(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-13
(54)【発明の名称】共振器誘起位相ゲートのためのマルチモード共振器
(51)【国際特許分類】
H10N 60/00 20230101AFI20231206BHJP
H10N 60/12 20230101ALI20231206BHJP
【FI】
H10N60/00 Z
H10N60/12 A ZAA
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023528064
(86)(22)【出願日】2021-12-01
(85)【翻訳文提出日】2023-05-10
(86)【国際出願番号】 EP2021083835
(87)【国際公開番号】W WO2022117680
(87)【国際公開日】2022-06-09
(32)【優先日】2020-12-03
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
【住所又は居所原語表記】New Orchard Road, Armonk, New York 10504, United States of America
(74)【代理人】
【識別番号】100112690
【氏名又は名称】太佐 種一
(74)【代理人】
【識別番号】100120710
【氏名又は名称】片岡 忠彦
(72)【発明者】
【氏名】クムプ、ミューア
(72)【発明者】
【氏名】マッカイ、デイヴィッド
(72)【発明者】
【氏名】ディアル、オリバー
【テーマコード(参考)】
4M113
【Fターム(参考)】
4M113AA23
4M113AA24
4M113AC44
4M113AC45
4M113AC50
4M113CA12
4M113CA13
(57)【要約】
RIPゲートを有効にする量子ビット結合構造に関する技術が提供される。例えば、本明細書で説明される1つまたは複数の実施形態は、第1の量子ビットおよび第2の量子ビットに結合された結合構造を含み得る装置を備え得る。結合構造は、複数の結合経路を有し得る。複数の結合経路のうちの1つの結合経路は、共振器であり得る。また、第1の量子ビットは、共振器の第1の端部に結合され得、第2の量子ビットは、共振器の長さに沿った点に結合され得る。
【特許請求の範囲】
【請求項1】
装置であって、
第1の量子ビットおよび第2の量子ビットに結合された結合構造であり、前記結合構造は複数の結合経路を有し、前記複数の結合経路のうちの1つの結合経路は、伝送線分岐部を有する共振器である、前記結合構造を備える、装置。
【請求項2】
前記結合経路は、前記第1の量子ビットと前記第2の量子ビットとの間に共振器誘起位相ゲートを確立する、請求項1に記載の装置。
【請求項3】
前記複数の結合経路は、前記第1の量子ビットと前記第2の量子ビットとの間の結合相互作用を集合的に抑制する、請求項2に記載の装置。
【請求項4】
前記回路分岐部は超伝導接地接続を有する前記伝送線の一区間である、請求項1ないし3のいずれかに記載の装置。
【請求項5】
前記結合構造は、駆動ポートを更に備える、請求項1ないし4のいずれかに記載の装置。
【請求項6】
前記第1の量子ビットは、前記共振器の第1の端部に結合され、前記第2の量子ビットは、前記共振器の長さに沿った点に結合される、請求項1ないし5のいずれかに記載の装置。
【請求項7】
前記第1の量子ビットおよび前記第2の量子ビットは、容量結合および誘導結合から成るグループから選択された少なくとも1つの結合技術によって前記共振器に結合される、請求項1ないし6のいずれかに記載の装置。
【請求項8】
前記共振器は、複数のインピーダンスを有する四分の一波長超伝導コプレーナ導波路を備える、請求項1ないし7のいずれかに記載の装置。
【請求項9】
装置であって、
第1の量子ビットおよび第2の量子ビットに結合された結合構造であり、前記結合構造は複数の結合経路を有し、前記複数の結合経路のうちの1つの結合経路は共振器であり、前記第1の量子ビットは前記共振器の第1の端部に結合され、前記第2の量子ビットは前記共振器の長さに沿った点に結合される、前記結合構造を備える、装置。
【請求項10】
前記結合経路は、前記第1の量子ビットと前記第2の量子ビットとの間に共振器誘起位相ゲートを確立する、請求項9に記載の装置。
【請求項11】
前記複数の結合経路は、前記第1の量子ビットと前記第2の量子ビットとの間の結合相互作用を集合的に抑制する、請求項9または10に記載の装置。
【請求項12】
前記第1の量子ビットおよび前記第2の量子ビットは、容量結合および誘導結合から成るグループから選択された少なくとも1つの結合技術によって前記共振器に結合される、請求項9ないし11のいずれかに記載の装置。
【請求項13】
前記結合構造は、駆動ポートを更に備える、請求項9ないし12のいずれかに記載の装置。
【請求項14】
装置であって、
第1の量子ビットおよび第2の量子ビットに容量結合された四分の一波長超伝導導波路であり、前記四分の一波長超伝導導波路は複数のインピーダンスを有する、前記四分の一波長超伝導導波路を備える、装置。
【請求項15】
前記四分の一波長超伝導導波路の基本共振は、前記第1の量子ビットの周波数および前記第2の量子ビットの周波数を下回り、前記装置は、前記第1の量子ビットと前記第2の量子ビットとの間で結合相互作用を打ち消すように加算する複数の共振器モードを呈する、請求項14に記載の装置。
【請求項16】
前記複数の共振器モードからの第1の共振器モードで前記四分の一波長超伝導導波路を駆動する共振器誘起位相ゲートを更に備える、
請求項15に記載の装置。
【請求項17】
前記共振器誘起位相ゲートは、前記第1の量子ビットと前記第2の量子ビットとの間の前記結合相互作用を促進する、請求項16に記載の装置。
【請求項18】
装置であって、
第1の量子ビットおよび第2の量子ビットに容量結合された四分の一波長超伝導導波路であり、前記四分の一波長超伝導導波路は複数のインピーダンスを有する、前記四分の一波長超伝導導波路と、
前記第1の量子ビットおよび前記第2の量子ビットに容量結合された半波長超伝導導波路と
を備える装置。
【請求項19】
前記四分の一波長超伝導導波路に結合されて電気的に接地する超伝導接地接続を更に備える、請求項18に記載の装置。
【請求項20】
前記四分の一波長超伝導導波路および前記半波長超伝導導波路の両方は、前記第1の量子ビットの第1の容量性パッドおよび前記第2の量子ビットの第1の容量性パッドに結合される、請求項19に記載の装置。
【請求項21】
