、放射線ベースの照射装置18は、さらに他の好適な実施形態では、2940nmにおいて動作する中IRファイバレーザである。さらに他の好適な実施形態では、照射装置18は、2940nmで動作するER;YAGレーザであってもよいし、さらに他の好適な実施形態では、照射装置18は、2780nmで動作するER:YSGGレーザであってもよい。当該好適な実施形態では、レーザ冷却装置12は、照射装置である当該中IRファイバレーザからアクセス熱を抽出し、冷却ファンを用いてそれを周囲に放散する。当該好適な実施形態では、中IRファイバレーザ放射は、レーザ光学系モジュール17に照射する。好適な実施形態では、レーザ光学系モジュール17は、レーザビームを直径約7mmにコリメートし、650nm付近で動作する可視赤色レーザを合成してオペレータ25が中IRビームの位置及び焦点を視認できるようにする(中IRビームは可視ではないため)。さらに他の好適な実施形態では、レーザ光学系モジュール17は、エネルギー較正装置13に接続される。好適な実施形態では、エネルギー較正装置は、好適な実施形態の当該範囲の2940nmにおいてレーザ照射を測定するのに最適化されるInAsSb光電検出器である。当該検出器は、主レーザビームのサンプルをリアルタイムで読み取り、オペレータ25によって設定されたエネルギーがエネルギー較正装置13によって伝達及び測定された時に命令がリアルタイムCPUコントローラ22に送信されて伝達設定エネルギーが達成されるとレーザパルスエネルギーを遮断するような態様で、パルスあたりのエネルギーを制御するように設計される。当該好適な実施形態では、エネルギー較正検出装置13は、当該伝達エネルギーが、オペレータ25によって設定されたエネルギーと同一となることを保証するリアルタイムサーボコントローラである。当該検出器は、レーザエネルギーのサンプルを測定し、オペレータ25によって選択されたエネルギー設定を閉ループにおいて監視している。好適な一実施形態では、放射線ベースの装置24は、X及びYスキャナモータを駆動するのに使用されるスキャナサーボコントローラ27を含む。スキャナサーボコントローラは、電源20によってAC電圧から変換されたDC電圧を調整するDC配電器21によって給電される。X及びYスキャナモータを移動させる命令は、GUIコンピュータ23に接続されたタッチパネル10を用いてオペレータ25が命令を入力することによって選択される。オペレータ25の命令は、命令信号をスキャナサーボコントローラ27に送信してアプリケータ16におけるスキャナを移動させるリアルタイムCPUコントローラ22に転送される。
【0045】
照射エネルギーは、ビーム伝達装置14に向けられる。好適な一実施形態では、ビーム伝達装置14は、放射を伝送することができるファイバ光学系装置である。さらに他の好適な実施形態では、ビーム伝達は、7個の回転ミラー関節状アームであり得る。レーザエネルギーは、最終エネルギー調整装置であるレーザ出力光学系15に向けられる。好適な実施形態の1つでは、レーザ出力光学系15はレーザビームをφ7.0mmにコリメートする他のコリメート光学系であってもよく、さらに他の好適な実施形態では、レーザ出力光学系15は、動作信頼性の観点から、埃及び汚染が放射線ベースの装置18に影響してしまうことを防止するための保護及び交換可能窓であってもよい。
【0046】
さらに他の好適な実施形態では、レーザ出力光学系15は、後述するようにオペレータが使用中のレーザアプリケータ16を交換して異なる臨床効果を達成することを可能とし得る着脱コネクタ100を含む。放射線ベースのレーザエネルギーを動作させるために、オペレータ25はフットスイッチ装置26を用いて、オペレータ25が判断してタッチパネル10を用いてGUIコンピュータ23にここで入力した設定として伝達されるようにエネルギー放射を命令する。オペレータ25が放射線ベースの装置の放射を停止させたい場合には、オペレータはフットスイッチ装置26を押下解除してレーザ動作を停止させる。緊急の場合には、オペレータ25は、緊急スイッチ11を押下することによって装置24が動作するのを停止させ得る。
【0047】
図1bは、赤外波長における水の吸光係数を示す。ヒト組織は約70%の水を含有し、ヒト組織を処置するのに水の吸光率が非常に有効なツールとなることに留意することが重要である。放射線ベースの装置の作用の基本的メカニズムは選択的光熱融解であり、それは放射線装置波長を光吸収発色団に一致させて選択された効果を生成するものである。好適な実施形態の1つでは、選択された波長は、2940nmであり得る。
