IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アナリティクス フォー ライフ インコーポレイテッドの特許一覧

特表2024-502764生理学的システムの特徴決定における使用のための生物物理学的シグナルからの周期変動関連特徴をエンジニアリングするための方法及びシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-23
(54)【発明の名称】生理学的システムの特徴決定における使用のための生物物理学的シグナルからの周期変動関連特徴をエンジニアリングするための方法及びシステム
(51)【国際特許分類】
   A61B 5/00 20060101AFI20240116BHJP
   A61B 5/35 20210101ALI20240116BHJP
   G16H 50/00 20180101ALI20240116BHJP
【FI】
A61B5/00 G
A61B5/35
G16H50/00
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023538728
(86)(22)【出願日】2021-12-22
(85)【翻訳文提出日】2023-06-22
(86)【国際出願番号】 IB2021062193
(87)【国際公開番号】W WO2022137167
(87)【国際公開日】2022-06-30
(31)【優先権主張番号】63/130,324
(32)【優先日】2020-12-23
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】517099409
【氏名又は名称】アナリティクス フォー ライフ インコーポレイテッド
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ファティー, ファルハド
(72)【発明者】
【氏名】バートン, ティモシー ウィリアム フォーセット
【テーマコード(参考)】
4C117
4C127
5L099
【Fターム(参考)】
4C117XB01
4C117XB09
4C117XB12
4C117XE14
4C117XE17
4C117XE23
4C117XE26
4C117XE27
4C117XE33
4C117XE43
4C117XJ18
4C117XJ34
4C127AA02
4C127GG16
5L099AA04
(57)【要約】
例示した方法及びシステムは、診断、モニタリング、または治療をするにあたって、患者が安静にしている間に、患者に装着した表面センサーから非侵襲的に取得された心臓または光プレチスモグラフィーシグナルなどの生物物理学的シグナルから決定された周期変動性に基づいた1つ以上の特徴またはパラメーターの使用を容易にする。推定されたメトリックは、医師またはその他の医療従事者が、疾患または病態の有無、及び/または重症度、及び/または局在性の診断を支援すること、または当該疾患または状態の治療のために使用し得る。
【選択図】図1
【特許請求の範囲】
【請求項1】
対象の疾患状態または異常状態を非侵襲的に評価する方法であって、
1つ以上のプロセッサーによって、前記対象の生物物理学的シグナルデータセットを取得することと、
前記1つ以上のプロセッサーによって、前記生物物理学的シグナルデータセットを使用して、周期変動性の特徴またはパラメーターの値を決定することと、
前記1つ以上のプロセッサーによって、推定モデルに対する、前記周期変動性の特徴またはパラメーターへの前記決定された値の適用に部分的に基づいて、前記疾患状態、医学的状態、またはいずれかをベースとする兆候に関連するメトリックの存在に関する推定値を決定することであって、前記メトリックの前記存在に関する前記推定値は、前記予想される疾患状態または健康状態の診断のために、または、前記予想される疾患状態、医学的状態、またはいずれかの兆候を直接に治療するために使用するための前記予想される疾患状態または病態の前記存在を非侵襲的に推定するために使用される、前記推定値を決定することと、
を含む、前記方法。
【請求項2】
前記周期変動性の特徴またはパラメーターの値を決定するステップが、
1つ以上の前記プロセッサーによって、前記生物物理学的シグナルデータセットで検出された、複数の検出された準周期的周期から前記対象の準周期的シグナルパターンを表すテンプレート-シグナルベクトルデータセットを決定することと、
前記1つ以上のプロセッサーによって、前記テンプレート-シグナルベクトルデータセットを、前記検出された複数の準周期的周期の2つ以上に適用して、周期変動性特徴値を決定することと、
を含む、請求項1に記載の方法。
【請求項3】
前記周期変動性特徴の値は、前記テンプレート-シグナルベクトルデータセットと、前記検出された複数の前記準周期的周期の2つ以上との間の差の平均として決定される、請求項2に記載の方法。
【請求項4】
前記生物物理学的シグナルデータセットは、2つ以上のチャネルの生体電位シグナルを含み、
前記周期変動性特徴値は、前記生体電位シグナルの2つ以上のチャネルのそれぞれについて生成される、請求項1~3のいずれか1項に記載の方法。
【請求項5】
前記生物物理学的シグナルデータセットは、前記取得された生体電位シグナルの2つ以上のチャネルを含み、
前記周期変動性の特徴またはパラメーターの値は、前記取得された生体電位シグナルの2つ以上のチャネルのスコアの合計によって正規化された所与のチャネルのそれぞれに関するスコアとして生成される、請求項1~4のいずれか1項に記載の方法。
【請求項6】
前記生物物理学的シグナルデータセットは、前記取得された生体電位シグナルの2つ以上のチャネルを含み、
前記周期変動性の特徴またはパラメーターの値は、前記取得された生体電位シグナルの前記2つ以上のチャネルのスコアの合計によって正規化された所与のチャネルのそれぞれに関するスコアとして生成される、請求項1~5のいずれか1項に記載の方法。
【請求項7】
前記生物物理学的シグナルデータセットは、第1のシグナル、第2のシグナル、及び3のシグナルを含む、前記取得された生体電位シグナルの2つ以上のチャネルを含み、
前記周期変動性の特徴またはパラメーターの値は、前記テンプレート-シグナルベクトルデータセット、及び、第1のシグナル、第2のシグナル、及び3のシグナルのそれぞれの間に生成される剰余の3次元位相空間モデルの体積、ボイド体積、多孔性、または表面積として決定される、請求項1~6のいずれか1項に記載の方法。
【請求項8】
前記3次元位相空間モデルが、テンプレート-シグナルベクトルデータセットと、第1、第2、及び3のシグナルのそれぞれとの間の差異から生成される三角測量点群モデルである、請求項7に記載の方法。
【請求項9】
前記周期変動性特徴またはパラメーターの少なくとも1つの値が、前記テンプレート-シグナルベクトルデータと、前記検出された複数の準周期的周期のうちの2つ以上との間で決定される残差値の分布の統計パラメーターのものである、請求1~8のいずれか1項に記載の方法。
【請求項10】
前記統計パラメーターが、前記分布の平均値、中央値、標準偏差、歪度、または尖度である、請求項9に記載の方法。
【請求項11】
前記疾患状態、医学的状態、またはいずれかの兆候に関連するメトリックが、左心室拡張末期圧(LVEDP)の上昇または異常の有無の判定を含む、請求項1~10のいずれか1項に記載の方法。
【請求項12】
前記疾患状態、医学的状態、またはいずれかの兆候が、冠動脈疾患、肺高血圧症、肺動脈高血圧症、左心疾患に起因する肺高血圧症、肺高血圧症を招く希少な障害、左心室心不全または左側心不全、右心室心不全または右側心不全、収縮期心不全、拡張期心不全、虚血性心疾患、肥大型心筋症、及び不整脈からなる群から選択される、請求項1~11のいずれか1項に記載の方法、
【請求項13】
前記検出された準周期的周期が、生物物理学的シグナルにおいて決定されたランドマークに関連して定義される、請求項2~12のいずれか1項に記載の方法。
【請求項14】
前記1つ以上の前記プロセッサーによって、前記疾患状態または異常状態の前記存在に関する前記推定値の視覚化を生成させることをさらに含み、
前記生成された視覚化は、コンピューターデバイスのディスプレイに、レンダリング及び表示される、及び/またはレポートに提示される、請求項1~13のいずれか1項に記載の方法。
【請求項15】
前記1つ以上の周期変動性関連特性の値が、線形モデル、決定木モデル、ランダムフォレストモデル、サポートベクトルマシンモデル、ニューラルネットワークモデルからなる群から選択されるモデルにおいて使用される、請求項1~14のいずれか1項に記載の方法。
【請求項16】
前記モデルが、
1つ以上の脱分極または再分極波伝搬関連特徴、
1つ以上の脱分極波伝播偏差関連特徴;
1つ以上の周期変動性関連特徴;
1つ以上の動的システム関連特徴;
1つ以上の心臓波形トポロジー及び変動関連特徴;
1つ以上のPPG波形トポロジー及び変動関連特徴;
1つ以上の心臓シグナルまたはPPGシグナルの出力スペクトル密度関連特徴;
1つ以上の心臓シグナルまたはPPGシグナルの視覚関連特徴;及び
1つ以上の予測可能性特徴、
からなる群から選択される特徴をさらに含む、請求項15に記載の方法。
【請求項17】
前記測定システムの1つ以上の取得回路によって、前記1つ以上のチャネルに関して電圧勾配シグナルを取得することであって、前記電圧勾配シグナルは、約1kHzを超える周波数で取得される、前記電圧勾配シグナルを取得することと、
前記1つ以上の取得回路によって、前記取得された電圧勾配シグナルから、前記取得された生物物理学的データセットを生成することと、
をさらに含む、請求項1~16のいずれか1項に記載。
【請求項18】
前記測定システムの1つ以上の取得回路によって、1つ以上の光プレチスモグラフィーシグナルを取得することと、
前記1つ以上の取得回路によって、前記取得された電圧勾配シグナルから、前記取得された生物物理学的データセットを生成することと、
をさらに含む、請求項1~16のいずれか1項に記載の方法。
【請求項19】
プロセッサーと、
メモリであって、記憶された命令を有する、前記メモリと、
を含むシステムであって、
前記プロセッサーによって前記命令が実行されると、前記プロセッサーに、請求項1~18のいずれかに記載の方法を実行させる、前記システム。
【請求項20】
命令が格納されている非一時的コンピューター可読媒体であって、プロセッサーによって前記命令が実行されると、前記プロセッサーに、請求項1~18のいずれかに記載の方法を実行させる、前記非一時的コンピューター可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本PCT出願は、2020年12月23日に出願され、「Method and System to Assess Disease Using Cycle Variability Analysis of Biophysical Signals,」と題された、米国仮特許出願第63/130,324号の優先権及び利益を主張し、また、同出願の全内容は、参照により、本明細書に組み込まれる。
【0002】
本開示は、一般的には、診断用途において使用する生物物理学的シグナルからの特徴またはパラメーターをエンジニアリングする方法及びシステムに関し、特に、1つ以上の生理学的システム、及びそれらに関連する機能、活動、及び異常を特徴決定するために使用する周期変動関連特徴のエンジニアリング及び使用に関する。また、これらの特徴またはパラメーターは、モニタリングまたは追跡、医療機器の制御、または、疾患、医学的状態、またはいずれかの兆候を治療するために使用し得る。
【背景技術】
【0003】
疾患の診断には、医療専門家を支援するための数多くの方法及びシステムが存在する。これらの一部は、侵襲的または低侵襲的な技術、放射線、運動またはストレス負荷、または薬理学的作用物質を時には組み合わせて使用することを含んでおり、それらに伴うリスク、及びその他の不利な点を伴うこともある。
【0004】
拡張期心不全は、罹患率及び死亡率の主要な原因であり、左心室機能が保たれた患者における心不全の症状として定義されている。拡張期心不全は、伸展性が落ちた硬い左心室、及び弛緩障害を特徴としており、これは左心カテーテル法で測定される。肺高血圧症(PH)、及び特に肺動脈高血圧症(PAH)の現在の臨床標準治療には、心臓の右側の心臓カテーテル検査があり、これにより肺動脈の圧力を直接測定する。肺高血圧症(PH)は、一般的には、肺の動脈が高血圧であることを指しており、様々な状態を含み得る。特に、PH、及び肺動脈高血圧症(PAH)の現在の臨床標準治療として、心臓の右側の心臓カテーテル検査があり、これで肺動脈の圧力を直接に測定する。CADは、心筋(myocardium)または心筋(heart muscle)に血液を供給する冠状動脈内の内層が、アテローム性動脈硬化症(内層の硬化(hardening)または硬化(stiffening)、及び、そこでのプラークの蓄積、異常な炎症を伴うことがよくある)を発症したときに発生する。冠動脈造影とは、治療を行う医師が、前出の冠状動脈病変から判断する冠状動脈疾患(CAD)を評価するために使用する現在の標準治療である。磁気共鳴画像法及びコンピューター断層撮影法などの非侵襲的画像化システムでは、放射線科医が検証する患者の血流や動脈閉塞の画像を得るための特殊な設備が必要になる。
