(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-17
(54)【発明の名称】コンパクトな可搬型マルチモード顕微鏡
(51)【国際特許分類】
G02B 21/00 20060101AFI20240110BHJP
【FI】
G02B21/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023541512
(86)(22)【出願日】2022-01-05
(85)【翻訳文提出日】2023-09-04
(86)【国際出願番号】 IN2022050010
(87)【国際公開番号】W WO2022149162
(87)【国際公開日】2022-07-14
(31)【優先権主張番号】202121000533
(32)【優先日】2021-01-06
(33)【優先権主張国・地域又は機関】IN
(81)【指定国・地域】
(71)【出願人】
【識別番号】523256362
【氏名又は名称】スコップゲンクス・プライベート・リミテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ジャイェシュクマール・セヴァンティラル・メヴァダ
(72)【発明者】
【氏名】アニルッダ・バルチャンドラ・パンディット
【テーマコード(参考)】
2H052
【Fターム(参考)】
2H052AA09
2H052AA14
2H052AB01
2H052AC01
2H052AC06
2H052AC07
2H052AC14
2H052AD02
(57)【要約】
本明細書は、コンパクトな可搬型マルチモード顕微鏡装置(100)を記載しており、この可搬型マルチモード顕微鏡装置は、1以上の顕微鏡モジュール(21)を含む光学顕微鏡ユニット(2)であって、各顕微鏡モジュール(21)が、10X~2000Xの範囲内の全倍率を有する8個~16個のレンズ要素を備える光学レンズ組立体を備える、光学顕微鏡ユニット(2)と、光学顕微鏡ユニットを物理的及び化学的損傷から保護するために、光学顕微鏡ユニットに配置される保護層(3)と、保護層に配置されるサンプル保持ユニット(4)であって、サンプル保持ユニットが、1以上の顕微鏡モジュールによって撮像されるサンプルを保持するために、少なくとも1つの区画を含む、サンプル保持ユニット(4)と、光学顕微鏡ユニットに取り付けられる第1の光源ユニット(1)と、1以上の顕微鏡モジュールに隣接して光学顕微鏡ユニットの内部に取り付けられる第2の光源ユニット(5)と、を備える。
【特許請求の範囲】
【請求項1】
コンパクトな可搬型マルチモード顕微鏡装置(100)であって、
1以上の顕微鏡モジュール(21)を含む光学顕微鏡ユニット(2)であって、前記顕微鏡モジュール(21)それぞれが、10X~2000Xの範囲内の全倍率を有する8個~16個のレンズ要素を備える光学レンズ組立体を備える、光学顕微鏡ユニット(2)と、
前記光学顕微鏡ユニット(2)を物理的及び化学的損傷から保護するために、前記光学顕微鏡ユニット(2)に配置される保護層(3)と、
前記保護層(3)に配置されるサンプル保持ユニット(4)であって、前記サンプル保持ユニット(4)が、1以上の前記顕微鏡モジュール(21)によって撮像されるサンプルを保持するために、少なくとも1つの区画を含む、サンプル保持ユニット(4)と、
前記光学顕微鏡ユニット(2)に取り付けられる第1の光源ユニット(1)であって、前記第1の光源ユニット(1)が、前記光学顕微鏡ユニット(2)の外部から前記サンプル保持ユニット(4)内の前記サンプルに光を供給する、第1の光源ユニット(1)と、
1以上の前記顕微鏡モジュール(21)に隣接して前記光学顕微鏡ユニット(2)の内部に取り付けられる第2の光源ユニット(5)であって、前記第2の光源ユニット(5)が、前記光学顕微鏡ユニット(2)の内部から前記サンプル保持ユニット(4)内の前記サンプルに光を供給する、第2の光源ユニット(5)と
を備える、可搬型マルチモード顕微鏡装置(100)。
【請求項2】
前記第1の光源ユニット(1)が、前記サンプル保持ユニットの上面と前記第1の光源ユニットの底面との間の距離を変化させるように前記光学顕微鏡ユニット(2)に対して可動である、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項3】
前記第1の光源ユニット(1)が、
前記サンプル保持ユニットの上面と前記第1の光源ユニットの底面との間の距離を変化させるように前記光学顕微鏡ユニットに対して可動である第1の部分(12)と、
前記第1の部分に連結される第2の部分(13)であって、前記第2の部分が、少なくとも光源を含む、第2の部分(13)と
を備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項4】
前記第2の部分が、前記第1の部分と磁気的に連結される、請求項3に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項5】
前記第2の部分が、前記第1の部分に対して折曲可能である、請求項3に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項6】
前記第1の光源ユニット(1)が、点光源または拡散光源またはそれらの組合せであり、前記光学顕微鏡ユニット(2)に着脱式に取り付けられる、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項7】
前記第1の光源ユニット(1)が、可変光強度、可変光波長、及び前記サンプル保持ユニット内の前記サンプルの可変露光面積のうちの少なくとも1つを有する、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項8】
前記第1の光源ユニット(1)が、
外側からの反射上面を備える光指向要素と、
前記光指向要素の前記反射上面の内側及び近位に配置される発光ダイオードと、
前記光指向要素の底面に連結されるディフューザと、
前記ディフューザに配置される凸レンズまたは平凸レンズと
を備え、
前記発光ダイオード及び前記凸レンズまたは前記平凸レンズが、前記発光ダイオードによって発せられた光線が前記凸レンズまたは前記平凸レンズに直接向けられ、更に前記サンプル保持ユニット上に向かうように、互いに一直線上にある、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項9】
前記第1の光源ユニット(1)が、
前記光指向要素の側面に配置される少なくとも1つの発光ダイオードを備え、
少なくとも1つの前記発光ダイオードの周面が、不透明な材料で作られ、
少なくとも1つの前記発光ダイオードによって発せられた光線が、前記光指向要素の前記反射上面から反射され、前記ディフューザを通って前記凸レンズまたは前記平凸レンズに、更に前記サンプル保持ユニット上に拡散される、請求項8に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項10】
前記第1の光源ユニット(1)が、
外側からの反射上面を備える光指向要素と、
前記光指向要素の側面に配置される少なくとも1つの発光ダイオードであって、少なくとも1つの前記発光ダイオードの周面が不透明な材料で作られる、少なくとも1つの発光ダイオードと、
前記光指向要素の底面に連結されるディフューザと、
前記ディフューザの近位に配置される凸レンズまたは平凸レンズと
を備え、
少なくとも1つの前記発光ダイオードによって発せられた光線が、前記光指向要素の前記反射上面から反射され、前記ディフューザを通って前記凸レンズまたは前記平凸レンズに、更に前記サンプル保持ユニット上に拡散される、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項11】
