(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-02-06
(54)【発明の名称】量子コンポーネントを制御するシステム及び方法
(51)【国際特許分類】
H10N 60/10 20230101AFI20240130BHJP
H10N 60/00 20230101ALI20240130BHJP
H10N 60/12 20230101ALI20240130BHJP
G06N 10/20 20220101ALI20240130BHJP
G11C 11/44 20060101ALI20240130BHJP
H03M 1/66 20060101ALI20240130BHJP
【FI】
H10N60/10 K
H10N60/00 G ZAA
H10N60/12 B
G06N10/20
G11C11/44
H03M1/66 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023542891
(86)(22)【出願日】2022-01-11
(85)【翻訳文提出日】2023-09-08
(86)【国際出願番号】 US2022012000
(87)【国際公開番号】W WO2022155140
(87)【国際公開日】2022-07-21
(32)【優先日】2021-01-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】523266556
【氏名又は名称】1372934 ビー.シー.リミテッド
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ツァイ,ミン,ヤン
(72)【発明者】
【氏名】エンデルド,コリン シー.
(72)【発明者】
【氏名】モウラヴィー,レーザ
(72)【発明者】
【氏名】ブニク,ポール アイ.
【テーマコード(参考)】
4M113
5J022
【Fターム(参考)】
4M113AA00
4M113AA46
4M113AC07
4M113AC08
4M113AC46
4M113AC48
4M113AC50
4M113CA12
4M113CA13
4M113CA16
4M113CA17
5J022AB02
5J022BA06
5J022CE09
5J022CG02
(57)【要約】
量子プロセッサのプログラミング可能なコンポーネントをデジタル-アナログコンバータ(DAC)を使用して選択的にプログラミングすることができる。第1ステージ及び第2ステージを有するDAC並びに第1ステージ及び第2ステージの個々のものにガルバニック結合された且つこれから延在している第1及び第2量子磁束パラメトロン(OFF)ループについて説明している。第1ステージは、第1ジョセフソン接合によって中断された第1ストレージループと、外部コンポーネントと通信するためのインターフェイスと、を有する。第2ステージは、第2ジョセフソン接合によって中断された第2ストレージループを有し、第2ストレージループは、第1ストレージループにガルバニック結合されており、第1ジョセフソン接合及び第2ジョセフソン接合は、第1制御ラインに直列で結合されている。ターゲットDACステージ内に磁束量子をローディングする方法も記述されている。
【特許請求の範囲】
【請求項1】
デジタル-アナログコンバータ(DAC)であって、
第1ジョセフソン接合によって中断された第1ストレージループを有する第1ステージであって、前記第1ストレージループは、外部コンポーネントと通信するように動作可能なインターフェイスを有する、第1ステージと、
第2ジョセフソン接合によって中断された第2ストレージループを有する第2ステージであって、前記第2ストレージループは、前記第1ストレージループにガルバニック結合されており、前記第1ジョセフソン接合及び前記第2ジョセフソン接合は、直列で第1制御ラインに結合されている、第2ステージと、
第1量子磁束パラメトロン(QFP)ループ及び第2量子QFPループであって、前記第1ステージ及び前記第2ステージの個々のものにガルバニック結合された且つこれから延在している、第1及び第2QFPループと、
を有するDAC。
【請求項2】
前記第2ステージにガルバニック結合された第3ステージ及び前記第3ステージにガルバニック結合された第4ステージであって、前記第3及び第4ステージは、第3ストレージループ及び第4ストレージループを有し、前記第3及び第4ストレージループは、それぞれ、第3ジョセフソン接合及び第4ジョセフソン接合によって中断されており、前記第3及び第4ジョセフソン接合は、前記第1制御ラインに直列で結合されている、第3ステージ及び第4ステージと、
第3QFPループ及び第4QFPループであって、前記第3ステージ及び前記第4ステージの個々のものにガルバニック結合された且つこれから延在している、第3及び第4QFPループと、
を更に有する、請求項1に記載のDAC。
【請求項3】
それぞれのQFPループは、個々のジョセフソン接合を有する、請求項1又は2に記載のDAC。
【請求項4】
それぞれのQFPループの前記個々のジョセフソン接合は、個々の複合ジョセフソン接合を有する、請求項3に記載のDAC。
【請求項5】
前記第1及び第2ジョセフソン接合は、それぞれ、複合ジョセフソン接合を有する、請求項1に記載のDAC。
【請求項6】
前記第1及び第2QFPループは、前記第1ステージ及び前記第2ステージの前記個々のものに対称的に接続されており、前記第1QFPループは、前記第2QFPループから隔離している、請求項1~5のいずれか1項に記載のDAC。
【請求項7】
前記第1制御ラインは、前記第1ストレージループ及び前記第2ストレージループのそれぞれを二等分しており、
前記第1ストレージループ及び前記第2ストレージループのそれぞれは、それぞれのストレージループの個々の第1側部及び個々の第2側部のそれぞれにおいて個々のジョセフソン接合を有し、
前記第1及び第2QFPループのそれぞれは、前記個々のストレージループの前記個々の第1側部から前記個々のストレージループの前記個々の第2側部まで延在するように結合されている、請求項6に記載のDAC。
【請求項8】
前記第1及び第2QFPループのそれぞれは、1つ又は複数の更なるQFPループにガルバニック結合されている、請求項6に記載のDAC。
【請求項9】
前記第1制御ラインに少なくともほぼ垂直に延在する第2制御ラインを更に有し、前記第2制御ラインは、前記第1ストレージループ及び前記第2ストレージループのそれぞれに対して誘導結合されるように位置決めされている、請求項1に記載のDAC。
【請求項10】
前記第1及び第2QFPループは、前記第1制御ラインに沿ってガルバニック結合されている、請求項1に記載のDAC。
【請求項11】
前記第1、前記第2、前記第3、及び前記第4QFPループは、前記第1制御ラインに沿ってガルバニック結合されている、請求項2に記載のDAC。
【請求項12】
前記第1QFPループに通信自在に結合可能な磁束バイアスラインを更に有する、請求項10又は11に記載のDAC。
【請求項13】
前記磁束バイアスラインは、QFPシフトレジスタのQFPステージを有する、請求項12に記載のDAC。
【請求項14】
前記磁束バイアスラインは、信号ラインを有する、請求項12に記載のDAC。
【請求項15】
量子プロセッサのプログラミング可能なコンポーネントを選択的にプログラミングする方法であって、
第1永久電流を第1デジタル-アナログコンバータ量子磁束パラメトロン(DAC-QFP)ループ内にローディングすることであって、前記第1DAC-QFPループは、第1デジタル-アナログコンバータ(DAC)ストレージループにガルバニック結合され、前記第1永久電流は、前記第1DACストレージループの意図された状態に対応している、ことと、
第2永久電流を第2DAC-QFPループ内にローディングすることであって、前記第2DAC-QFPループは、第2DACストレージループにガルバニック結合され、前記第2DACストレージループは、前記第1DACストレージループにガルバニック結合され、前記第2永久電流は、前記第2DACストレージループの意図された状態に対応している、ことと、
第1介在ジョセフソン接合を介した前記第1DAC-QFPループの前記第1永久電流に基づいて前記第1DACストレージループ内に第1量の磁束を導入するために前記第1DAC-QFPループと通信状態にある1つ又は複数の制御ラインに信号を印加することと、
第2介在ジョセフソン接合を介した前記第2DAC-QFPループの前記第2永久電流に基づいて前記第2DACストレージループ内に第2量の磁束を導入するために前記第2DAC-QFPループとの通信状態にある1つ又は複数の制御ラインに信号を印加することと、
前記プログラミング可能なコンポーネントと通信する前記第1DACストレージループによって担持されたインターフェイスを通じて前記第1DACストレージループ内の前記第1量の磁束及び前記第2DACストレージループ内の前記第2量の磁束を有する組み合わせられた磁束に基づいて前記プログラミング可能なコンポーネントに磁束バイアスを転送することと、
を有する方法。
【請求項16】
第1永久電流を第1DAC-QFPループ内にローディングすることは、第1電流を提供するためにQFPシフトレジスタの第1量子磁束パラメトロン(QFP)に電流バイアスを印加し、前記第1DAC-QFPループに到達するために前記QFPシフトレジスタの少なくとも1つの第1介在QFPを通じて前記第1電流をシフトさせることを有する、請求項15に記載の方法。
【請求項17】
第2永久電流を第2DAC-QFPループにローディングすることは、第2電流を提供するために前記QFPシフトレジスタの前記第1QFPから電気的に絶縁された前記QFPシフトレジスタの第2QFPに電流バイアスを印加し、前記第2DAC-QFPループに到達するために前記QFPシフトレジスタの少なくとも1つの第2介在QFPを通じて前記第2電流をシフトさせることを有する、請求項16に記載の方法。
【請求項18】
永久電流を第2QFPループ内にローディングすることは、
前記第2永久電流を前記第1QFPループ内にローディングすることと、
1つ又は複数の中間QFPループを通じて前記第2QFPループ内に前記第2永久電流をシフトさせることであって、前記中間QFPループは、中間DACストレージループにガルバニック結合され、前記第1DACストレージループ、前記中間DACストレージループ、及び前記第2DACストレージループは、ガルバニック接続されている、ことと、
を有する、請求項15に記載の方法。
【請求項19】
磁束バイアスを前記プログラミング可能なコンポーネントに転送することは、磁束バイアスを量子ビット、カプラ、プログラミングコンポーネント、又は読み出しコンポーネントの1つに転送することを有する、請求項15に記載の方法。
【請求項20】
量子プロセッサであって、
1つ又は複数のプログラミング可能な超伝導コンポーネントと、
第1方向において延在する且つ複数の量子磁束パラメトロン(QFP)に基づいたシフトレジスタステージから形成された2つ以上の行を有するシフトレジスタであって、個々の行内のそれぞれのQFPに基づいたシフトレジスタステージは、前記複数のQFPに基づいたシフトレジスタステージの少なくとも1つの他方のQFPに基づいたシフトレジスタステージに結合されている、シフトレジスタと、
前記シフトレジスタ内のそれぞれの行の1つのQFPに基づいたシフトレジスタステージに結合された個々のデジタル-アナログコンバータ量子磁束パラメトロン(DAC-QFP)と、
ガルバニックカプラによってそれぞれのDAC-QFPにガルバニック結合された個々のデジタル-アナログコンバータ(DAC)ストレージループであって、前記ガルバニックカプラは、ジョセフソン接合を含み、
前記個々のDACストレージループのそれぞれは、前記第1方向に対して垂直の第2方向に沿ってガルバニック結合されており、
前記個々のDACストレージループの1つは、前記1つ又は複数のプログラミング可能な超伝導コンポーネントの1つとの通信状態にある、
デジタル-アナログコンバータ(DAC)ストレージループと、
を有する量子プロセッサ。
【請求項21】
前記DAC-QFPは、アレイとして構成されている、請求項20に記載の量子プロセッサ。
【請求項22】
パワーラインが、前記第1方向に沿って延在する列内においてQFPの間において前記第2方向において延在している、請求項20又は21に記載の量子プロセッサ。
【請求項23】