【0005】
上記した不都合を回避して、心疾患及び様々なその他の疾患及び状態の診断において医療従事者を支援できるシステムを有することが望ましい。
【発明の概要】
【課題を解決するための手段】
【0006】
好ましい実施形態では、患者が安静にしている間に患者に装着された表面センサーから非侵襲的に取得された心臓/生体電位シグナル、及び/または光プレチスモグラフィーシグナルなどの生物物理学的シグナルから決定される1つ以上の周期変動性関連の特徴またはパラメーターの使用を容易にする臨床評価システム及び方法を開示する。周期変動性とは、心臓周期の変動(心波形の振幅及び/または持続時間など)、または心臓シグナルの周波数範囲の帯域内にあり、振幅が類似しているが、心臓周期と同期していないスペクトルまたは情報コンテンツのことを指す。周期変動性を使用して、筋肉アーチファクト(例えば、骨格筋)、病理に起因する心臓アーチファクト、または本明細書に記載したようなものなど、病的状態、もしくはコンプライアンスを検出することができる。周期変動性に関連した特徴またはパラメーターを、モデルまたは分類器(例えば、機械学習分類器)において使用して、疾患、医学的状態、またはいずれかの兆候の有無など、患者の生理学的状態に関連するメトリックを推定することができる。推定されたメトリックは、医師またはその他の医療従事者が、疾患または状態の有無、及び/または重症度、及び/または局在性を診断すること、または当該疾患または状態の治療を支援するために使用し得る。
【0007】
疾患、病態、またはいずれかの兆候の有無についての推定または判定された可能性は、疾患または医学的状態の評価のためのその他の評価または測定様式に、取って代わる、加える、または置き換えることができる。一部の事例では、判定は、数値スコア及び関連情報の形態とすることができる。
【0008】
ある態様では、生物物理学的シグナルの周期変動性特性は、非同期運動(例えば、等尺性収縮、筋電図関連運動、及びその他の運動)を評価し、生物物理学的シグナルの分析の前に、生物物理学的シグナルからそのような運動及び関連するシグナルを除去する、またはシグナル除外のためにも使用し得る。
【0009】
周期変動性特徴の例として、それぞれの拍動を、計算したテンプレート拍動と比較して、時系列の生物物理学的シグナル(例えば、生体電位シグナル)での拍動間変動の定量化が含まれる。テンプレートビートとは、取得されたシグナル全体、または取得されたシグナルのサブセット全体を表す波形であり、例えば、心室脱分極(VD)ピークマッチングを介して、スタックした拍動間のセグメント化されたシグナルに中央値フィルタを適用する。
【0010】
本明細書で使用する用語「特徴」(機械学習及びパターン認識に関連して、及び本明細書で使用する場合)は、一般的に、認められた現象の個々の測定可能な特性または特徴のことを指す。特徴は、解析によって定義され、及び、共通のモデルまたは解析フレームワークのその他の特徴と組み合わせてグループで決定し得る。
【0011】
本明細書で使用する「メトリック」は、生理学的システム(複数可)での1つ以上の疾患、病態、または兆候(複数可)の存在、非存在、重篤度、及び/または局在性(該当する場合)の推定または可能性のことを指す。とりわけ、例示した方法及びシステムは、本明細書に記載した特定の実施形態で使用して、生物物理学的シグナルを取得し、及び/または、さもなければ、患者からデータを取得する、及び、シグナル処理及び分類器操作においてそれらのシグナル及び/またはデータを評価して、1つ以上のメトリックを介して、その他の評価モダリティに、取って代わる、加える、または置き換えることができる疾患、病態、または指標を評価することができる。一部の事例では、メトリックは、数値スコア、及び関連情報の形態とすることができる。
【0012】
心血管系及び呼吸器系に関連して、そのようなメトリックが関連し得る疾患及び病態の例として、例えば、(i)心不全(例えば、左側または右側心不全、安定した駆出率を示す心不全(HFpEF))、(ii)冠状動脈疾患(CAD)、(iii)これらに限定されないが、様々な形態の肺高血圧症(PH)、肺動脈高血圧症(PAH)、(iv)異常な左心室駆出分画率(LVEF)、(v)肥大型心筋症、及びそのその他の様々な疾患または病態がある。特定の形態の心不全の指標の例として、左心室拡張末期圧(LVEDP)の上昇または異常の存在の有無がある。特定の形態の肺高血圧症の指標の例として、平均肺動脈圧(mPAP)の上昇または異常の存在の有無がある。
【0013】
本明細書に組み込まれ、その一部を構成する添付図面は、実施形態を例示しており、説明と併用することで、方法及びシステムの原理を説明する上で役立つ。
【0014】
本発明の実施形態は、添付の図面を参照することで、以下の詳細な説明の理解が深まる。このような実施形態は、例示のみを目的としており、本発明の新規かつ自明でない態様を記載している。図面として、次の図面が含まれる。
【図面の簡単な説明】
【0015】
図1】例示的な実施形態に従って、患者の生理学的状態に関連する1つ以上のメトリックを生成するために周期変動性に関連する特徴またはパラメーターを非侵襲的に計算するように構成された例示モジュールまたはコンポーネントの概略図である。
図2】例示的な実施形態に従って、臨床現場で患者の生物物理学的シグナルを非侵襲的に取得する際の生物物理学的シグナル捕捉システムまたはコンポーネント、及びその使用の一例を示す。
図3A】診断、治療、モニタリング、または追跡のための実用的な利用における周期変動関連の特徴/パラメーター、またはそれらの中間データを使用する方法の一例を示す。
図3B】診断、治療、モニタリング、または追跡のための実用的な利用における周期変動関連の特徴/パラメーター、またはそれらの中間データを使用する方法の一例を示す。
図4】例示的な実施形態に従って取得された生物物理学的シグナルの周期変動性関連特性の数値を決定するように構成された、周期変動性スコア分析特徴計算モジュールの一例を示す。
図5】例示的な実施形態に従って取得された生物物理学的シグナルの周期変動性分布特性の数値を決定するように構成された、周期変動性分布分析特徴計算モジュールの一例を示す。
図6】例示的な実施形態に従って計算したCV剰余の3次元位相空間モデル(例えば、アルファ形状モデル)の幾何学的パラメーターの数値を決定するように構成された周期変動性点群解析特徴計算モジュールの一例を示す。
図7A】例示的な実施形態に従って取得された図4の計算モジュールに関する周期変動性スコア特徴を生成する例示的な方法の図である。
図7B】例示的な実施形態に従って、周期変動性相対スコアを生成する図を示す。
図7C】例示的な実施形態に従って、周期変動性比率スコアを生成する例示的な方法の図を示す。
図8A】例示的な実施形態に従って、図4図6の特徴計算モジュールを採用してテンプレート-シグナルベクトルデータセットの生成方法を示すプロットを示す。
図8B】例示的な実施形態に従って、ウィンドウ全体に提示したテンプレートシグナルベクトルデータセットのシグナルの複数周期のプロットを示す。
図9A】例示的な実施形態に従って、それぞれの生物物理学的シグナルを参照して決定されたテンプレート-シグナルベクトルデータの3つのプロットを示す。
図9B】例示的な実施形態に従って、位相空間において決定された図9Aのテンプレート-シグナルベクトルデータセットを示す。
図9C】例示的な実施形態に従って、対応する生物物理学的周期とテンプレート-シグナルベクトルデータとの間で計算された剰余の位相空間プロットを示す。
図10】例示的な実施形態に従って、図5の計算モジュールに関する周期変動分布特徴を生成する例示的な方法の図である。
図11】例示的な実施形態に従って、図6の計算モジュールに関する周期変動性点群特徴を生成する例示的な方法の図である。
図12A】例示的な実施形態に従って、図6の計算モジュールによって生成した3次元位相空間モデルの一例を示す。
図12B】例示的な実施形態に従って、図12Aの3次元位相空間モデルを着色することができる所与のシグナルの半径成分を示すプロットである。
図13A】例示的な実施形態に従って、特に、コンピューターによる周期変動性関連特徴を使用するように構成して、患者の生理学的状態に関連する1つ以上のメトリックを生成する例示的な臨床評価システムの概略図を示す。
図13B】例示的な実施形態に従って、図13Aの例示的な臨床評価システムの動作の概略図を示す。
【発明を実施するための形態】
【0016】
本明細書に記載したそれぞれの特徴、及びすべての特徴、及びそのような特徴の2つ以上のそれぞれの組み合わせ、及びすべての組み合わせが、そのような組み合わせに含まれる特徴が相互に矛盾しないことを条件として、本発明の範囲内にある。
【0017】
本開示は、心臓関連の病的状態及び病態の診断、追跡、及び治療における生物物理学的シグナル、例えば、生の、または前処理された光プレチスモグラフィーシグナル、生体電位/心臓シグナルなどの実際的な評価に関するものであり、そのような評価は、任意の病的状態または病態の診断、追跡、及び治療(外科的、低侵襲的、ライフスタイル、栄養的、及び/または薬理学的治療などがあるが、これらに限定されない)に適用することができ、また、生物物理学的シグナルは、生体の任意の関連システムに関与する。評価は、医療機器またはウェアラブルデバイスの制御、またはモニタリングアプリケーションにおいて(例えば、本明細書に開示した生物物理学的シグナルを使用して生成された周期変動関連波形をレポートするために)使用され得る。
【0018】
本明細書で使用する用語「対象」及び「患者」は、一般的には互換的に使用しており、例示的なシステム及び方法を実行して分析を受ける対象のことを指す。
【0019】
本明細書で使用する用語「心臓シグナル」は、心臓血管系の構造、機能、及び/または活動に直接的または間接的に関連する1つ以上のシグナル、そのシグナルの電気的/電気化学的伝導の態様、例えば、心筋の収縮を引き起こす態様などを指す。心臓シグナルは、一部の実施形態では、生体電位シグナルまたは心電図シグナル、例えば、心電図(ECG)、本明細書で後述する心臓及び光プレチスモグラフィー波形またはシグナル捕捉もしくは記録機器、またはその他のモダリティを介して取得されるものを含み得る。
【0020】
本明細書で使用する用語「生物物理学的シグナル」は、1つ以上の心臓シグナル(複数可)、神経学的シグナル(複数可)、心弾動図記録的シグナル(複数可)、及び/または光プレチスモグラフィーシグナル(複数可)を含むが、これらに限定されず、情報を得る可能性のある任意の生理学的シグナルもより広範に含む。限定を意図するものではないが、生物物理学的シグナルは、例えば、電気的(例えば、時間及び/または周波数などの様々なドメインでの電圧/電位(例えば、生体電位)、インピーダンス、抵抗率、導電率、電流などの測定の技術によって観察、識別、及び/または定量することができる特定の心臓及び神経系関連シグナル)、磁気、電磁気、光学(例えば、反射率、干渉法、分光法、吸光度、透過率、目視観察、光プレチスモグラフィーなど技術)、音響、化学、機械的(例えば、流体の流れ、圧力、運動、振動、変位、歪みに関連するシグナル)、熱的、及び電気化学的(例えば、グルコースなどの特定の分析物の存在に相関させることができるシグナル)を含むタイプまたはカテゴリーに分類することができる。生物物理学的シグナルは、一部の事例では、生理学的システム(例えば、呼吸器、循環器(心血管、肺)、神経系、リンパ系、内分泌系、消化器系、排泄系、筋肉系、骨格系、腎臓/尿/排泄系、免疫系、外皮系/外分泌系、及び生殖器系)に関しては、1つ以上の臓器系(複数可)(例えば、心臓及び肺が、連携して機能する際に特異的であり得るシグナル)、または、組織(例えば、筋肉、脂肪、神経、結合組織、骨)に関しては、細胞、細胞小器官、分子(例えば、水、タンパク質、脂肪、炭水化物、ガス、フリーラジカル、無機イオン、ミネラル、酸、及びその他の化合物、元素、及びそれらの亜原子成分であると説明し得る。特記しない限り、用語「生物物理学的シグナル取得」は、一般的には、哺乳類または非哺乳動物生物などの生理学的システムから生物物理学的シグナルを取得する任意の受動的または能動的手段のことを指す。受動的及び能動的な生物物理学的シグナル取得は、一般的に、身体組織の自然の、または誘導した電気的、磁気的、光学的、及び/または音響的エミッタンスが認められることを指す。受動的及び能動的生物物理学的シグナル取得手段の限定を意図しない例として、例えば、身体組織の自然エミッタンスを示す電圧/電位、電流、磁気、光学、音響、及びその他の非能動的な方法があり、及び一部の事例では、そのようなエミッタンスを誘導することを含む。受動的及び能動的生物物理学的シグナル取得手段の限定を意図しない例として、例えば、超音波、電波、マイクロ波、赤外線、及び/または可視光(例えば、パルスオキシメーターまたは光電式容積脈波記録法に使用する)、可視光、紫外線、及び電離エネルギーまたは放射線(例えば、X線)が関与しない身体組織を能動的に調べるその他の方法がある。能動生物物理学的シグナル取得は、励起発光分光法(例えば、励起発光蛍光を含む)を含み得る。また、能動生物物理学的シグナル取得は、電離エネルギーまたは放射線(例えば、X線)(「電離生物物理学的シグナル」とも呼ばれる)を身体組織に伝えることを含み得る。受動的及び能動的生物物理学的シグナル取得手段は、侵襲的処置(例えば、手術または侵襲的放射線学的介入プロトコールを介したもの)、または非侵襲的処置(例えば、画像化、切除、心臓収縮調節(例えば、ペースメーカーを介したもの)、カテーテル挿入など)を介したと共に実施することができる。
