(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-15
(54)【発明の名称】太陽光収集システム
(51)【国際特許分類】
F24S 23/30 20180101AFI20240105BHJP
F24S 10/40 20180101ALI20240105BHJP
F24S 10/60 20180101ALI20240105BHJP
F24S 30/00 20180101ALI20240105BHJP
【FI】
F24S23/30
F24S10/40
F24S10/60
F24S30/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023563795
(86)(22)【出願日】2021-12-23
(85)【翻訳文提出日】2023-08-16
(86)【国際出願番号】 SG2021050823
(87)【国際公開番号】W WO2022139688
(87)【国際公開日】2022-06-30
(32)【優先日】2020-12-23
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】523241209
【氏名又は名称】ニューマン, スティーヴン ディー.
【氏名又は名称原語表記】NEWMAN, Stephen D.
(71)【出願人】
【識別番号】523241210
【氏名又は名称】ニューマン, デイヴィド エル.
【氏名又は名称原語表記】NEWMAN, David L.
(74)【代理人】
【識別番号】100083895
【氏名又は名称】伊藤 茂
(74)【代理人】
【識別番号】100175983
【氏名又は名称】海老 裕介
(72)【発明者】
【氏名】ニューマン, スティーヴン ディー.
(72)【発明者】
【氏名】ニューマン, デイヴィド エル.
(57)【要約】
集光装置が開示されている。集光装置は、受光部材と集光部材を備える。集光部材は、受光部材上の第1焦点及び受光部材上の第2焦点に向けての光の全方位集光のために配列されている。例えば、集光部材は、受光部材の第1焦点を有する第1集光レンズを備える。集光部材は、受光部材上に第2焦点を有する第2集光レンズを備えることができる。第1及び第2集光レンズは、受光部材の周りで間隔を開けられるようにできる。
【選択図】
図10
【特許請求の範囲】
【請求項1】
受光部材と、
前記受光部材上の第1焦点と前記受光部材上の第2焦点に向けて光を全方位集光するようにされた集光部材と、
を備える、集光装置。
【請求項2】
前記集光部材が、
前記第1焦点を生じさせる第1集光レンズと、
前記第2焦点を生じさせる第2集光レンズと、
を有する、請求項1に記載の集光装置。
【請求項3】
前記第1及び第2集光レンズが前記受光部材の周りで周方向に間隔を開けられている、請求項2に記載の集光装置。
【請求項4】
前記第1集光レンズの第1側面が、前記第1集光レンズの第2側面よりも前記第1焦点に近い、請求項2に記載の集光装置。
【請求項5】
前記第2集光レンズの第1側面が、前記第2集光レンズの第2側面よりも前記第2焦点に近い、請求項4に記載の集光装置。
【請求項6】
前記集光部材が、前記受光部材を少なくとも部分的に囲んでいる透明材料を有する、請求項1に記載の集光装置。
【請求項7】
前記受光部材が流体通路を画定するパイプを有し、前記透明材料が前記流体通路に沿って配置されている、請求項6に記載の集光装置。
【請求項8】
前記透明材料が前記パイプの周りに配置された複数の屈折面に関連付けられている、請求項7に記載の集光装置。
【請求項9】
前記透明材料が少なくとも1つの集光平面を画定し、前記少なくとも1つの集光平面が中点を有し、
前記第1焦点と前記第2焦点との一方又は両方の焦点軸が前記少なくとも1つの集光平面の前記中点と直角でない角度をなすように、前記複数の屈折面が前記第1焦点及び前記第2焦点を協働して生じさせる、請求項8に記載の集光装置。
【請求項10】
流体通路を画定するパイプと、
前記パイプに関連付けられ、複数の方位及び高度から受ける熱エネルギーを前記パイプ上に集中させて、前記流体通路の流体を加熱するようにされた、エネルギー収集システムと、
を備える、集光装置。
【請求項11】
前記エネルギー収集システムが透明材料を有し、
前記透明材料が、
前記透明材料の受光面と、
前記受光面の反対側の前記透明材料の出光面と、
前記受光面と前記出光面とのうちの少なくとも一方に組み込まれた複数の屈折面と、
前記受光面と前記出光面とをつなぐ第1側面と、
前記第1側面の反対側で前記第1側面と整列し、前記受光面と前記出光面とをつなぐ第2側面と、
を有する、請求項10に記載の集光装置。
【請求項12】
前記複数の屈折面が前記透明材料を通過する光を集光焦点に指向させ、
前記透明材料の前記第1側面は前記透明材料の前記第2側面よりも前記集光焦点に近い、請求項11に記載の集光装置。
【請求項13】
前記透明材料が少なくとも半透明である、請求項11に記載の集光装置。
【請求項14】
前記複数の屈折面の少なくとも1つのサブセットが、前記透明材料の前記第1側面から前記透明材料の前記第2側面に向かって徐々に変化する屈折角を有する、請求項11に記載の集光装置。
【請求項15】
前記エネルギー収集システムが、
前記パイプに対して移動可能な部分と、
前記複数の方位及び高度から受け取った前記熱エネルギーを前記パイプ上に集中させるようにされた、前記部分と前記パイプとの間の集光レンズの配列と、
を備える、請求項10に記載の集光装置。
【請求項16】
前記部分の周りで前記パイプの反対側に配置され、前記第1部分を前記第2部分に対して動かすための機械的入力を受けるようにされた捕捉機構をさらに備える、請求項15に記載の集光装置。
【請求項17】
前記第1及び第2部分が前記パイプの長手軸線と実質的に同軸である、請求項15に記載の集光装置。
【請求項18】
風力タービンと、
請求項10に記載の集光装置と、
を備え、
前記集光装置が前記風力タービンに設置されている、システム。
【請求項19】
冷蔵トラックと、
請求項10に記載の集光装置と、
を備え、
前記集光装置が前記冷蔵トラックに設置されている、システム。
【請求項20】
輸送コンテナと、
請求項10に記載の集光装置と、
を備え、
前記集光装置が前記輸送コンテナに設置されている、システム。
【請求項21】
搬送媒体にエネルギーを供給するための方法であって、
受光部材を通して流体を導くことと、
熱エネルギーを前記流体に移すことと、
を含み、
前記熱エネルギーを前記流体に移すことが、
第1方向からの光を受光部材上の第1焦点に集光することと、
前記光が前記第1方向から第2方向に変わったときに、前記第2方向からの光を前記受光部材上の第2焦点に集光することと、
によって行なわれる、方法。
【請求項22】
前記流体が熱搬送媒体を有する、請求項21に記載の方法。
【請求項23】
前記導くことが、ポンプを使用して前記受光部材を通る前記流体の圧力勾配をもたらすことを含む、請求項21に記載の方法。
【請求項24】
前記受光部材と関係する周囲環境から風力エネルギーを収集することをさらに含む、請求項21に記載の方法。
【請求項25】
前記収集することが、前記風力エネルギーを利用してエネルギー収集システムの第1部分の動きを生じさせることを含む、請求項24に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年12月23日に出願された、「太陽光収集システム(SOLAR OPTICAL COLLECTION SYSTEM)」と題する米国仮特許出願第63/130,187号の優先権を主張し、その開示は参照によりその全体がここに組み込まれる。
【0002】
ここに記載の実施形態は、概して太陽エネルギーを収集するためのシステム及び技術に関し、より詳細には放射集中システム及び熱収集システムに関する。
【背景技術】
【0003】
太陽熱システムは、搬送媒体にエネルギーを蓄えるために、太陽放射を収集することができる。従来の太陽熱システムは、かさばり、またミラーに大きく依存するものとなり、ミラーはミラーの劣化及びミラー上への汚染物質の堆積により反射及び屈折の効率を損失する虞がある。従来のシステムは、太陽が弧状軌道を通って動くときに、出力強度追跡装置(power-intensive tracking device)を使用することなく太陽放射を捕らえるのには適していなかった。また、そのようなシステムの大きさや重量は、システムの設置や適用を制限する虞がある。
【発明の概要】
【0004】
本願発明の例は、集光レンズの配列を有する集光装置を含む太陽光収集システム、並びにその組立体及びそれを製造する方法に関する。
【0005】
一例においては、集光装置が開示されている。集光装置は、受光部材を有する。前記集光装置はさらに、前記受光部材上の第1焦点と前記受光部材上の第2焦点に向けて光を全方位集光するようにされた集光部材を有することができる。
【0006】
別の例では、前記集光部材は、前記第1焦点を生じさせる第1集光レンズを有することができる。また、前記集光部材は、前記第2焦点を生じさせる第2集光レンズを有することができる。場合によっては、前記第1及び第2集光レンズが前記受光部材の周りで周方向に間隔を開けられているようにできる。前記第1集光レンズの第1側面が、前記第1集光レンズの第2側面よりも前記第1焦点に近いようにできる。加えて、前記第2集光レンズの第1側面が、前記第2集光レンズの第2側面よりも前記第2焦点に近いようにできる。
【0007】
別の例では、前記集光部材が、前記受光部材を少なくとも部分的に囲んでいる透明材料を有するようにできる。前記受光部材が流体通路を画定するパイプを有するようにできる。前記透明材料が前記流体通路に沿って配置されているようにできる。前記透明材料が前記パイプの周りに配置された複数の屈折面に関連付けられているようにできる。場合によっては、前記透明材料が少なくとも1つの集光平面を画定することができる。前記少なくとも1つの集光平面が中点を有することができる。前記第1焦点と前記第2焦点との一方又は両方の焦点軸が前記少なくとも1つの集光平面の前記中点と直角でない角度をなすように、前記複数の屈折面が前記第1焦点及び前記第2焦点を協働して生じさせるようにできる。
【0008】
