(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-04
(54)【発明の名称】全体厚さばらつきを低減したガラス板の製造方法
(51)【国際特許分類】
C03B 17/06 20060101AFI20231222BHJP
【FI】
C03B17/06
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023536437
(86)(22)【出願日】2021-12-08
(85)【翻訳文提出日】2023-08-08
(86)【国際出願番号】 US2021062341
(87)【国際公開番号】W WO2022132525
(87)【国際公開日】2022-06-23
(32)【優先日】2020-12-18
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100175042
【氏名又は名称】高橋 秀明
(74)【代理人】
【識別番号】100163050
【氏名又は名称】小栗 眞由美
(74)【代理人】
【識別番号】100224775
【氏名又は名称】南 毅
(72)【発明者】
【氏名】ブレスラー,ダグラス デール
(72)【発明者】
【氏名】デネカ,デイヴィッド アラン
(72)【発明者】
【氏名】クニタケ,ミキ ユージーン
(72)【発明者】
【氏名】メリコフ,イヴァン フェドロヴィッチ
(72)【発明者】
【氏名】ニクーリン,イリヤ アンドレイエヴィッチ
(72)【発明者】
【氏名】ジャン,ジア
(57)【要約】
ガラス板の製造方法は、(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、第1の主面と第2の主面との間に配置されたコアと、を有しているステップと、(b)ガラスリボンの降下に従い、第1の昇温ゾーンのすぐ近傍にガラスリボンを通過させるステップであって、第1の昇温ゾーンは、コアの温度を軟化温度未満に保ったまま、第1の主面で液化を生じさせるものである、ステップと、(c)ガラスリボンが第1の昇温ゾーンより下に移動した後に、ガラスリボンからガラス板を切り分けるステップと、を含む。第1の昇温ゾーンのすぐ近傍にガラスリボンを通過させることにより、ガラスリボンの全体厚さばらつきや表面粗さなどの表面欠陥が低減される。
【特許請求の範囲】
【請求項1】
ガラス板の製造方法であって、
(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、前記ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、該第1の主面と該第2の主面との間に配置されたコアと、を有している、ステップと、
(b)前記ガラスリボンの降下に従い、第1の昇温ゾーンのすぐ近傍に前記ガラスリボンを通過させるステップであって、前記第1の昇温ゾーンは、前記コアの温度を軟化温度未満に保ったまま、前記第1の主面で液化が生じるのに十分な温度まで前記第1の主面の温度を上昇させるものである、ステップと、
(c)前記ガラスリボンが前記第1の昇温ゾーンより下に移動した後に、前記ガラスリボンからガラス板を切り分けるステップと、
を含む方法。
【請求項2】
ステップ(b)において、前記第1の主面の粘度が低下し、前記ガラスリボンの全体厚さばらつきが低減される、請求項1に記載の方法。
【請求項3】
ステップ(b)とステップ(c)との間であって、前記全体厚さばらつきが低減された後に、前記第1の主面の温度と前記コアの温度が平衡に近づき、前記ガラスリボンの実効粘度が低下し、前記ガラスリボンの厚さが減少する、請求項2に記載の方法。
【請求項4】
ステップ(b)の後且つステップ(c)の前に、引張ローラで前記ガラスリボンを下に引っ張るステップをさらに含む、請求項1に記載の方法。
【請求項5】
前記引張ローラで前記ガラスリボンを引っ張るステップにより、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さを減少させる、請求項1に記載の方法。
【請求項6】
前記ガラスリボンから切り分けられた前記ガラス板の全体厚さばらつきが、ステップ(b)前の前記ガラスリボンの全体厚さばらつきの50%以下である、請求項1に記載の方法。
【請求項7】
ステップ(b)からステップ(c)までの間に、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さが減少する、請求項1に記載の方法。
【請求項8】
前記第1の主面の温度を上昇させるステップが、前記第1の主面に火炎を向けるステップを含む、請求項1に記載の方法。
【請求項9】
ステップ(b)の前において、前記ガラスリボンの粘度が、10
10ポアズ~10
12ポアズであり、
ステップ(b)において、前記ガラスリボンの前記第1の主面における、前記第1の主面から前記ガラスリボンの厚さ方向に少なくとも100μmの深さまでの粘度が、10
5ポアズ以下まで低下し、
ステップ(c)の前において、前記ガラスリボンの粘度が、10
6ポアズ~10
8ポアズまで上昇する、請求項1に記載の方法。
【請求項10】
ガラス板の製造方法であって、
(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、前記ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、該第1の主面と該第2の主面との間に配置されたコアと、を有している、ステップと、
(b)前記ガラスリボンの降下に従い、(i)前記コアの温度を軟化温度未満に保ったまま、前記第1の主面で液化が生じるのに十分な温度まで前記第1の主面の温度を上昇させる第1の昇温ゾーン、及び(ii)前記コアの温度を前記軟化温度未満に保ったまま、前記第2の主面の温度を液相温度まで上昇させる第2の昇温ゾーンのすぐ近傍に前記ガラスリボンを通過させるステップと、
(c)前記ガラスリボンが前記第1の昇温ゾーン及び前記第2の昇温ゾーンより下に移動した後に、前記ガラスリボンからガラス板を切り分けるステップと、
を含む方法。
【請求項11】
ステップ(b)とステップ(c)との間であって、前記ガラスリボンの前記全体厚さばらつきが低減された後に、前記第1の主面、前記第2の主面、及び前記コアの温度が平衡に近づき、前記ガラスリボンの実効粘度が低下し、前記ガラスリボンの厚さが減少する、請求項10に記載の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、2020年12月18日を出願日とする米国仮特許出願第63/127330号の米国特許法第119条に基づく優先権の利益を主張するものであり、この仮出願のすべての開示内容は、本明細書の依拠するところとし、参照することによって本明細書に組み入れられるものとする。
【技術分野】
【0002】
本開示は、許容可能な全体厚さばらつきを有するガラス板に関し、さらには、1つ以上の昇温ゾーンのすぐ近傍にガラスリボンを通過させることにより厚さのばらつきを低減したガラスリボンからガラス板を切り分けることによって、許容可能な全体厚さばらつきを有するガラス板を製造する方法に関する。
【背景技術】
【0003】
拡張現実(augmented reality)システムは、当該システムのユーザが注視している現実の視覚的な場面に、コンピュータが生成した画像(imagery)を追加するものである。通常、拡張現実システムは、直接見える実際の物体や場面に、コンピュータが生成した画像を追加すると共に、その状態でこの物体や場面を見ることができるように構成された光学系を備えることができる。光学系は、高屈折率ガラス製とすることができるライトガイドを利用して、コンピュータが生成した画像をユーザの視野に投影することができる。ライトガイドの形状にばらつきがあると、ライトガイドにより導かれてユーザに表示される画像の品質が低下する恐れがある。例えば、高品質な画像を出力可能とするためには、ライトガイドの全体厚さばらつき(total thickness variation)を最小限に抑える必要がある。
【0004】
許容可能な全体厚さばらつきのライトガイドを実現するプロセスの1つとして、高屈折率ガラスのブールを鋳造し、ブールを多数のウェハに鋸引き切断し、ウェハの粗研磨(lap)及び研磨(polish)又はウェハの再加熱によりウェハを平坦化するプロセスがある。しかし、このプロセスではコストも時間もかかってしまう。さらに、ウェハの再加熱により、ガラスの失透が引き起される恐れもある。
【0005】
また、屈折率の高いガラス組成物の液相粘度は非常に低い(例えば、1~100ポアズ)ため、高屈折率ガラス組成物にはフュージョンプロセスを適用することもできない。
【0006】
