IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特表2023-554260超音波システム自己テストデータシステム傾向分析のフィードバック
<>
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図1a
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図1b
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図2
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図3
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図4a
  • 特表-超音波システム自己テストデータシステム傾向分析のフィードバック 図4b
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-27
(54)【発明の名称】超音波システム自己テストデータシステム傾向分析のフィードバック
(51)【国際特許分類】
   A61B 8/00 20060101AFI20231220BHJP
【FI】
A61B8/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023533864
(86)(22)【出願日】2021-12-16
(85)【翻訳文提出日】2023-06-02
(86)【国際出願番号】 EP2021086046
(87)【国際公開番号】W WO2022136077
(87)【国際公開日】2022-06-30
(31)【優先権主張番号】63/129,436
(32)【優先日】2020-12-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】100122769
【弁理士】
【氏名又は名称】笛田 秀仙
(74)【代理人】
【識別番号】100163809
【弁理士】
【氏名又は名称】五十嵐 貴裕
(74)【代理人】
【識別番号】100145654
【弁理士】
【氏名又は名称】矢ヶ部 喜行
(72)【発明者】
【氏名】サンプソン 2世 リチャード アンソニー
(72)【発明者】
【氏名】フー チャンホン
(72)【発明者】
【氏名】ラオ シュバ
(72)【発明者】
【氏名】スミッチガー ジュストゥス ダニエル
(72)【発明者】
【氏名】シュミシング ダニエル
【テーマコード(参考)】
4C601
【Fターム(参考)】
4C601EE11
4C601EE24
4C601HH01
4C601LL01
4C601LL17
4C601LL21
(57)【要約】
超音波システムは、システムのハードウェアコンポーネントの定期的な自己テストを実行するように構成される。自己テストの結果は、超音波システム上でデータログに記憶され、前記自己テストデータベースに定期的にアップロードされる。前記自己テストデータベースはソートされ、次いで、超音波システムハードウェア性能又は動作における分散又は傾向を識別するために、超音波システム製造業者の技術者によって分析される。分析の結果として、更新される、又は改善される自己テストプログラムが、システム製造業者によって開発され、システムのインストールされるベースの超音波システムにアップロードされ、インストールされる。
【特許請求の範囲】
【請求項1】
超音波診断撮像システムの常駐自己テストを実施する方法であって、
超音波システム上で自己テストプログラムを実行して、前記超音波システムのハードウェアコンポーネントをテストし、前記テストの結果を自己テストログに記憶するステップと、
前記自己テストログを自己テストデータのデータベースにアップロードするステップと、
分析のために前記自己テストデータのデータベースをダウンロードするステップと、
前記自己テストデータをソートするステップと、
前記自己テストデータを分析するステップと、
新しい自己テストプログラムを開発するステップと、
前記新しい自己テストプログラムを前記超音波システムにアップロードするステップと
を有する、方法。
【請求項2】
前記テストの結果を記憶するステップは、前記超音波システム上の自己テストログに前記自己テストの結果を記憶するステップをさらに有する、請求項1に記載の方法。
【請求項3】
前記自己テストの結果を記憶するステップは、複数の異なる時間に実行される前記テストの結果を含むログに前記自己テストの結果を記憶するステップをさらに有する、請求項2に記載の方法。
【請求項4】
前記自己テストログをアップロードするステップは、複数の個々の超音波システムからの自己テストデータを含むデータベースに前記自己テストログのデータをアップロードするステップをさらに有する、請求項3に記載の方法。