別の例では、集光装置が開示されている。前記集光装置は受光部材を備える。前記集光装置はさらに、前記受光部材上の第1焦点を有する第1集光レンズを備える。前記集光装置はさらに、前記受光部材上の第2焦点を有する第2集光レンズを備える。前記第1及び第2集光レンズは、前記受光部材の周りで周方向に間隔を開けられている。
【0009】
別の例では、前記集光装置は、前記受光部材の周りで前記第1集光レンズ及び前記第2集光レンズを収容する透明材料を備える。前記透明材料は、前記受光部材と前記第1及び第2集光レンズとの間に部分真空空間を画定することができる。
【0010】
別の例では、前記集光装置は、前記受光部材上の第3焦点を有する第3集光レンズを備えることができる。前記第3集光レンズは、前記受光部材の周りで第1及び第2集光レンズとともに周方向に間隔を開けられているようにできる。場合によっては、前記第1、第2、及び第3集光レンズは、受光部材に向けての光の全方位集光のために協働する。
【0011】
別の例では、前記第1及び第2焦点は、前記受光部材の異なる位置にある。また、第1集光レンズと第2集光レンズとのうちの一方又は両方が、シリンドリカルロッドレンズを有するようにできる。例えば、前記受光部材は長手軸線を有するパイプを備えることができ、前記シリンドリカルロッドレンズは前記長手軸線に沿って延びている。ある場合には、前記シリンドリカルロッドレンズは、第1焦点と第2焦点とのうちの一方又は両方を共同で生じさせるようにされた複数の屈折面を備える。
【0012】
別の例では、集光装置が開示されている。前記集光装置は、流体通路を画定するパイプを備える。前記集光装置はさらに、前記パイプに関連付けられ、複数の方位及び高度から受ける熱エネルギーを前記パイプ上に集中させて、前記流体通路の流体を加熱するようにされた、エネルギー収集システムを備える。
【0013】
別の例では、エネルギー収集システムは、透明材料を備えることができる。前記透明材料は、前記透明材料の受光面を有することができる。前記透明材料はさらに、前記受光面の反対側の前記透明材料の出光面を有することができる。前記透明材料はさらに、前記受光面と前記出光面とのうちの少なくとも一方に組み込まれた複数の屈折面を有することができる。前記透明材料はさらに、前記受光面と前記出光面とをつなぐ第1側面を有することができる。前記透明材料はさらに、前記第1側面の反対側で前記第1側面と整列し、前記受光面と前記出光面とをつなぐ第2側面を有することができる。
【0014】
別の例では、前記複数の屈折面が前記透明材料を通過する光を集光焦点に指向させるようにできる。前記透明材料の前記第1側面は前記透明材料の前記第2側面よりも前記集光焦点に近いようにできる。前記透明材料が少なくとも半透明であるようにできる。場合によっては、前記複数の屈折面の少なくとも1つのサブセットが、前記透明材料の前記第1側面から前記透明材料の前記第2側面に向かって徐々に変化する屈折角を有するようにできる。
【0015】
別の例では、前記エネルギー収集システムは、前記パイプの周りに配置された第1部分を有することができる。前記エネルギー収集システムはさらに、前記第1部分に対して移動可能である第2部分を備えることができる。前記エネルギー収集システムはさらに、前記複数の方位及び高度から受け取った前記熱エネルギーを前記パイプ上に集中させるようにされた、前記第1部分と前記第2部分との間の集光レンズの配列を備えることができる。
【0016】
別の例では、前記エネルギー収集システムはさらに、前記第1部分の周りでパイプの反対側に配置された捕捉機構を備えることができる。前記捕捉機構は、前記第1部分を前記第2部分に対して動かすための機械的入力を受けるようにすることができる。ある場合には、前記捕捉機構は、複数の空力ブレードを備えることができる。前記第1及び第2部分は、パイプの長手軸線と実質的に同軸であるようにすることができる。
【0017】
別の例では、システムが開示されている。前記システムは、風力タービンを備える。前記システムはさらに、ここに開示された集光装置のいずれかのような集光装置を備える。前記集光装置が風力タービンに設置されている。
【0018】
別の例では、システムが開示されている。前記システムは、冷蔵トラックを備える。システムはさらに、ここに開示された集光装置のいずれかのような集光装置を備える。前記集光装置は前記冷蔵トラックに設置されている。
【0019】
別の例では、システムが開示されている。前記システムはさらに、ここに開示された集光装置のいずれかのような集光装置を備える。前記集光装置は、輸送コンテナに設置されている。
【0020】
別の例では、搬送媒体にエネルギーを供給するための方法が開示されている。前記方法は、受光部材を通して流体を導くことを含む。前記方法はさらに、(i)第1方向からの光を受光部材上の第1焦点に集光すること、(ii)前記光が前記第1方向から第2方向に変わったときに前記第2方向からの光を前記受光部材上の第2焦点に集光することと、によって、熱エネルギーを前記流体に移すことを含むことができる。
【0021】
別の例では、前記流体は熱搬送媒体を有することができる。例えば、前記流体は、水、グリコール/水混合体、炭化水素油、冷却剤/相変化流体、シリコーン、溶融塩、分子太陽熱エネルギー貯蔵(molecular solar thermal energy storage)、又はゼオライトベース熱貯蔵(zeolite-based thermal storage)のうちの1つ又は複数を有することができる。
【0022】
別の例では、前記導くことが、ポンプを使用して前記受光部材を通る前記流体の圧力勾配をもたらすことを含むことができる。
【0023】
別の例では、前記第1焦点が第1集光レンズによってもたらされるようにできる。前記第2焦点が第2集光レンズによってもたらされるようにできる。前記第1及び第2集光レンズは、受光部材の周りで周方向に間隔を開けられているようにできる。
【0024】
別の例では、前記方法は、前記受光部材と関係する周囲環境から風力エネルギーを収集することを含むことができる。前記収集することが、前記風力エネルギーを利用してエネルギー収集システムの第1部分の動きを生じさせることを含むことができる。場合によっては、前記第1部分は、前記受光部材の周りに配置された透明材料を有することができる。光が透明材料を第1方向及び第2方向に通過することができ、それにより第1方向からの光を第1焦点に集光すること、及び第2方向からの光を第2焦点に集光することが可能となるようにできる。
【0025】
上述の例示的な態様及び実施形態に加えて、さらなる態様及び実施形態が、図面を参照することによって、及び以下の記載の検討によって、明らかになるであろう。
【図面の簡単な説明】
【0026】
【
図1】従来技術のフレネルレンズの平面図を示している。
【0027】
【
図2】本開示に係る集光レンズの一例の側面図を示している。
【0028】
【
図3】本開示に係る集光装置の一例の側面図を示している。
【0029】
【
図4】本開示に係る集光装置の一例の側面図を示している。
【0030】
【
図5】本開示に係る集光装置の一例の側面図を示している。
【0031】
【
図6】本開示に係る集光レンズの一例の側面図を示している。
【0032】
【
図7】本開示に係る集光レンズ装置の一例の側面図を示している。
【0033】
【
図8】そこに形成されたメタオプティクスを有する表面の走査電子顕微鏡画像の例を示している。
【0034】
【
図9】太陽光収集システムの集光装置を有する一例のシステムの等角図を示している。
【0035】
【
図10】
図9の10-10線に沿った、
図9の集光装置の断面図を示している。
【0036】
【
図11A】
図10の集光装置のレンズの11A-11Aでの詳細図を示している。
【0037】
【
図11B】集光レンズの一部及びレンズの関係する焦点の等角図を示している。
【0038】
【
図12】熱搬送媒体を有する太陽光収集システムの一例の集光装置の断面図を示している。
【0039】
【
図13】一例のエネルギー収集システムを示している。
【0040】
【
図14】集光装置及び風力タービンを備える一例のシステムを示している。
【0041】
【
図15】集光装置及びトラックを備える一例のシステムを示している。
【0042】
【
図16】集光装置及び輸送コンテナを備える一例のシステムを示している。
【0043】
【
図17】エネルギーを搬送媒体に供給するためのフロー図を示している。
【発明を実施するための形態】
【0044】
以下の記載は、本開示の様々な要素を具現化する、サンプルのシステム、方法、及び装置を含む。しかしながら、記載された開示は、ここに記載されたものに加えて、様々な形態で実施されるようにできる。
【0045】
以下の開示は、搬送媒体への太陽放射の収集及び集中を容易にするためのシステム及び技術を説明している。集光装置を備える太陽光収集システムは、太陽放射を収集して熱エネルギーを熱搬送媒体に移すために提供される。サンプルの熱搬送媒体は、水、グリコール/水の混合体、炭化水素油、冷却剤/相変化流体、シリコーン、溶融塩、分子態様熱エネルギー貯蔵、又はゼオライトベース熱貯蔵を含むことができる。集光装置は、熱搬送媒体の周りに配置された集光レンズの配列を有することができる。集光レンズは、太陽放射を収集し、放射を熱搬送媒体に向けて指向させて集中させるようにすることができる。熱搬送媒体は、集光された放射を受けて、放射を熱エネルギーとして蓄える。従来の太陽熱システムは、しばしば、太陽の位置によって制限されるか、さもなければ従来のシステムの全体を物理的に操作して動かすために使用されるかさばった出力強度追跡システムを有する。
【0046】
本開示の集光装置は、太陽の位置に実質的に依存しないで太陽放射を収集することができるシステムを提供することによって、そのような障害を軽減することができる。例えば、集光装置は、太陽が空を太陽の弧状軌道(day arc)又は他の経路に沿って進むときに太陽放射を収集するようにすることができる。太陽放射を収集するためのレンズ又は他の構造体を動かすことなく、太陽放射を収集することができる。
【0047】
上記を促すために、集光装置は、熱搬送媒体の周りに配置された集光レンズの配列を有するようにできる。場合によっては、集光レンズの配列は、熱搬送媒体の周りで周方向に間隔を開けて配置することができる。その配列により、太陽が第1位置にあるときに、集光レンズの第1サブセットが太陽放射を収集することを可能にする。その配列はさらに、太陽が太陽の弧状軌道に沿って進んで第2位置になったときに、集光レンズの第2サブセットが太陽放射を収集することを可能にする。したがって、レンズの配列は、熱搬送媒体に向かって光を全方位集光するようにすることができる。よって集光装置は、太陽放射を収集及び集中する装置の部品を動かすことなく、太陽を効率的に追跡することができる。よって、集光装置の大きさ及び電力消費を低減することができる。