本開示以前には、ダウンドローリボン成形プロセスにより高屈折率ガラス板を成形する試みが行われていた。ダウンドローリボン成形プロセスでは、溶融ガラスは成形体(向かい合うローラ間のニップなど)に投入される。次に、溶融ガラスを下方向に延伸して、ガラスリボンとする。そして、このガラスリボンを下方向に延伸することにより、ガラスリボンを細薄化(attenuate)する(すなわち、ガラスリボンの厚さを減少させる)。そして、ガラスリボンが冷えると、リボンから連続的にガラス板が切り分けられる。ダウンドローリボン成形プロセスは、ブールからウェハを形成して粗研磨及び研磨を行う上述のプロセスよりも低コストである。
【0007】
ところが、問題が発見された。成形体によりガラスリボンに厚さのばらつきが生じてしまい、この厚さのばらつきが、後続のガラスリボンの細薄化によっても低減されなかったのである。例えば、融液が広がる成形体上部の領域では、成形体により、ガラスの主面がガラスのコアよりも優先的に冷却され、その結果、主面に「冷えじわ(chill wrinkle)」と呼ばれる起伏が生じる。この厚さのばらつきは、ガラスリボンの細薄化によって低減されると考えられてきた。しかし、モデリングと実験により、細薄化によって厚さのばらつきが低減することはなく、厚さのばらつきを悪化する場合もあることが実証された。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本開示は、ガラスリボンからガラス板を切り分ける前に、ガラスリボンの1つ以上の主面で液化が生じるようにガラスリボンを熱処理することにより、この問題に対処するものである。ガラスリボンの1つ以上の主面で液化を生じさせることにより、厚さのばらつきが低減する。この改良により、成形&ドロー(form-and-draw)プロセスを利用して、より経済的に高屈折率ガラス板を成形することが可能となる。
【課題を解決するための手段】
【0009】
本開示の第1の態様によれば、ガラス板の製造方法は、(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、第1の主面と第2の主面との間に配置されたコアと、を有しているステップと、(b)ガラスリボンの降下に従い、第1の昇温ゾーンのすぐ近傍にガラスリボンを通過させるステップであって、第1の昇温ゾーンは、コアの温度を軟化温度未満に保ったまま、第1の主面で液化が生じるのに十分な温度まで第1の主面の温度を上昇させるものである、ステップと、(c)ガラスリボンが第1の昇温ゾーンより下に移動した後に、ガラスリボンからガラス板を切り分けるステップと、を含む。
【0010】
本開示の第2の態様によれば、第1の態様のステップ(b)において、第1の主面の粘度が低下し、ガラスリボンの全体厚さばらつきが低減される。
【0011】
本開示の第3の態様によれば、第2の態様において、ステップ(b)とステップ(c)との間であって、全体厚さばらつきが低減された後に、第1の主面の温度とコアの温度が平衡に近づき、ガラスリボンの実効粘度が低下し、ガラスリボンの厚さが減少する。
【0012】
本開示の第4の態様によれば、第1~第3の態様のいずれか1つの態様に記載の方法は、ステップ(a)の前に、向かい合う一対の成形ローラ間のニップに溶融ガラスを送るステップをさらに含む。また、鉛直方向の向きでガラスリボンを成形するステップが、一対の成形ローラを回転させて、ニップに送られた溶融ガラスを圧延によりガラスリボンとするステップを含む。
【0013】
本開示の第5の態様によれば、第1~第4の態様のいずれか1つの態様に記載の方法は、ステップ(b)の後且つステップ(c)の前に、引張ローラでガラスリボンを下に引っ張るステップをさらに含む。
【0014】
本開示の第6の態様によれば、第5の態様において、引張ローラでガラスリボンを引っ張るステップにより、第1の主面と第2の主面との間のガラスリボンの厚さを減少させる。
【0015】
本開示の第7の態様によれば、第1~第6の態様のいずれか1つの態様に記載の方法は、ステップ(b)の後且つステップ(c)の前に、第1の主面と第2の主面との間のガラスリボンの厚さを測定するステップをさらに含む。
【0016】
本開示の第8の態様によれば、第1~第7の態様のいずれか1つの態様において、切り分けられたガラス板の第1の主面の表面粗さ(Ra)が、500nm未満である。
【0017】
本開示の第9の態様によれば、第1~第8の態様のいずれか1つの態様において、ガラスリボンから切り分けられたガラス板の全体厚さばらつきが、5μm未満である。
【0018】
本開示の第10の態様によれば、第1~第9の態様のいずれか1つの態様において、ガラスリボンから切り分けられたガラス板の全体厚さばらつきが、ステップ(b)前のガラスリボンの全体厚さばらつきの50%以下である。
【0019】
本開示の第11の態様によれば、第1~第10の態様のいずれか1つの態様において、ステップ(a)の後且つステップ(b)の前における、第1の主面と第2の主面との間のガラスリボンの厚さが、3mm~5mmである。
【0020】
本開示の第12の態様によれば、第1~第11の態様のいずれか1つの態様において、ステップ(b)の後における、第1の主面と第2の主面との間のガラスリボンの厚さが、少なくとも1.5mmである。
【0021】
本開示の第13の態様によれば、第1~第12の態様のいずれか1つの態様において、ステップ(b)からステップ(c)までの間に、第1の主面と第2の主面との間のガラスリボンの厚さが減少する。
【0022】
本開示の第14の態様によれば、第1~第13の態様のいずれか1つの態様において、第1の主面の温度を上昇させるステップが、第1の主面に火炎を向けるステップを含む。
【0023】
本開示の第15の態様によれば、第14の態様において、第1の主面に火炎を向けるステップが、水平方向に向けたラインバーナにより行われ、水平方向に向けたラインバーナの水平方向の幅が、該水平方向に向けたラインバーナに対面するガラスリボンの水平方向の幅よりも狭い。
【0024】
本開示の第16の態様によれば、第1~第15の態様のいずれか1つの態様において、第1の主面の温度を上昇させるステップが、主に熱放射により第1の主面に熱を伝達する高温体に、第1の主面を対面させるステップを含む。
【0025】
本開示の第17の態様によれば、第1~第16の態様のいずれか1つの態様において、ステップ(b)により、ガラスリボン内の失透が低減される。
【0026】
本開示の第18の態様によれば、第1~第17の態様のいずれか1つの態様において、(i)ステップ(b)の前において、ガラスリボンの粘度が、1010ポアズ~1012ポアズであり、(ii)ステップ(b)において、ガラスリボンの第1の主面における、第1の主面からガラスリボンの厚さ方向に少なくとも100μmの深さまでの粘度が、105ポアズ以下まで低下し、(iii)ステップ(c)の前において、ガラスリボンバルクの粘度が、106ポアズ~108ポアズまで上昇する。
【0027】
本開示の第19の態様によれば、第1~第18の態様のいずれか1つの態様において、ステップ(b)が、10秒未満の時間以内で行われる。
【0028】
本開示の第20の態様によれば、第1~第19の態様のいずれか1つの態様において、温度20℃~25℃での波長589nm~633nmに対するガラス板の屈折率が、1.75~2.5である。
【0029】
本開示の第21の態様によれば、ガラス板の製造方法は、(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、該第1の主面と該第2の主面との間に配置されたコアと、を有しているステップと、(b)ガラスリボンの降下に従い、(i)コアの温度を軟化温度未満に保ったまま、第1の主面で液化が生じるのに十分な温度まで第1の主面の温度を上昇させる第1の昇温ゾーン、及び(ii)コアの温度を軟化温度未満に保ったまま、第2の主面の温度を液相温度まで上昇させる第2の昇温ゾーンのすぐ近傍にガラスリボンを通過させるステップと、(c)ガラスリボンが第1の昇温ゾーン及び第2の昇温ゾーンより下に移動した後に、ガラスリボンからガラス板を切り分けるステップと、を含む。
【0030】
本開示の第22の態様によれば、第21の態様において、第1の昇温ゾーンと第2の昇温ゾーンとが鉛直方向にずらして配置される。
【0031】
本開示の第23の態様によれば、第21の態様において、第1の昇温ゾーンと第2の昇温ゾーンの水平平面が互いに重なる。
【0032】
本開示の第24の態様によれば、第21又は第22の態様において、ステップ(b)において、第1の主面の粘度が低下し、第2の主面の粘度が低下し、ガラスリボンの全体厚さばらつきが低減される。
【0033】
本開示の第25の態様によれば、第21~第23の態様のいずれか1つの態様において、ステップ(b)とステップ(c)との間であって、ガラスリボンの全体厚さばらつきが低減された後に、第1の主面、第2の主面、及びコアの温度が平衡に近づき、ガラスリボンの実効粘度が低下し、ガラスリボンの厚さが減少する。
【図面の簡単な説明】
【0034】
【
図1】本開示の実施形態に係るガラス板の製造方法を示すフローチャート
【
図2】
図1に示す方法に従って、溶融ガラスを一対の成形ローラの形態の金型に送り、この一対の成形ローラにより鉛直方向の向きでガラスリボンを成形する様子と、ガラスリボンから切り分けられたガラス板とを示す斜視図
