(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-02-21
(54)【発明の名称】大動脈組織のセグメント化および特徴付けのための方法およびシステム
(51)【国際特許分類】
A61B 6/03 20060101AFI20240214BHJP
A61B 6/50 20240101ALI20240214BHJP
【FI】
A61B6/03 560J
A61B6/50 500B
A61B6/03 560D
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023545299
(86)(22)【出願日】2022-02-22
(85)【翻訳文提出日】2023-07-26
(86)【国際出願番号】 IB2022051558
(87)【国際公開番号】W WO2022175924
(87)【国際公開日】2022-08-25
(32)【優先日】2021-02-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】522123500
【氏名又は名称】ビター・メディカル・ソリューションズ・インコーポレイテッド
【氏名又は名称原語表記】VITAA MEDICAL SOLUTIONS INC.
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】アブドルマナフィ,アテフェ
(72)【発明者】
【氏名】ディ・マルティノ,エレナ
(72)【発明者】
【氏名】フォルネリス,アリアナ
【テーマコード(参考)】
4C093
【Fターム(参考)】
4C093AA22
4C093AA26
4C093DA02
4C093FD03
4C093FF16
4C093FF19
4C093FF28
(57)【要約】
所与の対象の身体の画像内の大動脈組織をセグメント化する(または石灰化を検出する)ための方法が提供され、本方法はプロセッサによって実行され、プロセッサは、画像内の大動脈組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、本方法は、所与の対象の身体の画像を受信するステップであって、画像が大動脈、管腔内血栓、および追加の身体部分を含む、身体の画像を受信するステップと、受信画像から関心領域を抽出するステップであって、関心領域が大動脈および管腔内血栓を含む、関心領域を抽出するステップと、関心領域内で大動脈壁および管腔内血栓の少なくとも一方における石灰化の存在を判定するステップと、石灰化の存在の指標を出力するステップと、を含む。
【特許請求の範囲】
【請求項1】
所与の対象の身体の画像内の大動脈組織をセグメント化するための方法であって、前記方法はプロセッサによって実行され、前記プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、前記方法が、
前記所与の対象の前記身体の前記画像を受信するステップであって、前記画像が大動脈、管腔内血栓、および追加の身体部分を含む、受信するステップと、
前記受信画像から関心領域を抽出するステップであって、前記関心領域が前記大動脈および前記管腔内血栓を含む、抽出するステップと、
前記関心領域内で大動脈壁および前記管腔内血栓の少なくとも一方における石灰化の存在を判定するステップと、
前記石灰化の前記存在の指標を出力するステップと、
を含む、方法。
【請求項2】
前記少なくとも1つの深層学習モデルが、第1の深層学習モデルと第2の深層学習モデルとを含み、前記関心領域を抽出する前記ステップが、前記第1の深層学習モデルによって実行され、前記石灰化の前記存在を判定する前記ステップが、前記第2の深層学習モデルによって実行される、請求項1に記載の方法。
【請求項3】
前記関心領域を抽出する前記ステップが、
前記第1の深層学習モデルを使用して前記画像から第1の画像特徴を抽出することであって、前記第1の画像特徴が前記大動脈および前記管腔内血栓を示す、第1の画像特徴を抽出することと、
前記第1の深層学習モデルを使用して、前記第1の画像特徴を使用して前記画像からの前記関心領域をセグメント化することと、
を含む、請求項2に記載の方法。
【請求項4】
前記第1の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項3に記載の方法。
【請求項5】
前記第1の深層学習モデルが、拡張畳み込み層を含む、請求項4に記載の方法。
【請求項6】
前記第1の深層学習モデルが、バイナリ分類器を含む、請求項5に記載の方法。
【請求項7】
前記関心領域内の前記大動脈の大動脈管腔を検出するステップをさらに含み、前記大動脈管腔、前記大動脈壁、および前記管腔内血栓が前記関心領域を一緒に形成する、請求項3~6のいずれか1項に記載の方法。
【請求項8】
前記画像が少なくとも1つの動脈をさらに含み、前記少なくとも1つの動脈が前記関心領域の一部であり、前記大動脈管腔を検出する前記ステップが、前記少なくとも1つの動脈の動脈管腔を検出することをさらに含む、請求項3に記載の方法。
【請求項9】
前記少なくとも1つの動脈が、少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈、および少なくとも1つの外腸骨動脈のうちの少なくとも1つを含む、請求項8に記載の方法。
【請求項10】
前記大動脈管腔を検出する前記ステップが、前記第2の深層学習モデルによって実行され、前記大動脈管腔を検出する前記ステップおよび前記石灰化の前記存在を判定する前記ステップが、前記第2の深層学習モデルによって同時に実行される、請求項7~9のいずれか1項に記載の方法。
【請求項11】
前記第2の深層学習モデルが、前記関心領域から第2の画像特徴を抽出するように構成され、前記第2の画像特徴が前記大動脈管腔および前記石灰化を示し、前記石灰化の前記存在を判定する前記ステップが、前記第2の画像特徴を使用して実行される、請求項10に記載の方法。
【請求項12】
前記第2の深層学習モデルが、多クラスセグメント化のために訓練されたResNetベースの完全に従来型のネットワークモデルを含む、請求項11に記載の方法。
【請求項13】
前記少なくとも1つの深層学習モデルが、第3の深層学習モデルをさらに含み、前記大動脈管腔を検出する前記ステップが、前記第3の深層学習モデルによって実行され、前記方法が、前記関心領域から前記大動脈管腔を除去し、それによって前記大動脈壁および前記管腔内血栓を得るステップをさらに含む、請求項7~9のいずれか1項に記載の方法。
【請求項14】
前記大動脈管腔を検出する前記ステップが、
前記第3の深層学習モデルを使用して、前記関心領域から第2の画像特徴を抽出することであって、前記第2の画像特徴が前記大動脈管腔を示す、第2の画像特徴を抽出することと、
前記第3の深層学習モデルを使用して、前記第2の画像特徴を使用して前記関心領域から前記大動脈管腔をセグメント化することと、を含み、
前記第2の深層学習モデルが、
前記大動脈壁および前記管腔内血栓から第3の画像特徴を抽出するように構成され、前記第3の画像特徴が前記石灰化を示し、前記石灰化の前記存在を判定する前記ステップが、前記第3の画像特徴を使用して前記第2の深層学習モデルによって実行される、請求項13に記載の方法。
【請求項15】
前記第3の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項13または14に記載の方法。
【請求項16】
前記第3の深層学習モデルが、拡張畳み込み層を含む、請求項15に記載の方法。
【請求項17】
前記第3の深層学習モデルが、バイナリ分類器を含む、請求項16に記載の方法。
【請求項18】
前記第2の深層学習モデルが、畳み込みニューラルネットワーク(CNN)を含む、請求項7~9のいずれか1項に記載の方法。
【請求項19】
前記画像が、前記所与の対象の前記身体の断面図を含む、請求項1~18のいずれか1項に記載の方法。
【請求項20】
前記画像が、コンピュータ断層撮影スライスを含む、請求項19に記載の方法。
【請求項21】
所与の対象の身体の画像内の大動脈組織をセグメント化するためのシステムであって、前記システムが、
プロセッサと、
前記プロセッサに動作可能に接続された非一時的記憶媒体であって、前記非一時的記憶媒体がコンピュータ可読命令を含む、非一時的記憶媒体と、
を備え、
前記プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、前記プロセッサは、前記コンピュータ可読命令を実行すると、
前記所与の対象の前記身体の前記画像を受信し、前記画像が大動脈、管腔内血栓、および追加の身体部分を含み、
前記受信画像から関心領域を抽出し、前記関心領域が前記大動脈および前記管腔内血栓を含み、
前記関心領域内で大動脈壁および前記管腔内血栓の少なくとも一方における石灰化の存在を判定し、
前記石灰化の前記存在の指標を出力する
ように構成されている、システム。
【請求項22】
前記少なくとも1つの深層学習モデルが、第1の深層学習モデルと第2の深層学習モデルとを含み、前記関心領域を前記抽出することが、前記第1の深層学習モデルによって実行され、前記石灰化の前記存在を前記判定することが、前記第2の深層学習モデルによって実行される、請求項21に記載のシステム。
【請求項23】
前記関心領域を前記抽出することが、
前記第1の深層学習モデルを使用して前記画像から第1の画像特徴を抽出することであって、前記第1の画像特徴が前記大動脈および前記管腔内血栓を示す、第1の画像特徴を抽出することと、
前記第1の深層学習モデルを使用して、前記第1の画像特徴を使用して前記画像からの前記関心領域をセグメント化することと、
を含む、請求項22に記載のシステム。
【請求項24】
前記第1の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項23に記載のシステム。
【請求項25】
前記第1の深層学習モデルが、拡張畳み込み層を含む、請求項24に記載のシステム。
【請求項26】
前記第1の深層学習モデルが、バイナリ分類器を含む、請求項25に記載のシステム。
【請求項27】
前記関心領域内の前記大動脈の大動脈管腔を検出するステップをさらに含み、前記大動脈管腔、前記大動脈壁、および前記管腔内血栓が前記関心領域を一緒に形成する、請求項23~26のいずれか1項に記載のシステム。
【請求項28】
前記画像が少なくとも1つの動脈をさらに含み、前記少なくとも1つの動脈が前記関心領域の一部であり、前記大動脈管腔を前記検出することが、前記少なくとも1つの動脈の動脈管腔を検出することをさらに含む、請求項23に記載のシステム。
【請求項29】
前記少なくとも1つの動脈が、少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈、および少なくとも1つの外腸骨動脈のうちの少なくとも1つを含む、請求項28に記載のシステム。
【請求項30】
前記大動脈管腔を前記検出することが、前記第2の深層学習モデルによって実行され、前記大動脈管腔を前記検出することおよび前記石灰化の前記存在を前記判定することが、前記第2の深層学習モデルによって同時に実行される、請求項27~29のいずれか1項に記載のシステム。
【請求項31】
前記第2の深層学習モデルが、前記関心領域から第2の画像特徴を抽出するように構成され、前記第2の画像特徴が前記大動脈管腔および前記石灰化を示し、前記石灰化の前記存在を前記判定することが、前記第2の画像特徴を使用して実行される、請求項30に記載のシステム。
【請求項32】
前記第2の深層学習モデルが、多クラスセグメント化のために訓練されたResNetベースの完全に従来型のネットワークモデルを含む、請求項31に記載のシステム。
【請求項33】
前記少なくとも1つの深層学習モデルが、第3の深層学習モデルをさらに含み、前記大動脈管腔を前記検出することが、前記第3の深層学習モデルによって実行され、前記方法が、前記関心領域から前記大動脈管腔を除去し、それによって前記大動脈壁および前記管腔内血栓を得るステップをさらに含む、請求項27~29のいずれか1項に記載のシステム。
【請求項34】
前記大動脈管腔を前記検出することが、
前記第3の深層学習モデルを使用して、前記関心領域から第2の画像特徴を抽出することであって、前記第2の画像特徴が前記大動脈管腔を示す、第2の画像特徴を抽出することと、
前記第3の深層学習モデルを使用して、前記第2の画像特徴を使用して前記関心領域から前記大動脈管腔をセグメント化することと、を含み、
前記第2の深層学習モデルが、
前記大動脈壁および前記管腔内血栓から第3の画像特徴を抽出するように構成され、前記第3の画像特徴が前記石灰化を示し、前記石灰化の前記存在を前記判定することが、前記第3の画像特徴を使用して前記第2の深層学習モデルによって実行される、請求項33に記載のシステム。
【請求項35】
前記第3の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項33または34に記載のシステム。
【請求項36】
前記第3の深層学習モデルが、拡張畳み込み層を含む、請求項35に記載のシステム。
【請求項37】
前記第3の深層学習モデルが、バイナリ分類器を含む、請求項36に記載のシステム。
【請求項38】
前記第2の深層学習モデルが、畳み込みニューラルネットワーク(CNN)を含む、請求項27~29のいずれか1項に記載のシステム。
【請求項39】
前記画像が、前記所与の対象の前記身体の断面図を含む、請求項20~38のいずれか1項に記載のシステム。
【請求項40】
前記画像が、コンピュータ断層撮影スライスを含む、請求項39に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
分野
本技術は、医療撮像の分野に関する。より具体的には、本技術は、訓練された機械学習モデルを使用することによって画像内の大動脈組織をセグメント化して特徴付けるための方法およびシステムに関する。
【背景技術】
【0002】
背景
