(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-16
(54)【発明の名称】高線形性をもつ相補的電流モードバイカッド
(51)【国際特許分類】
H03H 11/04 20060101AFI20240109BHJP
【FI】
H03H11/04 C
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023536456
(86)(22)【出願日】2021-12-08
(85)【翻訳文提出日】2023-06-15
(86)【国際出願番号】 US2021062439
(87)【国際公開番号】W WO2022146640
(87)【国際公開日】2022-07-07
(32)【優先日】2020-12-29
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ガスマン、ティモシー・ドナルド
(72)【発明者】
【氏名】リョン、ライ・カン
【テーマコード(参考)】
5J098
【Fターム(参考)】
5J098AA03
5J098AA12
5J098AA15
5J098AB03
5J098AB13
5J098AC02
5J098AC14
5J098AC17
5J098AC18
5J098CA01
5J098CB03
(57)【要約】
本開示のいくつかの態様は、調整可能バイアス電流および/または調整可能キャパシタンスを有し得る、電流モードバイカッドフィルタを使用して、信号を処理するための方法および装置を提供する。1つの例示的な装置が、第1の入力電流ノード(502)と、第1の入力電流ノードに結合された第1の容量性要素(C1)と、第1の出力電流ノード(506)と、第1の入力電流ノードと第1の出力電流ノードとの間に結合された第1のアクティブフィルタ回路(510)と、第1の入力電流ノードと第1の出力電流ノードとの間に結合された第2のアクティブフィルタ回路(520)とを含む、電流モードバイカッドフィルタ回路(402)である。
第2のアクティブフィルタ回路(520)は第1のアクティブフィルタ回路(510)と相補的である。
【特許請求の範囲】
【請求項1】
第1の入力電流ノードと、
前記第1の入力電流ノードに結合された第1の容量性要素と、
第1の出力電流ノードと、
前記第1の入力電流ノードと前記第1の出力電流ノードとの間に結合された第1のアクティブフィルタ回路と、
前記第1の入力電流ノードと前記第1の出力電流ノードとの間に結合された第2のアクティブフィルタ回路と、前記第2のアクティブフィルタ回路が前記第1のアクティブフィルタ回路と相補的である、
を備える、電流モードバイカッドフィルタ回路。
【請求項2】
前記第1のアクティブフィルタ回路または前記第2のアクティブフィルタ回路のうちの少なくとも1つが、調整可能相互コンダクタンスを備える、請求項1に記載の電流モードバイカッドフィルタ回路。
【請求項3】
前記第1の容量性要素が、調整可能キャパシタを備える、請求項2に記載の電流モードバイカッドフィルタ回路。
【請求項4】
前記第1のアクティブフィルタ回路が、
前記第1の入力電流ノードに結合された入力を有する第1の共通ゲート回路と、
前記第1の共通ゲート回路の出力に結合された第1の分岐を有し、前記第1の出力電流ノードに結合された第2の分岐を有する第1の電流ミラー回路と
を備え、
前記第2のアクティブフィルタ回路が、
前記第1の入力電流ノードに結合された入力を有する第2の共通ゲート回路と、
前記第2の共通ゲート回路の出力に結合された第1の分岐を有し、前記第1の出力電流ノードに結合された第2の分岐を有する第2の電流ミラー回路と
を備える、請求項1に記載の電流モードバイカッドフィルタ回路。
【請求項5】
第1のバイアスノードと、第2のバイアスノードとをさらに備え、ここにおいて、
前記第1の共通ゲート回路が第1のトランジスタを備え、前記第1のトランジスタが、前記第1の入力電流ノードに結合されたソースを有し、前記第1の電流ミラー回路の前記第1の分岐に結合されたドレインを有し、前記第1のバイアスノードに結合されたゲートを有し、
前記第2の共通ゲート回路が第2のトランジスタを備え、前記第2のトランジスタが、前記第1の入力電流ノードに結合されたソースを有し、前記第2の電流ミラー回路の前記第1の分岐に結合されたドレインを有し、前記第2のバイアスノードに結合されたゲートを有する、
請求項4に記載の電流モードバイカッドフィルタ回路。
【請求項6】
前記第1のバイアスノードが、前記第1のトランジスタの相互コンダクタンスを調整するように構成され、前記第2のバイアスノードが、前記第2のトランジスタの相互コンダクタンスを調整するように構成された、請求項5に記載の電流モードバイカッドフィルタ回路。
【請求項7】
前記第1の電流ミラー回路の前記第1の分岐が第3のトランジスタを備え、前記第3のトランジスタが、第1の電圧レールに結合されたソースを有し、前記第3のトランジスタのゲートと前記第1の共通ゲート回路の前記出力とに結合されたドレインを有し、
前記第1の電流ミラー回路の前記第2の分岐が第4のトランジスタを備え、前記第4のトランジスタが、前記第1の電圧レールに結合されたソースを有し、前記第1の出力電流ノードに結合されたドレインを有し、前記第3のトランジスタの前記ゲートに結合されたゲートを有し、
前記第2の電流ミラー回路の前記第1の分岐が第5のトランジスタを備え、前記第5のトランジスタが、第2の電圧レールに結合されたソースを有し、前記第5のトランジスタのゲートと前記第2の共通ゲート回路の前記出力とに結合されたドレインを有し、
前記第2の電流ミラー回路の前記第2の分岐が第6のトランジスタを備え、前記第6のトランジスタが、前記第2の電圧レールに結合されたソースを有し、前記第1の出力電流ノードに結合されたドレインを有し、前記第5のトランジスタの前記ゲートに結合されたゲートを有する、
請求項5に記載の電流モードバイカッドフィルタ回路。
【請求項8】
前記第3のトランジスタのサイズと前記第4のトランジスタのサイズとの間の比が、前記第5のトランジスタのサイズと前記第6のトランジスタのサイズとの間の比に等しく、
前記第3のトランジスタの前記サイズと前記第4のトランジスタの前記サイズとの間の前記比が調整可能である、
請求項7に記載の電流モードバイカッドフィルタ回路。
【請求項9】
第2の入力電流ノードと、ここにおいて、前記第1の容量性要素が、前記第1の入力電流ノードと前記第2の入力電流ノードとの間に結合された、
第2の出力電流ノードと、
前記第2の入力電流ノードと前記第2の出力電流ノードとの間に結合された第3のアクティブフィルタ回路と、
前記第2の入力電流ノードと前記第2の出力電流ノードとの間に結合された第4のアクティブフィルタ回路と、前記第4のアクティブフィルタ回路が前記第3のアクティブフィルタ回路と相補的である、
をさらに備える、請求項5に記載の電流モードバイカッドフィルタ回路。
【請求項10】
前記第1のアクティブフィルタ回路と前記第3のアクティブフィルタ回路との間に結合された第2の容量性要素と、
前記第2のアクティブフィルタ回路と前記第4のアクティブフィルタ回路との間に結合された第3の容量性要素と
をさらに備える、請求項9に記載の電流モードバイカッドフィルタ回路。
【請求項11】
前記第1の容量性要素、前記第2の容量性要素、または前記第3の容量性要素のうちの少なくとも1つが、調整可能キャパシタを備える、請求項10に記載の電流モードバイカッドフィルタ回路。
【請求項12】
前記第3のアクティブフィルタ回路が、
前記第2の入力電流ノードに結合された入力を有する第3の共通ゲート回路と、
前記第3の共通ゲート回路の出力に結合された第1の分岐を有し、前記第2の出力電流ノードに結合された第2の分岐を有する第3の電流ミラー回路と
を備え、
前記第4のアクティブフィルタ回路が、
前記第2の入力電流ノードに結合された入力を有する第4の共通ゲート回路と、
前記第4の共通ゲート回路の出力に結合された第1の分岐を有し、前記第2の出力電流ノードに結合された第2の分岐を有する第4の電流ミラー回路と
を備える、請求項10に記載の電流モードバイカッドフィルタ回路。
【請求項13】
前記第2の容量性要素が、前記第1の共通ゲート回路の前記出力と前記第3の共通ゲート回路の前記出力との間に結合され、