【請求項5】
前記自己テストログをアップロードするステップは、前記自己テストログのデータをクラウドデータベースにアップロードするステップをさらに有する、請求項4に記載の方法。
【請求項6】
前記自己テストログをクラウドデータベースにアップロードするステップは、前記自己テストログを処理及び分析のためにクラウドネットワークにアップロードするステップをさらに有する、請求項5に記載の方法。
【請求項7】
前記自己テストデータのデータベースをダウンロードするステップは、前記データベースを超音波システム製造業者にダウンロードするステップをさらに有する、請求項4に記載の方法。
【請求項8】
前記自己テストデータをソートするステップは、所定の基準によって前記自己テストデータをソートするステップをさらに有する、請求項7に記載の方法。
【請求項9】
前記自己テストデータを分析するステップは、前記自己テストデータを分析して、前記ハードウェアコンポーネントの動作又は性能の傾向を明らかにするステップをさらに有する、請求項8に記載の方法。
【請求項10】
前記新しい自己テストプログラムを開発するステップは、前記分析によって明らかにされる傾向を考慮して、ハードウェアコンポーネントのための新しい自己テストプログラムテストを開発するステップをさらに有する、請求項9に記載の方法。
【請求項11】
前記新しい自己テストプログラムを開発するステップは、自己テストプログラムのためにもはや必要とされない自己テストを排除するステップをさらに有する、請求項10に記載の方法。
【請求項12】
前記新しい自己テストプログラムをアップロードするステップは、前記新しい自己テストプログラムを前記超音波システムに手動又は自動でアップロードするステップと、前記新しい自己テストプログラムを前記超音波システムにインストールするステップとをさらに有する、請求項10に記載の方法。
【請求項13】
前記超音波システムのハードウェアコンポーネントをテストするために超音波システム上で自己テストプログラムを実行するステップは、前記超音波システムのビームフォーマのチャネルボードの自己テストを実行するステップをさらに有する、請求項1に記載の方法。
【請求項14】
前記超音波システムのハードウェアコンポーネントをテストするために超音波システム上で自己テストプログラムを実行するステップは、前記超音波システムのメモリデバイスの自己テストを実行するステップをさらに有する、請求項1に記載の方法。
【請求項15】
前記超音波システムのハードウェアコンポーネントをテストするために超音波システム上で自己テストプログラムを実行するステップは、前記超音波システムの送信コンポーネントの自己テストを実行するステップをさらに有する、請求項2に記載の方法。
【請求項16】
前記超音波システムのハードウェアコンポーネントをテストするために超音波システム上で自己テストプログラムを実行するステップは、前記超音波システムの受信コンポーネントの自己テストを実行するステップをさらに有する、請求項2に記載の方法。
【請求項17】
超音波診断撮像システムの常駐自己テストを実行するための超音波システムであって、前記超音波システムは、
プロセッサと、
メモリであって、前記プロセッサ上で実行されるとき、前記プロセッサに、
前記超音波システムのハードウェアコンポーネントをテストするために超音波システム上で自己テストプログラムを実行し、前記テストの結果を自己テストログに記憶するステップと、
前記自己テストログを自己テストデータのデータベースにアップロードするステップと、
分析のために前記自己テストデータのデータベースをダウンロードするステップと、
前記自己テストデータをソートするステップと、
前記自己テストデータを分析するステップと、
新しい自己テストプログラムを開発するステップと、
前記新しい自己テストプログラムを前記超音波システムにアップロードするステップと
を実行させる命令を記憶するメモリと
を有する、超音波システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は超音波システム性能及び部品故障解析に関し、特に、傾向解析及び改善されるシステムテストのための超音波システムからの常駐自己テストデータのフィードバックに関する。
【背景技術】
【0002】