図1bが示すように、104は、赤外スペクトルにおける最大の水の吸光率である、2940nmの波長における11700cm
-1の水のピーク吸光点である。ヒト組織を処置するための他の一般的に使用される放射線ベースの装置と水の吸光率を比較すると、101は、二酸化炭素(CO
2)レーザ装置の10600nmに対して850cm
-1の吸光係数である。二酸化炭素(CO
2)レーザによる水の吸光値を好適な一実施形態の2940nmで動作する中IRファイバレーザと比較すると、2940nmで動作する当該中IRファイバレーザによる水の切除有効性は、二酸化炭素レーザに対する当該ファイバレーザの吸光係数比の13.7=11700/850に等しい13.7倍向上する。2940nmで動作する当該好適な実施形態の装置は、ヒト組織における水を13.7倍効率的に切除し、13.7倍少ない光エネルギーしか必要としないので、処置済み組織に対して13.7倍少ない潜在的な熱傷しか生成しないことになる。
図1bが示す103は、2940nmで動作する好適な実施形態の1つよりも約100倍低い114cm
-1の吸光係数でヒト組織を処置する際に他のファイバレーザが一般に使用する1927nmに対する水の吸光率である。理解可能なように、この放射線ベースの装置は、水を対象とすることによってヒト組織に適合することはできるが、それでも切除効率が非常に低く、かつ望まれない熱傷の可能性も大きな切除装置として特徴付けられる。
【0048】
他の比較として、
図1bでは、102は、1550nmにおける10cm
-1の値の水の吸光率を示す。この1550nmで動作する放射線ベースの装置は、水の吸光係数が好適な実施形態の1つの水のピーク吸光特性と比較して非常に低いので、既に非切除装置として分類されている。
【0049】
図2は、顔回春のためにヒトの皮膚を処置するのに使用されるスキャナアプリケータの好適な一実施形態を示す。このアプリケーションは、着脱コネクタ100を用いてアプリケータ16を接続して
図1aに示す放射線ベースの処置装置24に接続され得る。
【0050】
図2は、ヒトの被処置皮膚の位置208を示す。処置の領域は、走査動作方向を示すX及びY軸によって規定される。アプリケータの先端は、オペレータがハンドピース先端の開口209を介して処置の領域を明確に視認することを可能とするアプリケータハンドピース207の一部である。当該好適な実施形態では、このハンドピースは複数の用途のために金属設計からなり、ハウジング206へのネジ式マウントを用いて取外し可能である。さらに他の好適な実施形態では、ハンドピースは、医療グレードのプラスチックからなる1回使い捨てのものであり、各処置の後に再利用される。ハンドピース207は、レーザ集束レンズを含むレンズハウジング206に取り付けられる。好適な一実施形態では、使用中の集束レンズは150mmの焦点距離を有し、レーザスポットサイズは120μmとなる。レンズハウジング206はハンドピース207のネジを取り付けるために適合された取付けねじを一端に有し、他端ではレンズハウジング206がスキャナハウジング202に恒久的に取り付けられる。この好適な一実施形態では、スキャナハウジング202は、着脱コネクタ100を用いてアプリケータを
図1aの放射線ベースの装置24に接続するのに使用される着脱コネクタである取付けシャフト201に恒久的に接続される。取付けシャフト201は中空であり、レーザビームが絞り200を介してスキャナアプリケータに伝搬することを可能とする。当該好適な実施形態では、絞り200を介してスキャナアプリケータに入射する入来レーザビームは、φ7mmにコリメートされ、出力集束ビームが208におけるヒト皮膚の処置対象に向かって伝搬するのと同じ方向に伝搬する。当該好適な実施形態では、絞り200に入射する入力レーザビームは、恒久的に取り付けられた反射ミラー205によって、