【
図3A】
図2の状態を示す立面図であり、ガラスリボンのコアの温度を軟化温度未満とした状態で、ガラスリボンの第1の主面及び第2の主面の温度を、第1の主面及び第2の主面においてガラスリボンの液化が生じるのに十分な温度まで上昇させ、ガラスリボンの細薄化の前に、表面張力によりガラスリボンの全体厚さばらつきや表面欠陥を低減するために、鉛直方向にずらして配置された第1の昇温ゾーン及び第2の昇温ゾーンのすぐ近傍にガラスリボンを通過させる様子を示す図
【
図3B】鉛直方向にずらさずに配置された(すなわち、ガラスリボンを通って延びる水平平面が、第1の昇温ゾーンと第2の昇温ゾーンとで互いに重なる)第1の昇温ゾーン及び第2の昇温ゾーンのすぐ近傍にガラスリボンを通過させる点を除いて、
図3Aと同じ図
【
図4A】
図2の状態を示す側面図であり、鉛直方向にずれた位置に配置された第1の昇温ゾーン及び第2の昇温ゾーンを示す図
【
図4B】
図2の状態を示す側面図であり、鉛直方向にずれない、水平平面が互いに重なる位置に配置された第1の昇温ゾーン及び第2の昇温ゾーンを示す図
【
図5】
図4A及び
図4Bにおける領域Vの拡大図であり、第1の主面と第2の主面の間の厚さと、第1の主面が持つ表面粗さとを示す図
【
図6】
図2における領域VIの拡大図であり、ガラスリボンの第1の主面に、ガラスリボンの全体厚さばらつきの一因となる冷えじわがある状態を示す図
【
図7A】
図3A及び
図3Bにおける第1の昇温ゾーン及び第2の昇温ゾーンの一実施形態の斜視図であり、第1の主面で液化を生じさせるためにガラスリボンの第1の主面に火炎を向ける水平方向に向けた第1のラインバーナと、第2の主面で液化を生じさせるためにガラスリボンの第2の主面に火炎を向ける水平方向に向けた第2のラインバーナとを示す図
【
図7B】
図3A及び
図3Bにおける第1の昇温ゾーン及び第2の昇温ゾーンの他の実施形態の斜視図であり、第1の昇温ゾーン全域において、主に熱放射により、第1の主面に熱を伝達して第1の主面で液化を生じさせる第1の高温体と、第2の昇温ゾーン全域において、主に熱放射により、第2の主面に熱を伝達して第2の主面で液化を生じさせる第2の高温体とを示す図
【
図8】実施例1に係る図であり、立方体ガラスを入れた石英るつぼを火炎により加熱して、石英るつぼからの熱放射により中の立方体ガラスが加熱された結果、実験開始時(「t=0秒」)に立方体ガラスの表面にあった冷えじわが90秒(「t=90秒」)以内に除去されたことを示す図
【
図9】実施例2に係る図であり、
図1の方法の一実施形態に係る、水平方向に向けたラインバーナによる第1の昇温ゾーンのすぐ近傍を通過中のガラスリボンを写した赤外線画像であって、第1の主面の温度とガラスリボンのコアの温度が平衡して、ガラスリボンの実効粘度が低下するに従い、ガラスリボンが降下しながら細薄化する様子を示す図
【
図10】同じく実施例2に係る図であり、
図9のガラスリボンから切り分けられたガラス板の表面性状測定結果を示すグラフであって、ガラスリボンの一部であった間に第1の昇温ゾーンのすぐ近傍を通過したガラス板の第1の主面が、ガラスリボンの一部であった間に昇温ゾーンのすぐ近傍を通過しなかったガラス板の第2の主面よりも高低差の小さい表面性状を有していたことを示す図
【
図11】実施例3のコンピュータモデルに係るグラフであり、ガラスリボンの細薄化係数が低下し始める数秒前に、ガラスリボンの第1の主面の温度が、少なくとも第1の主面で液化が生じるのに十分な温度まで上昇することができることを示すことによって、ガラスリボンの細薄化が起こるのに十分な程度までガラスリボンの実効粘度が低下する前に、表面張力により表面欠陥及び全体厚さばらつきを低減するのに十分な時間が、第1の主面で液化が生じている間に存在しているという原理を伝える図
【
図12】同じく実施例3に係る図であり、ガラスリボン全体の実効粘度の低下によりガラスリボンの厚さ減少が認められる前に、熱流束により、第1の主面の粘度が、表面張力により表面欠陥及び全体厚さばらつきを低減するのに十分な低さである1000ポアズ(すなわち、10
3ポアズ)未満にまで低下することを示す図
【
図13A】比較例4Aに係る図であり、切り分ける前に第1の昇温ゾーンのすぐ近傍を通過しなかったガラスリボンから切り分けたガラス板の表面粗さ(R
a)と表面性状の測定値を示す図
【
図13B】実施例4Bに係る図であり、切り分ける前にガラスリボンの第1の主面で液化が生じるのに十分な温度まで昇温した第1の昇温ゾーンのすぐ近傍を通過したガラスリボンから切り分けたガラス板の表面粗さ(R
a)と表面性状の測定値を示す図
【発明を実施するための形態】
【0035】
次に
図1~
図7Bを参照して、ガラス板12の製造方法10を説明する。方法10は、鉛直方向の向きでガラスリボン16を成形するステップ14を含む。ガラスリボン16は、第1の主面18と第2の主面20とを有している。第1の主面18と第2の主面20は、概ね反対方向を向いている。ガラスリボン16は、第1の側縁22と第2の側縁24とをさらに有している。第1の側縁22と第2の側縁24は、ガラスリボン16の概ね反対側の側面を画定している。「鉛直方向の向き(vertically oriented)」とは、第1の主面18と第2の主面20がほぼ鉛直方向の平面(plane)を成すことを意味している。また、ガラスリボン16は、第1の主面18と第2の主面20との間の水平方向の距離である厚さ26を有している。さらに、ガラスリボン16は、第1の側縁22と第2の側縁24との間の水平方向の距離である幅28を有している。ガラスリボン16の厚さ26と幅28は、ガラスリボン16に沿った鉛直方向の位置の関数として変化し得る。ガラスリボン16は組成を有している。
【0036】
また、方法10は、溶融ガラス32を金型34に送るステップ30をさらに含む。金型34により、ガラスリボン16が形成される。
【0037】
複数の実施形態において、金型34は、向かい合う一対の成形ローラ36a、36bを備えている。かかる実施形態では、溶融ガラス32を金型34に送るステップ30が、溶融ガラス32を流れ38として、一対の成形ローラ36a、36b間のニップ40に送るステップを含む。単なる一例ではあるが、溶融ガラス32の流れ38は、フィッシュテール部(スロット開口)42からニップ40の中心に送ることができる。流れ38は、一対の成形ローラ36a、36bの水平回転軸44a、44bよりも上方から送られる。スロット開口42の幅/長さと厚さは、幅広い範囲をとることができる。溶融ガラス32の流れ38は、約1000℃以上のガラス温度でニップ40に送られ、10
1ポアズオーダーの粘度を有している。送られた溶融ガラス32により、一対の成形ローラ36a、36b上には、溶融ガラス32の溜まり46が形成される。一対の成形ローラ36a、36bは、成形するガラスの組成と粘度に応じて、約500℃~約600℃の範囲、又はそれを上回る表面温度を持つように温度制御することができる。一対の成形ローラ36a、36bの温度制御のためのプロセス及びデバイスについては、本技術分野において十分に理解されているものであるため、本明細書では詳述しない。一対の成形ローラ36a、36bを使用する、このような実施形態では、鉛直方向の向きでガラスリボン16を成形するステップ14は、一対の成形ローラ36a、36bを回転させて、ニップ40に送られた溶融ガラス32を圧延によりガラスリボン16とするステップを含む。一対の成形ローラ36a、36bは、
図2の矢印で示すように、溶融ガラスの溜まりに向かって内向きに回転し、これにより、溜まり46内の溶融ガラス32を平坦化、薄肉化、平滑化して、一対の成形ローラ36a、36bの回転軸44a、44bの鉛直下方に延びるガラスリボン16とする。
【0038】
なお、金型34として一対の成形ローラ36a、36bを用いてガラスリボン16を成形しているが、これは金型34の一例に過ぎず、限定を意図するものではない。本方法10は、金型34からガラスリボン16を鉛直方向に成形するために利用できる任意の種類の金型34を包含するものである。
【0039】
ガラスリボン16は、成形後、時間の関数として降下する。換言すれば、金型34は、ガラスリボン16用の溶融ガラス32の供給源が空になるまで、連続的にガラスリボン16を成形する。例えば、或る時点では位置48aにあったガラスリボン16内の或る体積部分が、ガラスリボン16の成形が継続されるに従って降下し、その後の時点では位置48bにあるということが起こり得る。
【0040】
ガラスリボン16は、コア50を有している(
図5参照)。コア50は、第1の主面18と第2の主面20との間に配置され、例えば、第1の主面18と第2の主面20から等距離にあり、かつ第1の側縁22と第2の側縁24からも等距離にある体積部分を含む。複数の実施形態において、コア50は、第1の主面18から厚さ26の少なくとも40パーセント分だけ離間しており、第2の主面20から厚さ26の少なくとも40パーセント分だけ離間している。複数の実施形態において、コア50は、第1の側縁22から幅28の少なくとも40パーセント分だけ離間しており、第2の側縁24から幅28の少なくとも40パーセント分だけ離間している。