前記装置は、前記第1の量子ビットと前記第2の量子ビットとの間の結合相互作用を打ち消すように加算する複数の共振器モードを呈する、請求項19または20に記載の装置。
【請求項22】
前記複数の共振器モードからの第1の共振器モードで前記四分の一波長超伝導導波路または前記半波長超伝導導波路を駆動する共振器誘起位相ゲートを更に備える、
請求項21に記載の装置。
【請求項23】
前記共振器誘起位相ゲートは、前記第1の量子ビットと前記第2の量子ビットとの間の前記結合相互作用を促進する、請求項22に記載の装置。
【請求項24】
装置であって、
第1の量子ビットおよび第2の量子ビットに容量結合された四分の一波長超伝導導波路であり、前記四分の一波長超伝導導波路は複数のインピーダンスを有する、前記四分の一波長超伝導導波路と、
前記第1の量子ビットと前記第2の量子ビットとの間の直接容量結合と
を備える、装置。
【請求項25】
前記四分の一波長超伝導導波路は、前記第1の量子ビットとキャパシタとの間の第1のセグメントと、前記キャパシタと前記第2の量子ビットとの間の第2のセグメントとを有し、前記装置は、前記第1のセグメントに結合されて電気的に接地する超伝導接地接続を更に備える、請求項24に記載の装置。
【請求項26】
前記装置は、前記第1の量子ビットと前記第2の量子ビットとの間の結合相互作用を打ち消すように加算する複数の共振器モードを呈する、請求項25に記載の装置。
【請求項27】
前記複数の共振器モードからの第1の共振器モードで前記四分の一波長超伝導導波路を駆動する共振器誘起位相ゲートを更に備える、請求項26に記載の装置。
【請求項28】
前記共振器誘起位相ゲートは、前記第1の量子ビットと前記第2の量子ビットとの間の前記結合相互作用を促進する、請求項27に記載の装置。
【請求項29】
方法であって、
結合構造を第1の量子ビットおよび第2の量子ビットに結合することであり、前記結合構造は複数の結合経路を有し、前記複数の結合経路のうちの1つの結合経路は、伝送線分岐部を有する共振器である、前記結合することを含む、方法。
【請求項30】
前記結合経路によって前記第1の量子ビットと前記第2の量子ビットとの間に共振器誘起位相ゲートを確立することを含む、請求項29に記載の方法。
【請求項31】
前記複数の結合経路によって前記第1の量子ビットと前記第2の量子ビットとの間の結合相互作用を集合的に抑制することを含む、請求項29または30に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、共振器誘起位相(「RIP」)ゲートを有効にするためのマルチモード共振器に関し、より詳細には、RIPゲートが動作中でない間の量子ビット結合相互作用を集合的に抑制できる複数の結合経路を含む量子ビット結合構造に関する。
【背景技術】
【0002】
量子ビットは、様々な量子処理動作を実施するために量子コンピュータ内で結合される。従来、量子ビットは、それぞれ共通共振器バスに結合され、量子ビットの周波数は、そのバスの周波数から大きく離調される。例えば、2つの結合された量子ビットは、コプレーナ導波路の長さのそれぞれの端部に容量結合され得る。それにより、結合された量子ビットに関する全マイクロ波ゲートが形成され得る。例えば、コプレーナ導波路は、量子ビット間の相互作用を実現でき、各量子ビットの周波数は、他方の状態に依存することができ、マイクロ波トーンで導波路を励起すると、周波数変化の度合いを変更できる。
【0003】
量子ビットが固定周波数超伝導量子ビット(例えば、トランズモン)のとき、RIPゲートは、非共振トーンを共振器バスに印加することによって形成され得る。共振器における信号、したがって量子ビットが経験するシュタルクシフトは、量子ビットの結合状態に依存する。顕著なRIPエンタングルメント・レートを達成するために、大きな量子ビット周波数シフトを可能にする量子ビット結合構造が望まれる。しかしながら、従来の結合構造では、RIPゲートに対して可能とされている量子ビット周波数シフトの量を増加させると、RIPがアクティブでない間は、量子ビット間の望ましくない量子エンタングルメント量も増加する。
【発明の概要】
【0004】
以下は、本発明の1つまたは複数の実施形態の基本的理解を実現するための概要を示す。この概要は、鍵となる要素または重要な要素を明らかにすることを意図しておらず、特定の実施形態の範囲または特許請求の範囲を詳細に描写することも意図していない。その唯一の目的は、後に提示されるより詳細な説明の序章として簡略化された形態で概念を示すことである。本明細書で説明されている1つまたは複数の実施形態において、1つまたは複数のRIPゲートを有効にし得る量子ビット結合構造に関する装置、デバイス、またはシステムあるいはその組合せが説明される。
【0005】
実施形態によれば、装置が提供される。この装置は、第1の量子ビットおよび第2の量子ビットに結合された結合構造を備え得る。この結合構造は、複数の結合経路を有し得る。加えて、複数の結合経路うちの1つの結合経路は、共振器であり得る。第1の量子ビットは、共振器の第1の端部に結合され得、第2の量子ビットは、共振器の長さに沿った点に結合され得る。このような装置の利点は、零量子ビット-量子ビット結合周波数と共振周波数との間の差が、共振器長さに沿った第2の量子ビットの配置に基づいて制御され得ることであり得る。
【0006】
いくつかの例では、結合経路は、第1の量子ビットと第2の量子ビットとの間に共振器誘起位相ゲートを確立し得る。それにより、結合構造は、有益なことに、RIP量子論理ゲートとして動作し得る。換言すれば、結合経路は、第1の量子ビットと第2の量子ビットとの間で共振器誘起位相ゲートが実行可能にし得る。これにより、結合構造は、有益なことに、RIP量子論理ゲートを実行するように使用され得る。
【0007】
実施形態によれば、装置が提供される。この装置は、第1の量子ビットおよび第2の量子ビットに結合された結合構造を備え得る。この結合構造は、複数の結合経路を有し得る。複数の結合経路のうちの1つの結合経路は、伝送線分岐部を有する共振器であり得る。このような装置の利点は、共振器が複数の共振モードを呈し得ることであり得る。
【0008】
いくつかの例では、複数の結合経路が、第1の量子ビットと第2の量子ビットとの間の結合相互作用を集合的に抑制し得る。このような装置の利点は、第1の量子ビットと第2の量子ビットとの間での望ましくない量子エンタングルメントの減少であり得る。
【0009】
