(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-02-05
(54)【発明の名称】インタラクティブな患者ダッシュボードを生成するためのシステムおよび方法
(51)【国際特許分類】
G16H 50/20 20180101AFI20240129BHJP
【FI】
G16H50/20
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023541951
(86)(22)【出願日】2022-01-12
(85)【翻訳文提出日】2023-09-04
(86)【国際出願番号】 US2022012184
(87)【国際公開番号】W WO2022155248
(87)【国際公開日】2022-07-21
(32)【優先日】2021-01-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】522275212
【氏名又は名称】プレノシス,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】エルマン、ジョナ
(72)【発明者】
【氏名】ロペス-エスピナ,カルロス ジー.
(72)【発明者】
【氏名】レディ,ジュニア,ボビー
(72)【発明者】
【氏名】ブハルガヴァ,アクヒル
(72)【発明者】
【氏名】タネジャ,イシュアン
(72)【発明者】
【氏名】カン,シャー
【テーマコード(参考)】
5L099
【Fターム(参考)】
5L099AA03
(57)【要約】
宿主反応のタイプのメトリクスを表示するインタラクティブな患者ダッシュボードを生成するためのシステムである。本システムは、プロセッサと、動作を実行するようにプロセッサを構成する命令を有するメモリデバイスとを含み得る。本動作は、患者IDを管理プラットフォームまたは1つ以上のデバイス(例えば、クライアントデバイス)に送信するステップと、電子記録を受信するステップと、機械学習モデルを採用して、患者データに基づいて緊急度スコアを生成するステップとを含み得る。本動作は、また、患者データ内のパラメータをパラメータの分布と比較することによって、患者データ内のクリティカルパラメータを識別するステップを含み得る。本システムは、パラメータのランキングを決定し、表示のために患者ダッシュボードグラフィカルユーザインターフェイス(GUI)を生成することができる。ダッシュボードGUIは、予後インジケータ、および、ランキングに従ってパラメータを表示するリストを含み得る。
【特許請求の範囲】
【請求項1】
リスクカテゴリに関連付けられた、1つ以上の緊急度値に基づいてインジケータを表示するためのインタラクティブなダッシュボードグラフィカルユーザインターフェイス(GUI)を生成するためのシステムであって、前記システムは、
1つ以上のプロセッサと、
インストラクションを含む、1つ以上のメモリデバイスであり、
前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、
1つ以上のメモリデバイスと、を備え、
前記動作は、
患者IDを管理プラットフォームに送信するステップと、
前記管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、
機械学習モデルを使用するステップであり、前記患者データに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、
機械学習モデルを使用するステップであり、前記患者データに基づいて1つ以上の予後値を生成し、前記予後値は、有害イベントの確率を表している、ステップと、
前記少なくとも1つのパラメータに関連付けられた影響スコアに従って、前記少なくとも1つのパラメータのランキングを決定するステップと、
1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、
前記緊急度スコアおよび関連付けられたリスクカテゴリを表示する緊急度インジケータ、
前記少なくとも1つの予後値、および、前記少なくとも1つの予後値に関連付けられた1つ以上のリスクカテゴリを表示する、少なくとも1つの予後インジケータ、および、
前記ランキングに従って、前記パラメータを表示するリスト、
を備える、ステップと、
を含む、システム。
【請求項2】
前記緊急度スコアは、前記患者が、ある期間内に刺激に起因して、現在、前記宿主反応のタイプを経験または発生している確率を含む、
請求項1に記載のシステム。
【請求項3】
前記宿主反応のタイプは、望ましくない宿主反応を含む、
請求項2に記載のシステム。
【請求項4】
前記刺激は、感染、治療、または、外傷のうち少なくとも1つを含む、
請求項2または3に記載のシステム。
【請求項5】
前記感染、治療、または、外傷のうち少なくとも1つは、敗血症を含む、
請求項4に記載のシステム。
【請求項6】
前記期間は、24時間以下である、
請求項2に記載のシステム。
【請求項7】
前記有害イベントが、死亡、30日間の再入院、ICUへのエスカレーション、昇圧剤投与、腎代替療法、在院日数の延長、入院費用の増加、体外式膜型人工肺の介入、または機械的人工呼吸のうちの少なくとも1つを含む、
請求項1乃至6いずれか一項に記載のシステム。
【請求項8】
前記ダッシュボードGUIは、さらに、前記機械学習モデルによって識別された治療タイムテーブルを表示するワークフローステータスを含み、
前記治療タイムテーブルは、オーダー時間、投与時間、治療時間のうちの少なくとも1つを含む、
請求項1乃至7いずれか一項に記載のシステム。
【請求項9】
前記ダッシュボードGUIは、前記機械学習モデルによって使用される選択されたパラメータを表示するタイムテーブルを含み、
前記選択されたパラメータは、オーダー時間、採血時間、記録時間、および結果時間を表示するタイムテーブルのうち少なくとも1つを含む、
請求項1乃至8いずれか一項に記載のシステム。
【請求項10】
前記ダッシュボードGUIは、さらに、
前記予後値および前記機械学習モデルからの出力に基づく通知と、
基準点からの時間を表示する第1タイマ、および、ケアガイドラインに違反する前に治療および診断動作を完了するために残された時間を表示する第2タイマを含む、1つ以上のインタラクティブなタイマと、
を含む、
請求項1乃至9いずれか一項に記載のシステム。
【請求項11】
ターゲット集団は、感染症を有すると疑われる患者を含む、
請求項1乃至10いずれか一項に記載のシステム。
【請求項12】
前記感染症は、敗血症を含む、
請求項11に記載のシステム。
【請求項13】
前記ダッシュボードGUIは、インタラクティブな集団セレクタを含む、
請求項1乃至12いずれか一項に記載のシステム。
【請求項14】
前記インタラクティブな集団セレクタは、散布図、および、前記散布図の領域に対して構成された領域選択ツール、を含む、
請求項13に記載のシステム。
【請求項15】
前記ターゲット集団は、予備検査確率および患者位置に基づいている、
請求項1乃至14いずれか一項に記載のシステム。
【請求項16】
前記ターゲット集団は、第2機械学習モデルによって定義され、
前記第2機械学習モデルは、教師なしモデルである、
請求項1乃至15いずれか一項に記載のシステム。
【請求項17】
前記パラメータを識別することは、前記選択されたパラメータと前記ターゲット集団の前記パラメータとの間の単変量距離スコアを計算することを含み、かつ、
前記ランキングを決定することは、前記患者データにおける各患者について独立して前記ランキングを決定すること、および、前記パラメータ間で前記単変量距離スコアを比較すること、を含む、
請求項1乃至16いずれか一項に記載のシステム。
【請求項18】
前記パラメータを識別することは、SHAP(SHaPley Additive eDescriptions)法またはマハラノビス法のうちの少なくとも1つを使用して個々のパラメータ寄与を計算することを含み、かつ、
前記ランキングを決定することは、前記パラメータを比較するために、SHAP法またはマハラノビス法のうち少なくとも1つを使用することを含む、
請求項1乃至17いずれか一項に記載のシステム。
【請求項19】
前記ダッシュボードGUIは、さらに、付加的説明バープロットを含み、
前記選択されたパラメータは、患者検査結果、患者バイオマーカー結果、患者臨床パラメータ、導出結果、または、患者軌跡情報のうち少なくとも1つを含み、
前記ダッシュボードGUI上に表示されるタイムテーブルは、インタラクティブな非表示/表示ボタンを含み、かつ、前記タイムテーブルは、結果時間、および、前記選択されたパラメータそれぞれに対する値を表示する、
請求項8乃至13いずれか一項に記載のシステム。
【請求項20】
前記ダッシュボードGUIは、さらに、敗血症患者のためのケアガイドラインによって推奨される治療および診断アクションのチェックリストを含み、
前記チェックリストは、抗生物質投与、抗生物質投与前の血液培養の順序付け、血清乳酸塩の測定、輸液投与の投与、または、昇圧剤投与のうち1つ以上の項目を含み、
前記チェックリストは、前記項目それぞれについてフローのステータスを表示し、
前記フローのステータスは、医師のオーダーステータス、薬局の承認ステータス、薬剤の投与ステータス、または、全ガイドライン完了ステータスのうち少なくとも1つを指定する、
請求項1乃至19いずれか一項に記載のシステム。
【請求項21】
表示される前記ダッシュボードGUIは、患者カルテに埋め込まれて表示される、
請求項1乃至20いずれか一項に記載のシステム。
【請求項22】
前記機械学習モデルを使用することは、
異なるターゲット集団から以前に収集された患者データを保管すること、および、
前記ターゲット集団を参照して、前記患者データに関連付けられた位置を返すこと、
を含む、請求項1乃至21いずれか一項に記載のシステム。
【請求項23】
前記機械学習モデルを使用することは、
機械学習サーバに対するAPI呼び出しを実行することであり、前記API呼び出しは前記患者データを含むこと、および、
前記機械学習サーバから、前記緊急度スコア、および、前記少なくとも1つの予後値、前記緊急度スコアの前記リスクカテゴリ、前記1つ以上の予後値に係る前記1つ以上のリスクカテゴリ、前記選択されたパラメータ、並びに、各パラメータの前記影響スコアを受信すること、
を含む、請求項1乃至22いずれか一項に記載のシステム。
【請求項24】
前記ダッシュボードGUIは、医療専門家に関連付けられたモバイルデバイス上に表示されるように構成されている、
請求項1乃至23いずれか一項に記載のシステム。
【請求項25】
前記動作は、さらに、
ポイントオブケア診断装置または測定装置のうち1つ以上を前記システムに接続すること、および、
前記患者データの一部を、前記ポイントオブケア診断装置または前記測定装置から直接的に収集すること、
を含む、請求項1乃至24いずれか一項に記載のシステム。
【請求項26】
前記動作は、さらに、
教師なしアルゴリズムの出力によって定義される前記宿主反応のタイプに相関している1つ以上のラベルを使用して訓練された、教師ありアルゴリズムを使用して前記機械学習モデルを訓練すること、
を含む、請求項1乃至25いずれか一項に記載のシステム。
【請求項27】
前記緊急度スコアに関連付けられた前記リスクカテゴリは、低、中、高、または超高のうち1つを含む、
請求項1乃至26いずれか一項に記載のシステム。
【請求項28】
宿主反応メトリックを表示するためのダッシュボードGUIを生成するコンピュータ実装方法であって、
FHIR APIを介して、分析サーバを管理プラットフォームに接続するステップと、
EMRに埋め込まれた宿主反応ウィンドウを生成するステップと、
前記宿主反応ウィンドウ上に緊急度スコアを提示するための緊急度インジケータを表示するステップであり、
前記緊急度スコアは、機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記緊急度スコアは、患者データに基づいて、宿主反応のタイプの確率およびレベルを決定する、ステップと、
前記宿主反応ウィンドウ上に1つ以上の予後値を含む1つ以上の予後インジケータを表示するステップであり、
前記予後値は、前記機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記予後値は、有害イベントの確率を決定する、ステップと、
前記患者データ内の1つ以上のパラメータを、ターゲット集団に係る対応する1つ以上のパラメータの分布と比較することによって、前記患者データ内の1つ以上のクリティカルパラメータを識別するステップと、
前記1つ以上のパラメータに関連付けられた影響スコアに基づくランキングに従って、前記パラメータのリストを表示するステップと、
前記パラメータのうち1つに対して注意を引く強調インジケータを表示するステップと、
を含む、方法。
【請求項29】
装置であって、
1つ以上のプロセッサと、
インストラクションを含む、1つ以上のメモリデバイスであり、
前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、
1つ以上のメモリデバイスと、を備え、
前記動作は、
管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、
機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、
機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて予後値を生成し、前記予後値は、有害イベントの確率およびレベルを表している、ステップと、
前記患者データ内のパラメータをターゲット集団のパラメータの分布と比較することによって、前記患者データ内のクリティカルパラメータを識別するステップと、
前記クリティカルパラメータに関連付けられた影響スコアに従って、前記パラメータのランキングを決定するステップと、
1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、
前記ダッシュボードGUI上に前記緊急度スコアを表示し、リスクカテゴリを指定する、緊急度インジケータ、
前記ダッシュボードGUI上に前記予後値を表示し、リスクカテゴリを指定する、予後インジケータ、および、
前記ランキングに従って、前記パラメータを表示するリスト、
を含む、ステップと、
を含む、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に、インタラクティブな患者ダッシュボードを生成するためのシステムおよび方法に関する。そして、より詳細には、重要なパラメータ、および、これらのパラメータを用いて入力された機械学習モデルの結果を利用して、患者に対する宿主反応(host response)のレベルに関する情報を表示するためのインタラクティブなグラフィカルユーザインターフェイスを生成するためのシステムおよび方法に関する。
【0002】
関連出願への相互参照
本出願は、2021年1月12日に出願された米国仮特許出願第63/136,580号、タイトル“Systems and Methods for Generating an Interactive Patient Dashboard”について、優先権および利益を主張するものであり、それは、以下で全てが記載されているかのように、かつ、全ての適用可能な目的のために、参照により、その全体が本明細書に組み込まれている。
【背景技術】
【0003】
ダッシュボードは、しばしば、特定の目的またはビジネスプロセスに関連するインジケータまたは他の情報の一目でわかる(at-a-glance)ビューを提供する、グラフィカルユーザインターフェイス(GUI)の一種である。ダッシュボードインターフェイスは、異なるデータ視覚化技法を通してレポートを表示するために使用され得る。さらに、ダッシュボードGUIは、しばしば、例えば、ユーザナビゲーションを促進するために分離されたソースへのリンクを提供することによって、他の情報ソースにアクセスするためのプラットフォームを提供する。
【0004】
ダッシュボードGUIは、時間依存の決定を行うために、複数の情報源および大きなデータセットをユーザが分析する必要がある場合に、特に有用である。例えば、(例えば、分解されたデータを分析するために)複数のシステムとのインタラクションを必要とするタスクは、情報を集中化し、そして、ワークフローを促進するために、ダッシュボードGUIを使用することができる。
【0005】
ダッシュボードGUIの設計および実装は、しかしながら、ますます複雑になってきている。ユーザは、より多くのソースからのより多くのデータを(より短い時間量で)考慮する必要がある一方で、ディスプレイデバイスは、より小さくなり、かつ、ユーザは、より短い注目期間を有している。従って、効果的なダッシュボードは、複雑なデータの単純な視覚的表現で有用な情報を示すように設計されるべきである。そして、表示スペースの制限のせいで、効果的なダッシュボードGUIは、混乱を最小化するために、あまりに雑然と見えることがなく、最も重要なデータコンポーネントをインテリジェントに選択する必要がある。ダッシュボードGUI設計のこれらの問題は、機械学習、人工知能、およびビッグデータ分析の出現と共に悪化している。これらのツールは、大きなデータセットを迅速に分析するために複雑なアルゴリズムを使用する。しかし、それらの出力も、また、しばしば複雑であり、そして、理解するのが困難である。機械学習といった技術は、意思決定を効果的に促進するために単純かつ迅速なインタラクションを可能にする方法でそれらの結果をユーザに提示することができる場合にのみ有用である。
【0006】
上記に照らして、複数のデータを考慮し、そして、次いで、それが治療(treatment)およびタイムテーブルに関連する際に、実用的な情報を提供する機械学習モデルのためのシステムおよび方法が必要とされている。ここにおいて説明されるシステムおよび方法は、上述の問題及び/又は従来技術における他の問題のうち1つ以上を対処する。
【発明の概要】
【0007】