グローバル信号ラインが、前記第1方向において前記パワーラインに垂直に且つQFPの第1行に沿って延在している、請求項22に記載の量子プロセッサ。
【請求項24】
前記DACストレージループは、複合ジョセフソン接合(CJJ)を有し、前記DAC-QFPは、前記CJJの両側に対称的にガルバニック結合されている、請求項20に記載の量子プロセッサ。
【請求項25】
DACのターゲットステージをプログラミングする方法であって、
バイアス電流を第1QFPステージに印加することと、
中間QFPステージを通じてターゲットQFPステージに前記バイアス電流をシフトさせることと、
ターゲットDACストレージループ内に磁束を導入するために1つ又は複数の制御ラインを通じて電流を印加することと、
を有する方法。
【請求項26】
中間QFPステージを通じてターゲットQFPステージに前記バイアス電流をシフトさせ、ターゲットDACストレージループ内に磁束を転送するために1つ又は複数の制御ラインを通じて電流を印加することは、
前記第1QFPステージによって担持された第1ジョセフソン接合に磁束バイアスを印加することと、
前記中間QFPステージによって担持された中間ジョセフソン接合に磁束バイアスを印加することと、
前記第1QFPステージの前記第1ジョセフソン接合を抑圧することと、
前記ターゲットQFPステージを介して前記ターゲットDACストレージループ内にパルスをローディングすることであって、
前記ターゲットQFPステージのターゲットジョセフソン接合に磁束バイアスを印加すること、
前記ターゲットDACストレージループとの通信状態にある第1制御ラインに電流を導入すること、
前記バイアス電流が前記ターゲットQFPステージからガルバニック結合されたターゲットDACストレージループ内に転送されるようにするために、閾値超において前記DACジョセフソン接合を通じた前記電流を増大させるためにDACジョセフソン接合との通信状態にある第2制御ラインに電流を導入すること、
前記第1及び第2制御ラインから前記電流を除去すること、
前記ターゲットQFPステージの前記磁束バイアスを抑圧すること、
を有することと、
意図された数の磁束量子が前記ターゲットDACストレージループ内に導入される時点まで、前記ターゲットQFPステージを介して前記ターゲットDACストレージループ内に磁束を反復的にローディングすることと、
を有する、請求項25に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
分野
本開示は、一般に、量子演算に関し、更に詳しくは、その他の量子コンポーネントをプログラミングするために且つ動作させるために使用されるコンポーネントの設計及び動作に関する。
【背景技術】
【0002】
背景
量子演算
量子コンピュータは、データに対して演算を実行するために、重ね合わせ、トンネリング、又はもつれなどの少なくとも1つの量子-機械現象を直接的に活用しているシステムである。量子コンピュータの要素は、量子ビットと呼称される量子二進数である。量子演算の1つのモデルは、断熱量子演算である。断熱量子演算は、例えば、難しい最適化問題を解決するのに適し得る。断熱量子演算システム、方法、及び装置に関する更なる詳細については、例えば、米国特許第7,135,701号及び同第7,418,283号において記述されている。
【0003】
量子アニーリング
量子アニーリングは、通常は、好ましくはシステムの基底状態であるシステムの低エネルギー状態を見出するために使用され得る演算方法である。概念的には従来のシミュレートされたアニーリングと同様に、この方法は、自然システムが相対的に低いエネルギー状態に向かう傾向を有するという基礎をなす原理に依存しており、その理由は、エネルギー状態が低いほど相対的に安定しているからである。従来のアニーリングは、システムを低エネルギー状態にガイドするために従来の熱変動を使用している一方で、量子アニーリングは、従来のアニーリングよりも正確及び/又は迅速にエネルギー最小値に到達するための非局在化のソースとして量子トンネリングなどの量子効果を使用し得る。量子アニーリングにおいては、熱効果及びその他のノイズが存在し得る。最終的な低エネルギー状態は、グローバルなエネルギー最小値でない場合がある。
【0004】
断熱量子演算は、量子アニーリングの特別なケースと見なすことができる。断熱量子演算においては、システムは、理想的には、断熱発展の全体を通じてその基底状態において始まり且つ留まっている。従って、当業者は、量子アニーリングシステム及び方法が一般に断熱量子コンピュータ上において実装され得ることを理解することになろう。本出願の全体を通じて、量子アニーリングに対する任意の参照は、文脈がそうではないことを必要としていない限り、断熱量子演算を包含するものと意図される。
【0005】
量子コンポーネント
量子コンポーネントは、量子機械効果が観察可能な構造である。また、量子コンポーネントは、量子装置とも呼称され得る。量子コンポーネントは、電流搬送が量子機械効果によって支配されている回路を含む。このようなコンポーネントは、電子スピンがリソースとして使用されているスピントロニクスと、超伝導回路と、を含む。超伝導回路は、超伝導装置を含む回路である。超伝導装置は、超伝導材料を含む装置である。超伝導材料は、電流、磁界、及び温度の臨界レベル未満において電気抵抗を有していない材料である。スピン及び超伝導は、いずれも、量子機械現象である。量子コンポーネントは、演算装置及びこれに類似したものにおいて計測インスツルメントのために使用することができる。
【0006】
量子プロセッサ
量子プロセッサは、超伝導量子プロセッサの形態を有することができる。超伝導量子プロセッサは、いくつかの超伝導量子ビット及びローカルバイアスを提供する関連するコンポーネントを含み得る。また、超伝導量子プロセッサは、量子ビットの間の通信自在の結合を選択的に提供する結合装置(カプラとも呼称される)を含むこともできる。
【0007】
量子プロセッサは、超伝導量子ビットを含む超伝導量子プロセッサであり得る。Wendin G.及びShumeiko V.S.による「“SUPERCONDUCTING QUANTUM CIRCUITS,QUBITS AND COMPUTING” (arXiv:cond-mat/0508729v1,2005)」は、物理学及び量子情報処理用の量子化超伝導電気回路の動作原理の概論を提供している。
【0008】
超伝導量子ビットは、超伝導材料の回路に基づいた固体量子ビットである。超伝導量子ビットの動作は、基礎をなす磁束量子化の原理と、ジョセフソントンネリングと、に基づいている。超伝導効果は、様々な構成において存在することが可能であり、磁束、位相、電荷、及びハイブリッド量子ビットを含む異なるタイプの超伝導量子ビットをもたらし得る。様々な構成は、ループのトポロジー、ジョセフソン接合の配置、並びに、インダクタンス、静電容量、及びジョセフソン接合臨界電流などの超伝導回路の要素の物理パラメータにおいて変化し得る。
【0009】
一実装形態において、超伝導量子ビットは、ジョセフソン接合によって中断された超伝導ループを含む。超伝導ループの幾何学的インダクタンスに対するジョセフソン接合のインダクタンスの比率は、2πLIC/Φ0として表現され得る(ここで、Lは、幾何学的インダクタンスであり、ICは、ジョセフソン接合の臨界電流であり、Φ0は、磁束量子である)。インダクタンス及び臨界電流は、超伝導ループの幾何学的インダクタンスに対するジョセフソン接合のインダクタンスの比率を増大させるために、及び、量子ビットが双安定装置として動作可能となるようにするために、選択、調節、又はチューニングすることができる。いくつかの実装形態において、量子ビットの超伝導ループの幾何学的インダクタンスに対するジョセフソン接合のインダクタンスの比率は、約3に等しい。
【0010】
一実装形態において、超伝導カプラは、ジョセフソン接合によって中断された超伝導ループを含む。インダクタンス及び臨界電流は、超伝導ループの幾何学的インダクタンスに対するジョセフソン接合のインダクタンスの比率を減少させるために、及び、カプラが単安定装置として動作可能となるようにするために、選択、調節、又はチューニングすることができる。いくつかの実装形態において、カプラの超伝導ループの幾何学的インダクタンスに対するジョセフソン接合のインダクタンスの比率は、ほぼ1以下に等しい。
【0011】
本システム及びコンポーネントとの関連において使用され得る例示用の量子プロセッサの更なる詳細及び実装形態については、例えば、米国特許第7,533,068号、同第8,008,942号、同第8,195,596号、同第8,190,548号、及び同第8,421,053号において記述されている。
【0012】
関連技術及びこれらに関係する制限の以上の例は、排他的なものではなく、例示を目的としている。関連技術のその他の制限については、本明細書の参照及び図面の検討の際に当業者に明らかとなろう。
【発明の概要】
【課題を解決するための手段】
【0013】
簡潔な概要
一態様によれば、デジタル-アナログコンバータ(DAC)が提供され、これは、第1ジョセフソン接合によって中断された第1ストレージループを有する第1ステージであって、第1ストレージループは、外部コンポーネントと通信するように動作可能であるインターフェイスを有する、第1ステージと、第2ジョセフソン接合によって中断された第2ストレージループを有する第2ステージであって、第2ストレージループは、第1ストレージループにガルバニック結合されており、第1ジョセフソン接合及び第2ジョセフソン接合は、第1制御ラインに直列で結合されている、第2ステージと、第1量子磁束パラメトロン(QFP)ループ及び第2量子QFPループであって、第1ステージ及び第2ステージの個々のものにガルバニック結合された且つこれから延在している第1及び第2QFPループと、を有する。
【0014】
その他の態様によれば、DACは、第2ステージにガルバニック結合された第3ステージと、第3ステージにガルバニック結合された第4ステージと、を更に有していてもよく、第3及び第4ステージは、第3ストレージループ及び第4ストレージループを有し、第3及び第4ストレージループは、それぞれ、第3ジョセフソン接合及び第4ジョセフソン接合によって中断されており、第3及び第4ジョセフソン接合は、第1制御ライン及び第3QFPループ及び第4QFPループに直列に結合され、第3及び第4QFPループは、第3ステージ及び第4ステージの個々のものにガルバニック結合され且つこれから延在している。それぞれのQFPループは、個々のジョセフソン接合を有していてもよく、それぞれのQFPループの個々のジョセフソン接合は、個々の複合ジョセフソン接合を有していてもよく、第1及び第2ジョセフソン接合は、それぞれ、複合ジョセフソン接合を有していてもよく、第1及び第2QFPループは、第1ステージ及び第2ステージの個々のものに対称的に接続されていてもよく、第1QFPループは、第2QFPループから隔離されていてもよい。第1制御ラインは、第1ストレージループ及び第2ストレージループのそれぞれを二等分していてもよく、第1ストレージループ及び第2ストレージループのそれぞれは、それぞれのストレージループの個々の第1側部及び個々の第2側部のそれぞれ上において個々のジョセフソン接合を有していてもよく、第1及び第QFPループのそれぞれは、個々のストレージループの個々の第1側部から個々のストレージループの個々の第2側部まで延在するように結合されていてもよい。第1及び第2QFPループのそれぞれは、1つ又は複数の更なるQFPループにガルバニック結合されていてもよく、DACは、第1制御ラインに少なくともほぼ垂直に延在する第2制御ラインを更に有していてもよく、第2制御ラインは、第1ストレージループ及び第2ストレージループのそれぞれに誘導結合されるように位置決めされていてもよく、第1及び第2QFPループは、第1制御ラインに沿ってガルバニック結合されていてもよく、第1、第2、第3、及び第4QFPループは、第1制御ラインに沿ってガルバニック結合されていてもよく、DACは、第1QFPループに通信自在に結合可能な磁束バイアスラインを更に有していてもよく、磁束バイアスラインは、QFPシフトレジスタのQFPステージを有していてもよく、磁束バイアスラインは、信号ラインを有していてもよい。
【0015】
