(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-01
(54)【発明の名称】診断及び予測モジュールを有するガスクロマトグラフィーシステム及び方法
(51)【国際特許分類】
G01N 30/86 20060101AFI20231124BHJP
【FI】
G01N30/86 V
G01N30/86 Q
G01N30/86 G
G01N30/86 B
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023528757
(86)(22)【出願日】2021-11-16
(85)【翻訳文提出日】2023-05-15
(86)【国際出願番号】 US2021059518
(87)【国際公開番号】W WO2022108927
(87)【国際公開日】2022-05-27
(32)【優先日】2020-11-17
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】399117121
【氏名又は名称】アジレント・テクノロジーズ・インク
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
(74)【代理人】
【識別番号】100099623
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100125380
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【氏名又は名称】森本 聡二
(74)【代理人】
【識別番号】100166268
【氏名又は名称】田中 祐
(74)【代理人】
【識別番号】100218604
【氏名又は名称】池本 理絵
(72)【発明者】
【氏名】ノヴァエス-カード,シモーネ
(72)【発明者】
【氏名】フィッツ,ブライアン,デイヴィッド
(72)【発明者】
【氏名】カーク,スティーヴン
(72)【発明者】
【氏名】ダレッシォ,ジョセフ
(72)【発明者】
【氏名】キャスパー,ブレント
(57)【要約】
本発明は、ガスクロマトグラフィーシステム(GC)を提供し、GCシステムは、1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成されたGCカラムと、GCカラムの出口に接続されたGC検出器と、GCシステムに接続されたコントローラとを備える。コントローラは、分析された試料の少なくとも1つのクロマトグラフィーパラメータを計算するクロマトグラフィーモデルを使用して、シミュレートされたクロマトグラフィー分離を生成するように構成される。コントローラは、試料のクロマトグラフィー分離を実行し、少なくとも1つのクロマトグラフィーパラメータとシミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含むクロマトグラフィー性能モニタリングを実行し、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又はクロマトグラフィーパラメータが性能管理限界外になるかどうかを予測し、性能問題の原因を判定するために自動GCトラブルシューティング手順を実行するように更に構成される。
【特許請求の範囲】
【請求項1】
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
前記GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成するステップであって、前記GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを前記クロマトグラフィーモデルが計算するステップと、
前記GCシステムによって分析される前記試料の試料クロマトグラムを生成すべく、前記GCシステムを使用して試料クロマトグラフィー分離を実施するステップと、
前記試料の前記少なくとも1つのクロマトグラフィーパラメータを含む、前記試料クロマトグラフィー分離に関連する性能データを収集するステップと、
前記試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実施するステップであって、前記クロマトグラフィー性能モニタリングは、前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータと、前記シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になり得るかどうか、及び/又はいつ前記性能管理限界外になり得るかを予測するものである、ステップと、
前記クロマトグラフィー性能モニタリング及び前記クロマトグラフィーモデルの結果を使用して、前記GCシステムの予期される保守作業を予測するための自動GCトラブルシューティング手順を実施するステップと、
前記予期される保守作業を含む前記GCシステムの保守通知を送信するステップと
を含んでなる方法。
【請求項2】
前記少なくとも1つのクロマトグラフィーパラメータは、前記GCシステムによって分析される分析物の保持時間、相対保持時間、保持指標、調整保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量のうちの1つ以上を含む、請求項1に記載の方法。
【請求項3】
前記自動GCトラブルシューティング手順はまた、前記試料クロマトグラフィー分離からの機器データを使用して、前記予期される保守作業を決定し、前記保守通知を送信するステップは、複数の異なる保守作業から前記予期される保守作業を決定することと、前記GCシステムのユーザに前記予期される保守作業を警告することとを含む、請求項1に記載の方法。
【請求項4】
前記機器データは、前記GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、請求項3に記載の方法。
【請求項5】
前記自動GCトラブルシューティング手順は、前記予期される保守作業を決定するために1つ以上の診断試験を実施する、請求項1に記載の方法。
【請求項6】
前記クロマトグラフィーモデルは、前記GCシステムによって実施される前記試料クロマトグラフィー分離中にリアルタイムで収集された前記GCシステムの実際の機器の値を利用する、請求項1に記載の方法。
【請求項7】
前記自動GCトラブルシューティング手順は、前記予期される保守作業を決定するために決定木を利用する、請求項1に記載の方法。
【請求項8】
ユーザが前記決定木に情報を入力する、請求項7に記載の方法。
【請求項9】
前記決定木は、前記GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して前記予期される保守作業の性能を更に決定して、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記少なくとも1つのクロマトグラフィーパラメータを補正する、請求項7に記載の方法。
【請求項10】
前記自動GCトラブルシューティング手順は、ニューラルネットワークを更に利用して、前記予期される保守作業と、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータとの間の相関を決定する、請求項1に記載の方法。
【請求項11】
前記自動GCトラブルシューティング手順は、機械学習プロセスを更に利用して、前記予期される保守作業が、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータと関連付けられることを前記GCシステムに教示する、請求項1に記載の方法。
【請求項12】
前記自動GCトラブルシューティング手順は、ニューラルネットワークを利用して、1つ以上の予期される保守作業を、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータの修正と関連付けし、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータが、繰り返し発生するGCシステム問題である場合、前記ニューラルネットワークは、前記繰り返し発生するGCシステム問題を修正するための代替保守作業を決定する、請求項1に記載の方法。
【請求項13】
前記自動GCトラブルシューティング手順は、前記GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して前記予期される保守作業を実施して、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータを補正するステップを更に含む、請求項1に記載の方法。
【請求項14】
前記予期される保守作業を実施した後に検証クロマトグラフィー分離を実施するステップを更に含み、前記検証クロマトグラフィー分離は、前記シミュレートされたクロマトグラフィー分離又は以前の基準クロマトグラムと比較され、前記予期される保守作業が、前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想されることから補正することを検証する、請求項1に記載の方法。
【請求項15】
前記検証クロマトグラフィー分離が、前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界内にあることを検証する場合、前記検証クロマトグラフィー分離は、前記基準クロマトグラフィー分離に置き換わる、請求項14に記載の方法。
【請求項16】
前記クロマトグラフィー性能モニタリングは、前記試料の前記少なくとも1つのクロマトグラフィーパラメータ及び試料注入カウントを含む管理図をプロットすることを含み、前記管理図は、前記少なくとも1つのクロマトグラフィーパラメータのデータを外挿して、前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になるかどうか、及び/又はいつ前記性能管理限界外になるかを予測するために利用され、前記管理図は、前記試料の前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になる前に、及び/又は前記性能管理限界外になると予想される前に、予期されるGCシステム故障の前記保守通知を生成するために利用される、請求項1に記載の方法。
【請求項17】
前記のシミュレートされたクロマトグラフィー分離を生成するステップは、名目的なシミュレートされたクロマトグラム及びリアルタイムのシミュレートされたクロマトグラムを生成することを含み、前記クロマトグラフィーモデルを利用することは、前記リアルタイムのシミュレートされたクロマトグラムを前記名目的なシミュレートされたクロマトグラムと比較することを含む、請求項1に記載の方法。
【請求項18】
前記トラブルシューティング手順中に前記クロマトグラフィーモデルを利用することは、名目的なシミュレートされたクロマトグラム、リアルタイムのシミュレートされたクロマトグラム、前記基準クロマトグラフィー分離、及び前記試料クロマトグラフィー分離のうちの2つ以上の間の比較を含む、請求項1に記載の方法。
【請求項19】
前記のリアルタイムのシミュレートされたクロマトグラムが前記の名目的なシミュレートされたクロマトグラム及び前記基準クロマトグラフィー分離のうちの少なくとも一方と一致するが、前記リアルタイムのシミュレートされたクロマトグラムが前記試料クロマトグラフィー分離と一致しない場合、前記自動GCトラブルシューティング手順は、前記GCシステムが予想通りに制御されており、前記GCシステムの制御外の何かが、前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にさせていると判定する、請求項18に記載の方法。
【請求項20】
前記のリアルタイムのシミュレートされたクロマトグラムが前記試料クロマトグラフィー分離と一致するが、前記のリアルタイムのシミュレートされたクロマトグラム及び前記試料クロマトグラフィー分離が前記の名目的なシミュレートされたクロマトグラム及び前記基準クロマトグラフィー分離のうちの少なくとも一方と一致しない場合、前記自動GCトラブルシューティング手順は、前記GCシステムが予想通りに制御されておらず、前記GCシステムの制御が前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にさせていると判定する、請求項18に記載の方法。
【請求項21】
試料を分析するガスクロマトグラフィー(GC)システムであって、
1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成されている、入口及び出口を備えるGCカラムと、
前記GCカラムの前記出口に流体的に接続されたGC検出器と、
少なくとも前記GC検出器に通信可能に接続されたコントローラと
を備えてなり、前記コントローラは、
前記GCシステムによって分析される前記試料の少なくとも1つのクロマトグラフィーパラメータを計算する、前記GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成することと、
前記GCシステムに装填された前記試料の試料クロマトグラフィー分離を実行することと、
前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータを含む、前記試料クロマトグラフィー分離に関連する性能データを収集することと、
前記試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実行することであって、前記クロマトグラフィー性能モニタリングは、前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータと、前記のシミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は前記試料クロマトグラフィー分離の前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になるかどうか、及び/又はいつ前記性能管理限界外になるかを予測することと、
前記クロマトグラフィー性能モニタリング及び前記クロマトグラフィーモデルの結果を使用して、前記GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実行することと、
前記予期される保守作業を含む保守通知を前記GCシステムのユーザに送信することと
を行うように構成されている、GCシステム。
【請求項22】
前記少なくとも1つのクロマトグラフィーパラメータは、前記GCシステムによって分析される分析物の保持時間、相対保持時間、保持指標、調整保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量のうちの1つ以上を含む、請求項21に記載のGCシステム。
【請求項23】
前記コントローラに通信可能に接続され、機器データを収集するように構成された少なくとも1つの機器センサを更に備え、前記機器データは、前記GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、請求項21に記載のGCシステム。
【請求項24】
前記コントローラは、前記クロマトグラフィーモデルに、前記少なくとも1つの機器センサによってリアルタイムで収集された前記GCシステムの実際の機器の値を提供する、請求項23に記載のGCシステム。
【請求項25】
前記コントローラは、前記自動GCトラブルシューティング手順中に前記予期される保守作業を決定するために1つ以上の診断試験を実施する、請求項23に記載のGCシステム。
【請求項26】
前記コントローラは、前記自動GCトラブルシューティング手順のための決定木を生成する、請求項21に記載のGCシステム。
【請求項27】
前記GCシステムの前記ユーザは、前記決定木に情報を入力する、請求項26に記載のGCシステム。
【請求項28】
前記コントローラは、前記決定木を利用して、前記GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して実施する前記予期される保守作業を決定して、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータを補正する、請求項26に記載のGCシステム。
【請求項29】
前記コントローラは、前記自動GCトラブルシューティング手順中にニューラルネットワークを利用して、前記予期される保守作業と、前記性能管理限界外にある及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータとの間の相関を決定する、請求項21に記載のGCシステム。
【請求項30】
前記コントローラは、前記自動GCトラブルシューティング手順中に機械学習プロセスを利用して、前記予期される保守作業が、前記性能管理限界外にある及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータと関連付けられることを前記GCシステムに教示する、請求項21に記載のGCシステム。
【請求項31】
前記コントローラは、前記性能管理限界外にある及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータの修正を伴う1つ以上の予期される保守作業に関連付けられたニューラルネットワークを利用し、前記性能管理限界外にある及び/又は前記性能管理限界外にあると予想される前記クロマトグラフィーパラメータが繰り返し発生するGCシステム問題である場合、前記ニューラルネットワークは、前記繰り返し発生するGCシステム問題を修正するための代替保守作業を決定する、請求項21に記載のGCシステム。
【請求項32】
前記コントローラは、前記予期される保守作業の実施後に検証クロマトグラフィー分離を実行し、前記検証クロマトグラフィー分離を、前記のシミュレートされたクロマトグラフィー分離及び/又は前記基準クロマトグラフィー分離と比較し、前記性能管理限界外にある及び/又は前記性能管理限界外にあると予想されることから前記少なくとも1つのクロマトグラフィーパラメータを前記予期される保守作業が補正することを検証する、請求項21に記載のGCシステム。
【請求項33】
前記検証クロマトグラフィー分離が、前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界内にあることを検証する場合、前記コントローラは、前記基準クロマトグラフィー分離を前記検証クロマトグラフィー分離と置き換える、請求項32に記載のGCシステム。
【請求項34】
前記クロマトグラフィー性能モニタリング中に、前記コントローラは、前記試料の前記少なくとも1つのクロマトグラフィーパラメータ及び試料注入カウントを含む管理図を生成し、前記コントローラは、前記少なくとも1つのクロマトグラフィーパラメータのデータを外挿して、前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になるかどうか、及び/又はいつ前記性能管理限界外になるかを予測する、請求項21に記載のGCシステム。