様々な態様において、リスクカテゴリに関連付けられた、1つ以上の緊急度値に基づいてインジケータを表示するためのインタラクティブなダッシュボードグラフィカルユーザインターフェイス(GUI)を生成するためのシステムが説明される。様々な態様において、前記システムは、1つ以上のプロセッサを含む。様々な態様において、前記システムは、インストラクションを含む、1つ以上のメモリデバイスであり、前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、1つ以上のメモリデバイスを含む。前記動作は、患者IDを管理プラットフォームに送信するステップと、前記管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、機械学習モデルを使用するステップであり、前記患者データに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、機械学習モデルを使用するステップであり、前記患者データに基づいて1つ以上の予後値を生成し、前記予後値は、有害イベントの確率を表している、ステップと、前記少なくとも1つのパラメータに関連付けられた影響スコアに従って、前記少なくとも1つのパラメータのランキングを決定するステップと、1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、前記緊急度スコアおよび関連付けられたリスクカテゴリを表示する緊急度インジケータ、前記少なくとも1つの予後値、および、前記少なくとも1つの予後値に関連付けられた1つ以上のリスクカテゴリを表示する、少なくとも1つの予後インジケータ、および、前記ランキングに従って、前記パラメータを表示するリスト、を備える、ステップと、を含む。
【0008】
様々な態様において、宿主反応メトリックを表示するためのダッシュボードGUIを生成するコンピュータ実装方法が説明される。様々な態様において、前記方法は、FHIR APIを介して、分析サーバを管理プラットフォームに接続するステップと、EMRに埋め込まれた宿主反応ウィンドウを生成するステップと、前記宿主反応ウィンドウ上に緊急度スコアを提示するための緊急度インジケータを表示するステップであり、前記緊急度スコアは、機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記緊急度スコアは、患者データに基づいて、宿主反応のタイプの確率およびレベルを決定する、ステップと、前記宿主反応ウィンドウ上に1つ以上の予後値を含む1つ以上の予後インジケータを表示するステップであり、前記予後値は、前記機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記予後値は、有害イベントの確率を決定する、ステップと、前記患者データ内の1つ以上のパラメータを、ターゲット集団に係る対応する1つ以上のパラメータの分布と比較することによって、前記患者データ内の1つ以上のクリティカルパラメータを識別するステップと、前記1つ以上のパラメータに関連付けられた影響スコアに基づくランキングに従って、前記パラメータのリストを表示するステップと、前記パラメータのうち1つに対して注意を引く強調インジケータを表示するステップと、を含む。
【0009】
様々な態様において、装置が説明される。様々な実施形態において、本装置は、1つ以上のプロセッサと、インストラクションを含む、1つ以上のメモリデバイスであり、前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、1つ以上のメモリデバイスと、を備える。様々な実施形態において、前記動作は、管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて予後値を生成し、前記予後値は、有害イベントの確率およびレベルを表している、ステップと、前記患者データ内のパラメータをターゲット集団のパラメータの分布と比較することによって、前記患者データ内のクリティカルパラメータを識別するステップと、前記クリティカルパラメータに関連付けられた影響スコアに従って、前記パラメータのランキングを決定するステップと、1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、前記ダッシュボードGUI上に前記緊急度スコアを表示し、リスクカテゴリを指定する、緊急度インジケータ、前記ダッシュボードGUI上に前記予後値を表示し、リスクカテゴリを指定する、予後インジケータ、および、前記ランキングに従って、前記パラメータを表示するリスト、を含む、ステップと、を含む
【図面の簡単な説明】
【0010】
添付の図面は、さらなる理解を提供するために含まれ、そして、本明細書に組み込まれ、かつ、本明細書の一部を構成するが、様々な実施形態を示し、そして、説明と共に様々な実施形態の原理を説明する役割を果たす。図面は、以下のとおりである。
【
図1】
図1は、様々な実施形態に従った、機械学習方法を実施するために適した一つの例示的なアーキテクチャを示す。
【
図2】
図2は、様々な実施形態に従った、機械学習システムにおける一つの例示的なサーバおよびクライアントのブロック図を示す。
【
図3】
図3は、様々な実施形態に従った、一つの例示的な機械学習マッチングサーバのブロック図を示す。
【
図4】
図4は、様々な実施形態に従った、ダッシュボードグラフィカルユーザインターフェイスを生成するための一つの例示的なプロセスフローを示す。
【
図5】
図5は、様々な実施形態に従った、電子医療記録(Electrical Medical Record、EMR)への認証のための一つの例示的なプロセスフローを示す。
【
図6】
図6は、様々な実施形態に従った、電子医療記録において望ましくない宿主反応ウィンドウを生成するための一つの例示的なサーバプロセスに係るフローチャートを示す。
【
図7】
図7は、様々な実施形態に従った、患者による調節不全及び/又は異常な宿主反応の確率および重症度(severity)を決定するための機械学習モデルを生成するための一つの例示的なプロセスに係るフローチャートを示す。
【
図8】
図8は、様々な実施形態に従った、望ましくない(調節不全及び/又は異常な)宿主反応のサブタイプに相関する標識を使用して機械学習モデルを訓練するための一つの例示的な方法に係るフローチャートを示す。
【
図9】
図9は、様々な実施形態に従った、緊急度スコア(acuity score)及び/又は予後値(prognostic value)を決定するための一つの例示的なプロセスに係るフローチャートを示す。
【
図10】
図10は、様々な実施形態に従った、ユーザによって選択された基準集団(reference population)に関して、パラメータ毎に、患者におけるパラメータ(例えば、クリティカルパラメータ)を識別し、かつ、表示するための一つの例示的なプロセスに係るフローチャートを示す。
【
図11】
図11は、様々な実施形態に従った、ユーザによって選択された基準集団に関して集計ベースでパラメータ(例えば、クリティカルパラメータ)を識別し、かつ、表示するための一つの例示的なプロセスに係るフローチャートを示す。
【
図12A】
図12Aは、様々な実施形態に従った、機械学習モデルによって使用されるパラメータのタイムテーブルを生成するための一つの例示的なプロセスに係るフローチャートを示す。
【
図12B】
図12Bは、様々な実施形態に従った、機械学習モデルによって使用されるパラメータのタイムテーブルを生成するための一つの例示的なプロセスに係るフローチャートを示す。
【
図13】
図13は、様々な実施形態に従った、ダッシュボードGUIに表示される要約ステータス(summary status)インジケータを伴う一つの例示的なタイマ生成および動作方法に係るフローチャートを示す。
【
図14A】
図14Aは、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータ重要性を識別するための一つの例示的な方法に係るフローチャートを示す。
【
図14B】
図14Bは、様々な実施形態に従った、例えば、
図14Aに示されるような方法に基づいた影響のランキングによってパラメータを表示する要約ボックス(summary box)を示す。
【
図15A】
図15Aは、様々な実施形態に従った、制御不能な宿主反応モニタリングのための一つの例示的なダッシュボードGUI1500を示す。
【
図15B】
図15Bは、様々な実施形態に従った、制御不能な宿主反応モニタリングのための一つの例示的なダッシュボードGUIを示す。
【
図15C】
図15Cは、様々な実施形態に従った、制御不能な宿主反応モニタリングのための一つの例示的なダッシュボードGUIを示す。
【
図16】
図16は、開示された実施形態に従った、望ましくない宿主反応モニタリングのための一つの例示的なダッシュボードGUIを示す。
【
図17A】
図17Aは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17B】
図17Bは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17C】
図17Cは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17D】
図17Dは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17E】
図17Eは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17F】
図17Fは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17G】
図17Gは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17H】
図17Hは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17I】
図17Iは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図17J】
図17Jは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUIまたはその一部を示す。
【
図18】
図18は、様々な実施形態に従った、ユーザによって選択された基準集団に関するパラメータまたは複数のパラメータの値を識別し、かつ、表示するためのダッシュボードGUIに係る一つの例示的なコンポーネントを示す。
【
図19】
図19は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータ重要性ランキング(importance ranking)を表示するための一つの例示的なダッシュボードGUI(例えば、1910、1920などを参照のこと)を示す。
【
図20】
図20は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータの重要性の寄与を表示するための一つの例示的なダッシュボードGUIを示す。
【
図21】
図21は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータの重要性の寄与を表示するための一つの例示的なダッシュボードGUIを示す。
【
図22】
図22は、様々な実施形態に従った、必要なコンポーネントおよびインターフェイスを含む、説明されたシステムを利用する一つの例示的なソフトウェアシステムを示すブロック図である。
【
図23】
図23は、様々な実施形態に従った、
図1と
図2のクライアントおよびサーバ、並びに、
図3から
図22の方法またはGUIを実施することができる一つの例示的なコンピュータシステムを示すブロック図である。
【0011】
図面において、同一または類似の参照番号によって示される要素およびステップは、別段の指示がない限り、同一または類似の要素およびステップに関連付けられている。
【発明を実施するための形態】
【0012】
以下の詳細な説明では、本開示の完全な理解を提供するために、多数の特定の詳細が明らかにされている。しかしながら、当業者にとっては、本開示の実施形態が、これらの具体的な詳細のいくつかがなくても実施され得ることは、明らかであろう。他のインスタンスは、本開示を不明瞭にしないように、周知の構造および技法は詳細に示されていない。
【0013】
ML、人工知能(AI)、および、ニューラルネットワーク(NN)モデルの開発者は、しばしば、有用で、簡潔で、かつ、実用的な表示を通して結果を効率的に提供するという課題に直面する。ダッシュボードGUIを通じたデータ視覚化は、エンドユーザにとって意味のある方法で、機械学習プロセスの終わりに結果を表示することを促進することができる。これは、患者の複雑な健康状態を記述しようとするときのヘルスケアにおいて特に当てはまる。
【0014】
ダッシュボードGUIは、治療経路を決定し、かつ/あるいは、ケアを最適化するために、患者の健康状態を正確かつ迅速に理解しようと試みる医療専門家を手助けすることができる。この1つの重要な例は、外部刺激または内部刺激に対する患者の宿主反応に係るあるタイプの宿主反応(例えば、調節不全及び/又は異常)のレベルの理解におけるものである。様々な刺激が、患者において宿主反応を引き起こし得る。これらに限定されるわけではないが、感染、免疫療法、および外傷を含むものである。温度、細胞数、血圧、等といった、多くのパラメータが宿主反応の異常レベルに関連することが知られているが、現在、医療専門家にとって、所与の患者について全体論的な異常を評価し、かつ、理解するための全体論的および客観的な方法は存在していない。様々な実施形態において、パラメータは、データベースの管理プラットフォーム上に保管される電子記録内に保管され得る。
【0015】
さらに、医療専門家が、(1)この情報を使用して患者に対するケアを改善するように決定を行ために、十分迅速にデータを客観的にまとめ、かつ、(2)リアルタイムで、最も重要な要素を有意義な方法で視覚化するには、パラメータが多すぎる。
【0016】
様々な実施形態において、ヘルスケア職業は、管理プラットフォーム(例えば、ヘルスケア関連データを保管するようにプログラムされたデータベース)を介して、ここにおいて記載されるデータにアクセスすることができる。必要とされるのは、パラメータを考慮し、実行可能なフィードバック(タイムラインを含む、治療計画)または警告(患者がステータスを有する又は有するであろう可能性、および、ステータスのせいで発生する1つ以上の有害イベントの可能性を示すインジケータ)を提供するといった方法で、機械学習アルゴリズムを使用して患者データを処理するための、ここにおいて記載される、システムおよび方法である。
【0017】
ダッシュボードGUIが医療専門家にとって有用であり得るシナリオの一つの例は、刺激による宿主反応の異常または調節不全のレベルの表現である。この刺激は、感染、治療、外傷、および、多くの他のものを含み得る。GUIの生成のための現在の技術は、ヘルスケア専門家が患者の全体的な宿主反応を理解するための客観的な方法を提供しない。現在のGUIは、正確な視覚化を提供することができず、そして、しばしば、不明瞭であり、潜在的に異常または調節不全な宿主反応を伴う、どの患者が、悪化の最も高い可能性を有し、かつ、ケアのために優先されるべきか、もしくは、どのケアがどの患者に最も適切であるかを識別することができない。
【0018】
宿主反応の異常または調節不全のレベルを表すことが知られている多くの関連データパラメータを客観的に入力するMLまたはAIモデルは、この問題に対するソリューションを提供することができるが、しかしながら、これらのモデルの出力は、不透明であり、かつ、人間にとって解釈が難しいことがある。このため、これらのモデルは困難であり、そして、しばしば、患者の成果に対して劇的に影響し得る重大な決定を医療専門家が行うために使用するには実際的でない。医療専門家がこれらのモデルを効果的に使用するためには、重要な患者ケア決定を行うためにそれに依存するツールに十分な信頼を築くための、特定の患者の健康状態に対する機械学習モデルの内部動作(inner workings)への洞察および直感が必要である。
【0019】
ここにおいて開示される実施形態は、複雑な機械学習モデル出力の迅速かつ直感的な表示を可能にするダッシュボードGUIを生成し、一方で、現在の関心患者の機械学習モデルの内部動作への重要な洞察をユーザに提供するためのシステムおよび方法の形態で、上記の問題に対するソリューションを提供する。説明されるダッシュボードGUIは、機械学習モデルによって出力される刺激に対する患者の免疫応答の異常及び/又は調節不全のレベルを正確に記述することができる。異常及び/又は調節不全に係るこのレベルは、患者の悪化の可能性および特定の治療に応答する可能性と相関することが示されている。説明される実施形態は、医師が、任意の所与の時間に、治療から利益を得る可能性が最も高い、患者のための適切なケアを迅速かつ正確に優先順位を付けるのを可能にすることができる。開示されるシステムおよび方法は、機械学習のインタラクション性の技術分野における課題を解決し、特にはヘルスケアセッティングに適用される、MLモデルの解釈および操作を促進する、ツールを提供する。従って、ヘルスケアのコンテキストにおいて、開示されるシステムおよび方法は、死亡の可能性の低減、再入院、長い滞在、集中治療室での長い滞在、および、他の有害イベントといった、患者の成果の改善を促進することができる。
【0020】
ダッシュボードGUI生成のための説明される技法の利点は、特定の患者に対する宿主反応の異常及び/又は調節不全のレベルを評価し、かつ、出力するように構築された機械学習アルゴリズムの出力の解釈可能性(interpretability)の劇的な増加である。これらのアルゴリズムは、現在の患者からの宿主反応に相関することが知られている多くのパラメータを入力し、そして、訓練データセットにおける多くの過去の患者からの同じパラメータを使用して開発された緊急度スコア及び/又は予後値を出力することができる。様々な実施形態において、緊急度スコアは、患者が医学的ステータス(例えば、敗血症)を有するまたは発症する確率を表す。様々な実施形態において、予後値は、緊急度スコアに基づいて発生する有害イベントの確率を含み得る。有害イベントの非限定的な例は、死の変化、ICUへのエスカレーションの変化、もしくは、ここにおいて記載され、または、患者に起こることが知られている、任意の他の有害イベントを含み得る。これは、患者に対する宿主反応の異常及び/又は調節不全のレベルに係るはるかに客観的かつ全体的な表現を結果として生じることができる。しかしながら、MLアルゴリズムによって出力されたスコアは、しばしば、医療専門家ユーザにとって理解するのが困難であり、懐疑および信頼の欠如につながっている。結果として、多くの医療専門家は、そうしたMLアルゴリズムを使用しないことを選択する。ダッシュボードGUIは、MLアルゴリズムからの出力スコアを表示するだけでなく、また、関心のある特定の患者についてスコアをもたらしたパラメータおよび方法論を明確に示すこともでき、著しい直感を構築し、そして、医療専門家のためのツールへの信頼を増加することができるだろう。この直感および信頼の増加は、ヘルスケアセッティングにおける使用の増加を見出すための重要な必要性である。