一態様によれば、量子プロセッサのプログラミング可能なコンポーネントを選択的にプログラミングする方法が提供され、方法は、第1永久電流を第1デジタル-アナログコンバータ量子磁束パラメトロン(DAC-QFP)ループ内にローディングすることであって、第1DAC-QFPループは、第1デジタル-アナログコンバータ(DAC)ストレージループにガルバニック結合され、第1永久電流は、第1DACストレージループの意図された状態に対応している、ことと、第2永久電流を第2DAC-QFPループにローディングすることであって、第2DAC-QFPループは、第2DACストレージループにガルバニック結合され、第2DACストレージループは、第1DACストレージループにガルバニック結合され、第2永久電流は、第2DACストレージループの意図された状態に対応している、ことと、第1介在ジョセフソン接合を介して第1DAC-QFPループの第1永久電流に基づいて第1DACストレージループ内に第1量の磁束を誘発するために第1DAC-QFPループとの通信状態にある1つ又は複数の制御ラインに信号を印加することと、第2介在ジョセフソン接合を介して第2DAC-QFPループの第2永久電流に基づいて第2DACストレージループ内に第2量の磁束を誘発するために第2DAC-QFPとの通信状態にある1つ又は複数の制御ラインに信号を印加することと、プログラミング可能なコンポーネントと通信する第1DACストレージループによって担持されたインターフェイスを通じて第1DACストレージループ内の第1量の磁束及び第2DACストレージループ内の第2量の磁束を有する組み合わせられた磁束に基づいてプログラミング可能なコンポーネントに磁束バイアスを転送することと、を有する。
【0016】
その他の態様によれば、第1永久電流を第1DAC-QFPループ内にローディングすることは、第1電流を提供するためにQFPシフトレジスタの第1量子磁束パラメトロン(QFP)に電流バイアスを印加することと、第1DAC-QFPループに到達するためにQFPシフトレジスタの少なくとも1つの第1介在QFPを通じて第1電流をシフトさせることと、を有していてもよく、第2永久電流を第2DAC-QFPループ内にローディングすることは、第2電流を提供するためにQFPシフトレジスタの第1QFPから電気的に絶縁されたQFPシフトレジスタの第2QFPに対して電流バイアスを印加することと、第2DAC-QFPループに到達するためにQFPシフトレジスタの少なくとも1つの第2介在QFPを通じて第2電流をシフトさせることと、を有していてもよく、永久電流を第2QFPループ内にローディングすることは、第2永久電流を第1QFPループ内にローディングすることと、1つ又は複数の中間QFPループを通じて第2QFPループ内に第2永久電流をシフトさせることと、を有していてもよく、中間QFPループは、中間DACストレージループにガルバニック結合され、この場合に、第1DACストレージループ、中間DACストレージループ、及び第2DACストレージループは、ガルバニック接続されている。磁束バイアスをプログラミング可能なコンポーネントに転送することは、磁束バイアスを量子ビット、カプラ、プログラミングコンポーネント、又は読み出しコンポーネントの1つに転送することを有していてもよい。
【0017】
一態様によれば、量子プロセッサが提供され、これは、1つ又は複数のプログラミング可能な超伝導コンポーネントと、第1方向において延在する2つ以上の行を有する且つ複数の量子磁束パラメトロン(QFP)に基づいたシフトレジスタステージから形成されたシフトレジスタであって、それぞれの行内のそれぞれのQFPに基づいたシフトレジスタステージは、複数のQFPに基づいたシフトレジスタステージの少なくとも1つの他方のQFPに基づいたシフトレジスタに結合されている、シフトレジスタと、シフトレジスタ内のそれぞれの行の1つのQFPに基づいたシフトレジスタステージに結合された個々のデジタル-アナログコンバータ量子磁束パラメトロン(DAC-QFP)であって、個々のデジタル-アナログコンバータ(DAC)ストレージループは、ガルバニックカプラによってそれぞれのDAC-QFPにガルバニック結合され、ガルバニックカプラは、ジョセフソン接合を含み、個々のDACストレージループのそれぞれは、第1方向に垂直の第2方向に沿ってガルバニック結合され、個々のDACストレージループの1つは、1つ又は複数のプログラミング可能な超伝導コンポーネントの1つとの通信状態にある、DAC-QFPと、を有する。
【0018】
その他の態様によれば、DAC-QFPは、アレイとして構成されていてもよく、パワーラインは、第1方向において延在する列内のQFPの間において第2方向において延在していてもよく、グローバル信号ラインは、第1方向において及びQFPの第1行に沿ってパワーラインに垂直に延在していてもよく、DACストレージループは、複合ジョセフソン接合(CJJ)を有していてもよく、DAC-QFPは、CJJの両方の側部に対称的にガルバニック結合されていてもよい。
【0019】
一態様によれば、DACのターゲットステージをプログラミングする方法が提供され、これは、バイアス電流を第1QFPステージに印加することと、中間QFPステージを通じてターゲットQFPステージにバイアス電流をシフトさせることと、ターゲットDACストレージループ内に磁束を導入するために1つ又は複数の制御ラインを通じて電流を印加することと、を有する。
【0020】
その他の態様によれば、中間QFPステージを通じてターゲットQFPステージにバイアス電流をシフトさせること及びターゲットDACストレージループ内に磁束を転送するために1つ又は複数の制御ラインを通じて電流を印加することは、第1QFPステージによって担持された第1ジョセフソン接合に磁束バイアスを印加することと、中間QFPステージによって担持された中間ジョセフソン接合に磁束バイアスを印加することと、第1QFPステージの第1ジョセフソン接合を抑圧することと、ターゲットQFPステージを介してターゲットDACストレージループ内にパルスをローディングすることであって、ターゲットQFPステージのターゲットジョセフソン接合に磁束バイアスを印加すること、ターゲットDACストレージループとの通信状態にある第1制御ラインに電流を導入すること、バイアス電流がガルバニック結合されたターゲットDACストレージループ内にターゲットQFPステージから転送されるようにするために閾値超においてDACジョセフソン接合を通じて電流を増大させるためにDACジョセフソン接合との通信状態にある第2制御ラインに電流を導入すること、第1及び第2制御ラインから電流を除去すること、ターゲットQFPステージの磁束バイアスを抑圧すること、を有することと、意図された数の磁束量子がターゲットDACストレージループ内に導入される時点までターゲットQFPステージを介してターゲットDACストレージループ内に磁束を反復的にローディングすることと、を有し得る。
【0021】
その他の態様においては、当業者には認識されるように、上述の特徴は、任意の妥当な組合せにおいて1つに組み合わせることができる。
【0022】
図面のいくつかの図の簡潔な説明
図面においては、同一の参照符号は、類似の要素又は行為を識別している。図面中の要素のサイズ及び相対的な位置は、必ずしも正しい縮尺で描かれてはいない。例えば、様々な要素の形状及び角度は、必ずしも正確な縮尺で描かれてはおらず、これらの要素のいくつかは、図面の可読性を改善するために、任意に拡大及び位置決めされている場合がある。更には、描かれている要素の具体的な形状は、必ずしも、特定の要素の実際の形状に関する任意の情報を伝達することを意図したものではなく、図面における認識の容易性を目的として選択されたものであるに過ぎない場合がある。
【図面の簡単な説明】
【0023】
【
図1】本システム、コンポーネント、及び方法によるアナログコンピュータに結合されたデジタルコンピュータを含むハイブリッド演算システムの概略図である。
【
図2】例示用の超伝導量子プロセッサの一部分の概略図である。
【
図3】単一のステージを有するデジタル-アナログコンバータ(DAC)の一実装形態の概略図である。
【
図4】シフトレジスタ及び3つのステージを有するDACの一実装形態の概略図である。
【
図5】それぞれが4つのステージを有する一連の3つのDACの一実装形態の概略図である。
【
図6A】4つのステージを有するDACの別の実装形態の概略図である。
【
図6B】4つのステージを有する複数のDACのアレイの概略図である。
【
図7】量子プロセッサのプログラミング可能なコンポーネントを選択的にプログラミングする方法のフローチャートである。
【
図8】DACのターゲットステージをプログラミングする方法のフローチャートである。
【
図9】QFPシフトレジスタによってプログラミングされたDACのアレイを有する量子プロセッサの例示用の一実装形態の表現である。
【発明を実施するための形態】
【0024】
詳細な説明
以下の説明においては、様々な開示されている実装形態の十分な理解を提供するために、特定の具体的な詳細が記述されている。但し、当業者は、これらの具体的な詳細の1つ又は複数を伴うことなしに、或いは、その他の方法、コンポーネント、材料、などを伴って、実装形態が実施され得ることを認識するであろう。その他の例において、コンピュータシステム、サーバーコンピュータ、及び/又は通信ネットワークと関連する周知の構造については、実装形態の記述の不必要なあいまい化を回避するために詳細に図示及び記述されてはいない。
【0025】
文脈がそうではないことを必要としていない限り、本明細書及び添付の請求項の全体を通じて、「有する」という用語は、「含む」と同義であり、包含型又はオープンエンド型である(即ち、更なる、記述されてはいない要素又は方法の行為を排除してはいない)。
【0026】
「一実装形態」又は「1つの実装形態」に対する本明細書の全体を通じた参照は、その実装形態との関連において記述されている特定の特徴、構造、又は特性が少なくとも1つの実装形態において含まれていることを意味している。従って、「一実装形態において」又は「1つの実装形態において」というフレーズの本明細書の全体を通じた様々な場所における出現は、必ずしも、すべてが同一の実装形態を参照しているものではない。更には、特定の特徴、構造、又は特性は、1つ又は複数の実装形態において任意の適切な方式で組み合わせることができる。
【0027】
本明細書及び添付の請求項において使用されている「1つの(a)」、「1つの(an)」、及び「その(the)」という単数形は、文脈がそうではないことを明瞭に表していない限り、複数の参照物を含む。また、「又は(or)」という用語は、一般に、文脈が明瞭にそうではないことを表していない限り、「及び/又は」を含むその意味において利用されていることに留意されたい。
【0028】
本明細書において提供されている開示の見出し及び「要約」は、利便を目的としたものに過ぎず、実装形態の範囲又は意味を解釈するものではない。
【0029】
例示用の演算システム
図1は、デジタルコンピュータ102を有する演算システム100を示している。例示用のデジタルコンピュータ102は、従来のデジタル処理タスクを実行するために使用され得る1つ又は複数のデジタルプロセッサ106を含む。デジタルコンピュータ102は、少なくとも1つのシステムメモリ122と、システムメモリ122を含む様々なシステムコンポーネントを1つ又は複数のデジタルプロセッサ106に結合する少なくとも1つのシステムバス120と、を更に含み得る。システムメモリ122は、モジュールの組124を保存することができる。
【0030】
1つ又は複数のデジタルプロセッサ106は、1つ又は複数の中央処理ユニット(「CPU」)、グラフィカル処理ユニット(「GPU」)、デジタル信号プロセッサ(「DSP」)、用途固有の集積回路(「ASIC」)、プログラミング可能なゲートアレイ(「FPGA」)、プログラミング可能なロジックコントローラ(「PLC」)、など、及び/又はこれらの組合せなどの任意の論理処理ユニット又は回路(例えば、集積回路)であってよい。
【0031】
いくつかの実装形態において、演算システム100は、アナログコンピュータ104を有し、これは、1つ又は複数の量子プロセッサ126を含み得る。量子プロセッサ126は、本出願において記述されているシステム及び方法を使用した少なくとも1つの超伝導集積回路を含み得る。デジタルコンピュータ102は、例えば、コントローラ118を介してアナログコンピュータ104と通信することができる。更に詳細に本明細書において記述されているように、特定の演算をデジタルコンピュータ102の命令の下にアナログコンピュータ104によって実行することができる。