【0021】
本明細書で使用する用語「光プレチスモグラフィーシグナル」は、酸素化及び脱酸素化ヘモグロビンによる光吸収を測定して取得された変化に対応する光センサーから取得される1つ以上のシグナルまたは波形、例えば、赤と赤外部スペクトルでの波長を有する光などを指している。光プレチスモグラフィーシグナル(複数可)は、一部の実施形態では、パルスオキシメーターまたは光電式容積脈波記録法(PPG)を介して取得された生シグナル(複数可)を含む。一部の実施形態では、光プレチスモグラフィーシグナル(複数可)は、健康をモニタリングする、及び/または疾患または異常な状態を診断する目的で、そのようなシグナル波形を取得するように構成された既製の、特注の、及び/または専用の機器または回路から取得される。光プレチスモグラフィーシグナル(複数可)は、一般的には、赤色光プレチスモグラフィーシグナル(例えば、約625~740ナノメートルの波長を有する可視光スペクトルにおける電磁シグナル)、及び赤外光プレチスモグラフィーシグナル(例えば、可視スペクトルの公称レッドエッジから約1mmまで伸びる電磁シグナル)を含むが、近赤外線、青と緑などのその他のスペクトルは、使用するPPGのタイプ及び/またはモードに応じて、異なる組み合わせで使用し得る。
【0022】
本明細書で使用する用語「心弾動図記録法シグナル」は、振動、音響、運動、または方向性を通して認め得る全身を通う血液の流れを一般的には反映するシグナルまたはシグナルの群のことを指す。一部の実施形態では、心弾動図記録法シグナルは、振動、音響、運動、または方向性に基づいて振動性心臓図(SCG)センサーなどのウェアラブルデバイスによって取得され、心臓の近傍に取り付けられたセンサーが記録した身体の振動または方向性を測定することができる。振動性心臓図センサーは、一般的に、「振動性心臓図」を取得するために使用されており、本明細書の用語「心弾動図」と互換可能である。その他の実施形態では、心弾道図シグナルは、血液が頭部と脚部との間を縦方向に上下に移動するときの体重の変化などの現象を測定する外部機器、例えば、ベッドまたは表面をベースとした機器で取得し得る。このような実施形態では、それぞれの位置における血液の体積は、動的に変化し得る、及び、ベッド上のそれぞれの位置において測定された体重、ならびにその体重の変化率に反映し得る。
【0023】
加えて、本明細書の様々な実施形態に記載した方法及びシステムは、そのように限定するものではなく、生体の別の生理学的システム(複数可)、臓器、組織、細胞などの任意の状況において利用され得る。ほんの一例として、心血管系の状況において有用であり得る2つの生物物理学的シグナルタイプとして、従来の心電図(ECG/EKG)機器を介して取得され得る心臓/生体電位シグナル、本明細書に記載したものを含めたその他の装置から取得し得る双極性広帯域生体電位(心臓)シグナル、及び様々なプレチスモグラフ技術、例えば、光プレチスモグラフィーによって取得され得るシグナルがある。別の例では、2つの生物物理学的シグナルタイプは、心弾道図技術によって、さらに改善することができる。
【0024】
図1は、例示的な実施形態に従って、患者の生理学的状態に関連する1つ以上のメトリックを、分類器(例えば、機械学習分類器)を介して生成するために、周期変動性に関連する特徴またはパラメーターを非侵襲的に計算するように構成された例示モジュールまたはコンポーネントの概略図である。このモジュールまたはコンポーネントは、生産アプリケーションまたは周期変動性関連機能、及びその他のクラスの機能の開発において使用し得る。
【0025】
本明細書に記載された分析及び分類器の例は、心臓及び心肺関連病状及び医学的状態の診断及び/または処置において、医療従事者を支援するために、または1つの指標として使用され得る。例として、本明細書に開示した様々なその他の疾患及び状態の中でも特に、重篤な冠動脈疾患(CAD)、例えば、安定した駆出率を示す心不全(HFpEF)、鬱血性心不全、様々な形態の不整脈、弁不全、様々な形態の肺高血圧症、肥大型心筋症などの、1つ以上の形態の心不全、がある。
【0026】
加えて、一部の形態の心不全に関連する左心室拡張末期圧(LVEDP)値の上昇または異常、一部の形態の心不全に関連する異常な左心室駆出率(LVEF)値、または肺高血圧症及び/または肺動脈高血圧症に関連する平均肺動脈圧(mPAP)値の上昇などの疾患または状態の指標となり得るものが存在する。本明細書に記載した分析及び分類器の例が提供するように、そのような指標が異常/上昇または正常である尤度の指標は、医療従事者が、患者が所与の疾患または状態を有するか否かを評価または診断する上で補助をすることができる。疾患状態の状況に関連するこれらのメトリックに加えて、身体検査及び/またはその他の検査の結果、患者の病歴、現在の投薬など、診断を行う際に医療専門家が、その他の測定値及び要因を利用する場合がある。疾患状態または医学的状態の有無の判定は、そのような疾患に対する適応症(または、診断において使用するメトリック)を含むことができる。
【0027】
図1において、構成要素は、少なくとも1つの非侵襲的生物物理学的シグナル記録装置または捕捉システム102と、例えば、クラウドもしくは遠隔インフラストラクチャ内、またはローカルシステム内に配置した評価システム103とを含む。生物物理学的シグナル捕捉システム102(生物物理学的シグナル記録装置)は、この実施形態では、例えば、同期的に取得された患者の電気的シグナル及び血行動態シグナルを、1つ以上のタイプの生物物理学的シグナル104として取得、処理、記憶、及び送信するように構成される。図1の例では、生物物理学的シグナル捕捉システム102は、測定プローブ106(例えば、プローブ106a及び106bとして示した、例えば、血行動態シグナル104aのための血行動態センサーを含む、及び、プローブ106c~106hは、電気的/心臓シグナル104bのためのリード線を含む)から取得された、第1の生物物理学的シグナル104a(例えば、その他の第1の生物物理学的シグナルに同期的に取得された)と、第2の生物物理学的シグナル104b(例えば、その他の生物物理学的シグナルに対して同期的に取得された)として示した2つのタイプの生物物理学的シグナルを同調して捕捉するように構成されている。一部の実施形態では、非侵襲的生物物理学的シグナル捕捉システム102は、1つのタイプの生物物理学的シグナル、例えば、第1の生物物理学的シグナル104a、第2の生物物理学的シグナル104b、または本明細書に記載した任意の生物物理学的シグナルを捕捉するように構成される。図1に示す例では、プローブ106a~hは、例えば、患者108の表面組織(患者位置108a及び108bで示す)に接着される、または近傍に配置される。患者は、好ましくは、ヒト患者であるが、任意の哺乳動物患者とし得る。得られた生の生物物理学的シグナル(例えば、106a及び106b)は一緒になって、生物物理学的シグナルデータセット110(それぞれ、第1の生物物理学的シグナルデータセット110a、及び第2の生物物理学的シグナルデータセット110bとして図1に示す)を形成し、これは、好ましくは、記録/シグナル捕捉番号、及び/または患者の氏名、及び医療記録番号で識別可能である、例えば、単一のファイルとして、記憶され得る。
【0028】
図1の実施形態では、第1の生物物理学的シグナルデータセット110aは、生の光プレチスモグラフィー、または血行動態、位置108aの患者から酸素化及び/または脱酸素化ヘモグロビンの光吸収を測定して取得された、変化に関連するシグナル(複数可)のセットを含み、第2の生物物理学的シグナルデータセット110bは、心臓の電気シグナルに関連する生の心臓または生体電位シグナル(複数可)のセットを含む。図1では、生の光プレチスモグラフィーまたは血行動態シグナル(複数可)が、患者の指から取得されることを示しているが、これらのシグナルは、患者のつま先、手首、額、耳たぶ、首などでも代替的に取得し得る。同様に、心臓または生体電位シグナル(複数可)は、3組の直交リードを介して得ることを示しているが、その他のリード配置(例えば、11個のリード配置、12個のリード配置など)が使用し得る。
【0029】
プロット110a’及び110b’は、それぞれ、第1の生物物理学的シグナルデータセット110a及び第2の生物物理学的シグナルデータセット110aの例を示す。具体的には、プロット110a’は、取得された光プレチスモグラフィーまたは血行動態シグナルの一例を示す。プロット110a’では、光プレチスモグラフィーシグナルは、シグナル電圧電位を、2つの光源(赤外線光源と赤色光源など)から取得された時間の関数として有する時系列シグナルである。プロット110b’は、3チャンネル電位時系列プロットを含む心拍シグナルの一例を示す。一部の実施形態では、生物物理学的シグナル捕捉システム102は、好ましくは、非侵襲的手段または構成要素(複数可)を介して生物物理学的シグナルを取得する。代替実施形態では、侵襲的または低侵襲的手段または構成要素(複数可)を使用して、非侵襲的手段(例えば、埋め込まれた圧力センサー、化学センサー、加速度計など)を補完する、または代替的に使用し得る。なおもさらなる代替実施形態では、生物物理学的シグナルを回収することができる非侵襲的及び非接触プローブまたはセンサーを使用して、任意の組み合わせ(例えば、受動温度計、スキャナ、カメラ、X線、磁気、または、本明細書に記載したようなその他の非接触または接触エネルギーデータ収集システム手段)で、非侵襲的及び/または低侵襲的手段を補完し得る、または代替的に使用し得る。シグナルの取得及び記録に続いて、生物物理学的シグナル捕捉システム102は、次いで、例えば、無線または有線通信システム、及び/またはネットワークを介して、取得された生物物理学的シグナルデータセット110(または、それから導出または処理したデータセット、例えば、フィルタリングまたは前処理したデータ)を、評価システム103のデータリポジトリ112(例えば、クラウドをベースとしたストレージエリアネットワーク)に提供する。一部の実施形態では、取得された生物物理学的シグナルデータセット110は、分析のために評価システム103に直接送られる、または信頼のおける臨床医のポータルを介してデータリポジトリ112にアップロードされる。
【0030】
生物物理学的シグナル捕捉システム102は、回路及びコンピューティングハードウェア、ソフトウェア、ファームウェア、ミドルウェアなどを備えて構成されており、一部の実施形態では、取り込まれた生物物理学的シグナルの両方を、取得、記憶、送信、及び任意に処理して、生物物理学的シグナルデータセット110を生成する。一例の生物物理学的シグナル捕捉システム102、及び取得された生物物理学的シグナルセットデータ110は、「Method and Apparatus for Wide-Band Phase Gradient Signal Acquisition,」と題された、米国特許第10,542,898号、または「Method and Apparatus for Wide-Band Phase Gradient Signal Acquisition,」と題された、米国特許公開公報第2018/0249960号に記載されており、これらの各々の全内容は、参照により、本明細書に組み込まれる。
【0031】
一部の実施形態では、生物物理学的シグナル捕捉システム102は、第1の生物物理学的シグナル(例えば、光プレチスモグラフィーシグナル)を取得するための第1のシグナル取得コンポーネント(図示せず)、及び、第2の生物物理学的シグナル(例えば、心臓シグナル)を得るための第2のシグナル取得コンポーネント(図示せず)を含む、2つ以上のシグナル取得コンポーネントを含む。一部の実施形態では、電気シグナルは、数分間、例えば、1kHzと10kHzとの間の数キロヘルツレートで取得される。その他の実施形態では、電気シグナルは、10kHz~100kHzの間で取得される。血行動態シグナルは、例えば、100Hzと1kHzとの間で取得され得る。
【0032】