【0021】
開示されるシステムおよび方法は、また、ヘルスケアセッティングにおけるダッシュボードGUIの自動生成に係る技術分野も改善し得る。特に、開示されるシステムおよび方法は、モバイルデバイスといった、小型スクリーンデバイスのためのダッシュボードGUIを生成する技術分野を改善することができる。様々な実施形態において、開示されるシステムおよび方法は、複雑な機械学習出力を、それらが小さな画面に表示され得るように要約するインジケータを生成することができ、一方で、医師またはケア提供者に対して動作可能な結果を伝達している。さらに、開示されるシステムおよび方法は、ユーザに対してどのデータが表示されるべきかを分類し、ランキングし、そして、選択するための自動化された方法を提供することによって、ダッシュボードGUIを改善することができる。例えば、開示されるシステムおよび方法は、機械学習モデル出力に影響を与えた重要なパラメータを識別することを容易にし、そして、要約されたダッシュボードGUIのためのプロットまたはインジケータ(例えば、アイコンまたはテキスト)を生成することができる。従って、開示されるシステムおよび方法は、エンドユーザについて直感および信頼を構築する様式で、機械学習モデルからの実行可能かつ解釈可能な出力を医療提供者に提供する問題を解決する。
【0022】
さらに、開示されるシステムおよび方法は、ヘルスケアデータとのインタラクションの精度および速度を改善する、具体的に構造化されたグラフィカルユーザインターフェイスを生成することができる。例えば、開示されるシステムおよび方法は、医療専門家が情報をより迅速かつ正確に処理するのを支援するやり方で、グラフィカルユーザインターフェイス上に患者情報を配置するダッシュボードGUIを生成することができる。開示されたシステムおよび方法に係るいくつかの実施形態は、機械学習プロセスの最中に使用される特定のパラメータを示すために、動的リスト、ハイライトアイコン/インジケータ、及び/又は、グラフィカル分布を使用して、機械学習出力を表示する動的GUIを生成することができる。
【0023】
これから、本開示の例示的な実施形態を説明する、添付の図面を参照する。
【0024】
図1は、開示される実施形態に従った、機械学習方法を実施するためのアーキテクチャ100に係る一つの非限定的な例を示している。アーキテクチャ100は、ネットワーク150を介して接続された、サーバ130およびクライアントデバイス110を含んでいる。多くのサーバ130のうち1つは、命令を含むメモリをホストするように構成されており、命令は、プロセッサによって実行されると、サーバ130に、ここにおいて開示されるような方法、及び/又は、プロセス、並びに、論理フローにおけるステップのうち少なくともいくつかを実行させる。サーバ130のうち少なくとも1つは、複数の患者についての臨床データを含む、データベースを含み、または、それに対するアクセスを有し得る。
【0025】
様々な実施形態において、データベース(例えば、1つ以上のメモリデバイス)は、様々な動作を実行するための命令を含み得る。いくつかの実施形態において、動作(operation)は、データベースから管理プラットフォームに患者IDを伝送することを含み得る。様々な実施形態において、動作は、管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信することを含んでよく、少なくとも1つの電子記録は、患者データを含んでいる。様々な実施形態において、動作は、患者データに基づいてスコアおよび値(例えば、緊急度スコア及び/又は1つ以上の予後値)を生成するために、機械学習モデルを採用することを含み得る。様々な実施形態において、緊急度スコアは、患者による宿主反応(例えば、敗血症に対する)の確率および重症度を表している。様々な実施形態において、動作は、患者データにおける1つ以上のパラメータを、基準(例えば、ターゲット集団)の1つ以上のパラメータの分布と比較することによって、患者データにおけるクリティカルパラメータを識別することを含み得る。様々な実施形態において、動作は、少なくとも1つのパラメータに関連付けられた影響スコアに従って、少なくとも1つのパラメータのランキングを決定することを含み得る。様々な実施形態において、データベースは、ここにおいて参照されるデータのいずれかを含んでよい。
【0026】
様々な実施形態において、動作は、1つ以上のクライアントデバイス上に、ダッシュボードGUIを備えるダッシュボードGUIを表示するために、ダッシュボードGUIを生成することを含み得る。様々な実施形態において、ダッシュボードは、緊急度スコアを表示するための緊急度インジケータを含み得る。様々な実施形態において、ダッシュボードは、予後値および少なくとも1つの予後値に関連付けられたリスクカテゴリを表示する予後インジケータを含み得る。様々な実施形態において、動作は、ランキングに従ってパラメータのリストを表示することを含んでよい。
【0027】
サーバ130は、画像のコレクションおよびデータパイプラインエンジンをホストするための適切なプロセッサ、メモリ、および通信能力を有している、任意のデバイスを含み得る。データパイプラインエンジンは、ネットワーク150にわたり、様々なクライアントデバイス110によってアクセス可能であり得る。クライアントデバイス110は、例えば、デスクトップコンピュータ、モバイルコンピュータ、タブレットコンピュータ(例えば、電子書籍リーダを含む)、モバイルデバイス(例えば、スマートフォンまたはPDA)、または、サーバ130のうち1つ上のデータパイプラインエンジンにアクセスするための適切なプロセッサ、メモリ、および通信能力を有する任意の他のデバイスであり得る。様々な実施形態に従って、クライアントデバイス110は、リアルタイムの緊急事態において(例えば、病院、診療所、救急車、もしくは、任意の他の公共または居住環境において)サーバ130のうち1つ上のデータパイプラインエンジンにアクセスする、医師、看護師、または救急隊員といった医療専門家によって使用され得る。いくつかの実施形態において、クライアントデバイス110の1人以上のユーザ(例えば、看護師、救急隊員、医師、および他の医療専門家)は、ネットワーク150を介して、1つ以上のサーバ130におけるデータパイプラインエンジンに臨床データを提供することができる。
【0028】
様々な実施形態に従って、1つ以上のクライアントデバイス110は、臨床データをサーバ130に自動的に提供することができる。例えば、いくつかの実施形態において、クライアントデバイス110は、ネットワーク接続を通して、患者結果をサーバ130に自動的に提供するように構成されている、診療所における血液検査ユニットであり得る。ネットワーク150は、例えば、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、インターネット、などのうち任意の1つ以上を含むことができる。さらに、ネットワーク150は、これらに限定されるわけではないが、バスネットワーク、スターネットワーク、リングネットワーク、メッシュネットワーク、スターバスネットワーク、ツリーまたは階層ネットワーク、などを含む、以下のネットワークトポロジのうち任意の1つ以上を含むことができる。
【0029】
図2は、様々な実施形態に従った、
図1のアーキテクチャ100における1つの例示的なサーバ130およびクライアントデバイス110を示すブロック
図200である。クライアントデバイス110およびサーバ130は、それぞれの通信モジュール218-1および218-2(以下では、集合的に「通信モジュール218」と称される)を介して、ネットワーク150上で通信可能に結合され得る。通信モジュール218は、ネットワーク150とインターフェイスするように構成されており、データ、要求、応答、および、ネットワーク上の他のデバイスに対するコマンドといった、情報を送信および受信する。通信モジュール218は、例えば、モデムまたはイーサネット(登録商標)カードであり得る。クライアントデバイス110およびサーバ130は、それぞれに、メモリ220-1および220-2(以下では、集合的に「メモリ220」と称される)、並びに、プロセッサ212-1および212-2(以下では、集合的に「プロセッサ212」と称される)を含み得る。メモリ220は、プロセッサ212によって実行されると、クライアントデバイス110またはサーバ130のうち任意の1つに、ここにおいて開示される方法における1つ以上のステップを実行させる命令を保管することができる。従って、プロセッサ212は、プロセッサ212の中へ物理的にコード化された命令、メモリ220内のソフトウェアから受信された命令、または、両方の組合せといった、命令を実行するように構成され得る。
【0030】
様々な実施形態に従って、サーバ130は、データベース252-1およびトレーニングデータベース252-2(以下では、集合的に「データベース252」と称される)を含むか、または、それらに通信可能に結合され得る。1つ以上の実装において、データベース252は、複数の患者の臨床データを保管し得る。様々な実施形態に従って、トレーニングデータベース252-2は、データベース252-1と同じであってよく、または、その中に含まれてもよい。データベース252における臨床データは、非識別(non-identifying)患者パラメータ、バイタルサイン、全血球計算(CBC)といった血液測定値、包括的代謝パネル(CMP)、および、血液ガス(例えば、酸素、CO2、など)、免疫学的情報、バイオマーカー、培養、など、といった計測情報(metrology information)を含み得る。非識別患者特性は、年齢、性別、および、慢性疾患(例えば、糖尿病、アレルギーなど)といった、一般的な病歴を含み得る。様々な実施形態において、臨床データは、また、治療手段、薬剤投与イベント、投与量、等といった、計測情報に応答して医療専門家によって行われるアクションも含み得る。様々な実施形態において、臨床データは、また、患者病歴(例えば、セプシス、卒中、心拍停止、ショック、など)において生じるイベントおよび結果を含み得る。データベース252は、サーバ130から分離されて示されているが、所定の態様において、データベース252およびデータパイプラインエンジン240は、同じサーバ130内にホストされ、そして、ネットワーク150内の任意の他のサーバまたはクライアントデバイスによってアクセス可能であり得る。
【0031】
サーバ130内のメモリ220-2は、訓練データセットを生成するために、医療施設からの入力データを評価および処理するためのデータパイプラインエンジン240を含み得る。データパイプラインエンジン240は、モデリングツール242、統計ツール244、データ解析ツール246、データマスキングツール247、および類似性定義ツール248を含み得る。モデリングツール242は、関連する臨床データを収集し、かつ、あり得る結果を評価するための命令およびコマンドを含み得る。モデリングツール242は、線形モデル、ランダムフォレスト、または勾配ブースティングマシンといったアンサンブル機械学習モデル、および、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)といった、ニューラルネットワーク(NN)、などからのコマンドおよび命令を含み得る。様々な実施形態に従って、モデリングツール242は、機械学習アルゴリズム、人工知能アルゴリズム、または、それらの任意の組合せを含み得る。
【0032】
統計ツール244は、データパイプラインエンジン240によって収集され、データベース252に保管され、または、モデリングツール242によって提供された、以前のデータを評価する。いくつかの実施形態において、統計ツール244は、また、モデリングツール242によって提供されるデータ要件に基づいて、正規化関数または方法も定義し得る。インピュテーション(imputation)ツール246は、そうでなければ、データパイプラインエンジン240によって収集された計測情報から欠落しているデータ入力を、モデリングツール242に提供し得る。データ解析ツール246は、リアルタイムデータフィードを処理し、かつ、外部システムに接続することができる。データ解析ツール246は、効率のために最適化されたデータに自動的にラベル付けおよび特徴付けを行い、そして、グループメッセージを使用して、ネットワークのオーバーヘッドを低減することができる。データマスキングツール247は、例えば、個人識別可能情報を除去する、構造的に類似するが真正でないバージョンのヘルスケア記録を作成する動作を実行し得る。データマスキングツール247は、MLトレーニングのための機能的代替を有する一方で、実際のデータを保護するように構成され得る。類似性定義ツール248は、2つのデータセット間の類似性を評価するための動作を実行し得る。例えば、類似性定義ツール248は、L2ノルム、L1ノルム、または、他のハイブリッドノルムといったノルム、もしくは、ユークリッド距離、マンハッタン距離、ミンコフスキー距離、または他の距離メトリックといった距離メトリックのような、2つのデータセット内のクラスタまたはベクトル間の比較演算を使用し得る。代替的または追加的に、類似性定義ツール248は、データセット間のパラメータ差異を抽出し、かつ/あるいは、類似レコードおよび非類似レコードを識別するように構成され得る。
【0033】
クライアントデバイス110は、クライアントデバイス110にインストールされたアプリケーション222またはウェブブラウザを通じて、データパイプラインエンジン240にアクセスし得る。プロセッサ212-1は、クライアントデバイス110におけるアプリケーション222の実行を制御し得る。様々な実施形態に従って、アプリケーション222は、クライアントデバイス110の出力デバイス216においてユーザのために表示されるユーザインターフェイス(例えば、グラフィカルユーザインターフェイス、GUI)を含み得る。クライアントデバイス110のユーザは、計測情報として入力データを入力するか、または、アプリケーション222のユーザインターフェイスを介して、データパイプラインエンジン240にクエリをサブミットするために、入力デバイス214を使用することができる。いくつかの実施形態に従って、入力データは、妥当性確認及び/又はユーザレビューを可能にするために、関連付けられた重要度のランキングと共にクライアントデバイスに送信され得る。入力デバイス214は、スタイラス、マウス、キーボード、タッチスクリーン、マイクロフォン、または、それらの任意の組合せを含み得る。出力デバイス216は、また、ディスプレイ、ヘッドセット、スピーカ、アラームまたはサイレン、もしくは、それらの任意の組み合わせを含み得る。
【0034】
図3は、開示される実施形態に従った、一つの例示的な機械学習マッチングサーバのブロック
図300を示している。入力パラメータ302のセットは、ある設定された時点で、所与の患者について、サーバ304(例えば、クラウドサーバまたはイントラネット)に渡されてよい。入力パラメータ302は、これらに限定されるわけではないが、バイタル測定値、人口統計値、臨床検査結果、血液バイオマーカー、尿バイオマーカー、唾液バイオマーカー、患者共存症といった、刺激による宿主反応(例えば、異常及び/又は調節不全)に関連するパラメータの任意の組合せを含み得る。入力パラメータ302は、また、時間軌跡値、組合せパラメータ、および他の変換といった、これらのパラメータのいずれか、または、全てのアセンブリも含み得る。バイオマーカーの非限定的な例は、血漿/血清(plasma/serum)タンパク質マーカー、細胞表面タンパク質、遺伝子発現測定値、miRNA濃度、細胞数、および、他の関連する生物学的パラメータ、を含み得る。様々な実施形態に従って、入力パラメータ302の任意の組合せは、サーバ304(例えば、クラウドサーバまたはイントラネット)に渡される任意の時点で欠落していることがある。
【0035】
サーバ304(例えば、クラウドサーバまたはイントラネット)は、様々な実施形態に従った、サーバ300における内部機械学習アルゴリズムからの入力/出力データ308のコピーを履歴サーバに保管し得る。サーバ304(例えば、クラウドサーバまたはイントラネット)の出力306は、種々の実施形態に従って、例えば、緊急度スコア、予後値、リスクカテゴリ、もしあれば、治療ガイダンス、準備完了フラグ、出力に使用されるパラメータ、および各パラメータの影響スコアを含み得る。緊急度スコアは、種々の実施形態に従った、機械学習アルゴリズムの主要出力のうち1つであり得る。緊急度スコア及び/又は予後値は、いくつかの実施形態に従って、刺激に対する現在の患者の応答の異常及び/又は調節不全のレベルを表し得る。緊急度は、敗血症に罹患するリスクについての確率を含み得る。1つ以上の予後値は、患者に発生する有害イベント(例えば、24時間以内の入院)の可能性を含み得る。様々な実施形態において、入力パラメータは、パラメータ値を含み得る。様々な実施形態においては、緊急度スコア、予後値)を生成し、そして、患者のリスクカテゴリを識別するために、パラメータ値を使用することができる。様々な実施形態において、リスクカテゴリは、予後値に対して適用され得る。様々な実施形態において、リスクカテゴリは、1つ以上のパラメータ値によって決定され得る。様々な実施形態においては、ダッシュボードGUI内に表示されるリスクカテゴリが、患者のための治療経路を選択することをより容易にし得る。ガイダンスは、アルゴリズムまたはプロシージャが患者のケアを最適化するために提供することができる、テキストフィールドを表している。準備完了(readiness)フラグは、アルゴリズムの出力が表示される準備ができているか否かに対応している、真または偽のブール値(Boolean value)を表し得る。いくつかの実施形態において、緊急度スコアおよびリスクカテゴリは、準備完了フラグ値が真である場合にのみ表示され得る。現在の出力された緊急度およびリスクカテゴリを生成するために使用されるパラメータのリスト552は、ダッシュボードGUI上に表示され得る。影響スコアは、最新の入力を前提として、現在の出力された予後値およびリスクカテゴリを作成するために使用される各パラメータの重要性の表現であり得る(例えば、更新された情報を追加して値を変更することができる)。この影響スコアは、パラメータをランキングし、所定の時点における所与の患者の健康状態について、最も重要なパラメータを強調するように、パラメータがユーザに提示される、順序を強調及び/又は定義することができる。予後値は、同様の患者について、特定の期間内の有害イベント(例えば、ICU、死亡、30日間の再入院、必要とされる昇圧剤投与、必要とされる機械的人工呼吸、等への深刻化)の可能性を表し、そして、患者のケアを知らせるために使用することができる。