【請求項35】
前記トラブルシューティング手順中に前記クロマトグラフィーモデルを利用することは、前記コントローラが、名目的なシミュレートされたクロマトグラム、リアルタイムのシミュレートされたクロマトグラム、前記基準クロマトグラフィー分離、及び前記試料の前記クロマトグラフィー分離のうちの2つ以上を比較することを含む、請求項21に記載のGCシステム。
【請求項36】
前記のリアルタイムのシミュレートされたクロマトグラムが前記の名目的なシミュレートされたクロマトグラム及び前記基準クロマトグラフィー分離のうちの少なくとも一方と一致するが、前記のリアルタイムのシミュレートされたクロマトグラムが前記試料の前記クロマトグラフィー分離と一致しない場合、前記自動GCトラブルシューティング手順は、前記GCシステムが予想通りに制御されており、前記GCシステムの制御外の何かが、前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にさせていると判定する、請求項35に記載のGCシステム。
【請求項37】
前記のリアルタイムのシミュレートされたクロマトグラムが前記試料の前記クロマトグラフィー分離と一致するが、前記のリアルタイムのシミュレートされたクロマトグラム及び前記試料の前記クロマトグラフィー分離が前記の名目的なシミュレートされたクロマトグラム及び前記基準クロマトグラフィー分離のうちの少なくとも一方と一致しない場合、前記自動GCトラブルシューティング手順は、前記GCシステムが予想通りに制御されておらず、前記GCシステムの制御が前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にさせていると判定する、請求項35に記載のGCシステム。
【請求項38】
試料を分析するガスクロマトグラフィー(GC)システムであって、
1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成されている、入口及び出口を備えるGCカラムと、
前記GCカラムの前記出口に流体的に接続されたGC検出器と、
前記GCシステムの機器データを収集するように構成された少なくとも1つのセンサと、
前記GC検出器及び前記少なくとも1つのセンサに通信可能に接続されたコントローラと
を備えてなり、前記コントローラは、
前記GCシステムに装填された前記試料のクロマトグラフィー分離を実行することと、
前記少なくとも1つのセンサによって収集された前記機器データを利用して、前記試料のシミュレートされたクロマトグラフィー分離を生成することであって、前記コントローラは、前記試料の前記クロマトグラフィー分離中にリアルタイムで前記のシミュレートされたクロマトグラフィー分離を生成するように構成されていることと
を行うように構成されている、GCシステム。
【請求項39】
前記少なくとも1つのセンサによって収集された前記機器データは、前記GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、請求項38に記載のGCシステム。
【請求項40】
前記のシミュレートされたクロマトグラフィー分離は、前記GCシステムの構成に基づいてクロマトグラフィーモデルから生成される、請求項38に記載のGCシステム。
【請求項41】
前記クロマトグラフィーモデルは、前記GCシステムによって分析される前記試料の保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、及びピーク分解能のうちの少なくとも1つを含む少なくとも1つのクロマトグラフィーパラメータを計算する、請求項40に記載のGCシステム。
【請求項42】
前記コントローラは、前記試料の前記クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実行し、前記クロマトグラフィー性能モニタリングは、少なくとも1つのクロマトグラフィーパラメータと前記シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、前記少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界外になるかどうか、及び/又はいつ前記性能管理限界外になるかを予測する、請求項38に記載のGCシステム。
【請求項43】
前記コントローラは、前記GCシステムの予期される保守作業を予測するために前記クロマトグラフィー性能モニタリング及び前記のシミュレートされたクロマトグラフィー分離を利用する自動GCトラブルシューティング手順を実行し、前記自動GCトラブルシューティング手順は、複数の異なる保守作業から前記予期される保守作業を決定して、前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想される前記少なくとも1つのクロマトグラフィーパラメータを補正する、請求項42に記載のGCシステム。
【請求項44】
前記コントローラは、前記GCシステムのユーザが前記複数の異なる保守作業から選択された前記予期される保守作業を実施した後に検証クロマトグラフィー分離を実行し、前記検証クロマトグラフィー分離は、前記のシミュレートされたクロマトグラフィー分離及び/又は前記基準クロマトグラフィー分離と比較され、前記予期される保守作業が、前記少なくとも1つのクロマトグラフィーパラメータを前記性能管理限界外にある、及び/又は前記性能管理限界外にあると予想されることから補正することを検証する、請求項43に記載のGCシステム。
【請求項45】
前記検証クロマトグラフィー分離が前記少なくとも1つのクロマトグラフィーパラメータが前記性能管理限界内にあることを検証する場合、前記コントローラは、前記基準クロマトグラフィー分離を前記検証クロマトグラフィー分離と置き換える、請求項44に記載のGCシステム。
【請求項46】
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
前記GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成するステップであって、前記GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを前記クロマトグラフィーモデルが計算するものである、ステップと、
前記GCシステムを使用して試料クロマトグラフィー分離を実施し、それによって、前記GCシステムによって分析される前記試料の試料クロマトグラムを生成するステップと、
前記試料クロマトグラフィー分離に関連する性能データを収集するステップであって、前記性能データは、前記試料の前記少なくとも1つのクロマトグラフィーパラメータを含むものである、ステップと、
前記クロマトグラフィーモデル及び前記試料クロマトグラフィー分離の結果を使用して、前記GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実施するステップと、
前記予期される保守作業を含む前記GCシステムの保守通知を送信するステップと
を含んでなる方法。
【請求項47】
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
前記GCシステムを使用して試料クロマトグラフィー分離を実施し、それによって、前記GCシステムによって分析される試料の試料クロマトグラムを生成するステップと、
前記試料のクロマトグラフィー分離に関連する、少なくとも1つのセンサ値を含む機器データを収集するステップと、
前記試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実施するステップであって、前記クロマトグラフィー性能モニタリングは、前記少なくとも1つのセンサ値が性能管理限界外になったかどうかを判定し、及び/又は前記少なくとも1つのセンサ値が前記性能管理限界外になり得るかどうか、及び/又はいつ前記性能管理限界外になり得るかを予測することを含むものである、ステップと、
前記GCシステムの前記クロマトグラフィー性能モニタリング及びクロマトグラフィーモデルを使用する自動GCトラブルシューティング手順を実施して、前記GCシステムの予期される保守作業を予測するステップと、
前記予期される保守作業を含む前記GCシステムの保守通知を送信するステップと
を含んでなる方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本願は、2020年11月17日付出願の米国仮特許出願第63/114,835号の優先権及び利益を主張し、その内容の全体は、それぞれ引用することにより本明細書の一部をなすものとする。
【背景技術】
【0002】
ガスクロマトグラフィー(GC:gas chromatography)は、試料中の多くの異なる物質の存在を分析及び検出するために使用されている。ガスクロマトグラフの機能は、分析物として知られる化学試料の成分を分離し、それらの成分の同一性及び/又は濃度を検出することである。この分離は、しばしばキャピラリーGCカラムを用いて達成される。幾つかの例では、このカラムは、本質的には、内側にコーティングを有する溶融シリカ管(fused silica tubing)の一部である。カラムは、試料と相互作用して成分を分離する固定相を含み得る。GCカラムは、分析全体を通して等温のままであるか、又は温度を上昇させることができる。
【0003】
従来、GC機器の保守が必要な場合、機器は、ハードウェア関連のシャットダウン(すなわち、連続注入が多すぎるために隔壁に漏出がある)を経験する場合があり、又はクロマトグラフィー性能の劣化(すなわち、広範囲の使用によって固定相が劣化し、分析物が効率的に分離しない)によって保守が必要となる場合がある。かかる状況では、ユーザは、機器の以前の実行におけるデータを分析し、ハードウェア故障及び/又はクロマトグラフィー性能劣化の原因を特定する必要がある。性能劣化は、保持時間のシフト、ピーク面積変化、及び/又はピーク形状変化等であるが、それらに限定されない、クロマトグラフィー特徴の変化として現れ得る。その結果、ユーザは、どの部品(例えば、ライナ、シリンジ、隔壁、及び/又はカラム)を交換するかを決定し、性能が許容レベルに戻るまで部品の交換を継続しなければならない。どの保守手順を実施するかの決定は、たとえ機器が正常に機能していても、又はハードウェアを交換する必要がなくても、特定の時間間隔でハードウェアを変更することを提案する標準作業手順書(Standard Operating Procedure)によって概説又はその他の方法で規定されている場合がある。しかしながら、標準作業手順書は、機器が試料分析中に故障及び/又はクロマトグラフィー性能劣化が発生した場合に、どの保守手順を実施するかについての具体的な指針を提供していない場合がある。むしろ、どの保守手順を実施するかの判定は、ユーザの経験によって大きく左右される可能性がある。
【0004】
GC機器は、解決するのが容易でない性能上の問題に直面する可能性があり、問題の原因を特定するために広範な調査を必要とする。そのため、ユーザは、機器操作マニュアル、GC機器修理を対象とするウェブサイト、又は専門家に相談して、性能問題の原因を特定する必要があり得る。現在のトラブルシューティングガイドでは、特定の症状(symptom)と推奨される対処法とを関連付けて説明することが試みられている。しかし、多くの場合、1つの症状に対して多くの対処法があるため、ユーザは適切な対処法にたどり着くまで試行錯誤をしなければならないことが多い。
【0005】
現在のクロマトグラフィートラブルシューティング方法は、外部ウェブサイト上でアクセス可能な外部独立型ツール又はGC機器製造業者によって提供されるトラブルシューティングガイドを利用している。これらの方法の複数の欠点は、外部ソースからのものであること、実際のGC機器構成又は機器製造業者/モデルに特有でない場合があること、ユーザがアクセス可能でない場合がある機器上に記憶されたデータの使用が不可能であること、及び/又は特定の機器上で観察される特定のクロマトグラフィーの問題をトラブルシューティングするための一般的なガイドラインのみがユーザに提供されていることである。このように、これは、ユーザがトラブルシューティング支援を探すために時間を費やし、特定の機器に適していない或る特定の保守手順を試みることが必要となる。したがって、保守がいつ必要になるかを予測することができる自動化された方法、及び特定のGC機器に何を修正すべきかをユーザに正確に指示することができる自動トラブルシューティング支援が必要とされている。
【発明の概要】
【0006】
本発明の一態様として、ガスクロマトグラフィー(GC)システムを動作させる方法が提供される。本方法は、GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離(simulated chromatographic separation)を生成するステップであって、クロマトグラフィーモデルは、GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを計算することを含む。本方法はまた、GCシステムを使用して試料クロマトグラフィー分離(sample chromatographic separation)を実施し、それによって、GCシステムによって分析される試料の試料クロマトグラムを生成するステップと、試料クロマトグラフィー分離に関連する性能データを収集するステップとを含み、性能データは、試料の少なくとも1つのクロマトグラフィーパラメータを含む。本方法はまた、試料のクロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実施するステップを含む。例えば、クロマトグラフィー性能モニタリングは、試料クロマトグラフィー分離からの少なくとも1つのクロマトグラフィーパラメータと、シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離(reference chromatographic separation)との比較を含み、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測する。本方法はまた、クロマトグラフィー性能モニタリング及びクロマトグラフィーモデルの結果を使用して予期される保守作業を予測する自動GCトラブルシューティング手順を実施するステップと、予期される保守作業を含むGCシステムの保守通知を送信するステップとを含む。
【0007】
別の態様として、試料を分析するガスクロマトグラフィー(GC)システムが提供される。GCシステムは、入口及び出口を備えるGCカラムを備え、GCカラムは、1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成される。GCシステムはまた、GCカラムの出口に流体的に接続されたGC検出器と、少なくともGC検出器に通信可能に接続されたコントローラとを備える。GCシステムのコントローラは、GCシステムの構成に基づいてクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成するように構成され、クロマトグラフィーモデルは、GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを計算する。コントローラはまた、GCシステムに装填された試料のクロマトグラフィー分離を実行し、試料のクロマトグラフィー分離に関連する性能データを収集し、性能データは、試料の少なくとも1つのクロマトグラフィーパラメータを含む。コントローラはまた、試料のクロマトグラフィー分離を分析するように構成されているクロマトグラフィー性能モニタリングを実行する。例えば、クロマトグラフィー性能モニタリングは、試料クロマトグラフィー分離からの少なくとも1つのクロマトグラフィーパラメータとシミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測する。コントローラはまた、クロマトグラフィー性能モニタリング及びクロマトグラフィーモデルの結果を使用して、GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実行する。そして、コントローラは、GCシステムの予期される保守作業を含む保守通知を生成し、送信する。例えば、保守通知は、スマートフォン、コンピュータ、タブレット、又は他のそのような電子デバイス等の外部電子デバイスに送信することができる。ここで、「A及び/又はB」とあるのは、A又はB、あるいはAとBの両方を指す。
【0008】
更に別の態様として、試料を分析するガスクロマトグラフィー(GC)システムが提供される。GCシステムは、入口及び出口を備えるGCカラムを備え、GCカラムは、1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成される。GCシステムはまた、GCカラムの出口に流体接続されたGC検出器と、GCシステムの機器データを収集するように構成された少なくとも1つのセンサとを備える。GCシステムはまた、GC検出器及び少なくとも1つのセンサに通信可能に接続されたコントローラを備える。コントローラは、GCシステムに装填された試料のクロマトグラフィー分離を実行し、少なくとも1つのセンサによって収集された機器データを利用して試料のシミュレートされたクロマトグラフィー分離を生成するように構成される。コントローラは、試料のクロマトグラフィー分離中にリアルタイムでシミュレートされたクロマトグラフィー分離を生成する。
【0009】
本明細書に記載されるGCシステムの方法及び動作は、以下に説明するように、コントローラに組み込まれ、及び/又は通信可能に接続された診断及び予測モジュールによって実施することができる。
【0010】
本教示は、添付の図面とともに読まれるときに、以下の詳細な説明から最も良く理解される。それらの特徴は必ずしも縮尺通りに描かれていない。
【図面の簡単な説明】
【0011】
【
図1】代表的な具体例による、診断及び予測モジュールを含むGCシステムの概略ブロック図である。
【
図2】代表的な具体例による、
図1の診断及び予測モジュールによるクロマトグラフィー性能モニタリング、クロマトグラフィーモデリング及び自動GCトラブルシューティング手順の使用を示す概略フロー図である。
【
図3】代表的な具体例による、試料の保持時間シフトを示す、
図1の診断及び予測モジュールによって生成される管理図である。
【
図4】代表的な具体例による、
図1の診断及び予測モジュールによるクロマトグラフィーモデリングアプリケーションの実行を示す概略フロー図である。
【
図5A】代表的な具体例による、
図1の診断及び予測モジュールによる決定木の実行を示す概略フロー図である。
【
図5B】代表的な具体例による、
図1の診断及び予測モジュールによる決定木の実行を示す概略フロー図である。
【
図5C】代表的な具体例による、
図1の診断及び予測モジュールによる決定木の実行を示す概略フロー図である。
【