【0041】
ガラスリボン16の成形後、ガラスリボン16は固化する。第1の主面18及び第2の主面20が固化する際には、冷えじわ52などの厚さ26のばらつきや、金型34が第1の主面18及び第2の主面20に与えた表面粗さなどの表面欠陥を持った状態で固化する。冷えじわ52は、ガラスリボン16の成形後、コア50よりも主面18、20の方が優先的に冷却されることによって生じる起伏である。成形時には、急速な熱伝導によりガラスから熱が奪われるため、冷えじわ52の生成を回避することは難しい。圧力ビリ(pressure check)(すなわち、亀裂)や擦傷などの他の欠陥が生じる場合もある。
【0042】
また、方法10は、第1の昇温ゾーン56のすぐ近傍にガラスリボン16を通過させるステップ54をさらに含む。第1の昇温ゾーン56では、ガラスリボン16の第1の主面18に熱流束を当てることにより、第1の主面18でガラスリボン16の組成物の液化が生じるのに十分な温度まで第1の主面18の温度を上昇させる。これは、ガラスリボン16の第1の主面18から厚さ26の方向に少なくとも100μm(例えば、100μm~500μmなど)の深さまでの粘度が、105ポアズ以下、例えば104ポアズ又は103ポアズ~105ポアズのオーダーとなることに相当し得る。ただし、ガラスリボン16の厚さ26、ガラスリボン16の降下速度、第1の昇温ゾーン56はすべて、ガラスリボン16のコア50の温度が、ガラスリボン16の組成物の軟化温度未満に留まるように構成されている。仮にコア50が軟化したとすると、表面欠陥の低減や除去が行われる前に、ガラスリボン16の細薄化が生じてしまうことになる。例えば、ガラスリボン16の降下速度と第1の昇温ゾーン56で付与する熱流束とが任意に与えられるとすると、ガラスリボン16の厚さ26を大きくすることにより、第1の昇温ゾーン56で、コア50の軟化による構造健全性の喪失を生じさせないように第1の主面18の液化を図ることができる。あるいは、第1の昇温ゾーン56で付与する熱流束について、熱流束を当てるガラスリボン16の長さを短くしたり、熱流束の強度を下げたりして、第1の主面18において液化されるガラスリボン16の厚さ26を浅くして、コア50では軟化を生じさせないようにすることもできる。複数の実施形態において、第1の昇温ゾーン56のすぐ近傍でのガラスリボン16の厚さ26は、3mm~5mmである。なお、この厚さ26は、両側縁22、24の間の任意の位置で測定した任意の厚さ26を指す。
【0043】
第1の昇温ゾーン56では、コア50の温度を軟化温度未満に保ったまま、第1の主面18で液化が生じる(そしてこれにより、第1の主面18から厚さ26の方向に粘度低下が生じる)のに十分な温度まで第1の主面18の温度を上昇させる。これにより、第1の昇温ゾーン56では、第1の主面18の表面張力により、表面欠陥を低減又は除去することができる。換言すれば、第1の昇温ゾーン56のすぐ近傍に来るまで第1の主面18に存在していた冷えじわ52は、第1の昇温ゾーン56のすぐ近傍で第1の主面18を液化させている間に、目立たないように低減されるか、除去される。よって、ガラスリボン16の全体厚さばらつきが低減される。また、第1の主面18の表面粗さ(Ra)も小さくなる。第1の昇温ゾーン56に入る前のガラスリボン16に圧力ビリや擦傷があったとしても、それを修復、除去することができる。その他の表面欠陥も除去したり、目立たなくしたりすることができる。本明細書において「全体厚さばらつき(total thickness variation)」とは、厚さ26の最小値と最大値の差を意味している。ガラスリボン16の場合、厚さ26の最小値と最大値は、水平方向に延びる同一の線に沿って測定された厚さ26についての値である。ガラス板12の場合、全体厚さばらつきは、挟圧をかけていない自由な状態のガラス板12全体における厚さ26の最小値と最大値の差である。
【0044】
上述のように、ガラスリボン16は、第1の昇温ゾーン56に入る前に固化される。これは、ガラスリボン16の粘度が、1010ポアズ~1012ポアズ、例えば1011ポアズのオーダーとなることに相当する。ガラスリボン16が弾性状態となるガラスリボン16の組成物の凝結(setting)ゾーンより低温までガラスリボン16を冷却しておく必要はない。弾性状態では、ガラスリボン16の断面形状が固定化されて、ガラスリボン16の特性断面形状となる。ガラスリボン16は、撓みによりこの状態から変化することがあるかもしれないが、内部応力により元の凝結断面形状に戻るように付勢されている。ただし、複数の実施形態において、ガラスリボン16は、第1の昇温ゾーン56のすぐ近傍に来るまでに、組成物凝結ゾーンより低温まで冷却されている。実際には、複数の実施形態において、ガラスリボン16は、第1の昇温ゾーン56のすぐ近傍に来るまでに、周囲温度まで冷却されている。それでも、ガラスリボン16全体の応力を最小限に抑えるため、第1の昇温ゾーン56のすぐ近傍に来る時点でのガラスリボン16の温度を、組成物のアニール温度を上回る温度としておくことが有益な場合がある。組成物のアニール温度とは、当該組成物の粘度が約1013ポアズとなる温度である。
【0045】
複数の実施形態において、このステップ54は1秒~10秒の時間以内で行われる。換言すれば、ガラスリボン16の所定の部分が第1の昇温ゾーン56のすぐ近傍を通過するのに、1秒~10秒の時間しかかからない。複数の実施形態において、ステップ54は、1秒、2秒、3秒、4秒、5秒、6秒、7秒、8秒、9秒、10秒の時間以内、又はこれらの時間のうちの任意の2つを端点とする範囲内の任意の時間(例えば、2秒~9秒)以内で行われる。かかる時間が経過すると、ガラスリボン16の所定の部分は、第1の昇温ゾーン56より下方まで降下している。なお、1秒より短い時間では、第1の主面18に当たる熱流束が不十分となるため、ガラスリボン16の第1の主面18の温度を、第1の主面18で液化が生じるのに十分な温度まで上昇させることができない可能性が高く、また、たとえできたとしても、液化された部分の第1の主面18から厚さ26の方向への連続深さが不十分となるため、表面欠陥を目に見えるレベルまで除去することはできないと考えられる。一方、10秒を上回る時間は、液化している第1の主面18の表面張力により表面欠陥を除去できるようになるために必要な時間よりも長いため、10秒を上回る時間をかける必要はない。さらに、時間が10秒を上回ると、第1の主面18に当たる熱流束によりコア50まで軟化させてしまう危険性を不必要に高めてしまうことになる。
【0046】
複数の実施形態において、方法10のステップ54により、ガラスリボン16内の失透が低減される。ガラスリボン16が第1の昇温ゾーン56のすぐ近傍を通過する前の時点で、ガラスリボン16がある程度の失透(ガラスリボン16の第1の主面18に連続する失透を含む)を有している場合がある。第1の主面18で十分な液化が生じるように第1の主面18を急速に加熱し、その後冷却することにより、ガラスリボン16の内部に失透が存在する場合には、その失透を低減することができる。
【0047】
複数の実施形態において、方法10のステップ54において第1の主面18の温度を上昇させるステップは、第1の主面18に火炎58(
図7A参照)を向けるステップを含む。例えば、一実施形態では、水平方向に向けたラインバーナ60により、燃料の燃焼による火炎58をガラスリボン16の第1の主面18に向け、これにより第1の主面18の温度を上昇させて、第1の主面18で液化を生じさせる。なお、ラインバーナ60を「水平方向に向け(horizontally oriented)」るとは、ラインバーナ60が、水平方向の幅62と鉛直方向の高さ64とを有しており、水平方向の幅62が鉛直方向の高さ64より大きく、例えば、少なくとも3倍大きいことを意味している。複数の実施形態において、水平方向の幅62は、ラインバーナ60に対面するガラスリボン16の幅28よりも狭い。かかる実施形態では、ラインバーナ60がガラスリボン16の両側縁22、24を越えて横方向に延在することがないよう、ラインバーナ60を中央に配置することができる。
【0048】
他の実施形態では、第1の主面18で液化が生じるのに十分な温度まで第1の主面18の温度を上昇させるステップは、第1の主面18を高温体66(
図7B参照)に対面させるステップを含む。高温体66は、空気の対流による熱伝達も生じさせるが、主に熱放射68により、第1の昇温ゾーン56全域において第1の主面18に熱を伝達する。換言すれば、高温体66は、加熱した気体をガラスリボン16の第1の主面18の方向に向けるタービンを持たない。ラインバーナ60と同様に、高温体66は、幅70が高さ72より数倍大きく、水平方向に向けることができる。また、高温体66がガラスリボン16の両側縁22、24を越えて横方向に延在することがないよう、高温体66を中央に配置することができる。
【0049】