大動脈瘤(AA)は、大動脈の限局性拡張であり、診断およびその後の治療をされない場合、進行し破裂する結果になる。それは、世界中で死亡率および罹患率の主な原因である。AAは、大動脈における主要な構造タンパク質(エラスチンおよびコラーゲン)の機能不全によって引き起こされる。これは、主に中膜変性(すなわち、動脈第2層の変性)後に起こり、管腔の拡大および構造的完全性の喪失をもたらす。最大大動脈径が正常径を超える場合、それは動脈瘤とみなされ、これはコンピュータ断層撮影(CT)撮像を使用して評価される。正確な診断および治療の欠如は、動脈瘤が管腔血圧に耐えられない場合、進行性の拡張および破裂をもたらす。したがって、破裂および有害事象のリスク評価は、AAに罹患している患者の臨床経過の決定において重要な役割を有する。現在、評価は、大動脈のCT、MRまたは超音波診断画像を使用して動脈瘤直径を測定することによって行われる。血管外科学会の診療ガイドラインによれば、疾患の進行を判定する際の標準化が欠如しており、大動脈径の測定は、人間の介入を用いて手動または半自動のいずれかで行われるため、かなりのばらつきがある。したがって、自動化された動脈瘤セグメント化ツールの欠如は、対処されるべき制限である。
【0003】
疾患進行の程度および速度を決定するために大動脈および動脈瘤組織をセグメント化するための方法およびシステムが必要とされている。さらに、各患者のフォローアップ後の変化を評価し、それらの変化をさらなる構造変性に結び付けるために、大動脈組織を正確に検出することが重要であり、これにより、様々な大動脈組織の生体力学的特性の正確な推定、ならびに画像取得中に造影剤が使用されない場合の管腔の正確な識別および検出が可能になる。
【0004】
さらに、大動脈壁組織における石灰化の識別は、AAの破裂リスク評価を改善し得る。管腔内血栓(ILT)は、腹部大動脈瘤の大部分に存在する。ILTにおける亀裂、解離、および石灰化の大きさ、存在は重要な属性であり、動脈瘤の進行および破裂リスクの増加に寄与し得る。
【発明の概要】
【発明が解決しようとする課題】
【0005】
概要
本技術の目的は、従来技術に存在する不都合の少なくとも一部を改善することである。本技術の1つまたは複数の実施形態は、本技術の目標および目的を達成するアプローチおよび/または方法の範囲を提供および/または拡大することができる。
【課題を解決するための手段】
【0006】
本技術の1つまたは複数の実施形態は、患者の転帰の改善が大動脈疾患における大動脈壁の正確な診断および評価に依存するという本発明者らの認識に基づいて開発された。動脈瘤、管腔内血栓、および石灰化を含む大動脈疾患によって引き起こされる病理学的形成の位置、進行、および特徴を理解することは、断面図での大動脈壁の撮像によってのみ可能である。大動脈壁を撮像するために様々なモダリティが使用される。CTは、大動脈を撮像するために特殊なX線を使用する非侵襲的診断撮像システムである。現在のCTスキャナは、z軸で0.625~2mm、x~y軸で最大0.5mmの空間分解能を有する。磁気共鳴画像法(MRI)は、AAを画像化するために使用され得る別のモダリティである。CTとは対照的に、MRIは電離放射線を使用しないが、その利用可能性の制限、高コスト、およびCT撮像よりも低い空間分解能(1~2mm)のために一般的ではない。
【0007】
より具体的には、本技術の発明者らは、AAにおける大動脈CT画像の分析が、血栓、大動脈壁を含む大動脈構造および大動脈周囲組織の画素強度の類似性のために特定の課題を提示し、大動脈の手動抽出を困難にすることを認識した。撮像中に造影剤を使用しない場合、管腔は一般に視覚的によく認識できない。大動脈瘤の直径を測定するための現在のアプローチは、手動または半自動のいずれかであり、人間の介入を必要とする。これらの要因は、観察者ごとの観察の違いにより、作業に時間がかかり、誤りが発生しやすくなる。さらに、流体力学的分析および様々な動脈壁組織の生体力学的特性の評価は、組織型の正確な検出および特性評価を必要とする。
【0008】
いくつかの実施形態では、本技術は、セグメント化タスクに使用されるパッチベースの畳み込みニューラルネットワーク(CNN)の制限を克服する強い識別力のある深い特徴へのアクセスを活用するために完全畳み込みネットワーク(FCN)を使用することによって分野に貢献する。さらに、標準的な畳み込みの代わりに拡張畳み込みを使用することにより、計算コストを削減することができ、モデル性能を加速することができる。大動脈の正確な認識および抽出は、誤差およびノイズの多い結果を低減することによって壁の変形を検出および定量化するアルゴリズムの精度を高めることに寄与し得る。さらに、本技術の1つまたは複数の実施形態は、画像の解釈におけるヒューマンエラーを最小限に抑える結果の再現性を可能にする。
【0009】
したがって、本技術の1つまたは複数の実施形態は、大動脈組織をセグメント化するための方法およびシステムに関する。
【0010】
第1の広範な態様によれば、所与の対象の身体の画像内の大動脈組織をセグメント化するための方法が提供され、本方法はプロセッサによって実行され、プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、本方法は、所与の対象の身体の画像を受信するステップであって、画像が大動脈、管腔内血栓、および追加の身体部分を含む、受信するステップと、受信画像から関心領域を抽出するステップであって、関心領域が大動脈および管腔内血栓を含む、抽出するステップと、関心領域内で大動脈壁および管腔内血栓の少なくとも一方における石灰化の存在を判定するステップと、石灰化の存在の指標を出力するステップと、を含む。
【0011】
一実施形態では、少なくとも1つの深層学習モデルは、第1の深層学習および第2の深層学習モデルを含み、関心領域を抽出するステップは、第1の深層学習モデルによって実行され、石灰化の存在を判定するステップは、第2の深層学習モデルによって実行される。
【0012】
一実施形態では、関心領域を抽出するステップは、第1の深層学習モデルを使用して画像から第1の画像特徴を抽出することであって、第1の画像特徴が大動脈および管腔内血栓を示す、第1の画像特徴を抽出することと、第1の深層学習モデルを使用して、第1の画像特徴を使用して画像からの関心領域をセグメント化することと、を含む。
【0013】
一実施形態では、第1の深層学習モデルは、完全畳み込みネットワーク(FCN)ベースのモデルを含む。
【0014】
一実施形態では、第1の深層学習モデルは、拡張畳み込み層を含む。
一実施形態では、第1の深層学習モデルは、バイナリ分類器を含む。
【0015】
一実施形態では、本方法は、関心領域内の大動脈の大動脈管腔を検出するステップをさらに含み、大動脈管腔、大動脈壁、および管腔内血栓は、関心領域を一緒に形成する。
【0016】
一実施形態では、画像は少なくとも1つの動脈をさらに含み、少なくとも1つの動脈は関心領域の一部であり、大動脈管腔を検出するステップは、少なくとも1つの動脈の動脈管腔を検出することをさらに含む。
【0017】
一実施形態では、少なくとも1つの動脈は、少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈、および少なくとも1つの外腸骨動脈のうちの少なくとも1つを含む。
【0018】
一実施形態では、大動脈管腔を検出するステップは、第2の深層学習モデルによって実行され、大動脈管腔を検出するステップおよび石灰化の存在を判定するステップは、第2の深層学習モデルによって同時に実行される。
【0019】
一実施形態では、第2の深層学習モデルは、関心領域から第2の画像特徴を抽出するように構成され、第2の画像特徴は大動脈管腔および石灰化を示し、石灰化の存在を判定するステップは、第2の画像特徴を使用して実行される。
【0020】
一実施形態では、第2の深層学習モデルは、多クラスセグメント化のために訓練されたResNetベースの完全に従来型のネットワークモデルを含む。
【0021】
一実施形態では、少なくとも1つの深層学習モデルは、第3の深層学習モデルをさらに含み、大動脈管腔を検出するステップは、第3の深層学習モデルによって実行され、本方法は、関心領域から大動脈管腔を除去し、それによって大動脈壁および管腔内血栓を得るステップをさらに含む。
【0022】
一実施形態では、大動脈管腔を検出するステップは、第3の深層学習モデルを使用して、関心領域から第2の画像特徴を抽出することであって、第2の画像特徴が大動脈管腔を示す、第2の画像特徴を抽出することと、第3の深層学習モデルを使用して、第2の画像特徴を使用して関心領域から大動脈管腔をセグメント化することと、を含み、第2の深層学習モデルは、大動脈壁および管腔内血栓から第3の画像特徴を抽出するように構成され、第3の画像特徴は石灰化を示し、石灰化の存在を判定するステップは、第3の画像特徴を使用して第2の深層学習モデルによって実行される。
【0023】
一実施形態では、第3の深層学習モデルは、完全畳み込みネットワーク(FCN)ベースのモデルを含む。
【0024】
一実施形態では、第3の深層学習モデルは、拡張畳み込み層を含む。
一実施形態では、第3の深層学習モデルは、バイナリ分類器を含む。
【0025】
一実施形態では、第2の深層学習モデルは、畳み込みニューラルネットワーク(CNN)を含む。
【0026】
一実施形態では、画像は、所与の対象の身体の断面図を含む。
一実施形態では、画像は、コンピュータ断層撮影スライスを含む。
【0027】
第2の広範な態様によれば、所与の対象の身体の画像内の大動脈組織をセグメント化するためのシステムが提供され、システムは、プロセッサと、プロセッサに動作可能に接続された非一時的記憶媒体であって、コンピュータ可読命令を含む非一時的記憶媒体と、を備え、プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、プロセッサは、コンピュータ可読命令を実行すると、所与の対象の身体の画像を受信し、画像は大動脈、管腔内血栓、および追加の身体部分を含み、受信画像から関心領域を抽出し、関心領域は大動脈および管腔内血栓を含み、関心領域内で大動脈壁および管腔内血栓の少なくとも一方における石灰化の存在を判定し、石灰化の存在の指標を出力するように構成される。
【0028】
一実施形態では、少なくとも1つの深層学習モデルは、第1の深層学習および第2の深層学習モデルを含み、関心領域を抽出するステップは、第1の深層学習モデルによって実行され、石灰化の存在を判定するステップは、第2の深層学習モデルによって実行される。
【0029】
一実施形態では、関心領域を抽出するステップは、第1の深層学習モデルを使用して画像から第1の画像特徴を抽出することであって、第1の画像特徴が大動脈および管腔内血栓を示す、第1の画像特徴を抽出することと、第1の深層学習モデルを使用して、第1の画像特徴を使用して画像からの関心領域をセグメント化することと、を含む。
【0030】
一実施形態では、第1の深層学習モデルは、完全畳み込みネットワーク(FCN)ベースのモデルを含む。
【0031】
一実施形態では、第1の深層学習モデルは、拡張畳み込み層を含む。
一実施形態では、第1の深層学習モデルは、バイナリ分類器を含む。
【0032】
一実施形態では、プロセッサは、関心領域内の大動脈の大動脈管腔、大動脈管腔、大動脈壁、および関心領域を一緒に形成する管腔内血栓を検出するようにさらに構成される。
【0033】
一実施形態では、画像は少なくとも1つの動脈をさらに含み、少なくとも1つの動脈は関心領域の一部であり、大動脈管腔を検出するステップは、少なくとも1つの動脈の動脈管腔を検出することをさらに含む。
【0034】
一実施形態では、少なくとも1つの動脈は、少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈、および少なくとも1つの外腸骨動脈のうちの少なくとも1つを含む。
【0035】
一実施形態では、大動脈管腔を検出するステップは、第2の深層学習モデルによって実行され、大動脈管腔を検出するステップおよび石灰化の存在を判定するステップは、第2の深層学習モデルによって同時に実行される。
【0036】
一実施形態では、第2の深層学習モデルは、関心領域から第2の画像特徴を抽出するように構成され、第2の画像特徴は大動脈管腔および石灰化を示し、石灰化の存在を判定するステップは、第2の画像特徴を使用して実行される。
【0037】
一実施形態では、第2の深層学習モデルは、多クラスセグメント化のために訓練されたResNetベースの完全に従来型のネットワークモデルを含む。
【0038】
一実施形態では、少なくとも1つの深層学習モデルは、第3の深層学習モデルをさらに含み、大動脈管腔を検出するステップは、第3の深層学習モデルによって実行され、本方法は、関心領域から大動脈管腔を除去し、それによって大動脈壁および管腔内血栓を得るステップをさらに含む。
【0039】
一実施形態では、大動脈管腔を検出するステップは、第3の深層学習モデルを使用して、関心領域から第2の画像特徴を抽出することであって、第2の画像特徴が大動脈管腔を示す、第2の画像特徴を抽出することと、第3の深層学習モデルを使用して、第2の画像特徴を使用して関心領域から大動脈管腔をセグメント化することと、を含み、第2の深層学習モデルは、大動脈壁および管腔内血栓から第3の画像特徴を抽出するように構成され、第3の画像特徴は石灰化を示し、石灰化の存在を判定するステップは、第3の画像特徴を使用して第2の深層学習モデルによって実行される。
【0040】
一実施形態では、第3の深層学習モデルは、完全畳み込みネットワーク(FCN)ベースのモデルを含む。
【0041】
一実施形態では、第3の深層学習モデルは、拡張畳み込み層を含む。
一実施形態では、第3の深層学習モデルは、バイナリ分類器を含む。
【0042】
一実施形態では、第2の深層学習モデルは、畳み込みニューラルネットワーク(CNN)を含む。
【0043】
一実施形態では、画像は、所与の対象の身体の断面図を含む。
一実施形態では、画像は、コンピュータ断層撮影スライスを含む。
【0044】
さらなる広範な態様によれば、プロセッサによる実行時に上述の方法のステップを実行する記述および命令を記憶した不揮発性メモリが提供される。
【0045】
定義
本明細書の文脈では、「サーバ」は、適切なハードウェア上で実行されており、ネットワーク(例えば、通信ネットワーク)を介して要求(例えば、電子デバイスから)を受信し、それらの要求を実行することができる、またはそれらの要求を実行させることができる、コンピュータプログラムである。ハードウェアは、1つの物理的コンピュータまたは1つの物理的コンピュータシステムであってもよいが、本技術に関してはそうである必要はない。本文脈において、「サーバ」という表現の使用は、すべてのタスク(例えば、受信した命令または要求)または任意の特定のタスクが同じサーバ(すなわち、同じソフトウェアおよび/またはハードウェア)によって受信される、実行される、または実行させられることを意味するものではない。任意の数のソフトウェア要素またはハードウェアデバイスが、任意のタスクもしくは要求、または任意のタスクもしくは要求の結果を受信/送信する、実行する、または実行させることに関与し得ることを意味することが意図されている。このソフトウェアおよびハードウェアのすべては、1つのサーバまたは複数のサーバであってもよく、これらは両方とも「少なくとも1つのサーバ」および「サーバ」という表現に含まれる。
