IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エックス デベロップメント エルエルシーの特許一覧

<>
  • 特表-再生コンクリートの調製 図1
  • 特表-再生コンクリートの調製 図2
  • 特表-再生コンクリートの調製 図3
  • 特表-再生コンクリートの調製 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-01
(54)【発明の名称】再生コンクリートの調製
(51)【国際特許分類】
   C04B 18/167 20230101AFI20240222BHJP
   G06F 18/27 20230101ALI20240222BHJP
   G06N 20/00 20190101ALI20240222BHJP
   C04B 41/65 20060101ALI20240222BHJP
【FI】
C04B18/167
G06F18/27
G06N20/00
C04B41/65
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023535813
(86)(22)【出願日】2022-09-21
(85)【翻訳文提出日】2023-08-18
(86)【国際出願番号】 US2022044254
(87)【国際公開番号】W WO2023049181
(87)【国際公開日】2023-03-30
(31)【優先権主張番号】63/248,259
(32)【優先日】2021-09-24
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】516326438
【氏名又は名称】エックス デベロップメント エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】ナガタニ,レイ ジュニア アンソニー
(72)【発明者】
【氏名】パパニア-デイビス,アントニオ,レイモンド
【テーマコード(参考)】
4G028
【Fターム(参考)】
4G028DA01
(57)【要約】
【課題】 粒子の幾何学的及び化学的構成、並びに粒子のアップグレード特性を評価することである。
【解決手段】 再生コンクリート骨材(RCA)を処理するための、コンピュータ記憶媒体上に符号化されたコンピュータプログラムを含む、方法、システム、及び装置。方法の1つは、RCA粒子の第1の光学測定値を得ること、RCA粒子の初期特性評価を決定すること、RCA粒子に対して炭酸化プロセスを反復的に実行し、RCA粒子の第2の光学測定値を取得し、RCA粒子の第2の特性評価を決定することであって、炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、炭酸化プロセスの条件が第2の特性評価に基づいて調整される、当該第2の特性評価を決定すること、RCA粒子に対して高密度化プロセスを反復的に実行し、RCA粒子の第3の光学測定値を取得し、RCA粒子の第3の特性評価を決定することであって、高密度化プロセスの条件が前記初期特性評価又は第2の特性評価に基づいて最初に設定され、高密度化プロセスの条件が第3の特性評価に基づいて調整される、当該第3の特性評価を決定することを含む。
【選択図】 図1
【特許請求の範囲】
【請求項1】
再生コンクリート骨材(RCA)を調製する方法であって、
RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
第1の測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
前記RCA粒子に対して炭酸化プロセスを反復的に実行し、前記RCA粒子の第2の光学測定値を取得し、第2の測定値から、前記RCA粒子の第2の特性評価を決定することであって、前記炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、前記炭酸化プロセスの条件が前記第2の特性評価に基づいて調整される、前記第2の特性評価を決定すること、
目標炭酸化特性を満たす前記第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
前記RCA粒子に対して高密度化プロセスを反復的に実行し、前記RCA粒子の第3の光学測定値を取得し、前記第3の測定値から、前記RCA粒子の第3の特性評価を決定することであって、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化プロセスの条件が、前記第3の特性評価に基づいて調整される、前記第3の特性評価を決定すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含む方法。
【請求項2】
前記炭酸化プロセスが、一定濃度の二酸化炭素ガスで前記RCA粒子をインキュベートして、前記RCA粒子内の水酸化カルシウム及び水の反応による二酸化炭素の吸収を促進することを含む、請求項1に記載の方法。
【請求項3】
前記炭酸化プロセスの条件が、一定濃度の二酸化炭素ガス、水蒸気の量、及び前記炭酸化プロセスに使用される温度のうちの少なくとも1つを含む、請求項2に記載の方法。
【請求項4】
前記高密度化プロセスが、前記RCA粒子を1つ以上のケイ酸塩と反応させて、前記RCA粒子内の細孔を埋めることによって前記RCAを強化することを含む、請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記高密度化プロセスの条件が、前記高密度化プロセスに使用されるシリカの量、シリカの種類、触媒の量、及び触媒の種類のうちの少なくとも1つを含む、請求項4に記載の方法。
【請求項6】
前記第1の光学測定値が、粒径、形状、多孔度、又は密度のうちの少なくとも1つの近赤外(NIR)測定値を含み、
前記初期特性評価の決定が、回帰モデルを適用して、前記第1の光学測定値を前記RCA粒子中の反応物含有量に相関させることを含む、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記反応物含有量が、前記RCA粒子中のカルシウム含有量を含む、請求項6に記載の方法。
【請求項8】
前記RCA粒子の最終的な光学測定値を得ること、及び、
最終的な光学測定値に基づいて、前記RCA粒子の最終的な特性を決定することを更に含み、前記最終的な特性評価は、前記RCA粒子の形状又は圧縮強度の少なくとも1つを含む、請求項1~7のいずれか一項に記載の方法。
【請求項9】
前記最終的な特性評価に基づいて前記RCA粒子を測定してコンクリート混合物に添加するように成分計量システムを制御すること、
前記最終的な特性評価に基づいて、前記コンクリート混合物の実際のレオメトリ測定値を得ることによって前記コンクリート混合物の推定レオメトリ測定値を決定すること、及び、
前記推定レオメトリ測定値と前記実際のレオメトリ測定値との比較に基づいて、より多くのRCA粒子又は追加の成分を前記コンクリート混合物に添加するように前記成分計量システムを選択的に制御することを更に含む、請求項8に記載の方法。
【請求項10】
前記追加の成分のうちの少なくとも1つの特性が、粒径分布、粒子形状分布、又は粒子球形度のうちの1つ以上を含む、請求項9に記載の方法。
【請求項11】
前記コンクリート混合物の推定レオメトリ測定値の決定が、前記特性に基づいて、前記少なくとも1つの成分の粒子充填効率を決定すること、及び前記粒子充填効率に少なくとも部分的に基づいて前記推定レオメトリ測定値を決定することを含む、請求項10に記載の方法。
【請求項12】
前記粒子充填効率に少なくとも部分的に基づいて前記推定レオメトリ測定値を決定することが、前記粒子充填効率を、粒子充填効率を実験的に決定された予想レオメトリ測定値に関連付ける多次元ルックアップテーブルと比較することを含む、請求項11に記載の方法。
【請求項13】
前記粒子充填効率を決定することが、ベイズ最適化アルゴリズムへの入力として特性を適用することを含む、請求項11又は12に記載の方法。
【請求項14】
停止条件が達成されるまで前記コンクリート混合物を反復的に調整することであって、各反復が、
前記コンクリート混合物のレオメトリ測定値を得ること、
前記レオメトリ測定値に基づいて、前記コンクリート混合物が停止条件を満たすかどうかを決定すること、
前記レオメトリ測定値が前記停止条件を満たさないことに応答して、
目標コンクリート特性のセットを満たすために前記コンクリート混合物に添加される成分の1つ以上の追加部分を決定すること、及び
前記追加部分を測定して前記コンクリート混合物に添加するように前記成分計量システムを制御すること、並びに、
前記コンクリート混合物が前記停止条件を満たすと判定したことに応答して、前記コンクリート混合物の前記反復的な調整を停止すること、
を更に含む、請求項9~13のいずれか一項に記載の方法。
【請求項15】
前記停止条件が、前記目標コンクリート特性のセットである、請求項14に記載の方法。
【請求項16】