図2に示すY軸方向に、90度垂直に反射される。そして、レーザビームは、スキャナハウジング202内に恒久的に取り付けられたY軸スキャナモータ203に取り付けられたミラー209によって水平-X方向に再度反射される。当該ミラー209は、スキャナモータに給電することによって小さな角度で回転可能であり、ミラー209が電子信号によって移動される時にはいつでも反射ビームがY方向に移動することを可能とする。-X方向にスキャナモータ203に接続されたミラー209から伝搬するレーザビームはX軸モータ204に取り付けられたミラーによって同様に反射されるので、電子的命令がスキャナモータ204のミラーを回転する毎にX方向に移動可能となる。当該好適な実施形態では、スキャナモータ203はレーザビームを反射するミラーを駆動して208の±Y方向のレーザビーム移動をもたらし、スキャナモータ204はレーザビームを反射するミラーを駆動して±X方向のレーザビーム移動をもたらす。オペレータが
図1aに示す放射線ベースの装置24を用いることを選択すると、電子信号は、両スキャナモータ203及び204を同時に駆動して2次元複素レーザビーム移動をヒト皮膚処置対象208において形成する。
【0051】
図3aは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所の好適な一実施形態の模式図である。フラクショナルパターンは、当該レーザパルスエネルギーによって処置される組織の所定の複数の領域、及び被処置領域間の健常な組織のブリッジを残すことによって人体回復プロセスを補助する健常で未処置の組織のままである被処置領域間の他の複数の領域からなる。
図3aは、
図2の208の座標に一致するX及びY座標を示す。当該好適な実施形態では、オペレータ25(
図1a)は、所定の複数のパターン及びサイズから、φ15mmの6角形パターン300を使用することを選択している。赤色目標ビームは、選択された6角形処置領域境界300の輪郭を示す。オペレータ25がフットスイッチ装置26を押下すると(
図1a)、放射線ベースの装置は各位置301へのスキャナモータ203及び204(
図2)の移動を同期させ、特定のプリセット特性のレーザパルスを輪郭境界300内の所定の複数の位置の各位置に配置する。好適な一実施形態では、パルス配置位置は、パターンの右下角部302から開始し、ここでCPUコントローラ22は、オペレータ25によって選択された1つのプリセットエネルギーパルスをパルス出力するようにシステムに命令する間にスキャナモータ203及び204は302において位置を保持する。パルス幅が終了に達すると、システムのCPUコントローラ22は、位置302から位置303に、X軸方向の移動に一致する方向305に集束ビームを移動させるようにスキャナモータ203及び204に命令し、スキャナモータ203及び204は位置303での移動なしに位置を保持し、CPUコントローラ22(
図1a)は、オペレータ25がタッチパネル10を用いることによって設定された所定の特性の1つのパルスをパルス出力するようにレーザに命令する。位置303でのパルス幅の終了時に、システムのCPUコントローラ22は、位置303から位置304に、X軸方向の移動に一致する方向305に集束ビームを再度移動させるようにスキャナモータ203及び204に命令し、スキャナモータは位置304での移動なしに位置を保持し、CPUコントローラ22(
図1a)は、オペレータ25がタッチパネル10を用いることによって設定された所定の特性の1つのパルスをパルス出力するようにレーザに命令する。レーザパルス幅が終了に達すると、システムは、上述した方向305に沿って次の位置に自動的に進み、スキャナモータの同じステッピング処理を反復して集束レーザビームを新たな位置に移動させ、CPUコントローラ22が1つの予めプログラムされたパルスエネルギーを伝達するようにレーザに命令する間に新たな位置における位置を保持し、位置306のパルス幅が終了に達するまで処理を反復する。位置306でのパルスの終了時に、システムは、位置308へのY方向に1列上昇する方向307に集束レーザビームを移動させるようにスキャナモータ203及び204に命令し、ここでスキャナモータ203及び204は、システムが単一のプリセットパルスを伝達する間、位置を保持する。位置308でのパルス幅の終了時に、CPUコントローラ22は、位置308から位置309に、-X方向310に沿って集束レーザビームを移動させるようにスキャナモータ203及び204に命令し、レーザはプリセットエネルギーパルスを伝達する間に位置を保持する同じ処理を反復し、当該に詳細を説明したように次の隣接位置に進む。パターン境界内の複数の所定位置の全体に、同じステップを用いて同じプリセットレーザパルスが伝達され、位置を保持し、処理を反復する。パターン境界内の複数の所定位置がプリセットレーザパルスを伝達すると、CPUコントローラは、赤色目標ビーム輪郭300の提示を再開して、全てのプリセットパルスの配置が完了したことをオペレータ25に示す。そして、オペレータ25は、ハンドピース207を、処置される必要があるヒト組織の次の領域に移動させて同じ処理を反復することができる。