【0046】
本明細書の文脈では、「電子デバイス」は、手元の関連するタスクに適したソフトウェアを実行することができる任意のコンピューティング装置またはコンピュータハードウェアである。したがって、電子デバイスのいくつかの(非限定的な)例は、汎用パーソナルコンピュータ(デスクトップ、ラップトップ、ネットブックなど)、モバイルコンピューティングデバイス、スマートフォン、およびタブレット、ならびにルータ、スイッチ、およびゲートウェイなどのネットワーク機器を含む。本文脈における電子デバイスは、他の電子デバイスに対するサーバとして機能することを排除されないことに留意されたい。「電子デバイス」という表現の使用は、任意のタスクもしくは要求、または任意のタスクもしくは要求の結果、または本明細書に記載の任意の方法のステップを受信/送信する、実行する、または実行させる際に複数の電子デバイスが使用されることを排除するものではない。本明細書の文脈では、「クライアントデバイス」は、パーソナルコンピュータ、タブレット、スマートフォンなどの、ユーザに関連付けられた一連のエンドユーザクライアント電子デバイスのいずれかを指す。
【0047】
本明細書の文脈において、「コンピュータ可読記憶媒体」という表現(「記憶媒体」および「記憶装置」とも呼ばれる)は、RAM、ROM、ディスク(CD-ROM、DVD、フロッピーディスク、ハードドライバなど)、USBキー、ソリッドステートドライブ、テープドライブなどを含むがこれらに限定されない、任意の性質および種類の非一時的媒体を含むことを意図している。同じタイプの2つ以上のメディアコンポーネントおよび/または異なるタイプの2つ以上のメディアコンポーネントを含む複数のコンポーネントを組み合わせて、コンピュータ情報記憶媒体を形成することができる。
【0048】
本明細書の文脈では、「データベース」は、その特定の構造、データベース管理ソフトウェア、またはデータが格納され、実装され、もしくは使用可能にされるコンピュータハードウェアに関係なく、任意の構造化されたデータの集合である。データベースは、データベースに格納された情報を格納または利用する工程と同じハードウェア上に存在してもよいし、専用サーバまたは複数のサーバなどの別個のハードウェア上に存在してもよい。
【0049】
本明細書の文脈において、「情報」という表現は、データベースに格納することができるあらゆる性質または種類の情報を含む。したがって、情報は、視聴覚著作物(画像、動画、音声記録、プレゼンテーションなど)、データ(位置データ、数値データなど)、テキスト(意見、コメント、質問、メッセージなど)、文書、スプレッドシート、単語のリストなどを含むが、これらに限定されない。
【0050】
本明細書の文脈では、特に明示的に提供されない限り、情報要素の「指標」は、情報要素自体、または情報要素を取得することができるネットワーク、メモリ、データベース、もしくは他のコンピュータ可読媒体位置を指標の受信者が見つけることを可能にするポインタ、参照、リンク、もしくは他の間接的な機構であってもよい。例えば、文書の指標は、文書自体(すなわち、その内容)を含み得、または特定のファイルシステムに関してファイルを識別する固有の文書記述子、またはネットワーク位置、メモリアドレス、データベーステーブル、もしくはファイルがアクセスされ得る他の位置に指標の受信者を導く他の何らかの手段であり得る。当業者が認識するように、そのような指標に必要な精度の程度は、指標の送信者と受信者との間で交換される情報に与えられる解釈に関する任意の事前理解の程度に依存する。例えば、送信者と受信者との間の通信の前に、情報要素の指標が、情報要素を含む所定のデータベースの特定のテーブル内のエントリに対するデータベース鍵の形態をとることが理解される場合、データベース鍵の送信は、情報要素自体が指標の送信者と受信者との間のように送信されなかったとしても、情報要素を受信者に効果的に伝達するために必要なすべてである。
【0051】
本明細書の文脈において、「通信ネットワーク」という表現は、コンピュータネットワーク、インターネット、電話ネットワーク、Telexネットワーク、TCP/IPデータネットワーク(例えば、WANネットワーク、LANネットワークなど)などの電気通信ネットワークを含むことを意図している。「通信ネットワーク」という用語は、有線ネットワークまたは直接有線接続、ならびに音響、無線周波数(RF)、赤外線および他の無線媒体などの無線媒体、ならびに上記のいずれかの組み合わせを含む。
【0052】
本明細書の文脈において、「第1」、「第2」、「第3」などの単語は、それらが互いに修飾する名詞間の区別を可能にする目的のためにのみ形容詞として使用されており、それらの名詞間の特定の関係を説明する目的のためのものではない。したがって、例えば、「サーバ」および「第3のサーバ」という用語の使用は、サーバの/サーバ間の特定の順序、タイプ、時系列、階層、またはランク付け(例えば)を暗示することを意図するものではなく、それらの使用(単独で)は、任意の「第2のサーバ」が任意の所与の状況に必ず存在しなければならないことを暗示することを意図するものでもないことを理解されたい。さらに、他の文脈で本明細書で説明するように、「第1の」要素および「第2の」要素への言及は、2つの要素が同じ実際の現実世界の要素であることを排除するものではない。したがって、例えば、場合によっては、「第1の」サーバおよび「第2の」サーバは同じソフトウェアおよび/またはハードウェアであってもよく、他の場合では、それらは異なるソフトウェアおよび/またはハードウェアであってもよい。
【0053】
本技術の実装は各々、上述した目的および/または態様のうちの少なくとも1つを有するが、必ずしもそのすべてを有する必要はない。上述の目的を達成しようとする試みから生じる本技術のいくつかの態様は、この目的を満たさない場合があり、および/または本明細書に具体的に列挙されていない他の目的を満たす場合があることを理解されたい。
【0054】
本技術の実装の追加のおよび/または代替の特徴、態様および利点は、以下の説明、添付の図面および添付の特許請求の範囲から明らかになるであろう。
【0055】
図面の簡単な説明
本技術ならびにその他の態様およびさらなる特徴をよりよく理解するために、添付の図面と併せて使用される以下の説明が参照される。
【図面の簡単な説明】
【0056】
【
図1】本技術の1つまたは複数の非限定的な実施形態による、電子デバイスの概略図である。
【
図2】本技術の1つまたは複数の非限定的な実施形態による、システムの概略図である。
【
図3】本技術の1つまたは複数の非限定的な実施形態による、3つの深層学習(DL)モデルのセットを使用して実行される大動脈組織セグメント化手順の概略図である。
【
図4】本技術の1つまたは複数の非限定的な実施形態による、2つのDLモデルのセットを使用して実行される大動脈組織セグメント化手順の概略図である。
【
図5】本技術の1つまたは複数の非限定的な実施形態による、ResNetベースのエンコーダ-デコーダとして実装される第1のDLモデル、ResNetベースのエンコーダ-デコーダとして実装される第2のDLモデル、および分類層を有するResNetベースのCNNとして実装される第3のDLモデルに入力されるCT画像の概略図である。
【
図6】本技術の1つまたは複数の非限定的な実施形態による、DLモデルのセットを使用することによって出力されるCT画像、大動脈およびそのセグメント化された組織を含む関心領域(ROI)の概略図である。
【
図7】本技術の1つまたは複数の非限定的な実施形態による、1個抜き交差検証を使用することによって生成された患者ID(x軸)およびモデル性能またはモデル正確度(y軸)のプロットである。
【
図8】本技術の1つまたは複数の非限定的な実施形態による、大動脈、注釈付きグランドトゥルース、抽出された管腔および抽出された大動脈を含む画像の例を示す図である。
【
図9】本技術の1つまたは複数の非限定的な実施形態による、抽出された大動脈(第1のステップの出力)、注釈付きグランドトゥルース、管腔検出、抽出された管腔、ならびに壁および血栓を含む残りの組織を含む、4人の異なる患者データのセグメント化から得られた画像の例を示す図である。
【
図10】本技術の1つまたは複数の非限定的な実施形態による、第3のDLモデルの性能を評価することによってそれぞれ得られたネットワーク性能対最適なエポック数、隠れサイズ、シグマ、およびネットワーク検証失敗のプロットの例である。
【
図11】本技術の1つまたは複数の非限定的な実施形態による、画像内の大動脈組織をセグメント化する方法のフローチャートである。
【
図12】本技術の1つまたは複数の非限定的な実施形態による、3つのDLモデルが使用される
図11の方法の特定の実装を示す図である。
【発明を実施するための形態】
【0057】
詳細な説明
本明細書に列挙される例および条件付き文言は、主に読者が本技術の原理を理解するのを助けることを意図しており、その範囲をそのような具体的に列挙された例および条件に限定することを意図していない。当業者は、本明細書に明示的に記載または図示されていないが、それにもかかわらず本技術の原理を具体化し、その精神および範囲内に含まれる様々な構成を考案することができることが理解されよう。
【0058】
さらに、理解を助けるために、以下の説明は、本技術の比較的単純化された実装を説明する場合がある。当業者が理解するように、本技術の様々な実装は、より複雑であり得る。
【0059】
場合によっては、本技術に対する変更の有用な例と考えられるものも記載され得る。これは単に理解を助けるためのものであり、やはり本技術の範囲を定義したり本技術の範囲を示したりするためのものではない。これらの変更は網羅的なリストではなく、当業者は、本技術の範囲内に留まりながら他の変更を行うことができる。さらに、変更の例が記載されていない場合、変更が不可能である、および/または記載されているものが本技術のその要素を実装する唯一の方法であると解釈されるべきではない。
【0060】
さらに、本技術の原理、態様、および実装、ならびにそれらの特定の例を列挙する本明細書のすべての記述は、それらが現在知られているかまたは将来開発されるかにかかわらず、それらの構造的および機能的等価物の両方を包含することを意図している。したがって、例えば、本明細書の任意のブロック図は、本技術の原理を具現化する例示的な回路の概念図を表すことが当業者には理解されよう。同様に、任意のフローチャート、フロー図、状態遷移図、擬似コードなどは、コンピュータ可読媒体で実質的に表され、そのようなコンピュータまたはプロセッサが明示的に示されているか否かにかかわらずコンピュータまたはプロセッサによって実行され得る、様々な工程を表すことが理解されよう。
【0061】
「プロセッサ」または「グラフィックス処理装置」とラベル付けされた任意の機能ブロックを含む、図に示された様々な要素の機能は、専用のハードウェア、ならびに適切なソフトウェアに関連してソフトウェアを実行することができるハードウェアを使用して提供され得る。プロセッサによって提供される場合、機能は、単一の専用プロセッサ、単一の共有プロセッサ、または複数の個々のプロセッサによって提供されてもよく、そのうちのいくつかは共有されてもよい。本技術のいくつかの非限定的な実施形態では、プロセッサは、中央処理装置(CPU)などの汎用プロセッサ、またはグラフィックス処理装置(GPU)などの特定の目的専用のプロセッサであってもよい。さらに、「プロセッサ」または「コントローラ」という用語の明示的な使用は、ソフトウェアを実行することができるハードウェアを排他的に指すと解釈されるべきではなく、デジタル信号プロセッサ(DSP)ハードウェア、ネットワークプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、ソフトウェアを記憶するための読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、および不揮発性記憶装置を暗黙的に含み得るが、これらに限定されない。従来および/またはカスタムの他のハードウェアも含まれ得る。
【0062】
ソフトウェアモジュール、または単にソフトウェアであると暗示されるモジュールは、本明細書では、フローチャート要素または工程ステップの実行および/またはテキスト記述を示す他の要素の任意の組み合わせとして表され得る。そのようなモジュールは、明示的または暗黙的に示されるハードウェアによって実行されてもよい。
【0063】
これらの基本を踏まえて、ここで、本技術の態様の様々な実装形態を説明するためにいくつかの非限定的な例を検討する。
【0064】
図1を参照すると、本技術のいくつかの非限定的な実施形態での使用に適した電子デバイス100の概略図が示されている。
【0065】
電子デバイス
電子デバイス100は、プロセッサ110、グラフィックス処理装置(GPU)111、ソリッドステートドライブ120、ランダムアクセスメモリ130、ディスプレイインターフェース140、および入出力インターフェース150によって集合的に表される、1つまたは複数のシングルコアまたはマルチコアプロセッサを含む様々なハードウェア構成要素を備える。
【0066】
電子デバイス100の様々な構成要素間の通信は、様々なハードウェア構成要素が電子的に結合される1つまたは複数の内部および/または外部バス160(例えば、PCIバス、ユニバーサルシリアルバス、IEEE1394「Firewire」バス、SCSIバス、Serial-ATAバスなど)によって可能にされ得る。
【0067】
入出力インターフェース150は、タッチスクリーン190および/または1つもしくは複数の内部および/もしくは外部バス160に結合することができる。タッチスクリーン190は、ディスプレイの一部であってもよい。いくつかの実施形態では、タッチスクリーン190はディスプレイである。タッチスクリーン190は、スクリーン190とも呼ばれ得る。