生物物理学的シグナル捕捉システム102は、シグナルを得るための1つ以上のその他のシグナル取得コンポーネント(例えば、機械的音響、弾道図、心弾道図などのセンサー)を含み得る。シグナル捕捉システム102のその他の実施形態では、シグナル取得コンポーネントは、従来の心電図(ECG/EKG)機器(例えば、ホルター装置、12誘導心電図など)を備える。
【0033】
評価システム103は、一部の実施形態では、データリポジトリ112と、分析エンジンまたは分析器(図示せず-図13A及び13Bを参照されたい)を備える。評価システム103は、特徴モジュール114及び分類器モジュール116(例えば、ML分類器モジュール)を含み得る。図1において、評価システム103は、取得された生物物理学的シグナルデータセット110を、例えば、データリポジトリ112から回収して、それを図1に示す特徴モジュール114で使用するように構成されており、図1においては、周期変動性関連機能モジュール120、及びその他のモジュール122(本明細書で後述する)を含むように示されている。特徴モジュール114は、周期変動性関連特徴の特徴またはパラメーターを含む、特徴またはパラメーターの数値を計算して、分類器モジュール116に提供する。分類器モジュール116は、例えば、患者の生理学的状態(例えば、疾患状態、医学的状態の有無の指標、またはいずれかの兆候)に関連するメトリックの出力スコアである出力118の計算を行う。出力118は、続いて、一部の実施形態では、病理学または病的状態の診断及び治療のために医療専門家が使用する医師用ポータル(図示せず-図13A及び13Bを参照されたい)において提示される。一部の実施形態では、ポータルは、例えば、患者、介護者、研究者などがアクセスするために構成(例えば、調整)されており、出力118は、ポータルが意図した閲覧者のために構成され得る。その他のデータ及び情報(例えば、取得された生物物理学的シグナルまたはその他の患者の情報及び病歴)もまた、出力118の一部となり得る。
【0034】
分類器モジュール116(例えば、ML分類器モジュール)は、決定木、ランダムフォレスト、ニューラルネットワーク、線形モデル、ガウス過程、最近傍、SVM、単純ベイズなど、これらに限定されないアルゴリズムに基づいて開発された伝達関数、ループアップテーブル、モデル、または演算子を含み得る。一部の実施形態では、分類器モジュール116は、代理人整理番号が10321-048pvlであり、「Method and System to Non-Invasively Assess Elevated Left Ventricular End-Diastolic Pressure」と題され、本願と同時に出願された米国仮特許出願、「Discovering Novel Features to Use in Machine Learning Techniques, such as Machine Learning Techniques for Diagnosing Medical Conditions」と題された、米国特許公開第20190026430号、または、「Discovering Genomes to Use in Machine Learning Techniques,」と題された、米国特許公開第20190026431号に記載されたML技術に基づいて開発したモデルを含み得るものであり、これら出願のそれぞれの全内容は、参照により、本明細書に組み込まれる。
【0035】
生物物理学的シグナルの取得例
【0036】
図2は、例示的な実施形態に従って、臨床現場での患者の生物物理学的シグナルを非侵襲的に回収する際の生物物理学的シグナル捕捉システム102(102aとして示す)、及びその使用を示す。図2において、生物物理学的シグナル取り込みシステム102aは、患者が安静にしている間に患者108から2種類の生物物理学的シグナルを捕捉するように構成される。生物物理学的シグナル捕捉システム102aは、(i)直角に配置されたセンサー(106c~106h;106iは7番目のコモンモード基準リードである)を使用して、患者の胴体から患者の電気シグナル(例えば、第2の生物物理学的シグナルデータセット110bに対応する心臓シグナル)、及び、(ii)光プレチスモグラフセンサーを使用して、指から血液動態シグナル(第1の生物物理学的シグナルデータセット110aに対応するPPGシグナル)を同期的に得る(例えば、回収シグナル106a、106b)。
【0037】
図2に示すように、電気的及び血行力学的シグナル(例えば、104a、104b)を、患者の皮膚に貼付する市販のセンサーを介して受動的に回収する。これらのシグナルは、患者に電離放射線または放射線造影剤を曝露せずに、また患者の運動または薬理学的ストレッサーを使用せずとも有益に取得し得る。生物物理学的シグナル捕捉システム102aは、技術者または看護師などの医療従事者が必要なデータを得るために、セルラーシグナルまたはWi-Fi接続を確立することができる任意の場所で使用することができる。
【0038】
電気シグナル(例えば、第2の生物物理学的シグナルデータセット110bに対応する)は、基準リードと共に患者の胸部及び背中を横切るように配置され直角に対を形成した3つの表面電極を使用して回収される。電気シグナルは、一部の実施形態では、ローパスアンチエイリアスフィルタ(例えば、約2kHz)を使用して、数キロヘルツ速度(例えば、6つのチャネルのそれぞれについて毎秒8000試料)で、数分間(例えば、215秒)取得され得る。代替実施形態では、生物物理学的シグナルは、モニタリングのために連続的/断続的に取得され得る、及び、取得されたシグナルの一部を分析のために使用し得る。血行動態シグナル(例えば、第1の生物物理学的シグナルデータセット110aに対応する)は、指上に置かれた光プレチスモグラフィーセンサーを使用して回収される。赤色光(例えば、600~750nmの間の任意の波長)及び赤外光(例えば、850~95nmの間の任意の波長)の光吸収は、一部の実施形態では、同じ期間にわたって、毎秒500試料の速度で記録される。生物物理学的シグナル捕捉システム102aは、シグナルでの共通モード環境ノイズを減らす共通モード駆動を含み得る。光プレチスモグラフィー及び心臓シグナルは、それぞれの患者について同時に取得された。データにおけるジッタ(モダリティ間ジッタ)は、約10マイクロ秒(μs)未満であり得る。心臓シグナルチャネル間のジッタは、10マイクロ秒未満、例えば、約10フェムト秒(fs)であり得る。
【0039】
患者メタデータ及びシグナルデータを含むシグナルデータパッケージは、シグナル取得手順の完了時にコンパイルし得る。このデータパッケージは、生物物理学的シグナル捕捉システム102aがデータリポジトリ112に転送する前に暗号化され得る。一部の実施形態では、データパッケージは、評価システム(例えば、103)に転送される。この転送は、一部の実施形態では、利用者の介入が無くともシグナル取得手順の完了に続いて開始される。データリポジトリ112は、一部の実施形態では、患者のデータパッケージに安全で冗長なクラウドベースのストレージを提供することができるクラウドストレージサービス、例えば、Amazon Simple Storage Service(すなわち、「Amazon S3」)でホストされる。また、生物物理学的シグナル捕捉システム102aは、不適切なシグナル取得の通知を開業医が受信するためのインターフェイスを提供して、患者からさらなるデータを直ちに得るように開業医に対して警告する。
【0040】
操作方法例
【0041】
図3A図3Bは、それぞれ、診断、治療、モニタリング、または追跡のための実用的な利用における、周期変動関連の特徴またはその中間出力の使用方法の一例を示している。
【0042】
疾患状態または兆候状態の存在の推定。図3Aは、例えば、診断、追跡、または治療を支援するために、疾患状態、医学的状態、またはいずれかの兆候の存在の推定値を決定するために、周期変動性関連のパラメーターまたは特徴を採用する方法300aを示す。方法300aは、例えば、図1及び図2ならびに本明細書に記載したその他の実施例に関連して記載したように、患者からの生物物理学的シグナル(例えば、心臓シグナル、光プレチスモグラフィーシグナル、弾道心図シグナル)を取得する(302)ステップを含む。一部の実施形態では、取得された生物物理学的シグナルは、遠隔保存及び分析のために送信される。その他の実施形態では、取得された生物物理学的シグナルは、一部を記憶及び分析される。
【0043】
上記したように、心臓に関連する一例は、異常な左心室拡張末期圧(LVEDP)または平均肺動脈圧(mPAP)、重篤な冠動脈疾患(CAD)、異常な左心室駆出率(LVEF)、及び肺動脈高血圧症(PAH)などの肺高血圧症(PH)の1つ以上の形態の存在を推定することである。推定され得るその他の医学的状態または兆候状態は、本明細書に開示した様々なその他の疾患及び医学的状態の中でもとりわけ、例えば、安定した駆出率を示す心不全(HFpEF)、不整脈、鬱血性心不全、弁不全、肥大型心筋症などの、例えば、心不全の1つ以上の形態を含む。
【0044】
方法300aは、データセットを検索(304)するステップと、シグナルの周波数範囲に対して帯域内であり、かつ、類似の振幅を有するが、心臓周期と同期していないスペクトルまたは情報内容を示す周期変動性関連特徴の値を決定するステップとをさらに含む。周期変動関連特徴の値を決定するための操作例を、図4~12に関連して、本明細書で後述する。方法300aは、推定モデル(例えば、MLモデル)に対して決定された周期変動性関連特徴の応用に基づいて、疾患状態、医学的状態、またはいずれかの兆候の存在に関する推定値を決定するステップ(306)をさらに含む。実装例は、図13A及び13Bに関連して提供される。
【0045】
方法300aは、例えば、図1、13A、及び13B、及び本明細書に記載したその他の実施例で記載したように、疾患状態または異常状態の存在に関する(308)推定値(複数可)をレポート(例えば、疾患状態、医学的状態、またはいずれかの兆候の診断または治療に使用する)に出力するステップをさらに含む。
【0046】
周期変動性特徴を使用した診断または状態モニタリングまたは追跡。図3Bは、医療機器または健康モニタリング装置の健全性または制御をモニタリングするために周期変動性関連パラメーターまたは特徴を採用する方法300bを示す。方法300bは、患者から生物物理学的シグナル(例えば、心臓シグナル、光プレチスモグラフィーシグナル、弾道心図シグナルなど)を取得する(302)ステップを含む。動作は、例えば、レポートのための出力を提供するために、または医療機器または健康モニタリング装置のための制御として、連続的または断続的に実行され得る。
【0047】
方法300bは、例えば、図4~12に関連して記載したように、取得された生物物理学的データセットから周期変動性関連値を決定する(310)ことをさらに含む。
【0048】
方法300bはさらに、周期変動関連値(複数可)を(例えば、診断において使用するレポート、または対照に関するシグナルとして)出力すること(312)を含む。モニタリング及び追跡のために、その出力は、ウェアラブルデバイス、ハンドヘルドデバイス、または医療診断機器(例えば、パルスオキシメータシステム、ウェアラブルヘルスモニタリングシステム)を介して、健康に関連する拡張データを提供する。一部の実施形態では、出力は、蘇生システム、心臓または肺ストレス試験装置、ペースメーカなどにおいて使用され得る。
【0049】
周期変動性特徴またはパラメーター
【0050】
図4図5、及び図6は、それぞれ、例示的な実施形態に従って、生物物理学的シグナルの周期変動性特徴またはパラメーターの数値を決定するように構成された合計で3つの例示モジュールに関する例示周期変動性特徴計算モジュールを示す。周期変動性スコア分析特徴計算モジュール400は、周期変動性(CVスコア、CV相対スコア、及びCV比スコアを含む図4に示す)に関するスコアをベースとしたメトリックを計算することができる。周期変動性分布分析特徴計算モジュール500は、周期変動性の数値の分布を計算し、及び、その分布の特徴出力として統計的評価を提供することができる。周期変動性点群解析特徴計算モジュール600は、カプセル封入した体積対象を生成することができる周期変動性データから点群を生成することができ、体積、空隙率、表面、周囲長などの体積対象の様々な位相的及び形態学的特性を決定することができる。図7A図7B、及び図7Cは、それぞれ、図4図5及び図6の周期変動解析特徴計算モジュールの動作例を示す。
【0051】
実施例1‐周期変動性スコア特徴
【0052】