【0048】
一実施形態においては、熱搬送媒体は、パイプ、チューブ、又は他の導管の中に保持されるようにできる。パイプは、実質的に冷たい搬送媒体が受け入れられる媒体入口と実質的に暖かい搬送媒体が排出される媒体出口との間を延びるような、熱搬送媒体のための流体通路を画定することができる。集光装置の流体通路は、装置による加熱のため及び熱交換器などのシステムの他の熱機器による熱除去のために熱搬送媒体が連続的に循環される流体循環システムの一部とすることができる。エネルギー収集システムは、熱エネルギーをパイプに集中させて流体通路内の流体を加熱するために、パイプに関連付けられる。エネルギー収集システムは、太陽の弧状軌道の複数の方位及び高度から受け取った太陽の熱エネルギーを集中させるために、レンズの配列を流体通路の周りに配置して保持することができる。例えば、エネルギー収集システムは、レンズの配列を流体通路の周りで実質的に同心円状に保持する第1部分及び第2部分を有するようにできる。レンズは、第1部分と第2部分との間の環状空間に保持されるようにできる。
【0049】
場合によっては、第1部分と第2部分の一方又は両方が、流体通路に対して動くようにすることができる。例えば、第2部分は、内側の第1部分に対して自由に回転することができる外側部分とすることができる。ブレード、フィン、及び/又は他の空力部品を第2部分の外面に取り付けることができる。ブレードは、風を受けたときに外側の第2部分の動きを促進することができる捕捉機構を集合的に画定することができる。風によって生じた外側の第2部分の動きは、エネルギーを捕捉して太陽エネルギーと共に貯蔵するために使用することができる。
【0050】
集光装置の実質的に軽量なデザインが容易になることの理由の一部は、太陽放射を収集して集中させるために光学レンズを使用することによるものである。光学レンズは、従来の太陽熱システムにおいて使用されるかさばるミラーよりも軽くし得る。光学レンズはまた、ミラーに比べて、所与の設置面積に対して太陽放射を熱搬送媒体により集中させて伝達することができる。これにより、集光装置の全体サイズを低減することが可能となる。本開示の集光装置は、集光装置を建物の屋根や既存の構造体の上に設置するなど、広範な様々な場所に設置するようにすることができ、これは既存のインフラとともに実施することを容易にする。集光装置はまた、風力タービン、トラック、及び/又は輸送コンテナに設置することを含む、様々な他の用途での設置に適したものとすることができる。
【0051】
集光装置とともに使用するための一例のレンズは、マドックスロッド(Maddox rod)/レンズを含む。レンズは、太陽エネルギーを捕捉して熱伝達媒体上へと集中させるために屈折光学デザインを実施することができる。後に詳細に説明するように、フレネルレンズ及びその変形形態も使用することができる。レンズは、受け入れた媒体内で焦点深度拡張(EDO)効果を生じさせるために、両非球面凸/平面シリンダとして集中されるようにできる。場合によっては、レンズは、15mmから25mmの焦点距離を有するようにすることができる。さらに、焦点距離は、大気吸収の後の日光のスペクトルを使用して、様々な日光の入射角及び実質的に400nmから1,600nmの間の可視光からIRの範囲の波長に対して校正することができる。レンズは、所与の日光波長に対して所望の焦点距離を有するように調節することができ、例えば、543nmの波長に対して15.0mmの有効焦点距離を有するように調節することができる。これは、集光装置が、ある波長値に校正されて、広い波長スペクトル及び入射角にわたって太陽エネルギーを捕捉するようにすることを可能とする。
【0052】
当然のことながら、様々な種々のレンズをここに記載の集光装置に使用することができる。一例として、フレネルレンズは、太陽熱収集器において、屈折によって光を集めるために使用することができる。従来のフレネルレンズは、おおよそ湾曲レンズに近似するが、材料がより少ない。よって、フレネルレンズは、それに相当する湾曲レンズよりも軽い。場合によっては、フレネルレンズは平行光を焦点に集中させる。概して、フレネルレンズは平らな側と傾斜した側とを含む。傾斜した側は屈折面を形成する傾斜したファセット(小平面)を含み、屈折面はレンズの湾曲を近似する。典型的には、ファセットが多いほど、湾曲レンズにより良く近似する。
【0053】
概して、フレネルレンズを通過する光の全てが一点に集光される。よって、フレネルレンズの表面積が大きいほど、より多くの光が一点に集光される。フレネルレンズの側部を通過する光線はフレネルレンズの中央部分を通過する光線が通る同じ焦点に集められるが、側部を通過する光線は中央を通過する光線よりも長い距離を伝播しなければならないので、より大きな表面積を有するフレネルレンズは、大抵はより長い焦点距離を有することになる。よって、一般に、フレネルレンズの表面積が大きいほど、焦点までの焦点距離はより長くなる。これは、フレネルレンズの対称性のせいでもある。この原則に基づいて、表面積が増加すると、フレネルレンズは焦点からより遠くに配置されて、より多くのスペースを取る。
【0054】
本開示の目的として、用語「整合」は、平行、実質的に平行、又は35.0度未満の角度を形成することを意味している。本開示の目的として、用語「横断」は、垂直、実質的に垂直、又は55.0から125.0度の間の角度を形成することを意味している。また、本開示の目的として、用語「長さ」は物体の最も長い寸法を意味する。また、本開示の目的として、用語「幅」は、物体の側面から側面までの寸法を意味する。大抵の場合、物体の幅は物体の長さを横断する。本明細書の目的として、集光平面は、概して、軸に平行な光線が焦点に集束するように偏向する平面をいう。本明細書の目的として、焦点軸は集光平面の中点と集光焦点とを通る軸である。
【0055】
ここで、本開示の様々な特徴を説明するのを助ける添付の図面を参照する。以下の記載は、例示及び説明を目的として示される。また、ここでの記載は、発明の形態をここに記載する形態に限定することを意図していない。よって、以下の技術、技能、及び関連技術分野の知識に見合う変形及び修正は、本発明の形態の範囲内にある。
【0056】
図1は、従来のフレネルレンズ100の例を示している。ここで、フレネルレンズ100は概して平らな受光面102を含む。フレネルレンズ100の出光面104は、受光面102の反対側にあり受光面102に整合している。出光面104は、屈折面を形成する複数の傾斜面106を含む。平らな受光面102に概して垂直な光は、たとえあったとしても大きな屈折はなしに受光面に入る。出光面104上の屈折面は、光を焦点110に向かって屈折させる。フレネルレンズ100は、焦点110まで実質的に同距離であるレンズの第1側面112及び第2側面114に対して概して対称である。フレネルレンズの側部領域116を通って伝播する屈折した光は、フレネルレンズ100の中央領域118で屈折しない光よりも、焦点110に届くまでにより遠い距離を有する。
【0057】
フレネルレンズ100の表面積は、フレネルレンズ100の長さ及び幅によって決まる。従来のフレネルレンズのこの描写では、フレネルレンズ100の幅120だけが描かれている。
【0058】
図2は、一実施形態にかかる集光レンズ200を示している。いくつかの例では、集光レンズはフレネルレンズであるが、
図2に描画された原理は他のタイプの集光レンズにも適用可能である。
【0059】
集光レンズ200は、受光面202及び出光面204を含む。受光面202は概して平らであり、出光面204は、レンズ200から出ていく光線の方向に影響を与える屈折面を形成する複数の傾斜面206を含む。屈折面のそれぞれは、光を単一の焦点210に向けることに重点を置いている。
【0060】
集光レンズ200の第1側面212は、受光面202を出光面204に接続する。集光レンズ200の第2側面214は、第1側面212の反対側にあり、受光面202を出光面204に接続する。この例では、第1側面212は、第2側面214よりも焦点210に近い。この例では、集光レンズ200は実質的に平らな受光面202を有する。よって、集光レンズ200は、ある角度で傾いている。また、第1側面212は、集光レンズ200の第2側面214よりも、焦点からより大きな垂直距離又はより上に離れて配置されている。
【0061】
集光レンズ200は、水平に対して適切な如何なる角度で傾いているようにすることもできる。例えば、集光レンズ200は、少なくとも5度、少なくとも10度、少なくとも15度、少なくとも20度、少なくとも25度、少なくとも30度、少なくとも35度、少なくとも40度、少なくとも45度、少なくとも50度、少なくとも55度、少なくとも60度、少なくとも65度、少なくとも70度、少なくとも75度、少なくとも80度、少なくとも85度、少なくとも他の適切な角度、又はそれらの組み合わせの角度で傾いていてもよい。
【0062】
集光レンズ200は、少なくとも部分的に透明な材料から形成することができる。いくつかの例では、集光レンズ200の材料は、少なくとも20パーセントの全透過率、少なくとも30パーセントの全透過率、少なくとも40パーセントの全透過率、少なくとも50パーセントの全透過率、少なくとも60パーセントの全透過率、少なくとも70パーセントの全透過率、少なくとも80パーセントの全透過率、少なくとも85パーセントの全透過率、少なくとも90パーセントの全透過率、少なくとも95パーセントの全透過率、他の適切な全透過率、又はこれらの組み合わせの特性を有することができる。いくつかの例では、集光材料は、ガラス、プラスチック、樹脂、ダイアモンド、サファイア、セラミックス、他のタイプの材料、又はこれらの組み合わせとすることができる。
【0063】
光が受光面202に入ると、入った又は受けた光が受光面202に対して垂直でないときにはその光は屈折し得る。この場合には、概して焦点に向かって進んではいるが焦点に集中しない実質的に平行な光線は、入ってくる光と受光面202との間の相対角度のために屈折する。受光面202で生じるこの屈折は、自然の光線218を部分的に屈折した光線220へと曲げる、光線の第1屈折角216でありうる。部分的に屈折した光線220に対する傾斜面206の相対角度により、部分的に屈折した光線220は焦点上に集光する光線222へと曲げられる。よって、光はおおむね焦点に向かう方向に進みながら複数の点で屈折される。