【0032】
デジタルコンピュータ102は、ユーザー入出力サブシステム108を含み得る。いくつかの実装形態において、ユーザー入出力サブシステムは、ディスプレイ110,マウス112、及び/又はキーボード114などの1つ又は複数のユーザー入出力コンポーネントを含む。
【0033】
システムバス120は、メモリコントローラを有するメモリバス、周辺バス、及びローカルバスを含む任意の既知のバス構造又はアーキテクチャを利用することができる。システムメモリ122は、読み出し専用メモリ(「ROM」)、スタティックランダムアクセスメモリ(「SRAM」)、フラッシュNANDなどの不揮発性メモリ、並びに、ランダムアクセスメモリ(「RAM」)(図示されてはいない)などの揮発性メモリ、を含み得る。
【0034】
また、デジタルコンピュータ102は、その他の一時的ではないコンピュータ又はプロセッサ可読ストレージ媒体又は不揮発性メモリ116を含み得る。不揮発性メモリ116は、ハードディスク(例えば、磁気ディスク)との間において読み書きするためのハードディスクドライブ、着脱自在の光ディスクとの間において読み書きするための光ディスクドライブ、及び/又は半導体媒体(例えば、NANDに基づいたフラッシュメモリ)との間において読み書きするための半導体ドライブ(SSD)を含む様々な形態を有し得る。不揮発性メモリ116は、システムバス120を介して1つ又は複数のデジタルプロセッサと通信することができると共に、システムバス120に結合された適切なインターフェイス又はコントローラ118を含むことができる。不揮発性メモリ116は、デジタルコンピュータ102用のプロセッサ又はコンピュータ可読命令、データ構造、又はその他のデータ(しばしば、プログラムモジュールと呼称される)用の長期ストレージとして機能することができる。
【0035】
デジタルコンピュータ102は、ハードディスク、光ディスク、及び/又は半導体ストレージ媒体を利用するものとして記述されているが、当業者は、その他のタイプの一時的ではない且つ不揮発性のコンピュータ可読媒体が利用され得ることを理解するであろう。当業者は、いくつかのコンピュータアーキテクチャが一時的ではない揮発性メモリ及び一時的ではない不揮発性メモリを利用することを理解するであろう。例えば、揮発性メモリ内のデータは、不揮発性メモリを提供するために集積回路を利用している不揮発性メモリ又は半導体ディスクにキャッシングすることができる。
【0036】
様々なプロセッサ又はコンピュータ可読命令、データ構造、又はその他のデータは、システムメモリ122内において保存することができる。例えば、システムメモリ122は、リモートクライアントと通信するための且つデジタルコンピュータ102及びアナログコンピュータ104上のリソースを含むリソースの使用をスケジューリングするための命令を保存することができる。また、例えば、システムメモリ122は、少なくとも1つのプロセッサによって実行された際に少なくとも1つのプロセッサが様々なアルゴリズム及び/又は命令を実行するようにするプロセッサ実行可能命令又はデータの少なくとも1つを保存し得る。いくつかの実装形態において、システムメモリ122は、アナログコンピュータ104に対する事前処理、同時処理、及び事後処理を実行するために、プロセッサ又はコンピュータ可読計算命令及び/又はデータを保存することができる。システムメモリ122は、アナログコンピュータ104とやり取りするためにアナログコンピュータインターフェイス命令の組を保存し得る。
【0037】
アナログコンピュータ104は、量子プロセッサ126などの少なくとも1つのアナログプロセッサを含み得る。アナログコンピュータ104は、例えば、熱、磁界、及びその他の外部ノイズから量子コンピュータの内部要素を遮蔽する隔離された環境内などの隔離された環境内において提供することができる。隔離された環境は、例えば、約1K未満の温度にアナログプロセッサを低温冷却するように動作可能である、例えば、希釈冷蔵庫などの冷蔵庫を含み得る。
【0038】
アナログコンピュータ104は、量子ビット、カプラ、及びその他のコンポーネントなどのプログラミング可能な要素を含むことができる。量子ビットは、読み出し制御システム128を介して読み出すことができる。読み出し結果は、デジタルコンピュータ102のその他のコンピュータ又はプロセッサ可読命令に送信することができる。量子ビットは、量子ビット制御システム130を介して制御することができる。量子ビット制御システム130は、オンチップデジタル-アナログコンバータ(DAC)と、バイアスをターゲット装置に印加するように動作可能なアナログラインと、を含み得る。量子ビットを結合しているカプラは、カプラ制御システム132を介して制御することができる。カプラ制御システム132は、オンチップDAC及びアナログラインなどのチューニング要素を含み得る。量子ビット制御システム130及びカプラ制御システム132は、アナログプロセッサ104上において本明細書において記述されているように量子アニーリングスケジュールを実装するために使用することができる。プログラム要素は、集積回路の形態において量子プロセッサ126内に含まれ得る。量子ビット及びカプラは、第1材料を有する集積回路の層内において位置決めすることができる。読み出し制御システム128などのその他のコンポーネントは、第2の材料を有する集積回路のその他の層内において位置決めすることができる。
【0039】
超伝導磁束ストレージコンポーネント
また、超伝導磁束ストレージコンポーネントは、本出願においては、超伝導デジタル-アナログコンバータ(DAC)又は磁束DACと呼称されている。
【0040】
量子プロセッサは、量子効果による演算を実行するための複数のプログラミング可能な装置(本明細書においてはプログラミング可能なコンポーネントとも呼称されている)を有することができる。プログラミング可能な装置は、量子ビット、(プログラミング可能な方式で量子ビットを結合する)カプラ、並びに、これらのコンポーネントを含み得る。プログラミング可能な装置は、その動作に影響を及ぼすように印加された信号を介してプログラミングされており、例えば、演算の際にその磁束に影響を及ぼすように、バイアス信号を磁束量子ビットに印加することができる。制御パラメータを実現するために超伝導ループに静的磁束バイアスを選択的に印加するように、オンチップ制御回路を使用することができる。
【0041】
このような信号は、プログラミング可能なコンポーネントに印加される前に変換及び/又はストレージを必要とし得る。例えば、従来のコンピュータは、量子プロセッサ用のデジタル信号を生成することができると共に、それらのデジタル信号は、1つ又は複数のデジタル-アナログコンバータ(DAC)を介してアナログ形態に変換することができる。変換されたアナログ信号は、プログラミング可能なコンポーネントに印加することができる。別の例として、(デジタル又はアナログであり得る)信号は、演算の前に又はその最中に一時点において量子プロセッサによって受け取れられてもよく、信号が後の時点においてプログラミング可能なコンポーネントに印加されることを要する時点までDACを介して保存することができる。DACは、多くの用途を有し、これらの目的の1つ又は複数(即ち、変換及び/又はメモリ)のために及び/又はその他の目的のために、使用することができる。これらの及びその他の目的のためのDACの用途の例については、例えば、米国特許第7,876,248号及び同第8,098,179号において更に詳細に記述されている。
【0042】
DACという用語が全体を通じて使用されているが、記述されているコンポーネントは、デジタル信号をアナログ信号に変換することに必ずしも限定されない(且つ、いくつかの実装形態においては、このような変換をまったく伴っていない)様々な目的のために使用され得ることを理解されたい。例えば、上述のように、超伝導DACは、所定の期間にわたって信号を保存するために(例えば、これにより、メモリの形態において動作するために)量子プロセッサによって使用され得る。
【0043】
量子磁束パラメトロン
量子磁束パラメトロン(QFP)は、いくつかの側面において複合RF-SQUIDに類似した超伝導ジョセフソン接合装置である。特定のポテンシャルエネルギー曲線をQFP装置によって生成することができる。このポテンシャルエネルギー曲線は、「W」に似たものであってよく、この場合に、中央ピーク又は「バリア」は、中央バリアの両側の2つの井戸の独立した深さと共に、高さにおいて調節可能である。「量子」という用語がQFP装置の名称において出現しているが、装置は、一般的に従来の方式で稼働している。要すれば、従来において、中央バリアの高さを迅速に増大させた場合には、システムのエネルギー構成が大幅に破壊されるものと考えられている。QFPシフトレジスタなどのQFP装置については、米国特許第10,528,886号において更に記述されている。
【0044】
例示用の超伝導量子プロセッサ
図2は、少なくとも1つの実装形態による例示用の超伝導量子プロセッサの一部分200の概略図である。
図2に示されている超伝導量子プロセッサの一部分200は、2つの超伝導量子ビット201及び202を含む。また、量子ビット201及び202の間には、カプラ210を介したチューニング可能な(即ち、2ローカル相互作用を提供する)結合(対角的結合)も示されている。
図2に示されている量子プロセッサの一部分200は、2つの量子ビット201、202及び1つのカプラ210しか含んでいないが、当業者は、量子プロセッサ200が、任意の数の量子ビットと、これらの間において情報を結合する任意の数のカプラと、を含み得ることを理解するであろう。
【0045】
量子プロセッサ200は、量子プロセッサ200の状態を構成及び制御するために使用される複数のインターフェイス221~225を含む。インターフェイス221~225のそれぞれは、プログラミングサブシステム及び/又は発展サブシステムの一部分として、図示のように、個々の誘導結合構造によって実現することができる。或いは、この代わりに、又はこれに加えて、インターフェイス221~225は、ガルバニック結合構造によって実現することもできる。本明細書におけるガルバニック結合は、結合された回路の間において物理的に共有されている1つ又は複数の要素(例えば、ワイヤ)を通じて実現された結合を意味している。また、ガルバニック結合は、直接的な伝導接続と呼称することもできる。直接的な伝導接続は、供給された要素を通じて回路の間において形成され、これにより、回路を結合するための直接的な電気接続を提供している。対照的に、誘導結合は、直接的な電気接続を伴うことなしに回路の間における磁界の相互作用を通じて実現される結合を意味している。第1回路の一部分を通じた電流は、第1回路の周りにおいて磁界を生成し、これにより、第2回路内において電流を誘発している。いくつかの実装形態において、インターフェイス221~225の1つ又は複数は、1つ又は複数のDACによって駆動することができる。このようなプログラミングサブシステム及び/又は発展サブシステムは、量子プロセッサ200とは別個のものであってもよく、或いは、ローカルに(即ち、量子プロセッサ200と共にオンチップ状態において)含まれていてもよい。
【0046】
量子プロセッサ200の動作の際に、インターフェイス221及び224は、それぞれ、磁束信号を量子ビット201及び202の個々の複合ジョセフソン接合(CJJ)231及び232内に結合し、これにより、ハミルトン関数におけるチューニング可能なトンネリング項を実現するために、使用することができる。この結合は、ハミルトン関数の非対角σx項を提供し、これらの磁束信号は、「非局在化信号」の例である。
【0047】
同様に、インターフェイス222及び223は、それぞれ、磁束信号を量子ビット201及び202の個々の量子ビットループ内に印加し、これにより、ハミルトン関数におけるhi項(量子ビット用の次元なしローカルフィールド)を実現するために、使用することができる。この結合は、ハミルトン関数における対角σz項を提供している。更には、インターフェイス225は、磁束信号をカプラ210内に結合し、これにより、ハミルトン関数における1つ又は複数のJij項(カプラ用の次元なしローカルフィールド)を実現するために、使用することができる。この結合は、ハミルトン関数における対角σi
z、σj
z項を提供している。量子演算において使用されるハミルトン関数(並びに、その項)の例については、例えば、米国特許出願公開第20140344322号において更に詳しく記述されている。