超音波システムは、多種多様な構成で利用可能である。例えば、ワシントン州BothellのPhilips Healthcareから利用可能なLumifyシステムは、超音波プローブと、ユーザのタブレットコンピュータ又はスマートフォン上にインストールされるディスプレイ及びユーザインターフェースソフトウェアとからなる、高度にポータブルな超音波システムである。超音波特有のハードウェアの全ては、プローブ内部のマイクロビームフォーマASIC及びFPGA ICのような集積回路に含まれる。3D、マルチライン、及びせん断波イメージングなどの高度な機能が可能なPhilips EPIQシステムなどのより高度なカート搭載超音波システムはシステムメインフレーム内に含まれるプリント回路基板(p.c.b.)上に、それらの超音波特有の及び他のハードウェアコンポーネントの多くを含む。p.c.b.はハードウェア故障時に新しいボードに簡単に交換することができ、必要に応じて後世代のp.c.b.と交換することができ、カート搭載超音波システムが非常に長い耐用年数を享受することを可能にする。
【0003】
超音波システムの信頼性及び耐用年数を維持することは、内蔵のオンボードシステムテストによって得ることができる。他の医療装置と同様に、高性能超音波システムは通常、超音波システムコンポーネントをテストし、そのようなテストの結果を記録するために定期的に動作する常駐自己テストプログラムを備える。自己テストは一般に、電源投入時、又は毎日、又は毎週、又は何らかの他のユーザ選択間隔など、超音波システム所有者によって指定される時間に実行され得る。超音波システムの自己テストの結果は一般に、システムを維持又は保守するサービスエンジニアによって検索され得る、そのようなテストのログとして、システムデータ記憶デバイスに保存される。自己テスト結果はどの超音波システムコンポーネントが適切に動作しており、どのコンポーネントが重要な性能限界にあるか、又はそれに近いかを、サービスエンジニアにガイドするのに役立つ。
【発明の概要】
【発明が解決しようとする課題】
【0004】
超音波システムの信頼性は部分的にはシステムの稼働時間、例えば、超音波システムが使用のために利用可能であり、サービス又は保守の問題のために無効にされない時間の割合によって得ることができる。すべての超音波システム製造業者は、顧客に最大の稼働時間を提供するよう努力している。良好な稼働時間彼らのパフォーマンスの性能が故障レベルに達する前に、それらが起こる前にサービス問題を防止すること、超音波システムコンポーネントを修復又は交換することによって得られ得る。住民の自己テストは、超音波システムのコンポーネントが自己テスト日の期間にわたってどのように実行されているかに関する関連情報を提供するので、そのようなシステム性能監視において役割を果たすことができる。しかしながら、自己テストからのデータのログは通常、サービスエンジニアが超音波システムのサイトを訪れ、自己テストログデータを検索するか、又は超音波システムの顧客が自己テストデータログにアクセスし、レビューのためにサービスエンジニアにそれを送信することができるときにのみ利用可能である。このような自己テストデータログは、定期的にサービスエンジニアに自動的に転送されることが望ましい。自己テストデータログが超音波システム製造業者に中継されることがさらに望ましく、ここで、データは、潜在的な将来のシステム故障問題を識別するために分析され得る。また、自己テストデータが超音波システム製造業者によって検討されて、システムハードウェア性能の開発傾向を識別し、さらに、超音波システム製造業者が、顧客の超音波システムの自己テストプロトコルを改訂又は更新することを可能にすることも望ましい。
【課題を解決するための手段】
【0005】
本開示の原理によれば、超音波システムは、システムのハードウェアコンポーネントの定期的な自己テストを実行するように構成される。自己テストの結果は、超音波システム上でデータログに記憶され、自己テストデータベースに定期的にアップロードされる。自己テストデータベースはソートされ、次いで、超音波システムハードウェア性能又は動作における分散又は傾向を識別するために、超音波システム製造業者の技術者によって分析される。分析の結果として、更新又は改善される自己テストプログラムが、システム製造業者によって開発され、システムのインストールされるベースの超音波システムにアップロードされ、インストールされる。
【図面の簡単な説明】
【0006】
図1a】本開示の原理に従って構成される超音波システムを示す。
図1b図1aの超音波システムの常駐自己テスト(RST)データの超音波システム製造業者への送信を示す。
図2】超音波システムによるRSTデータ取得の閉ループシステムと、傾向分析、更新、及び超音波システム上の更新されるRSTプログラムのインストールのための超音波システム製造業者へのそのデータの転送とを示す。
図3】超音波システム上で自己テストを実施し、自己テストの結果を超音波システム製造業者に転送して、超音波システム内にインストールするための更新される自己テストプログラムの分析及び開発を行うためのフローチャートを示す。
図4a】p.c.bの回路のテストからのテスト結果を示す自己テストデータのヒストグラムを示す。
図4b図4aと同じシステム上の別のレベルのp.c.b.のテストからのテスト結果を示す自己テストデータのヒストグラムを示す。