前記第3の容量性要素が、前記第2の共通ゲート回路の前記出力と前記第4の共通ゲート回路の前記出力との間に結合された、
請求項12に記載の電流モードバイカッドフィルタ回路。
【請求項14】
前記第3の共通ゲート回路が第3のトランジスタを備え、前記第3のトランジスタが、前記第2の入力電流ノードに結合されたソースを有し、前記第3の電流ミラー回路の前記第1の分岐に結合されたドレインを有し、前記第1のバイアスノードに結合されたゲートを有し、
前記第4の共通ゲート回路が第4のトランジスタを備え、前記第4のトランジスタが、前記第2の入力電流ノードに結合されたソースを有し、前記第4の電流ミラー回路の前記第1の分岐に結合されたドレインを有し、前記第2のバイアスノードに結合されたゲートを有する、
請求項12に記載の電流モードバイカッドフィルタ回路。
【請求項15】
前記第1のバイアスノードが、前記第1のトランジスタまたは前記第3のトランジスタのうちの少なくとも1つの相互コンダクタンスを調整するように構成され、
前記第2のバイアスノードが、前記第2のトランジスタまたは前記第4のトランジスタのうちの少なくとも1つの相互コンダクタンスを調整するように構成された、
請求項14に記載の電流モードバイカッドフィルタ回路。
【請求項16】
前記第1の電流ミラー回路の前記第1の分岐が第5のトランジスタを備え、前記第5のトランジスタが、第1の電圧レールに結合されたソースを有し、前記第5のトランジスタのゲートと前記第1の共通ゲート回路の前記出力と前記第4の共通ゲート回路の前記第4のトランジスタの前記ゲートとに結合されたドレインを有し、
前記第2の電流ミラー回路の前記第1の分岐が第6のトランジスタを備え、前記第6のトランジスタが、第2の電圧レールに結合されたソースを有し、前記第6のトランジスタのゲートと前記第2の共通ゲート回路の前記出力と前記第3の共通ゲート回路の前記第3のトランジスタの前記ゲートとに結合されたドレインを有し、
前記第3の電流ミラー回路の前記第1の分岐が第7のトランジスタを備え、前記第7のトランジスタが、前記第1の電圧レールに結合されたソースを有し、前記第7のトランジスタのゲートと前記第3の共通ゲート回路の前記出力と前記第2の共通ゲート回路の前記第2のトランジスタの前記ゲートとに結合されたドレインを有し、
前記第4の電流ミラー回路の前記第1の分岐が第8のトランジスタを備え、前記第8のトランジスタが、前記第2の電圧レールに結合されたソースを有し、前記第8のトランジスタのゲートと前記第4の共通ゲート回路の前記出力と前記第1の共通ゲート回路の前記第1のトランジスタの前記ゲートとに結合されたドレインを有する、
請求項14に記載の電流モードバイカッドフィルタ回路。
【請求項17】
前記第3の電流ミラー回路の前記第2の分岐が第9のトランジスタを備え、前記第9のトランジスタが、前記第1の電圧レールに結合されたソースを有し、前記第2の出力電流ノードに結合されたドレインを有し、前記第7のトランジスタの前記ゲートに結合されたゲートを有し、
前記第4の電流ミラー回路の前記第2の分岐が第10のトランジスタを備え、前記第10のトランジスタが、前記第2の電圧レールに結合されたソースを有し、前記第2の出力電流ノードに結合されたドレインを有し、前記第8のトランジスタの前記ゲートに結合されたゲートを有する、
請求項16に記載の電流モードバイカッドフィルタ回路。
【請求項18】
前記第5のトランジスタの前記ゲートと前記第4の共通ゲート回路の前記第4のトランジスタの前記ゲートとの間に結合された第4の容量性要素と、
前記第6のトランジスタと前記第3の共通ゲート回路の前記第3のトランジスタの前記ゲートとの間に結合された第5の容量性要素と、
前記第7のトランジスタと前記第2の共通ゲート回路の前記第2のトランジスタの前記ゲートとの間に結合された第6の容量性要素と、
前記第8のトランジスタと前記第1の共通ゲート回路の前記第1のトランジスタの前記ゲートとの間に結合された第7の容量性要素と
をさらに備える、請求項16に記載の電流モードバイカッドフィルタ回路。
【請求項19】
請求項1に記載の電流モードバイカッドフィルタ回路を備える無線周波数フロントエンドであって、
無線周波数信号を受信するように構成された入力を有する低雑音増幅器と、
前記低雑音増幅器の出力に結合された入力を有し、前記電流モードバイカッドフィルタ回路の第1の入力電流ノードに結合された出力を有するミキサと
をさらに備える、無線周波数フロントエンド。
【請求項20】
信号処理の方法であって、前記方法は、
電流モードバイカッドフィルタ回路の入力電流ノードにおいて入力電流信号を受信することと、ここにおいて、前記電流モードバイカッドフィルタ回路が、
前記入力電流ノードに結合された容量性要素と、
出力電流ノードと、
前記入力電流ノードと前記出力電流ノードとの間に結合された第1のアクティブフィルタ回路と、
前記入力電流ノードと前記出力電流ノードとの間に結合された第2のアクティブフィルタ回路と、前記第2のアクティブフィルタ回路が前記第1のアクティブフィルタ回路と相補的である、
をさらに備える、
前記電流モードバイカッドフィルタ回路を使用して前記出力電流ノードにおいて出力電流信号を生成するために前記入力電流信号をフィルタ処理することと
を備える、方法。
【請求項21】
前記電流モードバイカッドフィルタ回路とカスケード接続された別の電流モードバイカッドフィルタ回路をさらに備える、請求項19に記載の無線周波数フロントエンド。
【請求項22】
アナログデジタルコンバータ(ADC)をさらに備え、ここにおいて、前記電流モードバイカッドフィルタ回路がベースバンドフィルタ(BBF)中に含まれ、前記BBFが前記ADCに結合された、請求項19に記載の無線周波数フロントエンド。
【請求項23】
前記電流モードバイカッドフィルタ回路とカスケード接続され、前記BBF中に含まれる、別の電流モードバイカッドフィルタ回路をさらに備える、請求項22に記載の無線周波数フロントエンド。
【請求項24】
前記ADCが電流モードADCを備え、ここにおいて、前記BBFが、電流信号を前記電流モードADCに出力するように構成された、請求項22に記載の無線周波数フロントエンド。
【請求項25】
前記BBFから出力された電流信号を電圧信号にコンバートするように構成された負荷抵抗器をさらに備え、ここにおいて、前記ADCが、前記電圧信号を受信するように構成された、請求項22に記載の無線周波数フロントエンド。
【請求項26】
前記第1の出力電流ノードに結合された抵抗器をさらに備え、前記抵抗器が、電流信号を電圧信号にコンバートするように構成された、請求項1に記載の電流モードバイカッドフィルタ回路。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本出願は、以下に完全に記載されるかのようにおよびすべての適用可能な目的のためにその全体が参照により本明細書に明確に組み込まれる、2020年12月29日に出願された米国特許出願第17/136,723号の利益および優先権を主張する。
【0002】
[0002] 本開示のいくつかの態様は、一般に電子回路に関し、より詳細には、たとえば、信号を処理するための電流モードバイカッドフィルタ回路(current-mode biquad filter circuit)に関する。
【背景技術】
【0003】
[0003] ワイヤレス通信ネットワークは、電話、ビデオ、データ、メッセージング、ブロードキャストなどの様々な通信サービスを提供するために広く展開されている。通常、多元接続ネットワークである、そのようなネットワークは、利用可能なネットワークリソースを共有することによって複数のユーザのための通信をサポートする。たとえば、1つのネットワークは、EVDO(エボリューションデータオプティマイズド)、1xRTT(1x無線送信技術、または単に1x)、W-CDMA(登録商標)(広帯域符号分割多元接続)、UMTS-TDD(ユニバーサルモバイルテレコミュニケーションズシステム-時分割複信)、HSPA(高速パケットアクセス)、GPRS(汎用パケット無線サービス)、またはEDGE(グローバル進化型高速データレート)を含む様々な3G無線アクセス技術(RAT)のうちのいずれか1つを介してネットワークサービスを提供し得る3G(第3世代のモバイルフォン規格および技術)システムであり得る。3Gネットワークは、ボイス呼に加えて、高速インターネットアクセスおよびビデオ電話を組み込むように発展したワイドエリアセルラー電話ネットワークである。また、そのような多元接続ネットワークは、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリアFDMA(SC-FDMA)ネットワーク、第3世代パートナーシッププロジェクト(3GPP(登録商標))ロングタームエボリューション(LTE(登録商標))ネットワーク、およびロングタームエボリューションアドバンスト(LTE-A)ネットワークを含み得る。
