IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デピュイ・アイルランド・アンリミテッド・カンパニーの特許一覧

特表2024-503314患者の骨における人工股関節の位置を決定するための装置、システム、及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-25
(54)【発明の名称】患者の骨における人工股関節の位置を決定するための装置、システム、及び方法
(51)【国際特許分類】
   A61F 2/32 20060101AFI20240118BHJP
   A61F 2/34 20060101ALI20240118BHJP
   A61F 2/36 20060101ALI20240118BHJP
   A61B 34/10 20160101ALI20240118BHJP
【FI】
A61F2/32
A61F2/34
A61F2/36
A61B34/10
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023540057
(86)(22)【出願日】2021-12-31
(85)【翻訳文提出日】2023-08-09
(86)【国際出願番号】 EP2021087907
(87)【国際公開番号】W WO2022144448
(87)【国際公開日】2022-07-07
(31)【優先権主張番号】63/132,991
(32)【優先日】2020-12-31
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】516312682
【氏名又は名称】デピュイ・アイルランド・アンリミテッド・カンパニー
【氏名又は名称原語表記】DEPUY IRELAND UNLIMITED COMPANY
【住所又は居所原語表記】Loughbeg Industrial Estate, Ringaskiddy, County Cork, Ireland
(74)【代理人】
【識別番号】100088605
【弁理士】
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【弁理士】
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】ドレスラー・マシュー・アール
(72)【発明者】
【氏名】クラリー・チャド
(72)【発明者】
【氏名】フィッツパトリック・クレア・ケイ
(72)【発明者】
【氏名】マイヤーズ・ケイシー・エイ
(72)【発明者】
【氏名】ルルケッター・ポール・ジェイ
【テーマコード(参考)】
4C097
【Fターム(参考)】
4C097AA04
4C097AA05
4C097AA06
4C097BB01
4C097CC12
4C097DD01
4C097DD09
4C097EE13
4C097SC03
4C097SC05
(57)【要約】
患者の骨内の人工股関節の位置を決定するための装置、システム、及び方法は、力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と患者に埋め込まれる寛骨臼カップのカップライナとの間の接触点のセットを決定することを含む。力学モデルは、ADLのセットの実行中に、又は患者の対応する機能的位置において示される股関節の機械的動作を示す。いくつかの実施形態では、数学的モデルは、力学モデルを使用して決定された接触点の複数のセットに基づいて生成され、その後、得られた接触点のセットを決定するために使用され得る。
【特許請求の範囲】
【請求項1】
患者の寛骨臼内の人工股関節の位置を決定するためのシステムであって、
1つ以上のプロセッサと、
前記1つ以上のプロセッサに通信可能に連結された1つ以上のメモリであって、前記1つ以上のプロセッサによる実行に応答して、前記システムに、
対応する機能的位置に配置された前記患者の医療用画像を含む、前記患者の股関節の医療用画像のセットを取得することと、
前記患者の骨盤の骨盤傾斜測定値を、前記医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値が、前記股関節が対応する機能的位置に配置されるときの前記患者の前記股関節の可動域を示す、ことと、
前記人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、
前記患者の前記機能的位置のそれぞれについての前記大腿骨プロテーゼの大腿骨頭と前記寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、前記第1の数学的モデルへの入力として前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズ並びに前記骨盤傾斜測定値を使用して、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重を引き起こさない、前記医療用画像のセットに示された前記患者の前記寛骨臼に対する前記寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、
前記セーフゾーン境界のグラフをディスプレイ上に表示することと、を行わせる命令を含む、メモリと、を備える、システム。
【請求項2】
前記セーフゾーン境界を決定することが、
前記第1の数学的モデルの出力として、前記患者の各々の機能的位置についての前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の得られた接触点のセットを生成することと、前記骨盤傾斜測定値を前記第1の数学的モデルへの入力として使用することと、
前記寛骨臼カップの端部荷重をそれぞれもたらす、前記第1の数学的モデルによって生成された前記得られた接触点のセットのうちの接触点のサブセットを、前記接触点のサブセットのうちの対応する接触点のセットのうちの少なくとも1つの接触点と、前記寛骨臼カップの前記カップライナの端部との間の距離に基づいて識別することと、を含み、前記セーフゾーン境界が、前記接触点のサブセットに基づく、請求項1に記載のシステム。
【請求項3】
前記セーフゾーン境界を決定することが、前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズと、骨盤傾斜測定値の範囲の各々の測定値と、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲の各々の向きと、を、その入力として使用する静止力学モデルに基づいて、前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の接触点の複数のセットを決定することを含み、
前記静止力学モデルが、前記患者が前記機能的位置の各々に配置されている間の前記大腿骨プロテーゼによる前記寛骨臼カップの前記荷重を示し、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、
前記接触点の前記複数のセットのうちの接触点の各々のセットが、(i)前記静止力学モデルへの入力としての、前記寛骨臼カップの前記向きの範囲における前記寛骨臼カップの向きと、(ii)前記骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応する、
請求項1に記載のシステム。
【請求項4】
前記複数の命令が、前記1つ以上のプロセッサによる実行に応答して、前記システムに、
接触点の各々のセットの少なくとも1つの最も外側の接触点と、前記寛骨臼カップの前記カップライナの前記端部との間の距離を決定することと、
前記決定された距離に基づいて、前記寛骨臼カップの好ましい向きを識別することと、を更に行わせる、
請求項3に記載のシステム。
【請求項5】
前記複数の命令が、前記1つ以上のプロセッサによる実行に応答して、前記システムに、前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記大腿骨プロテーゼ及び前記寛骨臼カップのインピンジメントフリー可動域を、前記患者の前記機能的位置の各々における前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域の第2の数学的モデルに基づき、前記第2の数学的モデルへの入力として前記人工股関節の幾何学的測定値を使用して、決定することと、
前記セーフゾーン境界内の前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記インピンジメントフリー可動域の印を、前記ディスプレイ上に表示することと、を更に行わせる、
請求項1に記載のシステム。
【請求項6】
前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記第2の数学的モデルの出力として、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲のうちの各々の向きについて得られたインピンジメントフリー可動域を生成することであって、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含む、ことと、
前記得られたインピンジメントフリー可動域のサブセットを決定することであって、前記得られたインピンジメントフリー可動域の前記サブセットのうちの各々のインピンジメントフリー可動域が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットのうちの向きに対応する、ことと、
を含む、請求項5に記載のシステム。
【請求項7】
前記人工股関節の前記幾何学的測定値が、前記寛骨臼カップの内側寸法、前記寛骨臼カップの外側寸法、前記寛骨臼カップの前記カップライナの内側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、前記寛骨臼カップの前記カップライナの外側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、及び前記大腿骨プロテーゼの頸部角度を含む、請求項5に記載のシステム。
【請求項8】
前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、前記大腿骨プロテーゼの三次元モデル及び前記寛骨臼カップの三次元モデルに基づいて、前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することを含む、請求項5に記載のシステム。
【請求項9】
前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、前記ステム回転値の複数のセットのうちのステム回転値の各々のセットが、(i)前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲における前記寛骨臼カップの向きと、(ii)前記人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、前記寛骨臼カップの前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、前記幾何学的測定値の範囲が、前記人工股関節の前記幾何学的測定値を含む、ことと、
前記寛骨臼カップの前記向きと前記幾何学的測定値のセットとの各々の組み合わせについて、前記それぞれの組み合わせに対応する前記ステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、
を含む、請求項5に記載のシステム。
【請求項10】
前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の前記複数のセットを決定することが、
各々の異なる組み合わせについて、前記寛骨臼カップの三次元モデルに対する初期位置から、前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する最終位置まで、前記大腿骨プロテーゼの三次元モデルを移動させることであって、前記大腿骨プロテーゼの前記三次元モデル及び前記寛骨臼カップの前記三次元モデルが、前記各々の異なる組み合わせの幾何学的測定値の対応するセットに基づいている、ことと、
前記大腿骨プロテーゼの前記三次元モデルの前記初期位置を更新することと、
各々の異なる組み合わせについて、前記更新された初期位置から前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する別の最終位置まで、前記大腿骨プロテーゼの前記三次元モデルを移動させることと、
を含む、請求項9に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2020年12月31日に出願された「APPARATUS,SYSTEM,AND METHOD FOR DETERMINING A POSITION OF A HIP PROSTHESIS IN A BONE OF A PATIENT」と題する米国仮特許出願第63/132,991号に対する、米国特許法第119条(e)の下での優先権を主張し、この仮特許出願は、その全体が、参照により本明細書に組み込まれる。
【0002】
(発明の分野)
本開示は、一般的に、整形外科手術の実施において使用するためのコンピュータ支援手術システムに関し、より具体的には、患者の骨内の人工股関節の位置を決定するための技術に関する。
【背景技術】
【0003】
関節形成術は、病変した生体関節及び/又は損傷した生体関節が人工関節によって置換される、周知の外科手術である。例えば、股関節形成外科処置では、患者の自然の股関節の臼状関節を部分的又は全体的に人工股関節で置換する。典型的な人工股関節は、寛骨臼プロテーゼコンポーネント及び大腿骨コンポーネントプロテーゼを含んでいる。寛骨臼プロテーゼコンポーネントは、患者の寛骨臼内に埋め込まれ、一般的には、寛骨臼に係合するように構成された外側シェルと、シェルに結合された内側ベアリング又はカップライナとを含む。大腿骨コンポーネントプロテーゼは、患者の大腿骨に埋め込まれ、一般に、大腿骨の髄管に埋め込まれたステムコンポーネントと、大腿骨頭コンポーネントとを含む。大腿骨頭コンポーネントは、寛骨臼のカップライナと係合して、自然の股関節に近い臼状関節を形成するように構成されている。
【0004】
典型的には、整形外科医は、例えば人工股関節の配置を決定するために、ある程度の術前計画を行うことがある。そのような術前計画は、患者の検査及び/又は患者の骨の解剖学的構造の手術前に撮影した医療用画像に基づいて、整形外科医によって手動で実行され得る。しかしながら、そのような術前計画は、典型的には、整形外科医に、患者の股関節機構の理解を提供することができず、それによって、人工股関節の予め計画された位置の決定から生じ得る人工股関節の性能を発揮させることができない。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するためのシステムであって、1つ以上のプロセッサと、1つ以上のプロセッサに通信可能に連結された1つ以上のメモリとを備えるシステムが提供される。1つ以上のメモリは、1つ以上のプロセッサによる実行に応答して、システムに、患者の股関節の医療用画像のセットを取得することと、患者の骨盤の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点のセットを、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きを一般的な日常生活動作(activities-of-daily-living,ADL)力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、決定することであって、一般的なADL力学モデルは、ADLのセットの実行中に示された股関節の機械的運動を示す、ことと、接触点のセットに基づいて接触プロットを生成することと、を行わせる命令を含んでもよい。接触プロットは、接触点のセット内の各々の接触点についての印を含んでいてよく、接触プロットをディスプレイ上に表示してもよい。
【0006】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、患者が着座している間の患者の股関節の矢状面医療用画像、及び患者が対側脚を屈曲位置にして直立している間の患者の股関節の矢状面医療用画像を含んでもよい。
【0007】
加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。そのような実施形態では、複数の解剖学的ランドマークを識別することは、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて、そのような実施形態では、複数の解剖学的ランドマークを識別することは、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。更に、そのような実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することを含んでもよい。
【0008】
いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、傾斜測定値に基づいて患者の股関節の骨盤可動性を決定することを更に行わせる。そのような実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、骨盤可動性、並びに寛骨臼カップの向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、接触点のセットを決定することを含んでもよい。
【0009】
加えて、いくつかの実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの複数の向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的ADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応してもよい。そのような実施形態では、接触プロットを生成することは、複数の接触点のうちの接触点の各々のセットに対して接触プロットを生成することを含んでもよい。加えて、各々の接触プロットは、接触点の対応するセット内の各々の接触点についての印を含んでもよい。
【0010】
いくつかの実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜値の複数のセット、並びに患者の寛骨臼に対する寛骨臼カップの複数の向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力であって、接触点の複数のセットに基づいて数学的モデルを生成するための入力としての、寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きと、骨盤傾斜値の複数のセットのうちの骨盤傾斜値の異なるセットとに対応してもよい。数学的モデルは、接触点の複数のセットのモデルとして具現化されてもよく、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されている。そのような実施形態では、接触点のセットを決定することは、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点のセットを決定することを含んでもよい。加えて、そのような実施形態では、接触点のセットを決定することは、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを生成することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。数学的モデルは、対応する接触点のセットを生成するためにADL力学モデルに必要とされる期間よりも短い期間で、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されてもよい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0011】
加えて、いくつかの実施形態では、接触点のセットを決定することは、ADLのセットの各々のADL行動について、接触点のセットのうちの接触点のサブセットを決定することを含んでもよい。接触点のセットは、各々の対応するADL行動についての接触点のサブセットを含んでもよい。そのような実施形態では、各々のADL行動についての接触点のサブセットを決定することは、各々のADL行動を複数の期間に時間的に離散化することと、傾斜測定値に基づいて、複数の期間のうちの各々の期間の間の患者の大腿骨と患者の寛骨臼との間の角度を決定することと、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズと、骨盤傾斜測定値と、寛骨臼カップの向きと、対応する期間について決定された角度とを一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、複数の期間のうちの各々の期間についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点を決定することと、を含んでもよい。
【0012】
いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することを更に行わせてもよい。そのような実施形態では、インピンジメントフリー可動域を決定することは、患者の大腿骨に対する大腿骨プロテーゼの複数の向きと、患者の寛骨臼に対する寛骨臼カップの複数の向きとに基づいて、インピンジメントフリー可動域を決定することを含んでもよい。加えて、そのような実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、ディスプレイのインピンジメントフリー可動域の印を表示することを更に行わせてもよい。
【0013】
加えて、いくつかの実施形態では、接触点のセットを決定することは、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。複数の命令は、1つ以上のプロセッサによる実行に応答して、それぞれが寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて識別することを更に行わせてもよい。そのような実施形態では、接触プロットを生成することは、端部荷重をもたらさない接触点の各々のセットに対して接触プロットを生成することを含んでもよく、接触プロットを表示することは、生成された各々の接触プロットを表示することを含んでもよい。加えて、そのような実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの接触点のサブセットに対応する寛骨臼カップの異なる向きに基づいて、端部荷重境界を決定させ、端部荷重境界の印をディスプレイ上に表示することを更に行わせる。
【0014】
いくつかの実施形態では、接触点のセットを決定することは、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。加えて、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定させ、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することを更に行わせてもよい。そのような実施形態では、接触プロットを生成することは、好ましい向きに対応する接触点のセットに対して接触プロットを生成することを含んでもよい。
【0015】
いくつかの実施形態では、各々の印のサイズは、対応する接触点に関連付けられた、大腿骨プロテーゼと寛骨臼カップとの間の荷重に基づいて決定されてもよい。加えて又は代替的に、各々の印の色は、対応する接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて決定されてもよい。
【0016】
更に、いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、患者の寛骨臼に対する寛骨臼カップの向きの選択を受信させ、寛骨臼カップの選択された向きに対応する接触プロットをディスプレイ上に表示することを更に行わせてもよい。
【0017】
本開示の別の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するための方法は、コンピュータシステムによって、患者の股関節の医療用画像のセットを取得することと、コンピュータシステムによって、患者の骨盤の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、コンピュータシステムによって、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、コンピュータシステムによって、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点のセットを、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、決定することであって、一般的なADL力学モデルは、ADLのセットの実行中に示された股関節の機械的運動を示す、ことと、コンピュータシステムによって、接触点のセットに基づいて、接触点のセット内の各々の接触点についての印を含む接触プロットを生成することと、コンピュータシステムによって、接触プロットをディスプレイ上に表示することと、を含んでもよい。
【0018】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、患者が着座している間の患者の股関節の矢状面医療用画像、及び患者が対側脚を屈曲位置にして直立している間の患者の股関節の矢状面医療用画像を含む。
【0019】
加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、コンピュータシステムによって、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。そのような実施形態では、複数の解剖学的ランドマークを識別することは、コンピュータシステムによって、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて又は代替的に、複数の解剖学的ランドマークを識別することは、コンピュータシステムによって、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。加えて、そのような実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することを含んでもよい。
【0020】
本方法は、いくつかの実施形態では、コンピュータシステムによって、傾斜測定値に基づいて、患者の股関節の骨盤可動性を決定することを含んでもよい。そのような実施形態では、接触点のセットを決定することは、コンピュータシステムによって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、骨盤可動性、並びに寛骨臼カップの向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、接触点のセットを決定することを含んでもよい。
【0021】
加えて、いくつかの実施形態では、接触点のセットを決定することは、コンピュータシステムによって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの複数の向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的ADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応してもよい。そのような実施形態では、接触プロットを生成することは、コンピュータシステムによって、複数の接触点の、接触点の各々のセットに対して接触プロットを生成することを含んでもよい。各々の接触プロットは、接触点の対応するセット内の各々の接触点についての印を含んでもよい。
【0022】
いくつかの実施形態では、接触点のセットを決定することは、コンピュータシステムによって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズと、骨盤傾斜値の複数のセットと、患者の寛骨臼に対する寛骨臼カップの複数の向きとをその入力として使用する一般的ADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することであって、接触点の複数のセットのうちの接触点の各々のセットは、寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向き、及び骨盤傾斜値の複数のセットのうちの骨盤傾斜値の異なるセットに対応する、ことと、コンピュータシステムによって、数学的モデルを、接触点の複数のセットに基づいて生成することと、を含んでもよい。数学的モデルは、接触点の複数のセットのモデルであってもよく、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されている。そのような実施形態では、接触点のセットを決定することは、コンピュータシステムによって、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点のセットを決定することを含んでもよい。加えて、そのような実施形態では、接触点のセットを決定することは、コンピュータシステムによって、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを生成することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。
【0023】
加えて、いくつかの実施形態では、接触点のセットを決定することは、コンピュータシステムによって、ADLのセットの各々のADL行動についいての接触点のセットのうちの接触点のサブセットを決定することを含んでもよい。接触点のセットは、各々の対応するADL行動についての接触点のサブセットを含んでもよい。そのような実施形態では、各々のADL行動に対して接触点のサブセットを決定することは、コンピュータシステムによって、各々のADL活動を複数の期間に時間的に離散化することと、コンピュータシステムによって、傾斜測定値に基づいて、複数の期間のうちの各々の期間の間の患者の大腿骨と患者の寛骨臼との間の角度を決定することと、コンピュータシステムによって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズと、骨盤傾斜測定値と、寛骨臼カップの向きと、対応する期間について決定された角度とを一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、複数の期間のうちの各々の期間についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点を決定することと、を含んでもよい。
【0024】
本方法は、コンピュータシステムによって、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することを更に含んでもよい。そのような実施形態では、インピンジメントフリー可動域を決定することは、コンピュータシステムによって、患者の大腿骨に対する大腿骨プロテーゼの複数の向きと、患者の寛骨臼に対する寛骨臼カップの複数の向きとに基づいて、インピンジメントフリー可動域を決定することを含んでもよい。加えて、そのような実施形態では、本方法は更に、コンピュータシステムによって、ディスプレイのインピンジメントフリー可動域の印を表示することを含んでもよい。
【0025】
いくつかの実施形態では、接触点のセットを決定することは、コンピュータシステムによって、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。加えて、本方法は、コンピュータシステムによって、それぞれが寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの、接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて識別することを含んでもよい。そのような実施形態では、接触プロットを生成することは、コンピュータシステムによって、端部荷重をもたらさない接触点の各々のセットに対する接触プロットを生成することを含んでもよく、接触プロットを表示することは、生成された各々の接触プロットを表示することを含んでもよい。加えて、そのような実施形態では、本方法は更に、寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの接触点のサブセットに基づいて端部荷重境界を決定することと、コンピュータシステムによって、端部荷重境界の印をディスプレイ上に表示することと、を含んでもよい。
【0026】
加えて、いくつかの実施形態では、接触点のセットを決定することは、コンピュータシステムによって、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。方法は更に、コンピュータシステムによって、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定することと、コンピュータシステムによって、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することと、を含んでもよい。そのような実施形態では、接触プロットを生成することは、コンピュータシステムによって、好ましい向きに対応する接触点のセットに対して接触プロットを生成することを含んでもよい。