【0064】
概して平行な光線が平らな受光面202に入るので、光は同じ角度で屈折して部分的に屈折した光線を形成する。部分的に屈折した光線は、透明材料を通って進み、透明材料内に含まれる。部分的に屈折した光線は、透明材料を出るときに、焦点に向けられる収束する光線へと屈折される。部分的に屈折した光線から収束する光線への移行が第2屈折角224を形成する。第2屈折角224は、透明材料の出光面上の傾斜面の角度に基づいて形成される。光透明材料の第1側面から光透明材料の第2側面にまで傾斜面は漸進的に角度が増加して、光線のそれぞれを集光レンズの長さに沿って焦点にまで集光する。よって、屈折角は、集光レンズの断面長さに対する光線の位置によって異なる。幾つかの傾斜面206では、第2屈折角224は概して部分的に屈折した光線220に垂直であり、ほんの僅かな屈折だけが生じて収束する光線222を形成するようになる。しかしながら、出光面204の他の部分では、傾斜面206と部分的に屈折した光線220との間の相対角度は、鋭角又は鈍角であり、より大きな屈折補正を引き起こして収束する光線222を形成する。加えて、水平に対する受光面202の全体的な所望角度位置に対して傾斜面206の相対角度を調整して、受光した光を所望の焦点210に向けるようにすることができる。
【0065】
図示の例では、集光レンズ200の第1側面212に近接した第1傾斜面226は、小さい屈折調整をもたらして、収束する光線222を形成する。傾斜面206のそれぞれは第1側面212から第2側面214に向かう方向で漸進的に顕著になっていく角度を形成し、それにより部分的に屈折した光線220と収束する光線222との間の角度変化が大きくなっていく。例えば、集光レンズ200の第2側面214に近接した最も遠い傾斜面228は、部分的に屈折した光線220に対して急な鋭角230を形成し、より大きな第2屈折角224をもたらす。いくつかの例では、集光レンズの第1側面に近接した傾斜面は、集光レンズの第2側面の傾斜面とは異なる屈折面の角度を有するが、傾斜面のそれぞれが収束する光線を焦点210に向ける。
【0066】
第1屈折角216は、適当な如何なる角度にすることもできる。例えば、第1屈折角に対して互換性のある角度の包括的でないリストには、90度未満、60度未満、50度未満、45度未満、40度未満、35度未満、30度未満、25度未満、20度未満、15度未満、10度未満、5度未満、又は他の適当な角度未満の角度が含まれうる。
【0067】
何れの個々の傾斜面の第2屈折角224も適当な如何なる角度にすることができる。例えば、傾斜面の屈折角に対して互換性のある角度の包括的でないリストには、90度未満、60度未満、50度未満、45度未満、40度未満、35度未満、30度未満、25度未満、20度未満、15度未満、10度未満、5度未満、又は他の適当な角度未満の角度が含まれうる。
【0068】
第2屈折角224は第1屈折角216の影響を受け、傾斜面206のそれぞれの相対的な横方向長さは焦点に関係することが見込まれる。例えば、傾斜面の多くは部分的に屈折した光線220と収束する光線222との間に負の角度を形成し得る。一方で、他の傾斜面は部分的に屈折した光線220と収束する光線222との間に正の角度を形成するように向けられ得る。
【0069】
。
図示の例では、集光レンズ200の第1側面212は、集光レンズ200の第2側面214よりも、焦点210に近い。結果として、集光レンズ200は、焦点の周りでオフセットしているか又は非対称に向けられている。よって、傾斜面206のそれぞれは、光線のそれぞれを中心からずれた焦点210に非対称に集光するように角度付けられている。
【0070】
焦点に対してある角度に向けられた集光レンズ200を有することの一つの利点は、同じ表面積を有する集光レンズを同じ設置面積の中により多く収めることが可能になることである。例えば、傾斜した集光レンズは、追加の集光レンズを同じ設置面積の中に含めることができるので、集光するために使用される全体的な表面積を増加させることができる。増加した表面積を有することにより、より多くの光をより小さなエリアに集めることができ、それによりレンズの熱効率が向上する。
【0071】
図2において、線232は、線234によって表わされた
図1のフレネルレンズの幅に対する集光レンズ200の幅を表わしている。図に示すように、線234は232よりも短く、正味の幅の差分(Δ)をもたらす。この追加のスペースは追加の集光レンズを提供するために使うことができる。例えば、もし同じ量の収束した光をもたらす傾斜した集光レンズが結果として20パーセントのスペースを削減するのであれば、従来は4つの集光レンズだけが収まっていた設置面積に5つめの集光レンズを収めることが可能となる。
【0072】
図2の例において、出光面204は傾斜面206を含み、受光面202は概して平らである。しかしながら、代替例においては、出光面が概して平らであり、受光面が傾斜面を含むようにすることができる。さらに別の代替例においては、受光面と出光面のそれぞれに傾斜面と概して平らな領域とが混在している。
【0073】
図3は集光装置300の例を示している。この例では、集光装置300は、受光部材302と、複数の集光レンズを備える集光部材304とを含む。明確にすることを目的として、各集光レンズの具体的なレンズの幾何学的細部は
図3には示されていない。集光部材304は、受光部材302上の第1焦点308を有する第1集光レンズ306を含む。第1集光レンズ306の第1側面310は、第1集光レンズ306の第2側面312よりも第1焦点308に近い。よって、第1集光レンズ306は、オフセットされていて、光線を中心から外れた焦点に集光する。第1集光レンズ306は第1焦点308の周りで非対称に配置されているため、第1集光レンズの設置面積は焦点の周りで対称に向けられた従来のフレネルレンズよりも小さい。
【0074】
集光装置300はまた、第2集光レンズ314を含む。この例では、第2集光レンズ314も第2焦点316の周りで非対称に向けられている。よって、第2集光レンズ314の第1側面318は、集光レンズ314の第2側面320よりも第2焦点316に近い。この例では、第2集光レンズ314は第1集光レンズ306に対して横断方向に向けられている。よって、第1及び第2集光レンズ306、314は180度でない角度を形成する。
【0075】
第1及び第2集光レンズ306、314の間に形成される角度は適当な如何なる角度とすることもできる。いくつかの例では、その角度は、5度よりも大きい、10度よりも大きい、15度よりも大きい、20度よりも大きい、25度よりも大きい、30度よりも大きい、40度よりも大きい、45度よりも大きい、50度よりも大きい、60度よりも大きい、70度よりも大きい、80度よりも大きい、90度よりも大きい、100度よりも大きい、105度よりも大きい、110度よりも大きい、120度よりも大きい、130度よりも大きい、140度よりも大きい、150度よりも大きい、160度よりも大きい、170度よりも大きい、別の適当な角度よりも大きい、又はそれらの組み合わせの角度である。
【0076】
図3に示す例において、第1焦点308と第2焦点316は互いに距離をあけて離れている。第1焦点308と第2焦点316は、適当な如何なる距離をあけて離れていても良い。いくつかの例では、第1焦点308と第2焦点316は、1.0インチ(2.54センチ)未満、2.0インチ(5.08センチ)未満、3インチ(7.62センチ)未満、5インチ(12.7センチ)未満、7インチ(17.78センチ)未満、10インチ(25.4センチ)未満、15インチ(38.1センチ)未満、20インチ(50.8センチ)未満、25インチ(63.5センチ)未満、別の適当は距離、又はそれらの組み合わせの距離をあけて離れている。いくつかの例では、第1及び第2集光レンズ306、314は、受光部材302上の全く同じ点に光を集める。
【0077】
第1及び第2集光レンズ306、314の両方がオフセットしているこれらの例では、傾斜したレンズの設置面積の低減は加算的である。よって、より多くの量の光の恩恵が、受光部材302により小さなエリアで集められる。追加の集光レンズを受光部材302の周りの利用可能な空いたスペースに加えることができ、これにより受光部材302に集められる光の全体量が増加する。
【0078】
図示の例では、複数の集光レンズがジグザグの断面を形成する。
図3の例は集光レンズのそれぞれが対称な断面を形成するように向けられて示されているが、少なくとも1つの集光レンズが複数の集光レンズのうちの少なくとも2つの他のレンズとは異なるオフセット角度で向けられていてもよい。また、
図3の例は集光レンズのそれぞれが同じ長さ又は寸法を有するように示されているが、代替例においては、少なくとも1つの集光レンズが少なくとも1つの他の集光レンズとは異なる長さを有する。
【0079】
受光部材302は、適当は如何なる物体又は流体とすることもできる。一例では、受光部材302は光エネルギーを電気エネルギーに変換する太陽電池である。より多くの光をある面積内の太陽電池上に集めることによって、太陽電池は同じ面積でより多くの電気に変換することができる。よって、太陽電池や集光装置の設置面積を増加させることなく、太陽電池の生産性を増加させることが可能となる。集光装置がソーラーファームの一部であるこれらの例では、ソーラーファームはソーラーファームの設置面積を増加させることなく生産性をより高くすることが可能となる。
【0080】
別の例では、受光部材302は、気体もしくは流体を保持したり搬送したりすることができるパイプ又は他のタイプの導管とすることができる。いくつかの例では、流体は気体である。他の例では、流体は水性液及び/又は油性液である。個人の家、建物、又は地域社会で、水を温めるために集光装置を使用することができる。そのような温められた水は、シャワー、食器洗い機、洗濯機、又は他の家庭用もしくは工業用の機器で使用することができる。さらに別の例では、水は、発電のためのタービンに動力を供給するために使用することが可能な蒸気に変換することができる。さらに別の例では、温められた水は、建物の冷暖房、発電、プールの温め、歩道の温め、道路の温め、建物内の環境の調整、他の物体の温め、他の物体の温度の調整、又はこれらの組み合わせ、に使用される熱交換器において使用することができる。