【0004】
[0004] ワイヤレス通信ネットワークは、いくつかの移動局のための通信をサポートすることができるいくつかの基地局を含み得る。移動局(MS)は、ダウンリンクとアップリンクとを介して基地局(BS)と通信し得る。ダウンリンク(または順方向リンク)は、基地局から移動局への通信リンクを指し、アップリンク(または逆方向リンク)は、移動局から基地局への通信リンクを指す。基地局は、移動局にダウンリンク上でデータと制御情報とを送信し得、および/または移動局からアップリンク上でデータと制御情報とを受信し得る。
【0005】
[0005] MSおよび/またはBSは、たとえば、受信チェーンまたは送信チェーン中のベースバンドフィルタ(baseband filter)として使用される、調整可能アクティブフィルタ(tunable active filter)を含み得る。調整可能アクティブフィルタは、ある範囲の周波数にわたってフィルタの中心周波数(f0)を変動させるように調整され得る。高いQファクタ(Q)および高いf0フィルタについて、Qおよびf0は、プロセス変動および構成要素不整合により変動し得る。
【発明の概要】
【0006】
[0006] 本開示のいくつかの態様は、電流モードバイカッドフィルタ回路を提供する。本電流モードバイカッドフィルタ回路は、概して、第1の入力電流ノード(first input current node)と、第1の入力電流ノードに結合された第1の容量性要素(first capacitive element)と、第1の出力電流ノード(first output current node)と、第1の入力電流ノードと第1の出力電流ノードとの間に結合された第1のアクティブフィルタ回路(first active filter circuit)と、第1の入力電流ノードと第1の出力電流ノードとの間に結合された第2のアクティブフィルタ回路(second active filter circuit)と、第2のアクティブフィルタ回路が第1のアクティブフィルタ回路と相補的(complementary)である、を含む。
【0007】
[0007] 本開示のいくつかの態様は、本明細書で説明される電流モードバイカッドフィルタ回路を含む無線周波数フロントエンド(radio frequency front-end)を提供する。本無線周波数フロントエンドは、無線周波数信号(radio frequency signal)を受信するように構成された入力を有する低雑音増幅器(low-noise amplifier)をも含み得る。本無線周波数フロントエンドは、低雑音増幅器の出力に結合された入力を有し、電流モードバイカッドフィルタ回路の第1の入力電流ノードに結合された出力を有するミキサ(mixer)をさらに含み得る。
【0008】
[0008] 本開示のいくつかの態様は、信号処理(signal processing)の方法を提供する。本方法は、概して、電流モードバイカッドフィルタ回路の入力電流ノードにおいて入力電流信号(input current signal)を受信することを含む。電流モードバイカッドフィルタ回路は、入力電流ノードに結合された容量性要素(capacitive element)と、出力電流ノード(output current node)と、入力電流ノードと出力電流ノードとの間に結合された第1のアクティブフィルタ回路と、入力電流ノードと出力電流ノードとの間に結合された第2のアクティブフィルタ回路と、第2のアクティブフィルタ回路が第1のアクティブフィルタ回路と相補的である、をも含む。本方法は、電流モードバイカッドフィルタ回路を使用して出力電流ノードにおいて出力電流信号(output current signal)を生成するために入力電流信号をフィルタ処理することをも含む。
【0009】
[0009] 本開示の上記で具陳された特徴が詳細に理解され得るように、添付の図面にその一部が示される態様を参照することによって、上記で手短に要約されたより具体的な説明が得られ得る。ただし、その説明は他の等しく有効な態様に通じ得るので、添付の図面は、本開示のいくつかの典型的な態様のみを示し、したがって、本開示の範囲を限定するものと見なされるべきではないことに留意されたい。
【図面の簡単な説明】
【0010】
【
図1】[0010] 本開示のいくつかの態様による、例示的なワイヤレス通信ネットワークの図。
【
図2】[0011] 本開示のいくつかの態様による、例示的なアクセスポイント(AP)および例示的なユーザ端末のブロック図。
【
図3】[0012] 本開示のいくつかの態様による、例示的なトランシーバフロントエンドのブロック図。
【
図4】[0013] 本開示のいくつかの態様による、複数のカスケード接続された電流モードバイカッドフィルタ回路をもつベースバンドフィルタのブロック図。
【
図5】[0014] 本開示のいくつかの態様による、例示的な電流モードバイカッドフィルタの概略図。
【
図6】[0015] 本開示のいくつかの態様による、信号処理のための例示的な動作の流れ図。
【発明を実施するための形態】
【0011】
[0016] 理解を容易にするために、可能な場合、各図に共通である同じ要素を指定するために同じ参照番号が使用されている。一態様において開示される要素が、特定の具陳なしに他の態様に対して有益に利用され得ることが企図される。
【0012】
[0017] 本開示のいくつかの態様は、概して、折り畳み電流モードバイカッドフィルタ(folded current-mode biquad filter)を使用して信号を処理するための方法および装置に関する。バイカッドフィルタ(biquad filter)は、(バイアス電流を調節することによる)調整可能相互コンダクタンス(tunable transconductance)、および/または調整可能キャパシタンス(tunable capacitance)を有し得る。
【0013】
[0018] 添付の図面を参照しながら本開示の様々な態様が以下でより十分に説明される。ただし、本開示は、多くの異なる形態で実施され得、本開示全体にわたって提示される任意の特定の構造または機能に限定されるものと解釈されるべきではない。むしろ、これらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるように提供される。本明細書の教示に基づいて、本開示の範囲は、本開示の他の態様とは無関係に実装されるにせよ、本開示の他の態様と組み合わせられるにせよ、本明細書で開示される本開示のいかなる態様をもカバーするものであることを、当業者は諒解されたい。たとえば、本明細書に記載される態様をいくつ使用しても、装置は実装され得、または方法は実施され得る。さらに、本開示の範囲は、本明細書に記載される本開示の様々な態様に加えてまたはそれらの態様以外に、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法をカバーするものとする。本明細書で開示される開示のいかなる態様も、請求項の1つまたは複数の要素によって実施され得ることを理解されたい。
【0014】
[0019] 「例示的」という単語は、本明細書では、「例、事例、または例示の働きをすること」を意味するために使用される。「例示的」として本明細書で説明されるいかなる態様も、必ずしも他の態様よりも好適または有利であると解釈されるべきであるとは限らない。
【0015】