【0052】
図3bは、本発明に係る所望の処置済み組織上のフラクショナルレーザ処置パターン箇所のさらに他の好適な実施形態の模式図である。当該実施形態では、位置を保持し、レーザパルスを複数の予めプログラムされた所定位置に伝達するのに使用される処理を反復するステップは、上述したようにx及びy軸に沿うデカルト移動の代わりにランダムな移動を用いることによって達成され得る。当該好適な実施形態では、第1のパルス位置は311であり、ここでスキャナモータ203及び204は、オペレータ25によって選択された1つのプリセットエネルギーパルスをシステムがパルス出力する間、311における位置を保持する。
【0053】
パルス幅が終了に達すると、システムのCPUコントローラ22は、位置311から位置313に方向312におけるx及びy軸の双方に沿う同期した移動で集束ビームを移動させるようにスキャナモータ203及び204に命令し、スキャナモータ203及び204は、オペレータ25によって選択された1つのプリセットエネルギーパルスをシステムがパルス出力する間、位置313における移動なしに位置を保持する。パルス幅が終了に達すると、システムのCPUコントローラ22は、位置313から位置315に方向314に沿って同期した移動で集束ビームを移動させるようにスキャナモータ203及び204に命令し、スキャナモータ203及び204は、オペレータ25によって選択された1つのプリセットエネルギーパルスをシステムがパルス出力する間、位置315における移動なしに位置を保持する。パルス幅が終了に達すると、システムのCPUコントローラ22は、位置315から位置317に方向316に沿って同期した移動で集束ビームを移動させるようにスキャナモータ203及び204に命令し、スキャナモータ203及び204は、オペレータ25によって選択された1つのプリセットエネルギーパルスをシステムがパルス出力する間、位置317における移動なしに位置を保持する。
【0054】
パルス幅が終了に達すると、システムのCPUコントローラ22は、ステップを継続し、位置を保持し、レーザをパルス出力し、上述したようなパターン境界内の複数の所定フラクショナル位置の全てにおいてプリセットエネルギーパルスを配置することを反復する。
【0055】
使用されるランダム化移動アルゴリズムは、望まれない熱傷の蓄積の可能性を低減するとともに他の目的のために患者の不快感を低減するように、隣接パルス間の最大物理距離を維持するアルゴリズムの一種である。
【0056】
図3cは当該好適な実施形態を示し、オペレータ25は、一例として、パターン320又はパターン321のいずれかから利用可能なパルスのフラクショナル充填密度の所定の選択肢から選択できる。当該好適な実施形態では、パターン320及びパターン321は、同一のパターンタイプ及びサイズのものである。当該パターン320及び321の相違は、パターン320の密度がより高い密度のものであると言え、パターン320には、より少数の所定パルス位置を有するパターン321と比較してより多数の所定パルス位置があり、したがってパターン321はより低い密度のものであると言えることである。
【0057】
図3dは当該好適な実施形態を示し、オペレータ25は、同じパルス密度を有する利用可能な複数のフラクショナルパターンサイズの所定の選択肢から選択できる。オペレータ25は、同じパルス密度からなるパターンサイズ330又はより小さなサイズ332を選択できる。選択は、予めプログラムされた利用可能なサイズ及び利用可能なパルス密度の一覧からオペレータ25がタッチパネル10を用いることによって行われる。
【0058】