前記コンクリート混合物が前記停止条件を満たすかどうかを判定することが、前記レオメトリ測定値が、前記コンクリート混合物が閾値内で前記目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することを含む、請求項14又は15に記載の方法。
【請求項17】
前記レオメトリ測定値が、前記コンクリート混合物が前記目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することが、
実験的に得られた硬化後特性を既知のレオロジー特性を有するコンクリート混合物に関連付ける多次元ルックアップテーブルに基づいて、目標レオメトリパラメータを決定すること、及び、
前記レオメトリ測定値を前記目標レオメトリパラメータと比較することを含む、請求項16に記載の方法。
【請求項18】
システムであって、
少なくとも1つのプロセッサ、及び、前記少なくとも1つのプロセッサに結合されたデータストアであって、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに以下を含む動作を実行させる命令が格納されているデータストアを含む、システムであって、動作は、
RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
第1の測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
前記RCA粒子に対して炭酸化プロセスを反復的に実行し、前記RCA粒子の第2の光学測定値を取得し、第2の測定値から、前記RCA粒子の第2の特性評価を決定することであって、炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、炭酸化プロセスの条件が前記第2の特性評価に基づいて調整される、前記第2の特性評価を決定すること、
目標炭酸化特性を満たす前記第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
前記RCA粒子に対して高密度化プロセスを反復的に実行し、前記RCA粒子の第3の光学測定値を取得し、前記第3の測定値から、前記RCA粒子の第3の特性評価を決定することであって、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化プロセスの条件が、前記第3の特性評価に基づいて調整される、前記第3の特性評価を決定すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含むシステム。
【請求項19】
前記炭酸化プロセスが、一定濃度の二酸化炭素ガスで前記RCA粒子をインキュベートして、前記RCA粒子内の水酸化カルシウム及び水の反応による二酸化炭素の吸収を促進することを含み、
前記炭酸化プロセスの条件が、炭酸化プロセスに用いる一定濃度の二酸化炭素ガス、水蒸気の量及び温度の少なくとも1つを含み、
前記高密度化プロセスが、前記RCA粒子を1つ以上のケイ酸塩と反応させて、前記RCA粒子内の細孔を充填することによって前記RCAを強化することを含み、
前記高密度化プロセスの条件が、前記高密度化プロセスに用いられるシリカの量、シリカの種類、触媒の量、及び触媒の種類の少なくとも1つを含む、請求項18に記載のシステム。
【請求項20】
少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに動作を実行させる命令を記憶する非一時的コンピュータ可読記憶媒体であって、前記動作は、
前記RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
第1の測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
前記RCA粒子に対して炭酸化プロセスを反復的に実行し、前記RCA粒子の第2の光学測定値を取得し、第2の測定値から、前記RCA粒子の第2の特性評価を決定することであって、前記炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、前記炭酸化プロセスの条件が第2の特性評価に基づいて調整される、前記第2の特性評価を決定すること、
目標炭酸化特性を満たす第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
前記RCA粒子に対して高密度化プロセスを反復的に実行し、前記RCA粒子の第3の光学測定値を取得し、前記第3の測定値から、前記RCA粒子の第3の特性評価を決定することであって、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化プロセスの条件が、前記第3の特性評価に基づいて調整される、前記第3の特性評価を決定すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含む非一時的コンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2021年9月24日に出願された米国仮出願第63/248,259号の出願日の利益を主張する。米国特許出願第63/248,259号の内容は、その全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
コンクリートは地球上で2番目に消費される物質(質量基準)であり、世界のCO2排出量の7~8%を占めている。コンクリートの材料特性は、成分材料(例えば、骨材)及び加工に大きなばらつきがあるために一貫性がない。この材料の不整合により、所与の性能レベルに対して大きな安全マージンが必要となり、材料の過剰使用をもたらす。伝統的なコンクリート成分と非伝統的なコンクリート成分の両方でコストを最小限に抑えながら、コンクリート性能を最大にするために局所的に利用可能な材料の使用を最適化することができるコンクリート調製の進歩が望まれている。
【0003】
今後10年間にわたる世界の建設業の成長予測は非常に堅調である。この成長により、既存の問題が悪化し、この活動によって60億トンを超える建設廃棄物及び解体廃棄物が発生し、そのほとんどは埋め立て地に向かう。埋め立て地の過剰な埋め立てに起因する環境への影響に加えて、いくつかの高成長市場では、埋め立てコストがかなりのものとなることができるため、経済的な影響もある。これは、建設用の新しい材料を製造するための環境コスト及びドルコストを大幅に低下させる可能性があり、同様に材料及びエネルギーを大きく浪費する。
【0004】
更に、この建設レベルの上昇のために、世界のCOレベルは上昇し続ける可能性がある。しかしながら、炭素を捕捉し隔離するプロセスは非常に費用がかかり、予算の実現可能性を維持しながら建設のCOの影響を相殺することは困難である。
【発明の概要】
【0005】
一般に、本開示は、目標の硬化後特性を達成するために再生コンクリートを調製及び混合するためのプロセス及びシステムに関する。特に、粒子の幾何学的及び化学的構成、並びに粒子のアップグレード特性を評価するシステムが開示される。特性は、炭酸化、高密度化、又はその両方を含むプロセスを使用して改良することができる。炭酸化及び高密度化はいずれも、コンクリート廃棄物内の反応性セメント成分の量を添加剤と一致させて相互作用を最大化し、骨材特性を向上させることによって実施することができる。システムはまた、出力特性(例えば、幾何学的形状、圧縮強度)を評価して上流工程(例えば、炭酸化、高密度化、破砕後の出力サイズ/形状)を反復的に最適化し、適用要件を満たすように出力粒子特性を連続的に改良することができる。
【0006】
建設廃棄物及び解体廃棄物の大部分はコンクリートである。コンクリート廃棄物の一部は破砕され、再生コンクリート骨材(RCA)として新しいコンクリートに再利用されるが、それは一部の市場では全廃棄物のごく一部であり、一般に道路充填材などの低性能用途にのみ適している。高性能又は構造用途では、再生コンクリートは性能に有害な影響を及ぼす可能性があるため、未使用の採石骨材が好ましい。古いコンクリートレシピは、低強度要求用途の低圧縮強度コンクリートを作り出している可能性がある。更に、古いコンクリートは廃棄物であるため、その寿命の間又は解体プロセスの間に環境にさらされるために弱くなっている可能性がある。
【0007】
コンクリート廃棄物は、COを取り込む可能性がある。取り込み率は、投入物の組成(例えば、サイズ/表面積、化学組成)及び処置計画に大きく依存する。したがって、コンクリート廃棄物の大部分が未使用の骨材のより広範な交換のために再利用され、COを捕捉する場合、廃棄物投入の変化する幾何学的及び化学的特性をリアルタイムで特徴付け、下流のプロセス及び推奨をリアルタイムで適合させるプロセスが必要である。更に、より古く、より低品質のコンクリート骨材廃棄物の強度及び耐久性特性は、性能の制限を防ぐために増強されなければならない。更に、排出処理された粒子は、処理が仕様(例えば、圧縮強度)を満たすのに十分であったかどうか、また上流処理プロセス(例えば、破砕、CO取り込み、化学処理)が所望の結果を可能にしているかどうかを判断するためにリアルタイムで特徴付けられなければならない。
【0008】