図6】代表的な具体例による、
図1の診断及び予測モジュールによる決定木の実行を示す概略フロー図であり、クロマトグラフィー性能問題に対する特定の解を提供するための潜在的な解決策の削減を示す。
【
図7A】代表的な具体例による、基準クロマトグラム及びシミュレートされたクロマトグラムのオーバーレイを示す、
図1の診断及び予測モジュールによって生成されるグラフチャートである。
【
図7B】代表的な具体例による、基準クロマトグラムと失敗したピーク評価からの試料クロマトグラムとの比較を示す、
図1の診断及び予測モジュールによって生成されるグラフチャートである。
【
図7C】代表的な具体例による、試料の保持時間シフトを示す、
図1の診断及び予測モジュールによって生成される管理図である。
【
図8】GCシステムからの情報を用いたトラブルシューティングを行う場合と行わない場合の、ユーザ入力を必要とする質問の概略フロー図である。
【
図9】診断及び予測モジュールを有効にし、構成し、使用するプロセスの概略フロー図である。
【発明を実施するための形態】
【0012】
本開示のGCシステムは、将来の機器性能及び/又は保守の問題が発生する前にそれらを予測する診断及び予測保守ツールの一部として、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング(chromatographic modelling)、及び自動GCトラブルシューティング手順を利用するように構成される。加えて、診断及び予測保守ツールを使用して、機器性能及び/又は保守の問題を補正するために、どの具体的な保守作業を実施すべきかを判定することができる。本開示のGCシステムは、診断及び予測保守ツールを利用して、機器をよりインテリジェントにし(すなわち、必要とされるユーザとのやり取りがより少なくなり、機器の「知識あるいは情報(knowing)」がより多くなる)、使用がより容易になる。加えて、本開示のGCシステムは、故障又は保守問題が実際に発生する前に診断及び予測保守ツールが機器故障を予測するため、予期しないダウンタイムを低減することができる。また、診断及び予測保守ツールは、どの保守作業がGCシステムの今後の故障又は保守問題を修正する可能性がより高いかを判定及び示唆するため、予期しないダウンタイムを低減することができる。ここで、「A及び/又はB」とあるのは、A又はB、あるいはAとBの両方を指す。
【0013】
幾つかの具体例において、本開示の診断及び予測保守ツールは、クロマトグラフィー性能評価(例えば、ブランク評価、検出器評価、及びピーク評価)、管理図の作成、ユーザ入力、診断試験結果(例えば、キャリアガス圧力チェック、漏出限界試験、隔壁パージ試験、スプリットベント限界試験、ジェット限界試験、FID漏出電流試験、及び圧力減衰試験)、及び/又は機器センサデータ(例えば、温度、圧力、ガス流、バルブ状態、モータステップ、試料注入カウント、モータ電流値等)と組み合わせた、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を利用して、将来のGCシステム性能及び/又は保守の問題を予測する。このように、現在のGCシステムのユーザは、性能及び/又は保守の問題が実際に発生するまでその問題を検出することができないため、本開示のGCシステムは、かかる現在のシステムに対する改善を提供するものである。すなわち、現在のGCシステムのユーザは、概して、GCシステムの性能モニタリング及び保守に対して、プロアクティブな手法(すなわち、性能劣化を特定し、故障が発生する前に保守を実施する)ではなく、リアクティブな手法(すなわち、故障が発生するまで待つ)をとる必要がある。リアクティブな手法では、適切に動作していないシステムを使用して試料が分析され、その結果、試料及び分析時間が無駄になる場合がある。加えて、本開示のGCシステムは、性能及び/又は保守の問題が発生したことを判定し、GCシステムが適切に機能していない間に追加の試料が実行されないように試料分析シーケンスを直ちに停止することができるため、現在のGCシステムに対する改善を提供する。
【0014】
幾つかの具体例において、本開示の診断及び予測保守ツールは、性能及び/又は保守の問題を修正するために、自動診断トラブルシューティングステップを組み込んでいる。かかる自動診断トラブルシューティングステップは、性能及び/又は保守の問題に関連付けられた特定の構成要素を調査するようにユーザを導くことによって、ユーザが不必要な修理を行うこと、又はGCシステムの無関係な構成要素を調査することから時間及び費用を節約する。したがって、本開示の診断及び予測保守ツールは、ユーザが性能及び/又は保守の問題が発生する前に、ユーザがいつ対処したいかを決定でき、GCシステムがトラブルシューティング中にインテリジェントな開始点を提供してGCシステムに必要な修理を迅速に実行するので、GCシステムの予期せぬダウンタイムを低減する。
【0015】
幾つかの具体例において、本開示の診断及び予測保守ツールは、システムが最適に機能していないときにユーザに通知することによって、ユーザ体験を改善し、したがって、より良好なクロマトグラフィー結果を提供する。例えば、クロマトグラフィーモデリング及びクロマトグラフィー性能モニタリングを利用することにより、GCシステム(及びシステムのユーザ)は、機器性能を最適化し、「理論上の最良ケースのシナリオ」(theoretical best-case scenario)等の所望の性能と比較することが可能になる。性能が不足していることが判明した場合、自動GCトラブルシューティング手順を起動して、ユーザの保守問題を解決する際にユーザを導くことができる。したがって、本診断及び予測保守ツールは、機器性能の指示を生成し、機器がユーザの予想通り、及び/又は機器の仕様の範囲内で動作していることを確認する。
【0016】
図1は、代表的なGCシステム100の簡略化された概略ブロック図である。GCシステム100の多くの態様は既知であり、広く使用されている。したがって、本明細書で説明されるGCシステム100は、利用可能及び/又は修正されたGCシステムを広く表すことが意図されており、GCシステム100の種々の構成要素の特定の選択及び詳細は、ユーザ又は当該分野の他の者によって選択することができる。GCシステム100は、分析のためにGCシステム100に試料を注入するための試料入口又は注入ポート102を備える。例えば、試料は、注入ポート102に注入され、そこで、既に気体状態でない場合、GCシステム100による分析のために気体状態へと気化される。さらに、キャリアガス供給部103は、注入ポート102に流体接続され、限定はしないがヘリウム、水素、窒素、又は他のかかる不活性ガス等のキャリアガスを供給し、該キャリアガスは、注入された試料を注入ポート102からGCシステム100を通して輸送する。
【0017】
試料導入システム又はサンプラ(図示せず)を使用して、試料を注入ポート102に注入することができる。使用されるサンプラのタイプは、注入される試料の相(液体又は気体)に依存し得る。異なるタイプのサンプラには、自動液体サンプラ(ALS:automatic liquid sampler)、ヘッドスペースサンプラ、種々の構成のバルブ、熱脱離サンプラ、及び他のタイプの試料導入システムが含まれるが、これらに限定されない。
【0018】
種々の具体例において、注入ポート102はまた、カラム104に流体的に接続され、該カラム104は、ガスクロマトグラフィーによって試料の成分の分離を達成するために利用される多種多様なカラムから選択され得る。1つのカラムが示されているが、GCシステムの或る特定の具体例は、複数のカラムを含み得ることを理解されたい。例えば、バックフラッシング(backflushing)、検出器分割、又は他の空気圧スイッチングのために構成されたGCシステムは、複数のカラムを含み得る。キャリアガスは、分離のために試料をカラム104に輸送し、カラム104は、気化した試料等の気体試料の成分を分離して、GCシステム100による分析のための対象となる1つ以上の分析物を生成する。或る特定の具体例において、カラム104は、キャピラリーカラム(capillary column)とすることができ、及び/又は管の内側部分にコーティングを有する溶融シリカ管を含むことができる。幾つかの具体例において、固定相コーティングは、注入ポート102に注入された試料と相互作用して、試料の成分を分離する。種々の具体例において、カラム104の寸法は、100マイクロメートル~530マイクロメートルの内径範囲と、5メートル~60メートルの長さ範囲とを含む。しかしながら、他のカラム寸法が本GCシステムにおいて利用され得ることが理解されるであろう。
【0019】
図示される具体例において、カラム104はまた、検出器106に流体的に接続され、該検出器106は、試料がカラム104を通して輸送された後、分離された成分(すなわち、試料の分析物)を受容する。したがって、検出器106は、分離された試料成分を分析して、カラム104によって分離された試料分析物の存在及び/又は量を検出する。或る特定の具体例において、検出器106は、水素炎イオン化検出器(FID:flame ionization detector)、質量選択検出器(MSD:mass selective detector)、熱伝導度検出器(TCD:thermal conductivity detector)、電子捕獲検出器(ECD:electron capture detector)、窒素リン検出器(NPD:nitrogen phosphorus detector)、硫黄化学発光検出器(SCD:sulfur chemiluminescence detector)、窒素化学発光検出器(NCD:nitrogen chemiluminescence detector)、炎光光度検出器(FPD:flame photometric detector)、及びヘリウムイオン化検出器(HID:helium ionization detector)からなる群から選択されるGC検出器である。しかしながら、1つ以上のかかる検出器の使用は、単に、例示的であって、多くの他の分析物検出器が、GCシステムで使用され得ることを理解されたい。2つ以上の検出器が、GCシステムのカラムの出口に流体的に接続され得ることも理解されるであろう。
【0020】
GCシステム100は、オーブン、対流ヒータ、伝導ヒータ、空気浴、又は或る特定のGCシステム構成要素を加熱するための他のかかる加熱デバイス等のカラムヒータ108を更に含む。より具体的には、カラムヒータ108は、コントローラ110を介して制御され、カラム104及び他の流路構成要素を所望の温度に加熱又は冷却することができる。例えば、カラムヒータ108は、実施される分析に応じて、カラム104を450℃まで加熱するように構成される。種々の具体例において、カラムヒータ108は、カラム104を加熱して、カラム104が試料分析の間、等温のままとなるように構成することができる。あるいは、カラムヒータ108は、試料分析の間、カラム104の温度を上昇させるように構成され得る。加えて、カラムヒータ108は、カラムを周囲温度未満に冷却するための極低温冷却システムとともに構成することができる。注入ポート102及び検出器106は、それぞれ、注入ポート102及び検出器106の温度を維持するための別個の加熱デバイスを含み得ることが理解されるであろう。幾つかの具体例において、GCシステムの他の構成要素を加熱する、本明細書に直接記載されていない追加のヒータが存在し得る。
【0021】
図示される具体例において、コントローラ110は、カラムヒータ108、検出器106、注入ポート102、1つ以上のセンサ111、及びGCシステム100の他の構成要素に直接又は間接的に通信可能に接続される。或る特定の具体例において、コントローラは、オンボードコンピューティング構成要素とすることができ、カラム、検出器、カラムヒータ、及びGCシステムの他の構成要素を含むGCシステム筐体の中へと物理的に組み込まれる。或る特定の他の具体例において、コントローラは、GCシステムハウジングの内部及び/又は外部にある1つ以上の別個のコンピューティングデバイス及び/又は他のかかる制御デバイスであり得る。1つ以上のセンサ111は、GCシステム100の種々の場所に位置決めされ、動作データ及び/又は診断データを収集するように構成される。GCシステム100によって利用される1つ以上のセンサ111は、(例えば、入口、検出器、ヒータ、試料導入デバイス、バルブ等の上又は中の)入口圧力センサ、入口全流量センサ、隔壁パージ圧力センサ、補助圧力センサ、ヒータデューティサイクルセンサ、検出器信号センサ、温度ゾーンセンサ、又は他のGCシステムセンサ等のセンサを含むことができる(ただし、これらに限定されない)。
【0022】
幾つかの具体例において、コントローラ110は、GCシステム100のデータ及び情報を実行、分析、及び処理するように構成されている、限定はしないが、シングルコアプロセッサ、マルチコアプロセッサ、論理デバイス、又は他のかかるデータ処理回路等のプロセッサ112を含む。コントローラ110は、プロセッサ112に通信可能に接続されたメモリデバイス114を含み得る。メモリデバイス114は、揮発性メモリデバイス(例えば、SRAM及びDRAM)、不揮発性メモリデバイス(例えば、フラッシュメモリ、ROM、及びハードディスクドライブ)、又はそれらの任意の組み合わせとして構成され得る。種々の具体例において、メモリデバイス114は、GCシステム100の動作中にプロセッサ112によって生成及び/又は処理される実行可能コード及び他のかかる情報を記憶することができる。
【0023】
図示の具体例において、GCシステム100はまた、コントローラ110に通信可能に接続された入力/出力デバイス116を含む。入力/出力デバイス116は、オペレータ及び/又はユーザがコントローラ110から情報を受信し、情報及びパラメータをコントローラ110に入力することを可能にするように構成される。種々の具体例において、かかる情報及びパラメータは、メモリデバイス114内に記憶され、プロセッサ112によってアクセスされ、入力/出力デバイス116に出力され得る。例えば、入力/出力デバイス116は、モニタ、ディスプレイデバイス、タッチスクリーンデバイス、キーボード、マイクロフォン、ジョイスティック、ダイヤル、ボタン、又は情報及びパラメータの入力及び出力を可能にする他のかかるデバイスを含み得る。したがって、入力/出力デバイス116を利用して、コントローラ110に情報を入力し、GCシステム100のプロセッサ112によって生成された情報及びデータを出力するか又はその他の方法で表示することができる。
【0024】
GCシステム100は、診断及び予測モジュール118を更に含む。幾つかの具体例において、診断及び予測モジュール118は、コントローラ110に組み込まれ、プロセッサ112及び/又はメモリデバイス114に通信可能に接続される。種々の具体例において、診断及び予測モジュール118は、GCシステム100の性能劣化を判定及び/又は予測するために、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を実行し、又はその他の方法で実施する。したがって、診断及び予測モジュール118は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、自動GCトラブルシューティング手順、及び/又はGCシステム100の任意の他のかかる診断モニタリングを実行するために、1つ以上のハードウェアデバイス、ソフトウェア、ファームウェア、及び/又はそれらの任意のかかる組み合わせを含み得る。
【0025】
種々の具体例において、診断及び予測モジュール118は、コントローラ110のプロセッサ112及びメモリデバイス114とは別個のプロセッサ118a及びメモリデバイス118bを含み得る。かかる具体例において、プロセッサ118aは、命令を実行し、メモリデバイス118bに記憶されたデータを分析する。さらに、メモリデバイス118bは、診断及び予測モジュール118の命令の実行のためにプロセッサ118aによって処理される実行可能コードを含むソフトウェア及び/又はファームウェアを記憶する。さらに、メモリデバイス118bは、GCシステム100の自動GCトラブルシューティング手順中に診断及び予測モジュール118が利用する、GCシステム100の複数の異なる保守作業からの1つ以上の予期される保守作業に関連するデータ及び情報を記憶することができる。診断及び予測モジュール118は、コントローラ110に組み込まれているように示されているが、或る特定の具体例において、診断及び予測モジュールは、コントローラとは別個の構成要素であり得ることを理解されたい。
【0026】
種々の具体例において、GCシステム100の診断及び予測モジュール118は、信頼性を向上させ、GCシステムの予期せぬダウンタイムを低減するために、従来の手法に対して大きな利点を提供する。診断及び予測モジュール118によって提供される1つの利点は、GCシステム100の将来の性能劣化及び/又は保守の問題の時間枠を予測し、将来の性能劣化及び/又は保守の問題の原因に関連する故障モードを予測する能力である。すなわち、診断及び予測モジュール118は、いつ、例えば、何回の注入の後、及び/又は指定された量の機器実行時間の後に故障が発生するか、並びに故障を修正するためにどの保守作業を実施すべきかを判定することができる。したがって、ユーザは、試料の実行又は分析の途中で故障及び/又は保守の問題が発生する代わりに、GCシステムの保守をいつ実施したいかを計画することができる。これにより、試料分析の途中で発生した予期せぬ故障のために試料を再実行しなければならないことが回避されるため、時間とコストとの両方が節約される。
【0027】
診断及び予測モジュール118の別の利点は、経時的に(例えば、複数の試料注入又は或る特定量の機器実行時間全体にわたって)機器の状態及びクロマトグラフィー性能を連続的に監視する能力である。上述したように、診断及び予測モジュール118は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を利用して、GCシステム100がそれ自体の機能性を動的に監視し、将来のクロマトグラフィー性能及び/又は保守の問題を予測し、実施すべき或る特定の保守作業を自動的に提案することを可能にする。保守作業の実施後、診断及び予測モジュール118はまた、GCシステム100がクロマトグラフィー性能を理想的なクロマトグラムと比較して、クロマトグラフィー性能が許容可能なベースライン性能レベルに戻ったことを自動的に確認することを可能にする。
【0028】