当該好適な実施形態では、パターンサイズ及びパルス密度を容易に変更できることによって、身体における処置済み組織のタイプ及び組織の位置に特定のレーザパルス選択を適合する柔軟性がオペレータにおいて可能となる。一例として、オペレータ25が当該好適な実施形態の放射線ベースの装置を用いてヒトの眼の周囲の顔の皮膚を処置する場合、より小さなパターンの選択が、積極的な臨床結果を生成しかつ望まれない副作用、特にPIHのリスクを低減することにおいて装置の有用性を向上させ得る。
【0059】
図4は、本発明に係る複数のレーザパルスシーケンスを模式的に示すグラフである。当該グラフでは、x共通因子は403によって示すように時間スケールを表し、Y軸共通因子は401によって示すようにフルエンスを示す。破線は、400によって示すヒト組織の切除に対するフルエンス閾値を示す。フルエンス閾値eは、ヒト組織に伝達される「e」400よりも高いパルスフルエンスはヒト組織を切除することになるが、「e」400以下のフルエンスのパルスはヒト組織を切除しないが、エネルギーがヒト組織によって吸収されて当該ヒト組織において熱となり、それが熱傷をもたらし得ることを意味する。ヒト組織に対するアブレーション閾値は、多数の科学論文によって報告されており、J.T Walsh「Er:YAG Laser Ablation of Tissue:Measurement of Ablation Rates」はアブレーション閾値フルエンスが2ジュール/cm
2であると測定した。この文献は、アブレーション深度に対するフルエンス(エネルギー密度)の関係が以下の式に従うように確立した。
【数1】
Fl:レーザフルエンス、ジュール/cm
2
Z:レーザブレーション深度、μm(100μmより大きなアブレーション深度について)
パルスあたりのエネルギーを規定するために、次式の使用が必要となる。
【数2】
E:パルスエネルギー、ミリジュール
Sz:レーザスポットサイズ、μm
【0060】
好適な一実施形態では、レーザは、120μmの集束レーザビーム径を有して2940nmで動作する中IRファイバレーザである。当該好適な実施形態のレーザにおいて、アブレーション閾値は、0.23ミリジュールとなる。パルス402は、オペレータ25がタッチパネル10を用いてパルスあたりのレーザエネルギーをプログラムすることによって選択された選択可能な深度までヒト組織を切除するようにプリセットされる。複数のプリセットレーザパルス402の各々は、ここに上述したように、パルス位置302から開始して次の位置まで、選択パターン300(
図3a)の各異なる位置に伝達される。各パルスのパルス幅は、オペレータ25によって予めプログラムされた正確なエネルギー量をヒト組織に伝達するようにレーザ装置を制御する装置のCPUコントローラ22によってプリセットされる。隣接パルス404の間の時間幅は、スキャナモータ203及び204は、次のパルスエネルギーが次の位置に伝達可能となる前に当該レーザビームをある位置から次の位置に反射させるミラーを移動させるのに充分な時間を残すようにCPUコントローラ22によって制御される他のプリセット時間幅である。当該好適な実施形態では、複数のパルスエネルギーが、所望のアブレーション深度に基づいてオペレータ25によってプリセットされる。当該好適な実施形態では、400μmのアブレーション深度について、オペレータ25は、上記設定計算式に基づいて、複数のレーザパルスエネルギーを個々のパルス402あたり9ミリジュールとなるようにプリセットする。当該好適な実施形態では、中IRファイバレーザの最大レーザパワーは10ワットであり、パルスあたり9ミリジュールのパルスエネルギーを生成するために、レーザパルス幅はCPUコントローラ22によって以下の式によって計算される0.9ミリ秒となるように設定される。
【数3】
P:レーザパワー、ワット
E:レーザパルスエネルギー、ミリジュール
τ:レーザパルス幅、ミリ秒
【0061】
さらに他の好適な実施形態では、パターンがヒトの顔の皮膚に対して回春のために配置される場合、パルスあたりの設定エネルギーは、特にオペレータ25がアブレーション深度を1mm以上に設定する場合、パルス幅に起因する患者の不快感を引き起こし得る。
【0062】
図4bは、本発明に係る複数のレーザパルスシーケンスを模式的に示すグラフである。さらに他の好適な実施形態では、あるステップにおいてパターン300に配置されて位置302から開始する処理を反復するパルス402(