開示された技術は、異種及び動的入力の迅速な特性評価を使用して、入力されたコンクリート廃棄物粒子を全体的に処理して、高性能仕様を満たす特性を改善する。
【0009】
本明細書で説明される主題の1つ以上の実施形態の詳細は、添付の図面及び以下の説明に記載される。主題の他の特徴、態様、及び利点は、説明、図面、及び特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0010】
図1図1は、例示的な再生コンクリート調製システムを示す。
図2図2は、図1の再生コンクリート調製システムの例示的な制御システムのブロック図を示す。
図3図3は、図1の再生コンクリート調製システムを動作させるための例示的なプロセスを示すフロー図である。
図4図4は、本明細書に記載されたコンピュータ実装方法及び他の技術のいずれかに適用してもよいコンピュータシステムの概略図を示す。
【0011】
種々の図面における同様の参照番号及び名称は、同様の要素を示す。
【発明を実施するための形態】
【0012】
図1は、例示的な再生コンクリート調製システム100を示す。運転中、再生コンクリート調製システム100は、破砕機112でコンクリート廃棄物101を破砕する。破砕機112は、コンクリート廃棄物101を特定のサイズ及び/又は形状に破砕することができる。破砕機112の動作は、制御システム102からの制御信号126によって制御することができる。例えば、制御システム102からの制御信号126は、破砕機112に破砕コンクリート粒子105のサイズを増減させることができる。粒子分析センサ104により、破砕されたコンクリート粒子105の特性を評価する。再生コンクリート調製システム100は、評価された特性に基づいて粒子105に添加されるCO106、HO108、及び添加剤114の割合を適応的に調整することによって、粒子を改良し、所望の構造特性を達成することができる。システム100の動作を、図2及び図3を参照して以下でより詳細に説明する。
【0013】
再生コンクリート調製システム100は、制御システム102を備えている。制御システム102は、センサ104からの入力を受信する。制御システム102は、センサ104から得られたデータの分析に基づいて、1つ以上の成分計量システムの動作を制御することができる。
【0014】
破砕された粒子105は、破砕機112から炭酸化システム115及び高密度化システム116に搬送することができる。例えば、粒子105は、一連のコンベヤ及びオーガによって搬送することができる。粒子105は、炭酸化システム115への送達前、炭酸化システム115の間、及び高密度化システム116から離脱した後に、センサ104を通過する。いくつかの例では、粒子105は、炭酸化システム115を通過する前に高密度化システム116を通過することができる。いくつかの例では、粒子105は、炭酸化システム115又は高密度化システム116の一方のみを通過し得る。
【0015】
センサ104は、コンクリート粒子の測定データを取得するように構成されている。例えば、いくつかの実施形態では、粒子を炭酸化システム115に搬送するために使用されるコンベヤ又はシュートに沿って光学センサをアレイ状に配置することができる。光学センサは、粒子の画像を制御システム102に送信することができ、制御システムは(以下でより詳細に説明するように)画像処理アルゴリズムを使用して粒子の形状及びサイズを識別することができる。
【0016】
いくつかの実施形態は、サイズによって粒子を分離するための一連のふるいを含むことができる。そのような実施形態では、光学センサを各ふるいに近接して配置されており、ふるいを通過する粒子の画像を捕捉することができる。次いで、画像を使用して、例えば、各ふるいから出る粒子の各サイズ範囲のおおよその数を決定することができる。そのような実施形態では、分離された粒子は、炭酸化システム115に供給される前に再結合されてもよい。
【0017】
センサ104は、コンクリート粒子の様々な特性を測定するように構成された様々な異なるセンサを備えることができる。例えば、センサ104によって使用されるセンサとしては、光学センサ(例えば、可視光カメラ、赤外線カメラ、近赤外(NIR)センサ、動的光学顕微鏡センサ)及び機械センサ(例えば、ふるい、セディグラフ、衝撃ハンマー、電気力学的振動子)、並びに分光計を挙げることができるが、これらに限定されない。いくつかの例では、粒子の強度を評価するためのツールとして、可視、近赤外及び短波長-赤外スペクトル領域(400nm~2500nm)にわたって拡散反射分光法を使用することができる。
【0018】
粒子の分析は、サンプル中の画像と反応物含有量を相関させるためのNIR光検知及び回帰モデルによって決定することができるが、これらに限定されない。いくつかの例では、センサ104からのセンサデータを使用して、粒子105の合成デジタルツインを作成することができる。
【0019】
測定データは、粒子105の特性を決定するために制御システム102によって使用される。例えば、粒子特性としては、粒径、形状、表面積、真球度、多孔度、密度、強度、及び粒径分布を挙げることができるが、これらに限定されない。いくつかの例では、測定データを使用して、海水などの要素への粒子の曝露を決定することができる。
【0020】
いくつかの実施形態では、再生コンクリート調製システムは、計量ホッパーを含んでいてもよい。計量ホッパーを使用して、粒子がセンサ104を通過するときに粒子を収集及び測定(例えば、重さ)することができる。例えば、計量ホッパーによって測定された粒子の重量は、制御システム100に渡され、制御システムがリアルタイムで測定されている粒子の重量を監視することができる。いくつかの実施形態では、再生コンクリート調製システム100は、従来の生コンクリートプラントに改造することができる。例えば、再生コンクリート調製システム100を成分調合済みプラントに追加することにより、材料調合済みプラントは、特定の用途及び作業現場に合わせてコンクリート混合物をより正確に調整してもよい。
【0021】
制御システム102により、センサ104からのセンサデータ122を使用して粒子105を分析することができる。粒子分析を使用して、添加剤反応物及びプロセスパラメータを最適化することができる。例えば、制御システム102は、炭酸化システム115によって粒子105に供給されるCO及びHOの量を制御するために制御信号124を送信することができる。制御システム102はまた、制御信号124を送信して、高密度化システム116によって粒子105に供給される添加剤114の量を制御することができる。付加反応が生じる程度を適応的に最大化することによって、粒子による炭素取り込みを増加することができる。更に、不均一な粒子混合物の圧縮強度を高めることができる。
【0022】
炭酸化システム115は、粒子105の炭酸化を促進するための処理を実行する。粒子105のサイズ、表面積、形状、多孔度、吸水率、及び水酸化カルシウム含有量に基づいて、炭酸化システム115により、加速炭酸化のための適切な処理条件が決定される。処理条件には、例えば、温度、水蒸気、CO濃度が含まれる。
【0023】
加速炭酸化プロセスの目的は、粒子特性を改善するために、粒子中に可能な最大量のCOを貯蔵することである。炭酸化は、炭酸カルシウムの形成に起因して細孔を充填することによって吸水率を低下させる。したがって、炭酸化によって、炭酸カルシウムが形成され、全多孔度が低下する。細孔の閉塞により、毛細管多孔度が低下する。更に、炭酸化により、脱灰及び水銀圧入の結果として粒子の微細構造が増加する。
【0024】
高密度化システム116は、高密度化プロセスを行う。炭酸化後の粒子の特性に基づいて、高密度化システム116により、適切な量及び種類の添加剤114を適用することができる。添加剤114は、例えば、反応性を最大にするためにケイ酸塩源及び触媒を含むことができる。高密度化プロセスは、処理溶液としてポゾラン及びケイ酸ナトリウム溶液を使用することによって粒子の品質を改善することができる。ポゾラン材料と組み合わせたケイ酸ナトリウムは、粒子の機械的特性を改善することができる。例えば、ケイ酸ナトリウム及びシリカフュームの溶液は、粒子の圧縮強度を改善することができる。
【0025】
高密度化システム116は、改良された粒子130を生成する。改良された粒子130は、炭酸化プロセス、高密度化プロセス、又はその両方を経た粒子であってもよい。後処理特性評価段階は、改良された粒子の圧縮強度、多孔度、均一性、及び他の物理的特性を正確に認定するために、同じ反応性の推定及び他の光学的に決定された物理的特性を使用して実行することができる。この測定により、材料強度、吸水性、及び流動性に関する洞察を提供することで、品質管理が可能にすることができる。
【0026】
いくつかの例では、センサ104は、出力処理された骨材、例えば改良された粒子130を分析することができ、制御システム102にフィードバックを提供することができる。センサ104からのフィードバックに基づいて、制御システム102は、制御信号124、126を使用して、破砕機112によって破砕された粒子105のサイズ、COの量106、H0の量108、又は添加剤114の量のうちの1つ以上を調整して、改良された粒子130の特性を改善することができる。