【0048】
本明細書及び添付の請求項の全体を通じて、「量子プロセッサ」という用語は、物理的量子ビット(例えば、量子ビット201及び202)及びカプラ(例えば、カプラ210)の集合体を一般的に記述するために使用されている。物理的量子ビット201及び202及びカプラ210は、量子プロセッサ200の「プログラミング可能なコンポーネント」と呼称され、その対応するパラメータ(例えば、量子ビットhi値及びカプラJij値)は、量子プロセッサの「プログラミング可能なパラメータ」と呼称されている。量子プロセッサの文脈において、「プログラミングサブシステム」という用語は、プログラミング可能なパラメータを量子プロセッサ200のプログラミング可能なコンポーネント及びその他の関連する制御回路及び/又は命令に印加するために使用されるインターフェイス(例えば、プログラミングインターフェイス222、223、及び225)を一般的に記述するために使用されている。
【0049】
上述のように量子ビット201、202及びカプラ210などの(本明細書においてプログラミング可能なコンポーネントとも呼称されている)量子装置を制御するために、磁束を個々の装置内に結合するように、DACを使用することができる。これらのDACは、いくつかの実装形態において、米国特許第10,528,886号において記述されているように、XYZ方式を使用してアドレス指定又はプログラミングすることができる。但し、このタイプのプログラミングは、それぞれのDACを一意にアドレス指定するラインを必要とし、多数のラインの使用を結果的にもたらし得る。これらの装置を管理することは、一般に、外側回路との間の通信、即ち、プロセッサアーキテクチャの外側からの通信、を通じていくつかのパラメータにおける制御を必要としている。プロセッササイズの増大に伴って、十分な制御ラインの提供が困難になり得る。従って、相対的に少ない数のラインを使用してプログラミングされ得るDACを提供することが有益であり得る。
【0050】
上述のように、プログラミングサブシステムのプログラミングインターフェイスは、量子プロセッサとは別個のものであり得る又はプロセッサ上においてローカルに含まれ得るその他のサブシステムと通信することができる。プログラミングサブシステムは、量子プロセッサの機械言語におけるプログラミング命令を受け取るように、及び、プログラミング命令に従ってプログラミング可能なコンポーネントをプログラミングするためにプログラミング命令を実行するように、構成することができる。同様に、量子プロセッサの文脈においては、「発展サブシステム」という用語は、一般に、量子プロセッサ200のプログラミング可能なコンポーネント及びその他の関連する制御回路及び/又は命令を発展させるために使用されるインターフェイス(例えば、「発展インターフェイス」221及び224)を含む。例えば、発展サブシステムは、信号ライン及びその対応するインターフェイス(221、224)を量子ビット(201、202)に対してアニーリングすることを含み得る。
【0051】
また、量子プロセッサ200は、読み出し装置251及び252を含み、この場合に、読み出し装置251は、量子ビット201と関連付けられており、読み出し装置252は、量子ビット202と関連付けられている。
図2に示されているものなどのいくつかの実装形態において、読み出し装置251及び252のそれぞれは、対応する量子ビットに誘導結合された直流超伝導量子干渉装置(DC-SQUID)を含む。量子プロセッサ200の文脈において、「読み出しサブシステム」という用語は、ビットストリングを生成するために量子プロセッサ内において量子ビット(例えば、量子ビット201及び202)の最終的状態を読み出すために使用される読み出し装置251、252を一般的に記述するために使用されている。また、読み出しサブシステムは、ルーティング回路(例えば、ラッチ要素、シフトレジスタ、又はマルチプレクサ回路)などのその他の要素を含んでいてもよく、及び/又は、代替構成(例えば、XY-アドレス指定可能アレイ、XYZ-アドレス指定可能アレイ、など)において構成されていてもよく、これらの任意のものは、DACを有し得る。また、量子ビット読み出しは、国際特許出願公開第2012064974号において記述されているものなどの代替回路を使用して実行することもできる。
【0052】
図2は、2つの物理的量子ビット201、202、1つのカプラ210、及び2つの読み出し装置251、252を示しているが、量子プロセッサ(例えば、プロセッサ200)は、相対的に大きな数(例えば、数百、数千、又はこれ超)の量子ビット、カプラ、及び/又は読み出し装置を含む任意の数の量子ビット、カプラ、及び/又は読み出し装置を利用することができる。異なる(例えば、相対的に大きな)数の演算コンポーネントを有するプロセッサに対する本明細書の教示の適用については、当業者に容易に明らかとなろう。
【0053】
超伝導量子ビットの例は、超伝導磁束量子ビット、超伝導電荷量子ビット、及びこれらに類似したものを含む。超伝導磁束量子ビットにおいては、ジョセフソンエネルギーが、充電エネルギーを支配しており、或いは、これに等しい。電荷量子ビットにおいては、エネルギー関係は、逆である。使用され得る磁束量子ビットの例は、高周波超伝導量子干渉装置(RF-SQUID)を含み、これは、1つのジョセフソン接合によって中断された超伝導ループ、3つのジョセフソン接合によって中断された超伝導ループを含む永久電流量子ビット、及びこれらに類似したものを含む。
【0054】
図2の例示用の実装形態の222、223、及び225などのプログラミングインターフェイスは、超伝導DACに接続することができる。超伝導DACは、磁束メモリ又は磁束ストレージ装置として機能することができると共に、デジタル量の磁束をアナログ装置内において保存される磁束に変換することができる。いくつかの実装形態において、DACは、所定の温度の範囲内において超伝導である材料のループを含み、この場合に、ループは、1つ又は複数のジョセフソン接合によって中断されている。一実装形態において、DACは、RF-SQUIDを含み、単一のジョセフソン接合によって中断された超伝導ループを含む。別の実装形態において、DACは、複合ジョセフソン接合(CJJ)によって中断された超伝導ループを含む。DAC-CJJは、磁束用の加算要素として振る舞うことができる。
【0055】
DAC内において磁束を保存することは、磁束をDACのCJJを通じてDACのストレージループ内に(即ち、DACの超伝導ループ内に)追加することを含む。磁束は、1つ又は複数の制御信号又はバイアスを使用することにより、CJJを通じて超伝導DACのストレージループに追加することができる。複数の磁束量子をCJJを使用して実装された超伝導DAC内において保存することができる。集積回路内において超伝導装置を制御するように動作可能である磁束DACの説明については、例えば、「Johnson M.W.et al. “A scalable control system for a superconducting adiabatic quantum optimization processor”,arXiv:0907.3757v2,24 March 2010」を参照されたい。プログラミング可能なDACの実装形態に関する更なる詳細については、米国特許出願第16/098,801号において見出すことができる。
【0056】
量子磁束パラメトロンデジタル-アナログコンバータ
図3を参照すれば、デジタル-アナログコンバータ(DAC)302の1つの実装形態と共に、超伝導集積回路300が示されている。超伝導集積回路300の材料は、一般に超伝導材料であり、この場合に、バリア材料が任意のジョセフソン接合内において存在していることを理解されたい。超伝導材料は、一般に、所与の材料の特徴を示す臨界温度未満において超伝導である。DAC302は、量子磁束パラメトロン(QFP)ループ308にガルバニック結合されたストレージループ304を有する。わかりやすさを目的として、及び、ループの弁別を支援するために、ストレージループ304は、例示用の電流経路307を有する状態において示されており、QFPループ308は、例示用の電流経路309を有する状態において示されている。これらの経路は、一例として追加されたものであるに過ぎず、電流経路は、変化し得る(例えば、逆転し得るが、所与の時点においてループの1つ内においてのみ発生する)ことを理解されたい。
図3の実装形態において、ストレージループ304は、複合ジョセフソン接合(CJJ)と、ストレージインダクタ305と、を有する。CJJは、ループ304を中断する第1及び第2ジョセフソン接合306a及び306bによって形成されている。回路300は、ストレージループ304と交差する第1制御ライン310と、ストレージループ304に誘導結合された第1制御ライン310に垂直に延在する第2制御ライン312と、を有する。本明細書において使用されている「垂直に」は、約90°である角度を意味しているが、正確に90度でなくてもよいことを理解されたい。例えば、いくつかの実装形態において、第1制御ライン310及び第2制御ライン312は、互いとの関係において90度±10度の角度において延在し得る。また、垂直方向は、回路300の領域内においてのみであってもよく、制御ラインは、回路300の領域から離れるように異なる方向において曲がっていてもよく、もはや、垂直でなくてもよいことを理解されたい。
【0057】
QFPループ308は、ストレージループ304から延在しており、第3制御ライン318に結合されたCJJ316によって中断されたボディ314を有する。電流が第3制御ラインによってCJJ316内に導入された際に、磁束量子をQFPループ308内に導入することができる。本明細書において使用されているCJJは、一般に、2つの電気的に並列の電流経路を含み、この場合に、それぞれは、ジョセフソン接合によって中断されている。次いで、第1制御ライン310及び第2制御ライン312は、QFPループ308内の電流に基づいてDACストレージループ304内に磁束を導入するために導入された電流を有することができる。信号ライン内に導入された電流によって形成されたこの一連の制御パルスは、選択された数の磁束量子をDACストレージループ304内にプログラミングするために、反復することができる。更に後述するように、DACストレージループ304は、その他のDACストレージループに結合されていてもよく、プログラミング可能なコンポーネントに結合されていてもよく、及び/又は、プログラミング可能なコンポーネントに集合的に結合されたその他のDACステージに結合されていてもよい。
図3に示されている実装形態において、QFPループ308は、DACストレージループ304に対して対称的に接続されている。制御ライン310は、ジョセフソン接合306a、306bがDACストレージループ304の両側において見出されるように及びQFPループ308がDACストレージループ304の第1側部からDACストレージループ304の第2側部まで延在するように、ストレージループ304を二等分している。QFPループ308とDACストレージループ304の間のこの対称的な接続は、DACストレージループ304内において保存されている磁束量子に起因したQFPループ308内のフィードバック電流を有益な方式で低減又は除去し、これにより、プログラミング範囲を増大させることができる。いくつかの実装形態において、DACストレージループ304の内側を流れる電流は、DACストレージループ304の両側を通じて均等に拡散させることができる。この構成は、QFPループ308と通信している電流が、DACストレージループ304の両側において等しくなり及び反対になることを結果的にもたらし得る。従って、この等しく且つ反対の電流は、DACストレージループ304内の磁束の量が増大するのに伴って、QFPループ308内の任意の効果をキャンセルし、その結果、QFPループ308に転送されて戻る電流が少なくなる又はなくなることをもたらし得る。
【0058】
回路300は、更に詳細に以前に定義されているように、低インダクタンス材料と高インダクタンス材料の組合せから形成することができる。いくつかの実装形態において、QFPループ308及びDACストレージループ304は、低インダクタンス材料、高インダクタンス材料、又はこれらの組合せであってよい。いくつかの実装形態において、QFPループ308は、主には、低インダクタンス超伝導材料から形成され得る一方で、DACストレージループ304は、主には高インダクタンス超伝導材料から形成することができる。いくつかの実装形態において、低インダクタンス超伝導材料は、Ta、Nb、及びAlの1つであってよい一方で、高インダクタンス超伝導材料は、WSi、MoN、NbN、NbTiN、及び粒状アルミニウムの1つであってよい。