[0020] 本明細書で使用される、動詞「接続する」の様々な時制における「と接続される」という用語は、要素Aが要素Bに直接接続されること、または他の要素が要素Aと要素Bとの間に接続され得ること(すなわち、要素Aが要素Bと間接的に接続されること)を意味し得る。電気的構成要素の場合、「と接続される」という用語は、本明細書では、ワイヤ、トレース、または他の導電性材料が、要素Aおよび要素B(および、それらの間に電気的に接続された任意の構成要素)を電気的に接続するために使用されることを意味するためにも使用され得る。
【0016】
[0021] 本明細書で説明される技法は、符号分割多元接続(CDMA)、直交周波数分割多重(OFDM)、時分割多元接続(TDMA)、空間分割多元接続(SDMA)、シングルキャリア周波数分割多元接続(SC-FDMA)、時分割同期符号分割多元接続(TD-SCDMA)などの様々なワイヤレス技術と組み合わせて使用され得る。複数のユーザ端末が、異なる(1)CDMAのための直交コードチャネル、(2)TDMAのためのタイムスロット、または(3)OFDMのためのサブバンドを介して、データをコンカレントに送信/受信することができる。CDMAシステムは、IS-2000、IS-95、IS-856、広帯域CDMA(W-CDMA)、または何らかの他の規格を実装し得る。OFDMシステムは、米国電気電子技術者協会(IEEE)802.11、IEEE802.16、(たとえば、TDDおよび/またはFDDモードでの)ロングタームエボリューション(LTE)、または何らかの他の規格を実装し得る。TDMAシステムは、モバイル通信用グローバルシステム(GSM(登録商標))または何らかの他の規格を実装し得る。これらの様々な規格は当技術分野で知られている。
例示的なワイヤレスシステム
[0022]
図1は、本開示の態様が実施され得る、アクセスポイント110とユーザ端末120とをもつワイヤレス通信システム100を示す。簡単のために、ただ1つのアクセスポイント110が
図1に示されている。アクセスポイント(AP)は、概して、ユーザ端末と通信する固定局であり、基地局(BS)、発展型ノードB(eNB)、または何らかの他の用語で呼ばれることもある。ユーザ端末(UT)は、固定または移動であり得、移動局(MS)、アクセス端末、ユーザ機器(UE)、局(STA)、クライアント、ワイヤレスデバイス、または何らかの他の用語で呼ばれることもある。ユーザ端末は、セルラーフォン、携帯情報端末(PDA)、ハンドヘルドデバイス、ワイヤレスモデム、ラップトップコンピュータ、タブレット、パーソナルコンピュータなどのワイヤレスデバイスであり得る。
【0017】
[0023] アクセスポイント110は、ダウンリンクおよびアップリンク上で所与の瞬間において1つまたは複数のユーザ端末120と通信し得る。ダウンリンク(すなわち、順方向リンク)はアクセスポイントからユーザ端末への通信リンクであり、アップリンク(すなわち、逆方向リンク)はユーザ端末からアクセスポイントへの通信リンクである。ユーザ端末はまた、別のユーザ端末とピアツーピアで通信し得る。システムコントローラ130が、アクセスポイントに結合し、アクセスポイントのための協調および制御を行う。
【0018】
[0024] システム100は、ダウンリンクおよびアップリンク上でのデータ送信のために複数の送信アンテナと複数の受信アンテナとを採用する。アクセスポイント110は、ダウンリンク送信のための送信ダイバーシティおよび/またはアップリンク送信のための受信ダイバーシティを達成するためにNap個のアンテナを装備し得る。Nu個の選択されたユーザ端末120のセットは、ダウンリンク送信を受信し、アップリンク送信を送信し得る。各選択されたユーザ端末は、アクセスポイントにユーザ固有データを送信し、および/またはアクセスポイントからユーザ固有データを受信する。概して、各選択されたユーザ端末は、1つまたは複数のアンテナを装備し得る(すなわち、Nut≧1)。Nu個の選択されたユーザ端末は、同じまたは異なる数のアンテナを有することができる。
【0019】
[0025] ワイヤレスシステム100は、時分割複信(TDD)システムまたは周波数分割複信(FDD)システムであり得る。TDDシステムの場合、ダウンリンクとアップリンクは同じ周波数帯域を共有する。FDDシステムの場合、ダウンリンクとアップリンクは異なる周波数帯域を使用する。システム100はまた、送信のために単一のキャリアまたは複数のキャリアを利用し得る。各ユーザ端末120は、(たとえば、コストを抑えるために)単一のアンテナを装備するか、または(たとえば、追加コストがサポートされ得る場合)複数のアンテナを装備し得る。
【0020】
[0026] 本開示のいくつかの態様では、アクセスポイント110および/またはユーザ端末120は、以下で説明されるように、信号を処理するための少なくとも1つの電流モードバイカッドフィルタ回路を含み得る。
【0021】
[0027]
図2は、ワイヤレスシステム100におけるアクセスポイント110と2つのユーザ端末120mおよび120xとのブロック図を示す。アクセスポイント110はN
ap個のアンテナ224a~224apを装備する。ユーザ端末120mはN
ut,m個のアンテナ252ma~252muを装備し、ユーザ端末120xはN
ut,x個のアンテナ252xa~252xuを装備する。アクセスポイント110は、ダウンリンクでは送信エンティティであり、アップリンクでは受信エンティティである。各ユーザ端末120は、アップリンクでは送信エンティティであり、ダウンリンクでは受信エンティティである。本明細書で使用される「送信エンティティ」は、周波数チャネルを介してデータを送信することが可能な独立動作型の装置またはデバイスであり、「受信エンティティ」は、周波数チャネルを介してデータを受信することが可能な独立動作型の装置またはデバイスである。以下の説明では、下付き文字「dn」はダウンリンクを示し、下付き文字「up」はアップリンクを示し、N
up個のユーザ端末がアップリンク上での同時送信のために選択され、N
dn個のユーザ端末がダウンリンク上での同時送信のために選択され、N
upはN
dnに等しいことも等しくないこともあり、N
upおよびN
dnは、静的値であり得るか、またはスケジューリング間隔ごとに変化することがある。ビームステアリングまたは何らかの他の空間処理技法がアクセスポイントおよびユーザ端末において使用され得る。
【0022】
[0028] アップリンク上で、アップリンク送信のために選択された各ユーザ端末120において、TXデータプロセッサ288が、データソース286からトラフィックデータを受信し、コントローラ280から制御データを受信する。TXデータプロセッサ288は、ユーザ端末のために選択されたレートに関連するコーディングおよび変調方式に基づいてユーザ端末のためにトラフィックデータ{dup}を処理(たとえば、符号化、インターリーブ、および変調)し、Nut,m個のアンテナのうちの1つのためのデータシンボルストリーム{sup}を与える。(無線周波数フロントエンド(RFFE)としても知られる)トランシーバフロントエンド(TX/RX)254は、アップリンク信号を生成するために、それぞれのシンボルストリームを受信し、処理(たとえば、アナログにコンバート、増幅、フィルタ処理、および周波数アップコンバート)する。トランシーバフロントエンド254はまた、たとえば、RFスイッチを介して送信ダイバーシティのためのNut,m個のアンテナのうちの1つにアップリンク信号をルーティングし得る。コントローラ280は、トランシーバフロントエンド254内のルーティングを制御し得る。メモリ282は、ユーザ端末120のためのデータおよびプログラムコードを記憶し得、コントローラ280とインターフェースし得る。
【0023】
[0029] Nup個のユーザ端末120が、アップリンク上での同時送信のためにスケジュールされ得る。これらのユーザ端末の各々は、処理されたシンボルストリームのそれのセットをアップリンク上でアクセスポイントに送信する。
【0024】