図2に示す実施形態では、タッチスクリーン190は、タッチハードウェア194(例えば、ユーザとディスプレイとの間の物理的相互作用の検出を可能にするディスプレイの層に埋め込まれた感圧セル)と、ディスプレイインターフェース140および/または1つ以上の内部および/または外部バス160との通信を可能にするタッチ入出力コントローラ192とを備える。いくつかの実施形態では、入出力インターフェース150は、ユーザがタッチスクリーン190に加えてまたはそれに代えて電子デバイス100と対話することを可能にするキーボード(図示せず)、マウス(図示せず)またはトラックパッド(図示せず)に接続されてもよい。
【0068】
本技術の実装形態によれば、ソリッドステートドライブ120は、ランダムアクセスメモリ130にロードされ、かつ1つまたは複数の機械学習モデルを使用して大動脈組織をセグメント化するためにプロセッサ110および/またはGPU111によって実行されるのに適したプログラム命令を格納する。例えば、プログラム命令は、ライブラリまたはアプリケーションの一部であってもよい。
【0069】
電子デバイス100は、当業者によって理解され得るように、サーバ、デスクトップコンピュータ、ラップトップコンピュータ、タブレット、スマートフォン、携帯情報端末、または本技術を実装するように構成され得る任意のデバイスの形態で実装され得る。
【0070】
システム
図2を参照すると、システム200と呼ばれる通信システム200の概略図が示されており、システム200は、本技術の非限定的な実施形態を実施するのに適している。図示のシステム200は、本技術の例示的な実装形態にすぎないことを明確に理解されたい。したがって、以下の説明は、本技術の例示的な例の説明のみを意図している。この説明は、本技術の範囲を定義するものでも、本技術の範囲を示すものでもない。場合によっては、システム200の変更の有用な例と考えられるものも以下に記載され得る。これは単に理解を助けるためのものであり、やはり本技術の範囲を定義したり本技術の範囲を示したりするためのものではない。これらの変更は網羅的なリストではなく、当業者が理解するように、他の変更が可能である可能性が高い。さらに、これが行われていない場合(すなわち、変更の例が記載されていない場合)、変更が不可能である、および/または記載されているものが本技術のその要素を実装する唯一の方法であると解釈されるべきではない。当業者が理解するように、これは当てはまらない可能性が高い。さらに、システム200は、特定の事例では、本技術の単純な実装形態を提供することができ、そのような事例では、理解を助けるためにこのように提示されていることを理解されたい。当業者が理解するように、本技術の様々な実装は、より複雑であり得る。
【0071】
システム200は、とりわけ、ワークステーションコンピュータ215に関連付けられた医療撮像装置210と、それぞれの通信リンク225(別々に番号付けされていない)を介して通信ネットワーク220を介して結合されたサーバ230とを備える。
【0072】
医療デバイス
医療撮像装置210は、とりわけ、(i)動脈瘤を含む所与の対象の大動脈の少なくとも一部を含む1つまたは複数の画像を取得するように構成される。取得された画像は大動脈の断面を示すことを理解されたい。
【0073】
医療撮像装置210は、コンピュータ断層撮影(CT)スキャナ、磁気共鳴撮像(MRI)スキャナ、3次元超音波などのうちのいずれかを備えることができる。
【0074】
本技術のいくつかの実施形態では、医療撮像装置210は、コンピュータ断層撮影(CT)スキャナ、磁気共鳴撮像(MRI)スキャナ、3次元超音波などのうちの1つまたは複数など、複数の医療撮像装置を含むことができる。
【0075】
医療撮像装置210は、患者の大動脈の少なくとも一部を含む患者の画像を取得するための特定の取得パラメータで構成することができる。
【0076】
非限定的な例として、医療撮像装置210がCTスキャナとして実装される1つまたは複数の実施形態では、R-R間隔を捕捉するための可変線量放射線を用いた術前遡及的ゲート型マルチ検出器CT(MDCT-64行マルチスライスCTスキャナ)を含むCTプロトコルを使用することができる。
【0077】
別の非限定的な例として、医療撮像処置がMRIスキャナを含む1つまたは複数の実施形態では、MRプロトコルは、定常状態T2重み付け高速磁場エコー(TE=2.6ms、TR=5.2ms、フリップ角110度、脂肪抑制(SPIR)、エコー時間50ms、最大25心臓位相、マトリックス256×256、取得ボクセルMPS(測定、位相およびスライス符号化方向)1.56/1.56/3.00mmおよび再構成ボクセルMPS 0.78/0.78/1.5)、または検討中の大動脈の部分の同様のシネ取得、軸方向スライスを含むことができる。
【0078】
医療撮像装置210は、とりわけデータ送信のためのワークステーションコンピュータ215を含むか、またはそれに接続される。
【0079】
ワークステーションコンピュータ
ワークステーションコンピュータ215は、とりわけ、(i)医療撮像装置210のパラメータを制御し、画像の取得を引き起こし、(ii)医療撮像装置210から複数の画像を受信して処理するように構成される。
【0080】
1つまたは複数の実施形態において、ワークステーションコンピュータ215は、生フォーマットの画像を受信し、既知のアルゴリズムおよびソフトウェアを使用して断層撮影再構成を実行することができる。
【0081】
ワークステーションコンピュータ215の実装形態は、当技術分野で知られている。ワークステーションコンピュータ215は、電子デバイス100として実装されてもよく、またはその構成要素、例えばプロセッサ110、グラフィックス処理装置(GPU)111、ソリッドステートドライブ120、ランダムアクセスメモリ130、ディスプレイインターフェース140、および入出力インターフェース150を含んでもよい。
【0082】
1つまたは複数の他の実施形態では、ワークステーションコンピュータ215は、医療撮像装置210に少なくとも部分的に統合されてもよい。
【0083】
1つまたは複数の実施形態では、ワークステーションコンピュータ215は、医療撮像情報および関連データの通信および管理のための医用デジタル撮像および通信(DICOM)規格に従って構成される。
【0084】
1つまたは複数の実施形態では、ワークステーションコンピュータ215は、画像をローカルデータベース(図示せず)に格納することができる。
【0085】
ワークステーションコンピュータ215は、それぞれの通信リンク225を介して通信ネットワーク220を介してサーバ230に接続される。1つまたは複数の実施形態では、ワークステーションコンピュータ215は、画像および/または多相スタックを、その格納および処理のためにサーバ230およびデータベース235に送信することができる。
【0086】
サーバ
サーバ230は、とりわけ、(i)医療撮像装置210によって取得された入力または初期画像を受信し、画像は、対象の大動脈および他の身体部分を含み、(ii)少なくとも1つの深層学習(DL)モデルのセット250および任意選択的に減算ユニット285にアクセスし、(iii)大動脈組織のセグメント化を実行するようにDLモデルのセット250を訓練し、(iv)DLモデルのセット250を使用して、入力画像内の石灰化を識別するために組織のセグメント化を実行するように構成される。
【0087】
図示の実施形態では、DLモデルのセット250は、3つのDLモデル260,270および280と、減算ユニット285とを備えるが、DLモデルのセット250が少なくとも1つのDLモデルを含む限り、DLモデルの数は変化してもよく、減算ユニット285は省略されてもよいことを理解されたい。例えば、DLモデルのセットは、2つのDLモデルを含み、減算ユニット285を含まなくてもよい。図示の実施形態のような別の例では、DLモデルのセットは、3つのDLモデルおよび減算ユニット285を備えることができる。
【0088】
サーバ230がそれを行うように構成される方法を以下でより詳細に説明する。
サーバ230は、従来型のコンピュータサーバとして実装することができ、
図2に示す電子デバイス100の構成要素の一部または全部を備え得る。本技術の1つまたは複数の実施形態の一例において、サーバ230は、Microsoft(商標)Windows Server(商標)オペレーティングシステムを実行するDell(商標)PowerEdge(商標)Serverとして実装することができる。言うまでもなく、サーバ230は、任意の他の適切なハードウェアおよび/またはソフトウェアおよび/またはファームウェアまたはそれらの組み合わせで実装することができる。本技術の図示の非限定的な実施形態では、サーバ230は単一のサーバである。本技術の代替の非限定的な実施形態では、サーバ230の機能は分散されてもよく、複数のサーバ(図示せず)を介して実装されてもよい。
【0089】
サーバ230の実装形態は、本技術の当業者に周知である。しかしながら、簡単に言えば、サーバ230は、通信ネットワーク220を介して様々なエンティティ(例えばワークステーションコンピュータ215、およびネットワーク220に潜在的に結合されている他のデバイスなど)と通信するように構造化および構成された通信インターフェース(図示せず)を備える。サーバ230は、通信インターフェースと動作可能に接続され、かつ本明細書で説明する様々な工程を実行するように構造化および構成された、少なくとも1つのコンピュータプロセッサ(例えば、電子デバイス100のプロセッサ110またはGPU111)をさらに備える。
【0090】
1つまたは複数の実施形態では、サーバ230は、電子デバイス100として実装されてもよく、またはその構成要素、例えばプロセッサ110、グラフィックス処理装置(GPU)111、ソリッドステートドライブ120、ランダムアクセスメモリ130、ディスプレイインターフェース140、および入出力インターフェース150を含んでもよい。
【0091】
サーバ230は、DLモデルのセット250にアクセスすることができる。
深層学習(DL)モデル
図示の実施形態では、DLモデルのセット250は、第1のDLモデル260、第2のDLモデル270、および第3のDLモデル280を含む。第1のDLモデル260、第2のDLモデル270、および第3のDLモデル280の各々は、画像の意味的セグメント化を実行するように、すなわち、画像内の画素ごとにオブジェクトクラスを分類するようにそれぞれ訓練されている。
【0092】
1つまたは複数の代替実施形態では、以下でより詳細に説明するように、第1のDLモデル260、第2のDLモデル270、および第3のDLモデル280のうちの少なくとも2つが、単一のDLモデルとして実装されてもよい。
【0093】
第1のDLモデル260、第2のDLモデル270、および第3のDLモデル280の各々は、それぞれの特徴抽出器262,272,282(
図3に示す)、およびそれぞれの予測ネットワーク264,274,284(
図3に示す)を備える。
【0094】
第1のDLモデル260は、とりわけ、(i)入力または初期画像を受信し、(ii)それぞれの特徴抽出器262を介して、そこから第1の画像特徴セットを抽出し、(iii)それぞれの予測ネットワーク264を介して、第1の画像特徴セットに基づいて、関心領域(ROI)を出力するために入力画像内のROIおよび背景をセグメント化するように構成される。ROIは、入力画像の前景に対応し、すなわち、背景が除去された入力画像に対応する。
【0095】
入力画像は、大動脈、ILT、およびさらなる分析のために除去される器官および組織などの他の身体部分を含む。次いで、ROIは大動脈(大動脈壁および大動脈管腔を含む)およびILTを含む。一実施形態では、入力画像は、他の身体部分に加えて、大動脈、ILTおよび総腸骨動脈、外腸骨動脈および/または外腸骨動脈を含む。この場合、総腸骨動脈、外腸骨動脈および/または外腸骨動脈は、ROI内に含まれる。
【0096】
一実施形態では、入力画像から除去される他の身体部分は、対象の脊椎、腎臓、腸間膜動脈などを含む。
【0097】
第1のDLモデル260は、画像の意味的セグメント化を実行するように訓練される。第1のDLモデル260は、前景および背景セグメント化、すなわちバイナリセグメント化を実行するように構成される。この場合、前景は、入力画像に存在する場合、大動脈およびILT、ならびに任意選択的に総腸骨動脈、外腸骨動脈および/または外腸骨動脈を含み、背景は、入力画像の残りの部分、すなわち上述した他の身体部分を含む。
【0098】
1つまたは複数の他の実施形態では、第1のDLモデル260は、多クラス意味的セグメント化を実行するように訓練されてもよい。
【0099】
1つまたは複数の実施形態では、第1のDLモデル260は、エンコーダ-デコーダアーキテクチャを有する。
【0100】
1つまたは複数の実施形態では、第1のDLモデル260は、残差ネットワーク(ResNet)ベースのFCNなどの完全畳み込みネットワーク(FCN)として実装される。
【0101】
残差ネットワーク(ResNet)では、ビルディングブロックは互いに積み重ねられ、それらの各々は、1×1、3×3、および5×5のカーネルサイズを有する畳み込み層の組み合わせである。各ビルディングブロックからの出力フィルタバンクは、次の段の入力として使用される単一の出力ベクトルに連結される。次元削減には1×1の畳み込みを用いる。第1のDLモデル260は、畳み込み層に割り当てられた拡張率によってパラメータ化される拡張畳み込みを使用する。拡張畳み込みは、同じストライド、パラメータの数、および計算コストを維持することによって、標準的なパッチベースのCNNとは対照的に、カーネルが各畳み込み層でより大きな視野を考慮することを可能にする。拡張畳み込みの使用は、標準的な畳み込み層を有するネットワークと比較して、より高密度の出力特徴およびより高いセグメント化性能をもたらす。式(1)を使用して拡張畳み込みを適用する。
【0102】
【0103】
式中、iは出力yにおける位置である。拡張率iを有する拡張畳み込みは、カーネルwを有する特徴マップxにわたって適用される。
【0104】
したがって、本技術のいくつかの実施形態では、ResNetベースのFCNアーキテクチャは、強い識別力のある深い特徴にアクセスし、セグメント化タスクのためのパッチベースのCNNの制限を克服することを可能にする。
【0105】