【0081】
別の実施形態においては、受光部材302は、そこでの熱エネルギーの変換が望まれる如何なる物品とすることもできる。例えば、受光部材は、衣料品;屋根、窓、又は壁のような建物の要素;テントの表面;自動車の表面;ボートの表面;又は他の構造要素とすることができる。加えて、集光装置は、熱エネルギーを所望の物品に効果的且つ効率的に伝達するために適当な如何なる大きさを想定することもできる。一実施形態においては、集光装置は複数の又はアレイ状の集光レンズを含む。集光レンズは、衣料品のような環境内に組み込むことが可能なレンズのマイクロアレイとすることができる。
【0082】
図4は、集光装置400の例を示している。この例では、集光装置400はオフセット角度が互いに交互になる集光レンズ402を含む。この例では、交互にオフセットしたレンズ402のそれぞれが、光を受光部材406上のオフセット焦点404に向ける。しかしながら、代替例においては、集光レンズ402は、少なくとも2つの焦点を同じ場所に向けることができる。
【0083】
図示の例では、集光レンズ402と受光部材406との間のスペースは囲まれている。いくつかの例では、この囲まれたスペース407は、光伝達環境を制御する不活性物質または他の気体で満たされている。これらの例では、囲いは、ほこり、破片、又は他の光干渉粒子によって集光レンズ402から受光部材406への光伝達の効率が低下することを防止することができる。この例は囲みとともに説明されているが、代替の実施形態では、集光装置は囲みを含んでおらず、空気又は他の気体が集光レンズと受光部材との間のスペースを通過するようにすることができる。
【0084】
別の例では、集光レンズ402と受光部材406との間のスペースは部分真空とすることができる。この例では、部分真空は、光の伝達に干渉し得る気体分子でできる限り妨げられない環境、又は少なくとも周囲条件の気体の量よりも低減された気体の量を有する環境を維持することができる。光は、固体、液体、又は気体透明媒質中よりも、真空中を速く伝播する。透明媒質を通る光の減速は、エネルギー輸送の一つ形態であり、物質の原子による光エネルギーの吸収及び再放出を含む。光のエネルギーのいくらかは、透明物質の分子による吸収及び再放出で失われる。場合によっては、このエネルギー損失は透明材料の温度上昇によって明らかにされる。
【0085】
完全な真空は、地球上で達成することが難しい。よって、場合によっては部分真空が使用される。少なくとも部分真空を作り出すために、少なくとも部分的に集光レンズと受光部材とによって形成された囲いの中の空気が、真空ポンプを使用して取り除かれて、外圧よりも小さい、一例においては1気圧未満の、減圧環境が得られる。囲いは、適切な如何なるタイプの材料からでも作ることができる。使用され得る材料の包括的でないリストには、ステンレス鋼、アルミニウム、軟鋼、真ちゅう、高密度セラミックス、ガラス、アクリル、他のタイプの材料、又はそれらの組み合わせが含まれる。
【0086】
集光装置400はまた、破片や集光レンズの透明性を低下させうる他の少なくとも部分的に不透明な材料から集光レンズ402を保護する保護透明バリア408を含む。一実施形態によると、保護透明バリア408は、ここに開示のシステムの何れにおいても含まれうるし、また対化学性、柔軟性、天候及びUV安定性を追加するコーティングを含み得る。一実施形態においては、透明バリアは、脂肪族のコーティング、より詳細には、脂肪族ウレタンのコーティング又は脂肪族ポリウレタンのコーティングである。このコーティングは、集光装置400の表面の耐候性能を増加させ、かすみ又は他の集光装置の効率及び光伝達性を減少させうる他の光を遮る要因を防止する。光は、屈折変化を伴うか又は伴うこと無く、保護透明バリア408を通過することができる。
図4に示された例は実質的に平らなバリアであるが、バリアは適当な如何なる形状又は幾何学的配置を含むこともできる。
【0087】
図示の例において、受光部材406は動的な又は静的な流体を搬送するパイプとすることもできる。場合によっては、受光部材406は熱を保持する高い熱容量を有する材料とすることができる。受光部材406が流れる動的流体に熱を伝達するこれらの例では、流体はパイプの中を通って流れるときに温められる。温められた流体は、受光部材406を出た後に有用な用途のために使用することができる。場合によっては、受光部材は流体が通過できる多孔質材料である。多孔質材料は流体の表面積を増加させて熱伝達を向上させる。さらに別の実施形態においては、受光部材406は、熱伝達を向上させるために、受光部材406内に複数のパイプ及び/又は複数の流体通路を含む。
【0088】
受光部材406は適当な如何なる色とすることもできる。いくつかの例では、受光部材406は、光を吸収ように黒色又は少なくとも暗い色の表面を含む。代わりに、受光部材406は、集光レンズによって集められた熱エネルギーの全てがその中に収められた流体に送られるように透明とすることができる。
【0089】
受光部材406内にヒートスプレッダを組み込むことができる。ヒートスプレッダは、受光部材406上のホットスポットが最小となるように熱伝導材から作ることができる。熱が材料全体に広がるので、一般にヒートスプレッダ全体の温度は比較的に均一になる。場合によっては、ヒートスプレッダは金属又は熱伝達セラミックから作られる。さらに別の例では、受光部材406の全体が、熱エネルギーが焦点から受光部材の材料全体に広がることによってホットスポットを最小にする熱伝導材から作られる。
【0090】
受光部材を断熱層410で囲んで、熱を受光部材402に閉じ込めるようにすることができる。断熱層410は、適当な如何なる材料からでも作ることができ、また適当な如何なる厚さを有するようにすることもできる。場合によっては、断熱層は、熱を受光部材406内に戻すための反射表面を含む。
【0091】
場合によっては、断熱層410の中に熱交換器412及び/又は吸熱体を組み込むことができる。熱交換器412は、受光部材406の中の熱を生産的用途に伝達するために使用される。いくつかの例では、熱交換器412は、熱を伝導によって伝達する伝導熱交換器である。これらのタイプの熱交換器は、断熱層410の中に組み込まれた金属とすることができる。他の例では、熱交換器は熱を対流によって伝達する。
【0092】
図示の例は1つの受光部材を参照して説明されているが、集光レンズは集光装置内の複数の受光部材の上に焦点を映すようにできる。
【0093】
図5は、第1集光レンズ504と第2集光レンズ506の上側に透明な保護バリア502を有する集光装置500の例を示している。第1及び第2集光レンズ504、506のそれぞれが、それらの各自の焦点を受光部材510上の同じ場所508に向けている。この例では、受光部材510は調理なべである。光からの熱は、調理鍋の中の食べ物を調理するために使用される。この例では、集光レンズ504、506と受光部材510との間に閉じた囲いはない。
【0094】
図6は、集光レンズ600の代替例を示している。この例では、集光レンズ600は受光面602と出光面604を含む。集光レンズ600の第1側面606は、受光面602と出光面604を接続する。集光レンズ600の第2側面608は、第1側面の反対側にあり、同様に受光面602と出光面604を接続する。出光面604は、屈折面を形成する傾斜面610を含む。
【0095】
受光面602は、隣接する第1平面612と第2平面614を分ける屈曲部611含むが、それでも一体の材料である。第1平面612は第1焦点面を部分的に画定し、第2平面614は第2焦点面を部分的に画定する。屈曲部611はある角度を形成する。結果として、平行な光線が受光面602に入ったときに、第1平面612に入った光線は第2平面614に入った光線とは異なる屈折変化を受ける。よって、全ての光線を単一の焦点に集めるように、第1平面612の反対側の傾斜面は、第2平面614の反対側の傾斜面とは異なるセットの屈折角を有する。
【0096】
屈曲部611は、適当な如何なる角度を形成することもできる。例えば屈曲部は、5度未満、10度未満、15度未満、20度未満、25度未満、30度未満、35度未満、40度未満、45度未満、55度未満、65度未満、75度未満、90度未満、他の適当な角度未満、又はそれらの組み合わせ、の角度を形成することができる。
【0097】
この実施形態は第1及び第2平面だけを備えるように描かれているが、ここに記載の原理に従って如何なる数の平面を使用することもできる。例えば、受光面は、受光面の相対的傾斜が徐々に急になるようにする第1屈曲部と第2屈曲部を含むことができる。
【0098】
図7は、別の集光装置700の例を示している。この例では、集光装置700は、上述のように、互いに対してオフセット角度が交互になる集光レンズ702を含む。この例では、交互オフセットレンズ702のそれぞれが、光を受光部材706上のオフセット焦点704に向ける。
【0099】
受光部材706は、光電池、衣料品、容器、建築部材などとすることができる。しかしながら、
図7に示されるように、受光部材706は、流体の流れを収容するようにされた通路の一部を形成するパイプとすることができる。受光部材706は、オイル、水、気体、又は他のタイプの流体のような流体を適当な如何なる供給源から受けることもできる。通路は、流体を適当な如何なる通路を通して送ることもできる。図示の例では、通路の第1部分708は受光部材706に形成されている。通路の第2部分710は交互の集光レンズ702によって部分的に画定されている。通路の第2部分710は、透明材料によっても部分的に画定され、共同で流体通路を画定している。
【0100】
透明材料712と集光レンズ702は通路の第2部分710を構成するスペースを画定する。第1バルブ714は通路の第2部分710に入る流体の流れを制御し、第2バルブ716は通路の第2部分710から出ていく流体の流れを制御する。第2部分710内の流体圧は第2部分710内の満たされていないスペースを減らすのに適切にされ、集光装置700の効率に影響し得る気泡や他の不純物を無くすことを目的とした排気口(図示しない)又は他の機構を含むことができる。第2部分710内の各光学的境界は少なくとも小さな屈折を生じさせうる。また、第2部分710に入ることによる液体の慣性によって表面角度が動的に変化するので、液体表面が通路の第2部分710に入った時に屈折が生じうる。満たされていない隙間がないように第2部分710内の流体圧を制御することによって、光学的境界の数を低減させ、それらの角度を制御して、液体が第2部分710内でレンズの一体となっている部分を形成する。