なお、第1の主面18で液化が生じるのに十分な温度まで第1の主面18の温度を上げるためにラインバーナ60や高温体66を使っているが、これは例示的なものであり限定を意図するものではない。本方法10は、第1の主面18に液化が生じさせる任意のデバイスを包含するものである。
【0050】
ガラスリボン16が降下して、第1の昇温ゾーン56のすぐ近傍から外れ、第1の主面18での全体厚さばらつきの低減を終えた後は、両主面18、20とコア50におけるガラスリボン16の温度は平衡に近づいていく。つまり、コア50の温度が上昇し、第1の主面18の温度が低下する。その結果、ガラスリボン16の実効粘度は、106ポアズ~108ポアズ、又は107ポアズのオーダーまで低下する。「実効粘度(effective viscosity)」とは、ガラスリボン16の水平断面全体にわたる平均粘度を指す。そして、ガラスリボン16の実効粘度が低下するため、(自重、又は後述する引張ローラによる引っ張り、又はその両方により)ガラスリボン16は下方向に向かって細薄化される。その結果、ガラスリボン16の厚さ26と幅28は下方向の位置の関数として減少する。複数の実施形態において、第1の昇温ゾーン56のすぐ近傍を通過後のガラスリボン16の厚さ26は、少なくとも1.5mmである。
【0051】
従来は、ステップ54において前もって表面欠陥の低減や除去を行わなくても、細薄化すれば表面欠陥を低減、除去することができると考えられていた。つまり、ガラスリボン16の表面欠陥を含むあらゆる部分が均等に縮むものと考えられていたのである。しかしながら、モデリングと実験により、第1の昇温ゾーン56が強すぎて、コア50の温度がガラスリボン16の組成物の軟化温度を上回る温度まで上昇してしまった場合、ガラスリボン16の表面欠陥の低減や除去がされないまま、ガラスリボン16が細薄化(すなわち、下方に伸びて厚さ26と幅28が減少)されてしまうという驚くべき実証結果が得られた。ガラスリボン16の細薄化は、ガラスリボン16における肉薄の部分、例えば、冷えじわ52の谷74の部分で優先的に進む。そして、かかる優先的細薄化の結果、冷えじわ52などの欠陥が悪化して、冷えじわ52の谷74がコア50寄りに移動することにより、冷えじわ52の山76がさらに目立つようになるのである。換言すれば、方法10のステップ54は、表面張力による表面欠陥の低減や除去がガラスリボン16の細薄化が起こる前に生じるように行う必要がある。そうでなければ、ガラスリボン16の細薄化により、ただ表面欠陥を悪化させることになってしまう。
【0052】
複数の実施形態において、方法10は、第2の昇温ゾーン80のすぐ近傍にガラスリボン16を通過させるステップ78をさらに含む。第2の昇温ゾーン80では、第2の主面20から厚さ26の方向に少なくとも100μm(例えば、100μm~500μmなど)の深さまで、ガラスリボン16に液化が生じるのに十分な温度まで第2の主面20の温度を上昇させる。なお、第1の昇温ゾーン56の場合と同様、ガラスリボン16の厚さ26、ガラスリボン16の降下速度、第2の昇温ゾーン80はすべて、ガラスリボン16のコア50の温度が、ガラスリボン16の組成物の軟化温度未満に留まるように構成されている。これにより、ガラスリボン16を細薄化する前に表面張力により第2の主面20の表面欠陥を修復して、ガラスリボン16の全体厚さばらつきをさらに低減することができる。このステップ78では、これに加えて失透を除去することもできる。なお、第2の主面20の温度を、第2の主面20で液化が生じるのに十分な温度まで上昇させるステップについては、上述した第1の主面18の温度上昇と同様に行うことができるため、ここで再度説明する必要はないであろう。例えば、複数の実施形態において、第2の主面20の温度を上昇させるステップは、水平方向に向けた第2のラインバーナ82などにより第2の主面20に火炎を向けるステップ又は第2の主面20を第2の高温体83などに対面させるステップを含む。水平方向に向けた第2のラインバーナ82及び第2の高温体83は、ガラスリボン16の第1の主面18に代えて第2の主面20に対面させて配置される点を除いて、ラインバーナ60及び高温体66と同じである。いずれの場合も、ガラスリボン16の全体厚さばらつきが低減されて、ガラスリボン16が第2の昇温ゾーン80より下方まで降下した後には、第1の主面18、第2の主面20、及びコア50の温度が平衡に近づいてガラスリボン16の実効粘度が低下し、ガラスリボン16が細薄化されてガラスリボン16の厚さ26が減少する。
【0053】
複数の実施形態において、第1の昇温ゾーン56と第2の昇温ゾーン80の水平平面(horizontal plane)85は互いに重なる。水平平面85は、ガラスリボン16を通過して延在する概念的な平面である。かかる場合、コア50は軟化温度未満に留まったまま、第1の主面18と第2の主面20が、第1の主面18と第2の主面とで液化が生じるのに十分な温度まで同時に上昇する。
【0054】
他の実施形態では、第1の昇温ゾーン56と第2の昇温ゾーン80とは鉛直方向にずらして配置される。すなわち、第1の昇温ゾーン56が第2の昇温ゾーン80よりも高い位置又は低い位置に配置され、水平平面85が互いに重ならない。このようにゾーン56、80をずらして配置することにより、第1の主面18と第2の主面20の液化中に、第1の主面18と第2の主面20の表面欠陥を除去できるようになる前に、ガラスリボン16のコア50の細薄化が始まる程度までガラスリボン16が軟化してしまうのを防ぐことができる。しかしながら、ガラスリボン16の厚さ26が十分に厚い場合には、このようにずらして配置する必要はなく、両主面18、20を同時に加熱することができる。この場合には、両主面18、20を同時に加熱しても、両主面18、20に液化を生じさせて表面欠陥を除去している間にコア50を軟化させてしまうことはない。
【0055】
複数の実施形態において、方法10は、ガラスリボン16の厚さ26を測定するステップ84をさらに含む。厚さ26は、光88の透過率により厚さを測定するデバイスなどの任意の測定デバイス86で測定することができる。例えば、測定デバイス86は色共焦点イメージャ(confocal chromatic imager)とすることができる。ガラスリボン16の厚さ26を測定することにより、ほぼリアルタイムでフィードバックが得られるため、一対の成形ローラ36a、36bの隙間90の大きさを変化させたり、溶融ガラス32の流れ38の流量を変化させたり、一対の成形ローラ36a、36bの回転速度を変化させたりすることにより、ガラスリボン16の厚さ26を調整することが可能となる。なお、ガラスリボン16の第1の主面18の表面粗さが大きすぎると、透過光の表面散乱が生じる恐れがあるが、方法10のステップ54により、例えば、かかる透過光の表面散乱を最小限に抑えることができるため、ステップ84の測定値の信頼性を向上させることができる。
【0056】
複数の実施形態において、方法10は、引張ローラ94でガラスリボン16を下に引っ張るステップ92をさらに含む。引張ローラ94は、第1の昇温ゾーン56よりも低い位置に配置されている。引張ローラ94は、第1の側縁22に隣接する一対の引張ローラ94を備えることができる。引張ローラ94は、引張ローラ94aがガラスリボン16の第1の主面18に接触し、引張ローラ94bが第2の主面20に接触した状態で設けられる。同様に、引張ローラ94は、第2の側縁24に隣接する一対の引張ローラ94を備えることができる。この一対の引張ローラ94も一方が第1の主面18に接触し、一対の引張ローラ94の他方が第2の主面20に接触した状態で設けられる。他の実施形態では、一対の引張ローラ94のみを、第1の側縁22と第2の側縁24との間の中央に配置することもできる。この一対の引張ローラ94も一方が第1の主面18に接触し、一対の引張ローラ94の他方が第2の主面20に接触した状態で設けられる。引張ローラ94は、ガラスリボン16を安定させ、且つガラスリボン16を細薄化させるため、ガラスリボン16にわずかな張力を発生させる。複数の実施形態において、引張ローラ94がガラスリボン16を引っ張ることにより、ガラスリボン16の厚さ26をさらに減少させる。引張ローラ94の表面材質及び表面性状は、ガラスリボン16の全体厚さばらつきに悪影響を与えないように選択する必要がある。
【0057】