前記第1の光源ユニット(1)が、
外側からの反射上面を備える光指向要素と、
前記光指向要素の側面に隣接して配置される発光ダイオードと、
前記光指向要素の底面に隣接する導光要素と、
前記導光要素の底面に隣接するディフューザと
を備え、
前記発光ダイオードによって発せられた光線が、前記光指向要素の前記反射上面から反射され、前記導光要素を通過し、前記ディフューザを通って前記サンプル保持ユニット上に拡散される、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項12】
前記第2の光源ユニット(5)が、
発光ダイオードであって、前記発光ダイオードの周面が、不透明な材料で作られる、発光ダイオードと、
前記発光ダイオードに連結され、前記発光ダイオードから発せられた光線を前記サンプル保持ユニット上に向ける光指向要素と
を備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項13】
前記保護層(3)が、波長固有フィルタである、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項14】
前記サンプル保持ユニット(4)が、前記保護層(3)の平面に沿った方向に可動である、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項15】
前記サンプル保持ユニット(4)が、少なくとも1つの前記区画をカバーするための上部カバーを備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項16】
前記上部カバーが、波長固有フィルタである、請求項15に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項17】
前記サンプル保持ユニット(4)が、少なくとも1つの前記区画の各々に対応するサンプル注入ポートを備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項18】
前記可搬型マルチモード顕微鏡装置(100)が、少なくとも1つの前記区画の第1の平面側に配置される第1の波長固有フィルタを備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項19】
前記可搬型マルチモード顕微鏡装置(100)が、少なくとも1つの前記区画の第2の平面側に配置される第2の波長固有フィルタを備え、前記第2の平面側が、前記第1の平面側の反対側である、請求項18に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項20】
少なくとも1つの前記区画が、前記サンプルの流入のための入口と、前記サンプルの流出のための出口とを備える、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項21】
前記可搬型マルチモード顕微鏡装置(100)が、前記サンプル保持ユニットの周面に配置される発光ダイオードを備え、前記発光ダイオードが、前記サンプル保持ユニット内の前記サンプルに光線を供給する、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項22】
前記光学顕微鏡ユニット(2)が、1以上の前記顕微鏡モジュールの各々に対応する焦点合プラットフォームを備え、前記焦点合プラットフォームが、前記サンプル保持ユニット内の前記サンプルを撮像するため、焦点を調整するために前記光学顕微鏡ユニット内で前記対応する顕微鏡モジュールを移動させるように可動である、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項23】
前記焦点合プラットフォームが、前記焦点合プラットフォームの移動のためのソレノイドベースの構成、電磁構成、圧電移動ベースの構成、モータベースの構成、ネジベースの機構のうちの少なくとも1つを備える、請求項22に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項24】
前記光学顕微鏡ユニット(2)が、前記焦点合プラットフォームと前記光学顕微鏡ユニットの上面との間に圧縮可能スペーサを備え、前記圧縮可能スペーサが、前記焦点合プラットフォームの移動を制御する、請求項22に記載の可搬型マルチモード顕微鏡装置(100)。
【請求項25】
前記光学顕微鏡ユニット(2)が、1以上の前記顕微鏡モジュールの各々に対応する焦点合バレルユニットを備え、前記焦点合バレルユニットが、前記サンプル保持ユニット内の前記サンプルを撮像するため、焦点を調整するために前記対応する顕微鏡モジュールを動作させる、請求項1に記載の可搬型マルチモード顕微鏡装置(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検体の拡大観察を可能にする装置及び方法に関する。より具体的には、本発明は、必要な用途に応じて、一のコンパクトな可搬型デバイス内に可変視野、倍率、及び解像度を含む様々なモードの顕微鏡機能を有するコンパクトなマルチモード可搬型顕微鏡に関する。
【背景技術】
【0002】
顕微鏡は、教育用途、研究用途及び診断用途など、広範囲の用途にとって不可欠な機器である。顕微鏡は、人間の肉眼では見えない顕微鏡レベルで世界を見るために使用される。顕微鏡は、単純な拡大レンズから、複数のレンズを有する現在の高度な複雑なシステムに至るまで、長い道をたどってきた。顕微鏡には様々な種類があり、例えば、明視野顕微鏡、暗視野顕微鏡、電子顕微鏡及び蛍光顕微鏡などが、広範囲の用途のために広く開発されてきた。
【0003】
可搬型または手持ち式の顕微鏡の研究は、この20年間でかなりの改善が見られている。以下に、提案されたデバイスの先行技術を報告し、簡単に説明する。
【0004】
特許文献1は、スマートフォンが画像を取り込むために使用され、倍率が顕微鏡レンズに依存するように考案された可搬型顕微鏡デバイスを記載している。その用途では、2つの偏光フィルムが、照明源から画像取り込みデバイス、つまりスマートフォンのカメラに入る光の量を調整するために使用される。
【0005】
特許文献2は、照明モジュールを備えた可搬型顕微鏡を記載している。上述の発明の主な目的は、安価な人工光源を提供すること、及び、顕微鏡スタンドのための最小数の要素(ハードウェア)を使用することである。
【0006】
特許文献3は、独自の焦点合せ、及びスライド保持機構を備えた単一レンズ顕微鏡を記載している。
【0007】
別の特許である特許文献4は、異常な血液サンプルを正常な血液サンプルと同時に比較するという独自の機能を備えた可搬型顕微鏡装置を記載している。
【0008】
特許文献5は、焦点合せのために手の偏向が使用される手持ち式の顕微鏡を記載している。この顕微鏡は、レンズの保持や微調整の点で柔軟性に欠ける。
【0009】
特許文献6は、平板からなる光学デバイス(Foldscope)を開示している。欠点は、球面レンズとしての球面摩耗、低解像度、及び視野の低下であり、これは、ユーザにとって。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許出願公開第20160004057号明細書
【特許文献2】米国特許第7023614号明細書
【特許文献3】米国特許第6847480号明細書
【特許文献4】米国特許第5062697号明細書
【特許文献5】米国特許第4095874号明細書
【特許文献6】国際公開第2013120091号明細書