図4a)はパルスバースト410に配置される複数のサブパルスに分割され、サブパルス413の各バースト間のプリセット時間幅は、システムがパターン境界内の複数の所定位置の各々において複数の中実パルス402を用いる場合の上述したような時間幅遅延404(
図4a)と同一となる。パルスバースト410において配置される複数のサブパルスの1つの有利な効果は、より長い時間幅にわたってパルスあたりのエネルギーが分散するので、患者の不快感を低減させること、及び望まれない熱傷の蓄積を低減することである。当該好適な実施形態例では、パルスバースト410は、CPUコントローラ22によって設定されたパルス411の間のプリセット時間幅412を有する4個のサブパルス411を含む。当該好適な実施形態では、レーザ選択パターン300において302から開始する各位置において、システムは、上記に開示した式から計算可能な所望のアブレーション深度のオペレータ25による選択に対応する、パルスバースト411あたりの同じ合計エネルギーのために、各隣接サブパルス411の間の時間遅延412とともに4個のサブパルスのバースト410を伝達する。当該好適な実施形態は、一例として4個のサブパルスを有するパルスバーストを使用し、サブパルス数は特定の数に限定されず、パルスバーストは所望の臨床結果に応じて2~「n」個のサブパルスを含み得る。本出願において留意されるように、当該好適な実施形態では、レーザはピークの水の吸光率である2940nmにおいて動作し、ヒト組織は70%以上の水を含有するのでヒト組織の切除は非常に効率的である。当該動作条件において、ヒト組織の切除は周辺組織に熱傷をほとんど乃至まったく残さないので、レーザが小血管を切除すると切除ゾーンでは局所出血が続いて起こることが予想されることも、多数の臨床文献に注記されている。これは、所望の損傷が純機械的性質のものである場合の一部の臨床状況では、特に、機械的な切除損傷を用いて組織に医薬を効率的に送達するために以降の薬の使用がある場合、一例としてマイクロニードルの使用に代替する所望の効果となり得る。
【0063】
図4cは、本発明に係る複数のレーザパルスシーケンスを模式的に示すグラフである。このさらに他の好適な実施形態の放射線ベースの装置では、あるステップにおいてパターン300に配置されて302から開始する処理を反復するパルス402(
図4a)は、本出願において前述した複数のサブパルスバースト410とは異なるパルスバースト420として配置される複数のサブパルスに分割される。当該好適な実施形態では、パルスバースト420は一例として8個のサブパルスに分割され、アブレーション閾値「e」400以上となるようにCPUコントローラ22によってプリセットされた第1のパルス421を備え、パルス421と次のパルス422の間の時間遅延423が続く。パルス422のフルエンスは、アブレーション閾値「e」400以下となるようにCPUコントローラ22によってプリセットされ、アブレーション閾値「e」400以下のフルエンスを生成するように、より低いパルスあたりのレーザパワーで動作する放射線ベースの装置18によって伝達されるので、いずれのヒト組織も排除せず、周囲の組織を加熱して凝固効果を生成するとともに制御された局所熱傷を形成することによって、エネルギーを蓄積する。パルス422の後に、CPUコントローラ22は他の予めプログラムされた時間遅延424を付加し、同じプリセットフルエンスの次のサブパルス421の伝達が続き、時間遅延423及び閾値「e」400以下の同じプリセットフルエンスの他のパルス422が続く。当該好適な実施形態では、パルスバースト420は、一例として、パルス421とパルス422の間の時間遅延423及び424とともに、アブレーション閾値「e」400以上のプリセットフルエンスの4個の切除用サブパルス421、及びアブレーション閾値「e」400未満のプリセットフルエンスの4個の凝固用サブパルス422を含み、パターン300において開始する1つの位置302のためのパルスバーストが完成する。次の同一のパルスバースト420が、CPUコントローラ22によって設定される予めプログラムされた遅延425とともにパターンにおける次の位置に伝達されて、スキャナモータ203及び204が同期した移動を完了してパターン300における次の位置に集束レーザエネルギーを向けるのに充分な時間を与える。パルスバースト420は、バースト内のパルス数を限定することなく同様の組合せにおいて任意の複数のパルスを含むように、本発明の教示によって構成可能であることを指摘することが重要である。