[0030] アクセスポイント110において、Nap個のアンテナ224a~224apは、アップリンク上で送信するすべてのNup個のユーザ端末からアップリンク信号を受信する。受信ダイバーシティについて、トランシーバフロントエンド222は、処理のために、アンテナ224のうちの1つから受信された信号を選択し得る。複数のアンテナ224から受信された信号は、拡張された受信ダイバーシティのために組み合わせられ得る。アクセスポイントのトランシーバフロントエンド222はまた、ユーザ端末のトランシーバフロントエンド254によって実行される処理を補足する処理を実行し、復元されたアップリンクデータシンボルストリームを与える。復元されたアップリンクデータシンボルストリームは、ユーザ端末によって送信されたデータシンボルストリーム{sup}の推定値である。RXデータプロセッサ242は、復号データを取得するために、復元されたアップリンクデータシンボルストリームのために使用されたレートに応じてそのストリームを処理(たとえば、復調、デインターリーブ、および復号)する。各ユーザ端末のための復号データは、記憶のためにデータシンク244に与えられ、および/またはさらなる処理のためにコントローラ230に与えられ得る。
【0025】
[0031] アクセスポイント110のトランシーバフロントエンド(TX/RX)222および/またはユーザ端末120のトランシーバフロントエンド254は、以下で説明されるように、信号を処理するための1つまたは複数の電流モードバイカッドフィルタ回路を含み得る。
【0026】
[0032] ダウンリンク上で、アクセスポイント110において、TXデータプロセッサ210が、ダウンリンク送信のためにスケジュールされたNdn個のユーザ端末のためのトラフィックデータをデータソース208から受信し、コントローラ230から制御データを受信し、場合によってはスケジューラ234から他のデータを受信する。様々なタイプのデータが異なるトランスポートチャネル上で送信され得る。TXデータプロセッサ210は、各ユーザ端末のために選択されたレートに基づいてそのユーザ端末のためのトラフィックデータを処理(たとえば、符号化、インターリーブ、および変調)する。TXデータプロセッサ210は、Nap個のアンテナのうちの1つから送信されるべきNdn個のユーザ端末のより多くのうちの1つのためのダウンリンクデータシンボルストリームを与え得る。トランシーバフロントエンド222は、ダウンリンク信号を生成するために、シンボルストリームを受信し、処理(たとえば、アナログにコンバート、増幅、フィルタ処理、および周波数アップコンバート)する。トランシーバフロントエンド222はまた、たとえば、RFスイッチを介して送信ダイバーシティのためにNap個のアンテナ224のうちの1つまたは複数にダウンリンク信号をルーティングし得る。コントローラ230は、トランシーバフロントエンド222内のルーティングを制御し得る。メモリ232は、アクセスポイント110のためのデータおよびプログラムコードを記憶し得、コントローラ230とインターフェースし得る。
【0027】
[0033] 各ユーザ端末120において、Nut,m個のアンテナ252はアクセスポイント110からダウンリンク信号を受信する。ユーザ端末120における受信ダイバーシティについて、トランシーバフロントエンド254は、処理のために、アンテナ252のうちの1つから受信された信号を選択し得る。複数のアンテナ252から受信された信号は、拡張された受信ダイバーシティのために組み合わせられ得る。ユーザ端末のトランシーバフロントエンド254はまた、アクセスポイントのトランシーバフロントエンド222によって実行される処理を補足する処理を実行し、復元されたダウンリンクデータシンボルストリームを与える。RXデータプロセッサ270は、ユーザ端末のための復号データを取得するために、復元されたダウンリンクデータシンボルストリームを処理(たとえば、復調、デインターリーブ、および復号)する。
【0028】
[0034] 本明細書で説明される技法が、概して、TDMA、SDMA、直交周波数分割多元接続(OFDMA)、CDMA、SC-FDMA、TD-SCDMA、およびそれらの組合せなど、任意のタイプの多元接続方式を利用するシステムにおいて適用され得ることを、当業者は認識されよう。
【0029】
[0035]
図3は、本開示の態様が実施され得る、
図2中のトランシーバフロントエンド222、254など、例示的なトランシーバフロントエンド300のブロック図である。トランシーバフロントエンド300は、1つまたは複数のアンテナを介して信号を送信するための(送信チェーンとしても知られる)送信(TX)経路302と、アンテナを介して信号を受信するための(受信チェーンとしても知られる)受信(RX)経路304とを含む。TX経路302とRX経路304とがアンテナ303を共有するとき、経路は、インターフェース306を介してアンテナと接続され得、インターフェース306は、デュプレクサ、スイッチ、ダイプレクサなどの様々な好適なRFデバイスのいずれかを含み得る。
【0030】
[0036] デジタルアナログコンバータ(DAC)308から同相(I)または直交位相(Q)ベースバンドアナログ信号を受信するとき、TX経路302は、ベースバンドフィルタ(BBF)310と、ミキサ312と、ドライバ増幅器(DA)314と、電力増幅器(PA)316とを含み得る。BBF310と、ミキサ312と、DA314とは、無線周波数集積回路(RFIC)中に含まれ得るが、PA316はRFICの外部にあり得る。BBF310は、DAC308から受信されたベースバンド信号をフィルタ処理し、ミキサ312は、当該のベースバンド信号を異なる周波数にコンバートする(たとえば、ベースバンドからRFにアップコンバートする)ために、フィルタ処理されたベースバンド信号を送信局部発振器(LO)信号と混合する。この周波数コンバージョンプロセスは、LO周波数と当該の信号の周波数との和および差周波数を生成する。和および差周波数は、ビート周波数と呼ばれる。ビート周波数は、一般に、RF範囲内にあり、したがって、ミキサ312によって出力される信号は、一般に、RF信号であり、DA314によって増幅され、および/または、アンテナ303による送信の前にPA316によって増幅され得る。
【0031】
[0037] RX経路304は、低雑音増幅器(LNA:low noise amplifier)322と、ミキサ324と、ベースバンドフィルタ(BBF)326とを含む。本開示のいくつかの態様では、BBF326は、以下で説明されるように、信号を処理するための1つまたは複数の電流モードバイカッドフィルタ回路を含み得る。LNA322と、ミキサ324と、BBF326とは、TX経路構成要素を含む同じRFICであることもそうでないこともある無線周波数集積回路(RFIC)中に含まれ得る。アンテナ303を介して受信されるRF信号は、LNA322によって増幅され得、ミキサ324は、当該のRF信号を異なるベースバンド周波数にコンバートする(すなわち、ダウンコンバートする)ために、増幅されたRF信号を受信局部発振器(LO)信号と混合する。ミキサ324によって出力されたベースバンド信号は、デジタル信号処理のためにデジタルIまたはQ信号にアナログデジタルコンバータ(ADC:analog-to-digital converter)328によってコンバートされる前に、BBF326によってフィルタ処理され得る。
【0032】
[0038] LOの出力が周波数において安定したままであることが望ましいが、異なる周波数に調整することは、可変周波数発振器を使用することを示し、これは、安定性と調整可能性との間の妥協を伴い得る。現代のシステムは、特定の調整範囲をもつ安定した、調整可能なLOを生成するために、電圧制御発振器(VCO)をもつ周波数シンセサイザを採用し得る。したがって、送信LO周波数は、TX周波数シンセサイザ318によって生成され得、送信LO周波数は、ミキサ312中でベースバンド信号と混合される前に、増幅器320によってバッファまたは増幅され得る。同様に、受信LO周波数は、RX周波数シンセサイザ330によって生成され得、受信LO周波数は、ミキサ324中でRF信号と混合される前に、増幅器332によってバッファまたは増幅され得る。
例示的な電流モードバイカッドフィルタ回路