【0059】
図4の例示用の実装形態は、量子プロセッサの一部分400を示している。量子ビット又はカプラなどのプログラミング可能な超伝導コンポーネント402は、プログラミングされるように、誘導結合されている。複数の超伝導コンポーネントは、
図5との関係において更に記述されているように、プログラミングすることができる。量子プロセッサ400は、シフトレジスタステージ406に基づいて複数のQFP(わかりさすさを目的として1つのみが示されている)から形成された2つ以上の行を有するシフトレジスタ404を有する。個々の行内のそれぞれのQFPシフトレジスタステージ406は、その隣接するものに磁気結合又はガルバニック結合され、第1方向において延在している。シフトレジスタ404のそれぞれの行内において、1つのQFPに基づいたレジスタステージ406は、列410内において示されているように、磁気結合又はガルバニック結合されたマルチステージ414の個々の隣接するDAC-QFP408を有する。DAC-QFP408は、マルチステージDAC414を形成するために個々のDACストレージループ412にガルバニック結合され、この場合に、DAC-QFP408とDACストレージループ412の間の結合は、ジョセフソン接合416を含む。図示のように、ジョセフソン接合416は、CJJであってよい。マルチステージDAC414は、第1方向に垂直である第2方向に沿ってガルバニック結合された個々のDACストレージループ412a、412b、412cを有する。本明細書において使用されている「垂直」は、QFPシフトレジスタ404の行とマルチステージDAC414の列の一般的な構成を意味しており、必ずしも、正確に90度の角度を意味してはいない。いくつかの実装形態において、交差の角度は、90度±10度であってよい。DACストレージループの1つ、
図4の実装形態においては第1ストレージループ412a、は、1つ又は複数のプログラミング可能な超伝導コンポーネント402の1つとの通信状態にある。
【0060】
DAC-QFP408は、QFP406の行に沿って延在するそれぞれのDACストレージループ412及びグローバル信号ライン420(わかりやすさを目的として短い破線によって示されている)との通信状態にあるパワーライン418(わかりやすさを目的として長い破線によって示されている)との組合せにおいて使用することができる。いくつかの実装形態において、DACストレージループ412は、CJJ416を有し、パワーライン418は、CJJ416との通信状態にある。いくつかの実装形態において、DAC-QFP408は、CJJ416の両側に対称的に結合されている。
図4の実装形態には、3つのステージが示されている一方で、プログラミング可能なコンポーネント402をプログラミングする際には相対的に大きな制御精度を目的として更なるステージが含まれ得ることを理解されたい。DAC-QFP408に伝達された状態は、グローバル信号ライン420及びパワーライン418が増大された際に対応するDACストレージループ412が磁束量子によってプログラミングされることになるかどうかを判定することになる。例えば、いくつかの実装形態において、個々のステージのDAC-QFP408によって提供された磁束バイアスがグローバル信号ラインからの磁束と同一の極性をする際には、DACストレージループ412は、制御ラインが増大された際に磁束量子によってプログラミングされることになる。逆に、DAC-QFP408が反対の極性を有する磁束バイアスによってプログラミングされている場合には、DACストレージループ412は、信号ラインが増大された際にプログラミングされることにならない。いくつかの実装形態において、制御ラインが増大された際に正又は負のパルスがDACストレージループ412内において保存されることになるかどうかを判定するために、パワーライン418によって提供される電流の方向を使用することができる。
【0061】
いくつかの実装形態において、マルチステージDAC414は、プログラミング可能なコンポーネント402に送信される意図された値を提供するために、それぞれのDACストレージループ412に提供されたいくつかの磁束量子によってプログラミングすることができる。プログラミング可能なコンポーネント402がプログラミングされたら、マルチステージDAC414をリセットすることが望ましい場合がある。これは、パワーライン418によって提供される電流の方向の切り替えを通じてローディングパルスの反対方向においていくつかのパルスをローディングし、マルチステージDAC414をプログラミングするために記述されているものに類似した手順を反復することによって、それぞれのDACストレージループ412から磁束量子をアンローディングすることにより、実行することができる。例えば、DACのステージに正の磁束量子がローディングされた場合に、これは、負のパルスによってアンローディングすることができると共に、逆もまた真である。4ステージDACなどのいくつかの実装形態においては、DACの異なるステージには、反対方向においてパルスをローディングすることができると共に(例えば、4つのステージが(-4 +2 -1 0)としてローディングされる)、従って、それぞれのステージの逆方向を有するパルスによってアンローディングすることができる。その他の実装形態においては、変化する信号をグローバル信号ライン420及び/又はパワーライン418に印加することにより、リセットを実現することができる。
【0062】
上述のように、回路400は、低インダクタンス材料及び高インダクタンス材料の組合せから形成することができる。いくつかの実装形態において、DAC-QFP408は、主には低インダクタンス超伝導材料から形成することができる一方で、DACストレージループ412は、主には高インダクタンス超伝導材料から形成することができる。いくつかの実装形態において、隣接するQFPステージ(例えば、406及び408)を接続しているリンクは、高インダクタンス材料から形成することができる。いくつかの実装形態において、低インダクタンス超伝導材料は、Ta、Nb、及びAlの1つであってよい一方で、高インダクタンス超伝導材料は、WSi、MoN、NbN、NbTiN、TiN、及び粒状アルミニウムの1つであってよい。
【0063】
図5を参照すれば、マルチステージDACのアレイを有する量子プロセッサの一部分500の例示用の実装形態が示されている。
図5は、例えば、プログラミング可能な超伝導コンポーネント402及びプログラミング可能な超伝導コンポーネント502が類似の装置を意味するように、
図4において使用されているものに類似した(即ち、2つの最下位桁が同じである)符号を利用している。
図5の実装形態において、本明細書において記述されているQFP-DACの一部分であるQFPループ(DAC-QFPと呼称されている)は、複数のマルチステージDACの一部分としてアレイとして構成されており、複数のプログラミング可能な超伝導コンポーネント502のプログラミングを許容している。DAC-QFP508は、
図4との関係において記述されているようにシフトレジスタに磁気又はガルバニック結合された1つの列を有していてもよく、或いは、DAC-QFP508は、アドレスライン又はその他の制御方式によってアドレス指定されていてもよい。それぞれの個々のDAC-QFP508は、その他のDAC-QRP508に行において磁気又はガルバニック結合されており、それぞれのDAC-QFP508は、また、個々のDACストレージループ512にもガルバニック結合されている。DAC-QFP508とDACストレージループ512の間の結合は、ジョセフソン接合516を含み、これは、CJJであってよい。個々のDACストレージループ512a、512b、512c、512dは、プログラミング可能なコンポーネント502と通信状態にある4ステージDAC522a、522b、522c(集合的に522)を形成するように列として接続されている。量子プロセッサ500の一部分内のそれぞれのセクションごとに、DAC-QFP508は、DAC-QFP508の行内において第1方向において磁気又はガルバニック接続されており、DACストレージループ512は、DACストレージループ512の列内において第2方向においてガルバニック接続されている。第1及び第2方向は垂直であり、これは、上述のように、正確に90度の角度を必要とするのではなく、約90度を意味している。プログラミング可能な超伝導コンポーネント502は、DACストレージループ512のそれぞれの列に接続されており、これらは、プログラミング可能なコンポーネント502をプログラミングするための単一の4ステージDAC522を形成している。パワーライン518a、518b、518c(集合的に518であり、わかりやすさを目的として長い破線によって示されている)は、4ステージDAC522を形成するそれぞれのDACストレージループ512との通信状態において第2方向において延在している一方で、グローバル信号ライン520(わかりやすさを目的として短い破線によって示されている)は、パワーライン518に垂直に延在し、所与の行においてそれぞれのDACストレージループ512のCJJに誘導接続されている。制御ラインDACストレージループ512は、パワーライン518に沿ってガルバニック結合され得ることを理解されたい。更には、本明細書において使用されている「垂直」は、上述のように正確に90度の角度ではなく、約90度の角度を意味していることを理解されたい。また、「垂直」は、パワーライン518及びグローバル信号ライン520がDAC-QFP508及びDACストレージループ512と交差する量子プロセッサ500の部分を意味しており、制御ラインは、この部分から離れるように異なる方向において曲がることができると共に、それらの領域においては垂直でなくてもよいことを理解されたい。
図5の例示用の実装形態において、グローバル信号ライン520は、回路のエッジにおいてパワーライン518と平行であり、この場合に、グローバル信号ライン520は、次の行に沿って逆方向に曲がっている。図示のように、グローバル信号ライン520は、アレイ内のすべてのDACストレージループ512をアドレス指定するために方向を逆転させることができる。いくつかの実装形態においては、グローバルバイアス信号を提供するために複数のグローバル信号ラインが使用され得る一方で、その他の実装形態においては、単一ワイヤによって提供される電流がアレイ内のDACのすべてにグローバル磁束バイアス信号を提供し得ることを理解されたい。本明細書において使用されている「パワーライン」及び「グローバル信号ライン」という用語は、個々のDACストレージループ512がDAC-QFP508のプログラミングによって選択された際に磁束量子をDACストレージループ512内に導入するために個々のコンポーネントに電流を導入する制御ラインを意味している。上述のように、回路500は、低インダクタンス材料及び高インダクタンス材料の組合せから形成することができる。いくつかの実装形態においては、装置の間のリンク内において高インダクタンス材料を有することが有益であり得る。
【0064】
いくつかの実装形態において、DACストレージループ512は、CJJ516を有し、DAC-QFP508は、CJJ516の両側に対称的に結合されている。図示のように、DAC-QFP508の行は、互いとの間の通信から電気的に絶縁されており、DACストレージループ512の列は、互いとの間の通信から電気的に絶縁されている。量子プロセッサ500の一部分は、
図5の実装形態において示されている4ステージダック522の3つの列に限定されるものではなく、それぞれのDAC-QFP508は、1つ又は複数の更なるDAC-QFPループへの、シフトレジスタへの、又はその他の装置への、ガルバニック結合を有し得ることを理解されたい。また、いくつかの実装形態においては、DACストレージループ512の列は、互いに直接的に接続されてはおらず、従って、互いとの間の通信から電気的に絶縁されていると見なされる一方で、これらは、パワーライン518を共有し得ることを理解されたい。例えば、一実装形態において、