【0036】
図4は、開示される実施形態に従った、ダッシュボードグラフィカルユーザインターフェイス(GUI)を生成するための一つの例示的なプロセスフロー400を示している。プロセスフロー400は、ネットワークを介して1つ以上のサーバに結合されたクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。例えば、様々な実施形態に従って、サーバは、医療専門家またはヘルスケア専門家によって携行される1つ以上の医療デバイスまたはポータブルコンピュータデバイスをホストし得る。プロセスフロー400におけるステップのうち少なくともいくつかは、コンピュータのメモリに保管されたコマンドを実行するプロセッサを有しているコンピュータによって実行され得る。様々な実施形態に従って、ユーザは、ネットワークを介して、サーバ内のデータパイプラインエンジン(例えば、アプリケーション222およびデータパイプラインエンジン240)にアクセスするために、クライアントデバイス内のアプリケーションを動作化(activate)することができる。データパイプラインエンジンは、モデリングツール、統計ツール、データ解析ツール、データマスキングツール、および、類似性(similarity)ツール(例えば、モデリングツール242、統計ツール244、データ解析ツール246、データマスキングツール247、および、類似性ツール248)を含み、臨床データをリアルタイムで取り出し(retrieve)、供給し、かつ、処理し、そして、MLモデル及び/又はダッシュボードGUIを形成するためのトレーニングデータセットを提供することができる。
【0037】
追跡(track)サーバ410は、最初に、様々な実施形態に従って、患者ID 442をEMR(電子医療記録)サーバ420に送信することによって、患者に関する情報を要求する。EMRサーバ420は、患者に関する様々な情報用いて応答する。患者情報の非限定的な例は、患者および病院における患者の滞在についての基本情報(患者の名前、一次ケア提供者、アレルギーのリスト、血液培養がオーダーされたか否か)、および、刺激に起因する異常な、及び/又は、制御不能な宿主反応に関連するパラメータの任意の組み合わせ、これらに限定されるわけではないが、バイタル測定値、人口統計値、臨床検査結果、血液バイオマーカー、尿バイオマーカー、唾液バイオマーカー、患者共存症、といったものを含み得る。追跡サーバ410は、ダッシュボードグラフィカルユーザインターフェイス上に表示され得るように、この情報を保管することができる。いくつかの実施形態において、EMRとの通信は、FHIR(Fast Healthcare Interoperability Resources)アプリケーションプログラミングインターフェイス444(API)を使用して生じ得る。様々な実施形態において、オーダーステータス446は、ユーザによって入力されてよく、かつ、アルゴリズムは、出力を更新してよく、そして、ダッシュボードGUIは、出力を反映するように更新されてよい。様々な実施形態において、患者情報446(例えば、臨床観察)は、ユーザによって入力されてよく、かつ、アルゴリズムは、出力を更新してもよく、そして、ダッシュボードGUIは、出力を反映するように更新されてよい。
【0038】
追跡サーバ410は、EMRサーバ420から取り出されたデータと共に、照合(match)API450を使用して、照合サーバ430に要求を送信することができる。照合サーバ430は、緊急度スコア、予後値、リスクカテゴリ、もしあれば治療ガイダンス、準備完了フラグ、出力に使用されるパラメータ552、及び/又は、各パラメータの影響スコアを用いて応答し得る。様々な実施形態に従って、照合サーバ430から受信されたデータは、追跡サーバ410によって保管され得る。多くの場合、データは、ダッシュボードグラフィカルユーザインターフェイス上に表示され得る。
【0039】
EMRサーバ420および照合サーバ430から追跡サーバ410によって取得されたデータに基づいて、追跡サーバ410は、患者ステータス456を決定することができる。この患者ステータスは、追跡サーバ410と直接インタラクションすることによって、経時的に患者の患者ステータス更新モデル454を使用して更新することができる。いくつかの実施形態においては、敗血症、並びに、異常な及び/又は制御不能な宿主反応について診断および治療される異なる段階を通して患者のワークフローを追跡するために、患者ステータス456のオプションが使用され得る。
【0040】
追跡サーバ410は、患者に関する最新の情報をフェッチするために、EMRサーバ420に対してより多くのEMRサーバ要求458を定期的に送信するように構成され得る。この要求は、EMRサーバ420への元の要求(例えば、患者ID442)において取り出されたものと同様の種類の情報を取り出すことができる。
【0041】
追加的または代替的に、追跡サーバ410は、最新の緊急度スコア、予後値、リスクカテゴリ、もしあれば治療ガイダンス、準備完了フラグ、これらの出力に使用されるパラメータ、および、各パラメータの影響スコアをフェッチするために照合サーバ430に対してより多くの照合サーバ要求460を定期的に送信するように構成され得る。例えば、新しい情報がEMRサーバ420からフェッチされた場合に、これは、照合サーバ430から受信した情報を変更する。
【0042】
ここにおいて説明される情報は、各患者について追跡サーバ410によって集約され、そして、保管されてよく、容易な消費のためにダッシュボードグラフィカルユーザインターフェイス上で利用可能であり得る。
【0043】
いくつかの実施形態において、患者は、病院から退院するか(例えば、ダッシュボードGUIからの患者除去462)、死亡するか、または、24時間を超えてダッシュボードグラフィカルユーザインターフェイス上に存在したかのいずれかまで、ダッシュボードグラフィカルユーザインターフェイス上に留まり得る。その時点で、患者は、ダッシュボードグラフィカルユーザインターフェイスから除去されてよく、その結果、重要な関連情報のみがダッシュボードグラフィカルユーザインターフェイス上に存在する。
【0044】
図5は、開示される実施形態に従った、EMRへの認証のための一つの例示的なプロセスフロー500を示している。プロセスフロー500は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。
【0045】
追跡サーバ410は、ダッシュボードグラフィカルユーザインターフェイスを含むウェブサイトをホストすることができる。様々な実施形態において、ユーザは、ウェブサイトを通じてダッシュボードにアクセスすることができ、そして、認証される必要があり得る。様々な実施形態において、認証は、EMRサーバ420を用いたOAuth2.0プロトコルを使用して、生じ得る。
【0046】
様々な実施形態において、ユーザは、追跡サーバ410へのログインを試み、そして、その後で、EMRサーバ420へのログイン502にリダイレクトされ得る。ログインが成功し、そして、ユーザが追跡サーバ410へのアクセスを許可する場合には、様々な実施形態に従って、ユーザは、FHIR(Fast Healthcare Interoperability Resources)アクセストークン504と共に追跡サーバ410へ戻りリダイレクトされる。アクセストークンは、追跡サーバ410において保管され得る。いくつかの実施形態において、保管されたトークンは、将来のログイン試行中に追跡サーバ410におけるユーザを認証および認可し、そして、EMRサーバ420上の情報に対するアクセスを可能にするために使用され得る。EMRサーバ420上の情報に対するアクセスは、いくつかの実施形態において、FHIR(Fast Healthcare Interoperability Resources)API(Application Programming Interface)を使用することによって生じ得る。
【0047】
図6は、開示される実施形態に従った、(例えば、ダッシュボードGUI上に表示するための)EMRにおける調節不全(dysregulated)の宿主反応ウィンドウを生成するための一つの例示的なサーバ方法600に係るフローチャートを示している。方法600は、様々な実施形態に従って、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。
【0048】
追跡サーバ410は、認証602のために使用されるエンドポイント604のグループを保管することができる。様々な実施形態において、エンドポイント604は、ユーザがOAuth2.0プロトコルを介してEMRサーバ420にログインできるようにすることをサポートすることができる。エンドポイント604は、OAuth2.0フローを使用してユーザがログインに成功した後で、セッション情報を保管することをサポートすることができる。エンドポイント604は、また、セッションを検索すること、および、セッションを削除するログアウトもサポートし得る。セッションデータは、認証層608に保管することができる。
【0049】
追跡サーバ410は、オンボーディング目的のために、(例えば、患者フェッチモジュール612を使用して)患者情報をフェッチし、そして、(例えば、患者情報受信モジュール614を使用して)患者情報を検索するための機能についてエンドポイント604のグループを含むことができる。オンボーディングは、また、患者を登録すること、基本的な患者情報(例えば、年齢、性別、等)を収集すること、並びに、健康関連情報を収集および保管することを含むこともできる。患者情報は、患者更新モジュール616を使用して更新することができる。患者関連のデータは、オンボーディング及び/又は更新のために、ここにおいて説明されるクライアントデバイスのいずれかを使用して収集され得る。患者データは、様々な実施形態において、保存モジュール611を使用して保存され得る。
【0050】
エンドポイント605は、最初に、ユーザが認証され、かつ、そのエンドポイントにアクセスする権限を与えられていることを検証する、認証層608を通過する。エンドポイント604は、また、様々な実施形態に従って、ダッシュボードグラフィカルユーザインターフェイス上に示すために患者のリストをフェッチすること、ダッシュボードグラフィカルユーザインターフェイス上で患者に関する詳細を得ること、ダッシュボードグラフィカルユーザインターフェイス上で新しい患者を登録すること、及び/又は、ダッシュボードグラフィカルユーザインターフェイス上で患者のステータスを更新することもサポートし得る。
【0051】
追跡サーバ410は、緊急度スコア、予後値、リスクカテゴリ、もしあれば治療ガイダンス、準備完了フラグ、これらの出力に使用されるパラメータ、各パラメータの影響スコア、および予後値、のような情報を取り出すように、照合サーバ430に対して要求を行うことができる。この情報は、データベース610に保管され得る。
【0052】
追跡サーバ410は、EMRサーバ420に対して、患者および病院での患者の滞在に関する基本情報(患者の名前、一次ケア提供者、アレルギーのリスト、血液培養がオーダーされたか否か)、および、刺激に起因する異常な、及び/又は、制御不能な宿主反応に関連するパラメータの任意の組み合わせ、これらに限定されるわけではないが、バイタル測定値、人口統計値、臨床検査結果、血液バイオマーカー、尿バイオマーカー、唾液バイオマーカー、患者共存症、といったものを取り出すように要求することができる。この情報は、データベース610に保管され得る。
【0053】
定期的に(例えば、タイミングシステム606を使用して)、追跡サーバ410は、患者更新モジュール616を自動的に実行することができる。それは、EMRサーバ420および照合サーバ430から情報を再フェッチし、そして、この情報をデータベース610に保管するものである。このことは、ダッシュボードグラフィカルユーザインターフェイス上に表示するために患者情報によって取り出された情報が最新であることを保証する。
【0054】
図7は、開示される実施形態に従った、患者の反応(例えば、反応の非限定的な実施例は、調節不全を含む)の確率を判定するための機械学習モデルを訓練および検証するための例示的な方法700に係るフローチャートを図示している。方法700は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。様々な実施形態において、機械学習モデルは、緊急度スコアを決定することができる。様々な実施形態において、機械学習モデルは予後値を決定することができる。
【0055】
データベース702は、過去の患者データを含み、これらに限定されるわけではないが、バイタル測定値、人口統計情報、検査結果、共存症、請求コード、医師ノート、介入、投与された薬剤、患者アウトカム(patient outcome)、治療の金銭的コスト、および血液、血漿、血清、尿といった様々なサンプルマトリックスからのバイオマーカー測定値、等を含んでいる。データは、患者が治療されていたときに測定されたバイオマーカー測定値を含み得るだけでなく、バイオバンクされた試料に対して遡及的に実行された測定値も含むことができる。例えば、日常的な実験室試験のために採取された血漿試料の廃棄物が、処理および凍結され、輸送され、そして、超低温冷凍庫において保存され得る。これらの試料は数ヶ月後に解凍することができ、そして、これらの試料からバイオマーカー測定を実行することができた。元の採血のタイムスタンプを使用して、このバイオマーカーデータは、次いで、過去の時点における患者の健康状態の表現として使用され得る。データベース702を使用して、所定の時点までのパラメータ704を抽出することができる。パラメータ抽出706は、正規化、キュレーション、インピュテーション、および他の方法の組み合わせであり得る。
【0056】
データベース702は、また、データベース702から関連する患者データの一部または全部を利用する、調節不全宿主反応ラベル716を生成するためにも利用され得る。例えば、非敗血症または敗血症の各患者についてのラベルは、感染に起因する制御不能な宿主反応によって引き起こされる生命を脅かす臓器機能不全として定義され得るものであり、検査結果、医師のノート、および投与された薬剤の組み合わせを使用して導出され得る。ラベル716を使用して、機械学習モデルは、抽出された様々な入力パラメータおよびデータセット702から定義されたラベルを使用してモデルトレーニング708を受けた後に、トレーニングされ得る。機械学習モデルは、ロジスティック回帰(regression)またはサポートベクトルマシンといった線形モデル、もしくは、ランダムフォレストまたはXGBoostモデルといった非線形モデルを含むことができる。この訓練プロセスの出力は、パラメータを入力し、そして、調節不全宿主反応ラベル716について将来の患者が陽性である確率を出力することができる、最終的な機械学習モデル(例えば、ラベル確率のモデル710)であり得る。この固定モデルは、患者のフレッシュバッシュ(fresh bash)を使用して評価することができ、モデルを調整することができ、最終的なモデルが実現されるまで再訓練することができる。
【0057】
様々な実施形態において、確定された機械学習モデルは、モデル評価712(例えば、検証)を受け得る。様々な実施形態において、患者データの第1セットが、機械学習モデルを訓練するために使用され得る(例えば、モデル訓練:ラベル確率708)。様々な実施形態においては、患者データの第2セットが、機械学習モデル(例えば、モデル評価712)を検証するために使用され得る。
【0058】
図8は、様々な実施形態に従った、調節不全宿主反応のサブタイプに相関するラベルを使用して機械学習モデルを訓練するための一つの例示的な方法800に係るフローチャートを示している。方法800は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。
【0059】
代替的に、または、方法700のアプローチと組み合わせて、方法800は、調節不全宿主反応716のラベルを導出することを含み得る。様々な実施形態において、パラメータ選択802は、ユーザ定義パラメータ選択及び/又は機械学習導出方法を伴うことができる。様々な実施形態においては、一部または全ての利用可能な患者データ804を使用して導出された調節不全宿主反応による患者ラベル分類のための教師なし方法を使用することが、調節不全宿主反応806に対応するラベルの代替コレクションを定義するために利用され得る。例えば、教師なしクラスタリング技法は、バイオマーカー測定値、バイタル、検査といった、一連のパラメータを入力することを含んでよく、そして、いくつかの実施形態において、人口統計情報は、感染に起因する異なる調節不全宿主反応の10個のクラスタを生成し得る。各サブタイプは、患者に対して異なるセットの予後関連性を有し、そして、各サブタイプの患者は、異なる治療計画からの利益を受け得る。調節不全宿主反応806に対応するラベルのコレクションが、教師なし機械学習または統計技法を使用して定義された後で、ラベルは、方法700において説明されたものと同様の様式で機械学習モデル(例えば、ラベル確率のモデル710)を訓練するために使用され得る。
【0060】