【発明を実施するための形態】
【0007】
最初に図1を参照すると、本開示の原理に従って構成される超音波システムがブロック図の形態で示されている。超音波システム10の超音波画像取得、処理及び表示経路は、トランスデューサ素子14のアレイを有するアレイプローブ12から始まる。トランスデューサアレイはビームフォーマ16の制御下で超音波を送信し、撮像されている被検体からのエコー信号を受信し、これは電気信号に変換される。アレイの個々の要素によって受信される信号はコヒーレントなエコー信号を形成するために、ビームフォーマ16によって適切に遅延され、結合される。エコー信号は、検出、フィルタリング、ドップラー処理、高調波信号分離など、取得されて表示される情報のタイプに対して特定の処理を受ける。この処理は、信号処理部22によって行われる。処理される信号は、画像処理部24によって所望の表示形式の画像に形成され、画像表示部20に表示される。画像はさらなる処理及びレビュー又は後の表示のために、画像記憶装置26に記憶されてもよい。
【0008】
信号取得、画像処理、及び表示経路の処理の機能は、信号経路のコンポーネントに結合されるシステムコントローラ30によって制御され、調整される。システムコントローラは、ディスプレイ上のグラフィカルユーザインタフェースによって、又は制御パネル32もしくは音声認識システムから入力することができるユーザからのコマンドに応答する。システムコントローラはマイクロプロセッサ、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、ASIC、又は論理回路などのプロセッサを有し、プロセッサは、ユーザインターフェース及び超音波システムの他のコンポーネントを伴う機能を実行するオペレーティングシステム(OS)31を実行する。また、OSは、イーサネット(登録商標)カードやモデムなどのネットワークアダプタ36を介して、ネットワーク40を介した通信を制御する。ネットワーク40は、イーサネット(登録商標)、FDDI、PPP、トークンリング(token ring)、IEEE 802.11などの様々なタイプのものとすることができる。超音波システムがネットワーク40に接続されると、超音波システムはネットワーク上の他のデバイスと通信することができ、その例は、画像アーカイブ及び通信システム(PACS)44、及びワークステーション端末50を含む。
【0009】
本開示の原理によれば、超音波システム10は、常駐自己テスト(RST)プログラム34aのための記憶装置34と、システムによって実行される自己テストの結果を記憶するRSTログとを備える。RSTプログラムはシステムコントローラの到達により、超音波システムのアクティブハードウェアの全てではないにしてもほとんどにアクセスすることができるOS 31を実行するプロセッサによって実行される。RSTプログラム34aはそれによって、ビームフォーマ、信号プロセッサ、画像処理装置、及びメモリデバイスのものなどの超音波システムの様々なハードウェアコンポーネントのテストの実行を命令し、テストの結果を読み取り、その結果をRSTログ34bに記憶する。
【0010】
自己テストはシステムオペレータによって、非周期的に、又はスケジュールに基づいて、又はコマンドに基づいて実行されてもよい。いくつかの医療デバイス、特に、除細動器などの生命維持又は救命に関与する医療デバイスは、電源が入っているときはいつでも自己テストを実行する。他の人々は、ユーザによって設定されるスケジュールで自己テストを行う。例えば、ユーザは週に1回、又は別の日に、又は週末に、自己テストを実行するように超音波システムを設定することができる。超音波システムはユーザがシステムの問題を疑う場合に起こり得るように、その自己テストを実行するようにユーザによって命令され得る。自己テストの実行は、通常、超音波システムの保守又は修理を行う前にサービスエンジニアが行うことでもある。
【0011】
本開示のさらなる態様によれば、超音波システム10は、ネットワーク40を介して超音波システムの製造業者46にそのRSTログ34bを通信するように構成される。この送信は、システムオペレータ又はサービスエンジニアのコマンドで行うことができる。これはまた、超音波システムが配置されている施設のセキュリティプロトコル及びプライバシー要件が許可されるとき、スケジュール上で、又は新しいRSTデータがRSTログに記録されるときに、超音波システムによって自動的に行われてもよい。図1bは、RSTログデータの典型的なネットワーク及びルーティングを示す。
【0012】