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、上述の従来技術から、かさばる構成でなく、デジタル自動焦点合せ、または容易な焦点合せで、1つのコンパクトなデバイスにおけるすべての可変倍率、解像度及び視野のようなマルチモードで、費用対効果の高い顕微鏡を開発する必要があり、更に、1つのコンパクトな可搬型組立体におけるその走査目的のためのスライドの手動またはデジタル制御された自動制御移動を伴う単一または連続的なサンプル保持組立体は、困難である。本発明は、これらの問題に極めて包括的に対処し、特許出願に記載/指定した発明を記載する。
【課題を解決するための手段】
【0012】
本発明の主な目的は、コンパクトな可搬型マルチモード顕微鏡を開発することである。
【0013】
本発明の別の目的は、かさばる、複雑な組立体なしに、一のコンパクトなコンパクト内で可変倍率、解像度、視野などに使用され得るマルチモードでコンパクトな顕微鏡組立体を開発することであり、モードは、デジタルデバイスのいずれかを通して自動または手動またはデジタル制御によって変更され得る。
【0014】
本発明の更に別の目的は、デジタルデバイスのいずれかを使用して、手動または自動制御またはデジタル駆動制御で対象の焦点を合わせる、ユーザフレンドリでコンパクトな構成であるマルチモードでコンパクトな顕微鏡を開発することである。
【0015】
本発明の更に別の目的は、一回使用もしくは複数回使用もしくは連続サンプリングのためのサンプル保持構成を、または暗視野もしくはフィルタ視野構成のための構成を提供することであり、サンプル保持プラットフォームは、水平面内で手動または自動またはデジタル制御された自動移動を有する。
【0016】
本発明の更に別の目的は、顕微鏡組立体に対して調整可能であるなど複数の機能を備えた可搬型で調整可能な光源構成であり、暗視野、フィルタ視野、及び必要な用途に応じて制御される強度などの複数の機能のための構成を、提供することである。
【0017】
本発明の更に別の目的は、デジタルデバイスのいずれかを通してすべてのモードで容易に動作し、コンパクトな組立体で費用対効果が高く、ユーザフレンドリなものを提供することである。
【図面の簡単な説明】
【0018】
【
図1】一例による、コンパクトな可搬型マルチモード顕微鏡装置を示す図である。
【
図2a】一例における、単一の顕微鏡モジュールを備える光学顕微鏡ユニットを示す図である。
【
図2b】一例における、2つの顕微鏡モジュールを備える光学顕微鏡ユを示す図である。
【
図2c】一例における、3つの顕微鏡モジュールを備える光学顕微鏡ユニットを示す図である。
【
図2d】一例における、回転ユニット内で、焦点合ユニット上で2つの顕微鏡モジュールを備え、更に電子部品を備える光学顕微鏡ユニットを示す図である。
【
図3a】一例における、調整可能な機構を備える第1の光源ユニットを有するコンパクトな可搬型マルチモード顕微鏡装置を示す図である。
【
図3b】一例における、二重発光ダイオード構成を備える第1の光源ユニットの側面図である。
【
図3c】一例における、第1の光源ユニットの側面図である。
【
図3d】一例における、第1の光源ユニットの側面図である。
【
図4a】一例における、使用モードでの着脱式の第1の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図4b】一例における、オフモードでの着脱式の第1の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図5】一例における、固定式の第1の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図6a】一例における、使用モードでの折曲可能な第1の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図6b】一例における、オフモードでの折曲可能な第1の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図7】一例における、第2の光源ユニットを備える光学顕微鏡ユニットを示す図である。
【
図8a】一例における、焦点合プラットフォーム上の複数の顕微鏡モジュールを備える光学顕微鏡ユニットを示す図である。
【
図8b】一例における、一の顕微鏡モジュール、及び焦点合プラットフォームのためのネジベースの機構を備える光学顕微鏡ユニットを示す図である。
【
図8c】一例における、一の顕微鏡モジュール、ネジベースの機構、及びスペーサ組立体を備える光学顕微鏡ユニットを示す図である。
【
図9】一例における、単一の区画及び取外可能な上部カバーを備えるサンプル保持ユニットを示す図である。
【
図10a】一例における、サンプル注入ポートを備える単一の区画を有するサンプル保持ユニットを示す図である。
【
図10b】一例における、それぞれのサンプル注入ポートを備える2つの区画を有するサンプル保持ユニットの上面図である。
【
図10c】一例における、それぞれのサンプル注入ポートを備える4つの区画を有するサンプル保持ユニットの上面図である。
【
図11a】一例における、波長固有フィルタを備える
図10aのサンプル保持ユニットを示す図である。
【
図11b】一例における、それぞれの波長固有フィルタを備える2つの区画を有する
図10bのサンプル保持ユニットを示す図である。
【
図11c】一例における、それぞれの波長固有フィルタを備える4つの区画を有する
図10cのサンプル保持ユニットを示す図である。
【
図12a】一例における、入口及び出口を備える単一の区画を有し、波長固有フィルタを有するサンプル保持ユニットを示す図である。
【
図12c】一例における、4つの区画、ならびにそれぞれの入口及び出口を備えるサンプル保持ユニットの上面図である。
【
図12d】一例における、入口及び出口を備えるチャネル状区画を有するサンプル保持ユニットの上面図である。
【
図13】一例における、入口及び出口を備える単一区画、ならびにサンプル保持ユニットの平面側の波長固有フィルタを有するサンプル保持ユニットの側面図である。
【発明を実施するための形態】
【0019】
本発明では、様々な用語を、本発明を説明するために使用する。用語の定義は以下の通りである。
【0020】
「装置」、「組立体」、「デバイス」、「システム」という用語は、所与の明細書において互換的に使用する。
【0021】
本明細書で使用する「マルチモード」という用語は、一のコンパクトな組立体における可変解像度を有する明視野、視野、倍率、フィルタ視野、及び暗視野顕微鏡など、顕微鏡の機能の複数のモードを指す。
【0022】
本発明は、限定しないが、教育、研究、及び診断用途など、様々な用途のためのコンパクトな可搬型マルチモード顕微鏡装置を開示する。
【0023】
本主題の一例によれば、コンパクトな可搬型マルチモード顕微鏡装置は、
1.光学顕微鏡ユニット(
図1の2)と、
2.保護層(
図1の3)と、
3.サンプル保持ユニット(
図1の4)と、
4.第1の光源ユニット(外部光源ユニット)(
図1の1)と、
5.第2の光源ユニット(内部光源ユニット)(
図7の5)と
を備える。
【0024】
光学顕微鏡ユニットは、明視野、暗視野及びフィルタ視野顕微鏡のための1以上の顕微鏡モジュールを備える。光学顕微鏡ユニットはまた、焦点合プラットフォームを含み、焦点合プラットフォームは、1以上の顕微鏡モジュールの焦点合せをデジタル的、自動的に制御するための構成を備える。焦点合プラットフォームは、複数の顕微鏡モジュールのための共通のプラットフォームであっても、または複数の顕微鏡モジュールのための単一のプラットフォームであってもよい。
【0025】
光学顕微鏡ユニットはまた、電子部品を含み、電子部品は、エネルギー貯蔵、データ記憶、データ処理及びデータ転送、エネルギー転送などのための部品を備え、データ処理及び転送ユニットは、コンパクトな可搬型マルチモード顕微鏡装置全体をデジタル的に、またはAIもしくは機械学習によって制御するために使用され得る。
【0026】