[0039] いくつかのワイヤレス通信ネットワーク(たとえば、モバイルフォン規格および技術の第5世代である、5Gとも呼ばれる、新無線(NR))は、(たとえば、80MHzまたはそれを越える)広帯域幅(wide bandwidth)をターゲットにする拡張モバイルブロードバンド(eMBB)、(たとえば、25GHzまたはそれを越える)高いキャリア周波数をターゲットにするミリメートル波(mmW)など、様々なワイヤレス通信サービスをサポートし得る。これらのサービスは、3G、4G(モバイルフォン規格および技術の第4世代)など、以前の世代よりも低いレイテンシおよび高いスループットをもつ通信をサポートし得る。しかしながら、以前の世代と比較して、これらの5Gサービスは、より厳しいレイテンシおよび帯域幅要件を含み得る。参照例として、5G mmWは、4Gよりも著しく大きい帯域幅(たとえば、10×以上)を利用し得る。
【0033】
[0040] 現在の受信機(RX)アーキテクチャは、概して、5G mmWなど、5G通信サービスに関連する帯域幅仕様を満たすには不十分である。たとえば、いくつかの4G RXアーキテクチャは、RXアーキテクチャの帯域幅能力を(たとえば、100メガヘルツ(MHz)未満に)限定することがある、閉ループフィードバックトポロジーを使用し得る。その上、開ループアーキテクチャおよび/または受動構成要素を採用するRXアーキテクチャにおいてでさえ、共振(たとえば、LC)フィルタは、概して、より低い帯域幅のモードをカバーするために、再構成可能性および調整範囲を限定している。したがって、従来のRXアーキテクチャに対して、(たとえば、100MHzよりも大きい)より高い帯域幅能力を満たすことができ、再構成可能性を改善した、RXアーキテクチャを提供することが望ましいことがある。
【0034】
[0041] 本明細書で提示される態様は、5G mmWのためのより高い帯域幅(たとえば、最高1ギガヘルツ(GHz))をサポートすることができるベースバンドフィルタ(たとえば、BBF326)をもつRXアーキテクチャについて説明する。
図4は、本開示のいくつかの態様による、例示的なRXアーキテクチャ400のブロック図である。RXアーキテクチャ400は、LNA322と、ミキサ324と、BBF326とを含む。ここでは、BBF326は、ミキサ324によって出力されたベースバンド信号をフィルタ処理し得る。無線周波数フロントエンドの受信チェーン中のベースバンドフィルタ(たとえば、BBF326)など、電子回路中でフィルタを実装するための多くの異なる回路トポロジーがある。1つまたは複数の増幅器を使用する1つの例示的なフィルタトポロジー(たとえば、アクティブトポロジー)は、双2次(またはバイカッド)フィルタと呼ばれる。バイカッドフィルタは、2つの2次関数の比である伝達関数を実装するためのタイプの線形フィルタ(linear filter)であり、したがって、「双2次(biquadratic)」という名称がある。
【0035】
[0042] 一態様では、本明細書で説明されるRXアーキテクチャのベースバンドフィルタは、たとえば、5G mmWのためのより高い帯域幅をサポートするために、少なくとも1つの電流モードバイカッドフィルタ回路を含むことができる。
図4に示されているように、たとえば、BBF326は、全体的4次フィルタを達成するために、電流モードバイカッドフィルタ(current-mode biquad filter)402-1と、電流モードバイカッドフィルタ402-1とカスケード接続された電流モードバイカッドフィルタ402-2とを含む。
図4は、2つのカスケード接続された電流モードバイカッドフィルタ402をもつBBF326を示すが、他の態様では、BBF326は、任意の数(たとえば、1つ、2つ、3つなど)の電流モードバイカッドフィルタ402を含むことができることに留意されたい。
【0036】
[0043] 一態様では、BBF326は、従来のRXアーキテクチャにおけるベースバンドフィルタに対してより高い帯域幅(たとえば、5G mmWの場合、最高1GHz以上)をサポートすることができるインダクタレスベースバンド回路(inductorless baseband circuit)であり得る。BBF326は、より大きい帯域幅にわたる(たとえば、調節可能なバイアス電流を介した)調整可能GMおよび/または完全な再構成可能性のための調整可能キャパシタ(tunable capacitor)を有し得る。いくつかの態様では、BBF326は、電流信号(current signal)を電流モードADCに出力し得るが、他の態様では、出力電流信号を、ADC(たとえば、ADC328)によって受信される前に電圧信号(voltage signal)にコンバートするために、負荷抵抗器(load resistor)が使用され得る。
【0037】
[0044]
図5は、本開示のいくつかの態様による、例示的な電流モードバイカッドフィルタ402(たとえば、電流モードバイカッドフィルタ402-1、電流モードバイカッドフィルタ402-2など)の概略図である。電流モードバイカッドフィルタ402は、入力電流ノード502(たとえば、I
input+)と、入力電流ノード504(たとえば、I
input-)と、出力電流ノード506(たとえば、I
output+)と、出力電流ノード508(たとえば、I
output-)と、アクティブフィルタ回路(active filter circuit)510と、アクティブフィルタ回路520と、アクティブフィルタ回路550と、アクティブフィルタ回路560とを含む。入力電流ノード502および504は、差動入力電流信号対(たとえば、I
input+/I
input-)を受信し得、出力電流ノード506および508は、電流モードバイカッドフィルタ402から差動出力電流信号対(たとえば、I
output+/I
output-)を出力し得る。
【0038】
[0045] アクティブフィルタ回路510と、アクティブフィルタ回路520とは、互いに相補的である。アクティブフィルタ回路510および520の各々は、入力電流ノード502と出力電流ノード506との間に結合される。アクティブフィルタ回路510は、電流ミラー回路(current mirror circuit)532を駆動する共通ゲート回路(common-gate circuit)530を含む。たとえば、共通ゲート回路530のトランジスタ(transistor)T1が、電流ミラー回路532の第1の分岐(first branch)(たとえば、トランジスタT3)を駆動し、電流ミラー回路532の第1の分岐は、電流ミラー回路532の第2の分岐(second branch)(たとえば、トランジスタT4)を制御する。
【0039】
[0046] 同様に、アクティブフィルタ回路520は、電流ミラー回路542を駆動する共通ゲート回路540を含む。たとえば、共通ゲート回路540のトランジスタT2が、電流ミラー回路542の第1の分岐(たとえば、トランジスタT5)を駆動し、電流ミラー回路542の第1の分岐は、電流ミラー回路542の第2の分岐(たとえば、トランジスタT6)を制御する。相補的アクティブフィルタ回路510および520では、(i)トランジスタT1のソースと、トランジスタT2のソースとが、入力電流ノード502に結合され、(ii)トランジスタT4のドレイン(drain)と、トランジスタT6のドレインとが、出力電流ノード506に結合される。
【0040】
[0047] いくつかの態様では、トランジスタT3のサイズとトランジスタT4のサイズとの間の比(ratio)(たとえば、電流ミラー比1:M)が調整可能(tunable)である。いくつかの態様では、トランジスタT5のサイズ(size)とトランジスタT6のサイズとの間の比が調整可能である。調整可能トランジスタを実装するために、並列トランジスタのスイッチドアレイ(switched array)が使用され得、選択されたトランジスタのゲートは、制御入力ノードに選択的に結合され、選択されなかったトランジスタのゲートは、選択されなかったトランジスタをオフにするために、電圧レール(voltage rail)(たとえば、VDDまたは接地)に選択的に結合される。このようにして、並列トランジスタの有効数を変更することによって、電流ミラー比1:Mが調整可能である。いくつかの態様では、トランジスタT3のサイズとトランジスタT4のサイズとの間の比は、トランジスタT5のサイズとトランジスタT6のサイズとの間の比に等しいことがある。
【0041】