実施形態によれば、装置が提供される。この装置は、第1の量子ビットおよび第2の量子ビットに容量結合された四分の一波長超伝導導波路を備え得る。四分の一波長超伝導導波路は、複数のインピーダンスを有し得る。このような装置の利点は、第1の量子ビットと第2の量子ビットとに結合されたマルチモード共振器の形成であり得る。
【0010】
いくつかの例では、装置は、複数の共振器モードのうちの第1の共振器モードで四分の一波長超伝導導波路を駆動し得る共振器誘起位相ゲートを更に備え得る。それにより、共振器誘起位相ゲートは、第1の量子ビットと第2の量子ビットとの間の結合相互作用を促進し得る。このような装置の利点は、RIPゲートが動作していないときの量子ビット-量子ビット結合が抑制され得ることであり得る。
【0011】
実施形態によれば、装置が提供される。この装置は、第1の量子ビットおよび第2の量子ビットに結合された四分の一波長超伝導導波路を備え得る。四分の一波長超伝導導波路は、複数のインピーダンスを有し得る。加えて、装置は、第1の量子ビットおよび第2の量子ビットに容量結合された半波長超伝導導波路を備え得る。このような装置の利点は、高い量子ビット忠実度のためにRIPゲートを有効にし得る結合構造であり得る。
【0012】
いくつかの例では、装置は、四分の一波長超伝導導波路に結合されて電気的に接地することができる超伝導接地接続を更に備え得る。このような装置の利点は、複数の干渉する共振モードの有効化であり得る。
【0013】
実施形態によれば、装置が提供される。この装置は、第1の量子ビットおよび第2の量子ビットに結合された四分の一波長超伝導導波路を備え得る。四分の一波長超伝導導波路は、複数のインピーダンスを有し得る。加えて、装置は、第1の量子ビットと第2の量子ビットとの間の直接容量結合を備え得る。このような装置の利点は、第1の量子ビットと第2の量子ビットとの間の複数の結合経路であり得る。
【0014】
いくつかの例では、四分の一波長超伝導導波路は、第1の量子ビットとキャパシタとの間に第1のセグメントと、キャパシタと第2の量子ビットとの間に第2のセグメントとを有し得る。また、装置は、第1のセグメントに結合されて電気的に接地することができる超伝導接地接続を更に備え得る。このような装置の利点は、RIPゲートを有効にし得るマルチモード共振器であり得、偶数および奇数共振モードは、異なる形状を呈し得る。
【図面の簡単な説明】
【0015】
【
図1】本明細書で説明される1つまたは複数の実施形態による、第1の量子ビットと第2の量子ビットとの間でRIPゲートを有効にするための例示的で非限定的な第1の共振器バストポロジの図である。
【
図2】本明細書で説明される1つまたは複数の実施形態による、第1の共振器バストポロジを例証し得る例示的で非限定的な第1のマイクロ波回路の図である。
【
図3A】本明細書で説明される1つまたは複数の実施形態による、第1のマイクロ波回路によって実現され得る量子ビット-量子ビット結合における変化を図示し得る例示的で非限定的なグラフの図である。
【
図3B】本明細書で説明される1つまたは複数の実施形態による、第1のマイクロ波回路によって実現され得る量子ビット-量子ビット結合における変化を図示し得る例示的で非限定的なグラフの図である。
【
図4】本明細書で説明される1つまたは複数の実施形態による、第1の量子ビットと第2の量子ビットとの間でRIPゲートを有効にするための例示的で非限定的な第2の共振器バストポロジの図である。
【
図5】本明細書で説明される1つまたは複数の実施形態による、第2の共振器バストポロジを例証し得る例示的で非限定的な第2のマイクロ波回路の図である。
【
図6A】本明細書で説明される1つまたは複数の実施形態による、第2のマイクロ波回路によって実現され得る量子ビット-量子ビット結合における変化を図示し得る例示的で非限定的なグラフの図である。
【
図6B】本明細書で説明される1つまたは複数の実施形態による、第2のマイクロ波回路によって実現され得る量子ビット-量子ビット結合における変化を図示し得る例示的で非限定的なグラフの図である。
【
図7】本明細書で説明される1つまたは複数の実施形態による、第1の量子ビットと第2の量子ビットとの間でRIPゲートを有効にするための例示的で非限定的な第3の共振器バストポロジの図である。
【
図8】本明細書で説明される1つまたは複数の実施形態による、第3の共振器バストポロジを例証し得る例示的で非限定的な第3のマイクロ波回路の図である。
【
図9】本明細書で説明される1つまたは複数の実施形態による、第1の量子ビットと第2の量子ビットとの間でRIPゲートを有効にするための例示的で非限定的な第4の共振器バストポロジの図である。
【
図10】本明細書で説明される1つまたは複数の実施形態による、第1の共振器バストポロジを例証し得る例示的で非限定的な第4のマイクロ波回路の図である。
【
図11】本明細書で説明される1つまたは複数の実施形態による、第4のマイクロ波回路によって実現され得る量子ビット-量子ビット結合における変化を図示し得る例示的で非限定的なグラフの図である。
【発明を実施するための形態】
【0016】
以下の詳細な説明は例示目的に過ぎず、実施形態、または実施形態の用途もしくは使用、あるいはその両方を限定することを意図していない。更に、前記の背景技術または発明の概要の項または発明を実施するための形態の項で示されるあらゆる明示または暗示された情報に従うという意図はない。
【0017】
ここで図面を参照して1つまたは複数の実施形態が説明され、全体において同様の参照番号は同様の要素を指すために用いられる。以下の詳細な説明において、説明を目的として、1つまたは複数の実施形態のより十分な理解を実現するために、多数の特定の詳細が記載される。ただし、様々な場合において、1つまたは複数の実施形態がそれらの特定の詳細なしで実践可能であることは明らかである。
【0018】
RIPゲートのための量子ビット結合構造の他の実装に関する問題があると、本開示は、RIPゲートを有効にするデジェネレイト・マルチモード共振器によるそれらの問題のうちの1つまたは複数に対する解決策を創出するために実装され得る。本明細書で説明される様々な実施形態は、複数の共振モードを呈する量子ビット結合構造に関係し得る。集合的に、複数の共振モードは、量子ビット-量子ビット結合相互作用を抑制するために互いと干渉し得る。加えて、結合構造は、量子ビット-量子ビット結合相互作用を促進するために共振モードのうちの1つの作動を介してRIPゲートを有効にし得る。有益なことに、量子ビット間の量子エンタングルメントは、RIPゲートが動作していないときに抑制され得る。
【0019】