保護層は、光学顕微鏡ユニット、またはその1以上の顕微鏡モジュールを、何らかの物理的及び化学的損傷から保護するために使用される。保護層は、波長固有の特性を有しても、有しなくてもよく、装置の洗浄の必要がない。保護層は、単回使用または複数回使用の保護層であってもよい。
【0027】
サンプル保持ユニットは、顕微鏡モジュールを使用して撮像するために、同じまたは様々なサンプルを保持するための単一の区画または複数の区画を含む。サンプル保持ユニットは、単回使用の、または複数回使用のサンプル保持ユニットであってもよい。サンプル保持ユニットは、連続サンプル撮像構成、及び/またはマイクロ流体サンプル撮像構成を有し得る。サンプル保持ユニットは、サンプルを観察するための波長固有フィルタを備えても、備えなくてもよい。サンプル保持ユニットは、サンプル保持ユニットと平行な平面内を移動するように構成され得る。サンプル保持ユニットの移動は、手動であっても、自動であってもよい。サンプル保持ユニットの移動は、スマートフォン、コンピュータなど、任意のデジタルデバイスを通してデジタル制御されてもよい。
【0028】
第1の光源ユニットは、外部光源ユニットである。第1の光源ユニットは、光学顕微鏡ユニットに取り付けられ、光学顕微鏡ユニットの外側からサンプル保持ユニット内のサンプルに光を供給する。第1の光源ユニットは、固定されたまたは折曲可能なまたは取外可能なまたは調整可能な光源ユニットであってもよい。第1の光源ユニットは、拡散光源ユニットもしくは点光源ユニット、またはそれらの組合せであってもよい。
【0029】
第2の光源ユニットは、内部光源ユニットである。第2の光源ユニットは、フィルタ視野、蛍光または暗視野顕微鏡のための光学顕微鏡ユニット内に配置される。
【0030】
一例では、コンパクトな可搬型マルチモード顕微鏡装置は、サンプル保持ユニット内のサンプルに光線を供給するために、サンプル保持ユニットの周面に配置される発光ダイオードを備える。
【0031】
図1は、一例では、コンパクトな可搬型マルチモード顕微鏡装置100を示している。以下では、コンパクトな可搬型マルチモード顕微鏡装置100は、互換可能に装置100と呼ぶ場合がある。装置100は、可変解像度モード、可変視野モード、及び可変倍率モードなど、2つ以上のモードのいずれか、またはそれらの組合せを動作するように構成される。装置100は、明視野顕微鏡モード、暗視野顕微鏡モード、フィルタ視野顕微鏡モード、蛍光視野顕微鏡モード、またはそれらの組合せで動作するように構成される。
【0032】
装置100は、光学顕微鏡ユニット2と、保護層3と、サンプル保持ユニット4と、第1の光源ユニット1と、第2の光源ユニット5(
図7に示す)と、を備える。装置100の構成要素は、以下の説明で詳細に説明する。
【0033】
光学顕微鏡ユニット2は、1以上の顕微鏡モジュールを備える。光学顕微鏡ユニット2の各顕微鏡モジュールは、光学レンズ組立体(図示せず)を備え、光学レンズ組立体は、明視野顕微鏡、暗視野顕微鏡、及びフィルタ視野顕微鏡のために10X~2000Xの範囲の全倍率を有して、可変解像度、開口数、被写界深度倍率、及び視野などを備える8個~16個のレンズ要素を備える。8個~16個のレンズ要素を備える光学レンズ組立体の詳細は、後述する。
【0034】
図2aは、一例において、単一の顕微鏡モジュール21を備える光学顕微鏡ユニット2を示している。
図2bは、一例において、2つの顕微鏡モジュール21を備える光学顕微鏡ユニット2を示している。
図2cは、一例において、3つの顕微鏡モジュール21を備える光学顕微鏡ユニット2を示している。一例では、光学顕微鏡ユニット2は、4つ以上の顕微鏡モジュールを含んでもよい。
【0035】
単一または複数の顕微鏡モジュール21の構成は、正方形パターン、三角形パターン、または線形パターン、または六角形パターンを含むがこれらに限定されない任意の幾何学的パターンであっても、あるいは任意の他の幾何学的パターンであってもよい。
【0036】
顕微鏡モジュールは、固定式または可動式プラットフォームに取り付けられてもよい。一例では、単一の顕微鏡モジュールまたは複数の顕微鏡モジュールは、プラットフォームに固定されるか、あるいは必要な用途に応じて顕微鏡モジュールを自動的に、または手動で変更するためにその軸周りに回転運動する回転部分に取り付けられる。顕微鏡のモードの変更は、スマートフォン、タブレット、コンピュータ、またはコンピュータ実装方法またはモバイルアプリケーションを通したそのようなデジタルデバイスのいずれかなど、デジタル制御自動化デバイスを通して可能であり、これにより、装置100は、顕微鏡のための従来のかさばるシステムと比較してユーザフレンドリである。可変顕微鏡機能を用いたサンプルの観察は、任意のデジタルデバイスを通して直接制御することができ、これにより、装置100は、10X、40X、及び100Xの必要な用途に応じて、従来のシステムにおける可変倍率の様々なモードについて、複雑で手動で操作するかさばる構成と比較して、ユーザフレンドリでコンパクトである。単一のコンパクトな構成の様々な顕微鏡機能のための複数のモジュールは、従来の顕微鏡における様々な特徴に必要な、様々なかさばる構成または別個のシステムと比較して、コンパクトな組立体の可変顕微鏡機能を用いて、サンプルを閲覧または撮像する利点がある。
【0037】
図2dは、一例における、回転ユニット31内で、焦点合プラットフォーム35上で2つの顕微鏡モジュール21を備え、更に電子部品33を備える光学顕微鏡ユニット2を示している。電子部品33は、プリント回路基板(PCB)、バッテリ、データ転送構成要素USBポート、Bluetooth(登録商標)ポート、及びWi-Fiポートを含んでもよいが、これらに限定されない。回転ユニット31の回転軸運動、及び焦点合プラットフォーム35の動作は、必要な倍率、解像度、視野などに応じて使用される。回転ユニット31は、焦点合プラットフォーム35に取り付けられる。回転部分31の運動は、装置100に連結されたユーザインターフェースまたはデジタルデバイス(図示せず)を通して手動または自動またはデジタル制御された動きで制御される。一例では、回転部分31は、電動モータによって駆動される。モータの回転運動は、デジタルデバイスによって直接制御される。焦点合プラットフォーム35については、後で詳細に説明する。
【0038】
各顕微鏡モジュール21は、光学レンズなどの複数の光学要素(図示せず)を備える光学レンズ組立体と、限定しないが、可変開口数、解像度、視野、被写界深度、及び倍率などの顕微鏡機能のための画像取り込み組立体(図示せず)と、を備える。光学レンズ組立体におけるレンズ要素の詳細は、後で説明する。画像取り込み組立体は、画像センサ(CMOS、CCD)または任意の画像取り込みセンサ、あるいはカメラモジュールまたはデジタル画像取り込み組立体であってもよい。画像取り込みセンサは、0.6ミクロン~6ミクロンの範囲の画素サイズ、及び0.1メガピクセル~600メガピクセルの画素密度を備えるCCDセンサまたはCMOSセンサであってもよい。光学要素は、可変解像度、視野、倍率、被写界深度のために、蛍光またはフィルタ視野顕微鏡のための導光要素を有する、または有さない、8個のレンズ要素~16個のレンズ要素の範囲を備えてもよい。波長固有フィルタ要素は、必要な用途に応じて、所望の波長の光を通過させ得る。波長固有フィルタ要素は、光学要素のいずれかの間、または光学要素とセンサとの間、または撮像されるサンプルと光学要素との間に配置されてもよい。波長固有フィルタ要素は、特定の波長の光を通過させ得るゼラチン、ガラス、またはダイクロイックもしくは任意の波長固有ポリマーフィルムもしくは複合材を備える。これは、所望の波長の光がサンプルを特徴付けるために、または特定の波長の光におけるサンプルの機能を見るために不可欠である、特定の分析用途に使用され得る。
【0039】