【0027】
いくつかの実施形態では、各々の印のサイズは、対応する接触点に関連付けられた、大腿骨プロテーゼと寛骨臼カップとの間の荷重に基づいてもよい。加えて、各々の印の色は、対応する接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて決定されてもよい。更に、いくつかの実施形態では、本方法はまた、コンピュータシステムによって、患者の寛骨臼に対する寛骨臼カップの向きの選択を受信することと、コンピュータシステムによって、寛骨臼カップの選択された向きに対応する接触プロットをディスプレイ上に表示することと、を含んでもよい。
【0028】
本開示のまた更なる態様によれば、1つ以上の非一時的機械可読記憶媒体は、実行に応答して、コンピュータシステムに、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点のセットを、大腿骨プロテーゼのタイプ及びサイズ並びに寛骨臼カップのタイプ及びサイズと、骨盤傾斜測定値と、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、決定することであって、一般的なADL力学モデルは、ADLのセットの実行中に示された股関節の機械的運動を示す、ことと、接触点のセットに基づいて、接触点のセット内の各々の接触点についての印を含む接触プロットを生成することと、接触プロットをディスプレイ上に表示することと、を行わせる、記憶された複数の命令を含む。
【0029】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、患者が着座している間の患者の股関節の矢状面医療用画像、及び患者が対側脚を屈曲位置にして直立している間の患者の股関節の矢状面医療用画像を含んでもよい。
【0030】
加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。そのような実施形態では、複数の解剖学的ランドマークを識別することは、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて、そのような実施形態では、複数の解剖学的ランドマークを識別することは、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。更に、そのような実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することを含んでもよい。
【0031】
いくつかの実施形態では、複数の命令は、実行に応答して、システムに、傾斜測定値に基づいて患者の股関節の骨盤可動性を決定することを更に行わせてもよい。そのような実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、骨盤可動性、並びに寛骨臼カップの向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、接触点のセットを決定することを含んでもよい。
【0032】
加えて、いくつかの実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの複数の向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的ADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応してもよい。そのような実施形態では、接触プロットを生成することは、複数の接触点の、接触点の各々のセットに対して接触プロットを生成することを含んでもよい。加えて、各々の接触プロットは、接触点の対応するセット内の各々の接触点についての印を含んでもよい。
【0033】
いくつかの実施形態では、接触点のセットを決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜値の複数のセット、並びに患者の寛骨臼に対する寛骨臼カップの複数の向きを、ADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力であって、接触点の複数のセットに基づいて数学的モデルを生成するための入力として使用される、寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きと、骨盤傾斜値の複数のセットのうちの骨盤傾斜値の異なるセットとに対応してもよい。数学的モデルは、接触点の複数のセットのモデルとして具現化されてもよく、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されている。そのような実施形態では、接触点のセットを決定することは、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点のセットを決定することを含んでもよい。加えて、そのような実施形態では、接触点のセットを決定することは、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを生成することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。数学的モデルは、対応する接触点のセットを生成するためにADL力学モデルに必要とされる期間よりも短い期間で、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されてもよい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0034】
加えて、いくつかの実施形態では、接触点のセットを決定することは、ADLのセットの各々のADL行動についての接触点のセットのうちの接触点のサブセットを決定することを含んでもよい。接触点のセットは、各々の対応するADL行動についての接触点のサブセットを含んでもよい。そのような実施形態では、各々のADL行動についての接触点のサブセットを決定することは、各々のADL行動を複数の期間に時間的に離散化することと、傾斜測定値に基づいて、複数の期間のうちの各々の期間の間の患者の大腿骨と患者の寛骨臼との間の角度を決定することと、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズと、骨盤傾斜測定値と、寛骨臼カップの向きと、対応する期間について決定された角度とを一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、複数の期間のうちの各々の期間についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点を決定することと、を含んでもよい。
【0035】
いくつかの実施形態では、複数の命令は、実行に応答して、システムに、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することを更に行わせてもよい。そのような実施形態では、インピンジメントフリー可動域を決定することは、患者の大腿骨に対する大腿骨プロテーゼの複数の向きと、患者の寛骨臼に対する寛骨臼カップの複数の向きとに基づいて、インピンジメントフリー可動域を決定することを含んでもよい。加えて、そのような実施形態では、複数の命令は、実行に応答して、システムに、ディスプレイのインピンジメントフリー可動域の印を表示することを更に行わせてもよい。
【0036】
加えて、いくつかの実施形態では、接触点のセットを決定することは、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。複数の命令は、実行に応答して、システムに、それぞれが寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて識別することを更に行わせてもよい。そのような実施形態では、接触プロットを生成することは、端部荷重をもたらさない接触点の各々のセットに対して接触プロットを生成することを含んでもよく、接触プロットを表示することは、生成された各々の接触プロットを表示することを含んでもよい。加えて、そのような実施形態では、複数の命令は、実行に応答して、システムに、寛骨臼カップの端部荷重をもたらす接触点の複数のセットのうちの接触点のサブセットに対応する寛骨臼カップの異なる向きに基づいて、端部荷重境界を決定させ、端部荷重境界の印をディスプレイ上に表示することを更に行わせてもよい。
【0037】
いくつかの実施形態では、接触点のセットを決定することは、一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応してもよい。加えて、複数の命令は、実行に応答して、システムに、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定させ、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することを更に行わせてもよい。そのような実施形態では、接触プロットを生成することは、好ましい向きに対応する接触点のセットに対して接触プロットを生成することを含んでもよい。
【0038】
いくつかの実施形態では、各々の印のサイズは、対応する接触点に関連付けられた、大腿骨プロテーゼと寛骨臼カップとの間の荷重に基づいて決定されてもよい。加えて又は代替的に、各々の印の色は、対応する接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて決定されてもよい。
【0039】
更に、いくつかの実施形態では、複数の命令は、実行に応答して、システムに、患者の寛骨臼に対する寛骨臼カップの向きの選択を受信させ、寛骨臼カップの選択された向きに対応する接触プロットをディスプレイ上に表示することを更に行わせてもよい。
【0040】
本開示のまた別の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するためのシステムは、1つ以上のプロセッサと、1つ以上のプロセッサに通信可能に連結された1つ以上のメモリとを備え得る。1つ以上のメモリは、1つ以上のプロセッサによる実行に応答して、システムに、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを、大腿骨プロテーゼのタイプ及びサイズ並びに寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの複数の向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用するADL力学モデルに基づいて、決定することであって、接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応する、ことと、複数の接触点の接触点の各々のセットに対する接触プロットを生成することであって、その各々が対応する接触点のセット内の各々の接触点についての印を含む、ことと接触プロットに基づいて、患者の寛骨臼に対する寛骨臼カップの計画された向きを術前に識別することと、患者の股関節での整形外科手術の実行中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと、大腿骨プロテーゼのタイプ及びサイズ、寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの現在の向きをADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の別のセットを決定することと、接触点の別のセットのための別の接触プロットを生成することであって、接触点の別のセット内の各々の接触点についての印を含む、ことと、ディスプレイ上にその別の接触プロットを表示することと、を行わせる命令を含んでもよい。
【0041】
いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、患者の寛骨臼に対する寛骨臼カップの計画された向きと、患者の寛骨臼に対する寛骨臼カップの現在の向きとの間の差の印を表示することを更に行わせてもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することと、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することと、を含んでもよい。
【0042】
加えて、いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、傾斜測定値に基づいて患者の股関節の骨盤可動性を決定することを更に行わせてもよい。そのような実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、骨盤可動性を一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、接触点の複数のセット及び接触点の別のセットの各々を決定することを含んでもよい。
【0043】
更に、いくつかの実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、接触点の複数のセットに基づく数学的モデルを生成することであって、数学的モデルは、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成し、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点の複数のセット及び接触点の別のセットのそれぞれを決定するように構成されていることと、を含んでもよい。数学的モデルは、対応する接触点のセットを生成するためにADL力学モデルに必要とされる期間よりも短い期間で、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されてもよい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0044】
本開示のまた別の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するための方法は、コンピュータシステムによって、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、コンピュータシステムによって、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを、大腿骨プロテーゼのタイプ及びサイズ並びに寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの複数の向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用するADL力学モデルに基づいて、決定することであって、接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応する、ことと、コンピュータシステムによって、複数の接触点の接触点の各々のセットに対する接触プロットを生成することであって、各々が対応する接触点セット内の各々の接触点についての印を含む、ことと、コンピュータシステムによって、接触プロットに基づいて、患者の寛骨臼に対する寛骨臼カップの計画された向きを術前に識別することと、コンピュータシステムによって、患者の股関節での整形外科手術の実行中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと、コンピュータシステムによって、大腿骨プロテーゼのタイプ及びサイズ、寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの現在の向きをADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の別のセットを決定することと、コンピュータシステムによって、接触点の別のセットについての別の接触プロットであって、接触点の別のセット内の各々の接触点に対する印を含む別の接触プロットを生成することと、コンピュータシステムによって、別の接触プロットをディスプレイ上に表示させることと、を含んでもよい。
【0045】
いくつかの実施形態では、本方法はまた、患者の寛骨臼に対する寛骨臼カップの計画された向きと、患者の寛骨臼に対する寛骨臼カップの現在の向きとの間の差の印を表示することを含んでもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、コンピュータシステムによって、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することと、コンピュータシステムによって、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することと、を含んでもよい。
【0046】
本方法はまた、いくつかの実施形態では、コンピュータシステムによって、傾斜測定値に基づいて、患者の股関節の骨盤可動性を決定することを含んでもよい。そのような実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、コンピュータシステムによって、骨盤可動性を一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、接触点の複数のセット及び接触点の別のセットの各々を決定することを含んでもよい。
【0047】
加えて、いくつかの実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、コンピュータシステムによって、接触点の複数のセットに基づく数学的モデルであって、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成するように構成されている数学的モデルを生成することと、コンピュータシステムによって、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点の複数のセット及び接触点の別のセットのそれぞれを決定することと、を含んでもよい。
【0048】
本開示のまた別の一態様によれば、1つ以上の非一時的機械可読記憶媒体は、実行に応答して、コンピュータシステムに、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを、大腿骨プロテーゼのタイプ及びサイズ並びに寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの複数の向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用するADL力学モデルに基づいて、決定することであって、接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応する、ことと、複数の接触点の接触点の各々のセットに対する接触プロットを生成することであって、各々が対応する接触点のセット内の各々の接触点についての印を含む、ことと、接触プロットに基づいて、患者の寛骨臼に対する寛骨臼カップの計画された向きを術前に識別することと、患者の股関節での整形外科手術の実行中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと大腿骨プロテーゼのタイプ及びサイズ、寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの現在の向きをADL力学モデルへの入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の別のセットを決定することと、接触点の別のセットについての別の接触プロットを生成することであって、別の接触プロットが、接触点の別のセットにおける各々の接触点についての印を含むことと、ディスプレイ上に別の接触プロットを表示することと、を行わせる、記憶された複数の命令を含んでもよい。
【0049】
いくつかの実施形態では、複数の命令は、実行に応答して、システムに、患者の寛骨臼に対する寛骨臼カップの計画された向きと、患者の寛骨臼に対する寛骨臼カップの現在の向きとの間の差の印を表示することを更に行わせてもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することと、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することと、を含んでもよい。
【0050】
加えて、いくつかの実施形態では、複数の命令は、実行に応答して、システムに、傾斜測定値に基づいて患者の股関節の骨盤可動性を決定することを更に行わせてもよい。そのような実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、骨盤可動性を一般的ADL力学モデルへの入力として使用する一般的ADL力学モデルに基づいて、接触点の複数のセット及び接触点の別のセットの各々を決定することを含んでもよい。
【0051】
更に、いくつかの実施形態では、接触点の複数のセット及び接触点の別のセットを決定することは、接触点の複数のセットに基づく数学的モデルを生成することであって、数学的モデルは、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成し、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点の複数のセット及び接触点の別のセットのそれぞれを決定するように構成されていることと、を含んでもよい。数学的モデルは、対応する接触点のセットを生成するためにADL力学モデルに必要とされる期間よりも短い期間で、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されてもよい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0052】
本開示のまた別の一態様によれば、大腿骨プロテーゼ及び寛骨臼カップを有する人工股関節を埋め込むために患者の股関節で整形外科手術を行う方法は、整形外科手術の術前に、コンピュータシステムを動作させて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを、大腿骨プロテーゼのタイプ及びサイズ並びに寛骨臼カップのタイプ及びサイズ、患者の骨盤傾斜測定値、医患者の寛骨臼に対する寛骨臼カップの複数の向きを一般的な日常生活動作(ADL)力学モデルへの入力として使用するADL力学モデルに基づいて、決定することであって、一般的なADL力学モデルは、ADLのセットの実行中に示された股関節の機械的運動を示し、接触点の複数のセットのうちの接触点の各々のセットは、一般的なADL力学モデルへの入力として使用される寛骨臼カップの複数の向きのうちの寛骨臼カップの異なる向きに対応する、ことと、(ii)接触点の各々のセットについて、接触プロットをディスプレイ上に表示することであって、各接触プロットは、接触点の各々の対応するセットにおける各々の接触点についての印を含む、ことと、ディスプレイ上に表示された接触プロットに基づいて、患者の寛骨臼に対する寛骨臼カップの向きを術前に選択することと、寛骨臼カップの選択された向きを使用して患者の股関節に対して整形外科手術を行って寛骨臼カップを患者の寛骨臼内に埋め込むことと、を含んでもよい。
【0053】
いくつかの実施形態では、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することは、接触点の複数のセットに基づく数学的モデルを生成することであって、接触点の複数のセットのモデルであり、入力として骨盤傾斜測定値のセットを使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成するように構成されている、ことを含んでもよい。そのような実施形態では、接触点のセットを決定することは、数学的モデルへの入力として、骨盤傾斜測定値を有する数学的モデルを使用して、接触点のセットを決定することを含んでもよい。数学的モデルは、対応する接触点のセットを生成するためにADL力学モデルに必要とされる期間よりも短い期間で、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の、得られた接触点のセットを生成するように構成されてもよい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0054】
加えて、いくつかの実施形態では、方法はまた、整形外科手術中に、コンピュータシステムを手術中に動作させて、患者の寛骨臼に対する寛骨臼カップの現在の向きを決定し、大腿骨プロテーゼのタイプ及びサイズ、寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値、並びに患者の寛骨臼に対する寛骨臼カップの現在の向きをその入力として使用する一般的なADL力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の別のセットを決定し、接触点の別のセットについての別の接触プロットを生成することであって、接触点の別のセットにおける各々の接触点の印を含む、ことと、(iv)別の接触プロットをディスプレイ上に表示させることと、を含んでもよい。そのような実施形態では、本方法は、別の接触プロットに基づいて、寛骨臼カップに対して選択された向きにより良好に一致するように、患者の寛骨臼に対する寛骨臼カップの現在の向きを修正することを更に含んでもよい。
【0055】
本開示の別の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するためのシステムは、1つ以上のプロセッサと、1つ以上のプロセッサに通信可能に連結された1つ以上のメモリとを備え得る。1つ以上のメモリは、命令を含んでもよいが、それらの命令は、1つ以上のプロセッサによる実行に応答して、システムに、対応する機能的位置に配置された患者の股関節の医療用画像を含む、患者の股関節の医療用画像のセットを取得することと、患者の骨盤の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値が、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、患者の機能的位置のそれぞれについての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、第1の数学的モデルへの入力として大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値を使用して、大腿骨プロテーゼによる寛骨臼カップの端部荷重を引き起こさない、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、ディスプレイ上にセーフゾーン境界のグラフを表示することと、を行わせる、命令を含んでもよい。
【0056】
いくつかの実施形態では、セーフゾーン境界を決定することは、第1の数学的モデルの出力として、患者の各々の機能的位置についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成することと、骨盤傾斜測定値を第1の数学的モデルへの入力として使用することと、を含んでもよい。加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、各々が寛骨臼カップの端部荷重をもたらす、第1の数学的モデルによって生成された得られた接触点のセットの接触点のサブセットであって、セーフゾーン境界がそれに基づく接触点のサブセットを識別することを含んでもよい。更に、いくつかの実施形態では、接触点のサブセットを識別することは、それぞれが寛骨臼カップの端部荷重をもたらす、接触点の複数のセットのうちの接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて識別することを含んでもよい。
【0057】
加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値の範囲の各々の測定値、並びに患者の寛骨臼に対する寛骨臼カップの向きの範囲の各々の向きを、静止力学モデルへの入力として使用する静止力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。そのような実施形態では、静止力学モデルは、患者が機能的位置の各々に配置されている間の大腿骨プロテーゼによる寛骨臼カップへの荷重を示すことができ、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップへの端部荷重をもたらさない向きのセットを含む。接触点の複数のセットのうちの接触点の各々のセットは、(i)静止力学モデルへの入力としての、寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応してもよい。加えて、そのような実施形態では、セーフゾーン境界を決定することは、接触点の複数のセットに基づいて第1の数学的モデルを生成することを含んでいてよく、第1の数学的モデルは、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成するように構成されている。更に、そのような実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定することと、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することと、を更に行わせてもよい。
【0058】
いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、寛骨臼カップの向きのセットのうちの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きに対するインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、を更に行わせてもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルの出力として、患者の寛骨臼に対する寛骨臼カップの向きの範囲のうちの各々の向きについての、得られたインピンジメントフリー可動域を生成することを含んでもよく、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含む。加えて、そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、得られたインピンジメントフリー可動域のサブセットを決定することを含んでもよく、得られたインピンジメントフリー可動域のサブセットのうちの各々のインピンジメントフリー可動域は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットのうちの向きに対応する。
【0059】
いくつかの実施形態では、人工股関節の幾何学的測定値は、寛骨臼カップの内側寸法、寛骨臼カップの外側寸法、寛骨臼カップのカップライナの内側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、寛骨臼カップのカップライナの外側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、及び大腿骨プロテーゼの頸部角度を含んでもよい。加えて、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップの向きのセットのうちの各々の向きに対して、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。加えて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、人工股関節の幾何学的測定値を、大腿骨プロテーゼ及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。
【0060】
更に、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、ステム回転値の複数のセットにおけるステム回転値の各々のセットは、(i)患者の寛骨臼に対する寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、寛骨臼カップの向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含み、幾何学的測定値の範囲は、人工股関節の幾何学的測定値を含む、ことと、寛骨臼カップの向き及び幾何学的測定値のセットの各々の組み合わせについて、それぞれの組み合わせに対応するステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、を含んでもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルを、寛骨臼カップの向きと幾何学的測定値のセットとの組み合わせの決定されたインピンジメントフリー可動域に基づいて生成することを含んでもよい。
【0061】