図4は、例示した3つの特徴またはパラメーターカテゴリーの1つとして、例示的な実施形態に従って、取得した1つ以上の生物物理学的シグナルの周期変動性関連スコアの数値を決定するように構成された周期変動性スコア計算モジュール400(「CVスコア特徴(複数可)」400として示す)の一例を示す。図4に示す例では、モジュール400は、所与のシグナルに対して周期変動性スコア402を出力するように構成される。心臓周期の場合、例えば、3つのチャネルがある場合、3つのチャネルのそれぞれについて周期変動性スコアを生成し得る。また、モジュール400は、所与のチャネルに関するそれぞれの周期変動性スコアを(例えば、3つのチャネルすべてに関して)計算された全スコアに対して(例えば、動的スケーリング、平均最大値、z変換などで)正規化する周期変動性相対スコア404を生成し得る。その他の実施形態では、非正規化値を、スコア計算に使用することができる。また、モジュール400は、所与のチャネルに対する周期変動性スコアと、別のチャネルに対する周期変動性スコアとの間の比率を決定する周期変動性比率スコア406を生成し得る。
【0053】
表2は、9つの抽出可能な周期変動性特徴、及びそれらに対応する説明の例のセットを示す。表2では、特徴(「」で示す)は、少なくとも1つの心疾患または病態の有無の評価、具体的には、上昇したLVEDPの有無の判定において有意な有用性を有することが認められる。異常なLVEDPまたは上昇したLVEDPの有無の評価において有意な有用性があると判断された特定の特徴のリストを表7に提供する。
【表2】
【0054】
周期変動性スコア計算。図7Aは、例示的な実施形態に従って、生物物理学的シグナルの周期変動性スコア(例えば、“CV_score X” CV “CV_score Y” CV,“CV_score Z” CV)を生成するための例示的な方法700の概略図である。方法700は、準周期的な周期に対する生物物理学的シグナルの全部または実質的な部分でのピークを検出すること(702)を含む。心臓シグナルの場合、ピークは、心室脱分極のポイント(一般的には「Rピーク」とも称する)であり、これは、心室の電気的活性化が最大である場合における、それぞれの周期の間でのシグナルのポイントである。一部の実施形態では、方法700は、Pan-Tompkinsアルゴリズムによる心室脱分極検出を利用している。これは、例えば、Pan & Tompkins, A Real Time QRS Detection Algorithm, IEEE Transactions on Biomedical Engineering, Volume 32-3, 230-236, 1985,に記載されているものであって、その全内容は、参照により、本明細書に組み込まれる。心臓シグナルデータセットにおけるピークを検出するために使用し得るその他のアルゴリズムは、例として、Makwana et al. “Hilbert transform based adaptive ECG R-peak detection technique,” International Journal of Electrical and Computer Engineering, 2(5), 639 (2012);Lee et al., “Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis,” Annals of Biomedical Engineering. 44(7), 2292-3201 (2016);及び Kim et al., “Detection of R-Peaks in ECG Signal by Adaptive Linear Neuron (ADALINE),” Artificial Neural Network, presented at MATEC Web of Conferences, 54, 10001 (2016)に説明されたものがあり、それぞれの全内容は、参照により、本明細書に組み込まれる。様々なPPGピーク検出器を、光プレチスモグラフィーシグナルに関して使用し得る。
【0055】
次に、方法700は、テンプレート-シグナルベクトルデータセット(テンプレート周期、とも呼ばれる)を決定または作成すること(704)を含む。テンプレート-シグナルベクトルデータセットは、対象の準周期的シグナルパターン(例えば、心臓シグナルに関する心拍パターン)を表す。用語「準周期的」は、より一般的な用語では、その比率が有理数ではない少なくとも最小である2つの周波数成分で周期を形成するシグナルシステムの特性を指すこともできる。一部の実施形態では、テンプレート-シグナルベクトルデータセットを決定するために、中央値ピーク-ピーク間隔(例えば、心臓シグナルに関するR-R間隔)を、検出したピーク位置を使用して計算する。周期領域は、それぞれのピークの周囲に設定されており、振幅に対して正規化される。周期領域は、例えば、心臓シグナルに対するP及びT波の完了など、関心領域を含む。
【0056】
図8Aでは、心臓シグナル104bの検出ピーク位置(例えば、802a~802gとして示す)を使用して、中央値のピーク-ピーク間隔の中央値(例えば、804a~804gで示した心臓シグナル104bの部分に関するR-Rピークの中央値)を決定し、それぞれのピーク(例えば、808a~808gで示した心臓シグナル104bの部分に関するRピーク)の周囲に、周期領域(例えば、806a~806fとして示したもの)を設定する。図8Aは、周期領域がRピークの周囲に設定されており、かつ、心臓シグナル104bに関するP波とT波の完了の両方を含むことをさらに示す。図8Aでは、その範囲は、中央値間隔の約-20%~約+20%である(例えば、812a、812bとして示す)。それぞれの周期領域(例えば、806a~806f)は、プロセッサーによってマトリックス(「周期マトリックス」とも呼ばれる)に格納され得る。周期マトリックスのサイズは、M×Nであり得、Mは、検出された周期数であり、及び、Nは、ピーク-ピーク間隔の中央値(例えば、心臓シグナルのR-R間隔の中央値)の40%(または、その他の範囲)であり、ピーク-ピーク間隔の40%が、周期の完全な時間的「幅」を表す。具体的には、ピーク-ピーク間隔の中央値(例えば、心臓シグナルのR-R間隔の中央値)が、データセット全体で判明すると、シグナルを半分に分割して、例えば、ピーク(例えば、Rピーク)から時間的に順方向及び逆方向の両方に到達する「20%」を取得して、その他の波(例えば、心臓シグナルのT波及びP波)を捕捉することができる。当然のことながら、心臓シグナル、及び脳シグナルの様々な異なる波などに対して、その他の周期領域長を使用できる。例えば、適用し得る範囲として、限定を意図するものではないが、-10%~10%、-15%~15%、-25%~25%などがあり得る。さらに、ピーク間の間隔の中央値ではなく、ピーク間の間隔の平均値も使用され得る。
【0057】
図8Bは、例示的な実施形態に従った、正規化プロセスの結果のプロットを示す。図8Bでは、生物物理学的シグナルデータセット(例えば、心臓シグナルデータセット110b)のそれぞれの周期領域(例えば、図806a~806fとして示した)がプロセッサーによって正規化され、それぞれの周期領域の平均値がゼロとなるようにあらゆるオフセットを除外する。正規化した心臓シグナルデータセットは、示されるように、「1」及び「-1」の範囲を持つことができるが、その範囲は、データの分布によって異なる。正規化処理は、実施形態において、周期変動性特徴に関する計算を行う際に使用することができる。その他の実施形態では、正規化していないシグナルを使用し得る。平均化及びスケーリング正規化に加えて、その他の正規化方法を使用し得る。その他の正規化方法の例としては、とりわけ、Z変換、及び平均Maxなどがある。
【0058】
図9Aは、周期902(902a、902b、及び902cとして示す)の1つを参照して決定されたテンプレート-シグナルベクトルデータ900(900a、900b、及び900cとして示す)の3つのプロットを示す。図9Aには、3つの心臓シグナルのそれぞれに関するテンプレート-シグナルベクトルデータセットを示している。一部の実施形態では、1つの代表周期について計算された同じテンプレート-シグナルベクトルデータセットを、その所与のシグナルのすべての周期に対して評価するために使用する。図9Bは、複数の周期にわたって図9Aの位相空間で決定されたテンプレート-シグナルベクトルデータセット900を示す。図9Bの位相空間プロットでは、同じ時間事例に対応するテンプレートシグナルベクトルデータセットのそれぞれの数値を、3次元空間に示す。取得された生物物理学的シグナルのすべてのチャネルの数値も、X、Y、及びZ軸に同時に表示する。
【0059】
図7Aに戻って参照すると、方法700は、次に、検出したそれぞれの生物物理学的周期とテンプレート-シグナルベクトルデータセットとの間の差を定量化すること(706)を含む。一部の実施形態では、テンプレート-シグナルベクトルデータセットは、検出された生物物理学的周期の各々から減算されて、剰余データセットを生成する。図9Cは、検出された生物物理学的周期と位相空間内のテンプレートシグナルベクトルデータセットの間で計算された剰余906のプロットを示す。図9Cでの各軸は、取得されたシグナルのチャネル(チャネルX、Y、Z)を表す。本明細書で記載したように、剰余は、とりわけ、平均化及びスケーリング正規化、z-変換、平均Maxなどを使用して、正規化データまたは非正規化データから決定することができる。
【0060】
図7Aを参照すると、方法700は、次に、検出した位相周期にわたって生じる差を組み合わせて、チャネルの最終周期変動性スコア(CVS)を作成することを含む。この周期変動性スコアは、一部の実施形態では、所与のシグナルごとに計算した剰余データセットの中央値(例えば、チャネル当たり1スコア)である。その他の実施形態では、周期変動性スコアは、すべてのシグナルについて計算した剰余データセットの中央値(例えば、チャネルのセット当たり1スコア)である。一部の実施形態では、周期変動性スコアは、取得されたシグナルのサブセットから計算する。別の実施形態では、周期変動性スコアは、所与のシグナルについて計算した剰余データセットの平均値である。さらに別の実施形態では、周期変動性スコアは、すべてのシグナル、またはそのようなシグナルの代表的なサブセットについて計算された剰余データセットの平均値である。
【0061】
一部の実施形態では、周期変動性スコアは、テンプレートシグナルベクトルデータセット内の所与のデータ点についてのZスコア値であり、所与のデータ点の数値と周期のセットの平均値との間の差として計算され、その差は、次いで、周期のセットの同じインデックス付きデータ値に対するその所与のデータ点の標準偏差によって正規化される。
【0062】
周期変動性相対スコアの計算。図7Bは、所与のチャネルに関するそれぞれの周期変動性スコアを、すべての計算されたスコア(例えば、3つのチャネルすべてに関して)に対して正規化する周期変動性相対スコア404(404a、404b、404cとして示す)を生成する方法の図を示す。図7Bには、3つのチャネルに関して周期変動性相対スコア404a、404b、404cが示されている。チャネルnに関する周期変動性相対スコア404a、404b、404cは、式1に示すように、計算されたすべてのスコアの合計について計算され得る。
【数1】
【0063】
表2では、周期変動性相対スコア404は、「CV_relative_X,”“CV_relative_Y,”及び“CV_relative_Z.」として示される。
【0064】
周期変動比率の計算。図7Cは、それぞれの周期変動性スコアを、2つのチャネル間の比率として正規化する周期変動性比率スコア406(406a、406b、及び406cとして示される)を生成する図を示す。図7Cでは、3つのチャネルに関する周期変動性比スコア406a、406b、406cを示す。表2において、周期変動比率スコア406a、406b、及び406cは、それぞれ「CV_ratio_XY」、「CV_ratio_XZ」及び「CV_ratio_YZ」として示される。
【0065】
実施例2 周期変動統計分布特徴
【0066】
図5は、3つの例示的な特徴またはパラメーターカテゴリーの2つ目となる、例示的な実施形態に従って取得された生物物理学的シグナルに関して計算された周期変動値の分布の統計的パラメーターを含む評価を決定するように構成された、例示的な周期変動性分布分析特徴計算モジュール500(「CV分布特徴(複数可)」500として示される)を示す。図5に示す例では、統計的評価は、評価した分布の平均値(502)、中央値(504)、標準偏差(506)、歪度(508)、及び尖度(510)を含むことができる。
【0067】
表3では、周期変動性特徴の例のセット、及びそれらに対応する説明を記載している。表3では、特徴(「」で示す)は、少なくとも1つの心疾患または病態の有無の評価、具体的には、上昇したLVEDPの有無の判定において有意な有用性を有することが認められる。異常なLVEDPまたは上昇したLVEDPの有無の評価において有意な有用性があると判断された特定の特徴のリストを表7に提供する。
【表3】
【0068】