1つまたは複数の実施形態では、量子ビット-量子ビット結合解除は、共振器バスに沿った量子ビットのそれぞれの電気距離に基づいて実現され得る。様々な実施形態では、量子ビット結合構造は複数の結合経路を備えもよく、その経路のうちの1つは、伝送線分岐部を有する共振器である。いくつかの実施形態では、その結合経路のうちの1つは、複数のインピーダンスを有し、第1および第2の量子ビットに容量結合された四分の一波長超伝導導波路を含み得る。加えて、量子ビット結合構造の結合経路は、量子ビットに容量結合された半波長超伝導導波路を含み得る。1つまたは複数の実施形態では、結合構造は、量子ビット間の直接容量結合を更に含み得る。例えば、量子ビット結合構造の結合経路は、第1の容量結合量子ビットとキャパシタとの間の第1のセグメントと、キャパシタと第2の容量結合量子ビットとの間の第2のセグメントとを含み得る。加えて、第1のセグメントまたは第2のセグメントあるいはその両方は、超伝導接地接続に結合され得る。それにより、共振器の偶数および奇数モードが異なる形状を有するように、短い結合スタブが確立されてもよく、それにより量子ビット周波数で零のエンタングルメント・レートを確立する。
【0020】
図1は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の例示的で非限定的な第1のトポロジの図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
図1に示すように、量子ビット結合構造100は、第1の量子ビット104および第2の量子ビット106に結合された共振器バス102を備え得る。様々な実施形態では、量子ビット結合構造100は、第1の量子ビット104および第2の量子ビット106に関して1つまたは複数のRIPゲートを有効にし得る。
【0021】
1つまたは複数の実施形態では、第1の量子ビット104または第2の量子ビット106あるいはその両方は、トランズモン量子ビットなどの固定周波数超伝導量子ビットであってもよい。例えば、第1の量子ビット104または第2の量子ビット106あるいはその両方は、第1の容量性パッド108、第2の容量性パッド110、または1つまたは複数のジョセフソン接合部112あるいはその組合せを備え得る。第1の容量性パッド108または第2の容量性パッド110あるいはその両方は、1つまたは複数の超伝導金属から成り得る。本明細書で使用される場合、「超伝導」という用語は、アルミニウム(例えば、1.2ケルビンの超伝導臨界温度)またはニオブ(例えば、9.3ケルビンの超伝導臨界温度)など、超伝導臨界温度以下で超伝導特性を呈する材料の特徴を示し得る。加えて、当業者は、他の超伝導材料(例えば、リチウム/マグネシウム水素化物合金などの水素化物超伝導体)が本明細書で説明される様々な実施形態で使用され得ることを認識するであろう。第1の容量性パッド108または第2の容量性パッド110あるいはその両方の内部に構成され得る例示的な材料は、アルミニウム、ニオブ、タンタル、それらの組合せ、および/または同様のものを含み得るが、それに限定されない。
【0022】
図1に示すように、1つまたは複数のジョセフソン接合部112は、それぞれの量子ビット(例えば、第1の量子ビット104または第2の量子ビット106あるいはその両方)の第1の容量性パッド108と第2の容量性パッド110との間に配置され得る。1つまたは複数のジョセフソン接合部112は、例えば、絶縁体材料、常伝導(例えば、非超伝導)金属材料、それらの組合せ、および/または同様のものによって、超伝導材料間に弱連結を構築し得る。様々な実施形態では、1つまたは複数のジョセフソン接合部112は、超伝導体-絶縁体-超伝導体(「SIS」)構造、超伝導体-常伝導金属-超伝導体(「SNS」)構造、または超伝導体-コンストリクション(constriction)-超伝導体(「SCS」)構造、あるいはその組合せによって特徴付けられ得る。
【0023】
様々な実施形態では、共振器バス102は、1本のコプレーナ導波路など、超伝導伝送線であり得る。共振器バス102内に含まれ得る例示的な材料は、アルミニウム、ニオブ、タンタル、それらの組合せ、および/または同様のものを含み得るが、それに限定されない。1つまたは複数の実施形態では、共振器バス102が、第1の量子ビット104または第2の量子ビット106あるいはその両方に容量結合または誘導結合され得る。例えば、共振器バス102は、第1の量子ビット104の第1の容量性パッド108に容量結合可能であり、第2の量子ビット106の第1の容量性パッド108に容量結合可能である(例えば、
図1に示す第1の例示的なトポロジに示す通り)。
【0024】
1つまたは複数の実施形態では、第1の量子ビット104または第2の量子ビット106あるいはその両方の周波数は、共振器バス102の周波数から大きく離調され得る。例えば、結合構造100は、以下の式1によって特徴が示され得る。
【数1】
ただし、「
【数2】
」は、それぞれの量子ビットごとの量子ビット-バス結合であってもよく(例えば、第1の量子ビット104に関して「i=0」、第2の量子ビット106に関して「i=1」)、「g
i」は、i番目の量子ビットのバス共振器モードへの結合強度であってもよく、「ω
i」は、i番目の量子ビットの角周波数であってもよく、「n
i」は、i番目の量子ビットのための個数演算子であってもよく、「ω
BUS」は、共振器バス102の角周波数であってもよい。
【0025】
様々な実施形態では、共振器バス102は受動的であってもよい。例えば、共振器バス102は光子を欠落してもよく、効果的な量子ビット-量子ビット交換結合「J」として作用でき、その作用は、以下の式2によって特徴が示される通りである。
【数3】
それにより、共振器バス102は、全マイクロ波ゲートが第1の量子ビット104および第2の量子ビット106に関して実行されるように有効にし得る。例えば、量子ビット結合構造100は、第1の量子ビット104および第2の量子ビット106に関してRIPゲートを有効にし得る。例えば、量子ビット結合構造100によって有効にされたRIPゲートは、超伝導の第1の量子ビット104および第2の量子ビット106を結合する量子論理ゲートの形態であり得る。このRIPゲートは、量子ビット周波数において高い柔軟度を可能にし得る全マイクロ波多量子ビット・エンタングルメント・ゲートであり得る。非共振パルスを共振器バス102へ断熱的に印加および除去することによって、量子ビット結合構造100は、位相空間において閉ループを経験する可能性があり、その後、第1の量子ビット104または第2の量子ビット106あるいはその両方が状態依存位相を取得するが、共振器バス102は変化がない状態のままとされる可能性がある。