また、方法10は、ガラスリボン16からガラス板12を切り分けるステップ96をさらに含む。このステップ96は、ガラスリボン16が第1の昇温ゾーン56及び第2の昇温ゾーン80(含まれる場合)より下に移動した後に行われる。上述したように、ガラスリボン16は、溶融ガラス32の供給源が空になるまで連続的に成形される。したがって、ガラス板12は、ガラスリボン16から順次切り分けられた複数枚98のガラス板12のうちの1枚とすることができる。ステップ96は、ガラス板12を切り分けるために用いられる任意の工程を包含するものである。複数の実施形態において、ガラス板12を切り分けるステップは、まずガラスリボン16に割線を引くステップと、その割線を横断するように引張応力を加えて亀裂を作るステップと、次にその亀裂がガラスリボン16の厚さ26を貫通するように亀裂を進展させるステップとを含む。なお、割線は従来の方法で形成することができる。例えば、割線引きホイール、スクライブ、又は研磨部材などの、第1の主面18又は第2の主面20に損傷を形成する割線引き部材100にガラスリボン16を接触させることにより、割線を生成することができる。その後、ガラスリボン16における割線を付けた側に、割線を横断するような張力がかかる方向にガラスリボン16を曲げることにより、引張応力を加える。すると、この張力により、割線に形成された亀裂が進展して、ガラスリボン16の厚さ26を貫通する。なお、割線の形成は、ガラスリボン16の品質領域に亘って、つまり側縁22、24間のリボン幅28に亘って行うのが好ましい。そして、ガラスリボン16の第1の主面18及び第2の主面20は、ガラス板12の第1の主面18及び第2の主面20となる。
【0058】
他の実施形態では、割線引き部材100は、レーザであり、任意選択的に、レーザ及び冷却デバイスである。冷却デバイスは、冷却された気体、液体、又はそれらの組み合わせ(ミスト)などの冷却流体をガラスリボン16に接触させる。レーザは、ガラスリボン16の狭い領域に当たってかかる領域を加熱するレーザビームにより、意図された割線引き経路を横切ってガラスリボン16を加熱する。その後、加熱した経路を冷却流体で冷却することにより、ガラスリボン16に大きな張力が生じ、割線が生成される。
【0059】
複数の実施形態において、方法10のステップ54の前(又は、ステップ54を行わない場合)の第1の主面18の表面粗さ(R
a)は、1000nm超、例えば1000nm~5000nmである。一方、方法10のステップ54の後のガラス板12の第1の主面18の表面粗さ(R
a)は、500nm未満であり、例えば、50nm~500nm、50nm~250nm、又は100nm~200nmである。表面粗さ(R
a)とは、評価対象長さ106において、断面形状の平均高さ線104からの高さ偏差102を複数箇所で記録し、その記録の絶対値の算術平均をとったものとする(
図5参照)。実際には、ステップ54の前(又は、ステップ54を行わない場合)の第1の主面18の表面粗さ(R
a)は、ガラスリボン16の一部分を、第1の昇温ゾーン56のすぐ近傍に通過させない(例えば、熱流束を停止した状態で通過させる)ようにし、その後、この部分から切り分けたガラス板12の表面粗さ(R
a)を測定することにより確認することができる。また、ステップ54の後の第1の主面18の表面粗さ(R
a)は、ガラスリボン16の一部分を、第1の昇温ゾーン56のすぐ近傍に通過させ、その後、この部分から切り分けたガラス板12の表面粗さ(R
a)を測定することにより確認することができる。
【0060】
複数の実施形態において、方法10のステップ54の前(又は、ステップ54及び78を行わない場合)のガラスリボン16及び/又はガラスリボン16から切り分けたガラス板12の全体厚さばらつきは、5μm以上、例えば、5μm~20μmである。複数の実施形態において、ステップ54及びステップ78を行うことにより、ガラスリボン16及びガラスリボン16から切り分けたガラス板12の全体厚さばらつきは、5μm未満、例えば、0.5μm~4.9μmとなる。上述したように、ガラスリボン16の全体厚さばらつきは、金型34の通過や冷えじわ52を経ても所望より小さく抑えられた状態が維持されるため、所望より小さい全体厚さばらつきでガラスリボン16を成形することができる。方法10における、第1の昇温ゾーン56のすぐ近傍にガラスリボン16を通過させるステップ54と、第2の昇温ゾーン80のすぐ近傍にガラスリボン16を通過させるステップ78(ただしステップ78を含む場合)により、ガラスリボン16の全体厚さばらつきが低減される。その後、コア50の温度が上昇して主面18、20の温度と平衡するに従い、ガラスリボン16が細薄化すると、ガラスリボン16の全体厚さばらつきはさらに低減される。従って、ステップ96でガラスリボン16から切り分けられたガラス板12は、5μm未満の望ましい全体厚さばらつきを有している。
【0061】
複数の実施形態において、方法10により成形したガラス板12の全体厚さばらつきは、方法10のステップ54(及び、含まれる場合は、ステップ78)の前のガラスリボン16の全体厚さばらつきの50%以下(例えば、10%~50%)となる。複数の実施形態において、方法10により成形したガラス板12の全体厚さばらつきは、ステップ54、78を含まない方法により成形したガラス板12の全体厚さばらつきの50%以下(例えば、10%~50%)となる。例えば、ステップ54(及び、含まれる場合は、ステップ78)の前のガラスリボン16の全体厚さばらつきは8μmである場合があり、その場合、ステップ54と、任意選択的にステップ78との後にこのガラスリボン16から切り分けられたガラス板12の全体厚さばらつきは、4μm以下となる。
【0062】
ステップ54、78により、ステップ54、78を行わない場合に比べてガラス板12の全体厚さばらつきが低減されるだけでなく、ガラス板12の強度も向上する。方法10のステップ54、56を経なければ、成形後のガラスリボン16に存在していた擦傷や圧力ビリなどの表面欠陥が、ガラスリボン16から切り分けられたガラス板12にも残っていたと考えられる。ステップ54、78により、かかる表面欠陥が低減、除去され、最適な強度を有するガラス板12が得られる。
【0063】
ガラス板12は、側縁22、24の間に幅108を有している。幅108は、ガラスリボン16の幅をそのまま引き継いでいる。また、ガラス板12は、長さ110を有している。この長さ110は、側縁22、24に概ね直交しており、切り分けたガラス板12の元となるガラスリボン16の鉛直部分に平行である。なお、ガラスリボン16から切り分けたすべてのガラス板12が、同一の幅108や同一の長さ110を有している必要はない。複数の実施形態において、ガラス板12の幅108は5mm~500mmであり、長さ110は5mm~500mmである。他の実施形態では、幅108は500mmより広く、長さ110は500mmより長い。
【0064】
上述したように、ガラスリボン16の組成物は、そのままガラス板12に引き継がれる。方法10は、任意のガラス組成物に利用することができる。複数の実施形態において、組成物は、ガラスリボン16から切り分けたガラス板12の屈折率(温度20℃~25℃での波長589nm~633nmに対する屈折率)が、1.75~2.5となるものとされる。他の実施形態では、ガラス板12の屈折率は、1.45~1.75である。例えば、40.1モル%のSiO2と、11.3モル%のLi2Oと、3.8モル%のZrO2と、4.8モル%のNb2O5と、2.4モル%のB2O3と、22.9モル%のCaOと、5.4モル%のLa2O3と、9.3モル%のTiO2と、を含む組成物は、(波長633nmにおける)屈折率が1.8となる。質量%では、本組成物は、28.5質量%のSiO2と、4.00質量%のLi2Oと、5.5質量%のZrO2と、15質量%のNb2O5と、2.0質量%のB2O3と、15.2質量%のCaOと、21質量%のLa2O3と、8.8質量%のTiO2と、を含む。
【0065】
いくつかの実施形態では、ガラス組成物は、(総質量パーセントを100%とした、酸化物基準の質量パーセントで)
5~55質量%のSiO2と、
5~10質量%のZrO2と、
3.5~18質量%のCaOと、
0.2~30質量%のLa2O3と、
0.5~20質量%のNb2O5と、
5~20質量%のTiO2と、
0~0.2質量%のAs2O3と、
0.05~0.9質量%(好ましくは0.1~0.9質量%、例えば0.1~0.8質量%)のEr2O3、及び/又は0.05~1質量%のPr2O3、又は0.05~1質量%のNd2O3、又は0.05~1質量%のHo2O3、又は0.05~1質量%のCe酸化物(CeO2)と、を含む。
【0066】
複数の実施形態において、ガラス組成物は、(総質量パーセントを100%とした、酸化物基準の質量パーセントで)
5~60質量%のSiO2と、
5~10質量%のZrO2と、
3.5~18質量%のCaOと、
0.2~30質量%のLa2O3と、
0.5~20質量%のNb2O5と、
5~20質量%のTiO2と、
0~0.2質量%のAs2O3と、
0.01~0.5質量%(例えば、0.05~0.5質量%、又は0.1~0.5質量%)のEr2O3と、
2~5質量%のNa2Oと、
0~9質量%のK2O5と、
1質量%以下のSrOと、
0~20質量%のBaOと、
0~1質量%のFと、
0~20質量%のB2O3と、を含む。
【0067】
純シリカの屈折率は約1.5であるため、SiO2の量を55質量%以下(例えば、7~45質量%)に保って、より屈折率の高いドーパントを添加することにより、透明度が高く、目立った着色のない高屈折率ガラスとすることができる。なお、SiO2の量を60%超まで上げると、より屈折率の高いドーパントや成分を添加する必要があるため、透明ガラスではなく着色ガラスとなってしまう可能性がある。いくつかの実施形態によれば、ガラス中のEr2O3、Nd2O3、Ho2O3、Ce酸化物、Pr2O3の総量は1.5質量%未満とされる。これは、ガラスの透明性の維持と、所望の波長における高い透過率(透過)の維持とに貢献するものである。上述したように、比較的屈折率の高いガラスを形成するガラス組成物の液相粘度は非常に低いため、かかる組成物からガラス板12を成形するのにフュージョンプロセスを利用することはできない。