【0027】
改良された粒子130は、コンクリート混合物に混合することができる。コンクリート混合物センサは、コンクリート混合物のレオメトリ測定値を制御システム102に提供する。例えば、コンクリート混合物センサは、コンクリート混合物のリウマチ特性をリアルタイムで推定又は計算するために使用し得るコンクリート混合物の様々な特質を測定することができる。コンクリート混合物センサとしては、粘度センサ、レオメーター、温度センサ、水分センサ、超音波センサ(例えば、超音波パルス速度センサ)、電気特性センサ(例えば、電極、電気抵抗プローブ)、電磁センサ(例えば、短パルスレーダー)、又は他のセンサ(例えば、受振器、加速度計)を挙げることができるが、これらに限定されない。コンクリート混合センサとしては、疎水性、水分含有量、XRDスペクトル、XRFスペクトル、静的降伏応力、音響インピーダンス、p波速度、動的降伏応力、静的弾性率、ヤング率、体積弾性率、せん断弾性率、動的弾性率(DME)、ポアソン比、密度、共振周波数、核磁気共鳴(NMR)、誘電率、電気抵抗率、分極電位、及びキャパシタンスが挙げることができるが、これらに限定されない。
【0028】
例えば、粘度、水分、及び温度センサを使用して、コンクリート混合物のレオロジー特性、例えば、混合物の粘度の経時的な変化を、異なる含水量レベル及び温度で測定することができる。以下でより詳細に説明するように、制御システム102は、レオメトリ測定値を使用して、所望のコンクリート特性を得るためにコンクリート混合物に追加の成分及び/又は添加剤を添加すべきかどうか、及びどの程度添加すべきかを決定することができる。
【0029】
いくつかの例では、レオメトリの測定は、改良された粒子130から作製された初期コンクリート混合物に対して行われる。コンクリート混合物のレオメトリ測定値は、粒子の測定された特性に基づいて推定することができる。レオメトリ測定値は、硬化後のコンクリートの特性を予測するために使用される。コンクリート混合物の実際のレオメトリ測定値を取得し、推定されたレオメトリと比較して、添加剤の量を調整するかどうかを決定することができる。システムは、レオメトリ測定値に基づいて、コンクリート混合物が所望の硬化後特性セットを達成する可能性が高いかどうかを決定することができる。そうでない場合、初期混合物は、コンクリート混合物が所望の硬化後特性を達成する可能性が高いことをレオメトリ測定値が示すまで反復プロセスによって調整される。
【0030】
反復調整処理中、レオメトリ測定値の変化を監視しながら、改良された粒子130を初期コンクリート混合物に徐々に添加する。追加の改良された粒子130は、コンクリート混合物が所望の硬化後特性を達成する可能性が高いことをレオメトリ測定値が示すまで添加される。そのような後硬化特性としては、圧縮強度、引張/曲げ強度、流動性、靭性、硬化時間、硬化プロファイル、仕上げ、密度(湿潤及び乾燥)、断熱、収縮、及びスランプが挙げることができるが、これらに限定されない。
【0031】
硬化後特性は、例えば、実験的に得られた硬化後特性を既知のレオロジー特性を有する混合物に関連付ける多次元ルックアップテーブルを使用することによって、理論的及び分析的粒子充填モデルに基づくベイズ最適化アルゴリズムをレオメトリ測定に適用することによって、又はそれらの組み合わせによって、レオメトリ測定値から決定することができる。
【0032】
いくつかの例では、硬化後特性は、制御システム102へのフィードバックとして提供することができる。フィードバックに基づいて、制御システム102は、制御信号124、126を使用して、破砕機112によって破砕された粒子105のサイズ、CO2の量106、H20の量108又は添加剤114の量のうちの1つ以上を調整して、硬化コンクリート混合物の特性を改善することができる。
【0033】
図2は、再生コンクリート調製システム100の例示的な制御システム102のブロック図である。いくつかの実施形態では、制御システム102は、コンクリートを再利用して、改良されたコンクリート粒子130を使用して新しいコンクリート混合物を調製する複合システムを制御することができる。システム102は、コンクリート混合センサ、粒子分析センサ104、及び添加剤の制御信号124を制御し得る計量制御システム208と通信するコンピューティングシステム202を備えることができる。コンピューティングシステム202は、再生コンクリート調製プロセスの様々な態様を制御するように構成される。例えば、コンピューティングシステム202は、本明細書に記載の再生コンクリート調製プロセスの態様の実行を制御するための1つ以上のコンピュータ命令セットを記憶及び実行することができる。コンピューティングシステム202は、1つ以上のコンピューティングデバイスのシステムを備えることができる。コンピューティングデバイスは、例えば、1つ以上のサーバのシステムとすることができる。例えば、第1のサーバは、コンクリート混合センサ及び粒子分析センサ104からデータを受信して処理するように構成することができる。別のサーバは、計量制御システム208とインターフェースし、第1のサーバからの分析結果に基づいて制御コマンドを発行するように構成することができる。
【0034】
いくつかの実施形態では、コンピューティングシステム202は、ユーザコンピューティングデバイス203から動作させ又は制御することができる。ユーザコンピューティングデバイス203は、コンピューティングデバイス、例えば、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、又は他のポータブル又は固定コンピューティングデバイスとすることができる。
【0035】
簡単に説明すると、コンピューティングシステム202は、コンクリート混合物を調製するために、全体的な再生コンクリート調製システム100を制御することができる。コンピューティングシステム202は、粒子分析センサ104を使用して、コンクリート粒子がコンクリート混合物に添加されるときにコンクリート粒子を特性評価することができる。
【0036】
いくつかの実施形態では、コンピューティングシステム202は、混合センサ206から改良された粒子130が添加されたコンクリート混合物のレオメトリ測定値を取得する。システムは、レオメトリ測定値を推定レオメトリ測定値と比較し、例えば、コンクリート混合物が所望の硬化後の機械的特性を満たすかどうか、又は追加の又は添加剤を粒子に添加すべきかどうかを判断し得る。
【0037】
いくつかの実施形態では、コンピューティングシステム202は、コンクリートの再利用及びコンクリート混合物調製プロセスの異なる態様を制御するための一連の動作モジュール210を含むことができる。いくつかの実施形態では、コンクリートの再利用及びコンクリート混合物調製プロセスは、別々のシステムによって実行される。動作モジュール210は、1つ以上のコンピュータ実行可能ソフトウェアモジュール、ハードウェアモジュール、又はそれらの組み合わせとして提供することができる。例えば、動作モジュール210のうちの1つ以上は、コンピューティングシステム202の1つ以上のプロセッサに本明細書に記載の動作を実行させる命令を有するソフトウェアコードのブロックとして実装することができる。これに加えて、又はこれに代えて、1つ以上の動作モジュールを、例えばプログラマブル論理回路、フィールドプログラマブルロジックアレイ(FPGA)、又は特定用途向け集積回路(ASIC)などの電子回路に実装することができる。動作モジュール210は、添加剤コントローラ212、粒子分析装置コントローラ214、炭酸化コントローラ215、高密度化コントローラ216、レオメトリ推定アルゴリズム218、レオメトリ測定アルゴリズム218、及び1つ以上のルックアップテーブル220を含むことができる。
【0038】
添加剤コントローラ212は、計量制御システム208とインターフェースして、コンクリート炭酸化システム115及び高密度化システム116への添加剤の添加を制御する。例えば、添加剤コントローラ212は、コンピューティングシステム202から計量制御システム208にコマンドを発行して、炭酸化システム115、高密度化システム116、又はその両方における粒子105への添加剤の添加を制御することができる。
【0039】
粒子分析装置制御装置214は、センサ104の粒子分析センサ104とインターフェースする。粒子分析装置コントローラ214は、粒子分析センサ104からデータを受信してバッファリングする。粒子分析装置コントローラ214は、センサデータを処理して、分析された各粒子の粒子特性を決定することができる。例えば、以下でより詳細に説明するように、粒子分析装置コントローラ214は、データ分析アルゴリズムを実行してセンサデータを解釈し、粒径分布、粒子形状分布、及び粒子表面積分布を含むがこれらに限定されない粒子特性を決定することができる。
【0040】