加えて、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることを含んでもよい。例えば、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることと、大腿骨プロテーゼの三次元モデルの初期位置を更新することと、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、更新された初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する別の最終位置に移動させることと、を含んでもよい。
【0062】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、及び患者が着座し、腰を完全に曲げている間の患者の股関節の矢状面医療用画像を含んでもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。更に、いくつかの実施形態では、複数の解剖学的ランドマークを識別することは、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて、複数の解剖学的ランドマークを識別することは、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。更に、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することを含む。
【0063】
本開示の更なる一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するための方法は、コンピュータシステムによって、患者の股関節の医療用画像のセットを取得することであって、医療用画像のセットが、対応する機能的位置に配置された患者の医療用画像を含む、ことと、コンピュータシステムによって、患者の骨盤の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、コンピュータシステムによって、大腿骨プロテーゼ及び人工股関節の寛骨臼カップのタイプ及びサイズを決定することと、コンピュータシステムによって、患者の機能的位置のそれぞれについての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、第1の数学的モデルへの入力として大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値を使用して、大腿骨プロテーゼによる寛骨臼カップの端部荷重を引き起こさない、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、コンピュータシステムによって、コンピュータシステムのディスプレイ上でセーフゾーン境界を決定することと、を含んでもよい。
【0064】
いくつかの実施形態では、セーフゾーン境界を決定することは、コンピュータシステムによって、第1の数学的モデルの出力として、患者の各々の機能的位置についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成することと、骨盤傾斜測定値を第1の数学的モデルへの入力として使用することと、を含んでもよい。加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、各々が寛骨臼カップの端部荷重をもたらす、第1の数学的モデルによって生成された得られた接触点のセットの接触点のサブセットであって、セーフゾーン境界がそれに基づく接触点のサブセットを、コンピュータシステムによって識別することを含んでもよい。更に、いくつかの実施形態では、接触点のサブセットを識別することは、それぞれが寛骨臼カップの端部荷重をもたらす、接触点の複数のセットのうちの接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて、コンピュータシステムによって識別することを含んでもよい。
【0065】
加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値の範囲の各々の測定値、並びに患者の寛骨臼に対する寛骨臼カップの向きの範囲の各々の向きを、静止力学モデルへの入力として使用する静止力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。そのような実施形態では、静止力学モデルは、患者が機能的位置の各々に配置されている間の大腿骨プロテーゼによる寛骨臼カップへの荷重を示すことができ、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップへの端部荷重をもたらさない向きのセットを含む。接触点の複数のセットのうちの接触点の各々のセットは、(i)静止力学モデルへの入力としての、寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応してもよい。加えて、そのような実施形態では、セーフゾーン境界を決定することは、接触点の複数のセットに基づいて第1の数学的モデルを生成することを含んでいてよく、第1の数学的モデルは、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成するように構成されている。更に、そのような実施形態では、方法は、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定することと、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することと、を更に含んでもよい。
【0066】
いくつかの実施形態では、方法は、寛骨臼カップの向きのセットの各々の向きに対する大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルであって、人工股関節の幾何学的測定値をその入力として使用する第2の数学的モデルに基づいて決定することと、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きに対するインピンジメントフリー可動域の印を、ディスプレイ上に表示させることと、を更に含んでもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルの出力として、患者の寛骨臼に対する寛骨臼カップの向きの範囲のうちの各々の向きに対して、得られたインピンジメントフリー可動域を生成することを含んでもよく、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含む。加えて、そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、得られたインピンジメントフリー可動域のサブセットを決定することを含んでもよく、得られたインピンジメントフリー可動域のサブセットのうちの各々のインピンジメントフリー可動域は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットのうちの向きに対応する。
【0067】
いくつかの実施形態では、人工股関節の幾何学的測定値は、寛骨臼カップの内側寸法、寛骨臼カップの外側寸法、寛骨臼カップのカップライナの内側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、寛骨臼カップのカップライナの外側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、及び大腿骨プロテーゼの頸部角度を含んでもよい。加えて、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップの向きのセットのうちの各々の向きに対して、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。加えて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、人工股関節の幾何学的測定値を、大腿骨プロテーゼ及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。
【0068】
更に、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、ステム回転値の複数のセットにおけるステム回転値の各々のセットは、(i)患者の寛骨臼に対する寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、寛骨臼カップの向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含み、幾何学的測定値の範囲は、人工股関節の幾何学的測定値を含む、ことと、寛骨臼カップの向き及び幾何学的測定値のセットの各々の組み合わせについて、それぞれの組み合わせに対応するステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、を含んでもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルを、寛骨臼カップの向きと幾何学的測定値のセットとの組み合わせの、決定されたインピンジメントフリー可動域に基づいて生成することを含んでもよい。
【0069】
加えて、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることを含んでもよい。例えば、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることと、大腿骨プロテーゼの三次元モデルの初期位置を更新することと、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、更新された初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する別の最終位置に移動させることと、を含んでもよい。
【0070】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、及び患者が着座し、腰を完全に曲げている間の患者の股関節の矢状面医療用画像を含んでもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。更に、いくつかの実施形態では、複数の解剖学的ランドマークを識別することは、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて、複数の解剖学的ランドマークを識別することは、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。更に、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を識別別することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を識別することを含む。
【0071】
本開示のまた更なる一態様によれば、1つ以上の非一時的機械可読記憶媒体は、実行に応答して、コンピュータシステムに、患者の股関節の医療用画像のセットを取得させることであって、医療用画像のセットが、対応する機能的位置に配置された患者の医療用画像を含む、ことと、患者の骨盤の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、患者の機能的位置のそれぞれについての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、第1の数学的モデルへの入力として大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値を使用して、大腿骨プロテーゼによる寛骨臼カップの端部荷重を引き起こさない、医療用画像のセットに示された患者の寛骨臼に対する寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、ディスプレイ上にセーフゾーン境界のグラフを表示することと、を行わせる、記憶された複数の命令を含む。
【0072】
いくつかの実施形態では、セーフゾーン境界を決定することは、第1の数学的モデルの出力として、患者の各々の機能的位置についての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成することと、骨盤傾斜測定値を第1の数学的モデルへの入力として使用することと、を含んでもよい。加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、各々が寛骨臼カップの端部荷重をもたらす、第1の数学的モデルによって生成された得られた接触点のセットの接触点のサブセットであって、セーフゾーン境界がそれに基づく接触点のサブセットを識別することを含んでもよい。更に、いくつかの実施形態では、接触点のサブセットを識別することは、それぞれが寛骨臼カップの端部荷重をもたらす、接触点の複数のセットのうちの接触点のサブセットを、接触点のサブセットのうちの対応する接触点のセットの少なくとも1つの接触点と寛骨臼カップのカップライナの端部との間の距離に基づいて識別することを含んでもよい。
【0073】
加えて、いくつかの実施形態では、セーフゾーン境界を決定することは、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ、骨盤傾斜測定値の範囲の各々の測定値、並びに患者の寛骨臼に対する寛骨臼カップの向きの範囲の各々の向きを、静止力学モデルへの入力として使用する静止力学モデルに基づいて、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の複数のセットを決定することを含んでもよい。そのような実施形態では、静止力学モデルは、患者が機能的位置の各々に配置されている間の大腿骨プロテーゼによる寛骨臼カップへの荷重を示すことができ、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップへの端部荷重をもたらさない向きのセットを含む。接触点の複数のセットのうちの接触点の各々のセットは、(i)静止力学モデルへの入力としての、寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応してもよい。加えて、そのような実施形態では、セーフゾーン境界を決定することは、接触点の複数のセットに基づいて第1の数学的モデルを生成することを含んでいてよく、第1の数学的モデルは、接触点の複数のセットのモデルであり、骨盤傾斜測定値のセットを入力として使用して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の得られた接触点のセットを生成するように構成されている。更に、そのような実施形態では、複数の命令は、実行に応答して、システムに、接触点の各々のセットの少なくとも1つの最も外側の接触点と寛骨臼カップのカップライナの端部との間の距離を決定させ、決定された距離に基づいて寛骨臼カップの好ましい向きを識別することを更に行わせてもよい。
【0074】
いくつかの実施形態では、複数の命令は、実行に応答して、システムに、寛骨臼カップの向きのうちのセットの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きについてインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、を更に行わせてもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルの出力として、患者の寛骨臼に対する寛骨臼カップの向きの範囲のうちの各々の向きについて、得られたインピンジメントフリー可動域を生成することを含んでもよく、向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含む。加えて、そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、得られたインピンジメントフリー可動域のサブセットを決定することを含んでもよく、得られたインピンジメントフリー可動域のサブセットのうちの各々のインピンジメントフリー可動域は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットのうちの向きに対応する。
【0075】
いくつかの実施形態では、人工股関節の幾何学的測定値は、寛骨臼カップの内側寸法、寛骨臼カップの外側寸法、寛骨臼カップのカップライナの内側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、寛骨臼カップのカップライナの外側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、及び大腿骨プロテーゼの頸部角度を含んでもよい。加えて、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップの向きのセットのうちの各々の向きに対して、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。加えて、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、人工股関節の幾何学的測定値を、大腿骨プロテーゼ及び寛骨臼カップの三次元モデルに基づいて決定することを含んでもよい。
【0076】
更に、いくつかの実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、ステム回転値の複数のセットにおけるステム回転値の各々のセットは、(i)患者の寛骨臼に対する寛骨臼カップの向きの範囲における寛骨臼カップの向きと、(ii)人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、寛骨臼カップの向きの範囲は、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを含み、幾何学的測定値の範囲は、人工股関節の幾何学的測定値を含む、ことと、寛骨臼カップの向きと幾何学的測定値のセットの各々の組み合わせについて、それぞれの組み合わせに対応するステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、を含んでもよい。そのような実施形態では、大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を決定することは、第2の数学的モデルを、寛骨臼カップの向きと幾何学的測定値のセットとの組み合わせの決定されたインピンジメントフリー可動域に基づいて生成することを含んでもよい。
【0077】
加えて、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることを含んでもよい。例えば、いくつかの実施形態では、寛骨臼カップに対する大腿骨プロテーゼのインピンジメントをもたらす大腿骨プロテーゼのステム回転値の複数のセットを決定することは、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、寛骨臼カップの三次元モデル(なお、大腿骨プロテーゼの三次元モデル及び寛骨臼カップの三次元モデルは、それぞれ異なる組み合わせの幾何学的測定値の対応するセットに基づくものである)に対する初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する最終位置まで移動させることと、大腿骨プロテーゼの三次元モデルの初期位置を更新することと、各々の異なる組み合わせに対して、大腿骨プロテーゼの三次元モデルを、更新された初期位置から、大腿骨プロテーゼが寛骨臼カップの一部に接触する別の最終位置に移動させることと、を含んでもよい。
【0078】
いくつかの実施形態では、医療用画像のセットは、患者が直立している間の患者の股関節の前後面医療用画像、患者が直立している間の患者の股関節の矢状面医療用画像、及び患者が着座し、腰を完全に曲げている間の患者の股関節の矢状面医療用画像を含んでもよい。加えて、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、医療用画像のセットに基づいて患者の股関節の複数の解剖学的ランドマークを識別することを含んでもよい。更に、いくつかの実施形態では、複数の解剖学的ランドマークを識別することは、システムのユーザから、医療用画像のセットのうちの少なくとも1つの医療用画像に対する人の手による注釈を受け取ることを含んでもよい。加えて、複数の解剖学的ランドマークを識別することは、複数の解剖学的ランドマークを識別するための機械学習アルゴリズムを実行することを含んでもよい。更に、いくつかの実施形態では、患者の骨盤の骨盤傾斜測定値を決定することは、識別された複数の解剖学的ランドマークに基づいて骨盤傾斜測定値を決定することを含む。
【0079】
本開示の別の一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するためのシステムは、1つ以上のプロセッサと、1つ以上のプロセッサに通信可能に連結された1つ以上のメモリとを備え得る。1つ以上のメモリは、1つ以上のプロセッサによる実行に応答して、システムに、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、患者の機能的位置のそれぞれについての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、第1の数学的モデルへの入力として大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値を使用して、大腿骨プロテーゼによる寛骨臼カップの端部荷重を引き起こさない、医療用画像のセットに示された患者の寛骨臼に対する人工股関節の寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、セーフゾーン境界のグラフを、ディスプレイ上に表示することと、患者の股関節での整形外科手術の実行中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を行わせる命令を含んでもよい。
【0080】
いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、患者の寛骨臼に対する寛骨臼カップの計画された向きを、接触プロットに基づき術前に識別することと、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を更に行わせてもよい。加えて、いくつかの実施形態では、複数の命令は、1つ以上のプロセッサによる実行に応答して、システムに、寛骨臼カップの向きのセットのうちの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きについてインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、を更に行わせてもよい。
【0081】
本開示の更なる一態様によれば、患者の寛骨臼内の人工股関節の位置を決定するための方法は、コンピュータシステムによって、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、と、コンピュータシステムによって、大腿骨プロテーゼ及び人工股関節の寛骨臼カップのタイプ及びサイズを決定することと、医療用画像のセットに示される患者の寛骨臼に対する人工股関節の寛骨臼カップの向きのセットであって、大腿骨プロテーゼによる寛骨臼カップの端部荷重をもたらさない向きのセットを画定するセーフゾーン境界を、患者の機能的位置の各々に対する、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルであって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値をその入力として使用する第1の数学的モデルに基づいて、コンピュータシステムによって決定させることと、コンピュータシステムによって、コンピュータシステムのディスプレイ上に、セーフゾーン境界のグラフを表示することと、コンピュータシステムによって、患者の股関節での整形外科手術中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと、コンピュータシステムによって、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を含んでもよい。
【0082】
いくつかの実施形態では、方法はまた、コンピュータシステムによって、患者の寛骨臼に対する寛骨臼カップの計画された向きを、接触プロットに基づいて術前に識別することと、コンピュータシステムによって、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を含んでもよい。加えて、いくつかの実施形態では、方法は、コンピュータシステムによって、寛骨臼カップの向きのセットのうちの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップとのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、コンピュータシステムによって、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きについてインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、を含んでもよい。
【0083】
本開示のまた更なる態様によれば、1つ以上の非一時的機械可読記憶媒体は、実行に応答して、コンピュータシステムに、患者の股関節の骨盤傾斜測定値を、医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値は、股関節が対応する機能的位置に配置されるときの患者の股関節の可動域を示す、ことと、人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、患者の機能的位置のそれぞれについての大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、第1の数学的モデルへの入力として大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに骨盤傾斜測定値を使用して、大腿骨プロテーゼによる寛骨臼カップの端部荷重を引き起こさない、医療用画像のセットに示された患者の寛骨臼に対する人工股関節の寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、セーフゾーン境界のグラフを、ディスプレイ上に表示することと、患者の股関節での整形外科手術中に、患者の寛骨臼に対する寛骨臼カップの現在の向きを手術中に決定することと、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を行わせる、記憶された複数の命令を含む。
【0084】
いくつかの実施形態では、複数の命令は、実行に応答して、システムに、接触プロットに基づいて、患者の寛骨臼に対する寛骨臼カップの計画された向きを術前に識別することと、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を更に行わせてもよい。加えて、いくつかの実施形態では、複数の命令は、実行に応答して、システムに、寛骨臼カップの向きのセットのうちの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きについてインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、を更に行わせてもよい。
【0085】
本開示のまた別の一態様によれば、患者の股関節に対して整形外科手術を行って、大腿骨プロテーゼ及び寛骨臼カップを有する人工股関節を埋め込む方法は、整形外科手術に対して術前に、コンピュータシステムを動作させて、(i)、大腿骨プロテーゼによる寛骨臼カップの端部荷重を生じない、患者の寛骨臼に対する寛骨臼カップの向きのセットを画定するセーフゾーン境界を、患者の機能的位置のセットの各々の機能的位置に対して、大腿骨プロテーゼの大腿骨頭と寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルであって、大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズ並びに患者の股関節の骨盤傾斜測定値をその入力として使用する第1の数学的モデルに基づいて決定し、(ii)セーフゾーン境界のグラフをディスプレイ上に表示させることと、ディスプレイ上に表示されたセーフゾーン境界のグラフに基づいて、患者の寛骨臼に対する寛骨臼カップの向きを術前に選択することと、寛骨臼カップに対する選択された向きを使用して、患者の股関節に対して整形外科手術を行って、寛骨臼カップを患者の寛骨臼内に埋め込むことと、を含んでもよい。
【0086】
いくつかの実施形態では、方法はまた、整形外科手術中に、コンピュータシステムを手術中に動作させて、患者の寛骨臼に対する寛骨臼カップの現在の向きを決定することと、ディスプレイ上のセーフゾーン境界のグラフに、現在の向きの印を表示することと、を含んでもよい。加えて、いくつかの実施形態では、本方法は、現在の向きを示す印に基づいて、患者の寛骨臼に対する寛骨臼カップの現在の向きを修正して、寛骨臼カップに対して選択された向きにより良好に一致させることを含んでもよい。加えて、いくつかの実施形態では、本方法は、整形外科手術の手術前に、コンピュータシステムを動作させて、(i)寛骨臼カップの向きのセットの各々の向きについて大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域を、患者の機能的位置の各々における大腿骨プロテーゼ及び寛骨臼カップのインピンジメントフリー可動域の第2の数学的モデルに基づき、第2の数学的モデルへの入力として人工股関節の幾何学的測定値を使用して、決定することと、(ii)セーフゾーン境界内の寛骨臼カップの向きのセットのうちの各々の向きについてインピンジメントフリー可動域の印を、ディスプレイ上に表示することと、をさせてもよい。
【図面の簡単な説明】
【0087】
詳細な説明は、具体的には、以下の図面を参照する。
図1】大腿骨プロテーゼ及び寛骨臼カップを含む人工股関節の、一実施形態の分解斜視図である。
図2】患者の寛骨臼内に埋め込まれた寛骨臼カップを有する、図1の人工股関節の別の斜視図である。
図3】寛骨臼カップと係合した大腿骨プロテーゼを示す、図2の人工股関節の別の斜視図である。
図4】患者の骨における図1の人工股関節の配置を決定するためのコンピュータシステムの、一実施形態のブロック図である。
図5図4のコンピュータシステムの、別の一実施形態のブロック図である。
図6A図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法のフローチャート図である。
図6B図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法のフローチャート図である。
図6C図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法のフローチャート図である。
図6D図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法のフローチャート図である。
図7図6A図6Dの方法の実行中に実行され得る、図1の大腿骨プロテーゼと人工股関節の寛骨臼カップとの間の接触点の1つ以上のセットを決定するための方法の、一実施形態のフローチャート図である。
図8A図6A図6Dの方法の実行中に実行され得る、数学的モデルの決定に基づいて、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点の1つ以上のセットを決定する方法の、別の一実施形態のフローチャート図である。
図8B図6A図6Dの方法の実行中に実行され得る、数学的モデルの決定に基づいて、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点の1つ以上のセットを決定する方法の、別の一実施形態のフローチャート図である。
図9A】人工股関節を患者の骨に埋め込むための整形外科手術の実施中、図1の人工股関節の配置を手術中に監視する方法のフローチャート図である。
図9B】人工股関節を患者の骨に埋め込むための整形外科手術の実施中、図1の人工股関節の配置を手術中に監視する方法のフローチャート図である。
図10図6A図6Dの方法の実行中に表示され得る、識別された解剖学的ランドマークを示す、患者の股関節の例示的な医療用画像である。
図11図6A図6Dの方法の実行中に表示され得る、例示的なスクリーン画像であり、患者の股関節及び関連する骨盤傾斜測定値の医療用画像を示す画像である。
図12図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、対応する日常生活動作(ADL)の実行中の、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点を示す画像である。
図13図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、対応する日常生活動作(ADL)の実行中の、カップライナマップ上に配置された、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点のセットを示す画像である。