例えば、現在のクロマトグラフィー性能を基準クロマトグラフィー分離と比較する能力を有するトラブルシューティングを組み込むことにより、GCシステム100は、保守が実施された後に結果を自動的に確認することができる。したがって、ユーザは、GCシステム100の性能が許容可能な初期ベースラインに戻ったかどうかを迅速に判定することができる。さらに、現在のクロマトグラフィー性能と基準クロマトグラフィー分離との比較にクロマトグラフィーモデリングを組み込むことで、GCシステムのリアルタイムで収集されたデータと理論上のデータセットとの比較が可能となるため、保守後の結果の確認が更に改善される。現在のクロマトグラフィー性能と基準クロマトグラフィー分離との比較にクロマトグラフィーモデリングを組み込むことにより、ユーザは更に、以前の「既知の良好な」(known good)基準(例えば、GCシステム上で実行されたことがない試料の分析中、又は機器の設置中に発生した問題)がなくても、機器の性能及び/又は保守の問題を解決することが可能になる。
【0029】
(クロマトグラフィー性能モニタリング)
上述したように、また
図2に示すように、診断及び予測モジュール118は、ソフトウェア及び/又はファームウェア200を含み、該ソフトウェア及び/又はファームウェア200は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を組み合わせて、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を別々に使用することと比較して、GCシステム100の追加の機能性を提供する。種々の具体例において、クロマトグラフィー性能モニタリングは、ブランク評価、検出器評価、及び/又はピーク評価等のGCシステム100の或る特定の性能評価を実施して、GCシステム100が適切に動作しているかどうか(すなわち、分析結果が指定された管理限界又は閾値内にあるかどうか)を判定することを含む。例えば、診断及び予測モジュール118は、1つ以上のブランク実行中に(すなわち、分析物が存在しない分析中に)収集された試料データを利用してブランク評価を実行して、GCシステム100のベースラインクロマトグラフィー性能を分析することができる。ブランク評価中、診断及び予測モジュール118は、選択された時間窓にわたるベースライン信号、ノイズ、及び結合ピーク面積が、予め定義された閾値(例えば、ユーザ定義された管理限界又は機器定義された管理限界)外にあるかどうかを判定することによって、任意のキャリーオーバ材料の存在又は非存在を判定する。
【0030】
別の非限定的な例では、診断及び予測モジュール118は、検出器評価を実行してもよく、この検出器評価は、特定の試料を利用して、ピーク保持時間、ピーク面積、及びピーク高さを、公称あるいは名目的な性能を表すと製造業者が判断した基準値及び/又は限界のセットと比較することにより、検出器性能を確認する。
【0031】
更に別の非限定的な例では、診断及び予測モジュール118は、ピーク評価を利用して、GCシステム100によって分析されている現在の試料の試料データを、予め定義された基準クロマトグラム(reference chromatogram)と比較する。より詳細には、ピーク評価では、基準クロマトグラム、又は代替的に若しくは追加的にGCシステムのクロマトグラフィーモデルから生成されたシミュレートされたクロマトグラムを利用して、試料中の複数のピーク(例えば、5つのピーク、10のピーク、20のピーク等)について、保持時間、相対保持時間、保持指標、調整された保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量等であるがこれらに限定されない或る特定の予想されるクロマトグラフィーパラメータを定義する。したがって、診断及び予測モジュール118は、基準クロマトグラム及び/又はシミュレートされたクロマトグラムとの比較を介して、分析されている現在の試料のクロマトグラフィーパラメータの1つ以上を評価し、GCシステム100が適切に機能しているかどうかを示す。例えば、基準クロマトグラム及びシミュレートされたクロマトグラムは、公称クロマトグラフィー性能を提供することができ、GCシステム100又はGCシステム100のユーザは、公称クロマトグラフィー性能に基づいて管理限界のセットを定義することができる。したがって、診断及び予測モジュール118は、試料データの1つ以上のクロマトグラフィーパラメータを評価して、1つ以上のクロマトグラフィーパラメータが管理限界のセットを超えるかどうかを判定する。
【0032】
種々の具体例において、クロマトグラフィー性能モニタリングは、基準クロマトグラムの代わりにクロマトグラフィーモデリングを利用して、クロマトグラフィー性能問題を特定することができる。より具体的には、既知の良好な基準クロマトグラムが存在しない場合、以下に説明する公称あるいは名目的なクロマトグラフィーモデル(nominal chromatographic model)をベースライン比較に使用して、GCシステムの予想されるクロマトグラフィー性能を決定することができる。例えば、ユーザが、GCシステムによって分析される試料の基準クロマトグラムを有していない場合、ユーザは、試料の分析物を入力することができ、GCシステムは、モデルへの入力として設定値を使用して、試料の名目的なシミュレートされたクロマトグラフィー分離(nominal simulated chromatographic separation)を生成する。別の具体例において、クロマトグラフィーモデリングを使用して、基準クロマトグラムを検証することができる。例えば、基準クロマトグラムを生成している間に取得された機器データを用いて公称クロマトグラフィーモデル又はモデルから生成されたクロマトグラムは、基準クロマトグラムと比較して、基準クロマトグラムが許容可能なGCシステム性能を表すかどうかを判定することができる。
【0033】
診断及び予測モジュール118のクロマトグラフィー性能モニタリングはまた、管理図(例えば、
図3の管理
図300)を利用して、予期されるクロマトグラフィーパラメータと分析された試料の試料データとの間の任意の不一致を追跡及び伝達し、この不一致がいつ管理限界を超えるかを予測することができる。例えば、診断及び予測モジュール118は、以下に説明するように、クロマトグラフィーシステムのモデルから生成された基準クロマトグラム及び/又はシミュレートされたクロマトグラムを利用して、予期されるクロマトグラフィー値(例えば、保持時間)を決定し、GCシステム100又はユーザのいずれかによって定義された管理限界を、公称又は予期されるクロマトグラフィー値の許容帯として適用する。これらの管理限界は、予想されるクロマトグラフィー値の絶対値又は百分率として定義され得る。試料分析中、診断及び予測モジュール118は、予期されるクロマトグラフィー値を外挿して、クロマトグラフィーパラメータが管理限界外になり得るかどうか、及び/又はいつ管理限界外になり得るかを予測する。
【0034】
幾つかの具体例において、診断及び予測モジュール118は、GCシステム100によって分析されている特定の分析物のピーク保持時間を監視することに関連するデータを含む管理
図300を生成する。図示のように、管理
図300は、GCシステム100によって分析されている特定の分析物が、200分の予想保持時間310、210分の上方管理限界320、及び190分の下方管理限界330を有することを示す。図示される例示的な具体例において、試料分析の間、分析物の実際の保持時間は、各試料注入後に記録される。診断及び予測モジュール118は、実際の保持時間データを分析して(例えば、線形又は非線形回帰を使用して)、管理
図300のピーク保持時間点342に基づいて保持時間トレンドライン340を決定する。図示の例では、ピーク保持時間点342は、各試料注入数に対してプロットされている。したがって、保持時間トレンドライン340は、各試料注入について、ピーク保持時間が予測可能な速度で減少することを示している。より詳細には、保持時間トレンドライン340は、予想保持時間が15回目の試料注入時に下方管理限界330を超えることを示している。したがって、診断及び予測モジュール118は、ピーク保持時間が15回目の試料注入時に下方管理限界330から外れるという警告メッセージを生成してユーザに送信する。
【0035】
追加的又は代替的に、管理図は、診断及び予測モジュール118によって使用されて、温度値、圧力値、バルブ状態、モータステップ、シリンジ注入カウント、モータ電流、ヒータ電流、ヒータデューティサイクル、流量センサ値、検出器信号レベル、検出器電流レベル、オン時間値、バルブデューティサイクル、及び他のかかる機器センサ値等の機器センサ(例えば、
図1のセンサ111)によって収集される或る特定の機器データを監視することができる。かかる具体例において、診断及び予測モジュール118は、別様で予測することができないGCシステム100の起こり得る故障を予測するために、機器データを管理図で表示する。すなわち、診断及び予測モジュール118が或る特定の機器データ、試料データ及び/又はクロマトグラフィー性能値を監視しなければ、GCシステムの故障が発生する前に性能及び/又は保守の問題を判定することは非常に困難である。機器データの公称値及び管理限界は、設定値、工場で決定されたこれらの値の平均値及び標準偏差、基準クロマトグラムを生成している間に収集された機器データ、又は他の手段から決定することができる。
【0036】
この使用例として、ユーザが試料を注入している間に注入ポートの出口にあるスプリットベントトラップ(split vent trap)が詰まり始めた場合が挙げられる。これは、注入のたびにスプリットベントトラップを徐々に詰まらせる汚れた試料をユーザが注入した場合に発生する可能性がある。これは、最終的にシステムに追加の制限を生じさせ、その結果、同じ流量、したがって分割比(split ratio)(すなわち、カラムを通る流量とスプリットベントトラップを通る流量との比)を維持しながら、スプリットベントトラップを通る流量を制御するスプリットベントバルブのデューティサイクルは、新しい制限を補償する(バルブをより「開いた」ままにする)ために減少する。最初は、実際の分割比は変化しない(したがって、ユーザは同じクロマトグラフィー結果を得る)が、時間とともに、スプリットベントバルブのデューティサイクルは減少し続ける。この問題は、顕著に進行するまではクロマトグラフィー結果に影響を及ぼさないが、システムが(管理図を通して)スプリットベントバルブのデューティサイクルを監視している場合、バルブデューティサイクルが減少すると、機器によって検知される。最終的にスプリットベントバルブが完全に開き、制限によって入口圧力が上昇し、実際の分割比とユーザの所望の分割比との間に差が生じてしまうため、早期段階で問題を検出することはユーザにとって有用である。分割比のこの変化は、不正確なクロマトグラフィー結果を引き起こし、ユーザのデータを損なうことになり、最終的には、ピーク面積の増加によるピーク評価結果の失敗につながる。管理図を利用することによって、ユーザは、任意のクロマトグラフィーの問題が生じるよりずっと前に、スプリットベントデューティサイクルの減少がユーザに通知され、それにより、任意の試料(又は結果)が損なわれる前に措置を講じることが可能になる。したがって、診断及び予測モジュール118を利用して或る特定の機器データを動的に監視することにより、GCシステムは、故障が検出された後にユーザに通知するのを待つのではなく、故障がいつ発生し得るかを予測することが可能になる。ユーザが保守を実施するのではなく更なる分析を実行し続ける場合、分析の実施が継続されると、リアルタイムのシミュレートされたクロマトグラフィー分離(これは、以下に説明するように、クロマトグラフィーモデルへの入力として温度及び圧力設定値についての機器の実際の値を使用する)と名目的なシミュレートされたクロマトグラフィー分離(これは、以下に説明するように、クロマトグラフィーモデルへの入力として方法設定値を使用する)との自動比較によって、分割比の変化及びそれに伴うクロマトグラフィーの変化も、機器によってフラグ付けされる。これにより、ユーザは、クロマトグラフィーの結果が不十分になり、ピーク評価ができなくなる前に、トラブルシューティングを行い、保守を実行する更なる機会を得ることができる。
【0037】
(クロマトグラフィーモデリング)
上述したように、診断及び予測モジュール118は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を組み合わせて、GCシステム100のクロマトグラフィー性能及び機能性を動的に監視する。種々の具体例において、診断及び予測モジュール118は、クロマトグラフィーモデリングを利用して、性能データと、GCシステム100によって分析される試料又は分析物の保持時間、相対保持時間、保持指標、調整された保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量等の或る特定の予想されるクロマトグラフィーパラメータとを決定する。例えば、クロマトグラフィーモデリングは、機器構成、試料分離のクロマトグラフィー方法の機器設定値、及び、幾つかの具体例において、リアルタイム機器データを利用して、GCシステム100によって分析されている試料のクロマトグラフィー分離をシミュレートする。すなわち、クロマトグラフィーモデルは、分析物-カラム固有の熱力学的特性と結合された、キャリアガス種、カラム寸法、検出器パラメータ、入口圧力、出口圧力、及び温度等のGCシステム100の物理的特性を利用して、試料又は分析物のクロマトグラフィー分離をシミュレートする。シミュレートされたクロマトグラフィー分離を使用して、GCシステム100によって分析される試料の予想保持時間、ピーク幅、及び/又は他のかかるクロマトグラフィーパラメータを決定することができる。
【0038】
ここで
図4を参照すると、診断及び予測モジュール118は、クロマトグラフィーモデリングアプリケーション400を実行して、クロマトグラフィーモデルを生成する。したがって、シミュレートされたクロマトグラフィー分離を生成する前に、GCシステム100のユーザは、診断及び予測モジュール118のための或る特定のパラメータを初期化するGCシステム構成を決定する。例えば、診断及び予測モジュール118は、GCシステム構成から以下のパラメータ、すなわち、カラムパラメータ(例えば、長さ、内径、固定相厚さ、固定相タイプ)、キャリアガス種、カラム及び/又は検出器出口圧力、空気制御モード(流量又は圧力)、所定の時間窓(Δt)、カラムヒータ温度加熱速度及び/又は等温保持(各所定の時間窓における公称温度計算を決定するため)、並びに所望のカラム流量及び/又は圧力を、初期化及び/又は定義する。GCシステム100のその他のパラメータ値が、診断及び予測モジュール118によって利用され得ることを理解されたい。
【0039】
種々の具体例において、クロマトグラフィーモデリングアプリケーション400は、時間ベースの反復モデルを利用して、Snijders, H. et. al.(Journal of Chromatography A, 718, 1995, p.339-355)と同様の方法で試料のGC分離を数学的にシミュレートする。クロマトグラフィーモデリングアプリケーション400は、完全なGC分離を、予め定義された時間窓(Δt)を使用して、多数の短い等温分離の集合としてシミュレートする。予め定義された各時間窓(Δt)内で、各分析物の保持係数(k’)は、他の機器データとともにファントホッフデータ(Van’t Hoff data)から得られた分析物-カラム特異的熱力学的値を使用して計算される。そして、分析物速度は、保持係数から計算され、各Δt内で分析物が移動する距離は、分析物速度及び予め定義された時間窓(Δt)から計算することができる。シミュレーションの各セグメントの間、クロマトグラフィーモデリングアプリケーション400は、或る特定の数値閾値が満たされるまで(例えば、総分析物移動距離がカラム長を超えるとき)、関連するクロマトグラフィー方程式の一連の計算を実施する。クロマトグラフィーモデリングアプリケーション400は、ユーザによって定義されるように、試料中の分析物についての予想保持時間、ピーク幅、ピーク高さ、ピーク面積、及びピーク対称性を生成することができる。
【0040】
種々の具体例において、クロマトグラフィーモデリングアプリケーション400は、GCシステム100からの方法設定値をクロマトグラフィーモデルへの入力として利用して、名目的なシミュレートされたクロマトグラフィー分離と称されるものを生成する。GCコントローラ110は、GCシステム100のユーザによって、使用される或る特定の方法設定値を定義するように命令され得る。幾つかの具体例において、カラムヒータ温度及び入口圧力は、ユーザによって設定される2つの設定値である。クロマトグラフィーモデリングアプリケーション400は、予め定義された各時間窓(Δt)中に必要な計算を実施するときに、これらの設定値を使用する。このモデルは、ユーザによって入力された設定値に基づいて、ユーザが機器に期待したことを表している。GCシステム100の他の機器パラメータ設定値がクロマトグラフィーモデリングアプリケーション400によって利用され得ることを理解されたい。あるいは、名目的なシミュレートされたクロマトグラフィー分離は、クロマトグラフィーモデルへの入力として基準クロマトグラムを生成する間に収集された機器データを使用することによって生成することができる。
【0041】
種々の具体例において、クロマトグラフィーモデリングアプリケーション400によって生成される別のタイプのクロマトグラフィーモデルは、クロマトグラフィー分析中にGCシステム100によって測定及び/又は決定されるリアルタイム機器データ(例えば、カラムヒータ温度値、入口圧力センサ値等)を利用して、クロマトグラフィーモデルのシミュレートされたクロマトグラフィー分離を生成する。したがって、リアルタイムで生成されたクロマトグラフィーモデルは、公称上又は理想的な設定値を利用する他のモデルを上回る複数の利点を提供する。より具体的には、リアルタイム機器データを使用することによって、診断及び予測モジュール118によって生成されるクロマトグラフィーモデルは、システムが行っていると仮定されたものではなく、GCシステム100が試料分離中に実際に行っていたものを正確に反映する。例えば、GCシステムの熱ゾーンの周りの気流及び/又はヒートシンクは、ゾーン温度設定値と比較して実際のゾーン温度を変化させる可能性がある。加えて、気圧変動は、カラムの出口圧力を変化させ、公称上又は理想的な分離のガスの仮定速度と比較して、実際の試料分離中にカラム内のガスの速度を変化させる可能性がある。したがって、設定値又は理想的機器データではなく、リアルタイム機器データを利用することで、クロマトグラフィーモデルの精度が向上する。クロマトグラフィー分離中に収集されたリアルタイム機器データは、後の使用のために保存することができることに留意されたい。例えば、以前のクロマトグラフィー分離からのリアルタイム機器データを保存し、そして、クロマトグラフィー分離の完了後に、クロマトグラフィーモデルのシミュレートされたクロマトグラフィー分離を生成するための入力として使用することで、収集されたクロマトグラムを複製するが、オフライン方式でそれを行うことができる。
【0042】
(自動GCトラブルシューティング)