第1の光源ユニット1は、光学顕微鏡ユニット2に取り付けられ、第1の光源ユニット1は、光学顕微鏡ユニット2の外側からサンプル保持ユニット4内のサンプルに光を供給する。第1の光源ユニット1は、明視野顕微鏡のための外部光源ユニットである。
【0040】
第1の光源ユニット1は、調整可能な光源ユニットであっても、固定式光源ユニットであっても、取外可能な光源ユニットであっても、折曲可能な光源ユニットであってもよい。
【0041】
一例では、第1の光源ユニット1は、光学顕微鏡ユニット2に対して可動であり、サンプル保持ユニット4の上面と第1の光源ユニット1の底面との間の距離を変化させる。
【0042】
図3aは、一例における、調整可能な機構を備える第1の光源ユニット1を有するコンパクトな可搬型マルチモード顕微鏡装置100を示している。図示のように、第1の光源ユニット1は、サンプル保持ユニット4の上面と第1の光源ユニット1の底面との間の距離を変化させるために光学顕微鏡ユニット2に対して可動である第1の部分12を有し、第1の部分12に連結された第2の部分13を有し、第2の部分13は、少なくとも光源を含む。第1の部分12は、光学顕微鏡ユニット2のハウジング11に配置される。第1の部分12は、
図3aに示すように、ハウジング11の方向14に可動する。第1の部分12の移動は、手動で実施しても、デジタルデバイスを使用して自動で実施してもよい。移動は、電気モータ、またはギアシステム、または調整可能なネジベースのシステムを通して制御されてもよい。
【0043】
一例では、第2の部分13は、第1の部分12と磁気的に連結される。一例では、第2の部分13は、第1の部分12に対して折曲可能である。
【0044】
また、一例では、第1の光源ユニット1は、点光源または拡散光源またはそれらの組合せであり、光学顕微鏡ユニット2に着脱式に取り付けられる。第1の光源ユニット1の種類及び組合せは、可変解像度、倍率、及び視野の必要な用途に応じたものである。第1の光源ユニット1は、サンプル保持ユニット4内のサンプルに対して可変の光の強度、可変の光の波長、及び可変の露光面積のうちの少なくとも1つを有する。光の強度、光の波長、及び露光面積は、手動で、またはデジタルデバイスを通したコントローラであってもよい。
【0045】
第1の光源ユニット1は、光学要素及び/またはディフューザ及び/または光指向要素を備える、単一の波長または様々な波長の少なくとも1つの発光ダイオード(LED)を含む。一例では、LEDは、白色LEDであってもよい。LEDの切替え、光の強度、サンプル上の露出面積、光の波長、サンプル保持ユニット4内のサンプルからの第1の光源ユニット1の距離は、用途及び顕微鏡モジュールの要件に応じて、手動で、またはデジタルデバイスを通して制御され得る。
【0046】
図3bは、一例における、二重発光ダイオード構成を備える第1の光源ユニット1の側面図を示している。図示のように、第1の光源ユニット1は、外側からの反射上面1IIIを備える光指向要素1VIIIと、光指向要素1VIIIの反射上面1IIIの内側及び近位に配置される発光ダイオード(LED)1Iと、光指向要素1VIIIの底面に連結されるディフューザ1Vと、ディフューザ1Vに配置される凸レンズ1IVまたは平凸レンズ1IVと、を有する。LED1I、及び凸レンズまたは平凸レンズは、LED1Iによって発せられた光線が凸レンズまたは平凸レンズに直接向けられ、更にサンプル保持ユニット4に向かうように、互いに一直線上にある。LED1Iを備える第1の光源ユニット1の上記の構成は、コヒーレントな光線を供給し、収差のない高い解像度の画像取り込みに役立つ。LED1Iを備える前記構成は、200Xの全倍率を超える高い倍率に使用され、サンプル保持ユニット4と第1の光源ユニット1との間の距離は、1mm~10mmまで変化する。
【0047】
第1の光源ユニット1は、光指向要素1VIIIの側面に配置される少なくとも1つのLEDを更に備える。
図3bに示すように、第1の光源ユニット1は、光指向要素1VIIIの側面に、2つのLED1Iを有する。光指向要素1VIIIの側面に配置されるLEDの周面1IIは、光を拡散させることなく、光指向要素1VIIIのみに向けて光を集光するための不透明な材料で作られる。光指向要素1VIIIの側面に配置されたLEDによって発せられた光線は、光指向要素1VIIIの反射上面1IIIから反射され、ディフューザ1Vを通って凸レンズまたは平凸レンズに、更にサンプル保持ユニット4上に均一に拡散される。光指向要素1VIIIの側面に配置されたLEDは、第1の光源ユニット1からの拡散光をもたらす。
【0048】
光指向要素1VIIIは、高い屈折率(>1)を有し、ポリマーまたはプラスチックまたはガラスまたは複合材料で作られる。拡散光をもたらすLEDは、広視野(>1mm2)、低倍率(<300X)、解像度(>10ミクロン)で使用される。ディフューザ1Vの形状は、正方形であっても、リング状であっても、六角形もしくは円形であっても、またはその他の形状であってもよい。ディフューザ1Vの厚さは、0.1mm~8mmである。それは、白色または有色であってもよく、プラスチック、コーティングされたガラスもしくはポリマーもしくは複合材料、またはそれらの組合せで作られてもよい。光指向要素1VIIIの側面に配置されたLEDは、倍率300Xまで使用され、サンプル保持ユニット4と第1の光源ユニット1との間の距離は、5mm~35mmまで変化する。二重拡散及び点光源は、可変解像度、倍率、単一のコンパクトな構成での視野など、広範囲の画像取り込み特性をもたらす。
【0049】
一例では、第1の光源ユニット1は、拡散光源ユニットである。
図3cは、一例において、拡散光源ユニットとしての第1の光源ユニット1の側面図を示している。図示のように、第1の光源ユニット1は、外側からの反射上面1IIIを備える光指向要素1VIIIと、光指向要素1VIIIの側面に配置される1以上のLED1Iであって、LEDの周面1IIが不透明な材料で作られる、1以上のLED1Iと、光指向要素1VIIIの底面に連結されるディフューザ1Vと、ディフューザ1Vの近位に配置される凸レンズ1IVまたは平凸レンズ1IVと、を有する。光指向要素1VIIIの側面に配置されたLEDによって発せられた光線は、光指向要素1VIIIの反射上面1IIIから反射され、ディフューザ1Vを通って凸レンズまたは平凸レンズに、更にサンプル保持ユニット4上に拡散される。レンズ要素を備える拡散光源ユニット1は、400Xまでの倍率での収差が最小限である、高品質の画像取り込みをもたらす。
【0050】
図3dは、別の例における、拡散光源ユニットとしての第1の光源ユニット1の側面図を示している。図示のように、第1の光源ユニット1は、外側からの反射上面1IIIを備える光指向要素1VIIIと、光指向要素1VIIIの側面に隣接して配置されるLED1Iと、光指向要素1VIIIの底面に隣接する導光要素1VIIと、導光要素1VIIの底面に隣接するディフューザ1Vと、を有する。LED1Iによって発せられた光線は、光指向要素1VIIIの反射上面1IIIから反射され、導光要素1VIIを通過し、ディフューザ1Vを通ってサンプル保持ユニット4上に拡散される。
【0051】
導光要素1VIIは、30度~120度の様々な角度で特定の光線を通過させ、収差の原因となる不要な光の通過を防止する特定のフィルタである。ディフューザ1Vの形状は、正方形であっても、リング状であっても、六角形もしくは円形であっても、またはその他の形状であってもよい。ディフューザ1Vは、0.1mm~8mmの顕微鏡モジュールの厚さを有し、白色または有色であってもよく、プラスチック、コーティングされたガラスもしくはポリマーもしくは複合材料、またはそれらの組合せで作られてもよい。導光要素1VIIは、LED1Iからの均一な光線を用いて画像取り込み品質を向上させ、収差を更に低減し得る。
図3dの第1の光源ユニットは、倍率500Xまで使用される。
【0052】
図4a及び