【0068】
複数の実施形態において、方法10は、溶融ガラス32を金型34に送る工程と、ガラスリボン16を成形して、第1の昇温ゾーン56、第2の昇温ゾーン80(含まれる場合)のすぐ近傍を通過させる工程と、ガラスリボン16から複数枚98のガラス板12を切り分ける工程とを、何日もの期間、さらには数カ月又は数年の期間にわたって、中断することなく行う連続プロセスである。他の実施形態では、方法10は連続性のないバッチプロセスであり、所定量の溶融ガラス32を金型34に送り、これにより限られた長さのガラスリボン16を成形し、このガラスリボン16から限られた枚数のガラス板12を切り分けることができる。
【0069】
方法10のステップ54及び78(含まれる場合)は、表面欠陥を低減又は除去し、これにより、許容可能な全体厚さばらつき及び表面粗さを有するガラス板12を切り分けることが可能なガラスリボン16を提供するために行われるが、これらのステップを行わない場合には、酸エッチング、又は機械的な研削・研磨、又はその両方を介してガラス板12の厚さのばらつきを低減する必要が生じると考えられる。しかしながら、後者の方法10は、方法10のステップ54及び78(含まれる場合)に比べてコストが高い。また、ガラス粉塵が発生したり、ガラス板12の主面18、20より内面に損傷が生じたりする恐れがあるため、機械的な研削・研磨によりガラス板12の表面欠陥や厚さのばらつきの低減を図るのは最適ではない場合もある。一方、本プロセスのステップ54及び78(含まれる場合)の場合、かかるガラス粉塵の発生が回避されるとともに、主面18、20より内面の、厚さ26内部において損傷を生じさせることもない。さらに、方法10のステップ54及び56(含まれる場合)は、ガラスリボン16からガラス板12を切り分ける前にインラインプロセスとして実行される。一方、酸エッチングや機械的な研削・研磨は、通常、インラインプロセスとはされず、別のステーションにガラス板12を移動させる必要が生じる。また、方法10のステップ54及びステップ78(含まれる場合)はいずれも10秒に満たない時間で行われるが、酸エッチングは何時間もかかる場合がある。さらに、上述したように、ガラス板12は、500mm以上の長さ110を含む多種多様なサイズで製造することができる。機械的な研削・研磨ホイールは、かかるサイズのガラス板12の研削・研磨には適していない。
【実施例】
【0070】
実施例1 - 実施例1では、
図8に示すように、石英るつぼ112を上下逆さまにして、立方体ガラス114に被せて置いた。立方体ガラス114は、上面に冷えじわ52を有していた。立方体ガラス114は、28.5質量パーセントのSiO
2を含む上述と同様の組成を有していた。このガラス組成物の屈折率は1.8であった。時刻t=0では、石英るつぼ112に火炎を向けていない。しかし、t=0より後から90秒後(t=90秒)までの間では、石英るつぼ112に酸素ガス(oxy-gas)トーチの火炎を向け、その結果、石英るつぼの温度が上昇した。そして、石英るつぼ112の熱がガラス114に放射された。この90秒の時間のうちに、石英るつぼ112から放射された熱により、立方体ガラス114の上面から或る深さまで液化が生じるのに十分な温度まで、立方体ガラス114の上面の温度が上昇し、これにより上面に生じた表面張力により、それまであった冷えじわ52が除去された。立方体ガラス114のt=0秒時点の図とt=55秒時点の図では、冷えじわ52が見られる。一方、立方体ガラス114のt=90秒時点の図では、冷えじわ52の存在が見られないばかりか、滑らかな表面が見られる。なお、立方体ガラス114の全体としての立方体形状は損なわれていなかった。このことは、立方体ガラス114の上面を、冷えじわ52を除去するのに十分な時間にわたり上面で液化が生じるのに十分な温度まで上昇させるのに十分ではあるが、立方体ガラス114のコアを、組成物の軟化点より高い温度まで加熱してしまうことはないような熱流束を、放射加熱により立方体ガラス114の上面に当てることができたことを示している。
【0071】
実施例2 - 実施例2では、実施例1の立方体ガラスの組成と同一の組成を有する溶融ガラスを、一対の成形ローラ間のニップに送った。一対の成形ローラにおけるガラスへの接触面は高温とした。また、一対の成形ローラは、毎分0.25メートル回転に設定した。一対の成形ローラにより、ローラに送られた溶融ガラスからガラスリボンを成形した後、第1の昇温ゾーン全域において、水平方向に向けた火炎バーナでガラスリボンの第1の主面に火炎を向けた。水平方向に向けた火炎バーナは、ガラスリボンを横切るように中央配置され、火炎バーナに対面するガラスリボンの幅よりも狭い幅を有していた。ガラスリボンの第2の主面の加熱は行わなかった。すなわち、第2の昇温ゾーンは設けなかった。また、中央配置された一対の引張ローラにより、ガラスリボンを下に引っ張り、火炎バーナのすぐ近傍を通過後のガラスリボンをさらに細薄化した。赤外線によるガラスリボンの温度測定結果を
図9に示す。
【0072】
このガラスリボンからガラス板を切り分けた。座標測定機を使用して、第1の昇温ゾーンのすぐ近傍を通過した第1の主面の表面性状と、そのような昇温ゾーンのすぐ近傍を通過しなかった第2の主面の表面性状とを測定した。測定結果を
図10のグラフに示す。「ガラス板の下方向距離(mm)」は、ガラス板の長さに沿った距離を意味する。第2の主面についての結果から、表面の高さに繰り返し起伏が生じていることが明らかとなった。おそらく、これは冷えじわであると考えられる。高さのピークは、7μmに近いものもあったが、大半が3μm~5μmの範囲内にあった。これに対し、火炎バーナのすぐ近傍を通過した第1の主面についての結果には、約1μm又はそれを若干下回る高さの、より一定の表面性状が示されている。ガラス板の下方向距離4mm~5mmの範囲で表面性状が高くなっているのは、おそらく、前のガラス板を切り分けた際に、ガラスリボンに粉塵が付着したためと考えられる。
【0073】
実施例3 - 実施例3ではコンピュータモデリングを行った。モデリングは下記の想定で行った。(1)流量は60ポンド(約27.2キログラム)/時、ガラスリボンの幅は150mmであること、(2)ガラスリボンの熱は、熱伝達率5W/(m
2・K)の対流と放射率0.4の照射により失われること、(3)関与媒質(participating media)の放射がない条件で灰色体近似を行うこと、(4)周囲温度は650℃~20℃の所定温度とすること、(5)温度の関数としてのガラスリボンの粘度は、Vogel-Fulcher-Tammann-Hesseの粘度式
に従うこと、なお式中、μの単位はポアズ、A=-5.75、B=5601.9、T
0=312.3、Tはガラスリボンの温度(℃)とする、(6)ガラスリボンは1.0W/(m・K)の熱伝導率を有すること、(6)仮想的に設けられた第1の昇温ゾーンからの熱流束はガウス分布をとり、ベースライン電力密度は3*10
5W/m
2であること、(7)1/eレベルでの半値幅は15mmとすること。また、本モデルでは、ガラスリボンの第1の主面の温度変化とガラスリボンの細薄化係数(attenuation coefficient)を、時間の関数と見なした。細薄化係数は、開始時のガラスリボンの厚さに対するある特定の時間におけるガラスリボンの厚さの比である。モデリング結果を
図11及び
図12のグラフに示す。
図11のグラフには、ガラスリボンの細薄化が始まる前、すなわち細薄化係数が低下し始める前に、第1の主面で液化が生じるのに十分な温度まで、第1の主面の温度が大きく上昇し得ることが示されている。数秒ではあるが、この時間によって、ガラスリボンの細薄化が始まる前に、表面張力により第1の主面の表面欠陥を低減又は除去することができる。
【0074】
図12のグラフには、ガラスリボンの細薄化が起こるのに十分な程度までガラスリボンの実効粘度が低下する前に(すなわち、厚さ値が5mmから減少を始める前に)、加熱中のガラスリボンの第1の主面の粘度が、約10
11ポアズから1000ポアズ(10
3ポアズ)未満にまで低下することが示されている。この現象により、細薄化が始まる前に、第1の主面の粘度を低下させて、表面張力により表面欠陥を除去することが可能となる。熱流束を第1の主面に当てる時間は、表面の粘度を1000ポアズ未満にまで低下させるには十分であるが、失透を引き起こしたり、熱の伝導や放射によりガラスリボンのコアが表面と同程度の低粘度となるまで加熱されたりするには至らない長さである。
【0075】