ResNetの非限定的な例には、ResNet50(50層)、ResNet101(101層)、ResNet152(152層)、ResNet50V2(バッチ正規化を伴う50層)、ResNet101V2(バッチ正規化を伴う101層)およびResNet152V2(バッチ正規化を伴う152層)が含まれる。
【0106】
1つまたは複数の代替実施形態では、第1のDLモデル260は、AlexNet、GoogleNet、およびVGGのうちのいずれかに基づいて実装されてもよい。
【0107】
第2のDLモデル270は、とりわけ、(i)少なくとも大動脈およびILTを含む関心領域(ROI)を受信し、(ii)それぞれの特徴抽出器272を介して、そこから第2の画像特徴セットを抽出し、(iii)それぞれの予測ネットワーク274を介して、第2の画像特徴セット335に基づいてROIをセグメント化して、少なくともセグメント化された大動脈管腔を得るように構成される。
【0108】
ROIが大動脈以外の動脈、例えば総腸骨動脈、外腸骨動脈および/または外腸骨動脈を含む実施形態では、第2のDLモデル270は、ROI内に存在するすべての動脈の管腔、例えば大動脈の管腔および総腸骨動脈、外腸骨動脈および/または外腸骨動脈の管腔をセグメント化するように構成される。
【0109】
第2のDLモデル270は、大動脈内腔の意味的セグメント化を実行するように訓練される。第2のDLモデル270は、前景および背景セグメント化、すなわちバイナリセグメント化を実行するように構成される。1つまたは複数の他の実施形態では、第2のDLモデル270は、多クラス意味的セグメント化を実行するように訓練されてもよい。
【0110】
第1のDLモデル260と同様に、第2のDLモデル270は、ResNetベースのFCNなどのFCNとして実装されてもよい。
【0111】
減算ユニット285は、とりわけ、(i)第1のDLモデル260からROIを受信し、第2のDLモデル270から大動脈管腔を受信し、(ii)識別された管腔をROIから除去し、(iii)管腔が除去されたROI形態を出力するように構成される。ROI内に存在する管腔は前景として見ることができ、ROIの残りはROIの背景として見ることができる。この場合、減算ユニット285は、ROIからROIの背景を抽出するように構成されていると見なすことができる。
【0112】
ROIに含まれる唯一の動脈が大動脈である実施形態では、減算ユニット285は、大動脈壁およびILTに対応するROIの背景を出力するために、大動脈管腔をROIから抽出または除去するように構成され、すなわち、減算ユニット285は、大動脈壁およびILTの画像のみを出力する。
【0113】
ROIが大動脈動脈と、少なくとももう1つの動脈、例えば少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈および/または少なくとも1つの外腸骨動脈とを含む実施形態では、減算ユニット285は、各動脈の管腔をROIから抽出または除去して、すべての動脈の壁およびILTに対応するROIの背景を出力するように構成され、すなわち、減算ユニット285は、大動脈壁、ILT、およびROIに含まれる任意の他の動脈の壁、例えば少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈および/または少なくとも1つの外腸骨動脈の壁の画像を出力する。
【0114】
第3のDLモデル280は、とりわけ、(i)減算ユニット285からROIの背景、すなわち任意の動脈の管腔が除去されたROIを受信し、(ii)それぞれの特徴抽出器282を介して、そこから第3の画像特徴セットを抽出し、(iii)それぞれの予測ネットワーク284を介して、第3の画像特徴セットに基づいて、石灰化を含むまたは含まないものとして入力画像を分類するように構成される。
【0115】
第3のDLモデル280は、ROIの背景内、すなわち任意の動脈の管腔が除去されたROI内の石灰化組織を識別するように構成される。1つまたは複数の実施形態では、第3のDLモデル280は、大動脈壁および/またはILT上の石灰化を識別するように構成される。いくつかの他の実施形態では、第3のDLモデル280は、大動脈壁および/またはILTおよび/または大動脈以外の任意の動脈の壁、例えば総腸骨動脈、内腸骨動脈および/または外腸骨動脈の壁の石灰化を識別するように構成される。
【0116】
一実施形態では、第3のDLモデル280は、減算ユニット285から受信したROIの背景の各画素を、石灰化組織に属する画素または非石灰化組織に属する画素として分類するように構成される。
【0117】
一実施形態では、第3のDLモデル280がROIの背景内の石灰化組織を識別すると、第3のDLモデル280の出力は、入力画像内の石灰化の存在が検出されたという指標である。任意の適切な指標が使用され得ることを理解されたい。例えば、指標は、成文指標、音声指標、視覚指標などであってもよい。一実施形態では、指標は、石灰化組織が識別された第3のDLモデル280によって受信されたROIの背景を含む。
【0118】
一実施形態では、ROIの背景に石灰化がないことを識別すると、第3のDLモデル280は指標を出力しない。別の実施形態では、第3のDLモデル280は、入力画像内に石灰化が検出されなかったという指標を出力することができる。
【0119】
1つまたは複数の実施形態では、第3のDLモデル280は、畳み込みニューラルネットワーク(CNN)とニューラルネットワークとの組み合わせとして実装される。1つまたは複数の実施形態では、第3のDLモデル280は、特徴抽出器としてのCNNと、分類器としてのフィードフォワードニューラルネットワークとを含む。
【0120】
別の実施形態では、DLモデルのセット250は、
図4に示すように、2つのDLモデル、すなわち、第1のDLモデルと第2のDLモデルとを含む。
【0121】
第1のDLモデルはDLモデル260と同一であり、すなわち、第1のDLモデルは、とりわけ、(i)入力または初期画像を受信し、(ii)それぞれの特徴抽出器262を介して、そこから第1の画像特徴セットを抽出し、(iii)それぞれの予測ネットワーク264を介して、第1の画像特徴セットに基づいて、関心領域(ROI)を出力するために入力画像内のROIおよび背景をセグメント化するように構成される。
【0122】
第2のDLモデル290は、とりわけ、(i)第1のDLモデル260によってセグメント化されたROIを受信し、(ii)それぞれの特徴抽出器292を介して、そこから第2の画像特徴セット296を抽出し、(iii)それぞれの予測ネットワーク294を介して、第2の画像特徴セット296に基づいて、石灰化を含むまたは含まないものとして初期画像を分類するように構成される。1つまたは複数の実施形態では、第2のDLモデル290は、大動脈壁および/またはILT上の石灰化を識別するように構成される。
【0123】
一実施形態では、第2のDLモデル290は、ROIに含まれる任意の動脈の管腔(大動脈の管腔を含む)を同時に識別して、任意の動脈の壁およびILTを検出し、任意の動脈および/またはILTの壁上の任意の石灰化を検出するように構成される。
【0124】
一実施形態では、第2のDLモデル290は、ROI内の管腔および石灰化をセグメント化するための多クラスセグメント化のために構成される。この場合、第2のDLモデル290は、大動脈管腔であると識別されたROIの領域を除いてROI内の石灰化を識別するように構成される。一実施形態では、第2のDLモデル290は、多クラスセグメント化のために訓練されたResNetベースのFCNモデルである。
【0125】
一実施形態では、2つのDLモデル260および290を備えるシステムは、3つのDLモデル260,270および280を備えるシステムよりも良好な石灰化位置識別を可能にする。
【0126】
データベース
データベース235は、とりわけ、(i)医療画像を格納し、(ii)DLモデルのセット250のモデルパラメータおよびハイパーパラメータを格納し、(iii)DLモデルのセット250を訓練、試験、および検証するためのデータセットを格納し、(iv)DLモデルのセット250によるセグメント化出力を格納するように構成される。
【0127】
ラベル付き訓練データセット240またはラベル付き訓練例のセット240は、複数の訓練例を含み、各ラベル付き訓練例は、それぞれのラベルに関連付けられる。ラベル付き訓練データセット240は、大動脈組織のセグメント化を実行するためにDLモデルのセット250を訓練するために使用される。ラベル付き訓練データセット240内の各画像は、大動脈、大動脈以外の動脈、管腔、ILT、もしあれば石灰化の指標でセグメント化され得る。
【0128】
ラベル付き訓練データセット240の性質および訓練データの数は限定されず、手元のタスクに依存することが理解されよう。訓練データセット240は、予測を生成するために本明細書に記載の機械学習モデルによって処理することができる任意の種類のデジタルファイルを含むことができる。
【0129】
1つまたは複数の実施形態では、データベース235は、.tfrecord、.csv、.npy、および.petastormなどのDLファイルフォーマット、ならびに.pbおよび.pklなどのモデルを格納するために使用されるファイルフォーマットを格納することができる。データベース235はまた、限定はしないが、画像ファイルフォーマット(例えば、.png、.jpeg)、動画ファイルフォーマット(例えば、.mp4、.mkvなど)、アーカイブファイルフォーマット(例えば、.zip、.gz、.tar、.bzip2)、文書ファイルフォーマット(例えば、.docx、.pdf、.txt)またはウェブファイルフォーマット(例えば、.html)などの周知のファイルフォーマットを格納することができる。
【0130】
非限定的な例として、ラベル付き訓練データセット240は、臨床医によって検証された手動注釈付きSimpleware(商標)(Synopsys Inc.,Mountain View,California,米国)を使用して訓練されたオペレータによって注釈付けされたデータを有するCT撮像装置(GE Medical Systems,Chicago,Illinois,米国)を使用して、腹部大動脈瘤に罹患した56人の異なる患者から得られた6030個のCT画像を含むことができる。
【0131】
データベース235は、検証データセット(図示せず)、テストデータセット(図示せず)などの他のタイプのデータを格納することができることが理解されよう。
【0132】
通信ネットワーク
本技術のいくつかの実施形態では、通信ネットワーク220はインターネットである。代替の非限定的な実施形態では、通信ネットワーク220は、任意の適切なローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、プライベート通信ネットワークなどとして実装することができる。通信ネットワーク220の実装形態は例示のみを目的としていることを明確に理解されたい。ワークステーションコンピュータ215および/またはサーバ230および/または別の電子デバイス(図示せず)と通信ネットワーク220との間の通信リンク225(別々に番号付けされていない)がどのように実装されるかは、とりわけ、医療撮像装置210、ワークステーションコンピュータ215、およびサーバ230の各々がどのように実装されるかに依存する。
【0133】
通信ネットワーク220は、ワークステーションコンピュータ215、サーバ230およびデータベース235の間でデータパケットを送信するために使用され得る。例えば、通信ネットワーク220を使用して、ワークステーションコンピュータ215とサーバ230との間で要求を送信することができる。
【0134】
大動脈組織のセグメント化手順
図3および
図6を参照すると、本技術の1つまたは複数の非限定的な実施形態による、大動脈組織セグメント化手順300、および大動脈組織セグメント化手順300の間に得られた大動脈内の例示的なセグメント化された組織の概略図が示されている。
【0135】
1つまたは複数の実施形態では、大動脈組織セグメント化手順300は、サーバ230によって実行されてもよい。大動脈組織セグメント化手順300のいくつかの部分は、当業者によって認識されるように、サーバ230または電子デバイス(ワークステーションコンピュータ215など)によって並列に実行されてもよいと考えられる。
【0136】
大動脈組織セグメント化手順300は、DLモデルのセット250を使用して大動脈組織の意味的セグメント化を実行し、もしあれば石灰化組織を識別する。DLモデルのセット250は、訓練手順中に大動脈組織のセグメント化および石灰化組織および非石灰化組織の分類を実行するように事前訓練されており、これについては下記でより詳細に説明する。
【0137】
大動脈組織セグメント化手順300は、上述したように、少なくとも大動脈、ILT、および分析目的のために除去される他の身体部分を含む所与の対象の身体の1つまたは複数の初期または入力画像310(
図3には1つのみが示されている)を得る。画像は、医療撮像装置210、データベース235、またはサーバ230に接続された他の任意の電子デバイス(図示せず)から受信することができる。
【0138】
1つまたは複数の実施形態では、画像310は断面図である。画像は、例えば大動脈壁のCT画像であってもよい。本技術の範囲から逸脱することなく、MRIなどの他の撮像モダリティを使用することができると考えられる。
【0139】
上述したように、画像310は、大動脈以外の所与の患者の1つまたは複数の器官を含むことができる。非限定的な例として、画像310は、例えば心臓CTスキャンであってもよい。1つまたは複数の実施形態では、画像310は、造影剤を使用せずに医療撮像装置210によって取得されている。
【0140】
画像310は、様々な基準に基づいて画像のスタックから予め選択されてもよいことが理解されよう。1つまたは複数の他の実施形態では、画像310は、予め選択されなくてもよく、患者のCT画像のスタックからランダムに選択されてもよい。
【0141】
第1のDLモデル260は、画像310を受信する。より具体的には、第1のDLモデル260の各特徴抽出器262は、画像310を入力として受信する。
【0142】