図5に示されている量子プロセッサの一部分500は、アレイ内において複数回にわたって反復され得る。3つのDAC522は、それぞれ、独立したパワーライン518a、518b、518cによってアドレス指定することができると共に、パワーライン信号がすべての第3DAC522aにパワーライン518aを通じて印加されるように、パワーライン信号がアレイ内の次のDAC-QFPにおいて接続されたすべての第3DAC522bにパワーライン518bを通じて印加されるように、及び、パワーライン信号が残りのDAC522cにパワーライン518cを通じて印加されるように、更なるDAC522を並列で接続することができる。「色(color)」と呼称されている異なる数の反復されたパワーラインは、上述の3つの色の代わりに4つの色又は5つの色などの異なる実装形態において使用され得ることを理解されたい。また、類似のアドレス指定方式は、本明細書において記述されているその他の実装形態にも適用され得ることを理解されたい。
【0065】
DACプログラミングは、上述のXYZアドレス指定などのいくつかの方法で実現することができる。プロセッササイズが増大しプロセッサ内において制御される対象のDACの数が相応して増大するのに伴って、プログラミングのために必要とされるラインの数も増大する。装置数の増大を許容するために相対的に少ない数の制御ラインを必要としているその他のプログラミング方式を導入することが有益であり得る。本明細書において記述されているQFPステージを内蔵したDACは、相対的に少ない数のラインによるDACプログラミングを有益な方式で許容し得ると共に、相対的に少ない制御ラインによる多数のDACの並行プログラミングをも有益な方式で許容することができる。
【0066】
図6Aを参照すれば、DAC602の1つの実装形態と共に、超伝導集積回路600aが示されている。DAC602は、第1ジョセフソン接合608によって中断された第1ストレージループ606を有する第1ステージ604を有する。第1ストレージループ606は、外部コンポーネント612と通信するためのインターフェイス610を担持する又は有し、これは、量子ビット又はカプラなどのプログラミング可能な装置であってもよい。DAC602は、第2ジョセフソン接合618によって中断された第2ストレージループ616を有する第2ステージ614を有する。第2ストレージループ616は、第1ストレージループ606にガルバニック結合されている。第1ジョセフソン接合608及び第2ジョセフソン接合618は、第1制御ライン620に直列で結合されている。超伝導集積回路600aは、第1ステージ604及び第2ステージ614の個々のものにガルバニック結合された且つこれから延在している第1及び第2QFPループ622及び624を更に有する。いくつかの実装形態において、第1及び第2ジョセフソン接合608、618は、CJJであってよい。
【0067】
図6Aに示されているように、いくつかの実装形態において、DACは、第2ステージ614にガルバニック結合された第3ステージ626と、第3ステージ626にガルバニック結合された第4ステージ628と、を含むことができる。第3及び第4ステージ626、628は、それぞれ、第3及び第4ジョセフソン接合634、636によって中断された第3及び第4ストレージループ630、632を有し、この場合に、第4及び第4ジョセフソン接合634、636は、第1制御ライン620に直列で結合されている。また、第3及び第4ステージ626、628は、第3ステージ626及び第4ステージ628の個々のものにガルバニック結合された且つこれから延在している第3及び第4QFPループ638、640を有する。
図6Aの実装形態においては、それぞれのQFPループ622、624、638、640は、ジョセフソン接合、このケースにおいてはCJJ642a、642b、642c、642d、を有する。
【0068】
図6Aの例示用の実装形態は非対称であるが、類似の回路は、相対的に対称的なそれぞれのステージごとに2つのDJJを有するように設計され得ることを理解されたい。磁束バイアスライン650、ジョセフソン接合アニーリングライン652a、652b、642c、652d、及びトリガライン654a、654b、654c、654dなどの更なる制御ラインを提供することができる。いくつかの実装形態において、QFPループ622、624、638、及び640は、低インダクタンス超伝導材料から形成することができる一方で、DACストレージループ606、616、630、及び632は、高インダクタンス超伝導材料から形成することができる。いくつかの実装形態において、低インダクタンス超伝導材料は、Ta、Nb、及びAlの1つであってよい一方で、高インダクタンス超伝導材料は、WSi、MoN、NbN、NbTiN、TiN、及び粒状アルミニウムであってよい。特定のDACステージ(604、614、626、628)をアドレス指定するために、QFPループ(622)内の永久電流及び個々のステージとの通信状態にある制御ライン(例えば、ステージ604との通信状態にある654a及び620)は、個々のDACストレージループ(606)内に磁束量子をローディングするために肯定的に加算される電流を有する。
【0069】
図6Bの例示用の実装形態などのいくつかの実装形態においては、超伝導集積回路600bは、複数のプログラミング可能なコンポーネント612との通信状態にあるDAC602のアレイを含むことができる。
図6Bにおいては、
図6Aにおいて使用されているものと同一の符号は、関係するコンポーネントを示している。いくつかの実装形態において、複数のDAC602(わかりやすさを目的として602a及び602bとして2つが示されている)は、第1制御ライン620に沿って離隔していてもよい。超伝導集積回路600bは、介在するQFPステージ656を含むことができる。
図6Bの例示用の実装形態においては、超伝導集積回路600bは、DAC602a及び602bを分離する2つの介在するQFPステージ656を含む。類似の介在するQFPステージがDAC602のそれぞれの列658内において見出されている。その他の実装形態においては、介在するQFPステージが存在していなくてもよく、或いは、異なる数のQFPステージが存在していてもよい。いくつかの実装形態においては、電流がDAC602の間において転送されるのに伴って電流フローの方向が保持されるように、偶数の介在するQFPステージ656が存在していることが有益であり得る。それぞれの列658は、DAC602のQFPステージ及び介在するQFPステージ656内にシフトされる磁束を転送する単一の磁束バイアスライン650を有することができる。
【0070】
図7は、本開示による量子プロセッサのプログラミング可能なコンポーネントを選択的にプログラミングするための例示用の方法700を示すフローチャートである。プログラミング可能なコンポーネントは、例えば、量子ビット、カプラ、更なるプログラミング可能な装置と通信しているシフトレジスタ又は別個のDACなどのプログラミングコンポーネント、並びに、読み出しラインと通信しているシフトレジスタ又は読み出しQFPなどの読み出しコンポーネントの1つであってよい。方法700は、
図1との関係において記述されているシステムなどのプログラミングシステムによって実装することができる。
【0071】
方法700は、行為702~708を含んでおり、当業者は、代替実装形態においては、特定の行為が省略され得ると共に/又は、行為が追加され得ることを理解するであろう。当業者は、行為の図示の順序は、例示を目的として示されているものに過ぎず、代替実施形態においては変化し得ることを理解するであろう。
【0072】
方法700は、例えば、プログラミングの開始に応答して始まっている。702において、第1永久電流が、第1DACストレージループにガルバニック結合された第1DAC-QFPループ内にローディングされている。永久電流は、上述のように、磁束バイアスライン又は信号ラインによって又はシフトレジスタを通じて、ローディングすることができる。永久電流は、第1DAC-QFPループにローディングされた電流を受け取った後の第1DACストレージループの意図された状態(或いは、磁束量子の数)に対応している。例えば、磁束量子を個々のDACストレージループ内にローディングすることが望ましい場合には、DAC-QFPループ内の永久電流は、第1方向(例えば、時計回り)においてあり得る一方で、磁束量子を個々のDACストレージループ内にローディングすることが望ましくない場合には、DAC-QFPループ内の永久電流は、第2方向(例えば、反時計回り)においてあり得る。
【0073】
704において、第2永久電流が第2DAC-QFPループ内にローディングされている。第2DAC-QFPループは、第2DACストレージループにガルバニック結合されており、第2DACストレージループは、第1DACストレージループにガルバニック結合されている。上述のように、第2永久電流は、第2DACストレージループの意図された状態に対応している。
【0074】
QFPシフトレジスタがDAC-QFPループに接続されているいくつかの実装形態(一実装形態については、
図5を参照されたい)においては、第1永久電流は、QFPシフトレジスタの第1QFPに電流バイアスを印加し第1DAC-QFPループに到達するためにQFPシフトレジスタの少なくとも1つの第2介在QFPを通じて電流をシフトさせることにより、第1DAC-QRPループ内にローディングされている。また、第2永久電流も、電流バイアスをQFPシフトレジスタの第2QFPに印加することにより、第2DAC-QFP内にローディングされている。QFPシフトレジスタの第2QFPは、QFPシフトレジスタの第1QFPから隔離されており、電流は、第2DAC-QFPループに到達するためにQFPシフトレジスタの少なくとも1つの第2介在QFPを通じてシフトされている。いくつかの実装形態において、第2QFPループ内に永久電流をローディングすることは、第2永久電流を第1QFPロープ内にローディングし、次いで、第2永久電流を第2QFPループ内にシフトさせることを伴い得る。これは、中間ストレージループにガルバニック結合された1つ又は複数の中間QFPループを通じて実現され得るが、この場合に、第1ストレージループ、中間ストレージループ、及び第2ストレージループは、ガルバニック接続されている。
【0075】
706において、信号が、第1介在ジョセフソン接合を介した第1DAC-QFPループの永久電流に基づいて第1DACストレージループ内に所定量の磁束をシフトさせるために第1DAC-QFPループとの通信状態にある1つ又は複数の制御ラインに印加されている。例えば、DAC-QFPループ内の永久電流が時計回りであった場合に、DAC-QFPループ及び1つ又は複数の制御ラインの組み合わせられた寄与は、磁束をJJを通じて押し込み且つ磁束量子をDACストレージループ内に導入するのに十分なものである。必要とされるパワーレベルは、DAC-QFP及び1つ又は複数の制御ラインの寄与を組み合わせることによって上部閾値が超過された際に磁束量子が介在するジョセフソン接合内に追加されるようにするために選択されている。上述のように、いくつかの実装形態においては、これは、それぞれのステージとの通信状態にある2つの制御ラインによって実現することができる。
【0076】
また、いくつかの実装形態においては、第1DAC-QFPループとの通信状態にある1つ又は複数の制御ラインに印加された信号は、第2の介在するジョセフソン接合を介した第2DAC-QFPループの永久電流に基づいて第2DACストレージループ内に所定量の磁束をシフトさせるために第2DAC-QFPループとの通信状態にある1つ又は複数の制御ラインに信号を印加している。その他の実装形態においては、この信号は、別個の行為において印加することができる。
【0077】
また、1つ又は複数の磁束量子をDACストレージループ内にローディングすることは、本出願においては、DACのプログラミングとも呼称されている。また、DACをプログラミングすることは、DACストレージループから1つ又は複数の磁束量子を除去することをも含み得る。一実装形態において、DACストレージループから1つ又は複数の磁束量子を除去することは、アドレスライン上において信号を反転させることを含む。プログラミングは、磁束量子がDACストレージループ内に運動するようにするために、アドレスラインなどの制御ライン上において信号を増大及び低減させることの両方を必要とし得ることを理解されたい。
【0078】