図9は、様々な実施形態に従った、緊急度スコアを決定するための一つの例示的な方法900に係るフローチャートを示している。様々な実施形態において、方法900は、1つ以上の予後値を決定することを含み得る。方法900は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つまたはクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。
【0061】
様々な実施形態においては、一旦、ラベル確率の機械学習モデル710が確定されると、調節不全宿主反応ラベル716を有する将来の生きた(live)患者の確率を計算するために機械学習モデルを使用することができる。様々な実施形態においては、計算を実行するために照合サーバ430を使用することができる。照合サーバ430は、所定の時点までの関連入力パラメータ(例えば、時点902までの新しい生きた患者パラメータ)、新しい生きた患者について、パラメータ704のいくつかのサブセットを収集することができる。パラメータ抽出904が、パラメータ抽出706と同様に、パラメータをラベル確率の固定モデル710および906に渡すために、これらのパラメータに対して実行することができる。様々な実施形態に従って、このモデルに入力された抽出されたパラメータを使用して、調節不全宿主反応716を示す新しい生きた患者の確率の出力を生成することができる。確率は、確率自体908として利用することができ、または、スコアを生成するために単純な変換を実行することもできる。例えば、過去の患者に関するラベルの尤度(likelihood)のパーセンタイル(percentile)を生成するために、新しい生きた患者からの確率を過去の患者の確率と比較することができ、結果として、常に0番から100番の間のパーセンタイルの緊急度スコア908を生じている。
【0062】
図10は、様々な実施形態に従った、ユーザによって選択された基準集団に関して、パラメータ毎に、患者のパラメータ(例えば、クリティカルパラメータ)を識別し、かつ、表示するための一つの例示的な方法1000に係るフローチャートを示している。方法1000は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。様々な実施形態において、システムは、1つ以上のステップにおいて方法1000を実行することができる。様々な実施形態において、システム1000は、パラメータ分析モジュール1010を備えてよく、そして、パラメータ分析モジュール1010は、種々のプロセス(例えば、1012、1014、1015、1016、1018、1020、または1022)を含むことができる。
【0063】
医師または他の医療専門家といったユーザによって定義することができるターゲット集団1002、または、事前設定されたターゲット集団を使用して、調節不全宿主反応の多くの関連パラメータを含む患者データ完全履歴1004の包括的データベースから(いくつかの実施形態では、データベースが部分履歴を含むことに留意すること)、患者のサブセットを選択することができる。ターゲット集団1002は、単純なドロップダウンメニューを用いてユーザによって、ダッシュボードGUIの患者選択モジュール1007を使用して選択することができる。ターゲット集団は、単一のパラメータ(年齢、一次ステータス、単一の検査測定値、等といったもの)、または、多くのパラメータの組み合わせを用いて定義される、患者の多くの異なる組み合わせを含み得る。ターゲット集団は、また、多くの潜在的に重要な入力パラメータを組み込む、教師なし機械学習技法を使用して定義されたクラスタリング分析または密度マップといった、より高度な技法を用いて定義されてもよい。
【0064】
所与の機械学習モデルに関連する各パラメータについて、パラメータは、新しい生きた患者について生成されたパラメータの集合(例えば、時点1006までの新しい(生きた)患者パラメータ)から選択され得る。パラメータの値は、次いで、個々の患者対基準患者1012の一次元統計的距離メトリックを使用して、ターゲット集団1002内の患者の基準パラメータと比較することができる。値への変換は、この一次元統計的距離メトリックを計算する前に実行することができる。例えば、パラメータについてzスコアを計算することができ、そして、生の(raw)測定値の代わりに、このzスコアを用いて一次元統計的距離メトリックを入力することができる。計算された距離が事前設定された距離閾値1014よりも大きい場合には、特定の新たな生きた患者のパラメータが異常であるとみなすことができる(例えば、クリティカルパラメータ1018)。距離が事前設定された距離閾値1014よりも大きくない場合には、特定の新しい生きた患者のパラメータを、正常パラメータ1016とみなすことができる。
【0065】
様々な実施形態において、方法1000は、基準患者対個々の患者1015の距離のヒストグラム分布を生成することができる。
【0066】
いくつかの実施形態において、この特定の新しい生きた患者について観察されたパラメータと、ターゲット集団1002におけるパラメータの分布との間の関係が決定されたとき、ターゲット集団1002におけるパラメータの分布、および、個々の患者のパラメータ測定値がその分布内にある場所を示すヒストグラム1020を生成することができる。ヒストグラムは、二次元密度プロット1020、または、カラーバーチャートのいずれかであり得る。このヒストグラムは、パラメータ名、そのパラメータの関連タイムスタンプ、生の値、および、他の参照記号と共に、グラフィカルユーザインターフェイスにおいて表示され得る。ダッシュボードGUIにおけるこのパラメータライン1022は、医師または他の医療専門家によって使用され、パラメータの値、および、関連するターゲット集団1002と比較して、特定の新しい生きた患者にとってパラメータがどの程度重要であるか、を迅速に評価することができる。例えば、特定の時間における彼らの75歳の患者の白血球の数が、その数を一般的な広範な集団と比較する代わりに、70-80歳である2000人の過去の患者の分布とどのように比較するかを知ることは、医師にとって非常に有益であり得る。グラフィカルユーザインターフェイスにおけるこのパラメータライン1022は、従って、医療専門家ユーザについて、患者のステータスへのより良い洞察および直感を提供するために重要であり得る。
【0067】
図11は、種々の実施形態に従った、ユーザによって選択された基準集団に関して集約ベースでパラメータ(例えば、クリティカルパラメータ)を識別し、かつ、表示するための例示的な方法1100に係るフローチャートを図示している。
【0068】
本方法は、開示される実施形態に従って、多次元統計的技法を使用して、ユーザによって選択された基準集団に関するクリティカルパラメータを表示する。方法1100は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。
【0069】
様々な実施形態に従って、方法1100は、ターゲットヒストグラムを生成するために、ただ1つのパラメータの代わりに、多くのパラメータを一度に使用することを説明する。この場合、時点1102までのいくつかのパラメータが、新しい生きた患者に対して生成され得る。これらのいくつかのパラメータは、多次元統計的距離メトリック1104を構築するために、方法1000と同じ様式で選択される、ターゲット集団1002からの同じパラメータと組み合わされ得る。このメトリック1104は、マハラノビス(Mahalanobis)距離または他の統計的方法といった統計的技法を使用して構築され、新しい生きた患者のパラメータ値のコレクションと、過去のターゲット集団からのパラメータ値の同じコレクションとの間の関係を表す単一の値を生成することができる。パラメータの過去のコレクションの分布は、ヒストグラムまたは密度プロット1020としてプロットされ、そして、方法1000について説明されたように、パラメータライン1020において表示され得る。
【0070】
図12Aおよび
図12Bは、様々な実施形態に従った、機械学習モデルによって使用されるパラメータのタイムテーブル(例えば、1220a、1220bなどを参照のこと)を生成するための一つの例示的な方法1200に係るフローチャートを示している。方法1200は、様々な実施形態に従って、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的にシステム1210上で実行され得る。パラメータおよび時間1214データは、ここにおいて説明される1つ以上のデータベース上に保管され得る。
【0071】
いくつかの実施形態に従って、ダッシュボードGUIにおいて表示される各パラメータについて、最新のパラメータ値1212を取り込む(grab)ためのEMRからのフェッチが実行され得る。パラメータは、1つ以上のアクティビティについて対応するタイムスタンプと共に使用される。アクティビティの非限定的な例は、様々な実施形態に従って、オーダーの時間、収集の時間、結果完了の時間を含み、そして、他の関連するアクティビティが保管され得る。構成可能待ち時間(wait configurable time)1216は、フェッチされているパラメータについて待ち時間を表示する。パラメータおよびそれらの対応するタイムスタンプは、グラフィカルユーザインターフェイスディスプレイ1220内に表示されてよく、多くのパラメータ情報1220(例えば、パラメータ(Parameter)、値(Value)、収集時間(Collection Time)、及び/又は、結果時間(Result time))を含んでいる。
【0072】
図13は、様々な実施形態に従った、ダッシュボードGUI上に表示される要約ステータスインジケータ1346aを伴う、一つの例示的なタイマ生成および動作方法に係るフローチャートを図示すしている。
【0073】
方法1300は、様々な実施形態に従った、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって少なくとも部分的に実行され得る。ステップフェッチ患者時間ゼロ(例えば、トリアージ)1302は、種々の実施形態に従って、開始時間(例えば、トリアージの時間または救急治療部に入る時間)をフェッチすることを含み得る。
【0074】
様々な実施形態において、ステップ1310のサブステップのうち1つ以上が、各治療に対して行われ得る。様々な実施形態において、ステップ1310は、バンドル1312内の患者治療をフェッチするステップを含み得る。
【0075】
様々な実施形態において、本方法は、1つ以上のタイマを組み込むことができる。これは、治療タイマ1332の開始として機能するポイントである。これらのタイマは、設定トリアージタイマ、治療順序タイマ1322(例えば、各治療について)、および、治療施行タイマ(例えば、各治療について)のうち1つ以上を含み得る。治療に係る事前に定義されたバンドルにおける各治療に対して、治療が未だにオーダーされているか否かを確認するために、検査(check)1314を実行することができる。治療がオーダーされていない場合には、治療オーダータイマが更新される(1316)。治療がオーダーされてきた場合に、治療は、オーダー通りに識別され、そし、治療オーダータイマが停止されてよい。加えて、検査1318は、治療が提供されたか否かを見るために実行され得る。治療が施行されていない場合には、治療施行タイマ1320の更新が行われ得る。治療が施行された場合に、治療は、施されたものとして識別され、そして、治療施行タイマが停止される(1324)。
【0076】
事前に指定されたバンドル内の関連する治療について、治療オーダータイマおよび治療管理タイマを照合する(collating)ことによって、バンドル1348内の治療の完了をチェックするための評価が定期的に実行される。治療が完了していない場合には、医療チームが事前設定されたプロトコルに違反するまでの残り時間を表示するタイマが、ダッシュボードGUI上のボックス1342に表示され得る。例えば、メディケアおよびメディケイドサービス(Medicare and Medicaid、CMS)のためのSep-3センターによって定義されたセプシスバンドルの要素が完了していない場合には、違反する前にこれらの項目を完了するために残された時間が、3または6時間からのカウントダウンとして表示され得る。加えて、時間ゼロからの時間がGUIのボックス1342に表示され得る。最後に、病院のワークフローにおける治療のステータスをチェックするために、治療順序および治療管理タイマを使用することができる。このステータスは、治療の順序1350の評価、治療の承認1352、及び/又は、治療の施行1354のために、GUI内のチェックマーク、アラート記号、または「X」マークの組み合わせを使用して表示され得る。様々な実施形態に従って、このステータスの要約1346aをGUIのボックス1342に表示することができる。様々な実施形態に従って、トリアージからカウントダウンするタイマがボックス1342に表示され得る。複数の時点(例えば、治療順序、薬局承認、投与、および、治療完了に対する時点)を含むタイマが、種々の実施形態に含まれ得る。様々な実施形態に従って、1つ以上の要約ステータスインジケータがダッシュボードGUI上に表示され得る。
【0077】
図14Aは、種々の実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータ重要性を識別および表示するための一つの例示的な方法1400に係るフローチャートを図示している。方法1400は、ネットワークを通じて結合されたサーバまたはクライアントデバイスのうち任意の1つ(例えば、サーバ130のうち任意の1つおよびクライアントデバイス110のうち任意の1つ、並びに、ネットワーク150)によって、少なくとも部分的に実行され得る。
【0078】
様々な実施形態に従って、方法700または800を使用して、ラベル確率710モデルの機械学習モデルが特定され得る。機械学習モデル(例えば、ラベル確率710のモデル)に一致する、パラメータ重要性のモデル1402が選択され得る。モデル1402は、グローバルレベルで選択されてよく、これは、様々な実施形態に従って、パラメータ重要性値の1つのセットが所与のモデルについて決定され得ることを意味している。例えば、宿主反応(例えば、宿主反応の異常)を評価するモデルについて、インターロイキン-6(interleulin-6)は、最も高いパラメータ重要性を有してよく、一般的に患者について、グローバルレベルで、プロカルシトニン、白血球数、および体温がそれに続く。パラメータ重要性モデル1402は、様々な実施形態に従って、ロジスティック回帰またはサポートベクトルマシンといった線形機械学習モデルの係数に基づくか、または、ランダムフォレストといった機械モデルにおけるツリー重要性に基づくか、もしくは、他の一般的に使用される機械学習モデルのパラメータ重要性を評価するために使用される技法に基づくことができる。
【0079】
選択されたパラメータ重要性モデル1402を用いて、時点902までの新しい生きた患者パラメータについてある時点までのパラメータが生成され得る。パラメータ抽出904の後で、値のこのセットは、重要性方法(importance method)1404に渡される。この重要性方法は、少なくとも2つの入力、すなわち、(1)グローバルモデル1402パラメータ重要性、および、(2)単一の時点における単一の患者についての入力抽出パラメータ値のセットを組み込む。これらの入力を使用して、重要性方法1404は、この時点で、かつ、ローカルレベルで、特定の患者の各パラメータに対する影響スコア1410を生成する。これは、同じ機械学習モデルであっても、異なる入力パラメータを有する2人の異なる患者について非常に異なり得る。例えば、宿主反応(例えば、異常な宿主反応)のモデルに対するグローバルパラメータ重要性は、最高から最低まで、インターロイキン-6、プロカルシトニン、白血球数、および、体温としてランキングされ得る。非常に高い体温であるが正常なインターロイキン-6を有する患者1について、重要性方法1404は、この患者についてのローカルレベルでパラメータを、体温、プロカルシトニン、インターロイキン-6、続いて白血球数として、最高から最低までランキングする影響スコア1410を生成し得る。対照的に、非常に異常なインターロイキン-6値および正常な他の値を有する患者2については、同じ機械学習モデルを使用しているが、重要性方法1404は、インターロイキン-6、体温、白血球数、およびプロカルシトニンとして、ローカルレベルでパラメータをランキングする影響スコア1410を生成し得る。
【0080】
重要性方法1404は、モデルに対するグローバルパラメータ重要性、および、特定の時点で特定の患者について観察された入力パラメータそれぞれの異常のレベルの両方を組み込む単純な計算を含み得る。例えば、データベース702内の過去の患者の全てまたはサブセットに関する特定の観察されたパラメータのzスコアは、グローバルパラメータ重要性の定量的尺度によって単純に乗算され得る。そして、この値は、ローカルレベルで重要性によってパラメータをランキングするために、パラメータ1406毎の影響スコアとして使用され得る。代替的に、マハラノビス距離またはシェイプリ加法的説明(Shapley Additive Explanation)技法といった、より高度な方法が、パラメータ毎の影響スコア1406を生成するために使用され得る。しかしながら、重要性方法1404の出力は、ラベル確率モデル710への入力として使用される各パラメータに対して生成され得る、パラメータ影響スコア1406である必要がある。
【0081】
様々な実施形態に従って、パラメータ毎の影響スコア1406が特定の観察のための各パラメータについて生成された後で、パラメータ毎の影響スコア1406のランキングが実行され得る。ランキングの後で、パラメータは、所与の患者についてのパラメータ重要性減少または増加の順序で、多くのパラメータ行(lines)を有する要約ボックス1414aにおける最終GUIに表示され得る。
【0082】
図14Bは、様々な実施形態に従った、例えば、
図14Aに示されるような方法に基づいた影響のランキングによってパラメータを表示する要約ボックス(summary box)を図示している。例えば、要約ボックス1414bは、種々の実施形態に従って、ここにおいて説明されるような敗血症のリスクを増加させるパラメータのリストを含み得る。様々な実施形態において、相対的な重大度(severity)は、要約ボックス1414bにおいてバー形式で表示され得る。様々な実施形態において、パラメータは、ここにおいて説明されるように、関連付けられた値および収集時間に加えて表示され得る。