図14図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間のインピンジメントフリー可動域のグラフ表現を示し、グラフ表現の領域がインピンジメントフリー可動域を示す画像である。
図15図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、接触点のセットのうちの最も外側の接触点と、図1の人工股関節のカップライナの端部を示す端部境界との間の決定された距離を示し、端部境界付近の接触点に、接触点の色(又は網掛け)に対する修正を施した画像である。
図16図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点に対応する接触インジケータを有する接触プロットと、寛骨臼カップの端部荷重をもたらす接触点に対応する端部荷重境界とを含む、カップの向きのグラフを示す画像である。
図17図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点に対応する接触インジケータを有する接触プロットと、寛骨臼カップの端部荷重をもたらすカップの向きに対応する端部荷重境界とを含む、カップの向きのグラフの別の一実施形態を示す画像である。
図18図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、図1の大腿骨プロテーゼと人工股関節の寛骨臼カップとの間の接触点に対応し、患者の寛骨臼に対する寛骨臼カップの異なる向きに対応する接触インジケータをそれぞれが有する複数の接触プロットを示す画像である。
図19図6A図6Dの方法の実行中に表示され得る例示的なスクリーン画像であり、患者の寛骨臼に対する寛骨臼カップの異なる向きにそれぞれが対応し、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点に対応する接触インジケータと、寛骨臼カップの端部荷重をもたらす接触点のセットに対応する端部荷重境界とを有する、複数の接触プロットを含む、カップの向きのグラフを示す画像である。
図20図9A及び図9Bの方法の実行中に表示され得る例示的なスクリーン画像であり、図1の人工股関節の寛骨臼カップの測定された向きと、寛骨臼カップの測定された向きにおける図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間の接触点に対応する接触インジケータを有する接触プロットと、図1の人工股関節の大腿骨プロテーゼと寛骨臼カップとの間のインピンジメントフリー可動域を示すグラフ表現とを示す画像である。
図21A図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法の、別の一実施形態のフローチャート図である。
図21B図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法の、別の一実施形態のフローチャート図である。
図21C図4又は図5のコンピュータシステムによって実行され得る、患者の骨における図1の人工股関節の配置を決定するための方法の、別の一実施形態のフローチャート図である。
図22A】特定の患者機能的位置における寛骨臼カップ上の荷重を示す数学的モデルを、静止力学モデルを使用して生成するための方法の、一実施形態のフローチャート図である。
図22B】特定の患者機能的位置における寛骨臼カップ上の荷重を示す数学的モデルを、静止力学モデルを使用して生成するための方法の、一実施形態のフローチャート図である。
図23図22A図22Bの方法によって生成された数学的モデルを使用して寛骨臼カップの向きのセーフゾーン境界を決定する方法の、一実施形態のフローチャート図である。
図24A図1の人工股関節の大腿骨プロテーゼの大腿骨ステムのインピンジメントフリー可動域を示す数学的モデルを生成する方法の、一実施形態のフローチャート図である。
図24B図1の人工股関節の大腿骨プロテーゼの大腿骨ステムのインピンジメントフリー可動域を示す数学的モデルを生成する方法の、一実施形態のフローチャート図である。
図25図24A図24Bの方法によって生成された数学的モデルを使用して、図1の人工股関節の大腿骨プロテーゼの大腿骨ステムのインピンジメントフリー可動域を決定するための方法の、一実施形態のフローチャート図である。
図26A】人工股関節を患者の骨に埋め込むための整形外科手術の実施中、図1の人工股関節の配置を手術中監視する方法の、別の一実施形態のフローチャート図である。
図26B】人工股関節を患者の骨に埋め込むための整形外科手術の実施中、図1の人工股関節の配置を手術中監視する方法の、別の一実施形態のフローチャート図である。
図27図1の人工股関節の寛骨臼カップ及び大腿骨プロテーゼの簡略化モデルであり、大腿骨プロテーゼの大腿骨ステムが、大腿骨ステムの頸部が図1の人工股関節の寛骨臼カップのカップライナと接触していない初期ステム回転位置に配置された状態のモデルである。
図28図27の人工股関節の寛骨臼カップ及び大腿骨プロテーゼの簡略化モデルであり、大腿骨プロテーゼの大腿骨ステムが、大腿骨ステムの頸部が図1の人工股関節の寛骨臼カップのカップライナと接触している最終ステム回転位置に移動した状態のモデルである。
図29図21A図21Cの方法の実行中に表示され得る例示的なスクリーン画像であり、図23の方法によって決定される寛骨臼カップの向きのセーフゾーン境界のグラフ表現を示す画像である。
図30図21A図21Cの方法の実行中に表示され得る例示的なスクリーン画像であり、図29に示されるセーフゾーン境界のグラフ上に重ねられた、図25の方法によって決定されたインピンジメントフリー可動域のグラフ表現を示す画像である。
図31図26の方法の実行中に表示され得る例示的なスクリーン画像であり、患者の医療用画像上の図1の人工股関節のグラフ表現、図23の方法によって決定されたセーフゾーン境界のグラフ表現、図25の方法によって決定されたインピンジメントフリー可動域のグラフ表現、及びセーフゾーン境界のグラフ表現上に示された図1の人工股関節の寛骨臼カップの現在の向きの印を示す画像である。
【発明を実施するための形態】
【0088】
本開示の概念は、様々な修正及び代替形態を受け入れる余地があるが、その特定の例示的な実施形態を例として図面に示し、本明細書において詳細に説明する。しかしながら、本開示の概念を開示される特定の形態に限定することを何ら意図するものではなく、その逆に、本発明は、添付の「特許請求の範囲」によって定義される発明の趣旨及び範囲に包含される全ての修正物、均等物、並びに代替物を網羅することを意図するものであるということを理解されたい。
【0089】
解剖学的基準を表す前方、後方、内側、外側、上位、下位等の用語は、本明細書全体において、本明細書に記載する整形外科用インプラント及び手術器具、並びに患者の生得の解剖学的形態に関して使用され得る。このような用語は、解剖学の研究及び整形外科学の分野のいずれにおいても十分に理解された意味を有する。記述されている説明及び「特許請求の範囲」におけるこのような解剖学的参照用語の使用は、特に明記しないかぎり、それらの十分に理解された意味と一貫性を有することが意図される。
【0090】
本明細書において「一実施形態」、「実施形態」、「例示的実施例」などへの言及は、説明されるその実施形態が、特定の要素、構造、又は特徴を含んでもよいが、全ての実施形態が、その特定の要素、構造、又は特徴を必ずしも含むわけではないことを示す。更に、そのような語句は、必ずしも同一の実施形態に言及するものではない。更に、特定の要素、構造、又は特徴がある実施形態に関連して説明される場合、このような要素、構造、又は特徴を他の実施形態と関連して実施することは、明示されるか否かによらず、当業者の知識の範囲内であると考えられる。更に、「少なくとも1つのA、B、及びC」の形式でリストに含まれる項目は、(A)、(B)、(C)、(A及びB)、(A及びC)、(B及びC)、又は(A、B、及びC)を意味し得ることが理解されよう。同様に、「A、B、又はCのうちの少なくとも1つ」の形式で列挙される項目は、(A)、(B)、(C)、(A及びB)、(A及びC)、(B及びC)、又は(A、B、及びC)を意味し得る。
【0091】
図面において、一部の構造的又は方法の要素を特定の配置及び/又は順序で示す場合がある。しかしながら、このような特定の配置及び/又は順序は、必要ではない場合もある点は認識されるはずである。むしろ、実施形態によっては、こうした要素は、説明図に示されるものとは異なる形態及び/又は順序で配置されてもよい。付加的に、特定の図に構造的又は方法の要素が含まれている場合、このような要素が全ての実施形態において必要であることを示唆するものではなく、実施形態によっては含まれなくてもよく、又は他の要素と組み合わせることが可能である。
【0092】
ここで図1を参照すると、例示的な整形外科用人工股関節100は、大腿骨プロテーゼ102と寛骨臼カップ104とを含む。以下でより詳細に説明するように、使用時には、整形外科用人工股関節100は、患者の生得の股関節に置き換わるように構成されている。そうするために、大腿骨プロテーゼ102は、患者の外科的に準備された大腿骨の近位端に埋め込まれるように構成され、寛骨臼カップ104は、患者の骨盤の外科的に準備された寛骨臼に埋め込まれるように構成されている。そのように埋め込まれると、大腿骨プロテーゼ102は寛骨臼カップ104によって支持され、大腿骨プロテーゼ102及び寛骨臼カップ104は協働して患者のための人工の股関節を形成する。
【0093】
例示的な大腿骨プロテーゼ102は、細長い遠位端112と、近位端116に位置する頸部114とを有するステム110を含む。細長い遠位端112は、患者の大腿骨の髄管内に埋め込まれるようなサイズ及び形状であり、大腿骨プロテーゼ102をそこに固定するようになっている。大腿骨プロテーゼ102は、ステム110の頸部114に固定される大腿骨頭118も含む。大腿骨頭118は、その形状が実質的に球形であり、寛骨臼カップ104内に受容されて、患者の股関節の人工の臼状関節を形成するように構成されている。ステム110及び大腿骨頭118は、例えばコバルトクロムなどのインプラントグレードの金属材料から別々に形成され得る。いくつかの実施形態では、ステム110はまた、埋め込み後に患者の骨がステム110に生物学的に付着することを可能にするように、骨の内部成長を促進する、Porocoat(登録商標)外側コーティング等の外側コーティングを含んでもよい。
【0094】
寛骨臼カップ104は、寛骨臼シェル120と、寛骨臼シェル120内に受容されるように構成された寛骨臼カップライナ122とを含む。寛骨臼シェル120は、略半球形状を有し、凸状外壁130と、凸状外壁130に対向する凹状内壁132とを含む。内壁132は、寛骨臼カップライナ122を受容して組み立てられた寛骨臼カップ104を形成するような形状及びサイズにされた半球状凹部134を画定する。
【0095】
寛骨臼カップ120はまた、例えばコバルトクロムなどの、任意の好適なインプラントグレードの金属材料から形成され得る。大腿骨プロテーゼ102のステム110と同様に、寛骨臼シェル120の外壁130は、埋め込み後に患者の骨が寛骨臼シェル120に生物学的に付着することを可能にするように骨の内部成長を容易にする、Porocoat(登録商標)外側コーティングなどの外側コーティングを含んでもよい。上述したように、寛骨臼カップライナ122は、寛骨臼シェル120の半球状凹部134に受容されるように構成されており、例示的には、例えばポリエチレンなどのポリマー材料から形成されている。当然ながら、他の実施形態では、寛骨臼カップライナ122は、セラミック材料などの他の材料から形成されてもよい。
【0096】
図2に示すように、整形外科手術の実施中、整形外科医は、寛骨臼カップ104を患者の寛骨臼200内に埋め込んで、患者の対応する股関節の患者の生得の「ソケット」と置き換える。そうすることで、整形外科医は、(例えば、寛骨臼をリーミングすることによって)患者の寛骨臼200を準備し、以下でより詳細に論じられるように、術前計画又は術中計画に基づいて、寛骨臼カップ104の寛骨臼シェル120を、外科的に準備された寛骨臼200の中に埋め込み得る。そうすることで、寛骨臼シェル120の外壁130は、患者の寛骨臼200の準備された骨に接触又は直面する。次に、整形外科医は、寛骨臼シェル120の半球状凹部134内に寛骨臼カップライナ122を挿入して、埋め込まれ、組み立てられた寛骨臼カップ104を形成してもよい。
【0097】
整形外科医はまた、大腿骨プロテーゼ102の埋め込みのために患者の大腿骨の近位端(図示せず)を準備する。そのような外科的準備は、患者の大腿骨の近位端の一部を切除すること(例えば、患者の大腿骨の生得の大腿骨頭を除去すること)と、大腿骨プロテーゼ102のステム110を受容するように患者の大腿骨の髄管を準備することと、を含んでもよい。
【0098】
大腿骨プロテーゼ102及び寛骨臼カップ104が、患者の対応する骨の解剖学的構造に埋め込まれた後、整形外科医は、図3に示すように、大腿骨プロテーゼ102の大腿骨頭118を、寛骨臼カップライナ122に挿入してもよい。このようにして、大腿骨プロテーゼ102及び寛骨臼カップ104は、患者のための人工の股関節を形成する。しかしながら、人工股関節100の機能は、少なくとも部分的に、患者の寛骨臼200内への寛骨臼カップ104の適切な配置に依存する。すなわち、患者の寛骨臼200に対する寛骨臼カップ104の向き(すなわち、前傾及び傾斜の程度)は、人工股関節100の性能に影響を与える。例えば、患者の寛骨臼200に対する寛骨臼カップ104の向きが適切に選択されず、その後に達成されない場合、大腿骨プロテーゼ102は、寛骨臼カップ104の寛骨臼カップライナ122にかかる、ある量の端部荷重を示すことがあり得る。寛骨臼カップ104のそのような端部荷重は、患者の通常の活動中に寛骨臼カップ104からの大腿骨プロテーゼ102の脱臼をもたらす可能性がある。したがって、寛骨臼カップライナ122の端部荷重が低くなる又は最小となる寛骨臼カップ104の適切な向きを決定することにより、人工股関節100の性能を向上させ、寛骨臼カップ104からの大腿骨プロテーゼ102の脱臼の可能性を低減させ得る。
【0099】
ここで図4を参照すると、人工股関節100などの人工股関節の配置を決定するための例示的なコンピュータシステム400は、人工股関節配置分析装置402と、ネットワーク406を介して分析装置402に通信可能に連結された撮像装置404とを含む。以下でより詳細に説明するように、使用時には、整形外科医は、分析装置402を操作して、術前及び/又は手術中に、患者の寛骨臼200に対する寛骨臼カップ104の、計画された向き又は現在の向きを決定してもよい。整形外科医は、患者が、歩行、高いところから降りること、及び座った状態から立ち上がることなどの特定の日常生活動作(ADL)を行うときに、大腿骨プロテーゼ102と寛骨臼カップ104との間の予測される接触点のグラフィカル表示に基づいて、計画された向き/現在の向きを選択又は別様に決定してもよい。後述するように、これらのグラフィカル接触インジケータは、1つ以上のモデルを使用する患者の股関節の機械的解析に基づいて決定されてもよい。
【0100】
これを行うために、以下でより詳細に説明するように、分析装置402は、整形外科手術が行われる患者の股関節の医療用画像を撮像装置404から取得又は他の方法で受信し、これらの医療用画像に基づいて(例えば、整形外科医からの注釈を介して又は機械学習技術を介して)患者の股関節の骨盤傾斜測定値を決定するように構成されている。各々の骨盤傾斜測定値は、患者の股関節がいくつかの対応する機能的位置(例えば、起立、着座、伸展等)のうちの1つに配置されるときの、その股関節の可動域を示す。分析装置402は、骨盤傾斜測定値、人工股関節100のタイプ及びサイズ、並びに患者の寛骨臼200に対する寛骨臼カップ104の向きをその入力とするADL力学モデルを使用して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点の1つ以上のセットを決定又は予測する。ADL力学モデルは、被験者のプールの分析の結果得られる接触点データから展開される患者汎用モデルとして具現化され、日常生活動作の実行中に示される患者汎用(例えば、非患者固有又は「平均化された」)股関節の機械的運動を示す。以下でより詳細に説明するように、ADL力学モデルは、例えば、関節力、接触位置などの、股関節の他の態様を示し得るということを理解されたい。
【0101】
接触点のセットが生成された後、分析装置402は、接触点の各々のセット又は接触点のセットのサブセットに対する接触プロットを生成する。例えば、いくつかの実施形態では、分析装置402は、カップライナ122の端部に対する接触点の対応するセットのうちの1つ以上の接触点の場所に基づいて、カップライナ122の端部荷重をもたらす接触点のセットを決定し、カップライナ122の端部荷重をもたらさない接触点のセットに対する対応する接触プロットのみを生成してもかつ/又は示してもよい。
【0102】
いくつかの実施形態では、分析装置402は、対応する接触プロットを直接決定するために、ADL力学モデルの得られた接触点のセット(複数可)を使用してもよい。しかしながら、他の実施形態では、分析装置402は、骨盤傾斜値の範囲(すなわち、特定の患者の骨盤傾斜測定値ではない)及び寛骨臼カップ104の向きの範囲をその入力とするADL力学モデルを使用して、接触点のセットのグローバルプールを計算するように構成されている。分析装置402は、次いで、接触点のセットの得られたプールをデータセットとして使用して、接触点のセットのプールをモデル化するように構成される、例えば線形応答モデル、表面モデル、ニューラルネットワーク、統計的適合モデル、又は他の数学的モデル等の、数学的モデルをトレーニング又は生成してもよい。そのような場合、次に、開発された数学的モデルを使用して、寛骨臼カップ104の向きの範囲とともに患者の傾斜測定値を入力として使用して、接触点のセットを生成してもよく、次いで、それらを対応する接触プロットを生成するために使用することができる。ひとたびこのように生成されると、数学的モデルは、患者の傾斜測定値並びに大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズに基づいて接触点の新しいセットが決定される速度を高めるが、このことは、以下でより詳細に説明されるように、計算の速度が整形外科手術において重要な考慮事項であり得る、手術中の数学的モデルの使用を容易にするものである。例えば、数学的モデルは、接触点のセットを、ADL力学モデルによって接触点の対応するセットを生成するのに必要とされる期間よりも短い期間で生成するように構成され得る。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。したがって、ひとたび数学的モデルが生成されると、ADL力学モデルは、それ以後、接触点のセットを生成するためには、必要とされない場合もあり得る。
【0103】
いずれにしても、各々の接触プロットは、接触点の対応するセット内の各々の接触点に対する接触インジケータ(例えば、円又はドット)を含む。以下でより詳細に論じられるように、各々の接触インジケータは、大腿骨頭118とカップライナ122との間の接触「パッチ」に対応する領域を含み、したがって、接触インジケータのセットの組み合わせられた領域は、大腿骨頭118及びカップライナ122に対する複合接触領域を提供する。このように、接触プロットは、大腿骨頭118とカップとカップライナ122との間の接触点のセットを視覚化したものを整形外科医に提供し、外科医は、どの接触点のセット(したがって、寛骨臼カップ104のどの対応する向き)が最も望ましいかを、関連する予測される接触点の場所、形状、及び/又はグループ分けに基づいて決定してもよい。
【0104】
人工股関節配置分析装置402は、本明細書に記載される機能を実施することができる、任意のタイプのコンピュータ又はコンピューティング装置として具現化され得る。例えば、分析装置402は、デスクトップコンピュータ、手術ナビゲーションコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、スマートフォン、モバイルコンピュータ、スマートデバイス、ウェアラブルコンピュータシステム、又は他のコンピュータ若しくはコンピュータデバイスとして具現化され得る。図4に示すように、例示的な分析装置402は、分析エンジン410と、入力/出力(「I/O」)サブシステム412と、データストレージ414と、ディスプレイ416と、通信システム418と、いくつかの実施形態では、1つ以上の周辺デバイス420とを含む。当然ながら、分析装置402は、他の実施形態では、典型的なコンピュータデバイスに一般的に見られるものなどの、追加の構成要素又は他の構成要素を含んでもよいということを理解されたい。加えて、いくつかの実施形態では、例示的な構成要素のうちの1つ以上を別の構成要素に組み込む、又はその一部を形成するようにしてもよい。
【0105】
分析エンジン410は、本明細書で説明される機能を実行することが可能な任意のタイプのコントローラ、機能ブロック、デジタル論理、又は他の構成要素、デバイス、回路、若しくはそれらの集合として具現化され得る。例示される実施形態では、分析エンジン410は、プロセッサ422及びメモリ424を含む。プロセッサ422は、本明細書に記載される機能を実行することが可能な任意のタイプのプロセッサとして具現化され得る。例えば、プロセッサ422は、シングル若しくはマルチコアプロセッサ(単数又は複数)、デジタル信号プロセッサ、マイクロコントローラ、又は他のプロセッサ若しくは処理/制御回路として具現化され得る。同様に、メモリ424は、本明細書に記載される機能を実行することが可能な任意のタイプの揮発性及び/若しくは不揮発性メモリ又はデータストレージとして具現化され得る。動作中、メモリ424は、様々なデータと、例えば、オペレーティングシステム、アプリケーション、実行可能なソフトウェア、プログラム、ライブラリ、及びドライバなど、分析装置402の動作中に使用されるソフトウェアとを記憶することができ、これらはプロセッサ422によって実行又は他の方法で使用され得る。
【0106】
分析エンジン410は、I/Oサブシステム412を介して分析装置402の他の構成要素に通信可能に連結されており、このI/Oサブシステム412は、分析エンジン410(例えば、プロセッサ422及び/又はメモリ424)と、分析装置402の他の構成要素との間の入力/出力動作を容易にするための回路及び/又は構成要素として具現化され得る。例えば、I/Oサブシステム412は、メモリコントローラハブ、入力/出力制御ハブ、ファームウェアデバイス、通信リンク(すなわち、ポイントツーポイントリンク、バスリンク、ワイヤ、ケーブル、ライトガイド、プリント回路基板のトレースなど)、並びに/又は入力/出力動作を促進するための他の構成要素及びサブシステムとして具現化されてもよく、又はそうでなければそれらを含んでもよい。いくつかの実施形態では、I/Oサブシステム412は、システムオンチップ(SoC)の一部を形成してもよく、分析エンジン410(例えば、プロセッサ422及びメインメモリ424)と、分析エンジン410他の構成要素とともに、単一の集積回路チップに組み込まれてもよい。更に、いくつかの実施形態では、メモリ424、又はメモリ424の一部は、プロセッサ422に組み込まれ得る。
【0107】
データストレージ414は、例えば、ソリッドステートドライブ、ハードディスクドライブ、メモリデバイス及び回路、メモリカード、不揮発性フラッシュメモリ、又は他のデータストレ-ジデバイスなど、データの短期又は長期格納のために構成される任意のタイプのデバイス(単数又は複数)として具現化されてもよい。例示的な実施形態では、データストレージ414は、本明細書に記載の機能を実行するために分析装置402によって使用される様々なデータを記憶する。例えば、データストレージ414は、患者の1つ以上の医療用画像430を記憶してもよい。医療用画像430は、撮像装置404によって生成され得るが、データストレージ414におけるローカルでの記憶のためにネットワーク406を介して分析装置402に送信されてもよい。以下でより詳細に説明するように、医療用画像は、様々な機能的位置に配置された患者の股関節の、X線画像、コンピュータ断層撮影(CT)画像、磁気共鳴撮像法(MRI)画像、又は他の医療用画像として具現化され得る。
【0108】
データストレージ414はまた、医療用画像404を分析し、関連する解剖学的ランドマークを決定することが可能な1つ以上の数学的モデル又はアルゴリズム(例えば、機械学習アルゴリズム)として具現化され得る、1つ以上のランドマークモデル432を記憶してもよい。以下でより詳細に論じられるように、分析装置402は、ランドマークモデル432を使用して、自動化された様式で解剖学的ランドマークを決定してもよい、かつ/又は整形外科医から受信された医療用画像の注釈に基づいて、手動様式で解剖学的ランドマークを決定してもよい。
【0109】
加えて、データストレージ414は、1つ以上のADL力学モデル432を記憶してもよい。上述したように、また以下でより詳細に説明するように、ADL力学モデル(複数可)432は、股関節が対応する日常生活動作(例えば、歩行、高いところから降りること、座位から立ち上がることなど)を通じて動かされるときに生成される、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセット(複数可)を生成又は予測する、股関節の数学的モデル(例えば、「患者汎用股関節」)として具現化される。
【0110】
いくつかの実施形態では、データストレージ414は、接触点数学的モデル436を更に記憶してもよい。上記で説明し、以下でより詳細に説明するように、数学的モデル436は、入力変数の範囲(例えば、骨盤傾斜測定値の範囲及び寛骨臼カップの向きの範囲)に対して、汎用ADL力学モデル434によって生成された、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットのモデルである。このようにして、数学的モデル436は、患者の骨盤傾斜測定値を入力として用いて、患者の寛骨臼200に対する寛骨臼カップ104の範囲の向きに対する接触点のセットを迅速に生成してもよい。特に、数学的モデルは、接触点のセットを、ADL力学モデルによって接触点の対応するセットを生成するのに必要とされる期間よりも短い期間で生成するように構成され得る。
【0111】
ディスプレイ416は、分析装置402のユーザ(例えば、整形外科医)に情報を表示することが可能な任意のタイプのディスプレイとして具現化され得る。例えば、ディスプレイ416は、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)、陰極線管(CRT)ディスプレイ、プラズマディスプレイ、及び/又は他のディスプレイデバイスとして具現化され得る。いくつかの実施形態では、ディスプレイ416は、触覚的相互作用に基づいて整形外科医からの入力を受信するように構成され得る、タッチスクリーンを含んでもよい。加えて、いくつかの実施形態では、ディスプレイ416又は複製ディスプレイ416は、分析装置402から分離され得るが、図4に破線で示されるように、それに通信可能に連結され得る。
【0112】
通信サブシステム418は、分析装置402と、撮像装置404及び/又はコンピュータシステム400の他のデバイスとの間の通信を可能にすることができる、任意のタイプの通信回路、装置、又はそれらの集合として具現化され得る。これを行うために、通信サブシステム418は、任意の1つ以上の通信技術(例えば、有線又は無線通信)、及び関連するプロトコル(例えば、イーサネット、Bluetooth(登録商標)、Wi-Fi(登録商標)、WiMAX、LTE、5Gなど)を使用して、こうした通信を行うように構成されてもよい。
【0113】
1つ以上の周辺デバイス420は、例えば、他の入力/出力デバイス、ストレージデバイスなど、任意の数の追加の周辺デバイス又はインターフェースデバイスを含んでもよい。周辺デバイス420に含まれる特定のデバイスは、例えば、分析装置402のタイプ及び/又は意図された使用法に依存してもよい。
【0114】
撮像装置404は、患者の骨の解剖学的構造の医療用画像を術前及び/又は手術中に生成することが可能な、任意のタイプの装置又は装置の集合として具現化され得る。例示的な実施形態では、撮像装置404は、二次元医療用画像を生成することが可能なX線撮像機として具現化される。しかしながら、他の実施形態では、撮像装置404は、MRIなどの三次元医療用画像を生成することが可能な撮像装置として具現化され得る。例示的な実施形態では、撮像デバイス404は、患者の股関節がいくつかの機能的位置のうちの1つに配置されている間の、股関節のいくつかの画像を生成するが、それらの画像としては、前後面医療用画像、矢状面立位医療用画像、股関節が完全に屈曲された座位の医療用画像、及び対側脚が屈曲された矢状面直立医療用画像が挙げられる。当然ながら、他の実施形態では、撮像デバイス404は、患者の骨の解剖学的構造の、追加の又は他の医療用画像を生成するように構成されてもよい。
【0115】
ネットワーク406は、人工股関節配置分析装置402と撮像装置404(及びコンピュータシステム400の他の構成要素)との間の通信を容易にすることが可能な任意のタイプの通信ネットワークとして具現化され得る。したがって、ネットワーク406は、1つ以上のネットワーク、ルータ、スイッチ、ゲートウェイ、コンピュータ、及び/又は他の介在デバイスを含んでもよい。例えば、ネットワーク406は、1つ以上のローカルエリアネットワーク若しくは広域ネットワーク、セルラーネットワーク、公的に利用可能なグローバルネットワーク(例えば、インターネット)、アドホックネットワーク、短距離通信ネットワーク若しくはリンク、又はそれらの任意の組み合わせとして具現化され得る、又はそうでなければそれらを含んでもよい。
【0116】
いくつかの実施形態では、コンピュータシステム400はまた、外科用追跡システム408を含んでもよい。外科用追跡システム408は、任意のタイプの外科用追跡システム、外科用ナビゲーションシステム、デジタル外科手術システムなどとして具現化され得る。例えば、外科用追跡システム408は、いくつかの実施形態において、コンピュータ支援整形外科手術(computer assisted orthopaedic surgery,CAOS)システムとして具現化され得る。以下でより詳細に論じられるように、外科用追跡システム408は、患者の寛骨臼200に対する寛骨臼カップ104の画像を手術中に生成するように構成されている。例えば、コンピュータシステム400は、患者の骨の解剖学的構造に対する寛骨臼カップ104の配置(例えば、向き)の決定を容易にするために、患者の寛骨臼200及び寛骨臼カップ104に取り付けられたマーカを光学的に追跡するように構成されてもよい。そのような実施形態では、外科用追跡システム408によって提供される追跡は、以下でより詳細に論じられるように、撮像デバイス404によって生成される術中画像に取って代わり得る。
【0117】
ここで図5を参照すると、いくつかの実施形態では、コンピュータシステム400は、クラウドベースのシステムとして実装され得る。そのような実施形態では、コンピュータシステム400は、ネットワーク406を介してローカルコンピュータ装置504に通信可能に連結された、配置分析サーバ502を含んでもよい。配置分析サーバ502は、本明細書に記載される機能を実施することが可能な、任意のタイプのコンピュータ又はコンピューティング装置として具現化され得る。例えば、配置分析サーバ502は、サーバ、ラックマウント型コンピュータ、ネットワーク機器、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、又は他のコンピュータ若しくはコンピュータデバイスとして具現化され得る。
【0118】
図5に示すように、分析エンジン410及びデータストレージ412の各々は、配置分析サーバ502上に存在する。したがって、配置分析サーバ502は、分析装置402に関して上記及び下記で説明されるのと実質的に同じ機能を実行するように構成されている。例えば、配置分析サーバ502は、撮像装置404から患者の股関節の医療用画像を取得又は他の方法で受信し、それらの医療用画像に基づいて患者の股関節の骨盤傾斜測定値を決定するように構成されている。加えて、配置分析サーバ502は、ADL力学モデル434(及び/又は接触点数学的モデル434)を使用して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点の1つ以上のセットを決定又は予測し、上述のように接触点の各々のセット(又は接触点のセットのサブセット)に対する接触プロットを生成するように構成されている。配置分析サーバ502は、その後、接触プロット及び/又は接触点のセットを、ローカルコンピュータ装置504に送信してもよい。
【0119】
ローカルコンピュータ装置504は、本明細書に記載される機能を実施することが可能な、任意のタイプのコンピュータ又はコンピューティング装置として具現化され得る。例えば、ローカルコンピュータ装置504は、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、スマートフォン、モバイルコンピュータ、スマートデバイス、ウェアラブルコンピュータシステム、又は他のコンピュータ若しくはコンピュータ装置として具現化され得る。例示的に、ローカルコンピュータ装置504は、プロセッサ522と、メモリ520と、入力/出力(「I/O」)サブシステム412と、ディスプレイ416と、通信システム418と、いくつかの実施形態では、1つ以上の周辺デバイス420とを含む。