【0101】
透明材料712を通して送られた太陽エネルギーは、流体が通路の第2部分710内にある間に、その流体を温めることができる。太陽エネルギーは受光部材706の上に集められるので、流体が通路の第1部分708に到達したときにその流体の温度はさらにいっそう上昇する。このようにして、流体は少なくとも二段階で温められる。
【0102】
上述の例は傾斜面が集光レンズの出光面にあるものとして説明されているが、いくつかの例では、傾斜面が受光面に組み込まれる。このようなタイプの例では、傾斜面は受光面と出光面の両方に組み込まれる。他の例では、傾斜面は受光面だけに組み込まれる。
【0103】
代わりに、上述の例は傾斜した屈折面を使用して光をレンズを通して所望の物体上に制御して向けるという文脈で説明しているが、如何なる数の光屈折又は変更した幾何学的形状若しくは表面を、受光面で受けた光を予想どおりに向けるために使用することができる。1つの例示的な実施形態によると、メタオプティクスは、ここでの例示的なシステムによると、ソーラーパネルとともに使用するため、加熱のため、又は他の集光目的のために、制御可能に光を向けるために使用可能である。メタオプティクスは、それを通過するときに少なくとも可視光を曲げるメタサーフェス(meta-surfaces)として知られる1つ以上の微小導波路の極小アレイ(ultrathin arrays of waveguides)を含むことができる。
図8は、例示的なメタオプティクスの走査電子顕微鏡画像を示している。
図8に示されるように、メタオプティクスのレンズ800は、上述のように、複数段階での加熱のためのチャンバーの構造を有するか又は有さないフラットパネルに形成することができる。導波路のメタサーフェスは、高い屈折率によって光を強く閉じ込めることができるさまざまな材料で作ることもでき、その材料には、これらに限定するわけではないが、二酸化チタン、二酸化銀、又はグラフェンが含まれる。加えて、メタサーフェスは、受光した光を所望の表面上に選択的にかつ精確に集光するように、形成、構造化、及び調整することができる。メタサーフェスは、これらに限定するわけではないが、パターニング、ドライエッチング、ウェットエッチング、電子ビームリソグラフィー、及び/又は3Dプリンティングを含むさまざまな相加法又減法を使用して形成することができる。したがって、従来のレンズシステムに比べて、効率を向上させながら、重量及び厚さを低減することが可能である。
【0104】
当該システムのさまざまな使用及び形態を個々に説明してきたが、システム及び形態のそれぞれはハイブリッドシステムを作り出すように組み合わせることができる。例えば、
図7に示される流体で満たされた第2部分710は、単一システムにおいて、光電池の受光部材706に組み込むことができる。このシステムによれば、流体は、効率的に光を光電池の受光部材706に伝達及び集光しながら、流体が満たされた第2部分710の中で温められる。加えて、上述のコンポーネントは、限定するわけではないが、衣料品、建物及び建築部材、窓、乗り物、調理器具、ヒートポンプ、殺菌システム、並びに他の熱エネルギー消費システムの加熱を含むさまざまな環境及びターゲットに適用するために、さまざまな形態及び(マクロレベルからマイクロスケールまでの)サイズで組み合わせることができる。
【0105】
本開示の集光レンズは、様々な他の集光装置及びより一般的には太陽光収集システムに実装することができる。例えば、集光レンズは、複数の異なる入射角から受け取る太陽放射を集中させるようにされた集光装置に実装することができる。
図9には、集光装置920を備える一例のシステム900の等角図が示されている。集光装置920は、複数の異なる入射角からの太陽放射を受けて太陽放射を熱搬送媒体上に集中させるようにすることができる。複数の集光レンズが、レンズの少なくとも1つのサブセットが太陽放射を受けることができる集光装置920に配列を画定するようにできる。これは、太陽が太陽の弧状軌道に沿って動くときに、集光装置920が太陽エネルギーを受けることを可能にする。
【0106】
概略図として、
図9は、集光装置920に対する太陽902を示している。太陽902は、概して、第1位置Aと第2位置A’の間の太陽の弧状軌道904に沿って動く。太陽902は、第1位置Aにあるときには、方向D
1に沿って太陽放射を放出する。太陽902は、第2位置A’にあるときには、方向D
2に沿って太陽放射を放射する。集光装置920は、太陽902からの太陽放射を第1方向D
1及び第2方向D
2から受けて、太陽放射を集光装置920内に保持された熱搬送媒体に向けて集中させるようにすることができる。太陽放射が、レンズ及び集光装置の他の光学部品920を動かしたり操作したりすることなく、受け取られるようにできる。
【0107】
集光装置920は、実質的に円筒形の本体922を有するものとして
図9の概略図に示されている。円筒形本体922は、集光装置920が集光装置920の入力端924aと出力端924bの間に熱搬送媒体を向けることを可能とするパイプ、チューブ、導管、又は他の構造体を画定している。入力端924aにおいて、集光装置920は入力流れ992aを受け入れることができる。出力端924bにおいて、集光装置920は出力流れ992bを放出することができる。
【0108】
熱搬送媒体は、入力端924において入力流れ992aにより集光装置920に導入することができる。熱搬送媒体は、太陽902からの熱エネルギーを集光装置920を介して受けることができる。熱搬送媒体は、太陽の弧状軌道904に沿った太陽902の位置にかかわらず、太陽902からの熱エネルギーを集中した形態で受けることができる。説明のために、熱搬送媒体は、太陽902が第1位置D1にあるときに太陽902からの熱エネルギーを受けることができる。熱搬送媒体はまた、太陽902が第2位置D2にあるときにも太陽902からの熱エネルギーを受けることができる。場合によっては、熱搬送媒体は、太陽の弧状軌道904に沿った実質的に如何なる位置にある太陽902からの熱エネルギーも受けることができる。したがって、集光装置920は、集光装置920のレンズ又は他の光学部品を動かしたり操作したりすることなく、日中を通して熱エネルギー伝達を受けるようにすることができる。
【0109】
上記を促すために、集光装置920は、
図10の断面図に示すように、外側部材930、内側部材940、及び集光レンズ950の配列を備える。外側部材930は、熱エネルギーを通して受けるようにされた集光装置920の第1部分とすることができる。外側部材930は、外側部材の第1面932と、外側部材の第2面934を有する。外側部材930は、外側部材の第1面932と外側部材の第2面934との間に画定される外側部材930の厚さ部分を通して光を受ける、透明な又は部分的に透明な構造体とすることができる。外側部材930は、実質的に円筒状の部材とすることができ、また集光装置920の軸線に沿って延びるチューブ又はパイプを画定するようにできる。
【0110】
内側部材940は、熱搬送媒体を囲むようにされた集光装置920の第2部分とすることができる。第2部分は、光学レンズの周囲からの太陽放射を受ける受光部材とすることができる。例えば、内側部材940は、容積946を画定するパイプ又はチューブを有するか、それを画定するか、又はそれに関連付けられたものである。内側部材940は、内側部材の第1面942と内側部材の第2面944とを有する。内側部材の第1面942と内側部材の第2面944は、例えば、その中に画定される容積を有するパイプの相互に反対側の面を画定することができる。
【0111】
一例においては、部材940は、少なくとも部分的に銅管から形成することができる。銅管は、一例として約386.0W/m-Cの熱伝導率を有し、エネルギーを熱搬送媒体に伝達する熱吸収特性を提供しながら、システムの全体コストを低減することができる。銅管は、高温に対して設計された塗料でコーティングすることができる。一例の塗料は、マサチューセッツ州エバレットのDampney社のThurmalox(登録商標)シリーズのコーティングを含む。これに関連して、内側部材940は、華氏500度(摂氏260度)又はそれ以上の温度に対する耐熱性のような、実質的に耐熱性とすることができる。コーティングはまた、所定の用途に対して適するように、外側部材930の選択部分に塗布することができる。
【0112】
図10の例においては、外側部材930及び内側部材940は、実質的に同心状の部品として示されている。環状領域936が、実質的に外側部材930と内側部材940との間に画定されるようにできる。環状領域936は、任意に、真空又は部分真空とすることができる。環状領域936は、
図10において集光装置920の長手軸線の周りで実質的に対称に示されているが、ここでは他の形状及び配置も考えられる。例えば、内側部材940と外側部材930とのうちの一方又は両方を、ぴったりとしたコイルのような、コイルの形状にすることができる。コイルは、熱エネルギーの逃げを軽減するために、コイルの中心の周りで巻かれて該中心へと延びるようにできる。コイルは、一例としてプリント可能なステンレススチールを使用して、3Dプリントされたコイルとすることができる。一例の材料は、イリノイ州エルジンのUddeholm USAによって流通されるCorrax(登録商標)製品を含む。これに関連して、環状領域936は、外側部材930と内側部材940との間に画定される如何なる適当な形状とすることができる。
【0113】
外側部材及び内側部材930、940は、それらの間にレンズ950の配列を保持するようにすることができる。例えば、外側部材及び内側部材930、940は、環状領域936内にレンズ950の配列を保持するようにすることができる。
図10には、例示的な第1集光レンズ950aがレンズの第1面952aとレンズの第2面954bを有するものとして示されている。レンズの第1面952aは、外側部材930に関連付けられるようにできる。例えば、レンズの第1面952aは、外側部材930に隣接して又は外側部材930に実質的に面して配置されるようにできる。レンズの第2面954aは、内側部材940に関連付けられるようにできる。例えば、レンズの第2面954aは、内側部材940に隣接して又は内側部材940に実質的に面して配置されるようにできる。