第1のDLモデル260は、それぞれの特徴抽出器264を介して、画像310から第1の画像特徴セット315を抽出する。第1の画像特徴セット315は、画像310内の大動脈およびILTの存在を示す深い特徴を含む。一実施形態では、深い特徴は、少なくとも1つの総腸骨動脈、少なくとも1つの外腸骨動脈および/または少なくとも1つの内腸骨動脈などの少なくとも別の動脈の存在をさらに示す。一実施形態では、深い特徴は、形状および境界などの抽象的なレベルの特徴と、テクスチャ特徴などの詳細な画像情報との組み合わせである。
【0143】
一実施形態では、第1の画像特徴セット315は、画像310内の大動脈およびILTの存在、ならびに任意選択的に少なくとも別の動脈の存在を示すテクスチャ、幾何学、トポロジカル、および構造的特徴のうちの1つ以上を含む深い特徴を含む。
【0144】
第1のDLモデル260のそれぞれの予測ネットワーク264は、第1の画像特徴セット315を使用して、画像310の関心領域(ROI)320および背景324を得る。ROI320は、少なくとも大動脈322(大動脈管腔360および大動脈壁388を含む)、ILT386、および存在する場合には石灰化384(および任意選択的に少なくとも別の動脈)を含み、背景324は画像310の残りの部分を含み、これは他の器官および組織など(脊椎など)の残りの身体部分と、さらなる分析に必要とされない画像310の他の部分とを含む。
【0145】
1つまたは複数の実施形態では、それぞれの予測ネットワーク264は、画像310をセグメント化する、すなわち、画像310内の各画素をROI320に属するかまたは背景324に属するものとして分類する。
【0146】
第1のDLモデル260は、ROI320、すなわち大動脈、ILT、および任意選択的に少なくとも別の動脈を含む入力画像310の部分を出力する。1つまたは複数の実施形態では、大動脈組織セグメント化手順300は、画像310から背景324を減算してROI320を得、ROI320を出力することができる。
【0147】
ROI320は、画像310の一部のみであってもよいことが理解されよう。
異なる時点で取得された同じ対象の画像が第1のDLモデル260に提供されている場合などの1つまたは複数の実施形態では、第1のDLモデル260は、この目的のために訓練されたネットワーク(例えば、より少ない隠れ層を含む浅いネットワーク)を使用することによって大動脈および/またはILTの幾何学的変化をさらに識別することができる。
【0148】
DLモデルのセット250が3つのDLモデル260,270および280を含む実施形態では、第2のDLモデル270は、第1のDLモデル260によって識別されたROI320を入力として受信する。
【0149】
第2のDLモデル270は、それぞれの特徴抽出器272を介して、ROI320から第2の画像特徴セット335を抽出する。
【0150】
第2の画像特徴セット335は、ROI320内の大動脈管腔360などの管腔の存在を示す。一実施形態では、第2の画像特徴セット335は、形状および境界などの抽象的なレベルの特徴と、テクスチャ特徴などの詳細な画像情報との組み合わせである深い特徴を含む。
【0151】
第2の画像特徴セット335は、一般に、第1の画像特徴セット315とは異なることが理解されよう。しかしながら、代替的な実施形態では、第1の画像特徴セット315の少なくともサブセットおよび第2の画像特徴セット335の少なくともサブセットが共有されてもよいと考えられる。
【0152】
第2のDLモデル270は、それぞれの予測ネットワーク274を介して、第2の画像特徴セット335に基づいて、ROI320内の大動脈管腔360などの任意の動脈管腔を識別するためにROI320をセグメント化し、ROI320の残り(以下、ROI360の背景と呼ぶ)は、大動脈壁388、ILT386、存在する場合には石灰化384、および任意選択的に、少なくとも1つの総腸骨動脈、少なくとも1つの内腸骨動脈および/または少なくとも1つの外腸骨動脈の壁などの任意の他の動脈の壁を含む。第2のDLモデル270は、ROI320内の各画素を管腔360と非管腔(すなわち、背景)のいずれかに分類する。一実施形態では、ROI320の背景は大動脈壁およびILTを含む。入力画像310が総腸骨動脈、内腸骨動脈および/または外腸骨動脈を含む実施形態では、ROI320の背景は、総腸骨動脈、内腸骨動脈および/または外腸骨動脈の壁をさらに含む。
【0153】
一実施形態では、第2のDLモデル270は、ROI320で識別された管腔を出力する。一実施形態では、第2のDLモデル270の出力は、識別された管腔の画像である。別の実施形態では、第2のDLモデル270の出力は、管腔に属すると識別されたROI320の画素の識別である。
【0154】
管腔360を得る際の第2のDLモデル270の性能は、事前の第1のDLモデル260によるROI320の抽出およびセグメント化により、改善されることが理解されよう。
【0155】
減算ユニット285は、第1のDLモデル260からROI320、および第2のDLモデル270から管腔を入力として受信し、ROI320から管腔を除去してROI320の背景を得る。
【0156】
第3のDLモデル280は、大動脈の壁、ILT、および任意選択的に少なくとも別の動脈の壁を含むROI320の背景を入力として受信し、ROI320の背景内に石灰化組織がある場合、それを識別する。石灰化組織が検出された場合、第3のDLモデル280は、石灰化組織が検出されたという指標を出力する。指標は、入力画像が石灰化組織を含むものとしてタグ付けされ得るように、入力画像310と共にメモリに記憶され得る。別の例では、指標は、表示ユニットに表示するために提供されてもよい。
【0157】
一実施形態では、ROI320の背景が石灰化組織を含まないと判定された場合、第3のDLモデル280は、石灰化組織が入力画像310内に検出されなかったという指標を出力する。指標は、入力画像が石灰化組織を含まないものとしてタグ付けされ得るように、入力画像310と共にメモリに記憶され得る。別の例では、指標は、表示ユニットに表示するために提供されてもよい。
【0158】
より具体的には、第3のDLモデル280は、それぞれの特徴抽出器282を介して、ROI320の背景から第3の画像特徴セット335を抽出する。
【0159】
第3の画像特徴セット365は、ROI320の背景における石灰化組織の存在を示す。一実施形態では、第3の画像特徴セット365は、形状および境界などの抽象的なレベルの特徴と、テクスチャ特徴などの詳細な画像情報との組み合わせである深い特徴を含む。
【0160】
第3のDLモデル280は、それぞれの予測ネットワーク284を介して、第3の画像特徴セット365に基づいて、ROI320の背景をセグメント化して、石灰化組織を識別する。第3のDLモデル280は、ROI320の背景内の各画素を石灰化組織に属するもの、または非石灰化組織に属するものとして分類する。
【0161】
1つまたは複数の実施形態では、特徴抽出器282は、ResNet CNNとして実装される。
【0162】
1つまたは複数の実施形態では、予測ネットワーク284はフィードフォワードニューラルネットワークとして実装される。
【0163】
図4を簡単に参照すると、拡張畳み込みを有するResNetベースのエンコーダ-デコーダ420として実装された第1のDLモデル260、拡張畳み込みを有するResNetベースのエンコーダ-デコーダ440として実装された第2のDLモデル270、およびResNetベースの分類器460として実装された第3のDLモデル280の非限定的な例が示されている。
【0164】
ResNetベースのエンコーダ-デコーダ420は、サイズ4、8、16、および16の複数のブロック422と、1×1畳み込み層、3×3拡張畳み込み層、3×3拡張畳み込み層、およびプーリング層を含む複数の層424とを備える。
【0165】
ResNetベースのエンコーダ-デコーダ420は、複数のブロック422によって出力される第1の画像特徴セットの低レベル特徴を処理するための1x1畳み込み層の形態の別の畳み込み層426を備え、別の畳み込み層426は、第1の画像特徴セットをアップサンプリングするための1x1畳み込み層426の形態の第1のアップサンプリング畳み込み層428と積層される。最後のアップサンプリング畳み込み層430は、ROI320を出力する3×3畳み込み層の形態である。
【0166】
同様に、ResNetベースのエンコーダ-デコーダ440は、複数のブロック442によって出力される第2の画像特徴セットの低レベル特徴を処理するための1x1畳み込み層の形態の別の畳み込み層446を備え、別の畳み込み層446は、第2の画像特徴セットをアップサンプリングするための1x1畳み込み層436の形態の第1のアップサンプリング畳み込み層448と積層される。最後のアップサンプリング畳み込み層450は、セグメント化された管腔を出力する3×3畳み込み層の形態である。
【0167】
ResNetベースの分類器460は隠れたCNN層462を含み、これは、ROI320の背景(すなわち、識別された管腔が除去されたROI320)を受信し、フィードフォワード分類層464によって処理されてROI320の背景内の石灰化の存在の指標382を出力する深い画像特徴の第3のセットを生成する。
【0168】
DLモデルのセット250が2つのDLモデルのみを含む実施形態では、第1のDLモデルは、拡張畳み込みを有するResNetベースのエンコーダ-デコーダ420として実装されたDLモデル260であってもよい。第2のDLモデルは、ROI320内の管腔および石灰化を同時に検出するために多クラスセグメント化のために訓練された完全畳み込み残差ネットワーク(ResNetベースのFCN)であってもよい。
【0169】
一実施形態では、2つのDLモデルのみを含むシステムは、石灰化を管腔と見なすリスクを低減するので、石灰化の位置の改善された検出、および管腔のより正確なセグメント化を可能にする。
【0170】
訓練手順
DLモデルのセット250の訓練中、より深いネットワーク層は、広範な値の区間に対するグリッド検索を使用することによってファインチューニングされる。DLモデルのセット250のネットワークアーキテクチャにおける上位層は、様々なアプリケーションにおける共通の属性であるエッジ、境界、および形状などの画像のより一般的な特徴を抽出することが理解されよう。他の層の重みを一定に保つために、学習率は強制的に0にされる。最適な学習パラメータは、割り当てられた各値の検証データセットでモデル性能を評価することによって得ることができる。1つまたは複数の実施形態では、最適な学習パラメータは0.02であると決定された。モーメンタムおよびスケジューリング速度は、ファインチューニングの各ステップで0.8および0.9と割り当てられた。拡張率は最後の2ブロックに対して2および4と割り当てられた。第3のDLモデル280のエンコーダ出力をアップサンプリングするために、デコーダにアップサンプリング係数8が割り当てられた。第3のDLモデル280のデコーダの出力は、1×1畳み込みを適用した後に低レベル特徴と組み合わされた。
【0171】
大動脈は通常、画像全体の小部分を表すので、重み付き損失関数が使用される。DLモデルのセット250の性能は、損失関数として重み付きクロスエントロピーおよび重み付き一般化ダイスの両方を使用して評価される。
【0172】
一実装態様では、重み付きクロスエントロピーは、式(2)を使用して定義された重みで全体的に良好な性能を示した。
【0173】
【0174】
式中、Nは、予測確率的マップ要素pnを用いて前景として注釈付けされた画像の数である。
【0175】
一実装形態では、ネットワーク最適化器としてAdamが適用され、L2正則化は0.0005、ミニバッチサイズは10、検証時間は6である。DLモデルのセット250を訓練するために、データの80%をDLモデルのセット250を訓練するために使用することができ、残りの20%を検証およびテストデータセットのために2つに分割することができる。
【0176】
新しい対象データに対するDLモデルのセット250の性能を検証するために、1個の対象データを検証セットとして残し、他のすべての対象のデータをDLモデルのセット250によって訓練することによって、1個抜き交差検証を実行することができる。検証工程は、32人の異なる対象のサブセットに対して32回繰り返されてもよく、結果は、対象/患者ID(x軸)およびモデル性能またはモデル正確度(y軸)で
図7に示されている。
【0177】
DLモデルのセット250の訓練の結果を評価するために、各ステップで、正確度、感度、特異度、およびBFスコアを計算することができる。
【0178】
1つまたは複数の実施形態において、混同行列を使用することによって、クラスごとの正確度、感度、および特異度およびBFは、式(3)~(7)を使用することによって計算される。
【0179】
【0180】
【0181】
【0182】
【0183】
【0184】
TP、FP、FN、およびTNは、それぞれ真陽性、偽陽性、偽陰性、および真陰性である。
【0185】
表Iは、訓練中のセグメント化された組織について得られた正確度、感度、特異度およびBFの結果を示す。
【0186】
【0187】
表2は、大動脈のCT画像における管腔の抽出について得られた正確度、感度、特異度およびBFの結果を示す。
【0188】
【0189】
表3は、石灰化ILT/壁対非石灰化ILT/壁について得られた正確度、感度、特異度およびBFの結果を示す。
【0190】
【0191】
図8を参照すると、各々が大動脈を含むCTスキャンの例示的な画像702(文字aでラベル付けされている)、グランドトゥルースとして使用される注釈付き大動脈の画像704(文字bでラベル付けされている)、セグメント化された管腔を含むモデル決定706(文字cでラベル付けされている)、および抽出された大動脈708(文字dでラベル付けされている)が示されている。
【0192】
図9を参照すると、4つの異なる患者データのセグメント化の結果を示す例示的な画像、すなわち、抽出された大動脈720(文字aでラベル付けされている)、注釈付きグランドトゥルース722(文字bでラベル付けされている)、管腔検出のためのモデル決定(文字cでラベル付けされている)、抽出された管腔726(文字dでラベル付けされている)、ならびに動脈壁およびILT728(文字eでラベル付けされている)が示されている。
【0193】