【0026】
しかしながら、量子ビット-量子ビット結合「J」も、ZZ相互作用など、RIPゲートが動作していない間に第1の量子ビット104および第2の量子ビット106のエンタングルメントを確立する。例えば、ZZ相互作用は、以下の式3によって特徴付けられ得る。
【数4】
ただし「α」は、それぞれの第1の量子ビット104または第2の量子ビット106あるいはその両方の非調和性であってもよい。
【0027】
共振器バス102の周波数は、第1の量子ビット104または第2の量子ビット106あるいはその両方の状態に依存してもよく、励起状態における量子ビットによる共振器バス102の周波数のシフトは、以下の式4の「χ」によって特徴が示され得る。
【数5】
第1の量子ビット104および第2の量子ビット106が励起状態にある場合、共振器バス102の周波数は、χの和だけシフトされ得る。更に、トーンが共振器バス102に印加される(例えば、共振器バス102から離調される)と、共振器バス102の信号、したがって第1の量子ビット104および第2の量子ビット106が経験するシュタルクシフトは、量子ビットの結合状態に依存し得る。それにより、χ値とZZ値との間の関係が以下の式5によって特徴が示され得る。
【数6】
【0028】
従来の結合構造では、顕著なRIPゲートを得るためにχ値を増加させることが、結果として、望ましくないZZ値をもたらす可能性がある。例えば、従来の結合構造では、1000メガヘルツ(MHz)のΔ値の場合に-300MHzのα値を適用すると、2MHzの静的ZZ値とも10MHzのχ値を得ることができ、10MHzのχ値は望ましい場合があるが、2MHzのZZ値によって特徴が示される量子ビット-量子ビット・エンタングルメントは、デバイスを動作不良とし得る。本明細書で説明される様々な実施形態では、量子ビット結合構造100は、RIPゲートが動作していないときに量子ビット-量子ビット・エンタングルメントを抑制するためにZZ値を最小限としながら、顕著なRIPゲートを得るために大きいχ値を有効とし得る。
【0029】
例えば、量子ビット結合構造100の第1の例示的なトポロジ(例えば、
図1に示す)は、共振器バス102の長さに沿った第1の量子ビット104または第2の量子ビット106あるいはその両方の電気距離に基づいてZZ相互作用を制御し得る。例えば、共振器バス102は、1本の半波長超伝導コプレーナ導波路(「λ/2共振器」)であってよく、共振器バス102の共振周波数の1/2で共振器バス102にわたって零量子ビット-量子ビット結合が存在してもよい。第1の量子ビット104および第2の量子ビット106を1/2周波数に設定すると、それにより、第1の量子ビット104および第2の量子ビット106を互いにではなく共振器バス102に結合できる。ただし、第1の量子ビット104および第2の量子ビット106を1/2周波数に設定することは、更に、それぞれの量子ビットが共振器バス102の共振から大きく離調されるため、それぞれの量子ビットと共振器バス102との間の結合を抑制する場合もある。
【0030】
1つまたは複数の実施形態では、第1のトポロジで例示された量子ビット結合構造100は、共振周波数を調整することによって非ゲート動作中に零量子ビット-量子ビット・エンタングルメントを得ることができる。例えば、共振器バス102の長さ(例えば、λ/2共振器)に沿ったそれぞれの量子ビットの電気距離は、零量子ビット-量子ビット結合周波数と共振周波数との間の差を制御し得る。それにより、共振器バス102(例えば、λ/2共振器)に沿った第1の量子ビット104または第2の量子ビット106あるいはその両方の配置を調整することによって、零量子ビット-量子ビット結合周波数が共振器バス102の共振に近づけられ得る。例えば、追加の伝送線長さは、共振器バス102に沿った第2の量子ビット106の位置と比較した場合に、共振器バス102に沿った第1の量子ビット104の位置に関して追加され得る。
【0031】
図2は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の
図1に示す第1のトポロジを例証し得る例示的で非限定的な第1のマイクロ波回路200の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
図2に示すように、第1の量子ビット104は、第1の結合線201(例えば、アルミニウム、ニオブ、またはタンタルあるいはその組合せなどの1つまたは複数の超伝導材料から成る超伝導伝送線)または第1のキャパシタ202あるいはその両方を介して共振器バス102(例えば、λ/2共振器)に結合され得る。更に、第2の量子ビット106は、第2の結合線203(例えば、アルミニウム、ニオブ、またはタンタルあるいはその組合せなどの1つまたは複数の超伝導材料から成る超伝導伝送線)または第2のキャパシタ204あるいはその両方を介して共振器バス102(例えば、λ/2共振器)に結合され得る。加えて、第1のマイクロ波回路200は、RIPゲートを駆動するために共振器バス102に容量結合された駆動ポート206を含み得る。例えば、光子205(例えば、
図2で波長によって表される)は、駆動ポート206を介して共振器バス102から追加または除去あるいはその両方が行われ得る。様々な実施形態では、駆動ポート206は、共振器バス102と同じ超伝導材料から成ってもよく、第3のキャパシタ208を含み得る。
【0032】
加えて、共振器バス102は、第1の理想伝送線素子210(例えば、遅延が定義された理想伝送線「delay-defined ideal transmission line(TLIND)」)または第2の理想伝送線素子212(例えば、TLIND)あるいはその両方を含み得る。
図2に示すように、第1の量子ビット104は、少なくとも第1のTLIND210の組み込みに起因して、第2の量子ビット106よりも共振器バス102に沿ってより大きな電気的長さを有し得る。更に、上述のように、零量子ビット-量子ビット結合周波数と例示的な第1のマイクロ波回路200の量子ビット-共振器バス結合周波数との間の差は、第1の量子ビット104と関連する追加の電気的長さに基づき得る。
【0033】
図3A~
図3Bは、本明細書で説明される1つまたは複数の実施形態による、
図1のトポロジまたは