【0120】
プロセッサ522は、上述の分析装置402のプロセッサ422と同様であってもよく、本明細書に記載の機能を実行することが可能な任意のタイプのプロセッサとして具現化され得る。例えば、プロセッサ522は、シングル若しくはマルチコアプロセッサ(単数又は複数)、デジタル信号プロセッサ、マイクロコントローラ、又は他のプロセッサ若しくは処理/制御回路として具現化され得る。同様に、メモリ524は、上述の分析装置402のメモリ424と同様であってもよく、本明細書に記載の機能を実行することが可能な任意のタイプの揮発性及び/又は不揮発性メモリ又はデータストレージとして具現化され得る。動作中、メモリ524は、様々なデータと、ローカルコンピュータ装置504の動作中に使用される、例えばオペレーティングシステム、アプリケーション、実行可能ソフトウェア、プログラム、ライブラリ、及びドライバ等のソフトウェアとを記憶してもよい。
【0121】
ここで図6A図6Dを参照すると、人工股関節配置分析装置402(及び/又は図5の配置分析サーバ502)は、使用時に、患者の骨の解剖学的構造内の人工股関節100の配置を決定するための方法600を実行するように構成されている。例えば、方法600又はその一部は、分析装置402上に記憶され、分析装置402によって実行可能な、実行可能命令のセットとして具現化され得る。したがって、方法600の動作は、分析装置402の1つ以上の構成要素及び/又は分析装置402に通信可能に連結されたデバイスによって実行され得るということを理解されたい。
【0122】
方法600は、ブロック602で始まり、ここで、分析装置402は、患者の骨の解剖学的構造に対する人工股関節100の配置(例えば、患者の寛骨臼200に対する寛骨臼カップ104の向き)を分析するかどうかを決定する。例えば、分析装置402は、整形外科医からの命令又は入力を待って、方法600を開始してもよい。
【0123】
もしそうであれば、方法600はブロック604に進み、ここで、分析装置402は、整形外科手術が行われる患者の股関節の医療用画像のセットを、撮像装置404から取得又は受信する。医療用画像は、股関節が様々な機能的位置に配置された状態の、患者の股関節の画像として具現化される。分析装置402は、以下でより詳細に説明するように、患者の骨盤傾斜測定値の決定を容易にする、任意のタイプ及び数の適切な医療用画像を受信してもよい。例えば、上述したように、医療用画像は、二次元X線画像として例示的に具現化されるが、他の実施形態では、他のタイプの二次元医療用画像及び/又は三次元医療用画像として具現化され得る。
【0124】
例示的な実施形態では、分析装置402は、ブロック606の前後面立位医療用画像、ブロック608の矢状面立位医療用画像、ブロック610の股関節が完全に屈曲された矢状面座位医療用画像、及びブロック612の対側脚が屈曲された矢状面立位医療用画像を含む、4つの異なる医療用画像を受信する。前後面医療用画像は、患者が立っている間に患者の前方の冠状面から撮影された、患者の股関節の医療用画像として具現化され得る。更に、矢状面立位医療用画像は、患者が立っている間に患者の矢状面から撮影された、患者の股関節の医療用画像として具現化され得る。例示的な矢状面立位医療用画像1102を図11に示す。完全に屈曲した股関節を有する矢状面座位医療用画像は、患者が座位にあり、股関節が完全に屈曲している(例えば、大腿骨が立位に対して約90度屈曲している)間に、患者の矢状面から撮影された医療用画像として具現化され得る。例示的な矢状面股関節完全屈曲医療用画像1104が図11に示されている。また、対側脚が屈曲した矢状面立位医療用画像は、整形外科手術が行われている股関節とは反対側の股関節の脚が屈曲した状態(例えば、反対側の大腿骨が立位に対して約90度屈曲した状態)で患者が立っている間に、患者の矢状面から撮影された医療用画像として具現化され得る。例示的な、対側脚が屈曲した矢状面立位医療用画像1106が図11に示されている。
【0125】
図6Aのブロック604において、分析装置402が医療用画像を取得した後、ブロック614において、分析装置402は、受信した医療用画像に基づいて、患者の骨盤可動性を決定する。骨盤可動性は、患者の骨盤の可動域を示し、患者の骨盤傾斜測定値に基づいて決定される。したがって、分析装置402は、最初に、医療用画像から、患者の股関節の骨盤傾斜測定値を決定する。そうするために、ブロック616において、分析装置402は、患者の骨の解剖学的構造の特定の解剖学的ランドマークを識別してもよい。特に、分析装置402は、患者の関連する大腿骨及び寛骨臼200上の解剖学的ランドマークを識別する。解剖学的ランドマークは、患者の骨盤傾斜測定値の決定を容易にする、又は改善する、任意の解剖学的ランドマークとして具現化され得る。使用される特定のランドマークは、患者の骨の解剖学的構造、人工股関節100のサイズ及びタイプ、並びに/又は他のファクタなどの様々なファクタに依存して変化してもよい。例えば、例示的な実施形態では、識別された解剖学上のランドマークは、内側及び外側上前腸骨棘、恥骨結合部、股関節の中心部、及び関連する大腿の大腿骨骨幹部の中点を含む。
【0126】
いくつかの実施形態では、分析装置402は、ブロック618において整形外科医から受信した、手動で注釈を付けられた医療用画像に基づいて、関連する解剖学的ランドマークを識別してもよい。例えば、図10に示されるように、整形外科医は、1つ以上の医療用画像1000(例えば、ブロック604で受信された医療用画像のうちの1つ以上)に、図10に「o」として示される解剖学的ランドマークの印1002を用いて、手動でマーキングしてもよい。加えて又は代替的に、他の実施形態では、分析装置402は、図6のブロック620において、医療用画像(複数可)内の患者の骨の解剖学的構造上の解剖学的ランドマークを、自動的に及び/又は自律的に識別するように構成されてもよい。これらは図10において「x」として示される。したがって、自律的識別は、ブロック618において整形外科医によって提供される手動注釈に加えられても、又はそれに取って代わってもよい。例えば、いくつかの実施形態では、ブロック622に示されるように、分析装置402は、機械学習アルゴリズムを利用して、医療用画像(複数可)内の解剖学的ランドマークを識別してもよい。そのような実施形態では、機械学習アルゴリズムは、ブロック624におけるトレーニング段階を経ることができ、トレーニング段階では、その機械学習アルゴリズムに、手動で注釈付けされたサンプル患者の医療用画像のトレーニングセットが供給される。このようにして、機械学習アルゴリズムは、現在の患者の医療用画像などの新しい医療用画像における、対応する解剖学的ランドマークを識別するようにトレーニングされる。
【0127】
解剖学的ランドマークが識別された後、ブロック626において、分析装置402は、識別されたランドマークに基づいて、かつブロック604において受信された医療用画像を使用して、患者の股関節の骨盤傾斜測定値を計算する。骨盤傾斜測定値は、垂直面に対する患者の前骨盤平面(anterior pelvic plane、APP)の角度の大きさを示す。例えば、図11に示すように、分析装置402は、矢状面立位医療用画像1102に基づいて、立位骨盤傾斜測定値を決定してもよい。立位骨盤傾斜測定値は、患者が立位にある状態での患者の前骨盤平面1110と基準垂直面1112との間の角度の測定値である。加えて、分析装置402は、股関節が完全に屈曲された矢状面座位医療用画像1104に基づいて、座位骨盤傾斜測定値を決定してもよい。座位骨盤傾斜測定値は、患者が着座した位置にあり、股関節が完全に屈曲している状態での、患者の前骨盤平面1110と基準垂直平面1112との角度の測定値である。分析装置402はまた、対側脚が屈曲した状態の矢状面立位医療用画像1106に基づいて伸展骨盤傾斜測定値を決定してもよい。伸展骨盤傾斜測定値は、患者が反対側の股関節の脚を屈曲位置にして立っている状態での、患者の前骨盤平面1110と基準垂直平面1112との間の角度の測定値である。当然ながら、他の実施形態では、患者の脊椎軸に基づく方法等の他の方法が、患者の股関節の骨盤傾斜を決定するために採用されて、三次元空間における患者の骨盤の向きが理解され得るようにしてもよい。
【0128】
再び図6Aを参照すると、分析装置402が、ブロック626において、種々の骨盤傾斜測定値を決定した後、ブロック628において、分析装置402は、それらの骨盤傾斜測定値に基づいて、患者の骨盤可動性を決定する。そうするために、例示的な実施形態では、分析装置402は、着座した骨盤の傾斜測定値から伸展骨盤傾斜測定値を減算するように構成されている。例えば、図11に示されるように、患者の座位傾斜測定値は0.2度であり、患者の伸展骨盤傾斜測定値は-20度であり、その結果、全骨盤可動性は、20.2度と決定される。加えて、図11に示されるように、分析装置402は、測定された骨盤傾斜測定値及び計算された骨盤可動性を、ディスプレイ416上で外科医に表示され得るスクリーン画像1100を介して、整形外科医に提示してもよい。当然ながら、他の実施形態では、骨盤傾斜測定値間の他の差又は比較が、患者の骨盤可動性スコアの決定において使用又は考慮されてもよく、かつ/又は別様に整形外科医に提示されてもよい。
【0129】
再び図6Aを参照すると、分析装置402が患者の関連する股関節の骨盤可動性を決定した後、方法600は、図6Bのブロック630に進む。ブロック630において、分析装置402は、患者に埋め込まれる人工股関節100の大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズを決定する。例えば、整形外科医は、利用可能なタイプ及びサイズのメニューからタイプ及びサイズを選択する、又は他の方法でこれらの選択を分析装置402に提供してもよい。
【0130】
ブロック632において、分析装置402は、患者の寛骨臼200に対する寛骨臼カップ104の可能な向きの範囲に対する接触点のセットを決定する。先に論じたように、接触点は、患者が、歩行、高いところから降りること、及び座位から立ち上がることなどの特定の対応する日常生活活動(ADL)を行う際に、寛骨臼カップ104のカップライナ122に、大腿骨プロテーゼ102の大腿骨頭118が接触すると予測された場所である。例示的な実施形態では、各々の決定された「接触点」は、それに関連付けられた領域を含むということを理解されたい。すなわち、接触点は、領域を有さない単一の接触の「点」ではなく、大腿骨プロテーゼ102の大腿骨頭118の、寛骨臼カップ104のカップライナ122に接触する接触の領域又はパッチとして具現化される。
【0131】
ブロック634に示す例示的な実施形態では、分析装置402は、ブロック614で決定された骨盤可動性、ブロック626で決定された骨盤傾斜測定値、大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズ、並びに寛骨臼カップ104の向きの範囲を入力として使用する患者汎用ADL力学モデルに基づいて、接触点のセットを決定する。他の実施形態においては、追加的入力又は他のタイプの入力を使用することもできるということを理解されたい。
【0132】
上述したように、ADL力学モデルは、患者が特定の対応する日常生活動作(ADL)を行う間の、大腿骨プロテーゼ102による寛骨臼カップ104への荷重(すなわち、接触点のセット)を示すデータを生成することが可能な、任意のタイプのモデルとして具現化され得る。例えば、ADL力学モデルは、数式(複数可)の係数を定義する入力(例えば、骨盤傾斜測定値、大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズ、並びに寛骨臼カップ104の向きの範囲)を有する数式又は数式のセットとして具現化され得る。例示的な実施形態では、例えば、ADL力学モデルは、球対球接触のためのヘルツ接触モデルに基づいており、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触面積及び接触応力の計算を可能にしている。そうする際に、ADL力学モデルは、以下:
【0133】
【数1】
を含むいくつかの数学的方程式を使用する、又はそうでなければそれに依存してもよい。
【0134】
式(1)では、R1が大腿骨頭118の「球」の半径であり、R2がカップライナ122の「球」の半径であり、E1が大腿骨頭118の「球」の弾性係数であり、E2がカップライナ122の「球」の弾性係数であり、v1及びv2がポアソン比であり、Fが加えられた力である、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触面積aを、解くことができる。同様に、式(2)において、最大接触圧力Pmaxを、上で定義された式(1)と同じ変数を使用して解くことができる。式(1)及び(2)に対する修正は、大腿骨プロテーゼ102による寛骨臼カップ104への荷重(すなわち、接触点のセット)に対して、修正してもよく、かつ/又はADL力学モデルにおいて他の式を使用し得るということを理解されたい。
【0135】
上述したように、分析装置402は、一般的なADL力学モデルから直接、又はADL力学モデルによって生成された接触点をモデル化する接触点数学的モデルから、現在の患者の接触点のセットを決定してもよい。例えば、図7に示すように、分析装置402は、方法700を実行し、ADL力学モデルの結果を直接使用して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットを決定してもよい。方法700は、ブロック702で始まり、ここで、患者汎用ADL力学モデルが、ブロック614で決定された現在の患者の骨盤可動性及び方法600のブロック626で決定された骨盤傾斜測定値を用いて更新される。骨盤可動性及び骨盤傾斜測定値は、(寛骨臼カップ104の向きとは異なり)ADL力学モデルの各々の反復処理において変化しないので、一般的なADL力学モデルは、いくつかの実施形態では、それらの患者固有の測定値で更新され得る。加えて、ブロック704において、患者の寛骨臼200に対する寛骨臼カップ104の初期の向きが決定される。初期の向きは、整形外科医によって事前設定又は選択されてもよい。
【0136】
続いて、ブロック706において、分析装置402は、寛骨臼カップの選択された向き(例えば、ブロック706の第1の反復のためにブロック704において選択された初期カップの向き)をその入力として有する更新されたADL力学モデルを用いて、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットを決定する。そうするために、ブロック708において、分析装置402は、各々のADL行動についての接触点のサブセットを決定する。すなわち、対象となる各々のADL行動(例えば、歩行、高いところから降りること、座位から立ち上がること)に対して、寛骨臼カップ104の現在の向きをその入力として有する更新されたADL力学モデルを用いて、接触点の別個のサブセットが決定される。例えば、図12に示すように、接触点1200のセットは、患者の歩行のADL行動に対してADL力学モデルによって生成された接触点のサブセット1202と、高いところから降りる患者のADL行動についてのADL力学モデルによって生成された接触点のサブセット1204、及び座位から立ち上がる患者のADL行動についてのADL力学モデルによって生成された接触点のサブセット1206を含んでもよい。当然ながら、他の実施形態では、追加的ADL行動又は他のADL行動が使用されてもよいということを理解されたい。更に、他の実施形態では、力学モデルは、特定のADL又はADLのセットではなく、患者の股関節の所定の可動域に基づかなくてもよい。すなわち、患者の股関節の荷重の運動学は、特定のADLと無関係に使用され得る。いずれにしても、そのような追加的又は他のADL行動及び/又は運動学は、追加的又は他のADL行動を行う被験者のプールからの接触点の対応するサンプルセットに基づいて、ADL力学モデルのパラメータを修正するということを理解されたい。ADL力学モデルは、サブセット1202、1204、及び1206を別々に生成するものとして図12に関して説明されているが、ADL力学モデルは、サブセット120、1024、1206を、単一の計算又は方程式として生成するように構成されてもよいということを理解されたい。
【0137】
更に、患者の大腿骨及び/又は寛骨臼200は、対応するADL行動の動作全体を通して動いているということを理解されたい。したがって、大腿骨頭118と寛骨臼ライナ122との間の接触点は、典型的には、ADL行動の実行中に常時移動しているのが示される。接触プロットを明確にするために、接触点は離散化されて、得られる接触点のセットが、ADL行動全体を通しての接触点の動きを適切に定義するのに十分であるようにしている。そうするために、図7のブロック710において、各々のADL行動は、時間的に離散化され、各々の期間に対して、接触点の対応するサブセットの別個の接触点が決定される。このようにして、ADL力学モデルは、各々のADL行動の各々の期間に対して接触点を生成するように定式化される。時間的期間の分解度は、例えば、使用されるADL行動、試験患者のセット、プロテーゼのタイプ、及び/又は他の考慮事項などの、複数のファクタに基づいて選択され得る。もちろん、選択された分解度が低すぎる場合、接触点の重要な移動又は場所が見落とされる可能性があるということを理解されたい。逆に、選択された分解度が高すぎる場合、接触点のセットの計算に時間がかかりすぎて実用的ではない場合があり得る。いずれにせよ、時間周期の分解度は、一般的なADL力学モデルの開発に影響を及ぼし、そのモデルの不可欠な部分を形成するということを理解されたい。
【0138】
その後、ブロック712において、分析装置402は、ブロック708において決定された各々のADL行動の接触点の個々のサブセットに基づいて、寛骨臼カップ104の選択された向きに対する接触点の最終セットを生成する。そうするためには、分析装置402は、単にサブセットを、接触点の単一のセットにグループ化すればよい。例えば、図13に示されるように、接触点のサブセット1202、1204、及び1206の各々は、接触点のセット1300を形成するように一つにグループ化されている。これは、以下でより詳細に説明されるように、接触プロットとして図13に示されている。
【0139】
再び図7を参照すると、寛骨臼カップ104の選択された/現在の向きに対して接触点のセットが決定された後、方法700は、ブロック714に進み、そこで分析装置402は、寛骨臼カップ104の別の向きに対する接触点のセットを決定するべきかどうかを決定する。そうである場合、向きが調整され、方法700は、ブロック706にループバックし、そこで、分析装置402は、上述したように、入力として寛骨臼カップ104の新しい向きを有する更新されたADL力学モデルを使用して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットを計算する。寛骨臼カップの向きが修正される程度は、例えば、接触点のセットの所望の分解度、人工股関節100のタイプ、分析装置402の計算能力、患者の態様、及び/又は他の基準を含む、1つ以上の基準に基づいて選択されてもよい。例示的な実施形態では、寛骨臼カップ調整の程度は固定されているが、他の実施形態では、整形外科医によって調整可能であってもよい。
【0140】
ADL力学モデルは、患者の寛骨臼200に対する寛骨臼カップ104の向きの範囲内の各々の向きに対して、接触点のセットを反復的に計算するものとして、図7に関して上述されているということを理解されたい。しかしながら、他の実施形態では、ADL力学モデルは、寛骨臼カップ104の向きの範囲の各々のカップの向きに対して、接触点のセットが単一の計算又は方程式として決定されるように設計又は定式化され得る。すなわち、様々な向きは、方法700に関して上に説明したように反復的に調整されるのではなく、ADL力学モデルに「ハードコード化」され得る。
【0141】
ここで図8A及び図8Bを参照すると、他の実施形態では、分析装置402は、ADL力学モデルの出力をモデル化するようにトレーニングされた、又は別様に設計された数学的モデルを使用して、接触点のセットを決定してもよい。そうするために、分析装置402は、接触点の数学的モデルを使用して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットを決定するための方法800を実行してもよい。以下でより詳細に説明するように、方法800は、ブロック802~838における数学的モデル生成段階を含み、そこでは、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットのグローバルプールが、骨盤傾斜値及び寛骨臼カップの向きの範囲などの、様々に変化する入力の範囲に対して決定される。このようにして、接触点のセットの「母集団」が、入力の多数の組み合わせに対して生成され、次いで、接触点のセットのその「母集団」が、数学的モデルを生成するために使用される。方法800はまた、ブロック840~842における接触点決定段階を含み、そこでは、以下でより詳細に説明するように、患者傾斜測定値を入力として数学的モデルを続いて使用し、接触点のセットを生成する。ブロック802~836の数学的モデル生成段階は、ブロック840~842の接触点決定段階を実行するいくらか前に実行又は実施されてもよく、かつ/又は別個のコンピューティングデバイス/サーバ上で実施されてもよいということを理解されたい。すなわち、数学的モデルは、整形外科医が分析装置402を使用する前に開発されて、特定の患者に対する人工股関節100の適切な向きを決定してもよい。例えば、数学的モデルは、分析装置402及び/又は方法600を具現化するソフトウェアパッケージの提供者によって開発され得る。
【0142】
方法800は、ブロック802から始まり、そこで分析装置402は、患者汎用ADL力学モデルへの様々な入力の程度を決定する。例えば、ブロック804において、骨盤傾斜値の程度が決定され、それによって、骨盤可動性値の程度が決定される。加えて、ブロック806において、寛骨臼カップ104の向きの程度が決定される。例えば、ブロック808において、患者の寛骨臼200に対する寛骨臼カップ104の傾斜度の程度が決定されてもよく、ブロック810において、患者の寛骨臼200に対する寛骨臼カップ104の前傾度の程度が決定されてもよい。骨盤傾斜値の程度及び寛骨臼カップの向きの程度は、それらの値の各々がADL力学モデルの反復ごとに調整される量を定義する(又は、ADLモデルが反復計算ではなく単一計算を実行するように設計されている実施形態では、互いに異なる量を定義する)。したがって、骨盤傾斜値及び寛骨臼カップの向きの程度は、得られる数学的モデルの出力の分解度を調整し、これは、数学的モデルの全体的な性能を定義し得るということを理解されたい。程度は、整形外科医によって選択されてもよく、又は「ハードコード化」若しくは他の方法で事前選択されてもよい。
【0143】
続いてブロック812において、初期患者傾斜値及び寛骨臼カップ104の初期の向きが決定又は選択される。そのような初期値は、予め選択されてもよく若しくは予め決定されてもよく、又は整形外科医又は分析装置402の他のユーザによって選択されてもよい。いずれにしても、方法800は、その後、ブロック814に進み、そこで分析装置402は、選択された骨盤タイトル値、関連する骨盤可動性値、人工股関節100の選択されたサイズ及びタイプ、並びに寛骨臼カップ104の選択された向きをその入力として有するADL力学モデルを使用して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットを決定する。そうするために、方法700のブロック708に関して上述したように、分析装置402は、ブロック816において、各々のADL行動に対する接触点のサブセットを決定する。加えて、方法700のブロック710に関して上述したように、ブロック818において、各々のADL行動は時間的に離散化され、接触点の対応するサブセットの別個の接触点が各々の期間に対して決定される。続いて、ブロック820において、分析装置402は、方法700のブロック712に関して上述したように、各々のADL行動の接触点の個々のサブセットに基づいて、寛骨臼カップ104の選択された向きに対する接触点の最終セットを生成する。
【0144】
ブロック822において、分析装置402は、ブロック814において生成された接触点のセットを記憶する。例えば、分析装置402は、接触点のセットをデータストレージ412に記憶してもよい。ブロック824に示されるように、分析装置402は、ADL機構モデルへの入力として使用される特定の患者傾斜値及びカップの向きの関数として生成された接触点のセットを記憶して、対応する接触点のセットを生成してもよい。
【0145】
続いて、図8Bのブロック826において、分析装置402は、骨盤傾斜値及び/又は寛骨臼カップの向きの値の新しい組み合わせに対して、接触点の追加のセットを生成するべきかどうかを決定する。そうである場合、方法800はブロック828に進み、そこでは、分析装置402は、骨盤傾斜値のうちの1つ以上及び/又は寛骨臼カップの向きの値のうちの1つ以上(例えば、傾斜値及び/又は前傾値)を調整する。分析装置402は、ブロック802において決定された入力の程度に基づいて、それらの値を調整し、方法800は、その後、図8Aのブロック814にループバックして、調整された骨盤傾斜値及び/又は寛骨臼カップの向きの値を使用して、接触点のセットを計算する。このようにして、分析装置402は、異なる骨盤傾斜値の範囲及び寛骨臼カップの向きの値の範囲の組み合わせを通して進み、接触点の最終セットが、異なる可能な組み合わせの「母集団」をカバーするようにする。
【0146】
上述したように、ADL力学モデルは、骨盤傾斜及び寛骨臼カップの向きの値の各々の組み合わせに対して、接触点のセットを反復的に計算するものとして上に説明されているということを理解されたい。しかしながら、他の実施形態では、ADL力学モデルは、異なる可能な骨盤傾斜値及び向きの値の完全な「母集団」が、単一の計算又は方程式として決定されるように設計又は定式化され得る。
【0147】
図8Bのブロック826を再び参照すると、骨盤傾斜値と寛骨臼カップの向きの値との各々の組み合わせに対して接触点のセットが決定された後、方法800は、ブロック830に進む。ブロック830において、分析装置402は、ブロック814~828において生成された接触点のセットのプールに基づいて、数学的モデルを生成する。上述したように、数学的モデルは、生成された接触点のセットのモデルであり、これは、骨盤傾斜値及び寛骨臼カップの向きの値の、「母集団」の結果である。したがって、特定の患者の測定された骨盤傾斜測定値を使用して、数学的モデルは、対象の寛骨臼カップ104の向きの完全な範囲に対して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットの対応する群を生成することが可能である。そのような個々の計算は既に完了しているので、数学的モデルは、その特定の患者に対して、得られた接触点のセットの生成において、ADL力学モデルよりも速く実行し得るということを理解されたい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0148】
数学的モデルは、患者の骨盤傾斜測定値をその入力として使用して接触点のセットを生成し得る、任意のタイプの数学的モデルとして具現化されてもよい。例えば、数学的モデルを生成するために、分析装置402は、Gibbons et al.による、「Development Of A Statistical Shape-Function Model Of the Implanted Knee For Real-Time Prediction Of Joint Mechanics」と題された雑誌論文(Gibbons K.et al.Development Of A Statistical Shape-Function Model Of the Implanted Knee For Real-Time Prediction Of Joint Mechanics,Journal of Biomechanics 2019;88:55-63)に記載された技術のうちの任意の1つ以上を実行してもよい。なお、この論文の全体は、参照により、本明細書に組み込まれる。
【0149】
いずれにしても、図8Bに示すように、ブロック832において、分析装置402は、生成された接触点のセットに基づいて、線形応答モデルを生成又は決定してもよい。加えて又は代替的に、分析装置402は、生成された接触点のセットに基づいて、ブロック834においては応答曲面モデルを、ブロック836においてはニューラルネットワークモデルを、及び/又はブロック838においては統計的フィッティングモデルを生成又は決定してもよい。
【0150】
ブロック830において数学的モデルが生成された後、続いて、測定された患者骨盤傾斜値をその入力として使用して、その数学的モデルを現在の患者に対する接触点のセットを決定又は計算するために使用してもよい。そうするために、ブロック832に示されるように、分析装置402は、患者の骨盤傾斜測定値をその入力として使用して数学的モデルを利用して、カップの向きの範囲(すなわち、数学的モデルを生成するために使用されるカップの向きの範囲)内の各々の向きに対する接触点のセットを決定する。上述したように、カップの向きの範囲は、数学的モデルに「ハードコード化」され、その結果、例示的な数学的モデルは、反復アプローチではなく単一の計算で、患者に対する接触点のセットのプールを生成するように構成されている。もちろん、他の実施形態では、生成された数学的モデルは、寛骨臼カップの向きの範囲に関して反復アプローチを利用するように設計されてもよい。
【0151】
ここで図6Bを再び参照すると、分析装置402が、上述の方法700又は方法800のいずれかを使用して、ブロック632において接触点のセットを決定した後、いくつかの実施形態では、方法600はブロック636に進む。ブロック636において、分析装置402は、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域を決定するように構成され得る。すなわち、分析装置402は、大腿骨プロテーゼ102の頸部114と寛骨臼カップ104のカップライナ122の端部とのインピンジメントをもたらさない、大腿骨プロテーゼ102と寛骨臼カップ104との間の可動域を決定する。
【0152】
そうするために、ブロック638において、分析装置402は、大腿骨プロテーゼ102の三次元モデルと寛骨臼カップ104の三次元モデルとに基づいて、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域を決定してもよい。そのような三次元モデルは、整形外科医によって選択された特定の大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズに基づいてもよいということを理解されたい。加えて、いくつかの実施形態では、ブロック640において、分析装置402は、患者の大腿骨に対する大腿骨プロテーゼ102の異なる向きの範囲に対して、及び患者の寛骨臼200に対する寛骨臼カップ104の異なる向きの範囲に対して、インピンジメントフリー可動域を決定してもよい。
【0153】
例えば、図14に示すように、分析装置402は、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域のグラフ表現1400を決定してもよい。例示的なグラフ表現1400は、大腿骨プロテーゼ102及び寛骨臼カップ104の向きを所与として、大腿骨プロテーゼ102の頸部114と寛骨臼カップ104のカップライナ122の端部との間のインピンジメントをもたらさない、人工股関節100で達成可能な屈曲、外転、内旋、伸展、内転、及び外旋の程度を示す。例示的な実施形態では、グラフ表現1400は、関連する軸に応じて特定の運動度をそれぞれ定義する、同心六角形を有する程度チャート1402を含む。すなわち、各々の股関節の動きは、大腿骨プロテーゼ102及び寛骨臼カップ104のインピンジメントが生じる前の、その動きの最大程度を定義する、程度チャート1402上の関連する点を有する。例えば、図14の実施形態では、分析装置402は、インピンジメントが起こる前に患者の股関節が約126度の程度まで屈曲され得る一方で、インピンジメントが起こる前に患者の股関節が約60度までしか伸展され得ないということを決定している。加えて、分析装置402は、患者の股関節が、インピンジメントが起こる前に約112度の角度まで内旋され得る一方で、患者の股関節は、インピンジメントが起こる前に約63度まで外旋され得るということを決定している。更に、分析装置402は、インピンジメントが起こる前に患者の股関節を約80度外転させることができ、一方、インピンジメントが起こる前に患者の股関節を約48度内転させることができると決定している。可動域境界1404は、各々の対応する最大運動度の周囲に画定され、可動域境界1404の領域は、寛骨臼カップ104の選択された向きでの、人工股関節100によって達成可能なインピンジメントフリー可動域を可視化したものを提供する。したがって、例示的な実施形態では、可動域境界1404によって境界付けられた領域は、人工股関節100のインピンジメントフリー可動域を示す。当然ながら、他の実施形態では、他の基準を使用して、特定の患者に対する人工股関節100のインピンジメントフリー可動域を決定してもよい。加えて、他の実施形態では、骨対骨のインピンジメントもまた、決定及び分析されてもよい。