図1bにおいて、ネットワーク40は、RSTデータベースが存在するサーバのクラウドネットワークとして示されている。この例では、RSTデータベースが超音波システムの製造業者の設置ベースの多数の超音波システムによってアクセスすることができる。RSTデータベースの処理はクラウドネットワーク40上で行うことができ、それによって、RSTデータは、多くの超音波システムのRSTデータの所望の相関及び測定を明らかにする分析及びダッシュボードを生成するために処理される。RSTデータと、そこから導出される解析及びダッシュボードは、超音波システム製造業者46によってアクセス可能である。超音波システム製造業者の様々な部門及び機能はRSTデータ及びその分析及びダッシュボードにアクセスし、それらを使用して、設置されるベース内の超音波システムを設計、サービス、維持、及び改善することができる。そのような部門及び関数の例を図1bに示す。RSTデータ及びその分析は製造業者のシステムサービス及び修理機能54によってアクセスされ得、その情報は設置されるベース内の超音波システムをより良くサービスし、維持し、アップグレードするために使用される。RSTデータ及びその分析は、製造業者のシステム製造エンジニアリング機能56によってアクセスされ、超音波システムの製造及び改修を改善するために使用され得る。RSTデータ及びその分析は、製造業者のシステム設計エンジニアリング機能52によってアクセスされ、新しい超音波システムの設計又は設置されるベースの超音波システムのためのアップグレードに使用され得る。
【0013】
本開示のさらなる態様によれば、RSTデータ及びその分析は超音波システムのそのインストールされるベースのハードウェアの動作又は性能の傾向を明らかにするために、超音波システム製造業者46によって使用される。そのような傾向は単一の超音波システムのRSTログデータでは明らかではないが、長期間の多くの超音波システムからのRSTデータの分析はそのような傾向を明らかにする。例えば、そのような傾向分析は超音波システムの1つの領域に位置するコンポーネントが典型的には他の領域で動作するコンポーネントよりも高温で動作し得ることを明らかにし得る。例えば、カードケージの他の領域に位置するp.c.b.よりも冷却ファンに近いp.c.b.は、より低温で動作することができる。増加した加熱は、コンポーネントの性能又は寿命の要因であり得るか、又はそわなくてもよい。広範囲の地理的エリアからの多数の超音波システムのRSTデータの分析は、異なる高温又は低温の気候又は湿度条件を有する地理的エリアにおける性能又は寿命の差を示し得る。これらの動作条件の起こり得る悪影響を克服するための措置をとることができる。トレンディング分析は、自己テストのいくつかが失敗することはめったにないこと、又は設置されるベースの超音波システムへのフィールドアップグレードによって回避されることを明らかにすることができる。もはや有用ではないことが判明したテストは排除することができ、テスト実行時間を短縮するか、又はより関連するテストを実施することを可能にする。傾向分析はまた、予測監視を可能にすることができ、それによって、テスト結果の傾向は、特定のコンポーネントがいつ故障するかを予測するために使用され得る。サービス及び修理機能54はそのような傾向及びその意味合いに警告することができ、サービスエンジニアがサービス及び超音波システムを点検するときにそのような傾向を探し、交換部品を保管及び運搬することを可能にする。傾向分析の結果は開発中の傾向をより迅速かつ確実に見つけることができるように、サービスエンジニアのトレーニングに考慮することができる。システムの超音波画像におけるアーチファクトとして現れる問題を発展させる傾向は超音波システムのユーザに伝えられ、そのような画像アーチファクトのインポートを知り、それらを製造業者のサービス及び修復機能54に報告することを可能にする。
【0014】
本開示のさらなる態様によれば、RSTデータ及びその分析は、RSTプログラムを修正及び精緻化するために超音波システム製造業者によって使用される。例えば、システム設計エンジニアリング機能52はRSTデータの分析に基づいてRSTプログラムを精緻化して、完全に機能的なコンポーネントが自己テストに失敗することを防止することができ、これは、不要なサービスコール及び部品交換を引き起こす可能性がある。システム設計エンジニアリング機能は、RSTデータの分析を使用して、新しいRSTテストを必要とするか、又は自己テストを全く必要としないシステムアップグレードのための改善されるコンポーネントを設計及び開発することができる。失敗したり不要になったりすることがめったにないRSTテストは、RSTプログラムから削除できる。そのような修正され精緻化されるRSTプログラムが生成され、それ自体がテストされ、検証されると、それらは、図1bの下部にある矢印によって示されるように、設置されるベースの適切な超音波システムに設置するために送達され得る。そのような送達は、好ましくは到着する更新されるRSTプログラムが超音波システム10上に自動的にインストールされる状態で、ネットワークを介して電子的である。しかし、この通信はサービスエンジニアが新しいRSTプログラムを超音波システムサイトに配信し、それを超音波システムにインストールすることによって、より手動であってもよい。