炭酸化コントローラ215は、炭酸化プロセスパラメータを決定し、炭酸化プロセス中に使用されるCO及びHOの量を制御するために計量制御装置208とインターフェースすることができる。例えば、炭酸化コントローラ215は、粒子分析装置制御装置214から受信した粒子特性データに基づいて、炭酸化プロセスで使用するCO及び/又はHOの量を推定することができる。次いで、炭酸化コントローラ215は、適切な量のCO及び/又はHOを炭酸化システム115に適用するために、バルブを動作させるために、並びにCO及び/又はHO供給タンクから計量コントローラ208とインターフェースすることができる。
【0041】
例えば、いくつかの実施形態では、炭酸化コントローラ215は、実験データのルックアップテーブル220を使用して、測定された粒子特性(例えば、サイズ/形状分布)を実験的に決定された炭酸化プロセスパラメータと相関させることができる。例えば、炭酸化コントローラ215は、測定された粒子特性をルックアップテーブル内のエントリと比較し、ルックアップテーブル内の実験的に決定された炭酸化プロセスパラメータの相関エントリに基づいて炭酸化プロセスパラメータを推定することができる。いくつかの例では、炭酸化コントローラ215は、測定された粒子特性がテーブルエントリと正確に一致しない場合、ルックアップテーブル220のエントリ間を補間するか、又はテーブルデータを外挿してもよい。
【0042】
いくつかの実施形態では、炭酸化コントローラ215は、測定された粒子特性から炭酸化プロセスで使用するCO及び/又はHOの量を推定するための機械学習モデルを備えることができる。例えば、機械学習モデルとしては、コンクリート粒子の粒子特性を入力として受け取り、予測出力、例えば炭酸化システム115で使用するCO及び/又はHOの量の推定値を生成するために実験データで訓練されたモデルを挙げることができる。出力は、バッチプロセスのために炭酸化システム115に供給するCO及び/又はHOのそれぞれの量(例えば、体積)、連続炭酸化プロセスのために炭酸化システム115に供給するCO及び/又はHOのそれぞれの流量、反復処理のための炭酸化プロセスパラメータ(例えば、CO及び/又はHOの量又は流量)の調整、又はそれらの組み合わせを含むことができるが、これらに限定されない。いくつかの実施形態では、機械学習モデルは、モデルの複数の層を使用して受信した入力に対して出力を生成する深層学習モデルである。深層ニューラルネットワークは、出力層と、各々が受信した入力に非線形変換を適用して出力を生成する1つ以上の隠れ層とを含む深層機械学習モデルである。いくつかの例では、ニューラルネットワークは、リカレントニューラルネットワークであってもよい。リカレントニューラルネットワークは、入力シーケンスを受け取り、入力シーケンスから出力シーケンスを生成するニューラルネットワークである。特に、リカレントニューラルネットワークは、入力シーケンス内の前の入力を処理した後のネットワークの内部状態の一部又は全部を使用して、入力シーケンス内の現在の入力から出力を生成する。いくつかの他の実施形態では、機械学習モデルは畳み込みニューラルネットワークである。いくつかの実施形態では、機械学習モデルは、上述のアーキテクチャの全て又はサブセットを含んでいてもよいモデルのアンサンブルである。
【0043】
機械学習モデルは、粒子の測定された特性に基づいて再生コンクリート粒子を炭酸化するための炭酸化パラメータを推定するように訓練することができる。いくつかの例では、機械学習モデルは、コンクリート粒子の既知の特性を実験的に決定された炭酸化パラメータに関連付ける実験的に決定されたデータで訓練することができる。
【0044】
高密度化コントローラ216は、炭酸化プロセスパラメータを決定し、計量制御装置208とインターフェースして、炭酸化粒子の高密度化プロセスのために添加される添加剤の量及び種類を制御することができる。添加剤は、限定するものではないが、一定量のケイ酸塩源及び/又は触媒を含むことができる。例えば、高密度化コントローラ216は、粒子分析装置制御装置214から受け取った炭酸化粒子の粒子特性データに基づいて、高密度化プロセスに使用する添加剤の量及び種類を推定することができる。次いで、高密度化コントローラ216は、適切な量及び種類の添加剤114を炭酸化システム116に適用するために、化学添加システムを動作させるために計量コントローラ208とインターフェースをとることができる。
【0045】
例えば、いくつかの実施形態では、高密度化コントローラ216は、実験データのルックアップテーブル220を使用して、測定された炭酸粒子特性(例えば、サイズ/形状分布)を実験的に決定された高密度化プロセスパラメータと相関させることができる。例えば、高密度化コントローラ216は、測定された炭酸化粒子特性をルックアップテーブル内のエントリと比較し、ルックアップテーブル220内の実験的に決定された炭酸化プロセスパラメータの相関エントリに基づいて高密度化プロセスパラメータを推定することができる。いくつかの例では、炭酸化コントローラ215は、測定された粒子特性がテーブルエントリと正確に一致しない場合、ルックアップテーブル220のエントリ間を補間するか、又はテーブルデータを外挿してもよい。
【0046】
いくつかの実施形態では、高密度化コントローラ216は、測定された炭酸化粒子特性から炭酸化プロセスで使用する添加剤の量及び種類を推定するための機械学習モデルを備えることができる。例えば、機械学習モデルは、炭酸化コンクリート粒子の粒子特性を入力として受け取り、予測出力、例えば、高密度化システム116で使用する添加剤114の種類及び一定量の推定値を生成するために、実験データで訓練されたモデルを含むことができる。出力は、バッチプロセスのための高密度化システム116に供給する添加剤のそれぞれの量(例えば、体積)、連続的な高密度化プロセスのための高密度化システム116に供給する添加剤114のそれぞれの流量又は添加速度、反復処理のための高密度化プロセスパラメータ(例えば、添加剤114の量、種類、又は流量/添加速度)の調整、又はそれらの組み合わせを含むことができるが、これらに限定されない。いくつかの実施形態では、機械学習モデルは、モデルの複数の層を使用して受信した入力に対して出力を生成する深層学習モデルである。深層ニューラルネットワークは、出力層と、各々が受信した入力に非線形変換を適用して出力を生成する1つ以上の隠れ層とを含む深層機械学習モデルである。いくつかの例では、ニューラルネットワークは、リカレントニューラルネットワークであってもよい。リカレントニューラルネットワークは、入力シーケンスを受け取り、入力シーケンスから出力シーケンスを生成するニューラルネットワークである。特に、リカレントニューラルネットワークは、入力シーケンス内の前の入力を処理した後のネットワークの内部状態の一部又は全部を使用して、入力シーケンス内の現在の入力から出力を生成する。いくつかの他の実施形態では、機械学習モデルは畳み込みニューラルネットワークである。いくつかの実施形態では、機械学習モデルは、上述のアーキテクチャの全て又はサブセットを含んでいてもよいモデルのアンサンブルである。機械学習モデルを訓練して、粒子の測定された特性に基づいて炭酸化コンクリート粒子の高密度化パラメータを推定することができる。いくつかの例では、機械学習モデルは、炭酸化コンクリート粒子の既知の特性を実験的に決定された高密度化パラメータに関連付ける実験的に決定されたデータで訓練することができる。
【0047】
いくつかの実施形態では、制御システムは、レオメトリ推定アルゴリズム218を使用して、粒子の粒子特性に基づいて所与のコンクリート混合物のレオメトリパラメータを推定することができる。例えば、レオメトリ推定アルゴリズム218は、ルックアップテーブル220を使用して、推定レオメトリ測定値を決定することができる。コンピューティングシステムは、コンクリート粒子特性を実験的に決定されたレオメトリパラメータに相関させるルックアップテーブル220を含むことができる。いくつかの実施形態では、レオメトリ推定アルゴリズム218は、粒子パラメータから粒子充填効率を推定するアルゴリズムと、粒子充填効率を実験的に決定されたレオメトリパラメータと相関させるルックアップテーブル220とを含む。次いで、コンピューティングシステム202は、推定された粒子充填効率をルックアップテーブル220内のデータと比較して、コンクリート混合物のレオメトリパラメータを推定することができる。
【0048】
いくつかの実施形態では、レオメトリ推定アルゴリズム218は、粒子特性に基づいて混合物の充填効率を決定するための充填効率モデルを含む。モデルは、粒子の充填効率を決定し、理論的及び解析的な粒子充填モデルベースのベイズ最適化アルゴリズム-又は他の機械学習モデル-であり、混合物のレオメトリパラメータを推定することができる。
【0049】