【0154】
再び図6Bを参照すると、分析装置が人工股関節100のインピンジメントフリー可動域を決定した後、方法600はブロック642に進む。ブロック642において、分析装置402は、上述のようなカップの向きの範囲内の各々のカップの向きに対する接触点のセットを含む生成された接触点のセットから、寛骨臼カップ104の許容可能な向きのセットを識別する。そうするために、例示的な実施形態では、分析装置402は、ブロック644において、ブロック632において決定された接触点のセットのプールに基づいて、カップの向きの初期セットを決定する。一般に、カップの向きの初期セットは、ブロック632で生成された接触点の異なるセットに対応する、寛骨臼カップ104の各々の向き(すなわち、接触点の対応するセットを生成するために使用されたカップの向き)を含む。
【0155】
ブロック646において、分析装置402は、寛骨臼カップ104のカップライナ122の端部荷重をもたらす寛骨臼カップ104の向きを、識別する。そうするために、分析装置402は、任意の接触点が端部荷重をもたらすかどうかを、カップライナ122の端部に対する、接触点の対応するセットの各々の接触点の距離に基づいて決定する。例えば、図13に示されるように、分析装置402は、カップライナ122の内側(遠位)端部を示す端部境界1312からの、接触点のセット1300の各々の接触点の距離を分析して、二次元カップライナマップ1310の外側境界を形成してもよい。接触点のいずれかの部分が、カップライナマップ1310の端部境界1312(カップライナ122の端部に対応)上又はその上方にある、又は端部境界1312の基準閾値距離内にある場合、接触点のそのセットに対応する寛骨臼カップ104の向きは、大腿骨プロテーゼ192による寛骨臼カップ104の端部荷重をもたらすとみなされる。
【0156】
接触点が「端部荷重接触点」と考えられるための端部境界1312からの基準閾値距離、及び端部荷重をもたらす寛骨臼カップ104の対応する向きは、寛骨臼カップ104のサイズにわたって固定又は同一であってもよく、又は寛骨臼カップ104のサイズに対して相対的であってもよい。例えば、例示的な一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の1.5ミリメートル以下の弧長内(図13において端部境界1312として示される)にある場合に、その接触点を、「端部荷重接触点」であると決定してもよい。別の一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の1.0ミリメートル以下の弧長内にある場合に、その接触点を、「端部荷重接触点」であると決定してもよい。更なる一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の0.5ミリメートル以下の弧長内にある場合に、その接触点を、「端部荷重接触点」であると決定してもよい。加えて又は代替的に、他の実施形態では、「端部荷重接触点」とみなされる接触点の基準距離は、寛骨臼カップ104のサイズに対して相対的なものであってもよい。例えば、接触点を端部荷重とみなすためのカップライナ122の内側(遠位)端部からの基準距離は、カップライナ122の内側(遠位)端部からの距離とカップライナ122の内径との比が0.034~0.067の範囲内、0.044~0.0577の範囲内、又は約0.047であるように選択されてもよい。いずれにしても、基準距離を増加させることによって、寛骨臼カップ104の端部荷重をもたらす全ての接触点の識別の信頼度が増加し得るということを理解されたい。
【0157】
端部荷重を有するいくつかのサンプル接触プロットが図18に示され、以下でより詳細に説明される。図示されるように、接触プロット1804、1806、1812、1816、及び1818の各々は、カップライナマップ1310の対応する端部境界1312の基準閾値上に、それを超えて、又はそれ以内にある、少なくとも1つの接触点を有する。したがって、各々の接触プロット1804、1806、1812、1816、及び1818に対応する寛骨臼カップ104の向きの各々は、寛骨臼カップ104の端部荷重をもたらすと考えられ、いくつかの実施形態では、例えば対応する接触インジケータの色の変化(例えば赤色)などの適切な方法を使用して、対応する接触プロットにおいて強調され得る。
【0158】
図6Bを再び参照すると、分析装置402が、寛骨臼カップ104の端部荷重をもたらすそれらのカップの向きを識別した後、分析装置402は、ブロック648において、それらの端部荷重のカップの向きを、カップの向きの初期セットから分離する。したがって、許容可能なカップの向きの得られるセットは、元々のカップの向きのセットであって、そのそれぞれが別個の、生成された接触点のセットに対応するカップの向きのセットから、寛骨臼カップ104の端部荷重をもたらすと決定されたカップの向きを引いたものを含む。加えて、いくつかの実施形態では、ブロック650において、分析装置402はまた、ブロック636において大腿骨プロテーゼ102の寛骨臼カップ104へのインピンジメントをもたらすと決定されたカップの向きを除去してもよい。
【0159】
ブロック642において分析装置402が許容可能なカップの向きのセットを決定した後、方法600は、図6Cのブロック652に進む。ブロック652において、分析装置402は、患者の寛骨臼200に対する寛骨臼カップ104の1つ以上の好ましい向きを識別する。当然ながら、好ましいカップの向きは、選択基準次第で、「最適化された」カップの向きである場合も、そうでない場合もあり得るということを理解されたい。例示的な実施形態では、分析装置402は、ブロック654において、各々の許容可能なカップの向きに対応する接触点のセットの、寛骨臼カップライナ122上での中心化の程度に基づいて、ブロック642において決定された許容可能なカップの向きのセットから、好ましいカップの向きを決定する。そうするために、分析装置402は、任意の好適な方法を利用して、接触点のセットの中心化の量を決定してもよい。
【0160】
例えば、例示的な実施形態では、分析装置402は、最も外側の接触点(すなわち、カップライナマップ1310の端部境界1312に最も近い接触点)と端部境界1312との間の距離に基づいて、寛骨臼カップ104の好ましい向きを決定する。例えば、図15に示すように、分析装置402は、接触点のセット1300の最も外側の接触点とカップライナマップ1310の端部境界1312との間で定義される一対の距離1500、1502を決定するように構成されてもよい。これらの距離1500、1502がより緊密に一致すればするほど、接触点のセット1300は、カップライナ122の中心に対してより中心化される(カップライナマップ1310によって示されるように)。加えて、いくつかの実施形態では、分析装置402は、端部境界1312の近くにある(例えば、基準閾値距離内にある)それらの接触点1300上に更なる印を提供するように構成され得る。例えば、分析装置402は、端部境界1312を超えている、接触している、及び/又は基準距離内にある接触点1300の色を変え(例えば、赤色に変え)てもよい。
【0161】
もちろん、他の実施形態では、接触点のセット1300の中心化を決定するために、他の方法が使用されてもよい。例えば、いくつかの実施形態では、ブロック656において、分析装置402は、接触点のセット1300の質量中心を決定し、決定された質量中心と、(カップライナマップ1310によって示されるような)カップライナ122の中心との間の距離に基づいて、接触点のセット1300の中心化を決定してもよい。その距離が基準閾値距離未満である場合、分析装置402は、接触点のそのセットに関連付けられた寛骨臼カップの向きが、好ましい寛骨臼カップの向きであると決定してもよい。更に他の実施形態では、分析装置402は、接触点のセットに対して、カップライナマップ1310の端部境界1312からの平均距離を決定してもよい。そうすることで、分析装置402は、外れ値の影響を低減するために、いくつかの接触点に重み付け係数を適用してもよい。
【0162】
いずれにしても、分析装置402が、ブロック642において許容可能な寛骨臼カップの向きのセットを決定し、ブロック652において好ましい寛骨臼カップの向きを決定した後、方法600は、ブロック658に進む。ブロック658において、分析装置402は、カップの向きのグラフを生成する。例示的なカップの向きのグラフ1600が、図16に示されており、寛骨臼カップ104の前傾度を表す横軸1602と、患者の寛骨臼200に対する寛骨臼カップ104の傾斜度を表す縦軸1604とを含む。
【0163】
図6Cを再び参照すると、カップの向きのグラフ1500の生成の一部として、分析装置402はまた、ブロック660において、端部荷重をもたらすとブロック646において決定された寛骨臼カップの向きのセットに基づいて、寛骨臼カップ104の端部荷重をもたらす向きの値の端部荷重境界1606を、決定してもよい。すなわち、分析装置402は、寛骨臼カップの向き(すなわち、傾斜及び前傾の度合い)を規定する境界であって、その外側では、寛骨臼カップ104の端部荷重が生じる境界を生成する。例示的な端部荷重境界1606が、図16に示されており、これは概ね長円形又は楕円形の形状を有する。当然ながら、端部荷重境界1606は、定義された端部荷重カップの向きに基づいて最初に決定されるとき、それらの端部荷重カップの向きの場所に応じて、「ノイズの多い」又は不規則な形状を有し得るということを理解されたい。したがって、分析装置402は、端部荷重境界1606の最終形状を生成するために、スプラインフィッティングなどのある量のデータ平滑化を使用してもよい。更に、端部荷重境界1606は、いくつかの実施形態では、端部荷重カップの向きの場所に応じて、完全な楕円でなくてもよいということを理解されたい。例えば、図17に示すように、端部荷重境界1706は、依然として実質的に楕円形であるが、より不規則な形状を有してもよい。
【0164】
ここで再び図6Cを参照すると、分析装置402がカップの向きのグラフを生成した後、分析装置402は、ブロック662において、整形外科医(又は分析装置402の他のユーザ)が、好ましいカップの向きについての接触プロットを視認することを所望するかどうかを決定してもよい。そうである場合、分析装置402は、ブロック664において、好ましいカップの向きに関連付けられた接触点のセットに対する接触プロットを生成する。そうするために、ブロック666において、分析装置402は、カップライナマップと、接触点の対応するセットの各々の接触点に対するグラフィカル接触インジケータとを含む接触プロットを生成し、接触点の各々は、寛骨臼カップ104のカップライナ122に対する対応する接触点の場所を示す位置でカップライナマップ上に位置する。例示的な接触プロット1610が図16に示されており、カップの向きのグラフ1600上に配置されたカップライナマップ1612を含む。カップライナマップ1612は、寛骨臼カップ104のカップライナ122の中心に対応するカップライナマップ1612の中心1614から、カップライナ122の端部に対応する端部境界1616まで広がる同心円状の境界の群として、例示的に具現化される。同心円状境界の群は、カップライナマップ1512の中心1514及び端部境界1516に対する接触点の場所の視覚的印を提供する。接触点の対応するセットの各々の接触点は、対応するグラフィカル接触インジケータ1620によって表現される。接触プロット1610の接触インジケータ1620は、円として例示的に具現化される。しかしながら、他の実施形態では、接触インジケータ1620は、寛骨臼カップ104のカップライナ122上の対応する接触点の場所の印を整形外科医に提供し得る、任意の好適な視覚的インジケータとして具現化されてもよい。
【0165】
いくつかの実施形態では、接触インジケータ1620は、寛骨臼カップ104のカップライナ122上の対応する接触点の場所に加えて、情報を提供してもよい。例えば、図6Cのブロック668を再び参照すると、分析装置402は、好ましいカップの向きの接触点のセットの接触点に対応する、各々のグラフィカル接触インジケータ1620のサイズを決定してもよい。例えば、接触インジケータ1620が円として具現化される実施形態では、分析装置402は、各々の対応する円の半径又は直径を決定してもよい。いずれにしても、接触インジケータ1620のサイズは、対応する接触点における人工股関節100の荷重に基づき、かつその荷重を示すことができる。人工股関節100が受ける荷重は、接触点のセットを生成するために使用されるADL力学モデル及び/又は数学的モデルの一部として決定され、例示的な実施形態では、対応する接触インジケータ1620のサイズによって示される(例えば、接触インジケータが大きいほど、対応する接触点で生じる荷重の量が大きいことを意味する)。
【0166】
加えて、分析装置402は、ブロック670において、各々のグラフィカル接触インジケータ1620の色を決定してもよい。例示的な実施形態では、各々の接触インジケータ1620の色は、端部境界1616によって接触プロット1610上に示されるカップライナ122のエッジからの、対応する接触点の距離に基づき、かつその距離を示す。したがって、端部境界1616により近い接触インジケータ1620は、接触マップ1610の中心1614により近く位置する接触インジケータ1620(例えば、より緑の色)とは異なる色(例えば、より青い色)を有することになる。加えて、接触プロット1804、1806、1812、1816、及び1818に関して図18に示されるように、赤色等の特別な色が、端部境界1616上又はそれを超えたところにある接触インジケータ1620に対して使用されてもよい。
【0167】
ブロック664において分析装置402が、接触プロットを生成した後、方法600は、ブロック672に進み、そこで分析装置402は、寛骨臼カップ104の好ましい向きについての接触プロットを、ディスプレイ416上に表示する。加えて、いくつかの実施形態では、分析装置402は、ブロック636において決定され、図14に示されるように、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域のグラフ表現1400を表示してもよい。
【0168】
分析装置402が好ましいカップの向きについての接触プロット1610を表示した後、又はブロック662において、整形外科医が、決定された好ましいカップの向きを見ないということを決定した場合には、方法600は、図6Dのブロック676に進む。ブロック676において、分析装置402は、整形外科医(又は分析装置402の他のユーザ)が、ブロック642において先に決定されたような、許容可能な寛骨臼カップの向きのセットに対する接触プロットを見ることを望むかどうかを決定してもよい。そうである場合、ブロック678において、分析装置は、許容可能なカップの向きのセットの各々の寛骨臼カップの向きに対して(すなわち、寛骨臼カップ104の端部荷重をもたらさない接触点の各々のセットに対して)接触プロットを生成する。これらの接触プロットの各々は、図16に示されかつブロック664に関して上述された接触プロット1610と同様である。
【0169】
その後、ブロック680において、分析装置402は、生成された接触プロットをディスプレイ416上に表示してもよい。例えば、図19に示されるように、分析装置402は、カップの向きのグラフ1600の中心に好ましい接触プロット1610を表示し、残りの許容可能なカップの向きの他の接触プロット1910(又はそれらの接触プロット1910のサブセット)を、端部荷重境界1606上に表示してもよい。好ましい接触プロット1610は、カップライナ122上の接触点の「中心化」に加えて、整形外科医の選好、使用される特定の外科技術、及び/又は他の考慮事項等の基準に基づいてもよい。加えて、端部荷重境界1606上に表示された接触プロット1910は、寛骨臼カップ104の向きの前傾及び/又は傾斜の値を示しており、その値を超えると、寛骨臼カップ104の端部荷重が生じる(すなわち、対応する接触プロット1812の場所に応じてより大きくも又はより小さくもなる)ということを理解されたい。すなわち、図19に示すように、接触プロット1910のいずれも、対応するカップライナマップ1612の端部荷重境界1606上に又はそれを越えて位置する接触インジケータを含まない。当然ながら、他の実施形態では、分析装置402は、カップの向きのグラフ1600上に追加の又は他の接触プロット1910を表示してもよい。
【0170】
分析装置402が許容可能なカップの向きについての接触プロットを表示した後、又はブロック676において整形外科医が、許容可能なカップの向きを見ないと決定した場合、方法600はブロック682に進む。ブロック682において、分析装置402は、整形外科医(又は分析装置402の他のユーザ)が、寛骨臼上向き104の端部荷重をもたらすもの、及び/又は大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントを示すものを含んでもよい、寛骨臼カップの任意の他の向きについての接触プロットを見ることを望むかどうかを決定することができる。そうである場合、ブロック684において、分析装置402は、他の寛骨臼カップの向きの選択を受信する。例えば、整形外科医は、所望のカップの向きを選択する、又は特定の前傾及び傾斜度を入力して、対応する寛骨臼カップの向きを選択してもよい。いずれの場合も、ブロック686において、分析装置402は、上述したように選択された寛骨臼カップの向きについての接触プロットを生成する。加えて、ブロック688において、分析装置402は、上述したように、生成された接触グラフを、ディスプレイ416上に表示する。
【0171】
分析装置402が、選択されたカップの向きについての接触プロットを表示した後、又はブロック682において、整形外科医が、別のカップの向きを見ないと決定した場合、方法600は、ブロック690に進む。ブロック690において、分析装置402は、整形外科医が別の人工股関節の位置を分析したいかどうかを決定する。例えば、整形外科医は、完全に異なるタイプの人工股関節を選択する、又は現在のタイプの人工股関節の異なるサイズを選択してもよい。そうである場合、方法600は、ブロック630にループバックし、そこでは、分析装置402が、上述のように、新しい人工股関節のタイプ及びサイズを決定する。しかしながら、そうでない場合、方法600は、ブロック662にループバックし、そこでは、分析装置402は、整形外科医が好ましいカップの向きを見ることを所望するかどうかを再び決定する。
【0172】
ここで図9A及び図9Bを参照すると、いくつかの実施形態では、分析装置402はまた、人工股関節100を患者に埋め込むための整形外科手術の実施中に、人工股関節100の配置を、手術中に監視するための方法900を実行してもよい。例えば、方法900又はその一部は、分析装置402上に記憶され、分析装置402によって実行可能な、実行可能命令のセットとして具現化され得る。したがって、方法900の動作は、分析装置402の1つ以上の構成要素及び/又は分析装置402に通信可能に連結されたデバイスによって実行され得るということを理解されたい。
【0173】
方法902は、ブロック902から始まり、ここで、分析装置402は、患者の寛骨臼200に対する寛骨臼カップの計画された又は所望の向きを、術前に決定する。そうするために、分析装置402は、図6に関して上述した方法600を実行してもよい。したがって、方法600は、寛骨臼カップ104の所望の向きを事前に計画するために術前に使用されてもよいが、方法900は、寛骨臼カップ104の実際の現在の向きを監視及び/又は調整するために、整形外科手術中に実行されてもよいということを理解されたい。
【0174】
続いて、ブロック904において、分析装置402は、整形外科医が、関連する整形外科手術を実行している間に、人工股関節100の配置(例えば、寛骨臼カップ104の向き)を監視することを望むかどうかを決定する。もしそうであれば、方法900は、ブロック906に進み、そこでは、分析装置402は、患者の寛骨臼200に対する寛骨臼カップ104の現在の向きを決定する。そうするために、分析装置402は、整形外科手術の実行中に生成及び取得された患者の寛骨臼200の医療用画像に基づいて、寛骨臼カップ104の現在の向きを決定してもよい。例えば、システム400の撮像装置404は、整形外科手術中に患者の寛骨臼200の医療用画像を生成し、それらの医療用画像を分析装置402に送信又は別様に提供するように構成されてもよい。代替的に、システム400が外科用追跡システム408を含む実施形態では、分析装置402は、ブロック910において、外科用追跡システム408によって提供される外科手術ナビゲーションデータに基づいて、寛骨臼カップ104の予め設定された向きを決定してもよい。
【0175】
いずれにしても、ブロック906において分析装置402が、寛骨臼カップ104の現在の向きを決定した後、方法900は、ブロック912に進み、そこで分析装置402は、寛骨臼カップ104の決定された現在の向きについての接触プロットを生成する。そうするために、分析装置402は、方法600のブロック664に関して上で詳細に説明した方法を使用してもよい。当然ながら、寛骨臼カップ104の現在の向きが、方法600のブロック632において、それに対して接触点のセットが決定されたカップの向きの範囲に含まれない場合、分析装置402は、ブロック632に関して上述した方法を使用して、寛骨臼カップ104の現在の向きに対する関連する接触点のセットを決定することもできる。代替的に、他の実施形態では、分析装置402は、単に、ブロック632においてそれに対して接触点のセットが決定された向きの範囲内のカップの向きのうち、寛骨臼カップ104の決定された現在の向きに最も近いカップの向きを選択する。いくつかの実施形態では、分析装置402はまた、図6A図6Dの方法600のブロック636に関して上述したように、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域を決定してもよい。
【0176】
ブロック914において、分析装置402は、寛骨臼カップ104の現在の向きについての接触プロットを表示する。そうするために、分析装置402は、好ましいカップの向きについての接触プロットの表示に関して、方法600のブロック672に関して上で説明された方法を使用してもよい。例えば、いくつかの実施形態では、分析装置402は、図16に関して図示及び上述したように、寛骨臼カップ104の現在の向きについての接触プロットを、カップの向きのグラフ1600上に表示してもよい。更に、ブロック914において、分析装置402は、ブロック912において決定されたインピンジメントフリー可動域の印を表示してもよい。
【0177】
加えて、いくつかの実施形態では、ブロック916において、分析装置402は、寛骨臼カップ104の術前の計画された向きと寛骨臼カップ104の決定された現在の向きとの間の差を決定するように構成されてもよい。例えば、分析装置402は、2つのカップの向きの、傾斜及び前傾値の差を表示してもよく、又は術前及び手術中のカップの向きの各々に対する接触プロットを示してもよい。
【0178】
更に、図20に示されるようないくつかの実施形態では、分析装置402は、グラフィカルユーザインターフェース(GUI)200上に、寛骨臼カップ104の現在の向きについての接触プロットを表示してもよい。例示的なGUI2000は、寛骨臼カップ104の現在の(すなわち、測定された)向きの接触プロット2004がその上に表示される、カップの向きのグラフ2002を含む。更に、GUI2000は、現在の向きにおける、大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域のグラフ表現2006を含む。GUI2000はまた、例示的に、図9Aのブロック906において、寛骨臼カップ104の現在の向きがそこから決定された、術中医療用画像のコピーを含む。加えて、いくつかの実施形態では、GUI2000は、傾斜制御部2010及び前傾制御部2012等の、カップの向きの制御部を含んでもよい。使用中、整形外科医は、寛骨臼カップ104の修正された向きについての接触プロットを再検討するために、制御部2010、012の一方又は両方を調整してもよい。このようにして、整形外科医は、寛骨臼カップ104の向きに関していくつかの「もし~ならば、どうするか」というシナリオを行うことができる。
【0179】
図9Aを再び参照すると、分析装置402が、寛骨臼カップ104の現在の向きについての接触プロットを表示した後、方法900は、図9Bのブロック918に進む。ブロック918において、整形外科医は、寛骨臼カップ104の現在の向きに関連付けられた表示された接触プロットに基づいて、整形外科手術を継続する。例えば、整形外科医が、接触プロットが満足のいくものであると判断した場合、整形外科医は、ブロック920において、寛骨臼カップ104の現在の向きを使用して、整形外科手術を継続してもよい。しかしながら、整形外科医が、接触プロットが満足のいくものではないと判断した場合、整形外科医は、ブロック922において、寛骨臼カップ104の現在の向きを修正又は調整し、寛骨臼カップ104の新しい向きを使用して、整形外科手術を継続してもよい。例えば、いくつかの実施形態では、整形外科医は、術前に計画された向きにより良好に一致するように、寛骨臼カップ104の現在の向きを調整してもよい。
【0180】
いずれの場合も、方法900は、ブロック924に進み、そこでは、分析装置402は、整形外科医が整形外科手術を完了したかどうかを決定する。そうでない場合、方法900は、ブロック906にループバックし、ここで、分析装置402は、寛骨臼カップ104の現在の向きを再び決定する。この現在の向きは、ブロック918において、整形外科医によって調整されていてもされていなくてもよい。このようにして、分析装置402は、整形外科医に、予め計画された向きにおける人工股関節100の予測される性能に基づいて、寛骨臼カップ104の向きを予め計画し、更に監視し、所望であれば、手術中に寛骨臼カップ104の実際の向きを調整して、患者に対して人工股関節100の実際の性能をより良好に達成する機会を提供する。
【0181】
ここで図21A図21Cを参照すると、別の一実施形態では、人工股関節の配置分析装置402(及び/又は図5の配置分析サーバ502)は、活動汎用力学モデルを使用して、患者の骨の解剖学的構造内の人工股関節100の配置を決定するための方法2100を実行するように構成され得る。すなわち、以下でより詳細に説明するように、方法2100は、大腿骨プロテーゼ102による寛骨臼カップ104の端部荷重をもたらさない寛骨臼カップ104の向きの、セーフゾーン境界を決定するために、患者が静的な機能的位置に配置されている間の、大腿骨プロテーゼ102による寛骨臼カップ104への荷重を示す静止力学モデルに基づいて決定される数学的モデルを使用する。
【0182】
上述の方法600と同様に、方法2100又はその一部は、分析装置402に記憶され、分析装置402によって実行可能な実行可能命令のセットとして具現化され得る。したがって、方法2100の動作は、分析装置402の1つ以上の構成要素及び/又は分析装置402に通信可能に連結されたデバイスによって実行され得るということを理解されたい。
【0183】
方法2100は、ブロック2102で始まり、ここで、分析装置402は、患者の骨の解剖学的構造に対する人工股関節100の配置(例えば、患者の寛骨臼200に対する寛骨臼カップ104の向き)を分析するかどうかを決定する。例えば、分析装置402は、整形外科医からの命令又は入力を待って、方法2100を開始してもよい。
【0184】
もしそうであれば、方法2100はブロック2104に進み、ここで、分析装置402は、患者が静的な機能的位置に配置されている間に、整形外科手術が行われる患者の股関節の医療用画像のセットを、撮像装置404から取得又は受信する。すなわち、例示的な実施形態では、患者は座位及び立位に配置され、これらは、患者の股関節の、2つの「最悪の場合」の位置又は「境界」位置を表す。しかしながら、他の実施形態では、患者の股関節の、更なる静的な機能的位置が使用されてもよい。
【0185】
医療用画像は、股関節が様々な機能的位置に配置された状態の、患者の股関節の画像として具現化される。分析装置402は、以下でより詳細に説明するように、患者の骨盤傾斜測定値の決定を容易にする、任意のタイプ及び数の適切な医療用画像を受信してもよい。例えば、上述したように、医療用画像は、二次元X線画像として例示的に具現化されるが、他の実施形態では、他のタイプの二次元医療用画像及び/又は三次元医療用画像として具現化され得る。
【0186】
例示的な実施形態では、解析デバイス402は、ブロック2106における前後面立位医療用画像、ブロック2108における矢状面立位医療用画像、及びブロック2110における股関節が完全に屈曲した座位の矢状面医療用画像を含む、3つの異なる医療用画像を受信する。方法600に関して上述したように、前後面医療用画像は、患者が立っている間に患者の前方の冠状面から撮影された、患者の股関節の医療用画像として具現化されてもよい。更に、矢状面立位医療用画像は、患者が立っている間に患者の矢状面から撮影された、患者の股関節の医療用画像として具現化され得る。
【0187】
図21Aのブロック2104において、分析装置402が医療用画像を取得した後、ブロック2112において、分析装置402は、受信した医療用画像に基づいて、患者の骨盤可動性を決定する。上述したように、骨盤可動性は、患者の骨盤の可動域を示し、患者の骨盤傾斜測定値に基づいて決定される。したがって、分析装置402は、最初に、医療用画像から、患者の股関節の骨盤傾斜測定値を決定する。そうするために、ブロック2114において、分析装置402は、患者の骨の解剖学的構造の特定の解剖学的ランドマークを識別してもよい。特に、分析装置402は、患者の関連する大腿骨及び寛骨臼200上の解剖学的ランドマークを識別する。この場合も、解剖学的ランドマークは、患者の骨盤傾斜測定値の決定を容易にする、又は改善する、任意の解剖学的ランドマークとして具現化され得る。使用される特定のランドマークは、患者の骨の解剖学的構造、人工股関節100のサイズ及びタイプ、並びに/又は他のファクタなどの様々なファクタに依存して変化してもよい。例えば、例示的な実施形態では、識別された解剖学上のランドマークは、内側及び外側上前腸骨棘、恥骨結合部、股関節の中心部、及び関連する大腿の大腿骨骨幹部の中点を含む。上述した方法600のブロック618及び620と同様に、分析装置402は、ブロック2116において整形外科医から受信した手動で注釈付けされた医療用画像に基づいて、関連する解剖学的ランドマークを識別してもよく、かつ/又はブロック2118において、医療用画像(複数可)内の患者の骨の解剖学的構造上の解剖学的ランドマークを、自動的及び/又は自律的に識別するように構成されてもよい。
【0188】
解剖学的ランドマークが識別された後、ブロック2120において、分析装置402は、方法600のブロック626に関して上述したように、識別されたランドマークに基づいて、かつブロック2104において受信した医療用画像を使用して、患者の股関節の骨盤傾斜測定値を計算する。加えて、分析装置402がブロック2120において種々の骨盤傾斜測定値を決定した後、分析装置402は、方法600のブロック628に関して上述したように、ブロック2122において骨盤傾斜測定値に基づいて患者の骨盤可動性を決定する。
【0189】
続いて、図21Bのブロック2124において、分析装置402は、患者に埋め込まれる人工股関節100の大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズを決定する。例えば、整形外科医は、利用可能なタイプ及びサイズのメニューからタイプ及びサイズを選択する、又は他の方法でこれらの選択を分析装置402に提供してもよい。
【0190】
ブロック2126において、分析装置402は、大腿骨プロテーゼ102の大腿骨頭118による寛骨臼カップ104のカップライナ122の端部荷重をもたらさない、医療用画像のセットに示される患者の寛骨臼に対する寛骨臼カップ104の向きを画定する、セーフゾーン境界を決定する。そうするために、ブロック2128において、分析装置402は、患者が機能的位置(例えば、立位及び座位)のそれぞれに位置付けられている間の大腿骨プロテーゼ102による寛骨臼カップ104の荷重に基づいて、セーフゾーン境界を決定する。上述したように、寛骨臼カップの「荷重」は、患者の機能的位置(例えば、立位及び座位)のそれぞれにおける大腿骨プロテーゼ102の大腿骨頭118による寛骨臼カップ104のカップライナ122上の接触点のセットに基づいて決定されてもよく、又はそうでなければそれによって識別されてもよい。したがって、セーフゾーン境界は、カップライナ122上の接触点の対応するセットが、寛骨臼カップ104の端部(又は寛骨臼カップ104の端部の基準距離内)に接触しない、又はそうでなければ寛骨臼カップ104の端部上に生じない、寛骨臼カップ104の向きを識別するものである。
【0191】
例示的な実施形態では、ブロック2130に示すように、分析装置402は、患者の寛骨臼に対する寛骨臼カップ104の向きの範囲に対して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点を示す数学的モデルを利用する。図8A及び図8Bの方法800に関して上述したように、ブロック2130で使用される数学的モデルは、患者が機能的位置(例えば、立位及び座位)のそれぞれに配置されている間の大腿骨プロテーゼ102による寛骨臼カップ104の荷重(すなわち、接触点のセット)を示す静止力学モデルの出力をモデル化するようにトレーニングされた、又は別様に設計された任意のタイプの数学的モデルとして具現化され得る。