本技術の1つまたは複数の実施形態によれば、大動脈は、2つの理由により第1のステップで元の画像から抽出されたことに留意されたい。第1の理由は、以下の通りである。大動脈をROIとして考慮することによって、ネットワークは、各組織を別々に考慮する代わりに、管腔と血栓と壁との関係を記述する追加の特徴を探しており、これにより、望ましくない周囲組織がすべて除去されるのでセグメント化の誤り率を低減することができる。さらに、大動脈は画像全体から抽出されるため、大動脈から管腔を抽出するだけでよく、残りの組織はILTと動脈壁(ILT/壁)の組み合わせである。したがって、ResnetベースのFCNの同じ構成は、管腔セグメント化に適合され得る。前のステップの出力(大動脈)は、管腔を検出および抽出するためのさらなる処理のためにネットワークに供給される。第2の理由は、AAA患者から得られたCT画像の流体力学的分析を容易にし、特定することである。したがって、大動脈の手動セグメント化が、分析工程を加速するだけでなく、エラーが発生しやすい手動セグメント化を回避する高精度の自動化された手順に置き換えられるので、大動脈管腔の正確な抽出は、流体力学的分析の工程を改善する。
【0194】
最後に、血栓および動脈壁を評価して、石灰化組織と非石灰化組織とを区別する。石灰化はすべての場合に発生するわけではないので、石灰化を検出するために少数の画像でFCNを訓練することは必ずしも効率的ではない場合がある。既存のデータセットでは、ILT/壁のすべての画像から深い特徴を抽出することによって石灰化および非石灰化ILT/壁を区別し、分類器を訓練して深い特徴間の類似性を考慮し、石灰化画像と非石灰化画像とを分類することがより効率的であり得る。この目的のために、いくつかの実施形態では、特徴抽出器としてのCNNと、分類器としてのフィードフォワードニューラルネットワークとの組み合わせが使用される。ILT/壁画像はすべて、石灰化または非石灰化として手動でラベル付けされる。一貫してネットワークを使用し、ResNetが特徴抽出のための強力なCNNであることを考慮し、前のステップから得られたILT/壁のすべての画像から特徴が抽出される。抽出された深い特徴は、分類器として機能する479個の隠れ層ニューロンを有するフィードフォワードニューラルネットワークに供給される。ネットワークの最適な隠れサイズを見つけるために、
図9に見られるように、ネットワークの性能は、100から500までの隠れサイズ値の広範な区間について評価される。訓練工程は、スケーリングされた共役勾配法に基づいており、2次導関数近似のための重み変化を推定するためにパラメータシグマが使用される。シグマの最適値を得るために、0.0001から0.01までの様々な値をシグマに割り当てることによって分類器の性能が評価される。
図9に見られるように、値0.085に対してネットワークの最高性能が得られる。訓練は、191の最大検証失敗で1153エポックについて実施した。エポックおよび検証失敗の数について、ネットワークの性能は、
図10に見られるように、それぞれ1から2500および0から500の値について評価される。
【0195】
方法の説明
図11は、大動脈組織をセグメント化して医療画像内の石灰化を検出するための方法600のフローチャートを示し、方法600は、本技術の1つまたは複数の非限定的な実施形態に従って実行される。
【0196】
1つまたは複数の実施形態では、サーバ230は、コンピュータ可読命令を記憶するソリッドステートドライブ120および/またはランダムアクセスメモリ130などの非一時的コンピュータ可読記憶媒体に動作可能に接続されたプロセッサ110および/またはGPU111などの処理デバイスを備える。処理デバイスは、コンピュータ可読命令を実行すると、方法800を実行するように構成されるかまたは動作可能である。方法800は、複数のデバイスによって実行されてもよいことが理解されよう。
【0197】
サーバ230は、DLモデルのセット250にアクセスすることができ、DLモデルのセット250の少なくとも一部は、医療撮像装置によって取得された画像内の大動脈の意味的セグメント化を実行するように訓練されている。サーバ230は、減算ユニット285にもアクセスすることができる。一実施形態では、モデルのセット250は、第1のDLモデル260、第2のDLモデル270、および第3のDLモデル280を含む。別の実施形態では、モデルのセット250は、第1のDLモデル260およびDLモデル290を含む。
【0198】
方法600は、処理ステップ602で開始される。
処理ステップ602において、処理デバイスは、大動脈壁および/またはILT上に石灰化を含むまたは含まないと分類される対象の画像を受信する。上述のように、画像は、大動脈、ILT、およびさらなる分析のために除去される器官および組織などの他の身体部分を含む。一実施形態では、画像は、大動脈、ILT、ならびに他の身体部分に加えて少なくとも1つの総腸骨動脈、少なくとも1つの外腸骨動脈および/または少なくとも1つの外腸骨動脈などの少なくとも1つの動脈を含む。
【0199】
1つまたは複数の実施形態では、画像310は、大動脈およびILTの少なくとも断面を含む断面画像である。画像310は、CTスキャンスライスを含むことができる。
【0200】
処理ステップ604において、処理デバイスは、画像310からROI320を抽出する。ROI320は、大動脈およびILTを含む。画像310が少なくとも1つの総腸骨動脈、少なくとも1つの外腸骨動脈および/または少なくとも1つの外腸骨動脈などの少なくとも1つの動脈をさらに含む実施形態では、ROI320は少なくとも1つの動脈をさらに含む。処理ステップ604において、ROI320を得るために、上述の他の身体部分が画像310から除去されることを理解されたい。
【0201】
処理ステップ606において、処理デバイスは、ROI320に含まれる大動脈320の壁および/またはILTが石灰化組織を含むか否かを判定する。
【0202】
処理ステップ606において、大動脈の壁および/またはILTが石灰化組織を含むと判定した場合、処理デバイスは、処理ステップ608において石灰化組織の存在の指標を出力する。
【0203】
方法600はその後終了する。
一実施形態では、処理ステップ602は、DLモデル260などの第1のDLモデルによって実行される。
【0204】
一実施形態では、方法600は、ROI320内の少なくとも大動脈の管腔を識別する処理ステップをさらに含む。ROI320が大動脈に加えて少なくとも1つの動脈を含む実施形態では、動脈の管腔も識別される。
【0205】
一実施形態では、管腔の識別および石灰化の識別は、ROI320を入力として受信するDLモデル290などの同じDLモデルによって同時に実行される。
【0206】
別の実施形態では、管腔の識別および石灰化の識別は、異なるDLモデルによって実行される。この場合、ROI320内の管腔の識別は、DLモデル270などの第2のDLモデルによって実行され、石灰化の識別は、DLモデル280などの第3のDLモデルによって実行される。
【0207】
図12は、3つのDLモデル260,270および280が使用される方法600の例示的な実施形態に対応する方法800を示す。
【0208】
方法800は、ステップ802で開始される。
処理ステップ802において、処理デバイスは画像310を受信する。
【0209】
処理ステップ804において、処理デバイスは、第1のDLモデル260を使用して、画像310から第1の画像特徴セット315を抽出する。1つまたは複数の実施形態では、処理デバイスは、第1のDLモデル260のそれぞれの特徴抽出器264を使用して、画像310から第1の画像特徴セット315を抽出する。第1の画像特徴セット315は、画像310内の大動脈の少なくとも構造特性を示す。
【0210】
1つまたは複数の実施形態では、第1のDLモデル260は、ResNetベースのエンコーダ-デコーダ420として実装される。
【0211】
処理ステップ806において、処理デバイスは、第1のDLモデル260を使用して、第1の画像特徴セット315に基づいて画像310のROI320を得る。1つまたは複数の実施形態では、処理デバイスは、第1のDLモデル260のそれぞれの予測ネットワーク264を使用して、第1の画像特徴セット315に基づいて画像310のROI320を得る。
【0212】
1つまたは複数の実施形態では、第1のDLモデル260は、ROI320および異なる時点で取得されたROIに基づいて大動脈の幾何学的変動を識別するための訓練されたネットワーク(例えば、1つまたは2つの隠れ層を有する訓練されたニューラルネットワーク)を含むか、またはそれに先立つことができる。
【0213】
処理ステップ808において、処理デバイスは、第2のDLモデル270を使用して、ROI320から第2の画像特徴セット335を抽出する。処理デバイスは、第2のDLモデル270のそれぞれの特徴抽出器272を使用して、ROI320から第2の画像特徴セット335を抽出して得る。第2の画像特徴セット335は、ROI320に存在する管腔の少なくとも構造特性を示す。
【0214】
1つまたは複数の実施形態では、第2のDLモデル270は、第1のDLモデル260と同様のResNetベースのエンコーダ-デコーダとして実装される。
【0215】
処理ステップ810において、処理デバイスは、第2の画像特徴セット335に基づいて、ROI320をセグメント化して、少なくとも大動脈322の管腔360、および任意選択的にROI320に含まれる任意の他の動脈の管腔を得る。1つまたは複数の実施形態では、処理デバイスは、第2のDLモデル270のそれぞれの予測ネットワーク274を使用して第2の画像特徴セット335に基づいてROI320をセグメント化して管腔を得る。
【0216】
処理ステップ812において、処理デバイスは、ROI320内で識別された管腔をROI320から除去して、大動脈の壁およびILTを含むROI320の背景、および任意選択でROI320に存在する大動脈以外の任意の動脈の壁を得る。
【0217】
処理ステップ814において、処理デバイスは、第3のDLモデル280を使用することによって、ROI320の背景から第3の画像特徴セット365を抽出する。1つまたは複数の実施形態では、第3のDLモデル280は、CNNとニューラルネットワークとの組み合わせとして実装される。
【0218】
処理デバイスは、第3のDLモデル280のそれぞれの特徴抽出器282を使用して、第3の画像特徴セット365を抽出する。第3の画像特徴セット365は、石灰化の少なくとも構造特性を示す。
【0219】
処理ステップ816において、処理デバイスは、第3の画像特徴セット365に基づいて第3のDLモデル280を使用して、ROI320の背景に含まれる組織を石灰化しているかまたは石灰化していないかに分類して、画像310内の石灰化の存在の指標を得る。処理デバイスは、第3のDLモデル280のそれぞれの予測ネットワーク284を使用して、第3の画像特徴セット365に基づいて、ROI320の背景に含まれる組織を石灰化しているまたは石灰化していないものとして分類する。
【0220】
処理ステップ818において、処理デバイスは、ステップ816で石灰化が検出された場合、画像310内の石灰化の存在の指標を出力する。ステップ816で石灰化が検出されない場合、ステップ818で指標は出力されない。
【0221】
一実施形態では、石灰化の存在の指標は、セグメント化画像内の石灰化の視覚的指標を有するセグメント化画像を含む。非限定的な例として、視覚的指標は、着色された輪郭および石灰化形成のサイズの指標を含むことができる。
【0222】
方法800はその後終了する。
方法800は、画像310を処理するために前処理ステップを使用することを必要とせず、DLモデルのセット250は、標準的なセグメント化技術と比較して比較的小さなデータセット(例えば、1000個の画像)で訓練することができることが理解されよう。さらに、方法800は、造影剤を使用することによって取得された画像を必要としない。
【0223】
本明細書で言及されるすべての技術的効果が、本技術のありとあらゆる実施形態において享受される必要はないことを明確に理解されたい。例えば、本技術の実施形態は、ユーザがこれらの技術的効果のいくつかを享受することなく実装されてもよく、他の非限定的な実施形態は、ユーザが他の技術的効果を享受するか、または全くなしで実装されてもよい。
【0224】
これらのステップおよび信号送信-受信のいくつかは当技術分野で周知であり、したがって、簡略化のためにこの説明の特定の部分では省略されている。信号は、光学的手段(光ファイバ接続など)、電子的手段(有線または無線接続など)、および機械的手段(例えば、圧力に基づく、温度に基づく、または任意の他の適切な物理的パラメータに基づく)を使用して送受信することができる。
【0225】
以下に、実験研究の結果を示す。
背景
本プロトコルは、本セグメント化モデルの訓練および検証を要約し、19の遡及的患者データに関する分析者2人の結果の盲検比較によって評価者間の信頼性に対処する。
【0226】
自動セグメント化モデルのモデル開発と訓練のまとめ
本セグメント化モデルは、大動脈壁および動脈瘤の構造の正確で再現可能な自動再構成の臨床的必要性を考慮して設計された。
【0227】
大動脈および腸骨動脈を含むROIの検出および抽出のために、拡張畳み込みを有するResnetベースのFCNを使用した。値の広範な区間を求めるグリッド検索を使用して、より深いネットワーク層からファインチューニングを開始した。ネットワークアーキテクチャの上位層は、エッジ、境界、および形状など、画像のより一般的な特徴を抽出する役割を担い、これらは様々なアプリケーションで共通の属性である。我々の患者データセットを考慮して過剰適合の懸念を緩和するために注意が払われた。他のすべての層の重みは、それらの層の学習率を0に強制することによって一定のままであった。最適な学習パラメータは、割り当てられた値ごとに設定された検証に対するモデル性能を評価することで得られる。最適な学習パラメータは0.02と決定される。モーメンタムおよびスケジューリング速度は、ファインチューニングの各ステップで0.8および0.9と割り当てられた。拡張率は最後の2ブロックに対して2および4と割り当てられる。エンコーダ出力をアップサンプリングするために、アップサンプリング係数8がデコーダに割り当てられる。デコーダの出力は、1×1畳み込みを適用した後に低レベル特徴と組み合わされる。ROIは、第1のクラスおよび他のすべての周囲組織としてラベル付けされ、画像背景は、第2のクラスとしてラベル付けされる。ROIは画像全体のごく一部であるため、重み付き損失関数が考慮される。ネットワークの性能は、損失関数として重み付きクロスエントロピーおよび重み付き一般化ダイスの両方を使用して評価される。重み付きクロスエントロピーは、式(2)を使用して定義された重みでより良好な性能を実証する。