いくつかの実施形態では、レオメトリ推定アルゴリズム218は、測定された粒子特性からコンクリート混合物の粒子充填効率及び/又はレオメトリパラメータを推定するための機械学習モデルを含むことができる。例えば、機械学習モデルは、コンクリート粒子の粒子特性を入力として受け取り、予測出力、例えば粒子充填効率の推定値、コンクリート混合物のレオメトリパラメータの推定値、又はその両方を生成するために実験データで訓練されたモデルを含むことができる。いくつかの実施形態では、機械学習モデルは、モデルの複数の層を使用して受信した入力に対して出力を生成する深層学習モデルである。深層ニューラルネットワークは、出力層と、各々が受信した入力に非線形変換を適用して出力を生成する1つ以上の隠れ層とを含む深層機械学習モデルである。いくつかの例では、ニューラルネットワークは、リカレントニューラルネットワークであってもよい。リカレントニューラルネットワークは、入力シーケンスを受け取り、入力シーケンスから出力シーケンスを生成するニューラルネットワークである。特に、リカレントニューラルネットワークは、入力シーケンス内の前の入力を処理した後のネットワークの内部状態の一部又は全部を使用して、入力シーケンス内の現在の入力から出力を生成する。いくつかの他の実施形態では、機械学習モデルは畳み込みニューラルネットワークである。いくつかの実施形態では、機械学習モデルは、上述のアーキテクチャの全て又はサブセットを含んでいてもよいモデルのアンサンブルである。
【0050】
機械学習モデルを訓練して、混合物に対する粒子の測定された特性に基づいて、コンクリート混合物のレオメトリパラメータを推定することができる。いくつかの例では、機械学習モデルは、コンクリート粒子の既知の特性を実験的に決定されたレオメトリパラメータに関連付ける実験的に決定されたデータで訓練させることができる。
【0051】
いくつかの実施形態では、上述の機械学習モデルのいずれかは、フィードフォワードオートエンコーダニューラルネットワークとすることができる。例えば、機械学習モデルは、3層オートエンコーダニューラルネットワークとすることができる。機械学習モデルは、入力層、隠れ層、及び出力層を含んでいてもよい。いくつかの実施形態では、ニューラルネットワークは、層間の反復接続を有しない。ニューラルネットワークの各層は、次の層に完全に接続されていてもよく、層間にプルーニングがなくてもよい。ニューラルネットワークは、ネットワークを訓練し、更新された層の重みを計算するために、ADAMオプティマイザー、又は任意の他の多次元オプティマイザーを含んでいてもよい。いくつかの実施形態では、ニューラルネットワークは、入力データをネットワークに供給する前に、畳み込み変換などの数学的変換を入力データに適用してもよい。
【0052】
いくつかの実施形態では、機械学習モデルは教師ありモデルとすることができる。例えば、トレーニング中にモデルに提供される各入力について、機械学習モデルは、正しい出力が何であるべきかについて指示することができる。機械学習モデルは、バッチ訓練をしようすることができ、利用可能な例のセット全体の代わりに、各調整の前に例のサブセットで訓練することができる。これは、モデルを訓練する効率を改善してもよく、モデルの一般化可能性を改善してもよい。機械学習モデルは、折り畳み交差検証を使用してもよい。例えば、訓練に利用可能なデータの一部「折り目」を訓練から除外し、後の試験段階で使用することにより、モデルがどの程度良好に一般化するかを確認することができる。いくつかの実施形態では、機械学習モデルは教師なしモデルであってもよい。例えば、モデルは、その性能に関するフィードバックに基づくのではなく、例間の数学的距離に基づいてそれ自体を調整してもよい。
【0053】
コンピューティングシステム202は、種々の測定パラメータを実験的に決定された特性に相関させる1つ以上のルックアップテーブル220を記憶することができる。例えば、ルックアップテーブル220は、測定されたコンクリート粒子特性を炭酸化パラメータに、測定された炭酸化コンクリート粒子特性を高密度化パラメータに、及び/又はコンクリート混合物の測定されたパラメータを硬化後のコンクリート特性に関連付けることができる。例えば、ルックアップテーブル220は、所望の硬化後コンクリート特性をコンクリート混合物レオメトリパラメータに相関させるテーブル、粒子特性を粒子充填効率に相関させるテーブル、及び粒子特性を混合物遠隔パラメータに相関させるテーブルのうちの1つ以上を含むことができる。各ルックアップテーブルは、測定可能なコンクリートパラメータ、コンクリート混合物パラメータ、又は実験的に決定されたパラメータに対する粒子特性を含む多次元データ構造とすることができる。
【0054】
図3は、再生コンクリート調製システム100の動作を制御するためのプロセス300を示すフロー図である。プロセス300は、1つ以上のコンピューティングデバイスによって実行することができる。例えば、上述したように、プロセス300は、図2のコンピューティングシステム202によって実行してもよい。便宜上、プロセス300の動作は、制御システムによって実行されるものとして説明する。しかしながら、上述したように、動作の一部又は全ては、積層造形制御システムの様々な動作モジュールによって実行してもよい。
【0055】
制御システムは、コンクリート粒子を特徴付ける(304)。例えば、制御システムは、粒子が炭酸化システム又は高密度化システムに搬送される際に、粒子分析システムから測定データを取得することができる。上述のように、制御システムは、粒子分析システムの様々な粒子センサからデータを受信することができる。制御システムは、センサデータを分析して粒子を特徴付けることができる。例えば、制御システムは、画像解析アルゴリズムを使用して、粒子がシュートを通って又はコンベヤベルト上を搬送されるときに粒子の一般的な形状及びサイズを検出することができる。
【0056】
制御システムは、骨材粒子の様々な形状及びサイズの分布を推定することができる。例えば、制御システムは、骨材内の粒径分布のヒストグラム及び骨材内の粒子形状分布のヒストグラムを作成することによって、粒子(例えば、骨材)を特徴付けることができる。制御システムは、画像解析アルゴリズムを使用して、一連のサイズ範囲(例えば、2mm超、2mm~3mm、3mm~4mm、4mm~5mmなど)のそれぞれの内の骨材粒子の概数を得ることができる。いくつかの実施形態では、制御システムは、同様に画像解析アルゴリズムを使用して、様々な形状又は真球度を有する骨材粒子の概数を得ることができる。いくつかの実施形態では、コンピューティングシステムは、サイズ及び形状分布の両方によって粒子を特徴付けることができる。
【0057】
制御システムは、炭酸化のためのプロセスパラメータを決定する(306)。例えば、制御システムは、成分の粒子特性を使用して、炭酸化プロセスで使用するCO及び/又はHOの量を決定することができる。
【0058】
いくつかの実施形態では、制御システムは、実験データのルックアップテーブルを使用して、測定された粒子特性(例えば、サイズ/形状分布)を実験的に決定された炭酸化プロセスパラメータと関連付けることができる。例えば、コンピューティングシステムは、測定された粒子特性をルックアップテーブル内のエントリと比較し、ルックアップテーブル内の実験的に決定された炭酸化プロセスパラメータの相関エントリに基づいて炭酸化プロセスパラメータを推定することができる。いくつかの例では、制御システムは、測定された粒子特性がテーブルエントリと正確に一致しない場合、ルックアップテーブル内のエントリ間を補間するか、又はテーブルデータを外挿してもよい。
【0059】
いくつかの実施形態では、制御システムは、粒径特性と炭酸化プロセスパラメータとの間の実験的に決定された相関関係を使用して訓練された機械学習モデルを含む。そのような実施形態では、制御システムは、粒子特性を入力データベクトルとして訓練された機械学習モデルに提供することができる。機械学習モデルは、入力された粒子特性を最適化された炭酸化プロセスパラメータと相関させ、最適化された炭酸化プロセスパラメータを出力してもよい。
【0060】
制御システムは、炭酸化されたコンクリート粒子を特徴付ける(308)。例えば、制御システムは、粒子が高密度化システムに搬送される際に、粒子分析システムから測定データを取得することができる。上述のように、制御システムは、粒子分析システムの様々な粒子センサからデータを受信することができる。制御システムは、センサデータを分析して粒子を特徴付けることができる。例えば、制御システムは、画像解析アルゴリズムを使用して、粒子がシュートを通って又はコンベヤベルト上を搬送されるときに粒子の一般的な形状及びサイズを検出することができる。
【0061】
いくつかの実施形態では、炭酸化したコンクリート粒子の特性を目標特性と比較することができる。推定された特性が目標特性と閾値量だけ異なる場合、制御システムは炭酸化システムのプロセス条件を調整することができる。
【0062】
制御システムは、高密度化のプロセスパラメータを決定する(310)。例えば、制御システムは、成分の粒子特性を使用して、高密度化プロセスで使用するケイ酸塩源及び/又は触媒の量を決定することができる。
【0063】