【0192】
ブロック2130の数学的モデルの使用を容易にするために、分析装置402は、方法2100の実行の前に、数学的モデルを生成するように構成され得る。そうするためには、分析装置402は、静止力学モデルを使用して、患者の各々の機能的位置における大腿骨プロテーゼ102による寛骨臼カップ104の荷重を示す数学的モデルを生成するための方法2200を実行してもよい。方法2200は、上述した方法800と同様であり、骨盤傾斜値の範囲及び寛骨臼カップの向きの範囲などの様々な入力の範囲に対して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットのグローバルプールの決定を含む。このようにして、接触点のセットの「母集団」が、入力の多数の組み合わせに対して生成され、次いで、接触点のセットのその「母集団」が、数学的モデルを生成するために使用される。
【0193】
方法2200は、ブロック2202で始まり、ここで、分析装置402は、静止力学モデルへの様々な入力の程度を決定する。例えば、ブロック2204において、骨盤傾斜値の程度が決定され、それによって、骨盤可動性値の程度が決定される。加えて、ブロック2206において、寛骨臼カップ104の向きの程度が決定される。例えば、方法800に関して上述したように、寛骨臼カップ104の傾斜の程度及び前傾の程度の程度が決定されてもよい。ここでも、骨盤傾斜値及び寛骨臼カップの向きの程度は、それらの値の各々が静止力学モデルの反復ごとに調整される量を定義するということを理解されたい。したがって、骨盤傾斜値及び寛骨臼カップの向きの程度は、得られる数学的モデルの出力の分解度を調整し、これは、数学的モデルの全体的な性能を定義し得るということを理解されたい。程度は、整形外科医によって選択されてもよく、又は「ハードコード化」若しくは他の方法で事前選択されてもよい。
【0194】
続いてブロック2208において、初期患者傾斜値及び寛骨臼カップ104の初期の向きが決定又は選択される。そのような初期値は、予め選択されてもよく若しくは予め決定されてもよく、又は整形外科医又は分析装置402の他のユーザによって選択されてもよい。いずれにしても、方法2200は、その後、ブロック2210に進み、そこで分析装置402は、選択された骨盤タイトル値、関連する骨盤可動性値、人工股関節100の選択されたサイズ及びタイプ、並びに寛骨臼カップ104の選択された向きをその入力として有する静止力学モデルを使用して、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットを決定する。そうするために、ブロック2212において、分析装置402は、各分析について患者の静的な機能的位置(例えば、立位及び座位)に対して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のサブセットを決定する。接触点のサブセットは、寛骨臼カップ104及び骨盤タイトル値の選択された向きにおける、患者の対応する静的な機能的位置に対する単一の接触点又は接触点のグループを含んでもよい。いずれにしても、ブロック2214において、分析装置402は、各々の静的な機能的位置の接触点の個々のサブセットに基づいて、寛骨臼カップ104の選択された向きに対する接触点の最終セットを生成する。
【0195】
上述したように、また上述したADL力学モデルと同様に、静止力学モデルは、患者が機能的位置(例えば、立位及び座位)のそれぞれに配置されている間に、大腿骨プロテーゼ102による寛骨臼カップ104の荷重(すなわち、接触点のセット)を示すデータを生成し得る、任意のタイプのモデルとして具現化されてもよい。例えば、静止力学モデルは、数式(複数可)の係数を定義する入力(例えば、骨盤傾斜測定値、大腿骨プロテーゼ102及び寛骨臼カップ104のタイプ及びサイズ、並びに寛骨臼カップ104の向きの範囲)を有する数式又は数式のセットとして具現化され得る。例示的な実施形態では、例えば、静止力学モデルは、球対球接触のためのヘルツ接触モデルに基づいており、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触面積及び接触応力の計算を可能にしている。そうする際に、静止力学モデルは、以下:
【0196】
【数2】
を含むいくつかの数学的方程式を使用する、又はそうでなければそれに依存してもよい。
【0197】
式(1)では、R1が大腿骨頭118の「球」の半径であり、R2がカップライナ122の「球」の半径であり、E1が大腿骨頭118の「球」の弾性係数であり、E2がカップライナ122の「球」の弾性係数であり、v1及びv2がポアソン比であり、Fが加えられた力である、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触面積aを、解くことができる。同様に、式(2)において、最大接触圧力Pmaxを、上で定義された式(1)と同じ変数を使用して解くことができる。式(1)及び(2)に対する修正は、大腿骨プロテーゼ102による寛骨臼カップ104への荷重(すなわち、接触点のセット)に対して、修正してもよく、かつ/又は静止力学モデルにおいて他の式を使用し得るということを理解されたい。
【0198】
ブロック2216において、分析装置402は、ブロック2210において生成された接触点のセットを記憶する。例えば、分析装置402は、接触点のセットをデータストレージ412に記憶してもよい。いくつかの実施形態では、方法800に関して上述したように、分析装置402は、静止力学モデルへの入力として使用される特定の患者傾斜値及びカップの向きの関数として、生成された接触点のセットを記憶して、対応する接触点のセットを生成してもよい。
【0199】
続いて、図22Bのブロック2218において、分析装置402は、骨盤傾斜値及び/又は寛骨臼カップの向きの値の新しい組み合わせに対して、接触点の追加のセットを生成するべきかどうかを決定する。そうである場合、方法2200は、ブロック2218に進み、そこでは、分析装置402は、骨盤傾斜値のうちの1つ以上及び/又は寛骨臼カップの向きの値のうちの1つ以上(例えば、傾斜値及び/又は前傾値)を調整する。分析装置402は、ブロック2202において決定された入力の程度に基づいて、それらの値を調整し、方法2200は、その後、図22Aのブロック2210にループバックして、調整された骨盤傾斜値及び/又は寛骨臼カップの向きの値を使用して、接触点のセットを計算する。このようにして、分析装置402は、異なる骨盤傾斜値の範囲及び寛骨臼カップの向きの値の範囲の組み合わせを通して進み、接触点の最終セットが、異なる可能な組み合わせの「母集団」をカバーするようにする。
【0200】
上述のADL力学モデルと同様に、静止力学モデルは、骨盤傾斜及び寛骨臼カップの向きの値の各々の組み合わせに対して、接触点のセットを反復的に計算するものとして説明されているということを理解されたい。しかしながら、他の実施形態では、静止力学モデルは、異なる可能な骨盤傾斜値及び向きの値の完全な「母集団」が、単一の計算又は方程式として決定されるように設計又は定式化され得る。
【0201】
ブロック2218を再び参照すると、骨盤傾斜値と寛骨臼カップの向きの値との各々の組み合わせに対して接触点のセットが決定された後、方法2200は、ブロック2222に進む。ブロック2222において、分析装置402は、ブロック2210において生成された接触点のセットのプールに基づいて、数学的モデルを生成する。上述したように、数学的モデルは、生成された接触点のセットのモデルであり、これは、骨盤傾斜値及び寛骨臼カップの向きの値の、「母集団」の結果である。したがって、特定の患者の測定された骨盤傾斜測定値を使用して、数学的モデルは、対象の寛骨臼カップ104の向きの完全な範囲に対して、及び患者の静的な機能的位置(例えば、立位及び座位)の各々に対して、大腿骨プロテーゼ102と寛骨臼カップ104との間の接触点のセットの対応する群を生成してもよい。そのような個々の計算は既に完了しているので、数学的モデルは、その特定の患者に対して、得られた接触点のセットの生成において、静止力学モデルよりも速く実行し得るということを理解されたい。例えば、数学的モデルは、いくつかの実施形態では、5分未満、3分未満、1分未満、30秒未満、1秒未満、及び/又は1ミリ秒未満で、得られた接触点のセットを生成してもよい。
【0202】
上述したように、ブロック2222において生成される数学的モデルは、患者の骨盤傾斜測定値をその入力として使用して接触点のセットを生成し得る、任意のタイプの数学的モデルとして具現化されてもよい。例えば、数学的モデルを生成するために、分析装置402は、Gibbons et al.による、「Development Of A Statistical Shape-Function Model Of the Implanted Knee For Real-Time Prediction Of Joint Mechanics」と題された雑誌論文(Gibbons K.et al.Development Of A Statistical Shape-Function Model Of the Implanted Knee For Real-Time Prediction Of Joint Mechanics,Journal of Biomechanics 2019;88:55-63)に記載された技術のうちの任意の1つ以上を実行してもよい。なお、この論文の全体は、参照により、本明細書に組み込まれる。
【0203】
上述したように、数学的モデルは、接触点の生成されたセットに基づいて、線形応答モデル、応答曲面モデル、ニューラルネットワークモデル、及び/又は統計的フィッティングモデルとして具現化され得る。加えて、上述したように、カップの向きの調査された範囲は、数学的モデルに「ハードコード化」され、その結果、例示的な数学的モデルは、反復アプローチではなく単一の計算で、患者に対する接触点のセットのプールを生成するように構成されている。他の実施形態では、生成された数学的モデルは、寛骨臼カップの向きの範囲に関して反復アプローチを利用するように設計されてもよい。
【0204】
ブロック2222において数学的モデルが生成された後、その数学的モデルは、その後、図21Bの方法2100のブロック2130において、セーフゾーン境界の決定において使用され得る。そうするために、分析装置402は、図23に示されるように、生成された数学的モデルを使用して、セーフゾーン境界を決定するための方法2300を実行してもよい。方法2300は、ブロック2302から始まり、そこでは、ブロック2120で決定された患者傾斜測定値(及び/又はブロック2122で決定された骨盤可動性)が、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点のセットを生成する数学的モデルへの入力として使用される。ここでも、上述したように、ブロック2302において数学的モデルによって生成された接触点のセットは、寛骨臼カップ104の向きの範囲に対する、及び患者の静的な機能的位置(例えば、座位及び立位)のそれぞれに対する接触点を含む。
【0205】
その後、ブロック2304において、分析装置402は、寛骨臼カップ104の「許容可能な」向きのサブセット(すなわち、寛骨臼カップ104のカップライナ122の端部荷重をもたらさないカップの向き)を決定する、又は別様に識別する。そうするために、ブロック2306において、分析装置402は、最初に、端部荷重をもたらす寛骨臼カップ104の向きのサブセットを決定する。すなわち、分析装置402は、ブロック2302において数学的モデルを介して決定された接触点のセットのうちのいずれかの接触点が、端部荷重をもたらすかどうかを決定する。例示的な実施形態では、図13に関して上述したように、分析装置402は、カップライナ122の端部に対する、接触点の対応するセットの各々の接触点の距離に基づいて、端部荷重をもたらす寛骨臼カップ104の向きのサブセットを決定してもよい。
【0206】
ここでも、上述したように、接触点が「端部荷重接触点」と考えられるためのカップライナ122の内側(遠位)端部からの基準閾値距離、及び端部荷重をもたらす寛骨臼カップ104の対応する向きは、寛骨臼カップ104のサイズにわたって固定又は同一であってもよく、又は寛骨臼カップ104のサイズに対して相対的であってもよい。例えば、例示的な一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の1.5ミリメートル以下の弧長内(図13において端部境界1312として示される)にある場合に、その接触点を、「端部荷重接触点」であると決定してもよい。別の一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の1.0ミリメートル以下の弧長内にある場合に、その接触点を、「端部荷重接触点」であると決定してもよい。更なる一実施形態では、分析装置402は、接触点がカップライナ122の内側(遠位)端部の0.5ミリメートル以下の弧長内にある場合に、その接触点が「端部荷重接触点」であると決定してもよい。加えて又は代替的に、他の実施形態では、「端部荷重接触点」とみなされる接触点の基準距離は、寛骨臼カップ104のサイズに対して相対的なものであってもよい。例えば、接触点を端部荷重とみなすためのカップライナ122の内側(遠位)端部からの基準距離は、カップライナ122の内側(遠位)端部からの距離とカップライナ122の内径との比が0.034~0.067の範囲内、0.044~0.0577の範囲内、又は約0.047であるように選択されてもよい。いずれにしても、基準距離を増加させることによって、寛骨臼カップ104の端部荷重をもたらす全ての接触点の識別の信頼度が増加し得るということを理解されたい。
【0207】
しかしながら、他の実施形態では、端部荷重をもたらす接触点を決定するために、他の方法が使用されてもよい。いずれにしても、いずれかの接触点が端部荷重をもたらすと決定された場合、分析装置402は、それらの端部荷重接触点に関連付けられた寛骨臼カップ104の向きを、寛骨臼カップ104の端部荷重をもたらすカップの向きとして識別する。
【0208】
続いて、ブロック2308において、分析装置402は、ブロック2306で識別されたカップの向きに基づいて、寛骨臼カップ104のカップライナ122の端部荷重をもたらさない寛骨臼カップ104の向きのサブセットを決定する。すなわち、分析装置402は、ブロック2306で識別されたものを除く他の全てのカップの向きを、ブロック2308で端部荷重をもたらさない「許容可能な」カップの向きとして識別してもよい。
【0209】
ブロック2304において分析装置402が、「許容可能な」カップの向き(すなわち、寛骨臼カップ104の端部荷重をもたらさない向き)を識別した後、いくつかの実施形態では、ブロック2310において分析装置402は、「許容可能な」カップの向きから、寛骨臼カップ104の1つ以上の好ましい向きを識別してもよい。上述したように、好ましいカップの向きは、選択基準次第で、「最適化された」カップの向きである場合も、そうでない場合もあり得るということを理解されたい。そうするために、分析装置402は、図6の方法600のブロック652に関して上記で説明されるもの等の、好ましいカップの向きを識別するための任意の好適な方法を利用してもよい。
【0210】
分析装置402が、ブロック2304において許容可能な寛骨臼カップの向きのセットを決定し、ブロック2310において好ましい寛骨臼カップの向きを決定した後、方法2300は、ブロック2312に進む。ブロック2312において、分析装置402は、ブロック2306において端部荷重をもたらすと決定された寛骨臼カップの向きのセットに基づいて、寛骨臼カップ104の端部荷重をもたらす向きの値の端部荷重境界を決定する。すなわち、図16の端部荷重境界1606に関して上述したように、分析装置402は、寛骨臼カップの向き(すなわち、傾斜及び前傾の度合い)を規定する境界であって、その外側では寛骨臼カップ104の端部荷重が生じる境界を生成する。ここでも、端部荷重境界1606は、定義された端部荷重カップの向きに基づいて最初に決定されるとき、それらの端部荷重カップの向きの場所に応じて、「ノイズの多い」又は不規則な形状を有し得るということを理解されたい。したがって、分析装置402は、端部荷重境界の最終形状を生成するために、スプラインフィッティングなどのある量のデータ平滑化を使用してもよい。更に、端部荷重境界は、単純化された幾何学的形状であってもなくてもよいということを理解されたい。例えば、図29に関して以下でより詳細に説明するように、端部荷重境界(及びセーフゾーン境界)は不規則な形状であり得る。
【0211】
その後、ブロック2314において、分析装置402は、ブロック2312において決定された端部荷重境界に基づいて、セーフゾーン境界を決定する。いくつかの実施形態では、セーフゾーン境界は、端部荷重境界と同一であるように設定される(すなわち、各々が互いに一致する境界を有してもよい)。しかしながら、他の実施形態では、セーフゾーン境界は、端部荷重境界を縮小したものであり得る。すなわち、セーフゾーン境界は、寛骨臼カップの向きに追加の量の公差を提供するように、端部荷重境界から内側にオフセットされ得る。
【0212】
ここで図21Bのブロック2126を再び参照すると、分析装置402がセーフゾーン境界を決定した後、方法2100は、ブロック2132に進み、そこでは、分析装置402は、大腿骨プロテーゼ102(例えば、大腿骨プロテーゼ102のステム110の大腿骨頸部114)と寛骨臼カップ104のカップライナ122との間のインピンジメントフリー可動域を決定する。そうするために、ブロック2134の例示的な実施形態では、分析装置402は、ブロック2124で決定された寛骨臼カップ104及び大腿骨プロテーゼ102のタイプ及びサイズの三次元モデルに基づいて、大腿骨プロテーゼのインピンジメントフリー可動域を決定する。
【0213】
上述した、大腿骨プロテーゼ102の大腿骨頭118と寛骨臼カップ104のカップライナ122との間の接触点の分析と同様に、特定のプロテーゼの三次元モデルに基づく大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域の「ランタイム」分析は、時間集約的であり得るということを理解されたい。したがって、ブロック2136に示す例示的な実施形態では、分析装置402は、患者の静的な機能的位置(例えば、立位及び座位)ごとに、大腿骨プロテーゼの大腿骨頸部114と寛骨臼カップ104のカップライナ122との間のインピンジメントフリー可動域を示す数学的モデルを利用する。ブロック2136で使用される数学的モデルは、患者が機能的位置のそれぞれに配置されている間に、大腿骨プロテーゼ102及び寛骨臼カップ104(並びに以下で論じるような他の人工股関節)の選択されたタイプ及びサイズに対応する、三次元モデルのインピンジメントフリー可動域をモデル化するようにトレーニングされた又はそうでなければ設計された、任意のタイプの数学的モデルとして具現化され得る。
【0214】
ブロック2136の数学的モデルの使用を容易にするために、分析装置402は、方法2100の実行の前に、数学的モデルを生成するように構成され得る。そうするためには、分析装置402は、股関節プロテーゼの三次元モデルを使用して、患者の各々の機能的位置における大腿骨プロテーゼ102と寛骨臼カップ104との間のインピンジメントフリー可動域を示す数学的モデルを生成するための方法2400を実行してもよい。以下に詳細に説明するように、方法2400は、寛骨臼カップ104の様々な向きの範囲、及び解析される人工股関節の幾何学的測定値(人工股関節の様々なタイプ及びサイズに相関する、又はそうでなければそれらを推定する)を含む様々な入力に対する、人工股関節のグローバルプールのインピンジメントフリー可動域の決定を含む。このようにして、様々な股関節プロテーゼ及び寛骨臼カップの向きの範囲に対して、インピンジメントフリー可動域を決定してもよい。
【0215】
方法2400は、ブロック2204で始まり、そこでは、分析装置402が、インピンジメントフリー可動域がそれに対して調査される、人工股関節のセットの三次元モデルを取得してもよい。しかしながら、そのような三次元モデルのセットは、過度に大きく、厄介であり得るということを理解されたい。したがって、例示的な実施形態では、初期人工股関節の三次元モデルをブロック2402で得ることができ、次に、この三次元モデルは、以下で説明するように、人工股関節の様々な幾何学的測定値を調整することによって、異なるタイプ及びサイズの人工股関節をシミュレートするように修正される。
【0216】
ブロック2404において、分析装置402は、数学的モデルへの入力として使用される人工股関節の幾何学的測定値のセットを決定する。上述したように、方法2400のいくつかの実施形態では、幾何学的測定値を使用して、人工股関節の初期三次元モデルを調整して、異なるタイプ及びサイズの人工股関節をシミュレートしてもよい。例示的な実施形態では、幾何学的測定値は、寛骨臼カップの内径測定値(例えば、カップライナの内径測定値)、寛骨臼カップの外径測定値、寛骨臼カップのカップライナの内側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、寛骨臼カップのカップライナの外側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値、及び大腿骨プロテーゼの大腿骨ステムの頸部角度(例えば、ステムの長手方向角度に対する)を含む。寛骨臼カップの内径及び外径は、寛骨臼カップ及び大腿骨プロテーゼのサイズの推定値を提供し、近位-遠位距離測定値は、寛骨臼カップのタイプ(例えば、リップ付き又は「増強されたもの」対リップなし)の推定値を提供するということを理解されたい。入力として使用される幾何学的測定値は、事前選択(例えば、「ハードコード化」)されてもよく、又は方法2400の実行中にユーザによって選択されてもよい。
【0217】
分析対象の各々の人工股関節の三次元モデルが、ブロック2402において得られる実施形態では、分析装置402は、ブロック2406で三次元モデルの各々を解析して、例示的な実施形態でのように、異なる種類及びサイズの人工股関節をシミュレート又は推定するために初期三次元モデルの幾何学的測定値を調整するのではなく、これらの人工股関節の実際の幾何学的測定値を決定してもよい。そのような実施形態では、分析装置402は、ブロック2408において、決定された幾何学的測定値を記憶してもよい。例えば、分析装置402は、決定された幾何学的測定値のセットをデータストレージ412に記憶してもよい。
【0218】
ブロック2404において、入力幾何学的測定値が決定又は選択された後、方法2400は、ブロック2410に進み、そこでは、分析装置402は、数学的モデルに対する様々な入力パラメータの程度を決定する。例えば、ブロック2412において、寛骨臼カップ104の向きの程度が決定される。上述したように、寛骨臼カップ104の傾斜の程度及び前傾の程度の程度が決定されてもよい。加えて、ブロック2414において、大腿骨プロテーゼの大腿骨ステムのステム回転の程度が決定される。更に、ブロック2416において、ブロック2404で決定された幾何学的測定値の程度が決定される。そうするにあたって、各々の幾何学的測定値は、互いに対して同じ又は異なる程度を有してもよい。ここでも、寛骨臼カップの向き、ステム回転、及び幾何学的測定値の程度は、それらの値の各々が、インピンジメントフリー可動域解析の反復ごとに調整される量を定義するということを理解されたい。したがって、決定された程度は、数学的モデルの全体的な性能を定義し得る、得られた数学的モデルの出力の分解度を調整するということを理解されたい。程度は、整形外科医/ユーザによって選択されてもよく、又は「ハードコード化」若しくは他の方法で事前選択されてもよい。
【0219】
続いてブロック2418において、寛骨臼カップ及びステム回転の初期の向きが決定又は選択される。そのような初期値は、予め選択されてもよく若しくは予め決定されてもよく、又は整形外科医又は分析装置402の他のユーザによって選択されてもよい。いずれにしても、方法2400は、その後、図24Bのブロック2420に進み、そこでは、分析装置402は、現在のカップの向き及び幾何学的測定値に基づいて、患者の各々の機能的位置(例えば、立位及び座位)に対して、寛骨臼カップの端部に対する大腿骨プロテーゼのステムのステムインピンジメントをもたらすステム回転値のセットを決定する。
【0220】
そうするために、例示的な実施形態では、分析装置402は、現在の幾何学的測定値を有する人工股関節の三次元モデルの可動域を分析し、この三次元モデルは、対応する物理的人工股関節の元の三次元モデルであってもよく、現在の幾何学的測定値を有する人工股関節をシミュレートするために現在の幾何学的測定値に基づいて修正又は変形された三次元モデルであってもよい。そうすることで、分析装置402は、三次元モデルのインピンジメントフリー可動域を解析して決定するために、任意の方法論を利用してもよい。例えば、分析装置402は、Myers et al.による「Effect Of Intraoperative Treatment Options on Hip Join Stability Following Total Hip Arthroplasty」と題された雑誌論文((Myers C.et al.Effect of Intraoperative Treatment Options on Hip Join Stability Following Total Hip Arthroplasty,Journal of Orthopaedic Research 2021;1-10)及び/又はBrown et al.による「Impingement In Total Hip Replacement:Mechanisms and Consequences」と題された雑誌論文(Brown T.et al.Impingement In Total Hip Replacement:Mechanisms and Consequences,Current Orthopaedics 2008;22:376-391)に記載された技術のうちの任意の1つ以上を実行してもよい。なお、これらの論文の全体は、参照により本明細書に組み込まれる。
【0221】
例示的な実施形態では、ブロック2422において、分析装置402は、大腿骨ステムの初期ステム回転位置を調整することによって、大腿骨ステムのインピンジメントフリー可動域を決定してもよい。そうするために、ブロック2424において、分析装置402は、初期ステム回転位置から、大腿骨プロテーゼの三次元モデルの大腿骨ステムが現在のカップの向きを有する寛骨臼カップの三次元モデルに接触する(例えば、カップライナのリムに接触する)最終ステム回転位置まで、分析された人工股関節の大腿骨プロテーゼの三次元モデルを移動させてもよい。このようにして、分析装置402は、寛骨臼カップの現在の向きに対して、インピンジメントをもたらすステム回転値の範囲を決定する。
【0222】
例えば、図27に示すように、現在の幾何学的測定値(例えば、現在の頸部角度)を有する大腿骨プロテーゼの三次元モデル2702は、大腿骨プロテーゼの三次元モデル2702の頸部2710が、現在の幾何学的測定値(例えば、現在の内径及び外径、並びに寛骨臼カップのカップライナの内側端部及び外側端部から大腿骨プロテーゼの大腿骨頭の回転中心までの近位-遠位距離測定値)を有する寛骨臼カップの三次元モデル2704のリップ又はリム2712と接触していない初期ステム回転位置に配置される。図28に示されるように、大腿骨プロテーゼの三次元モデル2702は、その後、大腿骨プロテーゼの三次元モデル2702の頸部2710が寛骨臼カップの三次元モデル2704のリップ又はリム2712に接触した最終ステム回転位置に、その回転を変更することによって移動される。再び、このようにして、分析装置402は、寛骨臼カップの現在の向きに対してインピンジメントをもたらすステム回転値の範囲を決定する。図24Bのブロック2424を再び参照すると、ひとたび三次元モデルの大腿骨ステムがそのように配置されると、分析装置402は、ブロック2426において、大腿骨プロテーゼの三次元モデルの大腿骨ステムの初期ステム回転位置を調整し、ブロック2424を繰り返し、それによって、特定の寛骨臼カップの向きに対してインピンジメントをもたらすステム回転値の範囲を決定する。
【0223】
現在のカップの向き及び幾何学的測定値に基づいて、患者の各々の機能的位置(例えば、立位及び座位)に対してステムインピンジメントをもたらすステム回転値のセットに対して、インピンジメントフリー可動域が決定されると、方法2400は、ブロック2428に進む。ブロック2428において、分析装置402は、ブロック2420においてステムインピンジメントをもたらすように決定されたステム回転値に基づいて、現在の入力パラメータ(例えば、カップの向き及び幾何学的測定値)に対する、インピンジメントフリー可動域を決定する。加えて、いくつかの実施形態では、分析装置402は、ブロック2430において、決定されたインピンジメントフリー可動域を記憶してもよい。例えば、分析装置402は、接触点のセットをデータストレージ412に記憶してもよい。
【0224】
続いて、ブロック2432において、分析装置402は、幾何学的測定値及び/又は向きの値の新しい組み合わせに対して、追加のインピンジメントフリー可動域が決定されるべきかどうかを決定する。もしそうであれば、方法2400は、ブロック2434に進み、そこでは、分析装置402は、幾何学的測定値(例えば、カップ内径、カップ外径、カップライナの内側端部及び外側端部からの近位-遠位距離測定値、及び/又は頸部角度)のうちの1つ以上、及び/又は寛骨臼カップの向きの値(例えば、傾斜値及び/又は前傾値)のうちの1つ以上を調整する。分析装置402は、ブロック2410において決定された入力の程度に基づいてそれらの値を調整し、方法2400は、その後、2420にループバックして、更新されたカップの向き及び/又は幾何学的測定値に基づいて、患者の各々の機能的位置(例えば、立位及び座位)に対して、ステムインピンジメントをもたらすステム回転値のセットを決定する。このようにして、分析装置402は、(股関節プロテーゼの異なるタイプ及びサイズの範囲を近似する)異なる幾何学的測定値の範囲及び寛骨臼カップの向きの値の組み合わせを通して進み、インピンジメントフリー可動域の最終セットが異なる可能な組み合わせの「母集団」をカバーするようにする。
【0225】
ブロック2432を再び参照すると、幾何学的測定値と寛骨臼カップの向きの値との各々の組み合わせについて、インピンジメントフリー可動域が決定された後、方法2400は、ブロック2436に進む。ブロック2436において、分析装置402は、ブロック2438において生成されたインピンジメントフリー可動域のプールに基づいて数学的モデルを生成する。上述したように、数学的モデルは、患者が静止した機能的位置(例えば、座位及び立位)のそれぞれに配置されている間に、寛骨臼カップの向きの値の範囲で埋め込まれたある範囲の人工股関節の、インピンジメントフリー可動域のモデルである。例示的な実施形態では、寛骨臼カップの向きの範囲にわたる、(幾何学的測定値の範囲によって定義される)股関節プロテーゼのファミリーに対するインピンジメントフリー可動域が決定されているので、数学的モデルは、特定の股関節プロテーゼの三次元モデルの「ランタイム」評価よりも速く実行してもよい。方法2200のブロック2222で生成された数学的モデルと同様に、ブロック2436の数学的モデルは、人工股関節の幾何学的測定値を入力として使用して、インピンジメントフリー可動域を示すデータを生成し得る、任意のタイプの数学的モデルとして具現化されてもよい。例えば、上述したように、数学的モデルは、接触点の生成されたセットに基づいて、線形応答モデル、応答曲面モデル、ニューラルネットワークモデル、及び/又は統計的フィッティングモデルとして具現化され得る。加えて、上述したように、カップの向きの調査された範囲は、数学的モデルに「ハードコード化」され、その結果、例示的な数学的モデルは、反復アプローチではなく、単一の計算で患者に対するインピンジメントフリー可動域値のプールを生成するように構成されている。もちろん、他の実施形態では、生成された数学的モデルは、寛骨臼カップの向きの範囲に関して反復アプローチを利用するように設計されてもよい。
【0226】
数学的モデルがブロック2442において生成された後、その数学的モデルは、その後、図21Bの方法2100のブロック2136におけるインピンジメントフリー可動域の決定において使用されてもよい。そうするために、分析装置402は、図25に示されるように、生成された数学的モデルを使用して、大腿骨プロテーゼ102の大腿骨ステム110及び寛骨臼カップ104のインピンジメントフリー可動域を決定するための方法2500を、実行してもよい。方法2500は、ブロック2502で始まり、そこでは、整形外科手術で使用される寛骨臼カップ104及び大腿骨プロテーゼ102の幾何学的測定値が決定される。上述したように、ブロック2502で決定される幾何学的測定値は、例示的に、寛骨臼カップ104(すなわち、カップライナ122)の内径測定値、寛骨臼カップ104の外径測定値、寛骨臼カップ104のカップライナ122の内側端部から大腿骨プロテーゼ102の大腿骨頭118の回転中心までの近位-遠位距離測定値、寛骨臼カップ104のカップライナ122の外側端部から大腿骨プロテーゼ102の大腿骨頭118の回転中心までの近位-遠位距離測定値、及び大腿骨プロテーゼ102の大腿骨ステム110の頸部角度(例えば、ステム110の長手方向角度に対する)を含む。いくつかの実施形態では、分析装置402は、方法2100のブロック2124で決定された人工股関節のタイプ及びサイズに基づいて、データベースからそれらの幾何学的測定値を取り出すことができる。代替的に、他の実施形態では、整形外科医又はユーザは、幾何学的測定値を手動で入力してもよい。更に他の実施形態では、幾何学的測定値は、選択された人工股関節100(すなわち、大腿骨プロテーゼ102及び寛骨臼カップ104)の三次元モデルに基づいて決定されてもよい。