708において、プログラミング可能なコンポーネントと通信している第1DACストレージループによって担持されたインターフェイスを通じて、第1DACストレージループ及び第2DACストレージループ内において組み合わせられた磁束に基づいて、磁束バイアスがプログラミング可能なコンポーネントに転送されている。
【0079】
次いで、方法は、再度開始される時点まで終了してもよく、或いは、方法は、複数のプログラミング可能なコンポーネントをプログラミングするために反復的な方式で又は並行して反復されてもよい。
【0080】
図8は、本開示によるDACのターゲットステージ内にパルスをローディングするための例示用の方法800を示すフローチャートである。方法800は、
図1との関係において記述されているシステムなどのプログラミングシステムによって実装することができる。
【0081】
方法800は、行為802~806を含んでいるが、当業者は、代替実装形態においては、特定の行為が省略され得ると共に/又は、更なる行為が追加され得ることを理解するであろう。当業者は、行為の図示の順序は、例示を目的として示されているものに過ぎず、代替実装形態においては変化し得ることを理解するであろう。
【0082】
方法800は、例えば、プログラミングの開始に応答して始まっている。802において、バイアス電流が第1QFPステージに印加されている。
【0083】
804において、バイアス電流が中間QFPステージを通じてターゲットQFPステージにシフトされている。いくつかの実装形態において、これは、第1QFPステージの状態が中間QFPステージに転送されるように、第1QFPステージによって担持されている第1ジョセフソン接合に磁束バイアスを印加し、中間QFPステージによって担持されている中間ジョセフソン接合に磁束バイアスを印加し、次いで、第1QFPステージの第1ジョセフソン接合を抑圧することを含むことができる。次いで、ターゲットQFPステージ内に中間QFPステージの状態を複写するために、ターゲットQFPステージのターゲットジョセフソン接合に磁束バイアスを印加することにより、パルスをターゲットQFPステージを介してターゲットDACストレージループ内にローディングすることができる。
【0084】
806において、磁束をターゲットDACストレージループ内に転送するために、電流が1つ又は複数の制御ラインを通じて印加されている。いくつかの実装形態において、これは、バイアス電流がターゲットQFPステージからガルバニック結合されたターゲットDACストレージループ内に転送されるようにするために、閾値超においてDACジョセフソン接合を通じて電流を増大させるように、ターゲットDACストレージループとの通信状態にある第1制御ラインに電流を導入し、DACジョセフソン接合との通信状態にある第2制御ラインに電流を導入することを含むことができる。次いで、電流を第1及び第2制御ラインから除去することができると共に、ターゲットQFPステージの磁束バイアスを抑圧することができる。状態が中間QFPステージにおいて留まっていることに伴って、これらの行為は、意図された数のパルスがターゲットDACストレージループ内に導入される時点まで、ターゲットQFPステージを介してターゲットDACストレージループ内にパルスを反復的にローディングするために反復することができる。
【0085】
次いで、方法は、再度開始される時点まで終了してもよく、或いは、方法は、複数のDACストレージループにローディングするために反復的な方式で又は並行して反復されてもよい。
【0086】
いくつかの実装形態においては、パルスをQFPステージの間において転送する際に発生する方向の逆転が、状態をターゲットQFPステージに送信するためのインライン状態における1超の奇数のQFPステージに対するニーズを結果的にもたらしている。第1QFPステージは、ターゲットQFPステージについて意図された状態を受け取り、これを中間QFPステージに転送しており、この場合に、これは、逆方向にある。次いで、中間QFPステージが、状態をターゲットQFPステージに転送しており、この場合に、これは、オリジナルの方向に戻されている。この結果、それぞれのプログラミング行為のためにDACストレージループの三分の一をプログラミングするために、QFPステージのアレイを使用することができる。これは、有益には、量子プロセッサ内の多数のDACストレージループの並行プログラミングを許容し得る。これに加えて、いくつかの実装形態においては、QFP状態をQFPステージのアレイ及びDACストレージループと通信状態にあるシフトレジスタ内に事前にローディングすることもできる。
【0087】
図6Aを参照し、パルスがDAC602の第3ステージ内にローディングされる方法800の一実装形態について説明することとする。QFPループ622内において電流を導入するために、バイアスが磁束バイアスライン650を通じて第1QFPステージ622に印加されている。このバイアスは、QFPシフトレジスタ内のステージによって又はDACの別の接続されたQFPステージを通じて、印加することもできることを理解されたい。信号が、ジョセフソン接合アニーリングライン652aに、及び、次いで、ジョセフソン接合アニーリングライン652bに、導入され、その後に、ライン652aへの信号は、抑圧されるか又はゼロに設定されている。この結果、第1QFPループ622内において導入された電流は、第2QFPループ624内に転送されている。電流の方向は、転送の際に反転され得ることを理解されたい。次いで、信号が、ジョセフソン接合アニーリングライン652cに導入され、その結果、電流が、オリジナル信号の方向において第3QFPループ638に導入されている。次いで、パルスをDACストレージループ630に導入するために、JJ634の閾値を克服するように、制御ライン620及び制御ライン654cがターンオンされている。次いで、制御ライン620及び654cをターンオフすることが可能であり、アニーリングライン652cを抑圧することができる。別のパルスを導入するために、信号を再度アニーリングライン652cに導入することができると共に、制御ライン620及び654cを再度ターンオンすることができる。この行為は、意図された数のパルスがローディングされる時点まで反復することができる。いくつかの実装形態において、DACストレージループ630にローディングすることは、QFPループ638内において保持されている状態を破壊し、従って、DACストレージループ630内にローディングされたそれぞれの状態ごとに、QFPループ624から複写されている。
【0088】
図9を参照し、QFPシフトレジスタ904によってプログラミングされたDAC902のアレイを有する量子プロセッサ900の例示用の一実装形態(本明細書においては、メモリアレイとも呼称されている)の表現について説明することとする。それぞれのQFP-DACコンポーネント906は、DAC902のアレイ内において円によって表されており(わかりやすさを目的として1つのみが示されている)、本明細書においては、QFP-DACコンポーネントについて説明する。パワーライン908は、QFP-DACコンポーネントとの通信状態にあり、グローバル信号ライン910は、DAC902のアレイを通過している。いくつかの実装形態においては、異なる数のステージを有する異なる数のQFP-DAC906が使用され得ることを理解されたい。
図9の例示用の実装形態においては、4ステージQFP-DAC906が示されている。データは、データ経路912を通じてメモリアレイ904内に転送されてもよく、この場合に、データは、QFPシフトレジスタのQFPステージ914を通じて水平方向においてQFP-DAC902のアレイ内に伝達されている。QFP-DAC906のQFPステージがデータを受け取ったら、パワーライン908及びグローバル信号ライン910を増大することができると共に、QFP-DAC906をプログラミングするために、磁束を選択されたDACステージ内に伝達することができる。このプロセスは、すべてのDACがプログラミングされる時点まで反復することができる。次いで、QFPーDAC906を使用してそれらのコンポーネントをプログラミングするために、磁束を量子プロセッサ内のプログラミング可能なコンポーネントに送信することができる。QFPステージ914及びQFP-DAC906が類似の円を使用して示されているが、QFPシフトレジスタ904は、メモリとして機能しデータを水平方向においてDAC902のアレイ内に送信していることを理解されたい。DAC902のアレイは、データを送信するための別個のQFPコンポーネントを収容してはいない。その代わりに、DAC902のアレイは、本明細書において記述されているように、QFP-DAC906を収容しており、これは、有益には、データがQFP-DAC906のQFPステージを通じて送信されることを許容し得ると共に、QFP-DAC906のQFPステージ内において収容されているデータに基づいてQFP-DAC906のストレージループステージ内にプログラミングすることをも許容することができる。いくつかの実装形態において、QFP-DACは、外側信号ラインの個々の組合せを必要とすることなしに、それぞれのDACをアドレス指定するためにプログラミングすることができる。また、QFP-DACは、有益には、それぞれのプログラミング行為によってDACストレージループの1/3をアドレス指定するなどにより、並行してプログラミングすることもできる。
【0089】
上述の方法、プロセス、又は技法は、1つ又は複数の一時的ではないプロセッサ可読媒体上において保存された一連のプロセッサ可読命令により、実装することができよう。上述の方法、プロセス、又は技法方法のいくつかの例は、例えば、少なくとも1つのデジタルプロセッサを含むコンピュータなどの断熱量子コンピュータ又は量子アニーラーの動作をプログラミングする又はその他の方法で制御するために、断熱量子コンピュータ又は量子アニーラー又はシステムなどの専門的な装置により、部分的に実行されている。上述の方法、プロセス、又は技法は、様々な行為を含み得るが、当業者は、代替例においては、特定の行為が省略され得ると共に/又は、更なる行為が追加され得ることを理解するであろう。当業者は、行為の図示の順序が、例示を目的として示されているものに過ぎず、代替例においては変化し得ることを理解するであろう。上述の方法、プロセス、又は技法の例示用の行為又は動作のいくつかは、反復的に実行されている。上述の方法、プロセス、又は技法のいくつかの行為は、それぞれの反復の際に、複数の反復の後に、又はすべての反復の末尾において、実行することができる。
【0090】
「要約」において記述されているものを含む図示の実装形態に関する上述の記述は、すべてを網羅することを意図してはおらず、或いは、開示された形態そのままに実装形態を限定することを意図してはいない。本明細書においては、特定の実装形態及び例が例示を目的として記述されているが、当業者には認識されるように、開示の精神及び範囲を逸脱することなしに、様々な等価な変更を実施することができる。本明細書において提供されている様々な実装形態の教示は、必ずしも以上において一般的に記述されている量子演算用の例示用の方法ではない量子演算のその他の方法にも適用することができる。
【0091】
上述の様々な実装形態は、更なる実装形態を提供するために組み合わせることができる。限定を伴うことなしに、米国特許出願第16/098,801号、同第63/136,987号、米国特許第7,135,701号、同第7,418,283号、同第7,533,068号、同第7,876,248号、同第8,008,942号、同第8,098,179号、同第8,195,596号、同第8,190,548号、同第8,421,053号、同第10,528,886号、並びに、国際特許出願公開第2012064974号を含む本明細書において引用されている及び/又は出願人データシート内において列挙されている本出願人に譲渡された米国特許出願公開、米国特許出願、外国特許、及び外国特許出願のすべては、引用により、そのすべてが本明細書において包含される。
【0092】
これらの及びその他の変更は、上述の記述に鑑み、実装形態に対して実施することができる。一般に、添付の請求項においては、使用されている用語は、請求項を本明細書及び請求項において開示されている特定の実装形態に限定するものとして解釈されてはならず、このような請求項に付与される均等物の完全な範囲により、すべての可能な実装形態を含むものとして解釈することを要する。従って、請求項は、本開示によって限定されるものではない。
【国際調査報告】