上述したように、診断及び予測モジュール118は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を組み合わせて、GCシステム100のクロマトグラフィー性能及び機能性を動的に監視する。種々の具体例において、ユーザがクロマトグラフィー性能及び/又は機器問題を警告された後、自動GCトラブルシューティング手順は、GCシステム100の診断及び修理を通してユーザを導く。したがって、「自動」トラブルシューティングは、人間の関与を排除せず、むしろ、自動化されたステップによって容易となるトラブルシューティングを含む。通常、GCシステム100が故障した際、ユーザは、データを分析し、問題が何であるか、及び問題を修正するためにどのような修理が必要であるかをユーザ自身で決定しなければならない。しかしながら、本開示の診断及び予測モジュール118は、GCシステム100のトラブルシューティング及び保守を通してユーザを導く。
【0043】
幾つかの具体例において、自動GCトラブルシューティング手順は、決定木(decision tree)の形態をとることができる。決定木は、観察又は予測された問題を解決する最も可能性の高い保守項目にユーザを導くための一連の質問又は観察を含み得る。幾つかの具体例において、自動GCトラブルシューティング手順は、クロマトグラフィー性能モニタリングの結果(すなわち、どのクロマトグラフィーパラメータが管理限界外になったか、下方管理限界又は上方管理限界を超えたか、任意の機器データが管理限界外になったか等)を使用して、自動GCトラブルシューティング手順の開始点を決定する。例えば、1つ以上のピークの保持時間が、クロマトグラフィー性能モニタリングによって判定された管理限界外にあることが観察された場合、自動GCトラブルシューティング手順は、質問をすること、又は分析物の保持時間シフトの原因に関連するシステムに記憶された情報を収集することによって開始することができる。
【0044】
決定木の質問の一部は、入力のためにユーザに提示することができる。これらは、GCシステムが答えることができない項目を含み得る、又はGCシステムがユーザに検証させたい項目を含み得る。一例として、ユーザは、機器にインストールされた異なるモジュール/方法パラメータの構成を検証するために質問に答えることができる。ユーザは、項目(例えば、カラムタイプ及び寸法、シリンジサイズ、試料の場所等)を検証して、システムが、実施されている分析のために正しく構成されていることを確認することができる。
【0045】
入力及び/又は検証のためにユーザに提示される質問に加えて、システムはまた、クロマトグラフィー性能モニタリング結果、機器データ、シミュレートされたクロマトグラフィー分離、及び/又は診断試験に基づいて、ユーザを決定木の異なる分岐に導くことができる。換言すれば、GCシステムは、内部に記憶された情報にアクセスすることができ、又は診断試験を開始することによって追加の情報を収集することができるため、ユーザは、決定木の中の質問の全てに答える必要がない場合がある。幾つかの場合では、ユーザは、この情報にアクセスすることができないため、自動GCトラブルシューティング手順なしで個々のユーザができることよりも、トラブルシューティングを実施する能力が向上する。
【0046】
例えば、クロマトグラフィー性能モニタリングを使用して、最新の分析からの試料クロマトグラムのピークを基準クロマトグラム及び/又はシミュレートされたクロマトグラムのピークと比較することによって、「保持時間が短いか、又は長いか?」という質問に答えることができる。また、ピーク評価によって監視されている追加の情報を使用することによって、2つ以上の分析物の保持時間が短かったか、若しくは長かったか、又は問題が試料中の分析物のうちの1つのみに影響を及ぼしたかどうかを判定することもできる。1つのみの分析物の保持時間が影響を受けた場合、入口に関する問題と関連付けられる決定木の一部にユーザを導くことができ、一方で、2つ以上の分析物の保持時間が影響を受けた場合、カラムヒータに関する問題を調査するために、質問又は情報収集を始めることができる。
【0047】
機器データにより、設定値がクロマトグラフィー分析中に達成された実際の値と一致したことを検証することができる。一致したか否かにより、決定木を異なる分岐に導くことができる。例えば、カラムヒータ温度の設定値が、機器が達成できない速度で上昇した場合、システムは、分析のための機器データと設定値との間の偏差を分析し、温度が予想よりも低く、保持時間が予想より長くなる原因であり得ると判定することができる。同様の方法は、温度値、圧力値、バルブ状態、モータステップ、モータ電流、ヒータ電圧、ヒータデューティサイクル、流量センサ値、検出器信号レベル、検出器電流レベル、オン時間値、バルブデューティサイクル、及び他のかかる機器センサ値等であるが、それらに限定されない、他の機器データに使用され得る。
【0048】
或る特定の診断試験は、決定木を導くために、ユーザ支援を伴って、又は伴わずに、GCシステムによって実行することができる。例えば、ユーザが、入口隔壁内に位置する漏出のためにクロマトグラム内に「ピークなし」という問題を有していた場合、GCシステムは、必要に応じて、内部に記憶された情報にアクセスすること、及び/又は自動的に診断試験を実行することによって、決定木を通してユーザを導くことができる。GCシステムに記憶された情報を使用し、診断試験を自動的に実行することにより、トラブルシューティング中にユーザに尋ねる質問が少なくなり、より良好なユーザ体験が提供される。以下に説明する例では、ユーザは最後に収集したクロマトグラムに「ピークなし」という問題を有し、根本原因の問題は、入口隔壁の位置における漏出である。警告により、ピーク評価が失敗したことがユーザに通知され、クロマトグラムにピークが見つからないという問題が特定される。
【0049】
自動GCトラブルシューティング手順は、「ピークなし」というGC症状から開始する。ユーザは、観察しているクロマトグラフィーの問題の根本原因を決定するために、自身が有している問題についての一連の質問を受ける(又は作業を実施するように求められる)場合がある。ユーザが完了するように求められ得る作業の一部は、GCの流路内の漏出を探すこと、又はFIDジェットが詰まっていないことを検証することである。ユーザのスキルにより、GCシステムに提供される結果及び情報の品質を決定することができ、それにより、機器がクロマトグラフィーの問題の根本原因をどれほど良好に決定することができるかが判定される。自動GCトラブルシューティング手順を用いると、ユーザ対話なしにこれらの質問の一部に答えるGCシステムによって、ユーザが支援される。
【0050】
図8は、入口隔壁における漏出の解決につながる「ピークなし」の問題を解決するためにユーザがとるプロセス又はステップ800を示している。
図8の上部は、トラブルシューティングがGCシステムからの情報を使用せず、又は自動的に診断試験を実行しない場合のユーザ対話を示している。
図8の下部は、トラブルシューティングがGCシステムからの情報を使用し、自動診断試験を実施する場合のユーザ対話を示している。上記の例では、「ピークなし」という問題が入口の漏出によって生じた場合、ユーザは通常、提案又は予期される保守作業に到達するために、ユーザ誘導型決定木からの5つの質問に答える必要がある。GCシステムに記憶された、及び/又はGCシステムによって収集された情報を使用する自動GCトラブルシューティング手順では、ユーザは、行われた注入のタイプ(例えば、スプリット、スプリットレス等)を検証することに関係する1つの質問に答えるだけでよい。ユーザが、行われた注入のタイプを検証した後、GCシステムは、漏出限界診断試験を実行する。漏出限界試験は、最初に、入口を圧力設定値に保持することによって、入口制御を検証する。次に、実際の流量と目標設定値カラム流量との間の誤差の監視を開始する。入口隔壁に漏出が存在する場合、システムは、カラムによって必要とされる流量よりも多い流量を検出して、システム内に漏出が存在すると判定する。この情報に基づいて、自動GCトラブルシューティング手順は、ユーザにGCシステム流路に漏出があることを通知し、以下の提案、すなわち1)隔壁を交換すること、2)カラムを再設置すること、3)ライナ及びライナOリングを交換すること、並びに4)スプリットベントトラップを開いてOリングの着座をチェックすることをユーザに提供することができる。必要に応じてスプリットベントトラップを交換する。機器が漏出限界試験を自動的に実施しない場合、ユーザには、チェック及び修正すべき潜在的な問題のリストがより多く提供される(例えば、8つの潜在的な解決策)。
【0051】
トラブルシューティングの別の態様は、GCシステムが、発生した可能性がある最近の保守作業又はハードウェア変更に関する情報を記憶し、使用する能力である。GCシステムが以前に正しく機能していた場合、問題は、ユーザが最近変更を行ったエリアにある可能性がより高くなる。GCシステム上に記憶された保守情報を使用することによって、ユーザは、発生している問題を修正するより高い確率を有する解決策への直接的なルートを提供されることになる。一例は、ユーザが最近入口の保守(入口隔壁の交換等)を行った場合であり、自動GCトラブルシューティング手順は、GCシステムに記憶されたこの最近の保守情報を使用し、決定木の入口セクションから開始するようにユーザを導く。
【0052】
種々の具体例において、クロマトグラフィーモデリングは、自動GCトラブルシューティング手順によって使用され、クロマトグラフィー性能問題を修正し得る或る特定の保守作業を決定することができる。例えば、名目的なシミュレートされたクロマトグラム及びリアルタイムのシミュレートされたクロマトグラムと基準クロマトグラムとが互いに一致するが、現在の試料の実行した実験試料クロマトグラムがシミュレートされたクロマトグラム及び基準クロマトグラムと一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御していたが、GCシステム、したがってGCモデルが認識していない何かが変化した可能性があると判定することができる。すなわち、熱及び空気圧の設定値は試料実行中に制御されており、GCシステムの制御及び知識の範囲外の何かが変化して、クロマトグラフィー性能問題(例えば、誤った試料が注入された、カラムが切り詰められ、パラメータが更新されていない、カラムが故障し始めている等)を引き起こしている可能性がある。したがって、自動GCトラブルシューティング手順は、GCシステムに何らかの変更が行われたかどうかを確認し、構成が正しいことを確認し、又はカラム劣化、流路汚染等に関連する性能問題を調査するようにユーザに指示する決定木の部分に進むことができる。
【0053】
別の例では、現在の実行のリアルタイムのシミュレートされたクロマトグラム及び実験試料クロマトグラムが一致するが、基準クロマトグラム及び/又は名目的なシミュレートされたクロマトグラムがリアルタイムのシミュレートされたクロマトグラム及び実験試料クロマトグラムと一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御していなかったと判定することができる。例えば、或る特定のセンサ値が設定値と一致しない(すなわち、カラムヒータ温度が設定値と一致しない、入口圧力センサが設定値と一致しない、又は予想されるガス流量が設定値と一致しない)場合がある。これらの場合、現在の分析からの実際の機器データがリアルタイムクロマトグラフィーモデルにおいて使用され、設定値に一致しない機器データの任意の影響は、リアルタイムクロマトグラフィーモデル結果において明らかになる。したがって、自動GCトラブルシューティング手順は、ユーザを決定木の一部に導いて、ヒータ、流量制御モジュール、又は他の構成要素等のGCシステムの構成要素を更に調査することができる。問題を更に絞り込み、及び/又は問題を確認するために、診断試験を実装することができる。追加的又は代替的に、自動GCトラブルシューティング手順は、問題を解決するための最も可能性の高い保守項目として、GCシステムのハードウェアの一部の交換若しくは修理(例えば、クリーニング、調整等)又は設定値の変更を推奨することができる。
【0054】
更に別の例では、クロマトグラフィーモデルをそれ自体と比較することができる。すなわち、GCシステムが既知の良好な状態にあるときに、及び/又は機器設定値を使用するときに生成された名目的なシミュレートされたクロマトグラフィー分離が、リアルタイムのシミュレートされたクロマトグラフィー分離と比較される。したがって、名目的なシミュレートされたクロマトグラフィー分離とリアルタイムのシミュレートされたクロマトグラフィー分離とが一致しない場合、自動GCトラブルシューティング手順は、GCシステムハードウェア問題があると判定することができる。例えば、リアルタイムのシミュレートされたクロマトグラフィー分離が、名目的なシミュレートされたクロマトグラフィー分離よりも長い分析物保持時間を示した場合、これは、流速又は温度が予想よりも低いことを示唆する可能性がある。自動GCトラブルシューティング手順は、流路コールドスポット、流路漏出、又は他のかかる流路問題がより長い保持時間の原因であり得ることを示唆する可能性がある。かかる例では、GCシステム構成(すなわち、カラムタイプ/寸法、ガス種等)は、リアルタイムクロマトグラフィーモデルと公称クロマトグラフィーモデルとで同じであるが、リアルタイムクロマトグラフィーモデルは、GCシステムの実際の熱値及び空気圧値(thermal and pneumatic values)を利用している。したがって、リアルタイムのシミュレートされたクロマトグラフィー分離は、熱値及び/又は空気圧値が異なる場合、名目的なシミュレートされたクロマトグラフィー分離とは異なることになる。
【0055】
例えば、ユーザが、システムが満たすことができないカラムヒータランプ速度(column heater ramp rate)をGCシステムに入力した場合、設定値(すなわち、予想ランプ速度)に基づいて名目的なシミュレートされたクロマトグラムを生成することができる。しかしながら、リアルタイムのシミュレートされたクロマトグラムは、実際のカラムヒータ温度値を使用して生成され、予想される温度ランプ速度を満たすことができないため、カラムヒータ温度は、予想よりも低温になる。したがって、公称モデルがより速いランプ速度を使用するため、リアルタイムのシミュレートされたクロマトグラムは、名目的なシミュレートされたクロマトグラムと一致しない。クロマトグラフィーモデリングの結果に基づいて、システムは、機器データ(例えば、測定された熱値)を使用して、ユーザによって入力された予想熱設定値と比較することができる。この例では、カラムヒータ温度が設定値に近くなかった可能性があり、システムは、所望のカラムヒータランプ速度が達成されなかったことをユーザに通知することができる。これは、カラムヒータランプ速度が実際に達成されていないことをユーザが認識していない場合に有益である。ユーザが、達成不可能なランプ速度を使用して、基準クロマトグラムを生成した場合、その「既知の良好な」クロマトグラムは、期待される設定値で収集されていないため、問題が表面化しない場合がある。加えて、ユーザが、GCが達成可能なオーブン温度ランプ速度を入力したが、何らかの理由で、試料実行において達成することができなかった場合、これはハードウェアエラーを示し、診断及び予測モジュール118は、カラムヒータが予想通りに機能していないことを示すことができる。
【0056】
種々の具体例において、自動GCトラブルシューティング手順はまた、クロマトグラフィーモデリングを利用して、保守作業を実施する前に、予期される保守作業がクロマトグラフィー性能問題を正常に修正することを検証することができる。より具体的には、ユーザ及び/又はGCシステムが、保守作業中にどのような変更が行われるかを知っており、モデルが機器設定値を入力として使用することができる場合、保守作業を実施する前に、シミュレートされたクロマトグラフィー分離を生成することができる。例えば、ユーザは汚染を排除するためにカラムを定期的に切り詰めている(trim)場合がある。ユーザがカラムを切り詰めるたびに、機器構成において新しい長さを更新していた可能性がある。カラムが短くなったことで保持時間が確立済みの限界の外側にシフトしたことがクロマトグラフィー性能モニタリングによって見つかった場合、自動GCトラブルシューティング手順では、クロマトグラフィー性能の問題を修正又はその他の方法で解決するためにカラムの交換を提案することができる。クロマトグラフィーモデルは、新しいカラムのカラム寸法、相タイプ、及び他のかかるパラメータを利用して、カラムの交換によりクロマトグラフィー性能の問題が修正されるか、又はその他の方法で解決されることを検証することができる。
【0057】
幾つかの具体例において、自動GCトラブルシューティング手順を通して導かれた後、単一の保守作業、又は2つ以上の重み付けされた若しくはランク付けされた可能な保守作業のリストが、ユーザに提供される。これらの保守作業は、各々が現在の性能問題を解決し得る可能性に基づいて自動GCトラブルシューティング手順中にユーザから提供された回答又は機器によって実施された診断試験に応じて重み付け又はランク付けすることができる。そして、ユーザには、提案された保守作業を実施するためのガイダンスが提供される。ユーザが保守作業を実施した後、保守作業が元のクロマトグラフィーの問題を解決したことを検証するために、検証実行を行う能力が提案される。提案された保守作業がユーザのクロマトグラフィーの問題を解決した場合、ユーザは、基準クロマトグラムを更新して、通常の機器操作を続行する選択肢を有する。提案された保守作業がユーザのクロマトグラフィーの問題を解決しなかった場合、ユーザは、再び自動GCトラブルシューティングを実行するか、又は追加のサポート情報(製造業者の連絡情報等)を提供されるかの選択肢を有する。
【0058】
種々の具体例において、診断及び予測モジュール118は、クロマトグラフィー性能モニタリング、クロマトグラフィーモデリング、及び自動GCトラブルシューティング手順を機械学習及び/又はニューラルネットワークと組み合わせて利用して、機器性能及び/又は保守の問題の時間枠及び故障モードをそれらが発生する前に予測するように診断ツールを構成する。例えば、診断及び予測モジュール118は、ニューラルネットワークを利用して、GCシステム100の潜在的なクロマトグラフィー性能及び/又は保守の問題に関連する複数の異なる保守作業をランク付けし、順序付けることができる。すなわち、ニューラルネットワークは、クロマトグラフィー性能モニタリングデータ、機器データ、診断試験からのデータ、及び/又はシミュレートされたクロマトグラムを分析して、データを複数の異なる保守作業と相関させることができる。したがって、診断及び予測モジュール118は、ニューラルネットワークを利用して、保守作業が機器性能及び/又は保守の問題を解決する可能性に基づいて、異なる保守作業の各々の重み又はランクを割り当てる。
【0059】