いくつかの実施形態では、制御システムは、実験データのルックアップテーブルを使用して、測定された粒子特性(例えば、サイズ/形状分布)を実験的に決定された高密度化プロセスパラメータと関連付けることができる。例えば、コンピューティングシステムは、測定された粒子特性をルックアップテーブル内のエントリと比較し、ルックアップテーブル内の実験的に決定された高密度化プロセスパラメータの相関エントリに基づいて高密度化プロセスパラメータを推定することができる。いくつかの例では、制御システムは、測定された粒子特性がテーブルエントリと正確に一致しない場合、ルックアップテーブル内のエントリ間を補間するか、又はテーブルデータを外挿してもよい。
【0064】
いくつかの実施形態では、制御システムは、粒径特性と高密度化プロセスパラメータとの間の実験的に決定された相関関係を使用して訓練された機械学習モデルを含む。そのような実施形態では、制御システムは、粒子特性を入力データベクトルとして訓練された機械学習モデルに提供することができる。機械学習モデルは、入力された粒子特性を最適化させた高密度化プロセスパラメータと関連付け、最適化された高密度化プロセスパラメータを出力してもよい。
【0065】
制御システムは、高密度化されたコンクリート粒子を特徴付ける(312)。例えば、制御システムは、粒子がコンクリート混合システムに搬送されるときに粒子分析システムから測定データを取得することができる。上述のように、制御システムは、粒子分析システムの様々な粒子センサからデータを受信することができる。制御システムは、センサデータを分析して粒子を特徴付けることができる。例えば、制御システムは、画像解析アルゴリズムを使用して、粒子がシュートを通って又はコンベヤベルト上を搬送されるときに粒子の一般的な形状及びサイズを検出することができる。
【0066】
いくつかの実施形態では、高密度化コンクリート粒子の特性を目標特性と比較することができる。推定された特性が目標特性と閾値量だけ異なる場合、制御システムは、高密度化システム、炭酸化システム、又はその両方のプロセス条件を調整することができる。
【0067】
図4は、コンピュータシステム400の概略図である。システム400は、いくつかの実施形態によれば、前述のコンピュータ実装方法のいずれかに関連して説明された動作を実行するために使用することができる。いくつかの実施形態では、本明細書に記載のコンピューティングシステム及びデバイス並びに機能動作は、デジタル電子回路、有形に具現化されたコンピュータソフトウェア又はファームウェア、本明細書に開示された構造(例えば、システム400)及びそれらの構造的均等物を含むコンピュータハードウェア、又はそれらの1つ以上の組み合わせで実装することができる。システム400は、モジュール式車両のベースユニット又はポッドユニット上に設置された車両を含む、ラップトップ、デスクトップ、ワークステーション、携帯情報端末、サーバ、ブレードサーバ、メインフレーム、及び他の適切なコンピュータなどの様々な形態のデジタルコンピュータを備えることが意図されている。システム400はまた、携帯情報端末、携帯電話、スマートフォン、及び他の同様のコンピューティングデバイスなどのモバイルデバイスを備えることができる。更に、システムは、ユニバーサルシリアルバス(USB)フラッシュドライブなどの可搬型記憶媒体を備えることができる。例えば、USBフラッシュドライブは、オペレーティングシステム及び他のアプリケーションを格納してもよい。USBフラッシュドライブは、別のコンピューティングデバイスのUSBポートに挿入されてもよい無線トランスデューサ又はUSBコネクタなどの入力/出力構成要素を備えることができる。
【0068】
システム400は、プロセッサ410と、メモリ420と、記憶装置430と、入出力装置440とを備える。コンポーネント410,420,430及び440の各々は、システムバス450を使用して相互接続されている。プロセッサ410は、システム400内で実行するための命令を処理することができる。プロセッサは、いくつかのアーキテクチャのいずれかを使用して設計されてもよい。例えば、プロセッサ410は、CISC(Complex Instruction Set Computer)プロセッサ、RISC(Reduced Instruction Set Computer)プロセッサ、又はMISC(Minimal Instruction Set Computer)プロセッサであってもよい。
【0069】
一実施形態では、プロセッサ410は、シングルスレッドプロセッサである。別の実施形態では、プロセッサ410はマルチスレッドプロセッサである。プロセッサ410は、メモリ420又は記憶装置430に格納された命令を処理して、入出力装置440上のユーザインターフェースのためのグラフィック情報を表示することができる。
【0070】
メモリ420は、システム400内の情報を格納する。一実施形態では、メモリ420はコンピュータ可読媒体である。一実施形態では、メモリ420は揮発性メモリユニットである。別の実施形態では、メモリ420は不揮発性メモリユニットである。
【0071】
記憶装置430は、システム400に大容量ストレージを提供することができる。一実施形態では、記憶装置430はコンピュータ可読媒体である。様々な異なる実施形態では、記憶装置430は、フロッピーディスク装置、ハードディスク装置、光ディスク装置、又はテープ装置であってもよい。
【0072】
入出力装置440は、システム400に入出力動作を行う。一実施形態では、入出力装置440は、キーボード及び/又はポインティングデバイスを備えている。別の実施形態では、入出力装置440は、グラフィカルユーザインターフェースを表示するための表示ユニットを備えている。
【0073】
説明した特徴は、デジタル電子回路、又はコンピュータハードウェア、ファームウェア、ソフトウェア、又はそれらの組み合わせで実装することができる。装置は、プログラム可能なプロセッサによる実行のために、情報キャリア、例えば機械可読記憶装置に有形に具現化されたコンピュータプログラム製品に実装することができ;方法工程は、入力データを動作して出力を生成することによって、記載された実施形態の機能を実行する命令のプログラムを実行するプログラム可能なプロセッサによって実行することができる。説明した特徴は、データ記憶システム、少なくとも1つの入力デバイス、及び少なくとも1つの出力デバイスからデータ及び命令を受信し、データ記憶システムにデータ及び命令を送信するように結合された少なくとも1つのプログラマブルプロセッサを含むプログラマブルシステム上で実行可能な1つ以上のコンピュータプログラムで有利に実施することができる。コンピュータプログラムは、特定の活動を実行し、又は特定の結果をもたらすために、コンピュータにおいて直接的又は間接的に使用することができる命令のセットである。コンピュータプログラムは、コンパイル言語又はインタプリタ言語を含む任意の形式のプログラミング言語で記述することができ、スタンドアロンプログラムとして、又はモジュール、コンポーネント、サブルーチン、若しくはコンピューティング環境での使用に適した他のユニットとしてなど、任意の形式で展開することができる。
【0074】
命令のプログラムの実行に適したプロセッサは、一例として、汎用及び専用のマイクロプロセッサの両方、並びに任意の種類のコンピュータの単独のプロセッサ又は複数のプロセッサのうちの1つを含む。一般に、プロセッサは、読み出し専用メモリ若しくはランダムアクセスメモリ又はその両方から命令及びデータを受信する。コンピュータの必須要素は、命令を実行するためのプロセッサ、並びに命令及びデータを格納するための1つ以上のメモリである。一般に、コンピュータはまた、データファイルを格納するための1つ以上の大容量記憶装置を含み、又は、又はそれと通信するように動作可能に結合されており;そのような装置としては、内蔵ハードディスク及びリムーバブルディスクなどの磁気ディスク、光磁気ディスク;及び光ディスクが含まれる。コンピュータプログラム命令及びデータを実体的に具現化するのに適した記憶装置は、例としてEPROM、EEPROM、及びフラッシュメモリデバイスなどの半導体メモリデバイスを含む、あらゆる形態の不揮発性メモリ;内蔵ハードディスク、リムーバブルディスク等の磁気ディスク;光磁気ディスクと、CD-ROM及びDVD-ROMディスクと、を含む、全ての形態の不揮発性メモリ、媒体、及びメモリデバイスを含む。プロセッサ及びメモリは、ASIC(特定用途向け集積回路)によって補完され、又はASICに組み込むことができる。
【0075】
ユーザとの対話を提供するために、この特徴は、ユーザに情報を表示するためのCRT (陰極線管)又はLCD(液晶ディスプレイ)モニタなどの表示装置と、ユーザがコンピュータに入力を提供することができるキーボード及びマウス又はトラックボールなどのポインティングデバイスとを有するコンピュータ上に実装することができる。更に、そのような活動は、タッチスクリーン式フラットパネルディスプレイ及び他の適切な機構を介して実施することができる。
【0076】