図10は、例示的な実施形態に従って、生物物理学的シグナルの周期変動性剰余の分布(例えば、ヒストグラム)を生成する例示的な方法1000の図である。図10では、方法1000は、図7Aに関連して説明するように、ピーク検出ステップ(702)、テンプレート周期作成ステップ(704)、及び剰余分布計算ステップ(706)を実行することを含み得る。計算されたすべての剰余をチャネルに関する単一のスコア、または、例えば、図7Aに関連して説明したようなチャネルのセットに組み合わせるのではなく、方法1000は、計算された剰余分布の統計的評価(1002)を行う。この分布は、例えば、チャネルのそれぞれの周期の計算されたCV剰余を含むヒストグラムとすることができる。統計的評価は、決定された分布の平均値、中央値、標準偏差、歪度、及び尖度を含み得る。
【0069】
周期変動性関連特徴の実施例3-CVモデルパラメーター
【0070】
図6は、3つの例示的な特徴またはパラメーターカテゴリーの3つ目となる、例示的な実施形態に従って取得された1つ以上の生物物理学的シグナルの周期変動性点群特徴の値を決定するように構成された例である周期変動性点群特徴計算モジュール600(「CV点群特徴(複数可)」600として示す)を示す。図6では、モジュール600は、計算されたCV剰余の2次元または3次元位相空間モデル(例えば、アルファ形状モデル)を生成するように構成され、例えば、図5、6、及び7Aに関連して説明したように、その3次元位相空間モデル(例えば、アルファ形状モデル)の幾何学的パラメーターを決定するように構成される。
【0071】
心臓周期の場合、例えば、3つのチャネルを有するものに関しては、それぞれのチャネルをモデルの軸として有する3次元位相空間モデルを生成することができ、または、2つのチャネルから2次元位相空間モデルを生成することができる。3次元位相空間モデルから評価し得る幾何学的パラメーターは、体積(602)、空隙率(604)、ボイド体積(606)、表面積(608)を含む。2次元位相空間モデルから評価し得る幾何学的パラメーターは、周囲長(610)を含む。
【0072】
表4は、三次元位相空間モデルから決定する周期変動性特徴のセットの実施例、及びそれらに対応する説明を示す。表4では、特徴(「」で示す)は、少なくとも1つの心疾患または病態の有無の評価、具体的には、上昇したLVEDPの有無の判定において有意な有用性を有することが認められる。異常なLVEDP、または上昇したLVEDPの有無の評価において有意な有用性を有すると判断された特定の機能のリストを、表7に提供する。
【表4】
【0073】
図11は、例示的な実施形態に従って、生物物理学的シグナルの周期変動性剰余から2次元または3次元位相空間モデルを生成する例示的な方法1100の図である。図11では、方法1100は、図7Aに関連して説明しているように、ピーク検出ステップ(702)、テンプレート周期作成ステップ(704)、及び剰余分布計算ステップ(706)を実行することを含み得る。
【0074】
方法1100は、取得されたデータセットの3つのチャネルから決定した計算された剰余から2次元または3次元位相空間モデルを生成すること(1102)をさらに含む。剰余は、三角測量演算が適用し得る点群マップを生成するために使用され得る。三角測量演算の例として、アルファ包及び凸包がある。その他のタイプの三角測量演算を適用し得る。
【0075】
図9Cは、3つのチャネル心臓シグナルの剰余データセットから生成された点群マップ906の例を示す。
【0076】
図12Aは、例示的な実施形態に従った、図9Cの点群マップ906から生成された3次元位相空間モデル1200の一例を示す。2次元または3次元の位相空間モデル1200は、一部の実施形態では、第4の次元のデータを評価するために着色され得る。図12Aでは、位相空間でのCV剰余を認める構造があると考えられる。さらに、この構造は、心臓周期内の時間的位置に関連しており、図12Aで認められるように。球面座標系でのシグナルの半径成分に基づいて着色することができる。例えば、図12Aに示すように、画像の特定の領域に高半径振幅のクラスタリングが出現しており、このことは、それらのセクションの剰余が、心室脱分極に由来することを示している。
【0077】
図12Bは、所与のシグナルの半径成分を、球座標で、図12Aの着色に使用できる時間領域において示すプロットを例示している。一部の実施形態では、色情報は、抽出した特徴の一部として使用され得る。
【0078】
実験結果及び実施例
【0079】
特徴セットを開発するために、幾つかの開発研究が行われており、次いで、疾患、医学的状態、またはいずれかの兆候の有無、重症度、または局在性を推定するために使用することができるアルゴリズムの開発が行われている。ある研究では、異常なLVEDP、または上昇したLVEDPの非侵襲的評価のためのアルゴリズムが開発された。上記したように、異常なLVEDP、または上昇したLVEDPは、様々な形態の心不全の指標である。別の開発研究では、冠状動脈疾患の非侵襲的評価のためのアルゴリズムと機能性の開発が行われた。
【0080】
これら2つの開発研究の一部として、臨床データを、生物物理学的シグナル捕捉システムを使用して、図2に関連して記載したプロトコールに従って、成人ヒト患者から回収した。対象には、シグナルを取得した後に心臓カテーテル検査(CAD及び異常LVEDP評価のための現在の「ゴールドスタンダード」試験)を受けてもらい、カテーテル検査の結果を、上昇したCADラベルと上昇したLVEDP値について評価した。回収されたデータは、一方が、特徴/アルゴリズム開発のためのものであり、他方が、検証用のためのものである、別々のコホートに分けられた。
【0081】
特徴開発段階内で、心血管系の特性を表すことを目的として、生体電位シグナル(本明細書に記載した心臓シグナルの一例である)、及び光吸収シグナル(本明細書に記載した血行動態または光プレチスモグラフィーの一例である)から分析フレームワーク内で特徴の抽出を行うための、周期変動性関連の特徴などを含む特徴が開発された。また、上昇したLVEDPまたは異常なLVEDPの存在を非侵襲的に推定するために、分類器モデル、線形モデル(例えば、Elastic Net)、決定木モデル(XGB分類器、ランダムフォレストモデルなど)、サポートベクトルマシンモデル、及びニューラルネットワークモデルを使用して、対応する分類器の開発を行った。単変量特徴選択評価及び交差検証操作を実施して、関心のある特定の疾患適応症に関する機械学習モデル(例えば、分類器)での使用のための特徴を同定した。機械学習トレーニング及び評価のさらなる説明は、代理人整理番号が10321-048pvlであり、「Method and System to Non-Invasively Assess Elevated Left Ventricular End-Diastolic Pressure」と題され、本願と同時に出願された米国仮特許出願に記載されており、同出願の全内容は、参照により、本明細書に組み込まれる。
【0082】
単変量特徴選択評価は、t検定、相互情報量、及びAUC-ROC評価を使用して、それぞれが負及び正のデータセット対を定義する数多くのシナリオを評価した。t検定は、分散が不明な2つの母集団に由来する2つの試料の平均値の間での差異の有無で判断できる統計的検定である。ここでは、例えば、通常のLVEDPと上昇したLVEDP(LVEDPアルゴリズムの開発の場合)、CAD-とCAD+(CADアルゴリズムの開発の場合)など、これらのグループの特徴の平均値の間に差異がないという帰無仮説に対して、t検定を実施した。p値が小さい(例えば、≦0.05)ことは、帰無仮説に対する強力な証拠を示す。
【0083】
相互情報量(MI)操作を、特定の特徴に対して、上昇したLVEDP、または異常なLVEDP、または有意な冠状動脈疾患の依存性を評価するために実施した。MIスコアが1を超えると、評価する変数間の依存性が高いことを示す。MIスコアが1未満の場合は、そのような変数の依存性が低いことを示し、及び、MIスコアがゼロの場合は、そのような依存関係がないことを示す。
【0084】
受信者動作特性曲線、またはROC曲線は、その識別閾値が変動するときの、二値分類器システムの診断能力を示す。ROC曲線は、様々な閾値設定における偽陽性率(FPR)に対して真陽性率(TPR)をプロットして作成することができる。AUC-ROCは、受信者動作特性(ROC)曲線下の面積を定量化したものであり、この面積が大きいほど、モデルは、診断上有用である。ROC及びAUC-ROCの数値は、95%信頼区間の下端が、0.50より大きい場合に、統計的に有意であると考慮される。
【0085】
表6は、単変量特徴選択評価において使用された負及び正のデータセット対の例をリストしたものである。具体的には、表6は、正のデータセットが、20mmHgまたは25mmHgを超えるLVEDP測定値を有するものとして定義されており、負のデータセットが、12mmHg未満のLVEDP測定値を有するか、または正常なLVEDP測定値を有すると判断された対象グループに属するものとして定義されれていることを示している。
【表6】
【0086】
表7A、7B、及び7Cは、それぞれ、臨床評価システムにおいて実行されるアルゴリズムにおいて、上昇したLVEDPの有無を推定する上で有用性を有すると判定された周期変動性関連特徴のリストを示す。表7A、7B、及び7C、ならびに対応する分類器の特徴は、上昇したLVEDPを測定するための絶対的基準となる侵襲的方法に匹敵する臨床性能を有することが検証されている。
【表7】
【0087】
特定の周期変動性関連特徴が、上昇したLVEDPの有無を推定する場合に、臨床的有用性があるという決定は、本明細書に記載された心疾患または病態に限らず、その他の疾患、医学的状態、または、いずれかに特有の適応症の有無、及び/または重症度、及び/または局在性を推定する場合に、これらの周期変動性関連特徴またはパラメーター、ならびに、本明細書に記載したその他の特徴を使用するための基礎を提供する。
【0088】
これらの実験結果はさらに、周期変動性関連特徴の中間データまたはパラメーターもまた、診断ならびに治療、制御、モニタリング、及び追跡に関する用途において臨床的有用性を有することを示す。
【0089】
臨床評価システムの実施例
【0090】
図13Aは、臨床評価システム1300(臨床及び診断システムとも呼ばれる)の一例を示しており、このシステムは、図1のモジュールを、その他の特徴またはパラメーターと共に、非侵襲的に計算を行う周期変動性に関連する特徴またはパラメーターに実装して、分類器(例えば、機械学習分類器)を介して、実施形態に従って、患者または対象の生理学的状態に関連する1つ以上のメトリックを生成する。実際に、特徴モジュール(例えば、図1、5~14のもの)は、一般的に、任意の数及び/またはタイプの特徴が、疾患状態、医学的状態、関心のあるいずれかの適応症、またはそれらの組み合わせ、例えば、特徴モジュールの異なる構成を有する異なる実施形態に関して利用され得るシステム(例えば、臨床評価システム1300)の一部と認めることができる。これは、図13Aにさらに示されており、臨床評価システム1300は、疾患特異的アドオンモジュール1302(例えば、上昇したLVEDPまたはmPAP、CAD、PH/PAH、異常なLVEF、HFpEF、肥大型心筋症、及び本明細書に記載したその他のものを評価するためのもの)が、システム1300の完全な動作を実現するために、単独で、または単一のプラットフォーム(すなわち、ベースシステム1304)と複数の過程で統合することができるモジュラーデザインのものである。モジュール性は、臨床評価システム1300を、同じ同期性で取得された生物物理学的シグナル及びデータセット及びベースプラットフォームを活用して、そのような疾患特異的アルゴリズムの開発が進むにつれて、幾つかの異なる疾患の存在を評価するようにデザインすることを可能とし、それにより、試験及び認証の時間及びコストが削減される。
【0091】
様々な実施形態では、臨床評価システム1300の異なるバージョンは、所与の疾患状態(複数可)、医学的状態(複数可)、または関心のある兆候病態(複数可)に対して構成される得る異なる特徴計算モジュールを含めることによって、評価システム103(図1)を実装し得る。別の実施形態では、臨床評価システム1300は、複数の評価システム103を含み得て、おそらくは、そのエンジン103の分類器116に特異的な異なるスコアを生成するために選択的に利用され得る。このように、さらに一般的な意味で、図1及び13は、異なる及び/または複数の対応する分類器116を有している、異なる及び/または複数のエンジン103が、所望するモジュールの構成に応じて使用され得るモジュラーシステムの1つの構成と認め得る。このように、図1のモジュールの任意の数の実施形態が、周期変動固有の特徴(複数可)の有無に関係なく、存在し得る。
【0092】