【0083】
要約ボックス1414bは、機械学習モデルの出力(例えば、緊急度スコア及び/又は予後値)がどのように計算されたかについての直感および洞察をGUIの医療専門家ユーザに提供するためのものであり得る。様々な場合において、パラメータは、リスクスケール(例えば、緊急度スコアにおける所与のパラメータの相対的な影響のグラフ表示)に関連付けられ得る。これは、全体的なモデルにおける信頼、および、その情報に基づいて医療専門家が行動する、機会を増加させ得る。加えて、ユーザがこの重要性の定量的評価を見たい場合には、GUI上の各パラメータ1406の影響スコアを記述する記号または数字をサイドパネル1412に含めることができる。明確にするために、要約ボックス1414a、1414bに表示される順序は、その特定の観察について出力されたパラメータ1406毎の影響スコアに応じて、各時点における各特定の患者観察に対して変化し得る。
【0084】
図15Aは、開示される実施形態に従った、
図14Bに見られるパラメータ情報、および、追加情報(例えば、緊急度スコア、緊急度インジケータ、予後値、および予後インジケータ)を含む上部パネルを含んでいる、制御不能な宿主反応モニタリングのための一つの例示的ダッシュボードGUI1500aを図示している。
図15Bは、様々な実施形態に従った、制御不能な宿主反応モニタリングのための別の例示的なダッシュボードGUI1500bを図示している。
図15Cは、様々な実施形態に従った、制御不能な宿主反応モニタリングのための例示的なダッシュボードGUI1500cを図示している。様々な実施形態において、
図15A、15B、および15Cの例示的なダッシュボードは、種々の実施形態に従った、スコアパネルまたはスコアダッシュボードGUIを含み得る。いくつかの実施形態において、ダッシュボードGUI(例えば、1500a、1500b、1500c、等を参照のこと)は、クライアントデバイス110によって表示され得る。他の実施形態において、ダッシュボードGUI(例えば、1500a、1500b、1500c、等を参照のこと)は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI(例えば、1500a、1500b、1500c、等を参照のこと)は、クライアントデバイス110またはサーバ130におけるAPIを通して構成され、かつ、伝送され得る。ダッシュボードGUI(例えば、1500a、1500b、1500c、等を参照のこと)は、緊急度スコア(例えば、
図15Bに示される45%)を示す緊急度スコアインジケータ(例えば、1502a、1502b、1502c、等を参照のこと)を含み得る。様々な実施形態において、スコアは、機械学習モデルの出力である。様々な実施形態において、ダッシュボードGUIは、緊急度スコア1503b、1503cに対する緊急度インジケータを表示し得る。
【0085】
様々な実施形態において、ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、予後値(例えば、有害イベントが発生する確率-5%、10%、等)に関連付けられた1つ以上のリスクカテゴリ(例えば、ICU治療カテゴリ、昇圧剤投与カテゴリ、機械的換気カテゴリ、または、患者に対する可能な治療)のリスト1501b、1501cを含み得る。様々な実施形態において、1つ以上の予後値の各リスクカテゴリは、パーセンテージおよびテキストを含む行によってリスト1501b、1501cにおいて示され得る。種々の実施形態において、テキストは、パーセンテージ(例えば、予後値)および有害イベントの説明を含むことができる。様々な実施形態において、ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、予後値の各リスクカテゴリに対する治療またはアクションを表示し得る。様々な実施形態において、ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、予後値の各リスクカテゴリに対する可能性のあるアウトカムを表示し得る。様々な実施形態において、ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、患者が敗血症を有する可能性(例えば、緊急度スコア1502a、1502b、1502c)を表示し得る。様々な実施形態において、リスクカテゴリは、予後値または緊急度スコアによって決定され得る。種々の実施形態において、機械学習モデルは、緊急度スコアまたは予後値に関連付けられたリスクカテゴリを選択し得る。様々な実施形態において、ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、この出力および潜在的な推奨介入(intervention)(例えば、ICUへのエスカレーション、昇圧剤投与、腎代替療法、長期在院日数、または、機械的人工呼吸)の概要を表示し得る。パラメータ要約ボックス(例えば、1510a、1510b、1510c、等を参照のこと)は、1つ以上のタイマーボックス(例えば、1516、1518、等を参照のこと)、及び/又は、治療ワークフローボックス(例えば、1520、等を参照のこと)を表示し得る。ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、また、患者が基準データセット内のそのカテゴリに分類される頻度に従ってサイズ化された、水平バーにおけるリスクカテゴリのグラフィカル表現を含み得る。ダッシュボードGUI(例えば、1500b、1500c、等を参照のこと)は、様々な実施形態に従って、リスク群内の平均的な患者に対する有害イベントの可能性を表している、リスク群に関連付けられた予後値を表示し得る。パラメータ要約ボックス(例えば、1510a、1510b、1510c、等を参照のこと)は、方法1400に従って影響スコアランキングを使用して順番に潜在的に表示され、個々のパラメータ影響スコアの付随するグラフィカル表現と共に潜在的に表示される、多くのパラメータラインを含み得る。パラメータ要約ボックス(例えば、1510a、1510b、1510c、等を参照のこと)は、また、パラメータインジケータ(例えば、1504a、1504b、1504c、等を参照のこと)を含み得る。収集時間インジケータ(例えば、1506a、1506b、1506c、等を参照のこと)は、サンプルの収集時間を表示し得る。様々な実施形態においては、表示されたパラメータに対する結果の時間インジケータ(例えば、1508a、1508c、等を参照のこと)。様々な実施形態において、値インジケータ(例えば、1504a、1504b、1504c、等を参照のこと)は、パラメータの値を表示し得る。いくつかの実施形態において、色または2次元ヒストグラム1512は、ある範囲の値であり得る。いくつかの実施形態において、ヒストグラム1512は、いくつかの実施形態に従って、ターゲット集団からの過去の患者のパラメータの分布の概要、並びに、特定の患者のパラメータ値がその分布のどこにあるか、を提供し得る。タイマーボックス(例えば、1516、1518、等を参照のこと)は、規制または償還規則(reimbursement)に違反する前にどれだけの時間が残っているか、及び/又は、重要な基準時間から経過した時間を医療専門家に示すことができる、タイマーを含む。最終的に、所望の介入または投薬のステータスは、治療ワークフローボックス(例えば、1520を参照のこと)のための一連のラインおよびステータスシンボル内に表示され得る。
【0086】
図16は、様々な実施形態に従った、制御不能な(dysregulated)宿主反応モニタリングのための第2の例示的なダッシュボードGUI1600を図示している。いくつかの実施形態において、ダッシュボードGUI1600は、クライアントデバイス110によって表示され得る。他の実施形態において、ダッシュボードGUI1600は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI1600は、クライアントデバイス110またはサーバ130におけるAPIを通して構成および伝送され得る。ダッシュボードGUI1600は、ダッシュボードGUIの要素(例えば、1500a、1500b、1500c、等を参照のこと)、または、ここにおいて説明される任意の他のダッシュボードを含み得る。様々な実施形態において、ダッシュボードGUI1600は、関心のある患者の要約ボックス1610を表示し得る。要約ボックス1610は、薬剤師、敗血症コーディネータ、または、関心のある各患者に関連付けられた他の医療専門家を表示し得る。ダッシュボードGUIの要素(例えば、1500a、1500b、1500c、等を参照のこと)は、要約ボックス1610にリストされた患者それぞれについて表示され得る。要約ボックス1610は、被験者の位置1612、被験者の名前1614、被験者の性別1616、被験者の年齢1618、被験者を担当する主治医1620、被験者を担当する担当看護師1622、機械学習モデルの出力の緊急度スコア1602に関する情報を表示し得る。様々な実施形態において、マーケット(market)は、ダッシュボードGUI1600上に提示され得る、1つ以上の色、陰影付け(shading)、テキスト、強調表示(highlighting)、または、何らかの他の既知の表示方法を含み得る。様々な実施形態に従った、重要度基準点(例えば、収集時間、結果時間、手術時間、など)からの時間1626。ダッシュボードGUI1600は、望ましい治療のワークフローステータス1628を表示し得る。要約ボックス1610は、様々な実施形態に従って、医療専門家が関心のある患者を追跡し、そして、悪化のリスクが最も高い患者に迅速に優先順位を付けることを可能にし得る。
【0087】
図17A、17B、17C、17D、17E、17F、17G、17H、17I、および17Jは、それぞれ、様々な実施形態に従った、一つの例示的なダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)またはその一部を示している。
【0088】
図17Aは、様々な実施形態に従った、ブラウザインターフェイスにおいて高緊急度(High Acuity)スコアを提示する一つの例示的なダッシュボードGUI 1700aを示している。
【0089】
図17Bは、様々な実施形態に従った、ブラウザインターフェイスにおいて中緊急度(Medium Acuity)スコアを提示する一つの例示的ダッシュボードGUI 1700bを示している。
【0090】
図17Cは、様々な実施形態に従った、ブラウザインターフェイスにおいて低緊急度(Low Acuity)スコアを提示する一つの例示的なダッシュボードGUI 1700cを示している。
【0091】
図17Dは、様々な実施形態に従った、低リスク緊急度インジケータに関連付けられた緊急度スコア、並びに、予後値を示す3つのリスクカテゴリ(Risk Category)を提示する一つの例示的なダッシュボードGUI 1700dを示している。
【0092】
図17Eは、様々な実施形態に従った、中リスク緊急度インジケータに関連付けられた緊急度スコア、並びに、予後値を示す3つのリスクカテゴリ(Risk Category)を提示する一つの例示的なダッシュボードGUI 1700eを示している。
【0093】
図17Fは、様々な実施形態に従った、結果保留(Result Pending)インジケータを提示する一つの例示的なダッシュボードGUI 1700fを示している。様々な実施形態において、アルゴリズムは、緊急度スコアを生成するのに十分な情報を有していないことがある。そうした実施形態において、結果が依然として保留中であることを示すインジケータが、ダッシュボードGUI 1700f上に表示され得る。
【0094】
図17Gは、様々な実施形態に従った、インジケータ無しの結果を提示する一つの例示的なダッシュボードGUI 1700gを示している。様々な実施形態において、アルゴリズムは、緊急度スコアを生成するのに十分な情報を有していないことがある。そうした実施形態において、結果がない(No Result)ことを示すインジケータが、ダッシュボードGUI 1700f上に表示され得る。
【0095】
図17Iは、種々の実施形態に従った、高リスク(High Risk)緊急度インジケータに関連付けられた緊急度スコア、並びに、予後値を示す3つのリスクカテゴリ(Risk Category)を提示する一つの例示的なダッシュボードGUI 1700iを示している。
【0096】
図17Jは、様々な実施形態に従った、超高リスク(Very High Risk)の緊急度インジケータ(acuity indicator)に関連付けられた緊急度スコア、並びに、予後値を示す3つのリスクカテゴリ(Risk Category)を提示する一つの例示的なダッシュボードGUI1700jを示している。いくつかの場合において、緊急度スコアは、1つ以上の予後値に相関し得る(例えば、1つ以上の予後値が高い場合に、緊急度スコアも、また、高い)。
【0097】
様々な実施形態において、ユーザデバイス上でモニタリングするために、制御不能な宿主反応の1つ以上の異なるリスクカテゴリを有する患者のためのダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)が、表示され得る。いくつかの実施形態において、ダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)は、クライアントデバイス110上に表示され得る。他の実施形態において、ダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)は、クライアントデバイス110またはサーバ130内のAPIを通して構成され、そして、伝送され得る。様々な実施形態に従って、ダッシュボードGUI(例えば、1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i、1700j、等を参照のこと)は、高緊急度リスクスコア(例えば、敗血症を有し、または、発症する可能性のパーセンテージ)を有する患者についてのインジケータを表示し得る。ダッシュボードGUI 1700bは、中緊急度リスクスコア(例えば、敗血症に罹患する可能性のパーセンテージ)を有する患者についてのインジケータを表示し得る。様々な実施形態において、ダッシュボードGUI 1700cは、様々な実施形態に従った、低緊急度リスクスコア(例えば、敗血症に罹患する可能性の割合)を有する患者についての表示インジケータを表示する。様々な実施形態において、ダッシュボードGUI 1700dは、様々な実施形態に従った、低リスクカテゴリ(Low Risk Category)を有する患者についてのインジケータを表示する。様々な実施形態において、ダッシュボードGUI 1700eは、様々な実施形態に従った、中リスクカテゴリ(Medium Risk Category)の患者についてのインジケータを表示する。様々な実施形態において、ダッシュボードGUI 1700iは、様々な実施形態に従った、高リスクカテゴリ(High Risk Category)の患者に対するインジケータを表示する。様々な実施形態において、ダッシュボードGUI 1700fは、様々な実施形態に従った、中リスクカテゴリの患者に対するインジケータを表示する。低緊急度リスクスコア(例えば、敗血症に罹患する可能性のパーセンテージ)の場合、ダッシュボードGUI 1700aは、治療がこの時点でこの患者に推奨されない可能性が高いので、治療ワークフローボックスを表示しなくてよい。
【0098】
様々な実施形態において、ダッシュボードGUI(例えば、1700f、1700g、1700h、1700i、1700j、等を参照のこと)は、様々な実施形態に従った、結果ステータスを表示するインジケータを表示し得る。様々な実施形態において、結果ステータスを表示するインジケータは、結果が保留中であることを医療専門家に通知し得る。様々な実施形態において、結果ステータスを表示するインジケータは、結果が保留中(pending)であることを医療専門家に知らせることができる。様々な実施形態において、機械学習アルゴリズムは、アルゴリズムを適用するのに十分な関連データが入力されていないと判定し得る。
【0099】
図18は、種々の実施形態に従った、ユーザによって選択された基準集団に関するパラメータの値を識別し、かつ、表示するための例示的なダッシュボードGUI 1800、またはその一部を図示している。いくつかの実施形態において、ダッシュボードGUI 1800は、クライアントデバイス110によって表示され得る。他の実施形態において、ダッシュボードGUI 1800は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI 1800は、クライアントデバイス110またはサーバ130におけるAPIを通して構成され、そして、伝送され得る。
【0100】
ヒストグラム1812は、単一のパラメータについて、または、ターゲット集団からの1人以上の過去の患者について1つ以上のパラメータから実行された多次元統計的計算の出力について生成され得る。ある時点で患者について観察されたパラメータ値がこのヒストグラム上にプロットされ、関心のあるパラメータの順に患者の異常な、または、制御不能な宿主反応の視覚的表現をユーザに与えることができる。様々な実施形態において、パラメータは、時間によって、または、任意の個々のパラメータ値によってソートされ得る。様々な実施形態に従って、ヒストグラムは、また、2次元プロットから、ある時点における現在の患者のパラメータの値を示す垂直バーを含んでいる、カラーヒストグラム1810へ変換することもできる。ヒストグラム1812または範囲バー1810は、最終GUIにおいてパラメータ要約ボックス(例えば、1510a、1510b、等を参照のこと)に組み込まれ得る。様々な実施形態において、ヒストグラム1812及び/又は範囲バー1810は、パラメータの集団からの値の範囲と比較して、パラメータについて個々の値を表示し得る。例えば、プロットまたは範囲は、パラメータ(例えば、血圧)のターゲット集団分布を含み得る。そして、モニタリングされている患者は、ターゲット集団の宿主反応に対する患者の宿主反応の視覚的表現を提供するために、範囲またはヒストグラム内に示されるそのパラメータについて、それらの特定の値を有し得る。
【0101】