種々の具体例において、診断及び予測モジュール118はまた、機械学習を組み込み、或る特定の試料データ及び/又は機器データが、GCシステム100の特定の故障若しくは保守の問題又は限定数の可能性のある問題と関連付けられることをGCシステム100に教示することもできる。すなわち、診断及び予測モジュール118は、過去のクロマトグラフィー性能モニタリング結果、試料データ、機器データ、診断試験からのデータ、及び/又は異なる実施された保守作業を伴うシミュレートされたクロマトグラムを分析して、機器故障と実施された保守とを相関させることができる。したがって、診断及び予測モジュール118は、或る特定の試料データ及び/又は機器データがGCシステム100の1つ以上の故障又は保守問題を示すことを学習することができる。したがって、経時的に、GCシステム100は、過去のGCシステムのトラブルシューティング及び保守に基づいて、或る特定のクロマトグラフィー性能モニタリング結果、試料データ、機器データ、診断試験からのデータ、シミュレートされたクロマトグラム、及び/又はそれらの組み合わせが、GCシステム100の或る特定の故障モードを示すことができることを学習する。
【0060】
トラブルシューティングの別の態様は、決定木を通してユーザを導くのを助けるために、ニューラルネットワーク及び/又は機械学習プロセスを使用することである。ニューラルネットワーク及び/又は機械学習プロセスを利用することで、GCシステムが、どのような問題が繰り返し発生したか、及びこれらの問題を解決するために使用された関連する解決策を学習するのを支援する。この例として、ユーザが入口隔壁での漏出等の同じ問題が繰り返し発生している場合が挙げられる。GCシステムのニューラルネットワーク及び/又は機械学習プロセスが、この漏出のパターンが発生し続けていることに気付いた場合、GCシステムは、ユーザに決定木プロセス全体を説明するのではなく、最初に入口の漏出をチェックさせる。これにより、機器からユーザに求められる質問の量が削減され、ユーザに、決定木を介して、問題を修正するために以前に機能した解決策への直接ルートが提供される。
【0061】
ニューラルネットワーク及び/又は機械学習プロセスを利用するGCシステムの別の利点は、同じ問題がユーザに対して繰り返し発生し続ける場合、GCシステムが他の潜在的な解決策を提案する能力である。この例もまた、入口隔壁に位置する入口に漏出が発生し続ける場合である。この同じ問題が発生し続ける場合、GCシステムは、問題の根本原因を解決するために他の解決策の提案を開始することができる。入口隔壁内に繰り返し位置する漏出の例では、GCシステムは、ユーザにシリンジをチェックさせて、針内にバリ(burr)が存在しないことを検証するように提案することができる。シリンジ針内のバリは、隔壁内の漏出の問題を繰り返し発生させるが、ユーザが決定木からの質問に回答しているだけであれば、ユーザ又はトラブルシューティングによっては気付かれない可能性がある。機器がニューラルネットワーク及び/又は機械学習を利用することによって、機器は、より多くの洞察をユーザに提供し、この問題の根本原因を決定することができる。
【0062】
保守作業が完了すると、診断及び予測モジュール118は、保守が実施されたことを記録及び表示する(例えば、
図3の管理
図300上の保守指示線350)。そして、自動GCトラブルシューティング手順は、クロマトグラフィー性能及び/又は保守の問題が修正されたことを検証するために、同じ試料及び分離プロセスを使用して検証実行を実施するようにユーザに指示する。検証実行の結果は、以前の基準クロマトグラム及び/又はクロマトグラフィーモデルと比較され、結果が一致するかどうかが確認される。検証実行の結果が以前の基準クロマトグラム及び/又はシミュレートされたクロマトグラムと一致した場合、基準クロマトグラムは更新され、機器は通常動作に戻る。検証実行の結果が以前の基準クロマトグラム及び/又はシミュレートされたクロマトグラムと一致しない場合、ユーザは、自動GCトラブルシューティングに戻り、問題の原因を特定することになる。ユーザはまた、検証実行の結果を受け入れるか又は拒否し、望むようであれば自動GCトラブルシューティングに戻ることができる。ユーザは、クロマトグラフィーモデルの結果と一致しないが、以前の基準クロマトグラムと一致する場合であっても、検証実行の結果を受け入れることもできる。管理図は、問題が解決されたと判定された場合、必要に応じて更新、再初期化、及び/又はクリアすることができる。
【0063】
(例1)
複雑な試料マトリックスの成分を定性的にも定量的にも理解するために開発されたクロマトグラフィー分析法は、多岐にわたっている。ASTM、NIST、及びEPA等、種々の試料の分析のための方法を設計及び提供する多くの管理機関が存在する。これらの方法は、所望のクロマトグラフィー結果を得るために開発された複雑な方法設定値を含むことが多い。幾つかの方法は、非常に低い濃度(すなわち、10億分の1)で分析物を定量化することを目的とするが、他の方法の目標は、非常に高い濃度レベル(パーセントレベル)で化合物を定量化することを目的とする場合がある。幾つかの方法は、揮発性及び半揮発性化合物の両方を分離するために、等温及び温度プログラムされた設定値の組み合わせを採用する。他の方法では、複雑な入口温度プログラム又は入口フローダイナミクスを用いて、熱的に不安定な分析物を気化させる場合がある。
【0064】
異なるクロマトグラフィー方法パラメータの組み合わせの数が非常に多いため、問題が生じた場合に、全ての異なる可能な相互作用を理解して読み解くことは非常に困難である。しばしば、GCシステムのユーザは、他の場所で開発された方法を利用しており、ユーザは、方法設定値がなぜそのように選択されたのかを知らない場合がある。本明細書で説明される診断及び予測モジュール118の開発の目標のうちの1つは、問題が発生したときを判定することだけではなく、問題が生じたときに問題が存在する場所の特定を支援することによって、ユーザがクロマトグラフィーのトラブルシューティングの複雑な状況をナビゲートすることを支援することである。目標は、問題を迅速に特定し、可能な限り迅速にユーザを立ち直らせることを支援することである。大きな特徴のうちの1つは、関与するクロマトグラフィーの以前の知識又は理解をユーザが有することを必要とせずに、クロマトグラフィーモデリングをどのように使用して、システムの予期される挙動が何であるべきかをユーザに示すことができることである。
【0065】
以下の例では、
図1、
図3、
図4、
図5A、
図5B、
図5C、
図6、
図7A、
図7B、
図7C、及び
図9を参照して、仮想的な分析方法及びワークフローを用いて、診断及び予測モジュール118の特徴を強調して説明する。
図9は、診断及び予測モジュール118を有効にし、構成し、使用するプロセスのフローチャート900を示している。試料分析を開始する前に、ユーザは、診断及び予測モジュール118を起動して、GCシステム100のクロマトグラフィー性能及び機能性を動的に監視する。診断及び予測モジュール118の起動時に、ユーザは、GCシステム100のクロマトグラフィー性能及び機能性を動的に監視するために利用する少なくとも1つのクロマトグラフィー評価(例えば、ブランク評価、検出器評価、又はピーク評価)を指定する。この例では、ピーク評価が使用される。ピーク評価により、ユーザが、診断及び予測モジュール118が試料分析中にどのピークを監視するかを選択することができる。ユーザ(又はGCシステム100)はまた、GCシステム100によって監視される試料又は分析物の或る特定のピークパラメータ(例えば、保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、及びピーク分解能)、基準クロマトグラム、及び性能管理限界を定義する。基準クロマトグラムは、GCシステム100によって記憶することができ、又は代替として、対象試料が分析される前に、GCシステム100によって生成することができる。ユーザが監視対象のピークを指定すると、クロマトグラフィーモデリングアプリケーション400は、GC構成及び方法設定値を使用して、名目的なシミュレートされたクロマトグラムを生成して、GCが予想通りに実施されていることを検証する。そして、ユーザは、操作手順の一部として試料の実行を開始する。システムは、クロマトグラフィー性能を監視し、結果を管理図で表示する。問題が検出された場合(例えば、ピーク評価が失敗するか、又は管理図が将来の問題を予測する)、ユーザは、問題を診断するためにトラブルシューティングを開始するように促される。問題が解決すると、ユーザは、試料の分析を再開することができる。
【0066】
図示された例では、選択された分析物は、エイコサン(Eicosane)(n-C20H42)、ドコサン(Docosane)(n-C22H46)、テトラコサン(Tetracosane)(n-C24H50)、及びヘキサコサン(Hexacosane)(n-C26H54)である。これらの化合物は、詳細な炭化水素分析(DHA:detailed hydrocarbon analysis)又はシミュレートされた蒸留(SIMDIST:simulated distillation)と同様に、試料中の異なる炭化水素の分離及びスペシエーションが望ましい炭化水素分析の一部を表すために選択された。しかしながら、GCによる分析に適した広範囲の化合物が存在し、本明細書に記載される手順は炭化水素タイプの試料に限定されないことに留意すべきである。この例では、ピーク評価により、ユーザは、システムの状態及び性能を監視するために、クロマトグラムにおける最大10個のピークのクロマトグラフィー性能を追跡することができる。しかしながら、より多い又はより少ない数のピークを監視することができることを理解されたい。関連する実験パラメータは以下の通りである。カラムは、86μm×250μm×1.5μm、HP-1msであり、1.0mL/分の一定流速を有し、大気圧出口を有するヘリウムキャリアガスを使用する。カラムヒータプログラムは、30℃の初期温度で開始し、5分間保持し、次いで1.5℃/分で350℃の最終温度まで上昇させた。使用した検出器は、水素炎イオン化検出器(FID:flame ionization detector)であった。クロマトグラフィーモデルにおいて予想される保持時間を決定するために使用される熱力学的パラメータを、一連の等温実験から収集して、ファントホッフ値(Van’t Hoff value)を決定した。
【0067】
診断及び予測モジュール118は、現在のGCシステム構成及び方法設定値を利用して、名目的なシミュレートされたクロマトグラムを生成する。そして、診断及び予測モジュール118は、名目的なシミュレートされたクロマトグラムを基準クロマトグラムと比較する。図示の例では、診断及び予測モジュール118は、基準クロマトグラムのピーク保持時間と、公称クロマトグラフィーモデル及びGC機器設定値をモデルへの入力として使用して生成された名目的なシミュレートされたクロマトグラムとを比較する。結果を以下の表1及び
図7Aのオーバーレイクロマトグラム710に示している。クロマトグラフィーモデルは、追加のクロマトグラフィーパラメータ(ピーク幅、ピーク面積、ピーク高さ、ピーク対称性)を生成することができるが、この例では保持時間のみが示されている。他のクロマトグラフィーパラメータも同様に使用できることを理解されたい。
【0068】
【0069】
図示の例では、基準クロマトグラムと名目的なシミュレートされたクロマトグラムとの間で決定された保持時間差又は%誤差は、約0.2%である。かかる差は典型的であり、診断及び予測モジュール118は、基準クロマトグラムと名目的なシミュレートされたクロマトグラムとの間の保持時間差又は%誤差が許容可能であると判定する。オーバーレイクロマトグラム710に示されるようなシミュレートされたクロマトグラムのピーク高さは、基準クロマトグラムと名目的なシミュレートされたクロマトグラムとの間のピークの保持時間の一致をより良好に示すために、低くされていることを理解されたい。前述したように、モデリングの結果は、現在の構成及び方法設定における機器がどのように挙動すると予想されるかを示すのに有用である。ユーザがGC構成又は分析に精通していない場合、ユーザは、実験結果から生成された保持時間が良好であるか否かを知る方法がない。この例では、公称クロマトグラフィーモデルを利用したモデリングの結果は、実験基準クロマトグラムと一致し、システムは適切に機能していると考えられる。
【0070】
GCシステム100が正常に機能していると判定されると、ユーザは、試料分析のために以前に設定されたピーク評価方法を選択することができる。あるいは、ピーク評価方法が試料に対して設定されていない場合、ユーザは、ピーク評価パラメータをGCシステムに入力し、新しいピーク評価方法を設定することができる。ユーザは、後で使用するために、これらの入力ピーク評価パラメータを含む方法を保存することができる。試料分析中、GCシステムは、ピーク評価方法を利用して、対象の試料ピークのクロマトグラフィーデータ(例えば、保持時間)を追跡及び/又は監視し、分析物ピークが予め定義された管理限界内に留まっていることを確認する。ピーク評価パラメータの例示的なセットを以下の表2に示している。図示の例では、ピーク評価パラメータは、基準クロマトグラムピーク保持時間と、保持時間限界又は%誤差と、保持時間に対する下方管理限界及び上方管理限界とを含む。診断及び予測モジュール118は、基準クロマトグラムピーク保持時間に保持時間限界%誤差を乗算することによって、下方管理限界及び上方管理限界を決定する。したがって、下方管理限界は、保持時間の減少についての許容限界を規定し、上方管理限界は、保持時間の増加についての許容限界を規定している。図示の例では、+/-5%の保持時間限界が、下方管理限界及び上方管理限界を決定するために利用されたが、異なる保持時間限界が使用され得ることを理解されたい。
図7Aのクロマトグラム710は、表2に列挙された保持時間における垂直破線として、ヘキサデカン(C
26)の上限及び下限を示している。
【0071】
【0072】
上述したように、ユーザが、クロマトグラフィー性能が満足のいくものであると判断し、ピーク評価方法を選択すると、GCシステム100は試料分析の実行を開始する。試料分析中、診断及び予測モジュール118は、ピーク評価を実行して、GCシステム100によって分析されている試料の分析物ピーク保持時間を監視する。したがって、試料分析の開始時に、診断及び予測モジュール118は、試料データの収集を開始し、試料データのユーザ定義クロマトグラフィーパラメータを動的に管理図で表示する。したがって、試料分析中に、診断及び予測モジュール118が、1つ以上のユーザ定義クロマトグラフィーパラメータが或る特定の時間枠(例えば、指定された数の試料注入)全体にわたって、予め定義された性能管理限界(例えば、上方管理限界320及び下方管理限界330)の外側にあることを判定した場合、診断及び予測モジュール118は、ユーザ定義クロマトグラフィーパラメータ(例えば、保持時間)が、近い将来(例えば、複数の注入後)、範囲外になるであろうことをユーザに通知する。
【0073】
図7Cの管理
図730に示すように、診断及び予測モジュール118のクロマトグラフィー性能モニタリングは、管理
図730を生成し、この管理
図730には、各試料注入後の各分析物ピークに対するピーク評価結果がプロットされる。図示の例では、管理
図730は、分析物C
26の保持時間を評価する。したがって、管理
図730は、この分析物について表2に定義された上方管理限界及び下方管理限界を表示する。上方管理限界及び下方管理限界は、監視されている全ての分析物について存在するが、明確にするためにC
26についてのみ示されていることに留意されたい。診断及び予測モジュール118のクロマトグラフィー性能モニタリングによる管理
図730の分析は、分析物C
26の保持時間が6回目の試料注入後に下方管理限界に近くなり、7回目の試料注入後に下方管理限界を超えると判定する。したがって、診断及び予測モジュール118は、将来のピーク保持時間の失敗をユーザに通知し、ユーザが自動GCトラブルシューティング手順を利用して、失敗が発生する前にピーク保持時間の失敗を修正することを可能にし得る。この例では、将来の保持時間の失敗の警告は無視され、システムは実行を続けた。しかしながら、7回目の注入後、診断及び予測モジュール118は、失敗したピーク評価を報告する。
図7Bは、予想されるクロマトグラフィー結果を有する元の基準クロマトグラム722と、異常な結果を示すピーク評価に失敗した試料クロマトグラム724とを示している。
【0074】
種々の具体例において、ユーザがトラブルシューティング支援を受け入れると決定した場合、診断及び予測モジュール118は、ユーザに表示される一連の質問を通して、及び/又はシミュレートされたクロマトグラム、機器データ、及び/又は診断試験の使用を通して、追加の入力又は情報を収集する。より具体的には、診断及び予測モジュール118は、GCシステム100のトラブルシューティングを通してユーザを導くために、ユーザ提供情報(及び/又はシステム提供情報)を利用するユーザ誘導型決定木(user-guided decision tree)を通して進む。
【0075】
図5Aに示すように、重み付き決定木部分500は、診断及び予測モジュール118がGCシステム100の自動インテリジェントトラブルシューティングを開始するための2つの一般的な方法を示している。自動GCトラブルシューティング手順が開始され得る1つの方法は、GC性能問題がクロマトグラフィー性能モニタリングを通して検出されたときである。例えば、本明細書に説明される例に示されるように、ピーク評価失敗に基づくGC性能問題は、ユーザ定義ピークデータパラメータのうちの1つ以上が上方管理限界若しくは下方管理限界外にある場合、又は近い将来に上方管理限界若しくは下方管理限界外になると判定された場合に検出され得る。したがって、性能結果に応じて、診断及び予測モジュール118は、性能及び/又は保守の問題が検出されたというメッセージを生成してユーザに表示し、ユーザがトラブルシューティング支援を望むかどうかをユーザに尋ねる。ユーザがトラブルシューティング支援を要求した場合、診断及び予測モジュール118は、クロマトグラフィー性能モニタリングからの情報を使用することによって、誘導トラブルシューティング支援をどこで開始するかを判定する。例えば、診断及び予測モジュール118内のクロマトグラフィー性能モニタリングが、ピーク保持時間が管理限界外にあることに起因して将来の故障が生じると判定した場合、診断及び予測モジュール118内の自動GCトラブルシューティング手順は、
図5Cに示すように、保持時間シフトに関連する重み付けされた決定木部分へユーザを導く。
【0076】
図5Aに戻って参照すると、自動GCトラブルシューティング手順が開始され得る第2の方法は、ユーザが、試料クロマトグラフィー分離中に何らかの性能問題に気付き、GCシステム100の自動GCトラブルシューティング手順を手動で開始することである。ユーザは、診断及び予測モジュール118の診断タブ又は他のかかるメニューオプションにアクセスすることによって、性能問題のトラブルシューティングを開始することができる。ユーザがGCシステム100のトラブルシューティングを開始すると、診断及び予測モジュール118は、ユーザが最近任意のハードウェアを変更したかどうか、及び/又はGCシステム100の保守作業を実施したかどうかをユーザに尋ねる。ユーザが、ハードウェアが変更されなかったか、又は保守作業が実行されなかったと答えた場合、診断及び予測モジュール118は、