図13Aでは、システム1300は、病的状態または異常状態の一例として、上昇したLVEDPの尤度を評価するために、機械学習した疾患特異的アルゴリズムを使用して、1つ以上の生物物理学的シグナルデータセット(例えば、110)を分析することができる。システム1300は、ハードウェアコンポーネントとソフトウェアコンポーネントとを備えており、これらを組み合わせて動作させて、例えば、疾患状態、医学的状態、またはいずれかの兆候の有無を評価するスコアを医師が使用できるようにするアルゴリズムを利用して推定スコアの分析及び提示を容易とするようにデザインされている。
【0093】
ベースシステム1304は、それぞれのアドオンモジュール1302(疾患特異的アルゴリズムを含む)が、次いで、病的状態または兆候状態を評価するためにインターフェイスする機能及び指示の基礎をを提供することができる。このベースシステム1304は、図13Aの実施例に示すように、ベース分析エンジンまたは分析器1306、ウェブサービスデータ転送API1308(「DTAPI」1308として示す)、レポートデータベース1310、ウェブポータルサービスモジュール1313、及びデータリポジトリ111(112aとして示す)を含む。
【0094】
クラウドベースであり得るデータリポジトリ112aは、シグナル捕捉システム102(102bとして示す)からのデータを格納する。生物物理学的シグナル捕捉システム102bは、一部の実施形態では、7チャンネルのリードセット及び光電式容積脈波記録法(PPG)センサーが確実に固定された(すなわち、取り外し不可能である)単一ユニットとしてデザインした再利用可能なデバイスである。シグナル捕捉システム102bは、そのハードウェア、ファームウェア、及びソフトウェアと共に、そこに入力された患者固有のメタデータ(例えば、氏名、性別、生年月日、医療記録番号、身長、及び体重など)を取集するための利用者インターフェイスを提供して、患者の電気的及び血行動態シグナルを同期的に取得する。シグナル捕捉システム102bは、メタデータ及びシグナルデータを、単一のデータパッケージとしてクラウドベースのデータリポジトリに直接に安全に送信し得る。データリポジトリ112aは、一部の実施形態では、患者固有のデータパッケージを受け入れて保存し、分析エンジンまたは分析器1306または1314によるその検索を可能とするように構成された安全なクラウドベースのデータベースである。
【0095】
ベース分析エンジンまたは分析器1306は、取得されたシグナルの品質評価を実行し得る(「SQA」モジュール1316を介して実行される)安全なクラウドベースの処理ツールであり、その結果を、診療現場で利用者に伝達することができる。ベース分析エンジンまたは分析器1306は、取得された生物物理学的シグナルの前処理(前処理モジュール1318を介して示す)も実行し得る(例えば、110-図1を参照されたい)。ウェブポータル1313は、医療従事者が、患者に関するレポートにアクセスできるようにデザインされた安全なウェブベースのポータルである。ウェブポータル1313の出力例を、視覚化1336によって示す。レポートデータベース(RD)1312は、安全なデータベースであり、病院または医師がホストするシステム、遠隔でホストするシステム、または遠隔電子健康記録システム(例えば、Epic、Cerner、Allscrips、CureMD、Kareoなど)などのその他のシステムと、安全に接続及び通信し得る。その結果、出力スコア(複数可)(例えば、118)及び関連情報が、患者の一般的な健康記録に統合されて保存される。一部の実施形態では、ウェブポータル1313は、コールセンターによってアクセスされ、電話を介して出力された臨床情報を提供する。データベース1312は、郵便、宅配便、手渡しなどを介して送達されるレポートを生成することができるその他のシステムによってアクセスされ得る。
【0096】
アドオンモジュール1302は、ベース分析エンジン(AE)または分析器1306と共に動作する第2の部分1314(本明細書では分析エンジン(AE)または分析器1314とも称され、「AEアドオンモジュール」1314として示される)を含む。分析エンジン(AE)または分析器1314は、所与の疾患特異的アルゴリズムの主関数ループ、例えば、特徴計算モジュール1320、分類器モデル1324(「アンサンブル」モジュール1324として示す)、ならびに外れ値評価及び除外モジュール1324(「外れ値検出」モジュール1324として示す)を含むことができる。特定のモジュラー構成では、分析エンジンまたは分析器(例えば、1306及び1314)は、単一の分析エンジンモジュール内に実装され得る。
【0097】
メイン関数ループは、(i)すべての必要な環境変数値が存在することを確認するために実行環境を検証する命令と、(ii)疾患特異的アルゴリズムを使用して、患者のスコアを計算するために、取得された生物物理学的シグナルを含む新たなシグナル捕捉データファイルを分析する分析パイプラインを実行する命令と、を含むことができる。分析パイプラインを実行するために、AEアドオンモジュール1314は、図1に関連して説明したように、様々な特徴モジュール114及び分類器モジュール116に対する命令を含み、実行して、患者の生理学的状態に関連するメトリックの出力スコア(例えば、118)を決定することができる。AEアドオンモジュール1314内の分析パイプラインは、特徴またはパラメーター(「特徴計算」1320として示す)を計算し、特徴に基づく外れ値と非外れ値のシグナルレベル応答に対する外れ値検出に関する応答を提供することで、計算された特徴が外れ値であるかどうかを識別する(「外れ値検出」1322として示す)ことができる。外れ値は、(モジュール116の)分類器を確立するために使用されるトレーニングデータセットに関して評価され得る。AEアドオンモジュール1314は、特徴及び分類器モデルの計算値を使用して、患者の出力スコア(例えば、118)を(例えば、分類器モジュール1324を介して)生成し得る。上昇したLVEDPの推定のための評価アルゴリズムの例として、出力スコア(例えば、118)は、LVEDPスコアである。
【0098】
臨床評価システム1300は、ウェブサービスDTAPI 1308(一部の実施形態ではHCPPウェブサービスと称することもあり得る)を使用して、コンポーネント内、及びコンポーネント全体でデータを管理することができる。DTAPI 1308は、データリポジトリ112aから取得された生物物理学的データセットを検索し、シグナル品質分析結果をDTAPI 1308に格納するために使用し得る。DTAPI 1308を起動して、格納された生物物理学的データファイルを取り出して分析エンジンまたは分析器(例えば、1306、1314)に提供することができ、分析エンジンによる患者シグナルの分析結果は、DTAPI 1308を使用してレポートデータベース1310に転送され得る。また、DTAPI 1308は、医療従事者からの要求に応じて、所与の患者データセットを、ウェブポータルモジュール1313に提供するために使用して、ウェブポータルモジュール1313は、医療従事者に対して、安全なウェブアクセス可能なインターフェイスで検討及び解釈のためのレポートを提示し得る。
【0099】
臨床評価システム1300は、周期変動性関連特徴120及び特徴モジュール122の様々なその他の特徴を格納する1つ以上の特徴ライブラリ1326を含む。特徴ライブラリ1326は、アドオンモジュール1302(図13Aに示すように)またはベースシステム1304(図示せず)の一部であってもよく、一部の実施形態では、AEアドオンモジュール1314によってアクセスされる。
【0100】
モジュールのモジュール性、及び様々な構成のさらなる詳細は、代理人整理番号が10321-060pvlであり、「Modular Disease Assessment System」と題され、本願と同時に出願された米国仮特許出願に記載されており、同出願の全内容は、参照により、本明細書に組み込まれる。
【0101】
モジュール式臨床評価システム操作実施例
【0102】
図13Bは、例示的な実施形態に従った、図13Aの臨床評価システム1300の分析エンジンまたは分析装置(例えば、1306及び1314)の動作、及びワークフローの概略図を示す。
【0103】
シグナル品質評価/除外(1330)。図13Bを参照すると、ベース分析エンジンまたは分析器1306は、SQAモジュール1316を介して、分析パイプラインが実行する間に取得された生物物理学的シグナルデータセットの品質を評価する(1330)。評価の結果(合格/不合格など)は、利用者が読み取るために、シグナル捕捉システムの利用者インターフェイスに直ちに返信される。シグナル品質要件を満たす取得されたシグナルデータは、許容可能(すなわち、「合格」)とみなされ、さらに処理され、AEアドオンモジュール1314によって、病的状態または兆候状態(例えば、上昇したLVEDPまたはmPAP、CAD、PH/PAH、異常なLVEF、HFpEF)の存在に関連するメトリックの存在についての分析に供される。取得されたシグナルのうち、許容できないと判断されたものは除外とされ(例えば、「不合格」)、患者からさらなるシグナルを直ちに取得するように利用者に通知される(図2を参照されたい)。
【0104】
ベース分析エンジンまたは分析器1306は、シグナル品質に関して、電気シグナル及び血行動態シグナルに関して2組の評価を行う。電気シグナル評価(1330)は、電気シグナルが十分な長さであること、高周波ノイズ(例えば、170Hz超)がないこと、及び環境からの電力線ノイズがないことを確認する。血行動態シグナル評価(1330)は、血行動態データセットでの外れ値のパーセンテージが、事前に定義された閾値を下回っていること、及び血行動態データセットのシグナルは安定しており、または飽和パーセンテージ及び最大持続時間が、事前に定義された閾値を下回っていることを確認する。
【0105】
特徴値計算(1332)。AEアドオンモジュール1314は、特徴抽出及び計算を実行して、特徴出力値を計算する。LVEDPアルゴリズムの例では、AEアドオンモジュール1314は、一部の実施形態では、周期変動性関連特徴(例えば、モジュール120において生成する)を含む、18個の異なる特徴ファミリーに属する合計で446個の特徴出力(例えば、モジュール122及び120において生成する)を決定する。
【0106】
LVEDPアルゴリズムで使用される特徴、及びその他の特徴、及びそれらの特徴ファミリーを含む、様々な特徴のさらなる説明は、代理人整理番号が10321-048pvlであり、「Method and System to Non-Invasively Assess Elevated Left Ventricular End-Diastolic Pressure」と題され、本願と同時に出願された米国仮特許出願、代理人整理番号が10321-049pvlであり、「Methods and Systems for Engineering Visual Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本願と同時に出願された米国仮特許出願、代理人整理番号が10321-050pvlであり、「Methods and Systems for Engineering Power Spectral Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本願と同時に出願された米国仮特許出願、代理人整理番号が10321-051pvlであり、「Method and System for Engineering Rate-Related Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本願と同時に出願された米国仮特許出願、代理人整理番号が10321-052pvlであり、「Methods and Systems for Engineering Wavelet-Based Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本願と同時に出願された米国仮特許出願、代理人整理番号が10321-054pvlであり、「Methods and Systems for Engineering photoplethysmographic Waveform Features for Use in Characterizing Physiological Systems」と題され、本貫と同時に出願された米国仮特許出願、代理人整理番号が10321-055pvlであり、「Methods and Systems for Engineering Cardiac Waveform Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本貫と同時に出願された米国仮特許出願、代理人整理番号が10321-056pvlであり、「Methods and Systems for Engineering Conduction Deviation Features From Biophysical Signals for Use in Characterizing Physiological Systems」と題され、本貫と同時に出願された米国仮特許出願で行われており、これら出願の各々の全内容は、参照により、本明細書に組み込まれる。