【0228】
Adamネットワークオプティマイザは、L2正則化0.0005、ミニバッチサイズ8、および検証時間6で適用される。
【0229】
訓練は、以下の3つの異なるステップで実行される。
1.管腔、ILT、腸骨動脈、および石灰化:モデルを訓練するために、データの80%を訓練に使用し、残りの20%を検証および試験セットのために2つに分割する。
【0230】
2.管腔/石灰化ネットワーク:管腔および石灰化を検出するための多クラスセグメント化には、ネットワークの同じ構成を使用する。この場合、管腔、石灰化および背景として3つのクラスが定義される。訓練は、データの80%を訓練セットに割り当てることによって実行し、残りの20%は、検証および試験セットのために2つに分割する。
【0231】
一実施形態では、DLモデル構成は、ROIおよび管腔の検出のためだけに拡張畳み込みを有するResnetベースのFCNを使用して開発される。抽出された大動脈壁は、石灰化組織と非石灰化組織とを区別するためにCNNとニューラルネットワークとの組み合わせを使用して分析される。訓練は、手術(開放およびEVARの両方)のために選択された患者、ならびに前向き試験に登録された3人の患者の術前動的CT画像を含む第1のデータセットを使用して行われる。
【0232】
一実施形態では、モデルは、より多くの患者データについて再訓練することによって改善される。第2のデータセットは、ベースラインまたはフォローアップに関する情報が得られていない遡及的患者のランダム選択の一部である。患者は、腹部大動脈瘤CT撮像を受けた無作為の患者であった。このデータセットは、ほとんどの場合が動的CT画像を有し、少数の場合が静的CT画像を有する。
【0233】
一実施形態では、モデルの改善は、以下の2つのステップで実行される。
1.第2および第3のDPネットワークを、ROI内の管腔および石灰化の両方を同時に検出するために単一の多クラスセグメント化ネットワークによって置き換える。
【0234】
2.自動セグメント化モデルを再訓練するための第3のデータセットから患者を選択する。第3のデータセットは、腹部大動脈瘤と診断されたが手術が選択されず、連続動的CTで監視された患者を含む、遡及的研究からの画像の選択であった。このデータセットについて、どのスキャンがベースラインであり、どのスキャンが各患者の追跡調査であったかに関する情報が利用可能であった。再訓練はベースラインで行った。
【0235】
本科学的検証プロトコルの目的は、腹部大動脈瘤の様々な組織を特徴付けるために開発された本セグメント化モデルを検証することである。
【0236】
セグメント化モデルの検証は、本発明者らの第3のデータセットから選択された19個のベースラインDICOM画像に対して実行された。患者は、モデルの訓練に関与したことがなく、モデルによって分析されたことがない。
【0237】
方法
本研究は、本セグメント化方法を検証するために設計されている。各患者について、評価者間の信頼性を3つの異なるステップで評価する:1.セグメント化モデルの性能をグランドトゥルースと比較する。2.セグメント化モデルの性能を訓練された観察者と比較する。3.訓練された観察者によって作成されたセグメント化をグランドトゥルースと比較する。
【0238】
試験手順
各DICOM CTスライスについて、元の画像をセグメント化ネットワークに供給した。自動セグメント化の出力と、対応するグランドトゥルースマスクとの間の混同行列を計算することによって、ピクセルごとの比較を実行した。自動セグメント化の出力と訓練された観察者によって作成された対応するマスクとの間で同じ計算を行った。各スライスについて計算された混同行列を使用して、クラスごとの正確度、感度、特異度、およびBFスコアを測定した。19人の患者全員について、実験をスライスごとに実施し、さらなる統計分析のために結果を保存した。
【0239】
データキャプチャ
セグメント化モデルは、4つの異なる出力(すべてDICOM形式)を有する:1.大動脈壁、管腔、ILT、および石灰化の組み合わせを含む抽出された大動脈、2.抽出された管腔、3.抽出された石灰化、4.検出されたランドマーク。すべての計算された混同行列、正確度、感度、特異度、およびBFスコアは、.matとして保存した。
【0240】
データ分析および許容基準
自動セグメント化出力と、対応するグランドトゥルースマスクと、別個の訓練された観測者との間の一致を、個々のバイアスを識別するために検証する。
【0241】
グランドトゥルースは訓練された観察者によって作成され、作成されたマスクの品質および正確度は、独立した経験豊富な裁定者によって検証された。グランドトゥルースは19人の患者全員について作成された。訓練された観察者は、19人の異なる患者の同じDICOM画像のセグメント化におけるバイアスの可能性を減らすためにグランドトゥルースに対して盲検化された。
【0242】
各患者について、自動セグメント化を各スライスに適用した。次に、各出力(ROI、管腔、およびランドマーク)について混同行列を計算することによって、セグメント化ネットワークの出力を別々に評価した。正のクラスをROIとして定義し、負のクラスを背景および周囲組織として定義することによって、混同行列を以下のように計算した:
【0243】
【0244】
TP、FP、TN、およびFNは、それぞれ真陽性、偽陽性、真陰性、および偽陰性である。
【0245】
TPは、各ネットワークのROIとして正しくセグメント化されたピクセルを表し、FPは、ROIとして誤ってセグメント化された背景ピクセルを決定し、TNは、背景および周囲組織として正しくセグメント化されたピクセルを表し、FNは、背景および周囲組織として誤ってセグメント化されたROIピクセルを決定する。
【0246】
混同行列を使用して、式(3)~(7)によって提供される正確度、感度、特異度、およびBFスコアの一般的な定義を使用して、ROIの検出および抽出におけるセグメント化モデルの完全な評価のためのクラスごとの正確度、感度、特異度を測定した。BFスコアは、ROIのセグメント化された境界がグランドトゥルース境界にどれだけ近いかを評価する(表4~6参照)。
【0247】
【0248】
【0249】
【0250】
【0251】
【0252】
【0253】
本技術の上述の実装に対する変更および改良は、当業者には明らかになり得る。前述の説明は、限定ではなく例示であることを意図している。
【図】
【手続補正書】
【提出日】2023-08-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
所与の対象の身体の画像内の大動脈組織をセグメント化するための方法であって、前記方法はプロセッサによって実行され、前記プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、前記方法が、
前記所与の対象の前記身体の前記画像を受信するステップであって、前記画像が大動脈、管腔内血栓、および追加の身体部分を含む、受信するステップと、
前記受信画像から関心領域を抽出するステップであって、前記関心領域が前記大動脈および前記管腔内血栓を含む、抽出するステップと、
前記関心領域内で大動脈壁および前記管腔内血栓の少なくとも一方における石灰化の存在を判定するステップと、
前記石灰化の前記存在の指標を出力するステップと、
を含む、方法。
【請求項2】
前記少なくとも1つの深層学習モデルが、第1の深層学習モデルと第2の深層学習モデルとを含み、前記関心領域を抽出する前記ステップが、前記第1の深層学習モデルによって実行され、前記石灰化の前記存在を判定する前記ステップが、前記第2の深層学習モデルによって実行される、請求項1に記載の方法。
【請求項3】
前記関心領域を抽出する前記ステップが、
前記第1の深層学習モデルを使用して前記画像から第1の画像特徴を抽出することであって、前記第1の画像特徴が前記大動脈および前記管腔内血栓を示す、第1の画像特徴を抽出することと、
前記第1の深層学習モデルを使用して、前記第1の画像特徴を使用して前記画像からの前記関心領域をセグメント化することと、
を含む、請求項2に記載の方法。
【請求項4】
前記関心領域内の前記大動脈の大動脈管腔を検出するステップをさらに含み、前記大動脈管腔、前記大動脈壁、および前記管腔内血栓が前記関心領域を一緒に形成する、請求項
3に記載の方法。
【請求項5】
前記大動脈管腔を検出する前記ステップが、前記第2の深層学習モデルによって実行され、前記大動脈管腔を検出する前記ステップおよび前記石灰化の前記存在を判定する前記ステップが、前記第2の深層学習モデルによって同時に実行される、請求項
4に記載の方法。
【請求項6】
前記第2の深層学習モデルが、前記関心領域から第2の画像特徴を抽出するように構成され、前記第2の画像特徴が前記大動脈管腔および前記石灰化を示し、前記石灰化の前記存在を判定する前記ステップが、前記第2の画像特徴を使用して実行される、請求項
5に記載の方法。
【請求項7】
前記少なくとも1つの深層学習モデルが、第3の深層学習モデルをさらに含み、前記大動脈管腔を検出する前記ステップが、前記第3の深層学習モデルによって実行され、前記方法が、前記関心領域から前記大動脈管腔を除去し、それによって前記大動脈壁および前記管腔内血栓を得るステップをさらに含む、請求項
4に記載の方法。
【請求項8】
前記大動脈管腔を検出する前記ステップが、
前記第3の深層学習モデルを使用して、前記関心領域から第2の画像特徴を抽出することであって、前記第2の画像特徴が前記大動脈管腔を示す、第2の画像特徴を抽出することと、
前記第3の深層学習モデルを使用して、前記第2の画像特徴を使用して前記関心領域から前記大動脈管腔をセグメント化することと、を含み、
前記第2の深層学習モデルが、
前記大動脈壁および前記管腔内血栓から第3の画像特徴を抽出するように構成され、前記第3の画像特徴が前記石灰化を示し、前記石灰化の前記存在を判定する前記ステップが、前記第3の画像特徴を使用して前記第2の深層学習モデルによって実行される、請求項
7に記載の方法。
【請求項9】
前記第3の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項
7に記載の方法。
【請求項10】
前記第3の深層学習モデルが、拡張畳み込み層
とバイナリ分類器とのうちの1つを含む、請求項
9に記載の方法。
【請求項11】
所与の対象の身体の画像内の大動脈組織をセグメント化するためのシステムであって、前記システムが、
プロセッサと、
前記プロセッサに動作可能に接続された非一時的記憶媒体であって、前記非一時的記憶媒体がコンピュータ可読命令を含む、非一時的記憶媒体と、
を備え、
前記プロセッサは、画像内の組織をセグメント化するように訓練された少なくとも1つの深層学習モデルにアクセスすることができ、前記プロセッサは、前記コンピュータ可読命令を実行すると、
前記所与の対象の前記身体の前記画像を受信し、前記画像が大動脈、管腔内血栓、および追加の身体部分を含み、
前記受信画像から関心領域を抽出し、前記関心領域が前記大動脈および前記管腔内血栓を含み、
前記関心領域内で大動脈壁および前記管腔内血栓の少なくとも一方における石灰化の存在を判定し、
前記石灰化の前記存在の指標を出力する
ように構成されている、システム。
【請求項12】
前記少なくとも1つの深層学習モデルが、第1の深層学習モデルと第2の深層学習モデルとを含み、前記関心領域を前記抽出することが、前記第1の深層学習モデルによって実行され、前記石灰化の前記存在を前記判定することが、前記第2の深層学習モデルによって実行される、請求項
11に記載のシステム。
【請求項13】
前記関心領域を前記抽出することが、
前記第1の深層学習モデルを使用して前記画像から第1の画像特徴を抽出することであって、前記第1の画像特徴が前記大動脈および前記管腔内血栓を示す、第1の画像特徴を抽出することと、
前記第1の深層学習モデルを使用して、前記第1の画像特徴を使用して前記画像からの前記関心領域をセグメント化することと、
を含む、請求項
12に記載のシステム。
【請求項14】
前記関心領域内の前記大動脈の大動脈管腔を検出するステップをさらに含み、前記大動脈管腔、前記大動脈壁、および前記管腔内血栓が前記関心領域を一緒に形成する、請求項
13に記載のシステム。
【請求項15】
前記大動脈管腔を前記検出することが、前記第2の深層学習モデルによって実行され、前記大動脈管腔を前記検出することおよび前記石灰化の前記存在を前記判定することが、前記第2の深層学習モデルによって同時に実行される、請求項
14に記載のシステム。
【請求項16】
前記第2の深層学習モデルが、前記関心領域から第2の画像特徴を抽出するように構成され、前記第2の画像特徴が前記大動脈管腔および前記石灰化を示し、前記石灰化の前記存在を前記判定することが、前記第2の画像特徴を使用して実行される、請求項
15に記載のシステム。
【請求項17】
前記少なくとも1つの深層学習モデルが、第3の深層学習モデルをさらに含み、前記大動脈管腔を前記検出することが、前記第3の深層学習モデルによって実行され、前記方法が、前記関心領域から前記大動脈管腔を除去し、それによって前記大動脈壁および前記管腔内血栓を得るステップをさらに含む、請求項
14に記載のシステム。
【請求項18】
前記大動脈管腔を前記検出することが、
前記第3の深層学習モデルを使用して、前記関心領域から第2の画像特徴を抽出することであって、前記第2の画像特徴が前記大動脈管腔を示す、第2の画像特徴を抽出することと、
前記第3の深層学習モデルを使用して、前記第2の画像特徴を使用して前記関心領域から前記大動脈管腔をセグメント化することと、を含み、
前記第2の深層学習モデルが、
前記大動脈壁および前記管腔内血栓から第3の画像特徴を抽出するように構成され、前記第3の画像特徴が前記石灰化を示し、前記石灰化の前記存在を前記判定することが、前記第3の画像特徴を使用して前記第2の深層学習モデルによって実行される、請求項
17に記載のシステム。
【請求項19】
前記第3の深層学習モデルが、完全畳み込みネットワーク(FCN)ベースのモデルを含む、請求項
17に記載のシステム。
【請求項20】
前記第3の深層学習モデルが、拡張畳み込み層
とバイナリ分類器とのうちの1つを含む、請求項
19に記載のシステム。
【国際調査報告】