【0114】
第1集光レンズ950aは、外側部材930を通った太陽放射をレンズの第1面952aにおいて受けるように幅広く構成することができる。第1集光レンズ950aは、ここに説明されたレンズのいずれかのような屈折レンズとすることができる。第1集光レンズ950aは、より一般的には、太陽放射を受けてその太陽放射をレンズの第2面954aに向け、レンズの第2面954aにおいてその太陽放射が内側部材940に向かって放出されるように構成することができる。太陽放射は、第1集光レンズ950aを通る伝播によって集中されるようにできる。一例として、レンズの第2面954aは、太陽放射が第1集光レンズ950aから放出されたときにその太陽放射を共通の焦点に向ける複数の屈折面を画定することができる。他の場合には、レンズの第2面954aは、実質的に内側部材940上での集中のために、光を共通の焦点に向かって移行する1つ又は複数の滑らかな又は連続している起伏面を含むことができる。当該実施形態においては、太陽放射は、レンズの第2面954aから第1焦点956aに向かって伝播される。第1焦点956aは、
図10に示すように、実質的に内側部材940上に画定することができる。他の場合には、第1焦点956aは、実質的に内側部材940の本体の中に画定することができ、これには容積946の中であることも含まれる。第1焦点956aは、第1集光レンズ950aの有効焦点距離に基づいて調節することができる。約15mmから25mmの焦点距離を用いることができる。
【0115】
集光レンズ950の配列は、内側部材940すなわち受光部材上での光の全方位集光を容易にするために、如何なる適切な数の集光レンズを有することもできる。例えば、集光レンズ950は、内側部材940の外周の周りなどの、内側部材940の周りに配置することができる。場合によっては、集光レンズ950は、内側部材940の周りで周方向に実質的に均等に間隔を開けられているようにすることができる。この配列は、太陽の弧状軌道904に沿った太陽902の所与の位置に対して集光レンズ950のうちの少なくとも1つ又は複数が太陽902に実質的に直接的に面するようにして、太陽の弧状軌道904を通って太陽が移動するときに、集光レンズ950のサブセットが太陽902からの太陽放射を受けることを可能にする。これに関連して、当然のことながら、太陽902の様々な異なる方位及び高度からの太陽放射を捕捉するために、如何なる適当な数の集光レンズ950を集光装置920に統合することもできる。この図示の例では、20個の集光レンズが設けられている。しかしながら、他の場合においては、少なくとも30個のレンズ、少なくとも50個のレンズ、少なくとも70個のレンズ、少なくとも100個のレンズ、又はそれ以上の数のレンズなどの、より多いか又はより少ないレンズを内側部材940の周りに設けることができる。
【0116】
集光レンズの配列の各レンズは、光を内側部材940上の又は内側部材940に近接した焦点に向かって集中させるようにすることができる。配列の各集光レンズは、それぞれの焦点を有することができる。説明目的のために、第2集光レンズ950bは、レンズの第1面952b及びレンズの第2面954bを有するものとして示されている。第3集光レンズ950cは、レンズの第2面952c及びレンズの第2面954cを有するものとして示されている。第2及び第3集光レンズ950b、950cは、実質的に第1集光レンズ950aと同様なものとすることができる。第2集光レンズ950bは、光を集中させて第2焦点956bに向けるようにすることができる。第3集光レンズ950cは、光を集中させて第3焦点956cに向けるようにすることができる。
【0117】
第1、第2、及び第3焦点956a、956b、956cは、それぞれ、受光部材すなわち内側部材940上の異なる位置とすることができる。例えば、第1、第2、及び第3焦点956a、956b、956cは、集光レンズの周方向の間隔に概して対応する、内側部材940の周りでの周方向の間隔が開けられているようにできる。他の場合においては、集光レンズの1つ又は複数が、集光レンズの焦点の1つ、いくつか、又は全てが互いに重なるようにして、配置されているようにすることができる。
【0118】
図11Aは、集光レンズ950aの11A-11Aでの詳細図を示している。集光レンズ950aは、レンズ本体951aを有している。レンズ本体951aは、実質的にシリンドリカルロッドレンズを画定している。ロッドレンズは、レンズの第1面952a上に画定された表面輪郭S1を有する。ロッドレンズは、レンズの第2面954a上に画定された表面輪郭S2を有する。第1及び第2表面輪郭S1、S2は、ロッドレンズをバイコーニック(biconic)又は類似のタイプの表面としてモデリングすることによって、太陽放射集中に最適化することができる。回転対称な円錐表面に比べて、バイコーニック面は、異なる曲率とX方向及びY方向の円錐パラメータとともに、更に2つの自由度を有する。表面輪郭S1、S2は、よって、球面収差、コマ収差、及び一次非点収差などの一次収差並びに二次非点収差の補正と同様な方法で、調整することができる。場合によっては、半マドックス(half Maddox)光学構造を利用することができる。追加的に又は代替的に、表面輪郭S1、S2の一方又は両方が、
図1-8の集光レンズについて説明したように複数の屈折面を有するようにできる。
【0119】
シリンドリカルロッドレンズの一例に関して、
図11Bは別の集光レンズ950’の等角図を示している。
図11Bの例においては、第1表面輪郭S1は、実質的に円筒部分953によって画定されている。また、第2表面輪郭S2は、実質的に円筒部分953の反対側の突出部分955によって画定されている。場合によっては、突出部分955は、焦点軸956に向かって放射を放出するように調整することができる。例えば、突出部分955は、光を収束のために焦点軸956上に向ける1つ又は複数の屈折面を画定することができる。
【0120】
図11Bはさらに、軸方向面959を有するものとして集光レンズ950’を示している。複数の集光レンズは、集光装置の軸線に沿って互いに配列されるようにできる。場合によっては、集光レンズは、集光レンズ950’の軸方向面959が別の集光レンズの軸方向面に係合した状態で、端と端が接続されているようにできる。これは、パイプ又は熱搬送媒体を包含する他の受光部材の長さ全体に沿って焦点軸の軸方向長さを画定するのに有益となり得る。集光レンズ950’はまた、周方向面958を有することができる。説明されているように、集光レンズは、受光部材の周りに周方向に配列することができる。これに関連して、集光レンズ950’は、周方向面が別の集光レンズの周方向面と係合した状態で、他のレンズと横に並んで接続されているようにできる。
【0121】
図12には、集光装置1220の断面図を含む、システム1200が示されている。システムは、第1位置A及び第2位置A’にある太陽1202を含む。第1及び第2位置A、A’は、太陽の弧状軌道1204に沿って配置されている。太陽1202は、に第1位置Aで第1方向D
1に太陽放射を放出する。太陽は、第2位置A’で第2方向D
2に太陽放射を放出する。集光装置1220は、
図9-11Bに関連して上述した集光装置920と実質的に同様なものとすることができ、以下を備えることができる:外側部材1230、外側部材の第1面1232、外側部材の第2面1234、真空1236、内側部材1240、内側部材の第1面1242、内側部材の第2面1244、流体容積1246、集光レンズ1250、レンズの第1面1252、レンズの第2面1254、及び焦点1256。これらの冗長な説明は明確性のために省略する。
【0122】
図12は、内側部材1240の流体容積1246内に搬送媒体1260を含んでいる集光装置を示している。搬送媒体1260は、熱エネルギーを集光装置1220を通して受けてその熱エネルギーをその後の使用のために蓄える如何なる適当な流体とすることもできる。例えば、搬送媒体1260は、集光装置1220に入れられたときに、最初は低温であるようにできる。搬送媒体1260は、熱エネルギーを流体容積1246内で受けることができる。熱搬送媒体1260は、太陽の弧状軌道1204に沿った太陽1202の位置にかかわらず、熱エネルギーを受けることができる。例えば、太陽1202が第1位置Aにあるときに、集光レンズの配列は、協働して、エネルギーを受けて流体容積1246及びその中に保持された搬送媒体1260に向かって集中させる。また、太陽1202が第2位置A’にあるときに、集光レンズの配列は、協働して、エネルギーを受けて流体容積1246及び搬送媒体1260に向かって集中させる。次いで、搬送媒体1260は、集光装置1220に入ったときの搬送媒体の温度から増加又は実質的に増加した温度のような、上昇した温度を有して、集光装置1220から出ることができる。熱搬送媒体1260は、続いて熱システムの他の部品に回されて、搬送媒体1260からエネルギーが抽出されるようにできる。一例として、搬送媒体1260は、搬送媒体1260からのエネルギーが家庭用給水を加熱するために使用される熱交換器に回されるようにできる。ここでは多くの流体が可能であり想定できるが、実例の搬送媒体には、水、グリコール/水混合体、炭化水素油、冷却剤/相変化流体、シリコーン、溶融塩、分子太陽熱エネルギー貯蔵、又はゼオライトベース熱貯蔵のうちの1つ又は複数が含まれる。
【0123】
いくつかの例では、本開示の様々な集光装置は、複数の異なるエネルギー源からのエネルギーを収集するように動作可能なエネルギー収集システムに組み込むことができる。例えば、集光装置は、太陽エネルギーと風力エネルギーの両方を収集するようにされたエネルギー収集システムに組み込むことができる。太陽エネルギーと風力エネルギーは、同じ装置を使って実質的に同時に捕捉されるようにできる。これは、システム全体の設置面積を低減させながら、システムのエネルギー収集密度を向上させることを可能にする。
【0124】
図13には、一例のエネルギー収集システム1300が示されている。エネルギー収集システム1300は、太陽エネルギーと風力エネルギーを捕捉するようにされている。太陽エネルギーの捕捉に関して、エネルギー収集システム1300は集光装置1320を備える。集光装置1320は、集光装置920及び1220と実質的に同様なものとすることができ、外側部材1330、外側部材の第1面1332、外側部材の第2面1334、容積1336、内側部材1340、内側部材の第1面1342、内側部材の第2面1344、流体容積1346、レンズ1350、レンズの第1面1352、レンズの第2面1354、焦点1356、及び搬送媒体1360を備えるが、これらの冗長な説明は明確性のために省略する。