【0107】
分類器出力計算(1334)。次いで、AEアドオンモジュール1314は、分類器モデル(例えば、機械学習分類器モデル)で計算された特徴出力を使用して、モデルスコアのセットを生成する。AEアドオンモジュール1314は、構成モデルのアンサンブルにおけるモデルスコアのセットを結合して、一部の実施形態では、LVEDPアルゴリズムの実施例では、式6に示すように、分類器モデルの出力を平均化する。
【数6】
【0108】
一部の実施形態では、分類器モデルは、「Discovering Novel Features to Use in Machine Learning Techniques, such as Machine Learning Techniques for Diagnosing Medical Conditions」と題された、米国特許公開第20190026430号、「Discovering Genomes to Use in Machine Learning Techniques,」と題された、米国特許公開第20190026431号に記載されたML技術に基づいて開発したモデルを含み得て、これらの出願の各々の全内容は、参照により、本明細書に組み込まれる。
【0109】
LVEDPアルゴリズムの実施例では、計算された特徴出力を使用して、13個の機械学習分類器モデルがそれぞれ計算される。これら13個の分類器モデルは、4つのElasticNet機械学習分類器モデル[9]、4つのRandomForestClassifier機械学習分類器モデル[10]、及び5つの極勾配ブースティング(XGB)分類器モデル[11]を含む。一部の実施形態では、年齢、性別、BMI値などの患者のメタデータ情報を使用し得る。アンサンブル推定の出力は、連続スコアとし得る。スコアは、ウェブポータル内での提示のための閾値を減算してゼロの閾値にシフトされ得る。閾値は、感度と特異度との間の相殺として選択され得る。閾値は、アルゴリズム内で定義されており、試験陽性(例えば、「LVEDP上昇の可能性が高い」)及び試験陰性(例えば、「LVEDP上昇の可能性が低い」)状態の判定点として使用し得る。
【0110】
一部の実施形態では、分析エンジンまたは分析器は、モデルスコアのセットを、ボディマス指数に基づいた調整、または年齢または性別に基づいた調整と融合させることができる。例えば、分析エンジンまたは分析器は、
【数6-1】
の形態を有する患者BMIのシグモイド関数を使用してモデル推定を平均化することができる。
【0111】
医師ポータル視覚化(1336)。患者のレポートは、取得された患者データ及びシグナル、ならびに疾患分析の結果の視覚化1336を含み得る。分析は、一部の実施形態では、レポート内の複数の図で提示される。図13Bに示す例では、視覚化1336は、スコア要約セクション1340(「患者LVEDPスコア要約」セクション1340として示す)、閾値セクション1342(「LVEDP閾値統計」セクション1342として示す)、及び頻度分布セクション1344(「頻度分布」セクション1308として示す)を含む。医療従事者、例えば、医師は、レポートを検討し、それを解釈して、疾患の診断を下したり治療計画を立案したりすることができる。
【0112】
ヘルスケアポータルは、所与の患者で取得されたシグナルデータセットが、シグナル品質基準を満たす場合、患者に関するレポートをリストし得る。レポートは、シグナル分析を実行できれば、疾患特異的な結果(例えば、上昇したLVEDP)が利用可能であることを示し得る。疾患特異的分析のための患者の推定スコア(視覚要素118a、118b、118cを介して示される)は、確立した閾値に対して解釈され得る。
【0113】
図13Bの例に示すスコア要約セクション1340では、患者のスコア118a、及び関連する閾値は、検査陽性と検査陰性との間の境界を表す定義した値「0」を有するバーの中心に位置する閾値を有するツートンカラーのバー(例えば、セクション1340に示す)に重ね合わせられる。閾値の左側は、薄い陰影の光で陰性の検査結果を示している(例えば、「上昇したLVEDPの可能性が低い」)のに対して、閾値の右側は、暗い陰影を付けて、陽性の検査結果(例えば、「上昇したLVEDPの可能性が高い」)を示し得る。
【0114】
閾値セクション1342は、患者スコア(例えば、118)の推定に関する感度及び特異度を定義する検証集団に対して提供した閾値のレポート統計を示す。閾値は、個々の患者のスコア(例えば、118)に関係なく、すべての検査で同じであり、陽性または陰性のすべてのスコアが、提供された感度及び特異度情報を考慮して正確性について解釈し得ることを意味する。スコアは、所与の疾患特異的分析に対しても、臨床評価の更新に伴って変化し得る。
【0115】
頻度分布セクション1344は、2つの検証集団(例えば、(i)偽陽性推定の可能性を示す上昇していない集団、及び(ii)偽陰性推定の可能性を示す上昇した集団)におけるすべての患者の分布を示す。グラフ(1346、1348)は、患者のテストパフォーマンス検証母集団に対する患者のスコア118(例えば、118b、118c)を解釈する事情背景を提供するために、円滑なヒストグラムとして提示される。
【0116】
頻度分布セクション1340は、スコア(118b)を示す第1のグラフ1346(「上昇していないLVEDP集団」1346として示す)と、スコア(118c)を示す第2のグラフ1348(「上昇したLVEDP集団」1348として示す)とを含む。第1のグラフ1346は、その疾患、病態、または兆候の非存在を有する検証集団の分布内で、その疾患、病態、または兆候の非存在の尤度を示す。第2のグラフ1348は、その疾患、病態、または兆候の存在を有する検証集団の分布内で、その疾患、病態、または兆候の存在の尤度を示す。上昇したLVDEPの評価の例では、第1のグラフ1346は、真陰性(TN)及び偽陽性(FP)領域を識別する検証母集団の非上昇LVEDP分布を示す。第2のグラフ1348は、偽陰性(TN)及び真陽性(FP)領域を識別する検証母集団の上昇したLVEDP分布を示す。
【0117】
頻度分布セクション1340は、検証母集団群でのその他の患者に関する患者のスコアの解釈テキスト(百分率として)も含む。この例では、患者のLVEDPスコアは、-0.08であり、これは、LVEDP閾値の左側にあり、患者が、「上昇していないLVEDPである可能性が高い」ことを示している。
【0118】
レポートは、ヘルスケアポータルに提示され得るものであり、例えば、左心不全の兆候に関する診断において医師または医療従事者が使用する。兆候は、一部の実施形態では、疾患の存在に関する確率または重症度スコア、医学的状態、またはいずれかの兆候を含む。
【0119】
外れ値評価及び除外検出(1338)。AEアドオンモジュール1314が、特徴値出力を計算すること(プロセス1332で)に続いて、分類器モデルへのそれらの適用に先立って(プロセス1334で)、AEアドオンモジュール1314は、一部の実施形態において、特徴値出力の外れ値分析(プロセス1338で示す)を実行するように構成される。外れ値分析評価プロセス1338は、一部の実施形態では、機械学習した外れ値検出モジュール(ODM)を実行し、検証及びトレーニングデータから生成した特徴値を参照して、異常な特徴出力値を識別及び除外して、取得された異常な生物物理学的シグナルを識別及び除外する。外れ値検出モジュールは、観察から漏れている分布外にある孤立した領域の疎なクラスター内に存在する外れ値を評価する。プロセス1338は、外れ値シグナルが分類器モデルに不適切に利用されて、患者または医療従事者が不正確な評価を生成してしまうリスクを低減することができる。外れ値モジュールの精度は、ホールドアウト検証セットを使用して検証され、ODMは、許容可能な外れ値検出率(ODR)一般化により、試験セット内のすべての標識を付けた外れ値を識別できる。
【0120】
方法及びシステムは、特定の実施形態及び特定の実施例に関連して説明されてきたが、本明細書に記載の実施形態は、あらゆる点で制限的ではなく、例示であることを意図しているので、その範囲を記載した特定の実施形態に限定することを意図するものではない。本明細書に記載した周期変動性関連特徴は、最終的には、類似した、またはその他の開発手法を使用して、例えば、冠状動脈疾患、肺高血圧症、及びその他の医学的状態など、本明細書に記載したようなその他の疾患、医学的状態、またはいずれかの兆候の有無及び/または重症度の非侵襲診断または判定を行う、または医師またはその他の医療従事者を補助するために使用し得る。加えて、周期変動性関連の特徴を含む分析例は、その他の心臓関連病状及び兆候状態、ならびに神経学的関連病状及び兆候状態の診断及び治療に使用することができ、そのような評価は、生体の任意の関連システムにおいて、生物物理学的シグナルが関連する病態に関与する医学的病状または兆候状態の診断及び治療(外科的、低侵襲、及び/または薬理学的治療を含む)に利用することができる。心臓に関連する一例は、CAD、及び本明細書に記載したその他の疾患、医学的状態、または兆候状態の診断、ならびに、冠状動脈へのステントの留置、アテローム切除術の実施、血管形成術、薬物療法の実施、及び/または運動の実施、栄養、及びその他のライフスタイルの変化などの、単独で、または組み合わせによる任意の数の療法によるその治療である。診断され得るその他の心臓関連の医学的状態または兆候状態として、例えば、不整脈、鬱血性心不全、弁不全、肺高血圧症(例えば、肺動脈高血圧症、左心室疾患に起因する肺高血圧症、肺疾患に起因する肺高血圧症、慢性血栓に起因する肺高血圧症、及び血液またはその他の障害などのその他の疾患に起因する肺高血圧症)、ならびに、病態及び/または疾患を示すその他の心臓関連の医学的状態がある。診断され得る神経関連疾患、病的状態、または兆候状態の例として、限定を意図するものではないが、例えば、てんかん、統合失調症、パーキンソン病、アルツハイマー病(及び、その他のすべての形態の認知症)、自閉症スペクトラム(アスペルガー症候群を含む)、注意欠陥多動性障害、ハンチントン病、筋ジストロフィー、鬱病、双極性障害、脳/脊髄腫瘍(悪性及び良性)、運動障害、認知障害、言語障害、様々な精神病、脳/脊髄/神経損傷、慢性外傷性脳症、群発頭痛、片頭痛、神経障害(末梢神経障害などの様々な形態)、幻肢/疼痛、慢性疲労症候群、急性及び/または慢性の疼痛(背痛、脊椎手術後疼痛症候群など)ジスキネジア、不安障害、感染症または外来物質に起因する兆候状態(ライム病、脳炎、狂犬病など)、ナルコレプシー、及びその他の睡眠障害、心的外傷後ストレス障害、脳卒中、動脈瘤、出血性損傷などに関連する神経学的病態/影響、耳鳴り、及びその他の聴覚関連疾患/兆候状態、及び視覚関連疾患/兆候状態がある。
【0121】
加えて、本明細書に記載した臨床評価システムは、心電図(ECG)、脳波(EEG)、ガンマ同期、呼吸機能シグナル、血中酸素濃度計シグナル、灌流データシグナルなどの生物物理学的シグナル;準周期的生物学的シグナル、胎児ECGシグナル、血圧シグナル;とりわけ、心臓磁場シグナル、心拍数シグナルなどを分析するように構成され得る。
【0122】
本明細書に開示された例示的な方法及びシステムと共に使用され得るさらなるプロセスの例として、米国特許番号9,289,150号;9,655,536;9,968,275;8,923,958;9,408,543;9,955,883;9,737,229;10,039,468;9,597,021;9,968,265;9,910,964;10,672,518;10,566,091;10,566,092;10,542,897;10,362,950;10,292,596;10,806,349;米国特許公開番号2020/0335217;2020/0229724;2019/0214137;2018/0249960;2019/0200893;2019/0384757;2020/0211713;2019/0365265;2020/0205739;2020/0205745;2019/0026430;2019/0026431;PCT公開番号WO2017/033164;WO2017/221221;WO2019/130272;WO2018/158749;WO2019/077414;WO2019/130273;WO2019/244043;WO2020/136569;WO2019/234587;WO2020/136570;WO2020/136571号;米国特許出願第16/831,264;16/831,380;17/132869;PCT出願第PCT/IB2020/052889;PCT/IB2020/052890があり、これらのそれぞれの全内容は、参照により、本明細書に組み込まれる。
図1
図2
図3A
図3B
図4
図5
図6
図7A
図7B
図7C
図8A
図8B
図9A
図9B
図9C
図10
図11
図12A
図12B
図13A
図13B
【国際調査報告】