図2の第1のマイクロ波回路200あるいはその両方で例証された量子ビット結合構造100がどのように強力な量子ビット-共振器バス結合を可能にする目標の零量子ビット-量子ビット結合周波数を得られるかを示し得る例示的で非限定的なグラフ300、302の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。グラフ300および302は、第1のマイクロ波回路200の特徴を示すことができ、第2のTLIND212は、50オームのZ値(例えば、所与の波の複素電流に対する同じ波の複素電圧の比率)と、0.35/7ナノ秒(nsec)の遅延値を有する。加えて、これらの散乱パラメータは、1.0ギガヘルツ(GHz)で始端(start)、10GHzの終端(stop)、および0.01GHzの刻み(step)を含み得る。
【0034】
グラフ300は、第1のTLIND210がない第1のマイクロ波回路200の特徴を示しており、グラフ302は、
図2に示す第1のマイクロ波回路200の特徴を示す(例えば、50オームのZ値および0.15/7nsecの遅延値を有する第1のTLIND210を備える)。グラフ300に示すように、零量子ビット-量子ビット結合周波数は5GHzにおけるものであってもよく、量子ビット-共振器バス結合周波数は10GHzにおけるものであってもよい。グラフ302に示すように、第1のTLIND210によって提供された追加電気距離は、量子ビット-共振器バス結合周波数を7GHzに移動し得る。
【0035】
図4は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の例示的で非限定的な第2のトポロジの図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。1つまたは複数の実施形態では、量子ビット結合構造100は、複数の結合経路を含むことができ、それによりデジェネレイト・マルチモード共振器を得る。例えば、各々のそれぞれの結合経路のχは大きいが、J値は、以下の式6によって特徴が示されるように、零でもよい。
【数7】
ただし、「f」は、共振器バス102(「BUS」)、またはそれぞれの第1の量子ビット104および第2の量子ビット106(例えば、「i=0,1」)、あるいはその両方の周波数である。それにより、量子ビット結合構造100の複数の共振モードは、第1の量子ビット104と第2の量子ビット106との間の量子ビット-量子ビット結合を集合的に抑制できる。RIPゲートを動作させるために、量子ビット結合構造100(例えば、共振器バス102)は、共振モード和を引き上げるように共振モードのうちの1つで駆動され得る。例えば、1つまたは複数の実施形態では、第1の量子ビット104および第2の量子ビット106と関連するg値は等しくてもよく、複数の結合経路は、量子ビット周波数(例えば、正のχ)を上回る第1のχ値と、量子ビット周波数(例えば、負のχ)を下回る第2のχ値とを確立できる。それによって、量子ビット結合構造100は、量子ビット-量子ビット結合を集合的に抑制する複数の共振モードを達成するために複数の結合経路を備えることができ、共振モードのうちの1つまたは複数はRIPゲートを駆動するために作動させられ得る。
【0036】
例えば、1つまたは複数の実施形態では、共振器バス102は、複数のインピーダンスを有する四分の一波長超伝導コプレーナ導波路(例えば、λ/4共振器)であってもよい。加えて、量子ビット結合構造100は、超伝導伝送線分岐部402を含み得る。1つまたは複数の実施形態では、分岐部402は、共振器バス102(例えば、λ/4共振器)に結合される超伝導接地接続であり得る。様々な実施形態では、量子ビット結合構造100は、少なくとも分岐部402に起因して複数の結合経路を得ることができ、複数の結合経路の共振モードは、互いに干渉し得る。例えば、複数の結合経路によって呈される複数の共振モードは、互いにほぼ相殺し得る。
【0037】
図5は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の
図4に示す第2のトポロジを例証し得る例示的で非限定的な第2のマイクロ波回路500の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
図5に示すように、第1の量子ビット104は、第1の結合線201または第1のキャパシタ202あるいはその両方を介して共振器バス102(例えば、λ/4共振器)に結合され得る。更に、第2の量子ビット106は、第2の結合線203または第2のキャパシタ204あるいはその両方を介して共振器バス102(例えば、λ/4共振器)に結合され得る。加えて、本明細書における様々な実施形態で説明されるように、例示的な第2のマイクロ波回路500は、駆動ポート206を含み得る。
【0038】
共振器バス102は、第1のコプレーナ導波路素子506と、第2のコプレーナ導波路素子508とを含み得る。加えて、分岐部402は、第3のコプレーナ導波路素子510を含み得る。様々な実施形態では、第1のコプレーナ導波路素子506および第2のコプレーナ導波路素子508は、第1の長さ(「L1」)を有し得る。更に、第3のコプレーナ導波路素子510は、L1とは異なり得る第2の長さ(「L2」)を有し得る。例えば、L2はL1より小さくてもよい。
【0039】
図6A~
図6Bは、本明細書で説明される1つまたは複数の実施形態による、
図4のトポロジまたは
図5の第2のマイクロ波回路500あるいはその両方で例証された量子ビット結合構造100がどのように複数の干渉共振モードを得られるかを示し得る例示的で非限定的なグラフの図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
【0040】
図6Aに関して、グラフ600は、分岐部402がない第2のマイクロ波回路500の特徴を示すことができ、L1が4ミリメートル(mm)に等しい。グラフ602は、分岐部402が含まれる第2のマイクロ波回路500の特徴を示すことができ、ここで、L1が3.6mmに等しく、L2が0.2mmに等しい。分岐部402の存否と対応するL1/L2の長さ以外では、グラフ600とグラフ602との間で回路状態が安定したままであった。グラフ600に示すように、分岐部402がないと、結合構造は単一の共振モードを呈し得る。グラフ602に示すように、分岐部402と、それによる複数の結合経路との組み込みによって、量子ビット結合構造100はマルチモード共振を呈することが可能となり得る。加えて、分岐部402がないマイクロ波回路と、第2のマイクロ波回路500とは、ZZ値を減少させながら、同様の自己インダクタンス(例えば、13ナノヘンリー(nH)と比較すると12.5nH)と、χ値とを呈し得る。
【0041】