[0048] 同じく示されているように、アクティブフィルタ回路550と、アクティブフィルタ回路560とは、互いに相補的である。アクティブフィルタ回路550および560の各々は、入力電流ノード504と出力電流ノード508との間に結合される。アクティブフィルタ回路550は、電流ミラー回路572を駆動する共通ゲート回路570を含む。たとえば、共通ゲート回路570のトランジスタT7が、電流ミラー回路572の第1の分岐(たとえば、トランジスタT9)を駆動し、電流ミラー回路572の第1の分岐は、電流ミラー回路572の第2の分岐(たとえば、トランジスタT10)を制御する。
【0042】
[0049] 同様に、アクティブフィルタ回路560は、電流ミラー回路582を駆動する共通ゲート回路580を含む。たとえば、共通ゲート回路580のトランジスタT8は、電流ミラー回路582の第1の分岐(たとえば、トランジスタT11)を駆動し、電流ミラー回路582の第1の分岐は、電流ミラー回路582の第2の分岐(たとえば、トランジスタT12)を制御する。相補的アクティブフィルタ回路550および560では、(i)トランジスタT7のソースと、トランジスタT8のソースとが、入力電流ノード504に結合され、(ii)トランジスタT10のドレインと、トランジスタT12のドレインとが、出力電流ノード508に結合される。
【0043】
[0050] いくつかの態様では、トランジスタT9のサイズとトランジスタT10のサイズとの間の比が調整可能である。いくつかの態様では、トランジスタT11のサイズとトランジスタT12のサイズとの間の比が調整可能である。いくつかの態様では、トランジスタT9のサイズとトランジスタT10のサイズとの間の比は、トランジスタT11のサイズとトランジスタT12のサイズとの間の比に等しいことがある。いくつかの態様では、電流ミラー回路532、542、572、および582の各々は、比Mによって
図5に示されているように、それぞれの電流ミラー回路中のトランジスタのサイズの間の同じ比を有し得る。
【0044】
[0051]
図5に示されているように、それぞれ、共通ゲート回路530および570中のトランジスタT1およびT7は、n形電界効果トランジスタ(NFET)であり得る。図示のように、それぞれ、共通ゲート回路540および580中のトランジスタT2およびT8は、p形電界効果トランジスタ(PFET)であり得る。
図5に示されているように、電流ミラー回路532および572中のトランジスタT3、T4、T9、およびT10は、PFETであり得、電流ミラー回路542および582中のトランジスタT5、T6、T11、およびT12は、NFETであり得る。このようにして、アクティブフィルタ回路510と、アクティブフィルタ回路520とは、互いに相補的である。同様に、アクティブフィルタ回路550と、アクティブフィルタ回路560とは、互いに相補的である。
【0045】
[0052] いくつかの態様では、電流モードバイカッドフィルタ402は、(たとえば、G
Mを調整するための)1つまたは複数の調整可能キャパシタおよび/または調整可能バイアス電流(tunable bias current)を実装し得る。
図5に示されているように、たとえば、電流モードバイカッドフィルタ402は、(i)入力電流ノード502と入力電流ノード504との間に結合された調整可能キャパシタC1と、(ii)アクティブフィルタ回路510とアクティブフィルタ回路550との間に結合された調整可能キャパシタC2と、(iii)アクティブフィルタ回路520とアクティブフィルタ回路560との間に結合された調整可能キャパシタC3とを含む。ただし、
図5は、3つの同調可能キャパシタC1、C2、およびC3を示すが、電流モードバイカッドフィルタ402は、任意の数の調整可能キャパシタを含むことができる(たとえば、キャパシタC1、C2、およびC3の任意の組合せが調整可能であり得る)ことに留意されたい。さらに、(キャパシタC1、C2、および/またはC3などの)調整可能キャパシタが、(「調整可能キャパシタバンク」とも呼ばれる)キャパシタのスイッチドアレイによって実装され得ることを理解されたい。いくつかの態様では、キャパシタのそのようなスイッチドアレイは、たとえば、バイナリ重み付け(binary-weighted)キャパシタバンクによって実装され得る。
【0046】
[0053] 同じく
図5に示されているように、電流モードバイカッドフィルタ402は、電流モードバイカッドフィルタ402中の1つまたは複数のトランジスタの相互コンダクタンス(transconductance)を調整するように構成された、バイアスノード(biasing node)VbpおよびVbnを含む。たとえば、正バイアスノードVbpは、トランジスタT1およびトランジスタT7の相互コンダクタンスを調整するように構成され得、ここで、トランジスタT1のゲートが、キャパシタC7に結合され、抵抗器(resistor)R1を介してバイアスノードVbpに結合され、トランジスタT7のゲートが、キャパシタC5に結合され、抵抗器R2を介してバイアスノードVbpに結合される。いくつかの態様では、抵抗器R1、抵抗器R2、キャパシタC5、およびキャパシタC7のうちの少なくとも1つが可変である。
【0047】
[0054] 同様に、負バイアスノードVbnは、相互コンダクタンストランジスタT2およびトランジスタT8を調整するように構成され得、ここで、トランジスタT2のゲートが、キャパシタC6に結合され、抵抗器R3を介してバイアスノードVbnに結合され、トランジスタT8のゲートが、キャパシタC4に結合され、抵抗器R4を介してバイアスノードVbnに結合される。いくつかの態様では、抵抗器R3、抵抗器R4、キャパシタC4、およびキャパシタC6のうちの少なくとも1つが可変である。
【0048】
[0055] いくつかの態様では、各アクティブフィルタ回路の電流ミラー回路は、異なるアクティブフィルタ回路中のコモンモードゲート回路(common-mode gate circuit)に結合され得る。たとえば、電流ミラー回路532の第1の分岐はトランジスタT3を含み、トランジスタT3は、VDD(たとえば、電圧レール)に結合されたソースを有し、(i)トランジスタT3のゲートと、(ii)共通ゲート回路530の出力と、(iii)キャパシタC4を介してトランジスタT8のゲートとに結合されたドレインを有する(たとえば、Vpm+)。さらに、電流ミラー回路542の第1の分岐はトランジスタT5を含み、トランジスタT5は、VSS(たとえば、回路のための電気接地など、電圧レール)に結合されたソースを有し、(i)トランジスタT5のゲートと、(ii)共通ゲート回路540の出力と、(iii)キャパシタC5を介してトランジスタT7のゲートとに結合されたドレインを有する(たとえば、Vnm+)。さらに、電流ミラー回路572の第1の分岐はトランジスタT9を含み、トランジスタT9は、VDDに結合されたソースを有し、(i)トランジスタT9のゲートと、(ii)共通ゲート回路570の出力と、(iii)キャパシタC6を介してトランジスタT2のゲートとに結合されたドレインを有する(たとえば、Vpm-)。さらに、電流ミラー回路582の第1の分岐はトランジスタT11を含み、トランジスタT11は、VSSに結合されたソースを有し、(i)トランジスタT11のゲートと、(ii)共通ゲート回路580の出力と、(iii)キャパシタC7を介してトランジスタT1のゲートとに結合されたドレインを有する(たとえば、Vnm-)。このようにして、トランジスタのゲートは交差結合される。
【0049】
[0056]
図6は、本開示のいくつかの態様による、信号を処理するための例示的な動作600の流れ図である。動作600は、電流モードバイカッドフィルタ402などの回路によって実施され得る。
【0050】
[0057] 動作600は、ブロック602において、電流モードバイカッドフィルタ回路(たとえば、電流モードバイカッドフィルタ402-1)の入力電流ノード(たとえば、入力電流ノード502)において入力電流信号を受信することによって始まる。電流モードバイカッドフィルタ回路は、(i)入力電流ノードに結合された容量性要素(たとえば、キャパシタC1)と、(ii)出力電流ノード(たとえば、出力電流ノード506)と、(iii)入力電流ノードと出力電流ノードとの間に結合された第1のアクティブフィルタ回路(たとえば、アクティブフィルタ回路510)と、(iv)入力電流ノードと出力電流ノードとの間に結合された第2のアクティブフィルタ回路(たとえば、アクティブフィルタ回路520)とを含み得る。第2のアクティブフィルタ回路は第1のアクティブフィルタ回路と相補的であり得る。