図19は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータ重要性ランキングを表示するための一つの例示的なダッシュボードGUI(例えば、1910、1920、等を参照のこと)を示している。いくつかの実施形態において、ダッシュボードGUI(例えば、1910、1920、等を参照のこと)は、クライアントデバイス110上に表示され得る。他の実施形態において、ダッシュボードGUI(例えば、1900a、1900b、等を参照のこと)は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI(例えば、1900a、1900b、等を参照のこと)は、クライアントデバイス110またはサーバ130内のAPIを通して構成され、そして、伝送され得る。
【0102】
図19は、様々な実施形態に従った、2つの例示的なダッシュボードGUI(例えば、1910、1920、等を参照のこと)を示している。ダッシュボードGUI 1910が示されており、ここでは、いくつかの実施形態に従って、高い影響スコアを有すると判定されたパラメータを強調表示するために、エクスクラメーションマークが、パネル1912に配置されている。第2に、GUI 1920は、サイドパネル1922および1924を用いて、特定のパラメータが高、中、または低の影響スコアを有しているものとして強調表示され得ることを示している。パラメータは、「リスク増加(“increase risk”)」および「リスク減少(“decrease risk”)」を示す1つ以上のインジケータを含み得る、リスクカテゴリへと編成されてよく、バープロットにおいてグラフィカルに示されている影響スコアを用いて、それらの影響スコアに従ってランキングされる。
【0103】
図19と同様に、
図20は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータの重要度の寄与を表示するための一つの例示的なダッシュボードGUI 2000を示している。いくつかの実施形態において、ダッシュボードGUI 2000は、クライアントデバイス110によって表示され得る。他の実施形態において、ダッシュボードGUI 2000は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI 2000は、クライアントデバイス110またはサーバ130内のAPIを通して構成され、そして、伝送され得る。
【0104】
様々な実施形態において、各パラメータについての影響スコアの説明は、シンボルを伴う非常に高い影響スコア、シンボルを伴う高い影響スコア、または、シンボルを伴う中程度の影響スコアに係る代替シンボルを使用して、表示され得る。これらのシンボルは、(例えば、パラメータ要約ボックスは、様々な実施形態に従った、ここにおいて説明されるダッシュボードGUIのうち1つ以上を備え得るもの)において使用され得る。
【0105】
様々な実施形態において、ダッシュボードGUI 2000は、1つ以上の強調インジケータ2002、2004、2006を含み得る。様々な実施形態において、強調インジケータは、患者に対するパラメータの重要性を示すことができる。
【0106】
図21は、様々な実施形態に従った、機械学習モデルによって使用されるローカルまたはグローバルパラメータ重要性の寄与を表示するための一つの例示的なダッシュボードGUI(例えば、2110、2120、等を参照のこと)を示している。いくつかの実施形態において、ダッシュボードGUI(例えば、2110、2120、等を参照のこと)は、クライアントデバイス110によって表示され得る。他の実施形態において、ダッシュボードGUI(例えば、2110、2120、等を参照のこと)は、サーバ130によって生成され、そして、表示のためにネットワーク150を介して送信され得る。例えば、いくつかの実施形態において、ダッシュボードGUI(例えば、2110、2120、等を参照のこと)は、クライアントデバイス110またはサーバ130内のAPIを通して構成され、そして、伝送され得る。
【0107】
様々な実施形態に従った、シェイプリ加法的説明の2つの例が示されている(例えば、2110および2120)。ダッシュボードGUI 2110は、低い緊急度スコアまたは低い予後値を有する患者についての図、および、様々な実施形態に従った、患者についての図を表示する。ダッシュボードGUI 2120は、高い緊急度スコアまたは高い予後値を有する患者についての図を表示する。両方の図において、赤色バー2112および2122は、最終的な緊急度または予後スコアを上昇させたパラメータを示している。様々な実施形態に従って、各バーの幅は、最終緊急度スコアの増加に対する特定のパラメータの全体的な寄与に対応している。青色バー2114および2124は、種々の実施形態に従った、最終緊急度スコアを減少させたパラメータを示している。再度、バーの幅は、最終緊急度スコアの減少に対する特定のパラメータの全体的な寄与に対応する。これらの図は、また、医療専門家ユーザのための機械学習モデル全体における解釈可能性、直感、および、信頼を増加させるために、最終ダッシュボードGUIにおけるパラメータ要約ボックス内に表示され得る。
【0108】
図22は、様々な実施形態に従った、必要なコンポーネントおよびインターフェイスを含む、説明されたシステムを利用する一つの例示的なソフトウェアシステムを示すブロック
図2200である。いくつかの実施形態に従って、ブロック
図2200の要素は、アーキテクチャ100またはブロック
図200を用いて実装され得る。さらに、ブロック
図2200の少なくともいくつかの要素は、コンピュータのメモリに保管されたコマンドを実行するプロセッサを有するコンピュータによって実行され得る。
【0109】
医療専門家2202は、様々な実施形態に従って、EMRウェブインターフェイス2204を介して、または、代替的または追加的に、ウェブブラウザ2210を介して直接的にソフトウェアインターフェイス2206にアクセスすることができる。両方の場合において、認証2205は、EMRサーバなどを用いてOAuth2.0プロトコルを介して仲介(mediated)され得る。
【0110】
ソフトウェアインターフェイス2206は、SMART FHIR認証2208によって仲介されたEMRサーバAPI2209から、患者に関する情報をフェッチすることができる。情報は、データベース2211に保管され得る。患者に関するこの情報は、医療専門家2202がソフトウェアインターフェイス2206にアクセスするときに医療専門家110に対して提示され得る。様々な実施形態において、ミドルウェア2207(例えば、FHIR APIミドルウェア)を使用して、システムの他のコンポーネント(例えば、SMART FHIR Auth)への患者パラメータ(「特徴(“feature”)」と交換可能に使用される「パラメータ(“parameter”)」)の転送を促進することができる。
【0111】
ソフトウェアインターフェイス2206は、認証2213によって管理される認証システムによって仲介された、予後値、予後インジケータ、緊急度スコア、リスクカテゴリ、治療ガイダンス、準備完了フラグ、入力及び/又は出力として使用されるパラメータ、並びに、アルゴリズム2214からの各パラメータに対する影響スコア、に関する情報をフェッチする。ソフトウェアインターフェイス2206によってフェッチされた情報は、データベース2211に保管され得る。この情報は、医療専門家2202がソフトウェアインターフェイス2206にアクセスするときに医療専門家110に対して提示され得る。
【0112】
ソフトウェアインターフェイス2206から独立して、医療専門家2202は、同じ認証2213によって仲介されて、ウェブブラウザ2212を通じて直接的にアルゴリズム2214にアクセスすることができる。医療専門家2202は、ソフトウェアインターフェイス2206の外部で、予後値、予後インジケータ、緊急度スコア、リスクカテゴリ、治療ガイダンス、準備完了フラグ、入力及び/又は出力に使用されるパラメータ、並びに、独立した方法で各パラメータに対する影響スコア、にアクセスすることができる。
【0113】
図23は、種々の実施形態に従った、ここにおいて説明されるクライアントデバイス110およびサーバ130(例えば、
図1および
図2を参照のこと)、並びに、ここにおいて例示かつ説明される方法およびダッシュボードGUIが実装され得る、一つの例示的なコンピュータシステム2300を示すブロック図である。所定の態様において、コンピュータシステム2300は、様々な実施形態に従って、専用サーバ内で、または、別のエンティティに統合されて、もしくは、複数のエンティティにわたり分散されて、ハードウェア、または、ソフトウェアとハードウェアの組合せを使用して実装され得る。
【0114】
コンピュータシステム2300(例えば、クライアントデバイス110およびサーバ130)は、情報を通信するためのバス2308または他の通信機メカニズム、および、情報を処理するためにバス2308に結合されたプロセッサ2302(例えば、プロセッサ212)を含み得る。例として、コンピュータシステム2300は、1つ以上のプロセッサ2302を用いて実装され得る。プロセッサ2302は、汎用マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックデバイス(PLD)、コントローラ、状態機械、ゲートロジック、ディスクリートハードウェアコンポーネント、もしくは、情報の計算または他の操作を実行することができる任意の他の適切なエンティティ、であり得る。
【0115】
コンピュータシステム2300は、ハードウェアに加えて、問題のコンピュータプログラムのための実行環境を作成するコードを含み得る。例えば、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み出し専用メモリ(ROM)、プログラマブル読み出し専用メモリ(PROM)、消去可能PROM(EPROM)、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、DVD、または、プロセッサ2302によって実行される情報および命令を保管するためにバス2308に結合された任意の他の適切な記憶デバイスといった、内蔵メモリ2304(例えば、メモリ220)に保管された、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステム、または、それらのうち1つ以上の組み合わせを構成するコードである。プロセッサ2302およびメモリ2304は、特殊用途論理回路によって補完され、または、そこに組み込まれ得る。
【0116】
命令は、メモリ2304に保管され、そして、1つ以上のコンピュータプログラム製品、すなわち、コンピュータシステム2300による実行のために、または、その動作を制御するためにコンピュータ可読媒体上にエンコーディングされたコンピュータプログラム命令の1つ以上のモジュールにおいて、そして、これらに限定されるわけではないが、データ指向言語(例えば、SQL、dBase)、システム言語(例えば、C、Objective-C、C++、アセンブリ)、アーキテクチャ言語(例えば、Java(登録商標)、.NET)、および、アプリケーション言語(例えば、PHP、Ruby、Perl、Python)といったコンピュータ言語を含む、当業者にとって周知の任意の方法に従って、実装され得る。命令は、また、アレイ言語、アスペクト指向言語、アセンブリ言語、オーサリング(authoring)言語、コマンドラインインターフェイス言語、コンパイル言語、コンカレント言語、カーリーブラケット(curly-bracket)言語、データフロー言語、データ構造化言語、宣言型言語、難解言語、拡張言語、第4世代言語、関数言語、インタラクションモード言語、インタープリタ言語、反復言語、リストベース言語、リトル言語、論理ベース言語、マシン語、マクロ言語、メタプログラミング言語、マルチパラダイム言語、数値解析、非英語ベース言語、オブジェクト指向クラスベース言語、オブジェクト指向プロトタイプベース言語、オフサイドルール言語、手続き型言語、リフレクション言語、ルールベース言語、スクリプト言語、スタックベース言語、同期言語、シンタックス処理言語、視覚言語、with言語、および、xmlベース言語といった、コンピュータ言語で実装されてもよい。メモリ2304は、また、プロセッサ2302によって実行されるべき命令の実行の最中に、一時変数または他の中間情報を保管するために使用され得る。
【0117】
ここにおいて説明されるコンピュータプログラムは、ファイルシステムにおけるファイルに必ずしも対応していない。プログラムは、他のプログラムまたはデータ(例えば、マークアップ言語文書に保管された1つ以上のスクリプト)を保持するファイルの一部において、問題のプログラム専用の単一ファイルにおいて、または、複数の協調ファイル(例えば、1つ以上のモジュール、サブプログラム、またはコードの一部を保管するファイル)において、保管され得る。コンピュータプログラムは、1つのコンピュータ上で、もしくは、1つのサイトに配置され、または、複数のサイトにわたり分散されて、通信ネットワークによって相互接続された複数のコンピュータ上で、実行されるように展開され得る。この明細書において説明されるプロセスおよび論理フローは、入力データ上で動作し、かつ、出力を生成することによって機能を実行するために、1つ以上のコンピュータプログラムを実行する1つ以上のプログラマブルプロセッサによって実行され得る。
【0118】
コンピュータシステム2300は、さらに、情報および命令を保管するためにバス2308に結合された、磁気ディスクまたは光ディスクといった、データストレージ装置2306を含む。コンピュータシステム2300は、入力/出力モジュール2310を介して様々なデバイスに結合され得る。入力/出力モジュール2310は、任意の入力/出力モジュールであり得る。一つの例示的な入力/出力モジュール2310は、USBポートといったデータポートを含んでいる。入力/出力モジュール2310は、通信モジュール2312に接続するように構成されている。一つの例示的な通信モジュール2312(例えば、通信モジュール218)は、イーサネット(登録商標)カードおよびモデムといった、ネットワーキングインターフェイスカードを含む。所定の態様において、入力/出力モジュール2310は、入力デバイス2314(例えば、入力デバイス214)、及び/又は、出力デバイス2316(例えば、出力デバイス216)といった、複数のデバイスに接続するように構成されている。一つの例示的な入力デバイス2314は、ユーザがコンピュータシステム2300に入力を提供することができる、キーボードおよびポインティングデバイス、例えば、マウスまたはトラックボールを含んでいる。触覚入力デバイス、視覚入力デバイス、音声入力デバイス、または、脳コンピュータインターフェイスデバイスといった、他の種類の入力デバイス2314も、同様に、ユーザとの相互作用を提供するために使用され得る。例えば、ユーザに提供されるフィードバックは、任意の形態の感覚フィードバック、例えば、視覚フィードバック、聴覚フィードバック、または、触覚フィードバックであり得る。そして、ユーザからの入力は、音響、発話、触覚、または、脳波入力を含む、任意の形態で受信され得る。一つの例示的な出力デバイス2316は、ユーザに情報を表示するための、LCD(液晶ディスプレイ)モニタといった、ディスプレイデバイスを含む。
【0119】
本開示の一態様に従って、クライアントデバイス110およびサーバ130は、メモリ2304に含まれる1つ以上の命令の1つ以上のシーケンスを実行するプロセッサ2302に応答してコンピュータシステム2300を使用して、実装され得る。そうした命令は、データストレージ装置2306といった、別の機械可読媒体からメモリ2304へと読み込まれ得る。メインメモリ2304に含まれる命令のシーケンスの実行は、プロセッサ2302に、ここにおいて説明されるプロセスステップを実行させる。マルチプロセッシング構成における1つ以上のプロセッサが、また、メモリ1404に含まれる命令のシーケンスを実行するためにも使用され得る。様々な態様では、本開示の様々な態様を実装するために、ソフトウェア命令の代わりに、または、ソフトウェア命令と組み合わせて、ハードワイヤード回路が使用され得る。従って、本開示の態様は、ハードウェア回路およびソフトウェアのいかなる特定の組合せにも限定されない。
【0120】
この明細書において説明される技術的事項(subject matter)の様々な態様は、例えば、データサーバとして、バックエンドコンポーネントを含むコンピューティングシステム、または、ミドルウェアコンポーネント、例えばアプリケーションサーバ、を含むコンピューティングシステム、もしくは、フロントエンドコンポーネント、例えば、この明細書において説明される技術的事項の実装形態とユーザがインタラクションすることができる、グラフィカルユーザインターフェイスまたはウェブブラウザを有するクライアントコンピュータ、もしくは、1つ以上のそうしたバックエンド、ミドルウェア、または、フロントエンドコンポーネントの任意の組合せを含む、コンピューティングシステムにおいて実装され得る。システムのコンポーネントは、デジタルデータ通信の任意の形態または媒体、例えば、通信ネットワーク、によって相互接続され得る。通信ネットワーク(例えば、ネットワーク150)は、例えば、LAN、WAN、インターネットなどのうち任意の1つ以上を含み得る。さらに、通信ネットワークは、これらに限定されるわけではないが、例えば、バスネットワーク、スターネットワーク、リングネットワーク、メッシュネットワーク、スターバスネットワーク、ツリーまたは階層ネットワーク、等を含む、ネットワークトポロジのうち任意の1つ以上を含み得る。通信モジュールは、例えば、モデムまたはイーサネット(登録商標)カードであり得る。
【0121】
コンピュータシステム2300は、クライアントおよびサーバを含み得る。クライアントおよびサーバは、一般的に、互いに離れており、そして、典型的には、通信ネットワークを介してインタラクションする。クライアントおよびサーバの関係は、それぞれのコンピュータ上で実行され、かつ、互いにクライアント-サーバ関係を有するコンピュータプログラムのおかげで生じている。コンピュータシステム2300は、例えば、そして、限定されることなく、デスクトップコンピュータ、ラップトップコンピュータ、または、タブレットコンピュータであり得る。コンピュータシステム2300は、また、別のデバイス、例えば、そして、限定されることなく、移動電話、PDA、モバイルオーディオプレーヤ、全地球測位システム(GPS)受信器、ビデオゲームコンソール、及び/又は、テレビジョンセットトップボックスに組み込むこともできる。