図5Bに示すように、ユーザに重み付き決定木部分510を指示して、ユーザが現在直面しているクロマトグラフィーの問題を尋ねる。そして、診断及び予測モジュール118は、ピークなし、低応答、高応答、保持時間シフト、ピーク広がり、ピークテーリング、ピークフロンティング、及び分解能損失等の中から選択するために、複数の異なる性能問題をユーザに表示する。診断及び予測モジュール118は、ユーザが選択するための他の性能問題を表示し得ることを理解されたい。ユーザが観察したクロマトグラフィーの問題を選択すると、誘導トラブルシューティングは、その問題に関連するトラブルシューティング部分に進む。
【0077】
一方、ユーザが、ハードウェアが最近変更されたか、又は保守作業が最近実施されたと回答した場合、診断及び予測モジュール118は、GCシステム100の性能問題(例えば、保持時間シフト)に対処するために、どの最近の変更が実施されたかをユーザに尋ねる。そして、診断及び予測モジュール118は、
図5Bに示すように、ユーザに重み付き決定木部分510を指示して、ユーザが現在直面しているクロマトグラフィーの問題を尋ねる。そして、診断及び予測モジュール118は、ピークなし、低応答、高応答、保持時間シフト、ピーク広がり、ピークテーリング、ピークフロンティング、及び分解能損失等の中から選択するために、複数の異なる性能問題をユーザに表示する。診断及び予測モジュール118は、ユーザが選択するための他の性能問題を表示し得ることを理解されたい。ユーザが観察したクロマトグラフィーの問題を選択すると、誘導トラブルシューティングは、その問題に関連するトラブルシューティング部分に進む。例えば、ユーザが、最近ハードウェアを修理したか、又は保持時間シフトに関連する保守作業を実施したと答えた場合、誘導トラブルシューティングは、
図5Cに示すように、その問題を更に調査するために、重み付き決定木部分520に進む。しかし、図示の例では、ハードウェアは最近変更されていない。
【0078】
上述したように、診断及び予測モジュール118は、自動GCトラブルシューティング手順を利用して、ピーク評価失敗の原因及びどのような是正措置が必要とされ得るかを判定することができる。この例では、ピーク評価は、保持時間限界外にある短い保持時間を有するピークで失敗したため、
図5Bでは「保持時間シフト」経路が選択される。この場合、GCは、ユーザに尋ねることなく、正しいクロマトグラフィー性能故障モードを決定することができる。
図5Cは、
図5Bから続く決定木である。最初の2つの質問、「全ての分析物が保持時間をシフトしているか?」及び「保持時間が短いか、又は長いか」は、クロマトグラフィー性能モニタリング及び/又は基準クロマトグラム、シミュレートされたクロマトグラム、及び/又は現在の試料クロマトグラムからの情報を使用して、診断及び予測モジュール118によって決定される。その経路に続く次の質問は、ユーザ対話を必要とすることがあるが、幾つかの場合では、診断及び予測モジュール118によって決定することもできる。
図7Bの一番下のクロマトグラムを詳しく調べると、保持時間シフトだけでなく、ベースラインオフセットも示されている。保持時間シフトのためにピーク評価に失敗したクロマトグラムは、ベースラインオフセットも高い値を示している。ベースラインオフセットは、監視するためのパラメータとして選択されなかったため、システムはこの現象についてユーザに警告を発しないため、ユーザによる操作が必要となる可能性がある。決定木の次の質問「カラムブリードは高いか?」に対する答えはイエスである。したがって、クロマトグラフィー性能の劣化の可能性のある原因は、最初は固定相(stationary phase)の劣化であると考えられる。
【0079】
図6のリスト600は、可能なトラブルシューティングソリューションの初期リストを示している。クロマトグラフィーの徴候に基づいて、問題は、当初、カラム又はオーブン内にあると考えられていた。クロマトグラフィーモデリングの結果は、リストを選別し、問題を特定するのに非常に有用であり得る。この例では、クロマトグラフィーモデル及びクロマトグラフィー設定値を使用して生成された公称クロマトグラムと、クロマトグラフィー実行からの機器データ(すなわち、測定された熱値及び空気圧値)に基づくリアルタイムのシミュレートされたクロマトグラムとは、互いに一致する。さらに、両方のシミュレートされたクロマトグラムはまた、元の基準クロマトグラムと一致する。公称クロマトグラム及びリアルタイムのシミュレートされたクロマトグラムが互いに一致することは、測定された熱値及び空気圧値が実行中に予想された設定値にあり、制御されていることを意味しており、GCハードウェアは適切に機能していると見なされ得る。これは、オーブン温度についての機器データを分析し、予想されるオーブン温度設定値と比較することによって検証することもできる。これらは一致すると判定された。同じプロセスを空気圧値に対しても行うことができる。
図7Bのクロマトグラムの目視検査は、同じ試料が注入されたことを示すように、左にシフトしただけの同様に見えるクロマトグラムが表示されており、したがって、幾つかの試料導入システム関連問題(例えば、ALS問題)が除外されている。さらに、両方のモデルが基準クロマトグラムと一致していることから、GCシステムの制御又は知識の範囲外の何かがクロマトグラフィー性能を変化させたものと推論することができる。加えて、GCは、試料分析全体を通して同じ構成を維持しているため、クロマトグラフィーの劣化は、構成の変更又は保守の問題(例えば、カラムが変更された)に起因するものではない。クロマトグラフィー挙動に適合する基準の全てを満たす
図6の唯一の残りの解決策は、カラム固定相が経時変化又は劣化している可能性があることである。
【0080】
異なる分析は、異なる方法でGCシステムに影響を及ぼすため、性能劣化するまでの広範囲な持続時間を可能にする。多くの試料は、システムに損傷を与える可能性のある汚染物質が少ないという点で「クリーン」である。これは、クロマトグラフィーの劣化が観察されるまでに比較的長い時間をもたらし得る。その他の試料では、汚れていて、望ましくない残留物を後に残す可能性があり、これは、システムの部品を損傷し、比較的迅速に性能劣化を引き起こす場合がある。幾つかの方法では、カラム固定相を損傷し得る非常に高い温度プログラムが必要となる。さらに、汚染されたキャリアガス又は継手の漏れによって、システムに酸素が進入し、カラム固定相が急速に損傷する可能性がある。管理図の作成は、システムが性能劣化を示し得る前の期間の可変性のために非常に有用である。この例では、(
図7Cの管理図に示されるように)故障はすぐに発生したが、幾つかの例では、システムは、クロマトグラフィー性能の劣化が顕著になる前に、何百回もの注入に耐えることができる。
【0081】
ユーザが提案された手順及び/又は保守作業を実施した後、GCシステム100は、検証実行を自動的に実施する(又は実施するようにユーザに指示する)。検証実行からの試料クロマトグラムを基準クロマトグラム及び/又はシミュレートされたクロマトグラムと比較することによって決定されるように保持時間が正常に戻った(及びユーザが結果に同意した)場合、基準クロマトグラムを検証試料クロマトグラムと置換することによって、基準クロマトグラムを更新することができる。したがって、GCシステム100は、通常の機器操作を再開し、診断及び予測モジュール118は、管理
図300の保守表示線350を更新して、実施された調整及び/又は保守作業に基づく機器性能の変化を示す。一方、保持時間が正常に戻らない場合、診断及び予測モジュール118は、GCシステムの他の構成要素(例えば、入口、試料導入システム、及び/又は検出器)を調査し続ける。或る特定の具体例において、診断及び予測モジュール118は、自動GCトラブルシューティング手順中にユーザ及び/又はGCシステム100によって提供された入力を含む保守報告を自動的に(又はユーザ命令によって)生成する。保守報告は、自動GCトラブルシューティング手順中に実施された作業及び/又は保守作業と、その結果とを更に含む。そして、診断及び予測モジュールは、将来の参照のために保守報告を保存する。
【0082】
本明細書において特定される全ての特許、刊行物及び文献の開示は、引用することにより本明細書の一部をなすものとする。
【0083】
本明細書において使用される術語は特定の具体例を説明することのみを目的としており、限定することを意図するものでないことは理解されたい。定義される用語は、定義された用語の技術的な意味及び科学的な意味に加えて、本教示の技術分野において一般に理解され、受け入れられるような意味を有する。
【0084】
本明細書及び添付の特許請求の範囲で使用する場合、「一つの(a, an)」及び「その(the)」という用語は、文脈において明確な別段の指示がない限り、単数の対象物及び複数の対象物の双方を含む。したがって、例えば、「装置」は、1つの装置及び複数の部分を含む。別段示されない限り、「第1」、「第2」、「第3」という用語及び他の序数は、本明細書において、本装置及び方法の異なる要素を区別するために使用され、数値的な限定を与えることは意図しない。第1の要素及び第2の要素への言及は、装置が2つの要素のみを有することを意味するように解釈すべきではない。第1の要素及び第2の要素を有する装置は、別段示されない限り、第3、第4、第5以降も含むことができる。
【0085】
本明細書において使用される場合、「公称値(nominal value)」、「理想値(ideal value)」又は「設定値(setpoint)」という用語は、抽象的に、理論的に、又は基準から決定される値を意味し、動作中の実際の測定から決定される値ではない。例えば、GC法が、カラムヒータが温度を40℃で1分間保持し、そして温度を40℃から60℃に20秒で上昇させることを指定する場合、(特定の時点での)公称値は、定義されたプログラムに基づく温度であり、センサによって測定されるその特定の時点での正確なカラムヒータ温度ではない。しかしながら、GCシステムは、所定の公称値とは若干異なる場合があるカラムヒータの実際の温度を測定及び記録する温度センサを有する。
【0086】
本明細書及び添付の特許請求の範囲において使用される場合、「クロマトグラフィーモデル(chromatographic model)」という用語は、その通常の意味に加えて、GC方法及び/又は構成によるクロマトグラフィー分離に供される場合に、試料中の1つ以上の分析物についての1つ以上のクロマトグラフィーパラメータを予測するために、GC方法及び/又は構成に関するデータと組み合わせて、試料又は試料中の1つ以上の分析物についての化学的特性に関するデータを使用するプログラム、ソフトウェア、又はアルゴリズムを指す。
【0087】
本明細書及び添付の特許請求の範囲において使用される場合、「クロマトグラフィーパラメータ(chromatographic parameter)」という用語は、その通常の意味に加えて、GCシステムによって測定され得る任意のパラメータ(分析物対の保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、及びピーク分解能が挙げられるが、これらに限定されない)を指す。
【0088】
本明細書及び添付の特許請求の範囲において使用される場合、「性能データ(performance data)」という用語は、その通常の意味に加えて、試料データ及び機器データを含むがこれらに限定されない、クロマトグラフィー分離を行うことから得られた、それに由来する、又は別様でそれに関連するデータを指す。試料データとは、分離に供される試料についてのデータ(例えば、保持時間及び他のクロマトグラフィーパラメータ)を指し、そして機器データは、機器についてのデータ(例えば、温度、圧力、電力需要等)を指す。
【0089】
本明細書及び添付の特許請求の範囲において使用される場合、「接続された(connected)」という用語は、それらの通常の意味に加えて、2つのコンポーネントが流体接続される又は物理的に接続される又は両方であることを意味する。「流体接続された」という用語は、2つのコンポーネントが、流体連通状態にあり、2つのコンポーネント間の直接接続、及び1つ以上の他のコンポーネントが流路内で2つのコンポーネント間にある間接接続を含むことを意味する。例えば、第1のコンポーネント及び第2のコンポーネントは、第1のコンポーネントからの出口が第2のコンポーネントの入口に物理的に接続される場合、又は、導管が第1のコンポーネント及び第2のコンポーネントを接続する場合、又は、流体が第1のコンポーネントから第2のコンポーネントに又はその逆に流れるとき、弁、ポンプ、又は他の構造等の1つ以上の介在するコンポーネントが2つのコンポーネント間にある場合に、流体接続される。コンポーネントは、フェルール(ferrule)を使用すること、ろう付け(brazing)、及び他のアプローチによって等で、任意の適切な方法で物理的に接続することができる。一般に、液密である及び/又は死容積を最小にする物理的接続が、本装置のために所望される。
【0090】
以下の詳細な説明において、本教示を十分に理解してもらうために、限定ではなく、説明のために、具体的な細部を開示する代表的な具体例が記述される。例示的な具体例の説明を分かりにくくするのを避けるために、既知のシステム、デバイス、材料、動作方法及び製造方法の説明は省略される場合がある。それにもかかわらず、当業者の理解の範囲内にあるシステム、デバイス、材料及び方法は、代表的な具体例に従って用いることができる。
【0091】
一般に、図面及び図面に示された様々な要素は、縮尺どおりに描かれていないことが理解される。さらに、「上」、「下」、「頂」、「底」、「上側」、「下側」、「左」、「右」、「鉛直」、及び「水平」等の相対的な用語は、添付図面に示され得るような様々な要素の互いに対する関係を説明するために使用される。これらの相対的な用語は、図面に示される向きに加えて、マイクロ流体汚染物質装置及び/又は要素の異なる向きを包含するように意図されることが理解される。
【0092】
(例示的な具体例)
ここで開示されている主題により提供される例示的な具体例は、以下のものを含むが、これらに限定されない。
【0093】
(具体例1)
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを計算する、GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成するステップと、
GCシステムを使用して試料クロマトグラフィー分離を実施し、それによって、GCシステムによって分析される試料の試料クロマトグラムを生成するステップと、
試料の少なくとも1つのクロマトグラフィーパラメータを含む、試料クロマトグラフィー分離に関連する性能データを収集するステップと、
試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実施するステップであって、クロマトグラフィー性能モニタリングは、試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータと、シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になり得るかどうか、及び/又はいつ性能管理限界外になり得るかを予測するものである、ステップと、
クロマトグラフィー性能モニタリング及びクロマトグラフィーモデルの結果を使用して、GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実施するステップと、
予期される保守作業を含むGCシステムの保守通知を送信するステップと
を含んでなる方法。
【0094】
(具体例2)
少なくとも1つのクロマトグラフィーパラメータは、GCシステムによって分析される分析物の保持時間、相対保持時間、保持指標、調整保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量のうちの1つ以上を含む、具体例1に記載の方法。
【0095】
(具体例3)
自動GCトラブルシューティング手順はまた、試料クロマトグラフィー分離からの機器データを使用して、予期される保守作業を決定し、保守通知を送信するステップは、複数の異なる保守作業から予期される保守作業を決定することと、GCシステムのユーザに予期される保守作業を警告することとを含む、具体例1に記載の方法。
【0096】
(具体例4)
機器データは、GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、具体例3に記載の方法。
【0097】
(具体例5)
自動GCトラブルシューティング手順は、予期される保守作業を決定するために1つ以上の診断試験を実施する、具体例1に記載の方法。
【0098】
(具体例6)
クロマトグラフィーモデルは、GCシステムによって実施される試料クロマトグラフィー分離中にリアルタイムで収集されたGCシステムの実際の機器の値を利用する、具体例1に記載の方法。
【0099】
(具体例7)
自動GCトラブルシューティング手順は、予期される保守作業を決定するために決定木を利用する、具体例1に記載の方法。
【0100】
(具体例8)
ユーザが決定木に情報を入力する、具体例7に記載の方法。
【0101】
(具体例9)
決定木は、GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して予期される保守作業の性能を更に決定して、性能管理限界外にある、及び/又は性能管理限界外にあると予想される少なくとも1つのクロマトグラフィーパラメータを補正する、具体例7に記載の方法。
【0102】
(具体例10)
自動GCトラブルシューティング手順は、ニューラルネットワークを更に利用して、予期される保守作業と、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータとの間の相関を決定する、具体例1に記載の方法。
【0103】
(具体例11)
自動GCトラブルシューティング手順は、機械学習プロセスを更に利用して、予期される保守作業が、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータと関連付けられることをGCシステムに教示する、具体例1に記載の方法。
【0104】
(具体例12)
自動GCトラブルシューティング手順は、ニューラルネットワークを利用して、1つ以上の予期される保守作業を、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータの修正と関連付けし、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータが、繰り返し発生するGCシステム問題である場合、ニューラルネットワークは、繰り返し発生するGCシステム問題を修正するための代替保守作業を決定する、具体例1に記載の方法。