【0125】
上述の類似性にかかわらず、システム1300はさらに、風力エネルギー1302を収集するようにされた捕捉機構1310を備える。捕捉機構1310は、集光装置1320の外側部材1330に関連付けられ、概して風1302の動きとともに回転することができる。例えば、集光装置1320は、外側部材1330が内側部材1340に対して可動であるように構成することができる。場合によっては、外側部材1330は、内側部材1340に対して浮いている。これに関連して、捕捉機構1310は、外側部材1330と一体とされて、風力エネルギー1302を収集して外側部材1330の動きを促進するようにできる。外側部材1330の動きは、電力貯蔵のための電流を発生させるために使用することができる。
【0126】
上記を促進するために、捕捉機構1310は、
図13に示す第1ブレード1312a及び第2ブレード1312bなどの、複数のブレード1312を備える。複数のブレード1312は、外側部材1330の周りで周方向に間隔を開けられているようにできる。ブレード1312の1つ又はいくつか又は全てを、それらを横切る空気流を受けたときに揚力を発生させるようにされた空力ブレードとすることができる。
図13の例においては、第1ブレード1312aは、ブレード遠位端1316とブレード近位端1314との間を延びるブレード本体1318を有する。ブレード本体1318は、空気力学的形状を画定することができる。ブレード近位端1314は、外側部材1330から延びているようにできる。ブレード遠位端1316は、ブレード1312aの自由端とすることができる。ブレード近位端1314は、外側部材1330にしっかりと固定されているようにできる。これに関連して、ブレード1312の動きにより外側部材1330の動きが生じるようにできる。外側部材1330の動きは、その後の電力消費のために蓄電される電流を発生させるために使用することができる。集光レンズの配列は、捕捉機構1310が風力エネルギー1302を収集している間に、受光部材上での光の全方位集光を行い続けるようにすることができる。
【0127】
本開示の集光装置の実質的に軽量で小型な設計により、様々な場所への設置に対する集光装置の適用性を向上させることが可能となる。例えば、集光装置は、十分な太陽放射を受ける場所への設置において既存の設備を利用することができる。これは、集光装置を支持するための新たな独立型施設の建設を避けることによって、設置コストを減らすことを可能にする。
【0128】
図14には、風力タービン1401に設置された集光装置1420を備える一例のシステム1400が示されている。集光装置1420は、ここに記載の集光装置920及び1220と実質的に同様なものとすることができる。例えば、集光装置1420は、集光レンズの配列を利用して受光部材に向けての光の全方位集光を容易にすることができる。これに関連して、搬送媒体は、搬送媒体入口1422において集光装置1420に導入されるようにできる。搬送媒体は、集光レンズの配列を介して熱エネルギーを受けることができる。搬送媒体は、搬送媒体出口1424において、上昇した温度を有して、集光装置1420から排出されるようにできる。
【0129】
風力タービン1401は、風力エネルギーを捕捉するために使用されるシステムとすることができる。集光装置は、風力タービン1401の構造体に設置され、それにより太陽エネルギーの捕捉のために風力タービンの設置面積と構造体を利用することができる。
図14の例においては、風力タービンは、ベース1402と、ベース1402から延びるタワー1404とを備える。タワー1404は、タワー表面部1406を有することができる。集光装置1420は、タワー表面部1406において風力タービン1401に設置することができる。一例として、集光装置1420はタワー1404の高さに沿って延びるようにできるが、他の構成も可能である。風力タービン1401はさらに、モータ組立体1408及びブレード組立体1410を有するものとして
図14には示されている。
【0130】
図15には、トラック1501に設置された集光装置1520を備える一例のシステム1500が示されている。集光装置1520は、ここに説明された集光装置920及び1220と実質的に同様なものとすることができる。例えば、集光装置1520は、集光レンズの配列を利用して受光部材に向けての光の全方位集光を容易にすることができる。これに関連して、搬送媒体は、搬送媒体入口1522において集光装置1520に導入されるようにできる。搬送媒体は、集光レンズの配列を介して熱エネルギーを受けることができる。搬送媒体は、搬送媒体出口1524において、上昇した温度を有して、集光装置1520から排出されるようにできる。
【0131】
トラック1501は、運転室1502とトレーラ1504を備える。場合によっては、トラック1501は、冷蔵ユニット1508を有する冷蔵トラックとすることができる。集光装置1520は、トレーラ1504のトレーラ上面1506に設置することができる。場合によっては、集光装置1520は、熱電冷却システムの駆動を支援するために、冷蔵ユニット1508と一体にすることができる。例えば、集光装置1520は、ペルチェ効果を用いて2つの異なるタイプの材料の接合部で熱流束を生成する熱電冷却システムを駆動するために使用することができる。例えば、固体アクティブヒートポンプ(solid-state active heat pump)が、電気エネルギーを消費しながら、電流の方向に応じて、熱をデバイスの一方の側から他方の側に伝達するペルチェ冷却器を使用することができる。また、トレーラ上面1506の実質的に平らな輪郭は、集光装置の適した設置台を提供することができる。
【0132】
図16には、輸送コンテナ1602に設置された集光装置1620を備える一例のシステム1600が示されている。集光装置1620は、ここに説明された集光装置920及び1220と実質的に同様なものとすることができる。例えば、集光装置1620は、集光レンズの配列を利用して受光部材に向けての光の全方位集光を容易にすることができる。これに関連して、搬送媒体は、搬送媒体入口1622において集光装置1620に導入されるようにすることができる。搬送媒体は、集光レンズの配列を介して熱エネルギーを受けることができる。搬送媒体は、搬送媒体出口1624において、上昇した温度を有して、集光装置1620から排出されるようにできる。集光装置1620はコンテナ上面1604上に設置されて示されている。
【0133】
ここに説明された実施形態の様々な効果について読み手の理解を助けるために、ここでプロセス1700が示されている
図17のフロー図を参照する。ここに示した方法の具体的なステップ(及びステップの順番)が示されており以下に説明するが、ここに提示された教示に一致する他の方法(示されたステップよりも多くのステップ、少ないステップ、又は異なるステップを含む)も想定され、またそれらは本開示に包含される。
【0134】
動作1704において、流体が受光部材を通して導かれる。例えば、
図12を参照して、搬送媒体1260は内側部材1240を通して導かれる。内側部材1240は、集中された太陽放射を受ける受光部材とすることができる。搬送媒体1260は、水、グリコール/水混合体、炭化水素油、冷却剤/相変化流体、シリコーン、溶融塩、分子太陽熱エネルギー貯蔵、又はゼオライトベース熱貯蔵のうちの1つ又は複数を含むことができる。搬送媒体1260は、循環ポンプによって内側部材を通して導かれるようにできる。
【0135】
動作1708において、第1方向からの光が、受光部材上の第1焦点に向かって集光される。例えば、
図9及び
図12を参照して、第1方向D
1からの光が、第1焦点956aに向かって導かれる。光又は太陽放射は、第1方向D
1に沿って伝播されるようにできる。太陽放射は、集光装置920によって受け取られるようにできる。太陽放射は、第1集光レンズ950aを含む集光レンズのサブセットにより指向される。第1集光レンズ950aは、放射を第1焦点956aに向けるための1つ又は複数の屈折面及び/又は起伏面を有することができる。第1焦点956aは、容積946内の搬送媒体の加熱を促すために内側部材940上にあるか又は内側部材940に近接している。
【0136】
動作1712において、第2方向からの光が、受光部材上の第2焦点に向かって集光される。例えば、
図9及び
図12を参照して、第2方向D
2からの光が、第2焦点956bに向かって導かれる。光又は太陽放射は、第2方向D
2に沿って伝播されるようにできる。太陽放射は、集光装置920によって受け取られるようにできる。太陽放射は、第2集光レンズ950bを含む集光レンズのサブセットにより指向される。第2集光レンズ950bは、放射を第2焦点956bに向けるための1つ又は複数の反射面及び/又は起伏面を有することができる。第2焦点956bは、容積946内の搬送媒体の加熱を促すために内側部材940上にあるか又は内側部材940に近接している。
【0137】
他の例及び実施が、明細書及び添付の請求項の範囲及び精神の中にある。例えば、機能を実現するための特徴は、機能部が異なる物理的位置で実装されるように分散することを含む、さまざまな位置で物理的に配置することもできる。また、特許請求の範囲を含むここでの使用において、「少なくとも1つの」で始まるアイテムのリストにおける「又は」は、例えば、「A、B、又はCの少なくとも1つ」が、A、B、C、AB、AC、BC、又はABC(すなわちAとBとC)を意味するように、選言的なリストを示している。さらに、「例示」との用語は、説明した例が好ましいか又は他の例よりも良いことを意味するわけではない。
【0138】
説明目的のための上述の記載は、説明した実施形態の完全な理解を提供するために具体的な名称を使用している。しかしながら、説明した実施形態を実施するために具体的詳細が要求されないことは当業者にとって明らかである。よって、ここに説明した具体的な実施形態の上記説明は、例示および説明の目的で提示されている。それらは、網羅的であることや、実施形態を説明した正確な形態に限定することを目的とはしていない。上記教示を考慮して多くの変更や変形が可能であることは、当業者にとって明らかであろう。
【国際調査報告】