【0122】
ここにおいて使用される「機械可読記憶媒体」または「コンピュータ可読媒体」という用語は、実行のためにプロセッサ2302に対して命令を提供することに関与する、任意の媒体またはメディアを指す。そうした媒体は、これらに限定されるわけではないが、不揮発性媒体、揮発性媒体、および、伝送媒体を含む、多くの形態をとることができる。不揮発性媒体は、例えば、データストレージ装置2306といった、光ディスクまたは磁気ディスクを含む。揮発性媒体は、メモリ23204といった、ダイナミックメモリを含む。伝送媒体は、同軸ケーブル、銅線、および光ファイバを含み、バス2308を含むワイヤを含んでいる。機械可読媒体の一般的な形態は、例えば、フロッピー(登録商標)ディスク、フレキシブルディスク、ハードディスク、磁気テープ、任意の他の磁気媒体、CD-ROM、DVD、任意の他の光学媒体、パンチカード、紙テープ、穴のパターンを有する任意の他の物理媒体、RAM、PROM、EPROM、FLASHEPROM、任意の他のメモリチップまたはカートリッジ、もしくは、コンピュータが読み取ることができる任意の他の媒体を含んでいる。機械可読記憶媒体は、機械可読ストレージ装置、機械可読ストレージ基板、メモリデバイス、機械可読伝搬信号に影響を及ぼす組成物、または、それらのうち1つ以上の組合せであり得る。
【0123】
ここにおいて使用されるように、一連の項目に先行する「のうち少なくとも1つ(“at least one of”)」という句は、任意の項目を分離するための「および(“and”)」もしくは「または(“or”)」という用語と共に、リストの各メンバー(すなわち、各項目)ではなく、全体としてリストを修正する。「のうち少なくとも1つ」という句は、少なくとも1つの項目の選択を必要とせず、むしろ、この句は、項目のうち任意の1つに係る少なくとも1つ、及び/又は、項目の任意の組合せに係る少なくとも1つ、及び/又は、項目それぞれのうち少なくとも1つを含む、ことを意味することを可能にする。例として、句「A、B、およびCのうち少なくとも1つ」または「A、B、またはCのうち少なくとも1つ」は、それぞれ、Aのみ、Bのみ、または、Cのみ、A、B、およびCの任意の組み合わせ、及び/又は、A、B、およびCのそれぞれのうち少なくとも1つ、を指す。用語「含む(“include”)」、「有する(“have”)」などが明細書または請求項において使用される限りにおいて、そうした用語は、「備える(“comprise”)」が請求項において移行語(transitional word)として使用されるときに解釈されるように、用語「備える」と同様に包括的であるように意図されている。語「例示的(“exemplary”)」は、「一つの例、インスタンス、または説明として機能する」ことを意味するように、ここにおいて使用されている。「例示的」としてここにおいて説明される任意の実施形態は、必ずしも、他の実施形態よりも好ましい、または、有利であると解釈されるべきではない。
【0124】
単数形の要素への言及は、特に記載されない限り、「唯一の(“one and only one”)」を意味するように意図されたものではなく、むしろ「1つ以上(“one or more”)」を意味する。当業者にとって公知であるか、または、後に公知となる、この開示全体にわたり説明された様々な構成の要素に対する構造的および機能的な等価物の全ては、参照により本明細書に明示的に組み込まれており、そして、対象技術に包含されることが意図されている。さらに、ここにおいて開示されたものは、そうした開示が上記の説明において明示的に述べられているか否かにかかわらず、公衆に提供されるように意図されていない。
【0125】
本明細書は多くの詳細を含むが、これらは、特許請求され得るものの範囲に対する限定として解釈されるべきではなく、むしろ、技術的事項の特定の実装に係る説明として解釈されるべきである。別個の実施形態のコンテキストで、この明細書において記載されている特定のパラメータは、また、単一の実施形態において組み合わせて実装することもできる。逆に、単一の実施形態のコンテキストで説明される様々なパラメータは、複数の実施形態において、別々に、または、任意の適切なサブコンビネーションで実装することもできる。さらに、パラメータは、所定の組合せで作用するものとして上述され、そして、初期にそのように請求されてよいが、請求された組合せからの1つ以上のパラメータは、場合によっては、組合せから削除することができ、そして、請求された組合せは、サブ組合せまたはサブ組合せの変形を対象とすることができる。
【0126】
この明細書の技術的事項が、特定の態様に関して説明されてきたが、他の態様を実装することができ、そして、それらは以降の特許請求の範囲内にある。例えば、動作は、特定の順序で図面に示されているが、これは、望ましい結果を達成するために、そうした動作が示された特定の順序で、または、連続した順序で実行されること、もしくは、全ての図示された動作が実行されることを必要としているものと理解されるべきではない。請求項に記載された動作は、異なる順序で実行することができ、かつ、それでも望ましい結果を達成することができる。一つの例として、添付の図面に示されるプロセスは、所望の結果を達成するために、示される特定の順序、または、連続的な順序を必ずしも必要としない。所定の状況では、マルチタスキングおよび並列処理が有利であり得る。さらに、上記で説明した態様における様々なシステムコンポーネントの分離は、全ての態様においてそうした分離を必要とするものとして理解されるべきではなく、そして、説明されたプログラムコンポーネントおよびシステムは、一般的に、単一のソフトウェア製品に一緒に統合されるか、または、複数のソフトウェア製品へとパッケージ化され得ることが理解されるべきである。他の変形は、以降の特許請求の範囲内である。
【0127】
実施形態のレシテーション(recitation)
実施形態1.リスクカテゴリに関連付けられた、1つ以上の緊急度値に基づいてインジケータを表示するためのインタラクティブなダッシュボードグラフィカルユーザインターフェイス(GUI)を生成するためのシステムである。前記システムは、1つ以上のプロセッサと、インストラクションを含む、1つ以上のメモリデバイスであり、前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、1つ以上のメモリデバイスと、を備む。前記動作は、患者IDを管理プラットフォームに送信するステップと、前記管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、機械学習モデルを使用するステップであり、前記患者データに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、機械学習モデルを使用するステップであり、前記患者データに基づいて1つ以上の予後値を生成し、前記予後値は、有害イベントの確率を表している、ステップと、前記少なくとも1つのパラメータに関連付けられた影響スコアに従って、前記少なくとも1つのパラメータのランキングを決定するステップと、1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、前記緊急度スコアおよび関連付けられたリスクカテゴリを表示する緊急度インジケータ、前記少なくとも1つの予後値、および、前記少なくとも1つの予後値に関連付けられた1つ以上のリスクカテゴリを表示する、少なくとも1つの予後インジケータ、および、前記ランキングに従って、前記パラメータを表示するリスト、を備える、ステップと、を含む。
【0128】
実施形態2.前記緊急度スコアは、前記患者が、ある期間内に刺激に起因して、現在、前記宿主反応のタイプを経験または発生している確率を含む、実施形態1に記載のシステム。
【0129】
実施形態3.前記宿主反応のタイプは、望ましくない宿主反応を含む、実施形態2に記載のシステム。
【0130】
実施形態4.前記刺激は、感染、治療、または、外傷のうち少なくとも1つを含む、実施形態2または3に記載のシステム。
【0131】
実施形態5.前記感染、治療、または、外傷のうち少なくとも1つは、敗血症を含む、実施形態4に記載のシステム。
【0132】
実施形態6.前記期間は、24時間以下である、実施形態2に記載のシステム。
【0133】
実施形態7.前記有害イベントが、死亡、30日間の再入院、ICUへのエスカレーション、昇圧剤投与、腎代替療法、在院日数の延長、入院費用の増加、体外式膜型人工肺の介入、または機械的人工呼吸のうちの少なくとも1つを含む、実施形態1乃至6いずれか1つに記載のシステム。
【0134】
実施形態8.前記ダッシュボードGUIは、さらに、前記機械学習モデルによって識別された治療タイムテーブルを表示するワークフローステータスを含み、
前記治療タイムテーブルは、オーダー時間、投与時間、治療時間のうちの少なくとも1つを含む、実施形態1乃至7いずれか1つに記載のシステム。
【0135】
実施形態9.前記ダッシュボードGUIは、前記機械学習モデルによって使用される選択されたパラメータを表示するタイムテーブルを含み、前記選択されたパラメータは、オーダー時間、採血時間、記録時間、および結果時間を表示するタイムテーブルのうち少なくとも1つを含む、実施形態1乃至8いずれか1つに記載のシステム。
【0136】
実施形態10.前記ダッシュボードGUIは、さらに、前記予後値および前記機械学習モデルからの出力に基づく通知と、基準点からの時間を表示する第1タイマ、および、ケアガイドラインに違反する前に治療および診断動作を完了するために残された時間を表示する第2タイマを含む、1つ以上のインタラクティブなタイマと、を含む、実施形態1乃至9いずれか1つに記載のシステム。
【0137】
実施形態11.ターゲット集団は、感染症を有すると疑われる患者を含む、実施形態1乃至10いずれか1つに記載のシステム。
【0138】
実施形態12.前記感染症は、敗血症を含む、実施形態11に記載のシステム。
【0139】
実施形態13.前記ダッシュボードGUIは、インタラクティブな集団セレクタを含む、実施形態1乃至12いずれか1つに記載のシステム。
【0140】
実施形態14.前記インタラクティブな集団セレクタは、散布図、および、前記散布図の領域に対して構成された領域選択ツール、を含む、実施形態13に記載のシステム。
【0141】
実施形態15.前記ターゲット集団は、予備検査確率および患者位置に基づいている、実施形態1乃至14いずれか1つに記載のシステム。
【0142】
実施形態16.前記ターゲット集団は、第2機械学習モデルによって定義され、前記第2機械学習モデルは、教師なしモデルである、実施形態1乃至15いずれか1つに記載のシステム。
【0143】
実施形態17.前記パラメータを識別することは、前記選択されたパラメータと前記ターゲット集団の前記パラメータとの間の単変量距離スコアを計算することを含み、かつ、前記ランキングを決定することは、前記患者データにおける各患者について独立して前記ランキングを決定すること、および、前記パラメータ間で前記単変量距離スコアを比較すること、を含む、実施形態1乃至16いずれか1つに記載のシステム。
【0144】
実施形態18.前記パラメータを識別することは、SHAP(SHaPley Additive eDescriptions)法またはマハラノビス法のうちの少なくとも1つを使用して個々のパラメータ寄与を計算することを含み、かつ、前記ランキングを決定することは、前記パラメータを比較するために、SHAP法またはマハラノビス法のうち少なくとも1つを使用することを含む、実施形態1乃至17いずれか1つに記載のシステム。
【0145】
実施形態19.前記ダッシュボードGUIは、さらに、付加的説明バープロットを含み、前記選択されたパラメータは、患者検査結果、患者バイオマーカー結果、患者臨床パラメータ、導出結果、または、患者軌跡情報のうち少なくとも1つを含み、前記ダッシュボードGUI上に表示されるタイムテーブルは、インタラクティブな非表示/表示ボタンを含み、かつ、前記タイムテーブルは、結果時間、および、前記選択されたパラメータそれぞれに対する値を表示する、実施形態8乃至13いずれか1つに記載のシステム。
【0146】
実施形態20.前記ダッシュボードGUIは、さらに、敗血症患者のためのケアガイドラインによって推奨される治療および診断アクションのチェックリストを含み、前記チェックリストは、抗生物質投与、抗生物質投与前の血液培養の順序付け、血清乳酸塩の測定、輸液投与の投与、または、昇圧剤投与のうち1つ以上の項目を含み、前記チェックリストは、前記項目それぞれについてフローのステータスを表示し、前記フローのステータスは、医師のオーダーステータス、薬局の承認ステータス、薬剤の投与ステータス、または、全ガイドライン完了ステータスのうち少なくとも1つを指定する、実施形態1乃至19いずれか1つに記載のシステム。
【0147】
実施形態21.表示される前記ダッシュボードGUIは、患者カルテに埋め込まれて表示される、実施形態1乃至20いずれか1つに記載のシステム。
【0148】
実施形態22.前記機械学習モデルを使用することは、異なるターゲット集団から以前に収集された患者データを保管すること、および、前記ターゲット集団を参照して、前記患者データに関連付けられた位置を返すこと、を含む、実施形態1乃至21いずれか1つに記載のシステム。
【0149】
実施形態23.前記機械学習モデルを使用することは、機械学習サーバに対するAPI呼び出しを実行することであり、前記API呼び出しは前記患者データを含むこと、および、前記機械学習サーバから、前記緊急度スコア、および、前記少なくとも1つの予後値、前記緊急度スコアの前記リスクカテゴリ、前記1つ以上の予後値に係る前記1つ以上のリスクカテゴリ、前記選択されたパラメータ、並びに、各パラメータの前記影響スコアを受信すること、を含む、実施形態1乃至22いずれか1つに記載のシステム。
【0150】
実施形態24.前記ダッシュボードGUIは、医療専門家に関連付けられたモバイルデバイス上に表示されるように構成されている、実施形態1乃至23いずれか1つに記載のシステム。
【0151】
実施形態25.前記動作は、さらに、ポイントオブケア診断装置または測定装置のうち1つ以上を前記システムに接続すること、および、前記患者データの一部を、前記ポイントオブケア診断装置または前記測定装置から直接的に収集すること、を含む、実施形態1乃至24いずれか1つに記載のシステム。
【0152】
実施形態26.前記動作は、さらに、教師なしアルゴリズムの出力によって定義される前記宿主反応のタイプに相関している1つ以上のラベルを使用して訓練された、教師ありアルゴリズムを使用して前記機械学習モデルを訓練すること、を含む、実施形態1乃至25いずれか1つに記載のシステム。
【0153】
実施形態27.前記緊急度スコアに関連付けられた前記リスクカテゴリは、低、中、高、または超高のうち1つを含む、実施形態1乃至26いずれか1つに記載のシステム。
【0154】
実施形態28.宿主反応メトリックを表示するためのダッシュボードGUIを生成するコンピュータ実装方法である。本方法は、FHIR APIを介して、分析サーバを管理プラットフォームに接続するステップと、EMRに埋め込まれた宿主反応ウィンドウを生成するステップと、前記宿主反応ウィンドウ上に緊急度スコアを提示するための緊急度インジケータを表示するステップであり、前記緊急度スコアは、機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記緊急度スコアは、患者データに基づいて、宿主反応のタイプの確率およびレベルを決定する、ステップと、前記宿主反応ウィンドウ上に1つ以上の予後値を含む1つ以上の予後インジケータを表示するステップであり、前記予後値は、前記機械学習モデルの出力であり、かつ、前記機械学習モデルからの前記予後値は、有害イベントの確率を決定する、ステップと、前記患者データ内の1つ以上のパラメータを、ターゲット集団に係る対応する1つ以上のパラメータの分布と比較することによって、前記患者データ内の1つ以上のクリティカルパラメータを識別するステップと、前記1つ以上のパラメータに関連付けられた影響スコアに基づくランキングに従って、前記パラメータのリストを表示するステップと、前記パラメータのうち1つに対して注意を引く強調インジケータを表示するステップと、を含む。
【0155】
実施形態29.1つ以上のプロセッサと、インストラクションを含む、1つ以上のメモリデバイスであり、前記インストラクションは、プロセッサによって実行されると、前記1つ以上のプロセッサに動作を実行させるように構成されている、1つ以上のメモリデバイスと、を備える、装置である。前記動作は、管理プラットフォームから、患者に関連付けられた少なくとも1つの電子記録を受信するステップであり、前記少なくとも1つの電子記録は患者データを含んでいる、ステップと、機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて緊急度スコアを生成し、前記緊急度スコアは、前記患者による宿主反応のタイプの確率およびレベルを表している、ステップと、機械学習モデルを使用するステップであり、前記患者データの前記パラメータのうち少なくとも1つに基づいて予後値を生成し、前記予後値は、有害イベントの確率およびレベルを表している、ステップと、前記患者データ内のパラメータをターゲット集団のパラメータの分布と比較することによって、前記患者データ内のクリティカルパラメータを識別するステップと、前記クリティカルパラメータに関連付けられた影響スコアに従って、前記パラメータのランキングを決定するステップと、1つ以上のクライアントデバイス上に表示するためのダッシュボードGUIを生成するステップであり、前記ダッシュボードGUIは、前記ダッシュボードGUI上に前記緊急度スコアを表示し、リスクカテゴリを指定する、緊急度インジケータ、前記ダッシュボードGUI上に前記予後値を表示し、リスクカテゴリを指定する、予後インジケータ、および、前記ランキングに従って、前記パラメータを表示するリスト、を含む、ステップと、を含む。
【国際調査報告】