【0015】
RSTテストの望ましい構成及び実施は、図2のフローチャートに示されるような閉ループ経路である。図の上部には、RSTテスト及びデータロギング34を有する顧客超音波システム10がある。超音波システム10からの矢印によって示されるように、超音波システム10のRSTデータログは、クラウドコンピューティングネットワーク40に常駐するRSTデータベースにアップロードされる。クラウドコンピューティングネットワークのサーバはRSTデータを処理して、分析及びダッシュボード情報を開発することができ、この情報は次いで、ネットワーク40からの矢印によって示されるように、超音波システム製造業者によってダウンロードするためにすべて利用可能である。62において、RSTデータは、超音波システムモデル、製造日、場所、アップグレード構成、RSTテスト結果などの基準によってソートされる。エンジニアは、64でRSTデータを分析する。傾向分析などのこのような分析の結果として、66において、更新されるRSTプログラムが開発される。最後の上向き矢印が示すように、更新されるRSTプログラムを顧客超音波システム10に送達し、それを超音波システム上での動作及び実行のためにインストールすることによって、ループが閉じられる。
【0016】
本開示による超音波システムの自己テストを実行するための方法が図3に示されている。このプロセスは70に示すように、超音波システムがハードウェアコンポーネントの自己テストを実行することから始まる。自己テストの結果は、超音波システムの自己テストログに記憶され、72で自己テストデータベースにアップロードされる。74において、自己テストデータベースのデータ及びそれから導出される情報は、分析のために超音波システム製造業者によってダウンロードされる。76において、自己テストデータがソートされる。データのソートは、超音波システムモデル、テストされるコンポーネント、テスト日、テスト結果などによって、所定の基準に従って行われる。78において、自己テストデータ及び情報は、ハードウェアの故障又はハードウェアの動作又は性能の傾向について分析される。以下の図4a及び図4bに関連して説明される状況によって示されるように、分析から、自己テストプログラムが修正されるべきであるか、又は新しい自己テストが望まれることが79において決定される場合、プロセスは80に進み、そこで、新しい自己テストプログラムが開発されるか、又は既存のテストが修正される。自己テスト修正又は開発が生産的でないと判定される場合、プロセスは84で終了する。82において、新しい又は修正される自己テストが超音波システムにアップロードされる。
【0017】
図4a及び4bは、超音波システムのチャネルボードの自己テストの結果として生成される、分析されるRSTデータのダッシュボードの例を示す。各ダッシュボードは、特定のビームフォーマチャネルの送信関数、図4aのビームフォーマ16のチャネル001、及び図4bのビームフォーマのチャネル017の異なる時間におけるテストの結果を示すヒストグラムを示す。デジタル超音波システムでは、ビームフォーマがプローブ12のトランスデューサ素子14に提供する送信波形がデジタル化される形態でメモリに記憶される。ビームがプローブによって送信されるとき、所望の波形のデジタル化される値は、適切なタイミング及び周波数でメモリからクロックアウトされ、D/A(デジタルアナログ)変換器によって変換器要素のためのアナログ波形に変換される。送信ビームフォーマチャネルの典型的な自己テストはチャネルボードのメモリに、既知の波形をクロックアウトするように命令し、次いで、出力波形を検出し、その波形を周波数分析して、出力波形が所望の周波数であるかどうかを決定することである。そのようなテストの結果は、図4a及び4bにヒストグラム形式で示されている。
【0018】
図4aにおいて、ビームフォーマチャネル001は2月の4つの異なる日にテストされ、結果は4つのヒストグラムバー90によって示されることが分かる。ビームフォーマチャネル001は、この例では部品番号4177乃至2305を有するチャネルボード上に物理的に配置されるチャネルである。図4bは同じ日におけるビームフォーマのチャネル017の自己テストの結果を示しており、この場合も、結果はヒストグラムバー90として示されている。チャネル017は超音波システム内の異なるチャネル基板上に位置し、このチャネル基板は部品番号4177乃至2310を有する。この例では部品番号の違いはチャネル017が位置するチャネル基板がチャネル001が位置するチャネル基板よりも後の修正(2310)のものであることを示し、チャネル017は超音波システムによって使用されるチャネル基板のより最近更新されるバージョン上にある。