比較例4A及び実施例4B - 実施例4Bでは、上述した、第1の昇温ゾーンを用いる方法に従ってガラス板を成形した。上述の通り、第1の昇温ゾーンでは、ガラスリボンの第1の主面の温度を、第1の主面でガラスリボンの液化が生じるのに十分な温度まで上昇させた。次に、ガラスリボンからガラス板を切り分けた。比較例4Aは、ガラス板を切り分ける前に第1の昇温ゾーンのような構成を利用せずに行った。比較例4A及び実施例4Bのガラスの組成は、上述の組成物と同様であり、よって、屈折率は1.8であった。次に、比較例4A及び実施例4Bのガラス板の表面粗さ(R
a)を測定した。
図13Aのスクリーンショットに示されているように、比較例4Aのガラス板の表面粗さ(R
a)は1598nmであった。一方、
図13Bのスクリーンショットに示されているように、実施例4Bのガラス板の表面粗さ(R
a)は152nmであり、90パーセント((1598-152)/1598=0.905*100%=90.5%)を上回る減少となった。また、表面粗さ(rms)の値も、2049nmから185nmへと大きく減少した。
【0076】
以下、本発明の好ましい実施形態を項分け記載する。
【0077】
実施形態1
ガラス板の製造方法であって、
(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、前記ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、該第1の主面と該第2の主面との間に配置されたコアと、を有している、ステップと、
(b)前記ガラスリボンの降下に従い、第1の昇温ゾーンのすぐ近傍に前記ガラスリボンを通過させるステップであって、前記第1の昇温ゾーンは、前記コアの温度を軟化温度未満に保ったまま、前記第1の主面で液化が生じるのに十分な温度まで前記第1の主面の温度を上昇させるものである、ステップと、
(c)前記ガラスリボンが前記第1の昇温ゾーンより下に移動した後に、前記ガラスリボンからガラス板を切り分けるステップと、
を含む方法。
【0078】
実施形態2
ステップ(b)において、前記第1の主面の粘度が低下し、前記ガラスリボンの全体厚さばらつきが低減される、実施形態1に記載の方法。
【0079】
実施形態3
ステップ(b)とステップ(c)との間であって、前記全体厚さばらつきが低減された後に、前記第1の主面の温度と前記コアの温度が平衡に近づき、前記ガラスリボンの実効粘度が低下し、前記ガラスリボンの厚さが減少する、実施形態2に記載の方法。
【0080】
実施形態4
ステップ(a)の前に、向かい合う一対の成形ローラ間のニップに溶融ガラスを送るステップをさらに含み、
前記鉛直方向の向きでガラスリボンを成形するステップが、前記一対の成形ローラを回転させて、前記ニップに送られた前記溶融ガラスを圧延により前記ガラスリボンとするステップを含む、実施形態1に記載の方法。
【0081】
実施形態5
ステップ(b)の後且つステップ(c)の前に、引張ローラで前記ガラスリボンを下に引っ張るステップをさらに含む、実施形態1に記載の方法。
【0082】
実施形態6
前記引張ローラで前記ガラスリボンを引っ張るステップにより、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さを減少させる、実施形態5に記載の方法。
【0083】
実施形態7
ステップ(b)の後且つステップ(c)の前に、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さを測定するステップをさらに含む、実施形態1に記載の方法。
【0084】
実施形態8
前記切り分けられたガラス板の前記第1の主面の表面粗さ(Ra)が、500nm未満である、実施形態1に記載の方法。
【0085】
実施形態9
前記ガラスリボンから切り分けられた前記ガラス板の全体厚さばらつきが、5μm未満である、実施形態1に記載の方法。
【0086】
実施形態10
前記ガラスリボンから切り分けられた前記ガラス板の全体厚さばらつきが、ステップ(b)前の前記ガラスリボンの全体厚さばらつきの50%以下である、実施形態1に記載の方法。
【0087】
実施形態11
ステップ(a)の後且つステップ(b)の前における、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さが、3mm~5mmである、実施形態1に記載の方法。
【0088】
実施形態12
ステップ(b)の後における、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さが、少なくとも1.5mmである、実施形態1に記載の方法。
【0089】
実施形態13
ステップ(b)からステップ(c)までの間に、前記第1の主面と前記第2の主面との間の前記ガラスリボンの厚さが減少する、実施形態1に記載の方法。
【0090】
実施形態14
前記第1の主面の温度を上昇させるステップが、前記第1の主面に火炎を向けるステップを含む、実施形態1に記載の方法。
【0091】
実施形態15
前記第1の主面に火炎を向けるステップが、水平方向に向けたラインバーナにより行われ、
前記水平方向に向けたラインバーナの水平方向の幅が、該水平方向に向けたラインバーナに対面する前記ガラスリボンの水平方向の幅よりも狭い、実施形態14に記載の方法。
【0092】
実施形態16
前記第1の主面の温度を上昇させるステップが、主に熱放射により前記第1の主面に熱を伝達する高温体に、前記第1の主面を対面させるステップを含む、実施形態1に記載の方法。
【0093】
実施形態17
ステップ(b)により、前記ガラスリボン内の失透が低減される、実施形態1に記載の方法。
【0094】
実施形態18
ステップ(b)の前において、前記ガラスリボンの粘度が、1010ポアズ~1012ポアズであり、
ステップ(b)において、前記ガラスリボンの前記第1の主面における、前記第1の主面から前記ガラスリボンの厚さ方向に少なくとも100μmの深さまでの粘度が、105ポアズ以下まで低下し、
ステップ(c)の前において、前記ガラスリボンの粘度が、106ポアズ~108ポアズまで上昇する、実施形態1に記載の方法。
【0095】
実施形態19
ステップ(b)が、1秒~10秒の時間以内で行われる、実施形態1に記載の方法。
【0096】
実施形態20
温度20℃~25℃での波長589nm~633nmに対する前記ガラス板の屈折率が、1.75~2.5である、実施形態1に記載の方法。
【0097】
実施形態21
ガラス板の製造方法であって、
(a)時間の関数として降下するガラスリボンを、鉛直方向の向きで成形するステップであって、前記ガラスリボンが、概ね反対方向を向く第1の主面及び第2の主面と、該第1の主面と該第2の主面との間に配置されたコアと、を有しているステップと、
(b)前記ガラスリボンの降下に従い、(i)前記コアの温度を軟化温度未満に保ったまま、前記第1の主面で液化が生じるのに十分な温度まで前記第1の主面の温度を上昇させる第1の昇温ゾーン、及び(ii)前記コアの温度を前記軟化温度未満に保ったまま、前記第2の主面の温度を液相温度まで上昇させる第2の昇温ゾーンのすぐ近傍に前記ガラスリボンを通過させるステップと、
(c)前記ガラスリボンが前記第1の昇温ゾーン及び前記第2の昇温ゾーンより下に移動した後に、前記ガラスリボンからガラス板を切り分けるステップと、
を含む方法。
【0098】
実施形態22
前記第1の昇温ゾーンと前記第2の昇温ゾーンとが鉛直方向にずらして配置される、実施形態21に記載の方法。
【0099】
実施形態23
前記第1の昇温ゾーンと前記第2の昇温ゾーンの水平平面が互いに重なる、実施形態21に記載の方法。
【0100】
実施形態24
ステップ(b)において、前記第1の主面の粘度が低下し、前記第2の主面の粘度が低下し、前記ガラスリボンの全体厚さばらつきが低減される、実施形態21に記載の方法。
【0101】
実施形態25
ステップ(b)とステップ(c)との間であって、前記ガラスリボンの前記全体厚さばらつきが低減された後に、前記第1の主面、前記第2の主面、及び前記コアの温度が平衡に近づき、前記ガラスリボンの実効粘度が低下し、前記ガラスリボンの厚さが減少する、実施形態21に記載の方法。
【符号の説明】
【0102】
12 ガラス板
16 ガラスリボン
18 第1の主面
20 第2の主面
22 第1の側縁
24 第2の側縁
26 ガラスリボンの厚さ
28 ガラスリボンの幅
32 溶融ガラス
34 金型
36a、36b 成形ローラ
38 流れ
40 ニップ
42 スロット開口
44a、44b 成形ローラの回転軸
46 溜まり
50 コア
52 冷えじわ
56 第1の昇温ゾーン
58 火炎
60 ラインバーナ
62 ラインバーナの幅
64 ラインバーナの高さ
66 高温体
68 熱放射
70 高温体の幅
72 高温体の高さ
74 冷えじわの谷
76 冷えじわの山
80 第2の昇温ゾーン
82 第2のラインバーナ
83 第2の高温体
86 測定デバイス
88 光
90 成形ローラの隙間
94、94a、94b 引張ローラ
98 複数枚のガラス板
100 割線引き部材
108 ガラス板の幅
110 ガラス板の長さ
112 石英るつぼ
114 立方体ガラス
【国際調査報告】