パルスバーストは、本発明の課題として、他の任意の順序で配列された「n」個の切除用パルス及び「N」個の凝固用パルスを含み得る。当該好適な実施形態に係るパルスバーストにおける凝固用パルスエネルギーへの切除用パルスエネルギーの混合は、重要な効果をもたらすヒト組織の医療処置において切望されている。第1の効果は、装置がヒト組織を切断するのに使用される場合、切除-切断用パルスに凝固用パルスを混合することによって、切断した血管を凝固することによって出血を防止し、汚染を防止することができ、その切断のより早い治癒に役立つ。混合パルスの他の効果は、装置がヒト皮膚、特に顔に対して使用される場合、装置は切除用パルスを真皮深くに伝達し、出血を減少させて最大自然治癒プロセスを生成する熱傷の予めプログラムされた制御量の混合を伝達するのに使用可能であり、その後に処置は、過多な望まれない熱傷によるPIH又は他の何らかの合併症のリスクなく有効な皮膚回春をもたらすことである。
【0064】
真皮における制御されたフラクショナル熱傷は、新たなコラーゲン、新たな天然ヒアルロン酸の刺激形成による顔回春の主な手段であり、多くの患者において新たなエラスチンの生成をもたらし、より若く良い見栄えの皮膚が得られる。
【0065】
図5は、本発明に係るヒト組織を切断及び凝固するための外科用器具の模式図である。このさらに他の好適な実施形態では、装置は、x-yスキャナを用いず、それに代えて、オペレータ25によってヒト組織54にわたって移動させられる切断及び凝固用ハンドピースを用いる。取付けシャフト50は、当該ハンドピースをスキャナアプリケータ16(
図1a)と交換することによってアセンブリをアプリケータ取付け着脱コネクタ100に接続する。レーザビームは、絞り56に入射して集束レンズ51を通じて伝搬する。ハンドピースシャフト52は、装置を保持するオペレータ25によって使用され、患者のヒト組織54に接触している先端ポインタ55を配置して集束レーザエネルギー53を被処置ヒト組織に向ける。当該好適な実施形態では、オペレータ25は、3個の異なる予めプログラムされたパルスタイプのいずれかを選択して、ハンドピースを手動で移動させながらヒト組織を切断及び切除することができる。当該好適な実施形態の効果は、望まれない熱傷によって容易に損傷を受け得る敏感なヒト臓器を処置するために、熱損傷なく非常に効率的にヒト組織を切断できることである。そのような臓器は、ヒトの脳組織、ヒトの声帯、ヒトの眼組織などを含む。他のあまり敏感でないヒト組織を処置する際に、オペレータ25は、凝固及び切除用パルスの混合を含むように装置をプログラムして本出願で説明するような所望の臨床結果を達成することができる。
【0066】
図6は、本発明に係るヒト組織を切断及び凝固するためのファイバ光学系を用いる他の外科用器具を備えるさらに他の好適な実施形態の模式図である。この好適な実施形態では、ファイバ光学系の使用によって、空洞内のヒト組織又はヒトの耳、鼻、喉若しくは眼組織などの物理的アクセスを制限してきた身体部位にレーザエネルギーを伝達することが可能となる。当該ファイバ光学系装置は、着脱コネクタ100と接続するシャフト61を用いて取り付けられる。レーザビーム60は、ファイバ光学系78の面に集束されるレーザエネルギーを有して他の集束光学系67を介して伝搬する。ファイバ光学系コネクタ63は、レーザ集束ビーム68と同心となるようにファイバ光学系中心線を整合可能なハウジング62に取り付けられる。当該ファイバ光学系は、ステンレススチール金属管64の内部に取り付けられて、ヒト空洞内のヒト組織を処置するオペレータ25による使用時の破断からファイバ光学系を保護する。好適な実施形態では、ファイバ光学系は、集束スキャナビームとしてヒト組織を処置するために、同様のスポットサイズを有する140μmのコア径のサファイアからなる。当該好適な実施形態では、有利な効果は、狭所におけるヒト組織にアクセスしてレーザエネルギーを伝達できることである。混合パルスを用いることで、望まれない熱損傷を蓄積することなく緊密なアクセスによる領域における切除組織処置の有効性を高めることもでき、異なるプリセットの混合パルスにおいて、装置は予めプログラムされた量の凝固及び熱損傷を伝達して、物理的アクセスが非常に困難な場所においても所望の臨床結果を達成することができる。
【国際調査報告】