図6Bに関して、グラフ604は、分岐部402がない第2のマイクロ波回路500の特徴を示すことができ、L1が4.7mmに等しい。グラフ606は、分岐部402が含まれる第2のマイクロ波回路500の特徴を示すことができ、L1が4.5mmに等しく、L2が0.1mmに等しい。分岐部402の存否と対応するL1/L2の長さ以外では、グラフ604とグラフ606との間で回路状態が安定したままであった。グラフ604に示すように、分岐部402がないと、結合構造は単一の共振モードを呈し得る。グラフ606に示すように、分岐部402と、それによる複数の結合経路との組み込みによって、量子ビット結合構造100はマルチモード共振を呈することが可能となり得る。加えて、分岐部402がないマイクロ波回路と、第2のマイクロ波回路500とは、ZZ値を減少させながら、等価の自己インダクタンス(例えば、12.5nH)と、χ値とを呈し得る。
【0042】
図7は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の例示的で非限定的な第3のトポロジの図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。1つまたは複数の実施形態では、
図1に示す第1のトポロジおよび
図4に示す第2のトポロジの様々な特徴が組み合わされ得る。例えば、量子ビット結合構造100は、本明細書で説明される共振器バス102の複数の実施形態を含み得る。例えば、量子ビット結合構造100は、第1の量子ビット104の第1の容量性パッド108と第2の量子ビット106の第1の容量性パッド108とに容量結合された第1の共振器バス102aおよび第2の共振器バス102bを含み得る。
【0043】
様々な実施形態では、量子ビット結合構造100の第3のトポロジの第1の共振器バス102a(例えば、
図7に図示)は、λ/2共振器であり得る。本明細書で説明される様々な実施形態によれば、零量子ビット-量子ビット結合周波数と第1の共振器バス102aの共振周波数(例えば、λ/2共振器)との間の関係は、第1の共振器バス102aに沿ったそれぞれの量子ビットの電気距離に依存し得る。更に、量子ビット結合構造100の第3のトポロジの第2の共振器バス102b(例えば、
図7に図示)は、分岐部402に結合された(例えば超伝導接地接続)λ/4共振器であり得る。本明細書で説明される様々な実施形態によれば、第2の共振器バス102bおよび分岐部402のL1およびL2の長さは、量子ビット結合構造100によって呈される複数の干渉する共振モードの確立に更に影響し得る。
【0044】
図8は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の
図7に示す第3のトポロジを例証し得る例示的で非限定的な第3のマイクロ波回路800の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。様々な実施形態では、駆動ポート206は、例示的なマイクロ波回路800の量子ビット結合構造100にわたってRIPゲートを駆動するために、第1の共振器バス102aまたは第2の共振器バス102bあるいはその両方に結合され得る。
【0045】
図8に示すように、第1の共振器バス102aは、1つまたは複数の第1の結合線201または第1のキャパシタ202あるいはその両方を介して第1の量子ビット104に結合することができ、第2の共振器バス102bは、1つまたは複数の第2の結合線203または第2のキャパシタ204あるいはその両方を介して第2の量子ビット106に結合することができる。第1の共振器バス102aは、コプレーナ導波路(例えば、第3のコプレーナ導波路素子510)を有するλ/2共振器であり得る。第2の共振器バス102bは、超伝導接地接続に結合されたλ/4共振器であることが可能であり、または他のコプレーナ導波路(例えば、第2のコプレーナ導波路素子508)を含むことが可能であり、あるいはその両方が可能である。様々な実施形態では、第1の共振器バス102aのコプレーナ導波路は、第2の共振器バス102bのコプレーナ導波路より大きな長さを有してもよい(本明細書で説明される様々な実施形態によれば、例えば、第1の共振器バス102aの第3のコプレーナ導波路素子510は、第2の共振器バス102bの第2のコプレーナ導波路素子508の長さL2よりも大きい長さL3を有してもよい)。例えば、第1の共振器バス102aは、10mmの長さを有するコプレーナ導波路を含んでもよく、第2の共振器バス102bは、4.5mmの長さを有するコプレーナ導波路を含んでもよい。
【0046】
図9は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の例示的で非限定的な第4のトポロジの図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。1つまたは複数の実施形態では、量子ビット結合構造100は、共振器バス102に結合された結合スタブ902を含み得る。
【0047】
図9に示すように、共振器バス102は、共振器バス102の第1のセグメントと、共振器バス102の第2のセグメントとを画定し得る第4のキャパシタ904を含み得る。第1のセグメントは、第1の量子ビット104と第4のキャパシタ904との間に配置された共振器バス102の一部分を備え得る。例えば、第1のセグメントは、第1の量子ビット104に容量結合されて、第4のキャパシタ904まで延在し得る。第2のセグメントは、第2の量子ビット106と第4のキャパシタ904との間に配置された共振器バス102の一部分を備え得る。例えば、第2のセグメントは、第2の量子ビット106に容量結合されて、第4のキャパシタ904まで延在し得る。様々な実施形態では、共振器バス102は、λ/4共振器であってもよい。
【0048】
結合スタブ902は、共振器バス102の第1のセグメントおよび第2のセグメントに結合され得る。様々な実施形態では、結合スタブ902は、λ/4共振器であってもよい。更に、1つまたは複数の実施形態では、結合スタブ902は、短絡回路であってもよい(例えば、
図10の短絡接続906によって示される通り)。1つまたは複数の実施形態では、結合スタブ902は、超伝導接地接続であってもよい。
【0049】
図10は、本明細書で説明される1つまたは複数の実施形態による、量子ビット結合構造100の
図9に示す第4のトポロジを例証し得る例示的で非限定的第4のマイクロ波回路1000の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