図4bは、一例における、使用モード及びオフモードのそれぞれでの着脱式の第1の光源ユニット1を備える光学顕微鏡ユニット2を示す図である。
図3aを参照して説明したように、
図4aの第1の光源ユニット1は、第1の部分12と、第2の部分13と、を有する。第2の部分13は、
図3b、
図3c、
図3dに示すような任意のものであってもよい。第2の部分13は、第1の部分12に対して着脱式である。一例では、第2の部分13は、第1の部分12と磁気的に連結されており、これにより、第2の部分13は、第1の部分12の上面または側面に配置され得る。
図4aは、第1の光源ユニット1が、第2の部分13が第1の部分12の上面に配置される使用モードまたはオンモードであることを示している。
図4bは、第1の光源ユニット1が、第2の部分13が第1の部分12の側面に配置されるオフモードであることを示している。
【0053】
図5は、一例における、固定式の第1の光源ユニット1を備える光学顕微鏡ユニット2を示している。固定式の第1の光源ユニット1は、一方の支持部分1P、及び他方の光源部分2Pの2つの部分を有する。光源部分2Pは、
図3b、
図3c、
図3dに示すようなものである。支持部分1Pは、光学顕微鏡ユニット2に取り付けられている。支持部分1Pは、光学顕微鏡ユニット2に対して25度~110度の角度で、光学顕微鏡ユニット2に配置される。光源部分2Pと光学顕微鏡ユニット2との間の距離は、拡散光源、点光源などの光源の種類に応じたものになる。
【0054】
図6a及び
図6bは、一例における、オフモード及び使用モードのそれぞれで折曲可能な第1の光源ユニット1を備える光学顕微鏡ユニット2を示している。
図3aを参照して説明したように、
図6aの第1の光源ユニット1は、第1の部分3Pと、第2の部分4Pと、を有する。第2の部分4Pは、
図3b、
図3c、
図3dに示すようなものである。一例では、第2の部分4Pは、磁気特性または折曲可能なネジベースの機構を通して第1の部分3Pに対して折曲可能になっている。
図6aは、第1の光源ユニット1が、第1の部分3P及び第2の部分4Pが折り曲げられて、光学顕微鏡ユニット2上に平らに置かれる使用モードまたはオンモードであることを示している。
図6bは、第1の光源ユニット1が、第2の部分4Pが第1の部分3Pに対して折り曲げるオフモードであることを示している。第2の部分4Pと光学顕微鏡ユニット2との間の距離も調整可能である。第1の光源ユニット1のこの構成は、装置100の可搬性、外部の物理的及び化学的損傷からの顕微鏡モジュールの保護、及び装置100のコンパクトさをもたらす。
【0055】
一例では、装置100は、サンプル保持ユニット4の周面に配置される追加のLEDを備え、LEDは、暗視野及びフィルタ視野顕微鏡のためにサンプル保持ユニット4内のサンプルに光線を供給する。LEDは、白色LED、または様々な波長のLEDであってもよい。LEDからの光線は、臨界角(>40度)を超えてサンプル保持ユニット4を通過し、光線は、サンプル保持ユニット4内で全内部反射を受ける。サンプル保持ユニット4内のサンプルから反射された光は、黒背景の下で顕微鏡組立体によって観察される。サンプル保持ユニット4の周面におけるLEDの前記構成は、暗視野及びフィルタ視野顕微鏡に使用される。
【0056】
図7は、一例における、第2の光源ユニット5を備える光学顕微鏡ユニット2を示している。第2の光源ユニット5は、1以上の顕微鏡モジュール21に隣接して光学顕微鏡ユニット2の内部に取り付けられ、第2の光源ユニット5は、光学顕微鏡ユニット2の内部からサンプル保持ユニット4内のサンプルに光を供給する。第2の光源ユニット5は、フィルタ視野及び暗視野顕微鏡の機能のための内部光源である。図示のように、第2の光源ユニット5は、LED1Iと、光指向要素1VIIIと、を備える。LED1Iの周面は、不透明な材料で作られる。光指向要素1VIIIは、LED1Iに連結されて、LED1Iから発せられた光線を光学顕微鏡ユニット2のサンプル保持ユニット4上に向ける。
【0057】
光指向要素1VIIIは、LED1Iからの光線をサンプル保持ユニット4内のサンプルに、焦点合せするために使用される。光指向要素1VIIIは、プラスチック、ポリマー、または複合材料で作られる。光指向要素1VIIIの側面は、反射性がある。光指向要素1VIIIのサンプル側に向いた表面は、光学顕微鏡ユニット2の上方に配置されたサンプル保持ユニット4内のサンプルに向けて光を向けるための臨界角の可変範囲を実現するために、10度~180度の範囲の角度で傾斜している。光指向要素1VIIIは、顕微鏡モジュール21の周りのリング形状、または任意の他の形状であってもよい。LED1Iの光の強度は、デジタルデバイスによって制御されてもよい。
【0058】
装置100は、光学レンズ組立体の焦点を調整するために、顕微鏡モジュールの移動の目的のための焦点合プラットフォームを更に備える。焦点合プラットフォームは、すべての顕微鏡モジュールのための共通の焦点合プラットフォームであってもよく、あるいは独立して制御され得る顕微鏡モジュールごとに個々の焦点合プラットフォームを、または微細な焦点合せ及び粗い焦点合せについて、その両方のタイプのプラットフォームの組合せを含んでもよい。焦点合プラットフォームは、顕微鏡モジュールのデジタル制御または自動制御された垂直移動をもたらすものである。垂直方向の移動は、デジタル制御され、これらに限定されないが、スマートフォン、タブレット、コンピュータ、または任意の他のコンピュータデバイスなど、デジタルデバイスを通して直接制御される。焦点合プラットフォームの制御された移動は、限定はしないが、ボイスコイルモータ、ソレノイド電磁機構、圧電ベースの機構、PCBモータベースの機構など、様々な機構を通して実行されてもよい。
【0059】
図8aは、一例における、焦点合プラットフォーム35に複数の顕微鏡モジュール21を備える光学顕微鏡ユニット2を示している。一例では、単一の顕微鏡モジュールまたは複数の顕微鏡モジュール21が、焦点合プラットフォーム35に配置される。垂直方向への焦点合プラットフォーム35の微細な移動は、顕微鏡モジュール21内の光学レンズ組立体の焦点を調整するために使用される。その移動は、限定はしないが、ソレノイドベースの構成、電磁構成、圧電移動ベースの構成、微細ネジベースの機構などの機構によって制御されてもよい。単一の顕微鏡モジュールまたは複数の顕微鏡モジュール21は、焦点合プラットフォームによって様々なレベルだけ移動され得る。焦点合プラットフォーム35の移動は、ユーザインターフェースまたはデジタルデバイスを通して直接制御され、これにより、装置100は、垂直方向の微細に制御された移動を通して、サンプルの焦点合せ及び撮像についてユーザフレンドリである。
【0060】
図8bは、一例における、一の顕微鏡モジュール21及び焦点合プラットフォーム35のためのネジベースの機構を備える光学顕微鏡ユニット2を示している。顕微鏡モジュール21は、焦点合プラットフォーム35に取り付けられる。回転ネジ42は、ネジにより焦点合プラットフォーム35内に配置され、両端は、光学顕微鏡ユニット2内のそれぞれのハウジング43内に配置される。ネジ山のサイズ及びネジの寸法は、焦点合せのための焦点合プラットフォーム35の所望の垂直移動に基づいて決定される。垂直方向の調整可能な移動は、回転ネジ42の微細な動きによって制御される。焦点合プラットフォーム35は、一方の側に配置される。回転ネジ42は、光学顕微鏡ユニット2の壁に配置され、回転ネジ42の一部は、回転ネジ42の手動操作で壁から突出する。回転ネジ42の移動は、焦点合プラットフォーム35に圧力を生成し、焦点合プラットフォーム35を垂直方向に移動させる。微細な移動は、焦点合プラットフォーム35に加えられる圧力、及び焦点合プラットフォーム35の厚さに依存する。前記構成は、サンプルを撮像するため、微細な焦点合せのために垂直方向の微細な移動をもたらす。回転ネジ42は、ネジ42及び焦点合プラットフォーム35の自動制御移動のために電気モータと接続し得る。