【0019】
図4aのヒストグラムデータの分析は、チャネル001の自己テストの結果がチャネルは所望の周波数範囲の中央で一貫して出力信号を生成したことを示すことを明らかにしている。ヒストグラムバー90の上部はヒストグラムの高い破線及び低破線の中央に一貫して位置するように見え、これらの線はチャネル出力周波数の目標範囲を画定する。しかしながら、図4bにおけるチャネル017のヒストグラムバー90の傾向は、破線の間の目標周波数範囲の高端に一貫していることが分かる。両方のチャネルは測定される出力周波数が常に、両方のチャネルのための目標周波数範囲内であったので、自己テストに合格したが、チャネル001は一貫して集約されるテスト結果をもたらし、一方、チャネル017は範囲の高いで一貫した結果をもたらした。これらの一貫した傾向に対する追跡調査は、チャネル017のチャネル基板のより新しい改訂(2310)がその設計のために意図されるより高い性能を有し、より高い測定周波数結果がチャネル基板のより高い改訂の通常動作のために期待されることを明らかにした。結果として、超音波システム10のための自己テストプログラムは異なるチャネル基板改訂のためのわずかに異なるテストを提供するように修正され、その結果、両方のチャネル基板の通常の動作はそれらのそれぞれの自己テストのための中心周波数結果を生成する。具体的な例として、許容可能な周波数の周波数中心点又は範囲は異なる許容可能な出力範囲を反映するように、チャネル017などのチャネルの自己テストにおいて修正され得る。
【0020】
超音波システムハードウェア自己テストの使用の別の例は、超音波システムのパルサ回路コンポーネントをテストすることである。パルサ回路は、トランスデューサアレイの要素を適切な電圧レベルで駆動するために使用される。超音波プローブが設計されるとき、それらの音響エネルギー出力は、異なる送信条件及びトランスデューサ素子駆動電圧に対して測定される。次いで、プローブのピーク音響出力は、様々な超音波検査の実施のために臨床医によって使用される音響エネルギーの単位である機械的指数(MI)の単位で較正される。例えば、臨床医がMIを0.8に設定すると、プローブへの駆動電圧は、そのレベルで出力エネルギーを生成する。これを検証するために、1つ又は複数のパルサ回路の自己テストを使用することができる。パルサ回路は、ビームフォーマのチャネルボード上に配置されてもよく、又はそれ自体のパルサp.c.b.上に配置されてもよい。テストは送信されるべき特定のMI又は駆動電圧を指令し、パルサ回路の出力電圧レベルは、パルサ回路によって生成される出力が実際に意図されるピーク又はr.m.s.レベルにあるかどうかを確認するために測定され得る。自己テストプログラムによるパルサ回路の時間反復テストは、パルサ回路の出力がその意図されるレベルから変化しないという信頼度を提供することができる。
【0021】
超音波システムハードウェアコンポーネントの自己テストの別の例は、メモリデバイスの自己テストである。メモリデバイスは特定のデータセットを用いて書き込まれることが可能であるべきであり、次いで、データがメモリデバイスから読み出されるとき、それは、初期データセットと同一であるべきである。メモリデバイスに書き込まれたデータとメモリデバイスから読み出されるデータとを比較する自己テストは、画像記憶部26内で使用されるメモリデバイスなどのメモリデバイスをテストする典型的な方法である。他の手段もまた、メモリデバイスをテストするために使用され得る。例えば、メモリデバイスにデータを書き込む時間及びデータを読み出す時間は、いくつかの例では重要であり得る。この例は、ビームフォーマにおいて遅延時間をもたらすために使用されるメモリデバイスである。いくつかのビームフォーマは受信されるエコー信号のデータをある時点でメモリデバイスに書き込み、その後の時点でメモリデバイスからデータを読み出すことによって動作する。書込み時間と読出し時間との間の持続時間は、ビームフォーミングに使用するためのエコー信号の遅延時間を提供する。メモリデバイスにデータを書き込み、それを後で読み出す時間が意図されるものと異なる場合、遅延時間は不正確になり、超音波ビーム及び劣化した超音波画像の不正確なステアリング又は集束をもたらす可能性がある。したがって、メモリデバイスのための1つのテストはこれらの書込み時間及び読出し時間を測定し、それらを記録して、ビーム集束及びステアリングに悪影響を及ぼす可能性があるメモリデバイスのアクセス時間のドリフトがあるかどうかを確認することであり得る。
【0022】