【0051】
[0058] ブロック604において、回路は、電流モードバイカッドフィルタ回路を使用して出力電流ノードにおいて出力電流信号を生成するために入力電流信号をフィルタ処理する。
【0052】
[0059] いくつかの態様によれば、回路(たとえば、電流モードバイカッドフィルタ回路420-1)は、別の回路(たとえば、電流モードバイカッドフィルタ回路420-2)とカスケード接続され得る。いくつかの態様によれば、回路は、無線周波数フロントエンド内に含まれ得る。これらの態様では、無線周波数フロントエンドは、無線周波数信号を受信するように構成された入力を有するLNA(たとえば、LNA322)と、LNAの出力に結合された入力を有し、回路の入力電流ノードに結合された出力を有するミキサ(たとえば、ミキサ324)とをも含み得る。
【0053】
[0060] 上記で説明された方法の様々な動作は、対応する機能を実施することが可能な任意の好適な手段によって実施され得る。それらの手段は、限定はしないが、回路、特定用途向け集積回路(ASIC)、またはプロセッサを含む、様々な(1つまたは複数の)ハードウェアおよび/またはソフトウェア構成要素および/またはモジュールを含み得る。概して、図に示されている動作がある場合、それらの動作は、同様の番号をもつ対応するカウンターパートのミーンズプラスファンクション構成要素を有し得る。
【0054】
[0061] たとえば、送信するための手段は、送信機(たとえば、
図2に示されているユーザ端末120のトランシーバフロントエンド254、
図2に示されているアクセスポイント110のトランシーバフロントエンド222、または
図3に示されているトランシーバフロントエンド300)および/またはアンテナ(たとえば、
図2に描かれているユーザ端末120mのアンテナ252ma~252mu、
図2に示されているアクセスポイント110のアンテナ224a~224ap、または
図3に示されているトランシーバフロントエンド300のアンテナ303)を備え得る。受信するための手段は、受信機(たとえば、
図2に示されているユーザ端末120のトランシーバフロントエンド254、
図2に示されているアクセスポイント110のトランシーバフロントエンド222、または
図3に示されているトランシーバフロントエンド300)および/またはアンテナ(たとえば、
図2に描かれているユーザ端末120mのアンテナ252ma~252mu、
図2に示されているアクセスポイント110のアンテナ224a~224ap、または
図3に示されているトランシーバフロントエンド300のアンテナ303)を備え得る。処理するための手段、決定するための手段、および動作させるための手段は、1つまたは複数のプロセッサ(たとえば、
図2に示されているアクセスポイント110のTXデータプロセッサ210、RXデータプロセッサ242、および/またはコントローラ230、あるいは
図2に示されているユーザ端末120のRXデータプロセッサ270、TXデータプロセッサ288、および/またはコントローラ280)を含み得る、処理システムを備え得る。
【0055】
[0062] 本明細書で使用される「決定すること」という用語は、多種多様なアクションを包含する。たとえば、「決定すること」は、計算すること、算出すること、処理すること、導出すること、調査すること、ルックアップすること(たとえば、テーブル、データベース、または別のデータ構造においてルックアップすること)、確認することなどを含み得る。また、「決定すること」は、受信すること(たとえば、情報を受信すること)、アクセスすること(たとえば、メモリ中のデータにアクセスすること)などを含み得る。また、「決定すること」は、解決すること、選択すること、選定すること、確立することなどを含み得る。
【0056】
[0063] 本明細書で使用される、項目のリスト「のうちの少なくとも1つ」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a-b、a-c、b-c、およびa-b-c、ならびに複数の同じ要素をもつ任意の組合せ(たとえば、a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c、およびc-c-c、またはa、b、およびcの任意の他の順序)を包含するものとする。
【0057】
[0064] 本開示に関連して説明される様々な例示的な論理ブロック、モジュールおよび回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、ASIC、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス(PLD)、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明される機能を実施するように設計されたそれらの任意の組合せを用いて実装または実施され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、または任意の他のそのような構成として実装され得る。
【0058】
[0065] 本明細書で開示される方法は、説明された方法を達成するための1つまたは複数のステップまたはアクションを備える。方法のステップおよび/またはアクションは、特許請求の範囲から逸脱することなく、互いに交換され得る。言い換えれば、ステップまたはアクションの特定の順序が指定されない限り、特定のステップおよび/またはアクションの順序および/または使用は、特許請求の範囲から逸脱することなく修正され得る。
【0059】
[0066] 説明された機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ハードウェアで実装される場合、例示的なハードウェア構成は、ワイヤレスノード中に処理システムを備え得る。処理システムは、バスアーキテクチャを用いて実装され得る。バスは、処理システムの特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バスは、プロセッサと、機械可読媒体と、バスインターフェースとを含む様々な回路を互いにリンクし得る。バスインターフェースは、ネットワークアダプタを、特に、バスを介して処理システムに接続するために使用され得る。ネットワークアダプタは、物理(PHY)レイヤの信号処理機能を実装するために使用され得る。ユーザ端末の場合、ユーザインターフェース(たとえば、キーパッド、ディスプレイ、マウス、ジョイスティックなど)もバスに接続され得る。バスはまた、タイミングソース、周辺機器、電圧調整器、電力管理回路など、様々な他の回路をリンクし得るが、これらの回路は当技術分野でよく知られており、したがってこれ以上説明されない。
【0060】
[0067] 処理システムは、すべて外部バスアーキテクチャを介して他のサポート回路と互いにリンクされる、プロセッサ機能を提供する1つまたは複数のマイクロプロセッサと、機械可読媒体の少なくとも一部を提供する外部メモリとをもつ汎用処理システムとして構成され得る。代替的に、処理システムは、プロセッサをもつASICと、バスインターフェースと、アクセス端末)の場合はユーザインターフェースと、サポート回路と、単一のチップに統合された機械可読媒体の少なくとも一部分とを用いて、あるいは1つまたは複数のFPGA、PLD、コントローラ、状態機械、ゲート論理、個別ハードウェア構成要素、もしくは他の好適な回路、または本開示全体にわたって説明された様々な機能を実施することができる回路の任意の組合せを用いて、実装され得る。当業者は、特定の適用例と、全体的なシステムに課される全体的な設計制約とに応じて、処理システムについて、説明された機能をどのように最も良く実装すべきかを認識されよう。
【0061】
[0068] 特許請求の範囲は、上記で示された厳密な構成および構成要素に限定されないことを理解されたい。上記で説明された方法および装置の構成、動作、および詳細において、特許請求の範囲から逸脱することなく、様々な修正、変更、および変形が行われ得る。
【国際調査報告】