【0061】
図8cは、一例における、一の顕微鏡モジュール21、ネジベースの機構、及びスペーサ組立体を備える光学顕微鏡ユニット2を示している。図示のように、光学顕微鏡ユニット2は、焦点合プラットフォーム35と光学顕微鏡ユニット2の上面との間に圧縮可能スペーサ46を備える。圧縮可能スペーサ46は、焦点合プラットフォーム35の移動を制御するためのものである。光学顕微鏡ユニット2はまた、圧縮可能スペーサ46と光学顕微鏡ユニット2の上面との間に支持ユニット45を有する。回転ネジ42の移動は、焦点合プラットフォーム35及び圧縮可能スペーサ46に圧力を生成する。焦点合プラットフォーム35の微細な移動は、焦点合プラットフォーム35に加えられる圧力、ならびに圧縮可能スペーサ46の圧縮率及び厚さに依存する。圧縮可能スペーサ46は、ポリマーまたはゴムで作られてもよい。前記構成は、サンプルを撮像するため、微細な焦点合せのために垂直方向の微細な移動をもたらす。
【0062】
更に、一例における、光学顕微鏡ユニット2は、1以上の顕微鏡モジュール21の各々に対応する焦点合バレルユニット(図示せず)を備える。焦点合バレルユニットは、サンプル保持ユニット4内のサンプルを撮像するため、焦点を調整するために、対応する顕微鏡モジュール21を動作させるものである。焦点合バレルは、それぞれの顕微鏡モジュールの個々の焦点合せを可能にする。光学顕微鏡ユニット2は、焦点合バレルの内側に取り付けられる。焦点合バレルは、光学顕微鏡ユニット2のハウジング内に配置され、画像取り込み組立体は、焦点合バレルの下方に配置される。焦点合バレルは、サンプルを焦点合せするために、光学顕微鏡ユニット2に対する顕微鏡モジュール21内の光学レンズ組立体の制御された移動をする。微細な焦点合せのための顕微鏡モジュールの焦点合バレルの制御された移動は、限定しないが、ボイスコイルモータ、ソレノイド電磁ベース構成、圧電ベースの構成、PCBモータベースの構成などの様々な機構を通して実行される。移動は、デジタルデバイスを通して制御され得る。デジタル駆動の微細な焦点合せは、必要な用途またはサンプル形態に応じて、広範囲のサンプルサイズに対して装置100に柔軟性を与える。
【0063】
図1に戻ると、光学顕微鏡ユニットまたは1以上の顕微鏡モジュールを物理的及び化学的損傷から保護するために、保護層3が、光学顕微鏡ユニットに配置される。一例では、保護層3は、高屈折媒体で作られ、及び/またはフィルタ視野もしくは蛍光顕微鏡のための波長固有フィルタである。保護層3は、1.3を超える広範囲の屈折率を有する高屈折率ポリマー材料またはプラスチック薄膜であってもよく、これは、サンプルと顕微鏡モジュール21との間の媒体として空気の代わりに、それらの間に高い屈折媒体を提供することによって光学顕微鏡ユニット2の性能を高める。
【0064】
一例では、保護層3は、透明ポリマー、またはプラスチック、またはガラス、または複合材料、または任意の透明材料、またはそれらの組合せで作られた透明フィルムである。サンプルとの直接接触がレンズ組立体上の微生物の増殖による化学的及び生物学的損傷のためにレンズ組立体を損傷し得る従来の対物レンズシステムと比較して、保護層3は、光学顕微鏡ユニット2の洗浄を排除して、装置100全体の寿命を延ばし得る使い捨てまたは再使用可能な透明フィルムであってもよい。
【0065】
一例では、保護層3は、透明膜であってもよく、波長固有フィルタであり、波長固有フィールドは、その定量的または定性的推定のためにサンプルから発せられた光の固有の特徴的な波長を検出するために、あるいは特定の光でサンプルを観察するために、使用され得る有色フィルタ、ガラススライド、ゼラチンまたはダイクロイックフィルタであってもよい。保護層3は、波長固有フィルタの用途に応じて変更されてもよく、フィルタ視野特性の幅広い用途を与える。
【0066】
図1に戻って、サンプル保持ユニット4は、1以上のサンプルを保持するための単一の区画または複数の区画を含む。サンプル保持ユニット4は、連続サンプリング構成及び/またはマイクロ流体構成を備える、または備えない、単回使用ユニットまたは複数回使用ユニットであってもよい。サンプル保持ユニット4は、対象またはサンプルを観察するための波長固有のフィルタを備えても、備えなくてもよい。一例では、サンプル保持ユニット4は、特徴的な対象またはサンプルを観察するための分析、診断及び研究用途における広範囲の用途に装置100を使用可能にする特徴的な光フィルタを備える単純なスライドまたはマイクロ流体ベースのシステム、あるいはマイクロ流体ベースのシステムを備える。
【0067】
一例では、サンプル保持ユニット4は、保護層3の平面に沿った方向に可動である。保護層の平面内でのサンプル保持プラットフォーム4の移動は、手動で、またはデジタル制御自動化システムを通して制御することができ、これにより、装置100はユーザフレンドリになる。可動サンプル保持ユニット4により、区画全体のサンプルを、装置100を使用して走査し、撮像することができ、これにより、対象またはサンプルを手動で観察するために、長期使用時にユーザの眼にストレスを与え、更に分析用途または診断用途で物体を見つける際の複雑さを引き起こす従来の顕微鏡と比較して、装置100はロバストである。
【0068】
一例では、サンプル保持ユニット4を、人工知能(AI)ベースのシステム、機械学習ベースのシステム、またはそれらの組合せを介して移動してもよい。
【0069】
一例では、サンプル保持ユニット4を、デジタル制御圧電ベースのシステム、ソレノイド電磁ベースのシステム、調整可能なネジ、歯車機構、または圧電モータベースのシステムを介して移動してもよい。
【0070】
一例では、サンプル保持ユニット4は、光の波長に固有であるような特徴的機能を備えても、備えなくても、単一の区画または複数の区画において、バッチまたは連続モードでサンプルを保持するために使用される。一例では、サンプル保持ユニット4は、単一の入口及び単一の出口、または複数の入口及び出口、またはそれらの任意の組合せを備える区画を有する。
【0071】
一例では、サンプル保持ユニット4は、単一または複数のサンプルの測定のために直列または並列の単一または複数のマイクロ流体チャネルを備える。
【0072】
一例では、サンプル保持ユニット4は、流れ集束構成、T接合構成などのマイクロ流体チャネル構成を備える。
【0073】
一実施形態では、サンプル保持ユニット4は、所望の波長の光を通過させ得る波長固有フィルタをいずれか一方の平面側、または両方の平面側に有する。そのようなサンプル保持ユニット4の中央部は、サンプルを保持するための1以上の区画と、区画ごとのサンプル注入ポートと、LEDと、を有し得る。
【0074】
光源ユニットは、必要な用途に応じて、様々な角度(20度~140度)または強度で、及び様々な波長で、サンプルに光を通過させる。サンプル保持ユニット4は、観察領域内を視認可能であり、残りの領域は、透明材料または反射材料または低屈折率材料または光吸収材料または黒色コーティングでカバーされる。
【0075】
図9は、一例における、単一の区画53、及び取外可能な上部カバー54を備えるサンプル保持ユニット4を示している。区画53は、液体サンプル、固体サンプルもしくは半固体サンプル、または装置100を使用して撮像され得る他の対象を保持するように構成され得る。上部カバー54は、サンプルを均一に保持するために区画53上に配置される。サンプル保持ユニット4は、上部カバー54を配置して、保持するための空洞52を有し得る。
【0076】
上部カバー54は、ポリマーまたはプラスチックまたはガラスまたは任意の透明材料を含み得る任意の透明材料で作られてもよい。区画53の面積及び厚さ/深さは、必要な用途に応じて、変更してもよい。より具体的には、区画53の厚さ/深さは、細菌、ヒト血液細胞、原虫及び微生物などのサンプルの様々な範囲を見るために、サンプルが互いに重なり合うことなしに、5ミクロン~5000ミクロンの範囲で変化する。