【0227】
ブロック2502において人工股関節100の幾何学的測定値が決定された後、方法2500は、ブロック2506に進み、そこでは、分析装置402は、方法2400のブロック2442において生成された数学的モデルを使用して、その数学的モデルへの入力として幾何学的測定値を用いて、寛骨臼カップ104のカップライナ122に対する大腿骨プロテーゼ102の大腿骨ステム110のインピンジメントフリー可動域値を決定する。ここでも、上述したように、ブロック2506において数学的モデルによって生成されたインピンジメントフリー可動域値は、寛骨臼カップ104の向きの範囲に対する、及び患者の静的な機能的位置(例えば、座位及び立位)の各々に対する、インピンジメントフリー可動域値のセットを含む。
【0228】
いくつかの実施形態では、ブロック2506において決定されたインピンジメントフリー可動域は、以前に、方法2300のブロック2304において、寛骨臼カップ104の端部荷重をもたらさないように決定された寛骨臼カップの向きに限定されてもよい。すなわち、ブロック2506において、インピンジメントフリー可動域は、方法2300のブロック2314において決定されるような、セーフゾーン境界内にある寛骨臼カップ104の向きのみに対して決定されてもよい。代替的に、セーフゾーン境界の外側の向きを含む寛骨臼カップの向きの範囲に対するインピンジメントフリー可動域が決定される実施形態では、分析装置402は、ブロック2508において、セーフゾーン境界内に入る寛骨臼カップの向きに対応する、計算されたインピンジメントフリー可動域のサブセットを決定してもよい。
【0229】
ここで図21Bのブロック2132を再び参照すると、分析装置402がインピンジメントフリー可動域値を決定した後、方法2100は、図21Cのブロック2138に進み、そこでは、分析装置402は、整形外科医又は他のユーザが、「許容可能な」寛骨臼カップの向きのセーフゾーン境界を見ることを望むかどうかを決定する。もしそうであれば、方法2100は、ブロック2140に進み、そこでは、分析装置402は、寛骨臼カップの向きのセーフゾーン境界のグラフを表示するが、これは、端部荷重をもたらさないカップの向きを識別するものである。例えば、例示的な実施形態では、分析装置402は、図29に示すように、セーフゾーン境界2902のグラフ2900を表示する。グラフ2900によって示されるように、セーフゾーン境界2902内に入るそれらの寛骨臼カップの向き(すなわち、傾斜及び回転値の組み合わせ)は、患者の静止した機能的位置(例えば、立位及び座位)の各々において、大腿骨プロテーゼによる寛骨臼カップ104の端部荷重をもたらさないように決定されている。いくつかの実施形態では、セーフゾーン境界2902内に入るそれらの寛骨臼カップの向きは、患者の特定の機能的位置に関連するものとして更に識別され得る(例えば、異なる着色又は陰影付けを介して)。
【0230】
図21Cを再び参照すると、分析装置402が、ブロック2140においてセーフゾーン境界のグラフを表示した後、方法2100は、ブロック2142に進み、そこでは、分析装置402は、整形外科医又は他のユーザが、「許容可能な」寛骨臼カップの向きのそれぞれに対するインピンジメントフリー可動域を見ることを望むかどうかを決定する。もしそうであれば、方法2100は、ブロック2144に進み、そこで、分析装置402は、セーフゾーン境界のグラフ上に、インピンジメントフリー可動域の印を表示する。例えば、例示的な実施形態では、分析装置402は、セーフゾーン境界2902内のインピンジメント可動域値の「ヒートマップ」を表示してもよい。このようにして、セーフゾーン境界2902は、端部荷重をもたらさない寛骨臼カップの向きと、それらの「許容可能な」寛骨臼カップの向きの各々に対するインピンジメントフリー可動域とを示す、三次元データを整形外科医又はユーザに提供する。その整形外科医は、表示された情報に基づいて、寛骨臼カップ104の所望の向きを決定してもよい。インピンジメントフリー可動域は、そのようなデータを伝達するのに適した任意の方法でセーフゾーン境界2902内に表示され得る。例えば、例示的な実施形態では、異なる範囲に対して異なる着色が使用される。
【0231】
図21Cを再び参照すると、ブロック2144において、分析装置402がインピンジメントフリー可動域の印を表示した後、方法2100は、ブロック2146に進み、そこでは、分析装置は、整形外科医又は他のユーザが、いくつかの実施形態において方法2300のブロック2310において決定された寛骨臼カップ104の好ましい向きを見ることを望むかどうかを決定する。もしそうであれば、方法2100は、ブロック2148に進み、そこでは、分析装置402は、セーフゾーン境界のグラフ上に好ましいカップの向きの印を表示する。例えば、図30に示されるように、分析装置402は、セーフゾーン境界2902内にマーク3000又は他の印を表示して、決定された好ましい寛骨臼カップの向きを視覚的に示す印を提供してもよい。
【0232】
再び図21Cを参照すると、整形外科医又はユーザが、ブロック2146において寛骨臼カップ104の好ましい向きを見ないと、又はブロック2138においてセーフゾーン境界を見ないと決定した場合には、方法2100は、ブロック2150に進み、そこでは分析装置402は、整形外科医が別の人工股関節の配置を分析したいかどうかを決定する。例えば、整形外科医は、完全に異なるタイプの人工股関節を選択する、又は現在のタイプの人工股関節の異なるサイズを選択してもよい。そうである場合、方法2100は、図21Bのブロック2124にループバックし、そこでは、分析装置402は、上述のように、新しい人工股関節のタイプ及びサイズを決定する。しかしながら、そうでない場合、方法2100は、ブロック2138にループバックし、そこでは、分析装置402は、整形外科医が現在選択されている人工股関節のセーフゾーン境界を見ることを望むかどうかを再び決定する。
【0233】
ここで図26A及び図26Bを参照すると、いくつかの実施形態では、分析装置402はまた、人工股関節100を患者に埋め込むための整形外科手術手技の実施中に、人工股関節100の配置を、手術中に監視するための方法2600を実行してもよい。例えば、方法2600又はその一部は、分析装置402上に記憶され、分析装置402によって実行可能な実行可能命令のセットとして具現化され得る。したがって、方法2600の動作は、分析装置402の1つ以上の構成要素及び/又は分析装置402に通信可能に連結されたデバイスによって実行され得るということを理解されたい。
【0234】
方法2600は、ブロック2602から始まり、ここで、分析装置402は、患者の寛骨臼200に対する寛骨臼カップの計画された又は所望の向きを術前に決定する。そうするために、分析装置402は、図22に関して上述した方法2200(又は図6に関して上述した方法600)を実行してもよい。したがって、方法2200は、寛骨臼カップ104の所望の向きを事前に計画するために術前に使用されてもよいが、方法2600は、寛骨臼カップ104の実際の現在の向きを監視及び/又は調整するために、整形外科手術中に実行されてもよいということを理解されたい。
【0235】
続いて、ブロック2604において、分析装置402は、整形外科医が、関連する整形外科手術を実行している間に人工股関節100の配置(例えば、寛骨臼カップ104の向き)を監視することを望むかどうかを決定する。もしそうであれば、方法2600はブロック2606に進み、そこでは、分析装置402は、患者の寛骨臼200に対する寛骨臼カップ104の現在の向きを決定する。そうするために、分析装置402は、整形外科手術の実行中に生成及び取得された患者の寛骨臼200の医療用画像に基づいて、寛骨臼カップ104の現在の向きを決定してもよい。例えば、システム400の撮像装置404は、整形外科手術中に患者の寛骨臼200の医療用画像を生成し、それらの医療用画像を分析装置402に送信又は別様に提供するように構成されてもよい。代替的に、システム400が外科用追跡システム408を含む実施形態では、分析装置402は、外科用追跡システムによって提供される手術ナビゲーションデータに基づいて、寛骨臼カップ104の予め設定された向きを決定してもよい。
【0236】
続いてブロック2608において、分析装置402は、グラフィカルユーザインターフェースを整形外科医に対して表示する。そうすることで、分析装置402は、ブロック2610において、グラフィカルユーザインターフェース上に、寛骨臼カップの向きのセーフゾーン境界のグラフを表示してもよい。加えて、ブロック2612において、分析装置402は、セーフゾーン境界のグラフ上にインピンジメントフリー可動域の印を表示してもよい。更に、いくつかの実施形態では、ブロック2614において、分析装置402は、セーフゾーン境界のグラフ上に、ブロック2606において決定された現在の寛骨臼カップの向きの印を、表示してもよい。加えて、ブロック2616において、分析装置402は、セーフゾーン境界のグラフ上に好ましい寛骨臼カップの向き(複数可)の印を表示してもよい。
【0237】
例えば、例示的なグラフィカルユーザインターフェース3100が図31に示されている。グラフィカルユーザインターフェース3100は、セーフゾーン境界のグラフ3102を含み、これはまた、図30のグラフ3000と同様のグラフ3102内に含まれるインピンジメントフリー可動域の印を含んでもよい。加えて、グラフィカルユーザインターフェース3100は、現在の寛骨臼カップの向きを示す印3104を含み、いくつかの実施形態では、好ましい寛骨臼の上向きの向き(複数可)の更なる印を含んでもよい(ただし、図を明確にするために図31には示されていない)。グラフィカルユーザインターフェース3100は、いくつかの実施形態では、患者の関連する骨の解剖学的構造の医療用画像3110、患者の骨盤傾斜測定値3112、選択された整形外科用プロテーゼの幾何学的測定値3114、及び/又は好ましい若しくは「標的の」寛骨臼カップの向きのメニュー3116等、整形外科医にとって有用な付加的情報を含んでもよい。しかしながら、他の実施形態では、追加の又は他の情報がグラフィカルユーザインターフェース3100上に表示されてもよいということを理解されたい。
【0238】
図26を再び参照すると、分析装置402が、セーフゾーン境界及びインピンジメントフリー可動域の指標を含むグラフィカルユーザインターフェースを表示した後、方法2600は、図26Bのブロック2618に進む。ブロック2618において、整形外科医は、寛骨臼カップ104の現在の向きに関連付けられた表示されたセーフゾーン境界に基づいて、整形外科手術を継続する。例えば、整形外科医が、セーフゾーン境界(及び/又はインピンジメントフリー可動域)に対する寛骨臼カップの向きが満足のいくものであると判断した場合、整形外科医は、ブロック2620において、寛骨臼カップ104の現在の向きを使用して整形外科手術を継続してもよい。しかしながら、整形外科医が、セーフゾーン境界(及び/又はインピンジメントフリー可動域)に対する寛骨臼カップの向きが満足のいくものではないと判断した場合、整形外科医は、ブロック2622において、寛骨臼カップ104の現在の向きを修正又は調整し、寛骨臼カップ104の新しい向きを使用して整形外科手術を継続してもよい。例えば、いくつかの実施形態では、整形外科医は、術前に計画された向きにより良好に一致するように、寛骨臼カップ104の現在の向きを調整してもよい。
【0239】
いずれの場合も、方法2600は、ブロック2624に進み、そこでは、分析装置402は、整形外科医が整形外科手術を完了したかどうかを決定する。そうでない場合、方法2600は、図26Aのブロック2604にループバックし、そこでは、分析装置402は、寛骨臼カップ104の現在の向きを再び決定する。この現在の向きは、ブロック2622において、整形外科医によって調整されていてもされていなくてもよい。このようにして、分析装置402は、整形外科医に、予め計画された向きにおける人工股関節100の予測される性能に基づいて、寛骨臼カップ104の向きを予め計画し、更に監視し、所望であれば、手術中に寛骨臼カップ104の実際の向きを調整して、患者に対して人工股関節100の実際の性能をより良好に達成する機会を提供する。
【0240】
以上、図面及び上記の説明文において本開示内容を詳細に図示かつ説明したが、こうした図示や説明はその性質上、例示的なものとみなすべきであって、限定的なものとみなすべきではなく、あくまで例示的実施形態を示し、説明したにすぎないのであって、本開示の趣旨の範囲に含まれる変更並びに改変は全て保護されることが望ましい点は理解されよう。
【0241】
本開示は、本明細書において説明される方法、装置、及びシステムの様々な特徴に基づく複数の利点を有するものである。本開示の方法、装置、及びシステムの代替的実施形態は、説明される特徴の全てを含むわけではないが、依然として、こうした特徴の利点のうちの少なくとも一部から利益を享受するものであることに留意されよう。当業者であれば、本発明の特徴のうちの1つ以上を組み込む、添付の「特許請求の範囲」において定義される本開示の趣旨及び範囲に包含される方法、装置、及びシステムを独自に容易に実施することが可能である。
【0242】
〔実施の態様〕
(1) 患者の寛骨臼内の人工股関節の位置を決定するためのシステムであって、
1つ以上のプロセッサと、
前記1つ以上のプロセッサに通信可能に連結された1つ以上のメモリであって、前記1つ以上のプロセッサによる実行に応答して、前記システムに、
対応する機能的位置に配置された前記患者の医療用画像を含む、前記患者の股関節の医療用画像のセットを取得することと、
前記患者の骨盤の骨盤傾斜測定値を、前記医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値が、前記股関節が対応する機能的位置に配置されるときの前記患者の前記股関節の可動域を示す、ことと、
前記人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、
前記患者の前記機能的位置のそれぞれについての前記大腿骨プロテーゼの大腿骨頭と前記寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、前記第1の数学的モデルへの入力として前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズ並びに前記骨盤傾斜測定値を使用して、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重を引き起こさない、前記医療用画像のセットに示された前記患者の前記寛骨臼に対する前記寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、
前記セーフゾーン境界のグラフをディスプレイ上に表示することと、を行わせる命令を含む、メモリと、を備える、システム。
(2) 前記セーフゾーン境界を決定することが、
前記第1の数学的モデルの出力として、前記患者の各々の機能的位置についての前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の得られた接触点のセットを生成することと、前記骨盤傾斜測定値を前記第1の数学的モデルへの入力として使用することと、
前記寛骨臼カップの端部荷重をそれぞれもたらす、前記第1の数学的モデルによって生成された前記得られた接触点のセットのうちの接触点のサブセットを、前記接触点のサブセットのうちの対応する接触点のセットのうちの少なくとも1つの接触点と、前記寛骨臼カップの前記カップライナの端部との間の距離に基づいて識別することと、を含み、前記セーフゾーン境界が、前記接触点のサブセットに基づく、実施態様1に記載のシステム。
(3) 前記セーフゾーン境界を決定することが、前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズと、骨盤傾斜測定値の範囲の各々の測定値と、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲の各々の向きと、を、その入力として使用する静止力学モデルに基づいて、前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の接触点の複数のセットを決定することを含み、
前記静止力学モデルが、前記患者が前記機能的位置の各々に配置されている間の前記大腿骨プロテーゼによる前記寛骨臼カップの前記荷重を示し、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、
前記接触点の前記複数のセットのうちの接触点の各々のセットが、(i)前記静止力学モデルへの入力としての、前記寛骨臼カップの前記向きの範囲における前記寛骨臼カップの向きと、(ii)前記骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応する、
実施態様1に記載のシステム。
(4) 前記複数の命令が、前記1つ以上のプロセッサによる実行に応答して、前記システムに、
接触点の各々のセットの少なくとも1つの最も外側の接触点と、前記寛骨臼カップの前記カップライナの前記端部との間の距離を決定することと、
前記決定された距離に基づいて、前記寛骨臼カップの好ましい向きを識別することと、を更に行わせる、
実施態様3に記載のシステム。
(5) 前記複数の命令が、前記1つ以上のプロセッサによる実行に応答して、前記システムに、前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記大腿骨プロテーゼ及び前記寛骨臼カップのインピンジメントフリー可動域を、前記患者の前記機能的位置の各々における前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域の第2の数学的モデルに基づき、前記第2の数学的モデルへの入力として前記人工股関節の幾何学的測定値を使用して、決定することと、
前記セーフゾーン境界内の前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記インピンジメントフリー可動域の印を、前記ディスプレイ上に表示することと、を更に行わせる、
実施態様1に記載のシステム。
【0243】
(6) 前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記第2の数学的モデルの出力として、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲のうちの各々の向きについて得られたインピンジメントフリー可動域を生成することであって、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含む、ことと、
前記得られたインピンジメントフリー可動域のサブセットを決定することであって、前記得られたインピンジメントフリー可動域の前記サブセットのうちの各々のインピンジメントフリー可動域が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットのうちの向きに対応する、ことと、
を含む、実施態様5に記載のシステム。
(7) 前記人工股関節の前記幾何学的測定値が、前記寛骨臼カップの内側寸法、前記寛骨臼カップの外側寸法、前記寛骨臼カップの前記カップライナの内側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、前記寛骨臼カップの前記カップライナの外側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、及び前記大腿骨プロテーゼの頸部角度を含む、実施態様5に記載のシステム。
(8) 前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、前記大腿骨プロテーゼの三次元モデル及び前記寛骨臼カップの三次元モデルに基づいて、前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することを含む、実施態様5に記載のシステム。
(9) 前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、前記ステム回転値の複数のセットのうちのステム回転値の各々のセットが、(i)前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲における前記寛骨臼カップの向きと、(ii)前記人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、前記寛骨臼カップの前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、前記幾何学的測定値の範囲が、前記人工股関節の前記幾何学的測定値を含む、ことと、
前記寛骨臼カップの前記向きと前記幾何学的測定値のセットとの各々の組み合わせについて、前記それぞれの組み合わせに対応する前記ステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、
を含む、実施態様5に記載のシステム。
(10) 前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の前記複数のセットを決定することが、
各々の異なる組み合わせについて、前記寛骨臼カップの三次元モデルに対する初期位置から、前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する最終位置まで、前記大腿骨プロテーゼの三次元モデルを移動させることであって、前記大腿骨プロテーゼの前記三次元モデル及び前記寛骨臼カップの前記三次元モデルが、前記各々の異なる組み合わせの幾何学的測定値の対応するセットに基づいている、ことと、
前記大腿骨プロテーゼの前記三次元モデルの前記初期位置を更新することと、
各々の異なる組み合わせについて、前記更新された初期位置から前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する別の最終位置まで、前記大腿骨プロテーゼの前記三次元モデルを移動させることと、
を含む、実施態様9に記載のシステム。
【0244】
(11) 患者の寛骨臼内の人工股関節の位置を決定するための方法であって、
コンピュータシステムによって、対応する機能的位置に配置された前記患者の医療用画像を含む、前記患者の股関節の医療用画像のセットを取得することと、
前記コンピュータシステムによって、前記患者の骨盤の骨盤傾斜測定値を、前記医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値が、前記股関節が対応する機能的位置に配置されるときの前記患者の前記股関節の可動域を示す、ことと、
前記コンピュータシステムによって、前記人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、
前記コンピュータシステムによって、前記患者の前記機能的位置のそれぞれについての前記大腿骨プロテーゼの大腿骨頭と前記寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、前記第1の数学的モデルへの入力として前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズ並びに前記骨盤傾斜測定値を使用して、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重を引き起こさない、前記医療用画像のセットに示された前記患者の前記寛骨臼に対する前記寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、
前記コンピュータシステムによって、前記コンピュータシステムのディスプレイ上で前記セーフゾーン境界を決定することと、
を含む、方法。
(12) 前記セーフゾーン境界を決定することが、
前記コンピュータシステムによって、前記第1の数学的モデルの出力として、前記患者の各々の機能的位置についての前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の得られた接触点のセットを生成することと、前記骨盤傾斜測定値を前記第1の数学的モデルへの入力として使用することと、
前記コンピュータシステムによって、前記寛骨臼カップの端部荷重をそれぞれもたらす、前記第1の数学的モデルによって生成された前記得られた接触点のセットのうちの接触点のサブセットを、前記接触点のサブセットのうちの対応する接触点のセットのうちの少なくとも1つの接触点と、前記寛骨臼カップの前記カップライナの端部との間の距離に基づいて識別することと、を含み、前記セーフゾーン境界が、前記接触点のサブセットに基づく、実施態様11に記載の方法。
(13) 前記セーフゾーン境界を決定することが、前記コンピュータシステムによって、前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズと、骨盤傾斜測定値の範囲の各々の測定値と、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲の各々の向きと、を、その入力として使用する静止力学モデルに基づいて、前記大腿骨プロテーゼの前記大腿骨頭と前記寛骨臼カップの前記カップライナとの間の接触点の複数のセットを決定することを含み、
前記静止力学モデルが、前記患者が前記機能的位置の各々に配置されている間の前記大腿骨プロテーゼによる前記寛骨臼カップの荷重を示し、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、
前記接触点の前記複数のセットのうちの接触点の各々のセットが、(i)前記静止力学モデルへの入力としての、前記寛骨臼カップの前記向きの範囲における前記寛骨臼カップの向きと、(ii)前記骨盤傾斜測定値の範囲のうちの骨盤傾斜測定値のセットとの、異なる組み合わせに対応する、
実施態様11に記載の方法。
(14) 前記コンピュータシステムによって、接触点の各々のセットの少なくとも1つの最も外側の接触点と、前記寛骨臼カップの前記カップライナの前記端部との間の距離を決定することと、
前記コンピュータシステムによって、前記決定された距離に基づいて、前記寛骨臼カップの好ましい向きを識別することと、
を更に含む、実施態様13に記載の方法。
(15) 前記コンピュータシステムによって、前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記大腿骨プロテーゼ及び前記寛骨臼カップのインピンジメントフリー可動域を、前記患者の前記機能的位置の各々における前記大腿骨プロテーゼと前記寛骨臼カップとの前記インピンジメントフリー可動域の第2の数学的モデルに基づき、前記第2の数学的モデルへの入力として前記人工股関節の幾何学的測定値を使用して、決定することと、
前記コンピュータシステムによって、前記セーフゾーン境界内の前記寛骨臼カップの前記向きのセットのうちの各々の向きについて前記インピンジメントフリー可動域の印を、前記ディスプレイ上に表示することと、
を更に含む、実施態様11に記載の方法。
【0245】
(16) 前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記コンピュータシステムによって、前記第2の数学的モデルの出力として、前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲のうちの各々の向きについて得られたインピンジメントフリー可動域を生成することであって、前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含む、ことと、
前記コンピュータシステムによって、前記得られたインピンジメントフリー可動域のサブセットを決定することであって、前記得られたインピンジメントフリー可動域の前記サブセットのうちの各々のインピンジメントフリー可動域が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットのうちの向きに対応する、ことと、
を含む、実施態様15に記載の方法。
(17) 前記人工股関節の前記幾何学的測定値が、前記寛骨臼カップの内側寸法、前記寛骨臼カップの外側寸法、前記寛骨臼カップの前記カップライナの内側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、前記寛骨臼カップの前記カップライナの外側端から前記大腿骨プロテーゼの前記大腿骨頭の回転中心までの近位-遠位距離測定値、及び前記大腿骨プロテーゼの頸部角度を含む、実施態様15に記載の方法。
(18) 前記大腿骨プロテーゼ及び前記寛骨臼カップの前記インピンジメントフリー可動域を決定することが、
前記コンピュータシステムによって、前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の複数のセットを決定することであって、前記ステム回転値の複数のセットのうちのステム回転値の各々のセットが、(i)前記患者の前記寛骨臼に対する前記寛骨臼カップの向きの範囲における前記寛骨臼カップの向きと、(ii)前記人工股関節の幾何学的測定値の範囲のうちの幾何学的測定値のセットと、の異なる組み合わせに対応し、前記寛骨臼カップの前記向きの範囲が、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重をもたらさない前記向きのセットを含み、前記幾何学的測定値の範囲が、前記人工股関節の前記幾何学的測定値を含む、ことと、
前記コンピュータシステムによって、前記寛骨臼カップの前記向きと前記幾何学的測定値のセットとの各々の組み合わせについて、前記それぞれの組み合わせに対応する前記ステム回転値のセットに基づいて、インピンジメントフリー可動域を決定することと、
を含む、実施態様15に記載の方法。
(19) 前記寛骨臼カップに対する前記大腿骨プロテーゼのインピンジメントをもたらす前記大腿骨プロテーゼのステム回転値の前記複数のセットを決定することが、
前記コンピュータシステムによって、各々の異なる組み合わせについて、前記寛骨臼カップの三次元モデルに対する初期位置から、前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する最終位置まで、前記大腿骨プロテーゼの三次元モデルを移動させることであって、前記大腿骨プロテーゼの前記三次元モデル及び前記寛骨臼カップの前記三次元モデルが、前記各々の異なる組み合わせの幾何学的測定値の対応するセットに基づいている、ことと、
前記コンピュータシステムによって、前記大腿骨プロテーゼの前記三次元モデルの前記初期位置を更新することと、
前記コンピュータシステムによって、各々の異なる組み合わせについて、前記更新された初期位置から前記大腿骨プロテーゼが前記寛骨臼カップの一部に接触する別の最終位置まで、前記大腿骨プロテーゼの前記三次元モデルを移動させることと、
を含む、実施態様18に記載の方法。
(20) 患者の寛骨臼内の人工股関節の位置を決定するためのシステムであって、
1つ以上のプロセッサと、
前記1つ以上のプロセッサに通信可能に連結された1つ以上のメモリであって、前記1つ以上のプロセッサによる実行に応答して、前記システムに、
前記患者の股関節の骨盤傾斜測定値を、前記股関節の医療用画像のセットに基づいて決定することであって、各々の骨盤傾斜測定値が、前記股関節が対応する機能的位置に配置されるときの前記患者の前記股関節の可動域を示す、ことと、
前記人工股関節の大腿骨プロテーゼ及び寛骨臼カップのタイプ及びサイズを決定することと、
前記患者の前記機能的位置のそれぞれについての前記大腿骨プロテーゼの大腿骨頭と前記寛骨臼カップのカップライナとの間の接触点の第1の数学的モデルに基づいて、前記第1の数学的モデルへの入力として前記大腿骨プロテーゼ及び前記寛骨臼カップの前記タイプ及び前記サイズ並びに前記骨盤傾斜測定値を使用して、前記大腿骨プロテーゼによる前記寛骨臼カップの端部荷重を引き起こさない、前記医療用画像のセットに示された前記患者の前記寛骨臼に対する前記人工股関節の前記寛骨臼カップの向きのセットを画定するセーフゾーン境界を決定することと、
前記セーフゾーン境界のグラフを、ディスプレイ上に表示することと、
前記患者の前記股関節での整形外科手術の実行中に、前記患者の前記寛骨臼に対する前記寛骨臼カップの現在の向きを手術中に決定することと、
前記ディスプレイ上の前記セーフゾーン境界の前記グラフ上に、前記現在の向きの印を表示することと、を行わせる命令を含む、メモリと、を備える、システム。
図1
図2
図3
図4
図5
図6A
図6B
図6C
図6D
図7
図8A
図8B
図9A
図9B
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21A
図21B
図21C
図22A
図22B
図23
図24A
図24B
図25
図26A
図26B
図27
図28
図29
図30
図31
【国際調査報告】