図10に示すように、第1の量子ビット104は、第1の結合線201または第1のキャパシタ202あるいはその両方を介して共振器バス102(例えば、λ/4共振器)に結合され得る。更に、第2の量子ビット106は、第2の結合線203または第2のキャパシタ204あるいはその両方を介して共振器バス102(例えば、λ/4共振器)に結合され得る。加えて、本明細書における様々な実施形態で説明されるように、例示的な第2のマイクロ波回路500は、駆動ポート206を含み得る。
【0050】
更に、第4のキャパシタ904は、第1のキャパシタ202と第2のキャパシタ204との間で共振器バス102に沿って配置されてもよく、それにより共振器バス102の第1のセグメント(例えば、第1の量子ビット104に結合される)と、共振器バス102の第2のセグメント(例えば、第2の量子ビット106に結合される)とを画定する。共振器バス102の第1のセグメントは第1のコプレーナ導波路素子506を含んでもよく、共振器バス102の第2のセグメントは第2のコプレーナ導波路素子508を含んでもよい。本明細書で説明される様々な実施形態では、第1のセグメントの第1のコプレーナ導波路素子506および第2のセグメントの第2のコプレーナ導波路素子508は、同じ長さL1を有し得る。
【0051】
様々な実施形態では、結合スタブ902は、第1のセグメントに結合された第4のコプレーナ導波路素子1002と、第2のセグメントに結合された第5のコプレーナ導波路素子1004とを含み得る。更に、第4のコプレーナ導波路素子1002または第5のコプレーナ導波路素子1004あるいはその両方は、第3のコプレーナ導波路素子510(例えば、L2の異なる長さを有する)に結合され得る。加えて、第4のコプレーナ導波路素子1002または第5のコプレーナ導波路素子1004あるいはその両方は、同じ長さ(「L3」)を有し得る。1つまたは複数の実施形態では、L3は、L1およびL2よりも大きくてもよい。例えば、コプレーナ導波路の長さは、L3>L1>L2として特徴付けられ得る。
【0052】
図11は、本明細書で説明される1つまたは複数の実施形態による、
図9のトポロジまたは
図10の第4のマイクロ波回路1000あるいはその両方で例証された量子ビット結合構造100がどのように複数の干渉共振モードを得られるかを示し得る例示的で非限定的なグラフ1100の図である。本明細書で説明される他の実施形態で用いられる同様の要素の繰り返しの説明は、簡潔性のために省略される。
【0053】
本明細書で説明されるように、
図9および
図10で例証されている第4の量子ビット結合構造100のトポロジは、ジェネレイト・マルチモード共振器を得られる。例えば、量子ビット結合構造100は、共振器バス102または結合スタブ902あるいはその両方を介して複数の結合経路を有し得る。更に、結合経路の各々は、互いに干渉し得る共振モードを呈し得る。例えば、
図9~
図10に示す量子ビット結合構造100の偶数および奇数の共振モード(例えば、デジェネレイト・マルチモード共振器)は、第4のキャパシタ904を介する第1の量子ビット104と第2の量子ビット106との間の結合相互作用をほぼ打ち消すように加算し得る。更に、短絡結合スタブ902は、(例えば、第3のコプレーナ導波路素子510、第4のコプレーナ導波路素子1002、および/または第4のコプレーナ導波路素子1004、あるいはその組合せを介して)量子ビット結合構造100の偶数共振モードが奇数共振モードとは異なる形状を有するようにすることができ、それにより量子ビット周波数での零量子ビット-量子ビット結合を実現する。
【0054】
例えば、グラフ1100は、例示的な第4のマイクロ波回路1000の特徴を示す。線1102はJ値の特徴を示すことができ、線1104はZZ値の特徴を示すことができる。グラフ1100に示すように、量子ビット結合構造100は、約300メガヘルツ(MHz)によって分割される、約6.2GHzおよび6.5GHzで2つのデジェネレイト共振モードを呈する。また、グラフ1100に示すように、例示的な第4のマイクロ波回路1000のための零量子ビット-量子ビット結合周波数は、約4.5GHzで発生され得る。様々な実施形態では、ZZ値は、第1の量子ビット104と第2の量子ビット106との間の50MHzデルタを仮定することによってJ値から推論され得る。
【0055】
また、「または」という語は、排他的な「または」ではなく包括的な「または」を意味することが意図される。すなわち、特段の記載がない限り、または文脈から明らかでない限り、「XがAまたはBを用いる」は、自然な包括的順列のいずれかを意味することが意図される。すなわち、XがAを用いる;XがBを用いる;またはXがAおよびBの両方を用いる場合、「XはAまたはBを用いる」が前述した例のいずれかの下で満たされる。更に、単数形が指定された特段の記載がない限り、またはそのような文脈から明らかでない限り、本明細書と添付図面で使用される場合の「a」および「an」という冠詞は、概して「1つまたは複数」を意味すると解釈されるべきである。本明細書で使用される場合、「例」または「例示的」という用語あるいはその両方の用語は、「例、事例、または説明の役割を果たす」ことを意味するために利用される。不確かさを回避するため、本明細書で開示される主題は、そのような例によって限定されない。加えて、「例」または「例示的」あるいはその両方として本明細書で説明されるあらゆる態様または設計は、他の態様もしくは設計よりも好ましいまたは有益であるとは必ずしも解釈されるべきではなく、当業者に知られている等価の例示的な構造および技術を排除することが意味されていない。
【0056】
当然ながら、本開示を説明する目的で構成要素、製品、または方法、あるいはそのあらゆる考えられる組合せを説明することは可能ではないが、当業者は、本開示の多くの更なる組合せおよび置き換えが可能であることを認識し得る。更に、「備える」という語は、請求項における転換語として用いられるときに解釈されるため、「含む」、「有する」、「所有する」などの語が詳細な説明、請求項、付記、および図面で使用される程度に、そのような用語は、「備える」という用語と同様に包括的であることが意図される。様々な実施形態の説明が例示目的で提供されたが、網羅的である、または開示された実施形態に限定されることは意図されない。多くの修正および変形は、説明された実施形態の範囲および思想から逸脱しない範囲で、当業者にとって明らかであろう。実施形態の原理、市場に存在する技術の実用化または技術的改良を最も良く説明するため、または本開示が他の当業者が本明細書で開示される実施形態を理解できるようにするために、本明細書で使用される用語は選ばれた。
【国際調査報告】