【0077】
一例では、上部カバー54は、所望の波長の光が上部カバー54を通過し得る波長固有フィルタであってもよい。
【0078】
図10aは、一例における、サンプル注入ポート61を備える単一の区画52を有するサンプル保持ユニット4を示している。サンプル注入ポートを備えたサンプル保持ユニット4は、小型対象(<500ミクロン)を有する有害もしくは病原性物質サンプル、または非病原性サンプルの取り扱いに使用される。
図10bは、一例における、それぞれのサンプル注入ポート61を備える2つの区画52を有するサンプル保持ユニット4の上面図を示している。
図10cは、一例における、それぞれのサンプル注入ポート61を備える4つの区画52を備えるサンプル保持ユニット4の上面図を示している。それぞれのサンプル注入ポートを備える複数の区画は、同時に様々なフィルタ視野特性における複数のサンプルまたは単一のサンプルの分析に使用され得る。
図10a、
図10b、及び
図10cに示すようなサンプル保持ユニット4は、外部カバースリップまたは任意の他のサンプル調製物なしに、サンプル注入ポート61を通して液体サンプルを直接組込むという利点をもたらす。サンプルは、毛細管現象によって区画52を通って広がる。サンプルホルダユニット4の上側及び底側は、透明であっても、または波長固有フィルタを備えてもよい。区画52の形状及び寸法、ならびにその数は、形状及びサイズのいずれにも限定されない。
【0079】
図11aは、一例における、波長固有フィルタ72を備える
図10aのサンプル保持ユニット4を示している。波長固有フィルタ72は、特定の波長の光が通過し得る。このようなサンプル保持ユニット4の組立体は、所望の波長の光でサンプルを観察するために使用される。波長固有フィルタ72は、ゼラチンフィルタ、または有色フィルタ、またはダイクロイックフィルタ、またはカラー染料のいずれか、または発色団、または所望の波長の光を吸収もしくは発し得る材料のいずれかであってもよい。
【0080】
一例では、装置100は、サンプル保持ユニット4の少なくとも1つの区画の第1の平面側に配置された第1の波長固有フィルタを備える。一例では、装置100は、サンプル保持ユニット4の少なくとも1つの区画の第2の平面側に配置された第2の波長固有フィルタを備え、第2の平面側は、第1の平面側とは反対である。
【0081】
一例では、サンプル保持ユニット4は、平面側の両方のうちの一方に波長固有コーティングを備えるか、または平面側の一方もしくは両方にフィルタ構成を備える。
【0082】
図11bは、一例における、それぞれの波長固有フィルタ72を備える2つの区画52を有する
図10bのサンプル保持ユニット4を示している。
図11cは、一例における、それぞれの波長固有フィルタ72を備える4つの区画52を有する
図10cのサンプル保持ユニット4を示している。一例では、波長固有フィルタ72は、区画52に分離されても、または固定されてもよい。各区画は、類似または異なる波長固有フィルタを備える。各区画は、サンプル注入ポートを有し、サンプルは区画に装填され、毛細管現象によって区画全体に広がり得る。
【0083】
図12aは、一例における、入口74及び出口75を備える単一の区画71を有し、波長固有フィルタ72を有するサンプル保持ユニット4を示している。入口74は、サンプル保持ユニット4の区画71へのサンプルの流入用であり、出口75は、区画71からのサンプルの流出用である。
図12aのサンプル保持ユニット4は、連続サンプル分析に使用される。
図12bは、
図12aのサンプル保持ユニット4の上面図を示している。
【0084】
図12cは、一例における、4つの区画71、ならびにそれぞれの入口74及び出口75を備えるサンプル保持ユニット4の上面図を示している。
【0085】
図12、12b及び12cに示すサンプル保持ユニット4は、単一または複数のサンプルを同時に取り扱うために使用され得る。すべてのサンプル保持区画またはチャネルは、必要な用途に応じて、類似または異なる波長固有フィルタを有してもよい。
【0086】
図12dは、一例における、入口74及び出口75を備えるチャネル状区画71を有するサンプル保持ユニット4の上面図を示している。入口74及び出口75は、サンプル保持ユニット4の同じ側にあるように示している。一例では、チャネル状区画の入口及び出口は、サンプル保持ユニット4の異なる側にあってもよい。
【0087】
図13は、一例における、入口74及び出口75を備える単一の区画71と、サンプル保持ユニット4の平面側の波長固有フィルタ72と、を有するサンプル保持ユニット4の側面図を示している。
【0088】
連続サンプル分析は、単一のサンプルもしくは複数のサンプル、または異なる倍率、解像度、広視野、フィルタ視野特性などのような複数の特性の単一のサンプルのオンライン観察のために行われる。
【0089】
一例では、装置100の構成要素の動作は、限定はしないが、分析用途、診断用途、教育及び研究用途などの様々な用途のために装置100をユーザフレンドリにするデジタルデバイスを通して制御することができ、ユーザの可用性は、ロケーションサイトでは不可能である、あるいはユーザは、装置100の近く、または装置100から離れたユーザのデジタルデバイスを通して装置100を操作し得る。
【0090】
一例では、装置100は、電子部品もしくはデジタルデバイスを接続するため、または装置100のLEDもしくは他の構成要素に電力を供給するための1以上のポートを含んでもよい。ポートは、電源ポート、着脱式の磁気ピンベースのポート、USBポート、ワイヤベースのポート、Bluetoothポート、無線ポートなどを含んでもよいが、これらに限定されない。
【0091】
前述のように、各顕微鏡モジュール21は、光学レンズ組立体が、
10X~2000Xの範囲の全倍率、
0.015~0.176の範囲の開口数(NA)、
10~38.35の範囲の半視野(HFOV)、
1X~7.8Xの範囲の光学倍率、
3.01~23.25の範囲のエアリー半径、
0.8875~337.71の範囲の被写界深度、及び
全解像度が少なくとも0.1ミクロンまたは0.1ミクロンを超える、
といった特性を有するように、8個~16個のレンズ要素を備える光学レンズ組立体を備える。
【0092】
表1~表5は、本明細書に記載の光学レンズ組立体の例の光学パラメータを表にしている。
【0093】
【0094】
【0095】
【0096】
【0097】
【0098】
印国特許出願第202021003723号、第202021010568号、第202121034793号、第202121034794号、及び第202121034795号の説明は、コンパクトな可搬型マルチモード顕微鏡装置の光学顕微鏡ユニットの光学レンズ組立体を説明する目的で、本開示に参照により組み込まれる。
【符号の説明】
【0099】
1 第1の光源ユニット、1P 支持部分、1I 発光ダイオード(LED)、1II 周面、1III 反射上面、1IV 凸レンズまたは平凸レンズ、1V ディフューザ、1VII 導光要素、1VIII 光指向要素、2 光学顕微鏡ユニット、2P 光源部分、3 保護層、3P 第1の部分、4 サンプル保持ユニット、4P 第2の部分、5 第2の光源ユニット、11 ハウジング、12 第1の部分、13 第2の部分、14 方向、21 顕微鏡モジュール、31 回転ユニット、回転部分、33 電子部品、35 焦点合プラットフォーム、42 回転ネジ、43 ハウジング、45 支持ユニット、46 圧縮可能スペーサ、52 空洞、53 区画、54 取外可能な上部カバー、61 サンプル注入ポート、71 区画、72 波長固有フィルタ、74 入口、75 出口、100 可搬型マルチモード顕微鏡装置
【国際調査報告】