【0105】
(具体例13)
自動GCトラブルシューティング手順は、GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して予期される保守作業を実施して、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータを補正するステップを更に含む、具体例1に記載の方法。
【0106】
(具体例14)
予期される保守作業を実施した後に検証クロマトグラフィー分離を実施するステップを更に含み、検証クロマトグラフィー分離は、シミュレートされたクロマトグラフィー分離又は以前の基準クロマトグラムと比較され、予期される保守作業が、少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にある、及び/又は性能管理限界外にあると予想されることから補正することを検証する、具体例1に記載の方法。
【0107】
(具体例15)
検証クロマトグラフィー分離は、少なくとも1つのクロマトグラフィーパラメータが性能管理限界内にあることを検証する場合、検証クロマトグラフィー分離は、基準クロマトグラフィー分離に置き換わる、具体例14に記載の方法。
【0108】
(具体例16)
クロマトグラフィー性能モニタリングは、試料の少なくとも1つのクロマトグラフィーパラメータ及び試料注入カウントを含む管理図をプロットすることを含み、管理図は、少なくとも1つのクロマトグラフィーパラメータのデータを外挿して、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測するために利用され、管理図は、試料の少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になる前に、及び/又は性能管理限界外になると予想される前に、予期されるGCシステム故障の保守通知を生成するために利用される、具体例1に記載の方法。
【0109】
(具体例17)
シミュレートされたクロマトグラフィー分離を生成することは、名目的なシミュレートされたクロマトグラム及びリアルタイムのシミュレートされたクロマトグラムを生成することを含み、クロマトグラフィーモデルを利用することは、リアルタイムのシミュレートされたクロマトグラムを名目的なシミュレートされたクロマトグラムと比較することを含む、具体例1に記載の方法。
【0110】
(具体例18)
トラブルシューティング手順中にクロマトグラフィーモデルを利用することは、名目的なシミュレートされたクロマトグラム、リアルタイムのシミュレートされたクロマトグラム、基準クロマトグラフィー分離、及び試料クロマトグラフィー分離のうちの2つ以上の間の比較を含む、具体例1に記載の方法。
【0111】
(具体例19)
リアルタイムのシミュレートされたクロマトグラムが名目的なシミュレートされたクロマトグラム及び基準クロマトグラフィー分離のうちの少なくとも一方と一致するが、リアルタイムのシミュレートされたクロマトグラムが試料クロマトグラフィー分離と一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御されており、GCシステムの制御外の何かが、少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にさせていると判定する、具体例18に記載の方法。
【0112】
(具体例20)
リアルタイムのシミュレートされたクロマトグラムが試料クロマトグラフィー分離と一致するが、リアルタイムのシミュレートされたクロマトグラム及び試料クロマトグラフィー分離が名目的なシミュレートされたクロマトグラム及び基準クロマトグラフィー分離のうちの少なくとも一方と一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御されておらず、GCシステムの制御が少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にさせていると判定する、具体例18に記載の方法。
【0113】
(具体例21)
試料を分析するガスクロマトグラフィー(GC)システムであって、
1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成されている、入口及び出口を備えるGCカラムと、
GCカラムの出口に流体的に接続されたGC検出器と、
少なくともGC検出器に通信可能に接続されたコントローラと
を備えてなり、コントローラは、
GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを計算する、GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成することと、
GCシステムに装填された試料の試料クロマトグラフィー分離を実行することと、
試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータを含む、試料クロマトグラフィー分離に関連する性能データを収集することと、
試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実行することであって、クロマトグラフィー性能モニタリングは、試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータと、シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は試料クロマトグラフィー分離の少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測することと、
クロマトグラフィー性能モニタリング及びクロマトグラフィーモデルの結果を使用して、GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実行することと、
予期される保守作業を含む保守通知をGCシステムのユーザに送信することと
を行うように構成されている、GCシステム。
【0114】
(具体例22)
少なくとも1つのクロマトグラフィーパラメータは、GCシステムによって分析される分析物の保持時間、相対保持時間、保持指標、調整保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、ピーク分解能、ピークキャパシティ、スキュー、尖度、分離数、容量比、選択性、効率、見かけの効率、テーリング係数、濃度、及びモル量のうちの1つ以上を含む、具体例21に記載のGCシステム。
【0115】
(具体例23)
コントローラに通信可能に接続され、機器データを収集するように構成された少なくとも1つの機器センサを更に備え、機器データは、GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、具体例21に記載のGCシステム。
【0116】
(具体例24)
コントローラは、クロマトグラフィーモデルに、少なくとも1つの機器センサによってリアルタイムで収集されたGCシステムの実際の機器の値を提供する、具体例23に記載のGCシステム。
【0117】
(具体例25)
コントローラは、自動GCトラブルシューティング手順中に予期される保守作業を決定するために1つ以上の診断試験を実施する、具体例23に記載のGCシステム。
【0118】
(具体例26)
コントローラは、自動GCトラブルシューティング手順のための決定木を生成する、具体例21に記載のGCシステム。
【0119】
(具体例27)
GCシステムのユーザは決定木に情報を入力する、具体例26に記載のGCシステム。
【0120】
(具体例28)
コントローラは、決定木を利用して、GCシステムの試料導入システム、試料入口、カラム、カラムヒータ、及び検出器のうちの1つ以上に対して実施する予期される保守作業を決定して、性能管理限界外にある、及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータを補正する、具体例26に記載のGCシステム。
【0121】
(具体例29)
コントローラは、自動GCトラブルシューティング手順中にニューラルネットワークを利用して、予期される保守作業と、性能管理限界外にある及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータとの間の相関を決定する、具体例21に記載のGCシステム。
【0122】
(具体例30)
コントローラは、自動GCトラブルシューティング手順中に機械学習プロセスを利用して、予期される保守作業が、性能管理限界外にある及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータと関連付けられることをGCシステムに教示する、具体例21に記載のGCシステム。
【0123】
(具体例31)
コントローラは、性能管理限界外にある及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータの修正を伴う1つ以上の予期される保守作業に関連付けられたニューラルネットワークを利用し、性能管理限界外にある及び/又は性能管理限界外にあると予想されるクロマトグラフィーパラメータが繰り返し発生するGCシステム問題である場合、ニューラルネットワークは、繰り返し発生するGCシステム問題を修正するための代替保守作業を決定する、具体例21に記載のGCシステム。
【0124】
(具体例32)
コントローラは、予期される保守作業の実施後に検証クロマトグラフィー分離を実行し、検証クロマトグラフィー分離を、シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離と比較し、性能管理限界外にある及び/又は性能管理限界外にあると予想されることから少なくとも1つのクロマトグラフィーパラメータを予期される保守作業が補正することを検証する、具体例21に記載のGCシステム。
【0125】
(具体例33)
検証クロマトグラフィー分離が、少なくとも1つのクロマトグラフィーパラメータが性能管理限界内にあることを検証する場合、コントローラは、基準クロマトグラフィー分離を検証クロマトグラフィー分離と置き換える、具体例32に記載のGCシステム。
【0126】
(具体例34)
クロマトグラフィー性能モニタリング中に、コントローラは、試料の少なくとも1つのクロマトグラフィーパラメータ及び試料注入カウントを含む管理図を生成し、コントローラは、少なくとも1つのクロマトグラフィーパラメータのデータを外挿して、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測する、具体例21に記載のGCシステム。
【0127】
(具体例35)
トラブルシューティング手順中にクロマトグラフィーモデルを利用することは、コントローラが、名目的なシミュレートされたクロマトグラム、リアルタイムのシミュレートされたクロマトグラム、基準クロマトグラフィー分離、及び試料のクロマトグラフィー分離のうちの2つ以上を比較することを含む、具体例21に記載のGCシステム。
【0128】
(具体例36)
リアルタイムのシミュレートされたクロマトグラムがめ名目的なシミュレートされたクロマトグラム及び基準クロマトグラフィー分離のうちの少なくとも一方と一致するが、リアルタイムのシミュレートされたクロマトグラムが試料のクロマトグラフィー分離と一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御されており、GCシステムの制御外の何かが、少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にさせていると判定する、具体例35に記載のGCシステム。
【0129】
(具体例37)
リアルタイムのシミュレートされたクロマトグラムが試料のクロマトグラフィー分離と一致するが、リアルタイムのシミュレートされたクロマトグラム及び試料のクロマトグラフィー分離が名目的なシミュレートされたクロマトグラム及び基準クロマトグラフィー分離のうちの少なくとも一方と一致しない場合、自動GCトラブルシューティング手順は、GCシステムが予想通りに制御されておらず、GCシステムの制御が少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にさせていると判定する、具体例35に記載のGCシステム。
【0130】
(具体例38)
試料を分析するガスクロマトグラフィー(GC)システムであって、
1つ以上の分析物を含む試料のクロマトグラフィー分離のために構成されている、入口及び出口を備えるGCカラムと、
GCカラムの出口に流体的に接続されたGC検出器と、
GCシステムの機器データを収集するように構成された少なくとも1つのセンサと、
GC検出器及び少なくとも1つのセンサに通信可能に接続されたコントローラと
を備えてなり、コントローラは、
GCシステムに装填された試料のクロマトグラフィー分離を実行することと、
少なくとも1つのセンサによって収集された機器データを利用して、試料のシミュレートされたクロマトグラフィー分離を生成することであって、コントローラは、試料のクロマトグラフィー分離中にリアルタイムでシミュレートされたクロマトグラフィー分離を生成するように構成されていることと
を行うように構成されている、GCシステム。
【0131】
(具体例39)
少なくとも1つのセンサによって収集された機器データは、GCシステムの温度値、圧力センサ値、バルブ状態、モータステップ、試料注入カウント、モータデューティサイクル、ヒータ電流値、ヒータデューティサイクル、モータ電流値、流量センサ値、検出器信号値、検出器電流値、検出器周波数値、較正テーブル、オートゼロ値、センサゼロ値、タイムオン値、及びバルブデューティサイクル値のうちの1つ以上を含む、具体例38に記載のGCシステム。
【0132】
(具体例40)
シミュレートされたクロマトグラフィー分離は、GCシステムの構成に基づいてクロマトグラフィーモデルから生成される、具体例38に記載のGCシステム。
【0133】
(具体例41)
クロマトグラフィーモデルは、GCシステムによって分析される試料の保持時間、ピーク高さ、ピーク面積、ピーク幅、ピーク対称性、及びピーク分解能のうちの少なくとも1つを含む少なくとも1つのクロマトグラフィーパラメータを計算する、具体例40に記載のGCシステム。
【0134】
(具体例42)
コントローラは、試料のクロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実行し、クロマトグラフィー性能モニタリングは、少なくとも1つのクロマトグラフィーパラメータとシミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離との比較を含み、少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になったかどうかを判定し、及び/又は少なくとも1つのクロマトグラフィーパラメータが性能管理限界外になるかどうか、及び/又はいつ性能管理限界外になるかを予測する、具体例38に記載のGCシステム。
【0135】
(具体例43)
コントローラは、GCシステムの予期される保守作業を予測するためにクロマトグラフィー性能モニタリング及びシミュレートされたクロマトグラフィー分離を利用する自動GCトラブルシューティング手順を実行し、自動GCトラブルシューティング手順は、複数の異なる保守作業から予期される保守作業を決定して、性能管理限界外にある、及び/又は性能管理限界外にあると予想される少なくとも1つのクロマトグラフィーパラメータを補正する、具体例42に記載のGCシステム。
【0136】
(具体例44)
コントローラは、GCシステムのユーザが複数の異なる保守作業から選択された予期される保守作業を実施した後に検証クロマトグラフィー分離を実行し、検証クロマトグラフィー分離は、シミュレートされたクロマトグラフィー分離及び/又は基準クロマトグラフィー分離と比較され、予期される保守作業が、少なくとも1つのクロマトグラフィーパラメータを性能管理限界外にある、及び/又は性能管理限界外にあると予想されることから補正することを検証する、具体例43に記載のGCシステム。
【0137】
(具体例45)
検証クロマトグラフィー分離が少なくとも1つのクロマトグラフィーパラメータが性能管理限界内にあることを検証する場合、コントローラは、基準クロマトグラフィー分離を検証クロマトグラフィー分離と置き換える、具体例44に記載のGCシステム。
【0138】
(具体例46)
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
GCシステムによって分析される試料の少なくとも1つのクロマトグラフィーパラメータを計算する、GCシステムの構成に基づくクロマトグラフィーモデルを使用してシミュレートされたクロマトグラフィー分離を生成するステップと、
GCシステムを使用して試料クロマトグラフィー分離を実施し、それによって、GCシステムによって分析される試料の試料クロマトグラムを生成するステップと、
試料の少なくとも1つのクロマトグラフィーパラメータを含む、試料クロマトグラフィー分離に関連する性能データを収集するステップと、
クロマトグラフィーモデル及び試料クロマトグラフィー分離の結果を使用して、GCシステムの予期される保守作業を予測する自動GCトラブルシューティング手順を実施するステップと、
予期される保守作業を含むGCシステムの保守通知を送信するステップと
を含んでなる方法。
【0139】
(具体例47)
ガスクロマトグラフィー(GC)システムを動作させる方法であって、
GCシステムを使用して試料クロマトグラフィー分離を実施し、それによって、GCシステムによって分析される試料の試料クロマトグラムを生成するステップと、
試料のクロマトグラフィー分離に関連する、少なくとも1つのセンサ値を含む機器データを収集するステップと、
試料クロマトグラフィー分離を分析するように構成されたクロマトグラフィー性能モニタリングを実施するステップであって、クロマトグラフィー性能モニタリングは、少なくとも1つのセンサ値が性能管理限界外になったかどうかを判定し、及び/又は少なくとも1つのセンサ値が性能管理限界外になり得るかどうか、及び/又はいつ性能管理限界外になり得るかを予測することを含む、ステップと、
GCシステムのクロマトグラフィー性能モニタリング及びクロマトグラフィーモデルを使用する自動GCトラブルシューティング手順を実施して、GCシステムの予期される保守作業を予測するステップと、
予期される保守作業を含むGCシステムの保守通知を送信するステップと
を含んでなる方法。
【0140】
本開示を考慮して、方法及び装置を、本教示を踏まえて実装することができることが留意される。さらに、種々の構成要素、材料、構造、及びパラメータは、単に例証及び例として含まれ、制限的な意味で含まれない。本開示を考慮して、本教示を、添付特許請求項の範囲内に留まりながら、他の用途並びにこれらの用途を実施するために必要な構成要素、材料、構造、及び機器で実装することができる。
【国際調査報告】