超音波信号の受信及び処理のためのハードウェアコンポーネントもまた、RSTによってテストされ得る。例えば、プローブによって受信されるアナログエコー信号をデジタル化するために使用されるアナログデジタル変換器(ADC)は予想されるエコー信号の範囲内のアナログ電圧をADCに印加し、デジタル化される出力値を記録することによって、自己テストされ得る。次いで、デジタル化される値は、期待されるデジタル値と比較される。自己テストされ得る受信ハードウェアの別の例は、通常、ビームフォーマの前又はビームフォーマ内に配置されるASIC(特定用途向け集積回路)である。典型的な入力値がASICに適用され、ASICによる入力データの処理が期待される結果を生成したかどうかを見るために、出力値が測定される。
【0023】
自己テストによって分析され得る超音波システムハードウェアコンポーネントの他の例は、当業者には容易に想起される。
【0024】
本開示の実施において使用するのに適した超音波システム、特に図1の超音波システムのコンポーネント構造は、ハードウェア、ソフトウェア、又はそれらの組合せで実施することができることに留意される。超音波システムの様々な実施形態及び/又はコンポーネント、又はその中のコンポーネント及びコントローラはまた、1つ又は複数のコンピュータ又はマイクロプロセッサの一部として実装され得る。コンピュータ又はプロセッサは、例えばインターネットにアクセスするための、コンピューティング装置、入力装置、表示ユニット、及びインターフェースを含むことができる。コンピュータ又はプロセッサは、マイクロプロセッサを含むことができる。マイクロプロセッサは例えば、PACSシステム、ワークステーション、又は図1のシステムの場合のような超音波システムとの間のデータの送信のためのデータネットワークにアクセスするために、通信バスに接続され得る。コンピュータ又はプロセッサはまた、メモリを含み得る。画像記憶部26で使用されるものなどのメモリデバイスは、ランダムアクセスメモリ(RAM)及び読取り専用メモリ(ROM)を含み得る。コンピュータ又はプロセッサは、ハードディスクドライブ、又はフロッピーディスクドライブ、光ディスクドライブ、ソリッドステートサムドライブなどのリムーバブルストレージドライブとすることができる記憶デバイスをさらに含むことができる。記憶装置はまた、超音波装置上で常駐自己テストプログラムを実行し、結果を記録し、分析のために自己テスト結果に送信し、上記で説明したように新しい自己テストプログラムを受信するためのコンピュータプログラム又は命令をロードするための他の同様の手段であってもよい。
【0025】
本明細書で使用する「コンピュータ」又は「モジュール」もしくは「プロセッサ」又は「ワークステーション」という用語は、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、ASIC、論理回路、及び本明細書で説明する機能を実行することができる任意の他の回路又はプロセッサを使用するシステムを含む任意のプロセッサベース又はマイクロプロセッサベースのシステムを含むことができる。上記の実施例は単なる例示であり、したがって、これらの用語の定義及び/又は意味を方法限定することを意図するものではない。
【0026】
コンピュータ又はプロセッサは入力データを処理するために、又はシステム動作を実行するために、1つ又は複数の記憶要素に記憶されるRSTプログラムなどの命令のセットを実行する。記憶要素はまた、データ又は他の情報を記憶し得る。記憶要素は、処理機械内の情報源又は物理メモリ要素の形態であってもよい。超音波システムの命令のセットは超音波画像の取得、処理、及びディスプレイを制御するものを含み、超音波システムの命令のセットは処理機械としてのコンピュータ又はプロセッサに、特定の動作を実行するように命令する様々なコマンドを含むことができ、例えば、ハードウェアコンポーネントをエクササイズする方法及びプロセス、並びに上述したような結果を記録することができる。命令のセットは、ソフトウェアプログラムの形成であってもよい。ソフトウェアは、システムソフトウェア又はアプリケーションソフトウェアなどの様々な形態であり得、有形かつ非一時的なコンピュータ可読媒体として具現化され得る。さらに、ソフトウェアは、より大きなプログラム又はプログラムモジュールの部分内の別個のプログラム又はモジュールの集合の形成であり得る。ソフトウェアは、オブジェクト指向プログラミングの形態のモジュラープログラミングを含むこともできる。処理機械による入力データの処理は、制御パネルから発行されるオペレータコマンドに応答して、又は前の処理の結果に応答して、又は別の処理機械によって行われた要求に応答してもよい。
【0027】
さらに、以下の特許請求の範囲の限定はミーンズプラスファンクション形式で書かれておらず、35 U.S.C. 112、第6段落に基づいて解釈されることは意図されていない。ただし、そのような特許請求の範囲の限定がさらなる構造を欠く関数の記述が後に続く「のための手段」という語句を明示的に使用するまでは、この限りではない。
図1a
図1b
図2
図3
図4a
図4b
【国際調査報告】