このような特徴は、データサーバなどのバックエンドコンポーネントを含む、又はアプリケーションサーバ若しくはインターネットサーバなどのミドルウェアコンポーネントを含む、又はグラフィカルユーザインターフェース若しくはインターネットブラウザを有するクライアントコンピュータなどのフロントエンドコンポーネントを含む、又はそれらの任意の組み合わせのコンピュータシステムに実装することができる。システムのコンポーネントは、通信ネットワークなどの任意の形態又は媒体のデジタルデータ通信によって接続することができる。通信ネットワークの例としては、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、ピアツーピアネットワーク(アドホック又はスタティックメンバを有する)、グリッドコンピューティングインフラストラクチャ、及びインターネットが挙げられる。
【0077】
コンピュータシステムは、クライアント及びサーバを備えることができる。クライアント及びサーバは、一般に、互いに遠隔にあり、典型的には、記載されたものなどのネットワークを介して対話する。クライアント及びサーバの関係は、それぞれのコンピュータ上で実行され、互いにクライアント-サーバ関係を有するコンピュータプログラムによって生じる。
【0078】
本明細書は多くの具体的な実施形態の詳細を含むが、これらは、任意の発明の範囲又は特許請求されてもよいものに対する限定として解釈されるべきではなく、むしろ特定の発明の特定の実施形態に特有の特徴の説明として解釈されるべきである。別個の実施形態の文脈で本明細書に記載されている特定の特徴は、単一の実施形態において組み合わせて実施することもできる。逆に、単一の実施形態の文脈で説明されている様々な特徴は、複数の実施形態において別々に、又は任意の適切なサブコンビネーションで実施することもできる。更に、特徴は、ある特定の組み合わせで作用するものとして上記で説明され、かつ最初にそのように特許請求されることさえあり得るが、特許請求された組み合わせからの1つ以上の特徴は、場合によっては、組み合わせから削除され得、特許請求された組み合わせは、部分組み合わせ又は部分組み合わせの変形に向けられ得る。
【0079】
同様に、動作は特定の順序で図面に描写されているが、これは、所望の結果を達成するために、そのような動作が示された特定の順序で若しくは連続的な順序で実施されること、又は全ての例示された動作が実施されることを必要とすると理解されるべきではない。ある特定の状況では、マルチタスキング及び並列処理が有利であり得る。更に、上述の実施形態における様々なシステム構成要素の分離は、全ての実施形態においてそのような分離を必要とすると理解されるべきではなく、説明されたプログラム構成要素及びシステムは、一般に、単一のソフトウェア製品に一緒に統合されるか、又は複数のソフトウェア製品にパッケージ化することができると理解すべきである。
【0080】
したがって、本主題の特定の実施形態について説明した。他の実施形態は、以下の特許請求の範囲内にある。いくつかの例では、特許請求の範囲に記載の動作は、異なる順序で実行することができ、それでもなお望ましい結果を達成することができる。更に、添付の図面に示されているプロセスは、望ましい結果を達成するために、示されている特定の順序、又は連続する順序を必ずしも必要としない。特定の実施形態では、マルチタスク処理及び並列処理が有利である場合がある。
【0081】
本明細書で使用される場合、「レディミックス」という用語は、現場で混合される代わりに中央プラントからの送達のためにバッチ処理されるコンクリートを指す。通常、レディミックスのバッチは、特定の建設プロジェクトの仕様に従って特注され、通常は「コンクリートミキサ」と呼ばれることが多い円筒形トラック内でプラスチック状態で送達される。
【0082】
本明細書で使用される場合、「リアルタイム」という用語は、システムの処理の制限、データを正確に取得するのに必要な時間、及びデータの変化率を考慮して、意図的に遅延させることなくデータを送信又は処理することを指す。実際には多少の遅延が発生する場合もあるが、遅延は一般にユーザには知覚できない。
【0083】
本明細書には多くの具体的な実施形態の詳細を含まれるが、これらは特許請求の範囲自体によって定義される特許請求されているものの範囲に対する限定として解釈されるべきではなく、むしろ特定の発明の特定の実施形態に特有であり得る特徴の説明として解釈されるべきである。別個の実施形態の文脈において本明細書に説明されるある特定の特徴はまた、単一の実施形態において組み合わせて実装することもできる。逆に、単一の実施形態の文脈で説明されている種々の特徴は、複数の実施形態で別個に、又は任意の好適な部分的組み合わせで実装することもできる。更に、特徴は、特定の組み合わせで作用するものとして上述され、最初にそのように特許請求されてもよいが、特許請求される組み合わせからの1つ又は複数の特徴は、場合によっては、組み合わせから削除することができ、特許請求の範囲は、部分組み合わせ又は部分組み合わせの変形を対象とすることができる。
【0084】
主題の特定の実施形態が説明されてきた。他の実施形態は、以下の特許請求の範囲内である。例えば、特許請求の範囲内に記載された動作は、異なる順序で実施することができ、それでも所望の結果を達成することができる。一実施例として、添付の図面内に描写されたプロセスは、所望の結果を達成するために、示される特定の順序、又は連続的な順序を必ずしも必要としない。いくつかの例では、マルチタスク処理及び並列処理が有利な場合がある。
【0085】
開示された発明概念は添付の特許請求の範囲で定義されたものを含むが、本発明概念は以下の実施形態に従って定義することもできることを理解されたい。
【0086】
添付の特許請求の範囲の実施形態及び上記の実施形態に加えて、以下の番号付けされた実施形態も革新的である。
【0087】
実施形態1は、再生コンクリート骨材(RCA)を調製する方法であって、RCA粒子が第1の光学センサを通過して搬送されるときに、第1の光学センサからRCA粒子の第1の光学測定値を得ること、第1の測定値に基づいて、RCA粒子の初期特性評価を決定すること、RCA粒子に対して炭酸化プロセスを反復的に実行し、RCA粒子の第2の光学測定値を取得し、第2の測定値から、RCA粒子の第2の特性評価を決定することであって、炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、炭酸化プロセスの条件が第2の特性評価に基づいて調整されること、目標炭酸化特性を満たす第2の特性評価に応答して炭酸化プロセスの反復実行を停止すること、RCA粒子に対して高密度化プロセスを反復的に実行し、RCA粒子の第3の光学測定値を取得し、第3の測定値から、RCA粒子の第3の特性評価を決定することであって、高密度化プロセスの条件が、初期特性評価又は第2の特性評価に基づいて最初に設定され、高密度化プロセスの条件が、第3の特性評価に基づいて調整されること、及び、第3の特性評価が目標の高密度化特性を満たすことに応答して、高密度化プロセスの反復実行を停止すること、を含む方法である。
【0088】
実施形態2は、炭酸化プロセスが、一定濃度の二酸化炭素ガスでRCA粒子をインキュベートして、RCA粒子内の水酸化カルシウム及び水の反応による二酸化炭素の吸収を促進することを含む、実施形態1に記載の方法である。
【0089】
実施形態3は、炭酸化プロセスの条件が、一定濃度の二酸化炭素ガス、水蒸気の量、及び炭酸化プロセスに使用される温度のうちの少なくとも1つを含む、実施形態2に記載の方法である。
【0090】
実施形態4は、高密度化プロセスが、RCA粒子を1つ以上のケイ酸塩と反応させて、RCA粒子内の細孔を埋めることによってRCAを強化することを含む、実施形態1~3のいずれか一項に記載の方法である。
【0091】
実施形態5は、高密度化プロセスの条件が、高密度化プロセスに使用されるシリカの量、シリカの種類、触媒の量、及び触媒の種類のうちの少なくとも1つを含む、実施形態4に記載の方法である。
【0092】
実施形態6は、第1の光学測定値が、粒径、形状、多孔度、又は密度のうちの少なくとも1つの近赤外(NIR)測定値を含み、初期特性評価の決定が、回帰モデルを適用して、第1の光学測定値をRCA粒子中の反応物含有量に相関させることを含む、実施形態1~5のいずれか一項に記載の方法である。
【0093】
実施形態7は、反応物含有量が、RCA粒子中のカルシウム含有量を含む、実施形態6に記載の方法である。
【0094】
実施形態8は、RCA粒子の最終的な光学測定値を得ること、及び、最終的な光学測定値に基づいて、RCA粒子の最終的な特性を決定することを更に含み、最終的な特性評価は、RCA粒子の形状又は圧縮強度の少なくとも1つを含む、実施形態1~7のいずれか一項に記載の方法である。
【0095】
実施形態9は、成分計量システムを制御して、最終特性評価に基づいてRCA粒子を測定し、コンクリート混合物に添加すること、最終的な特性評価に基づいて、コンクリート混合物の実際のレオメトリ測定値を得ることによってコンクリート混合物の推定レオメトリ測定値を決定すること、及び推定レオメトリ測定値と実際のレオメトリ測定値との比較に基づいて、より多くのRCA粒子又は追加の成分をコンクリート混合物に添加するように成分計量システムを選択的に制御することを更に含む、実施形態8に記載の方法である。
【0096】
実施形態10は、追加の成分のうちの少なくとも1つの特性が、粒径分布、粒子形状分布、又は粒子球形度のうちの1つ以上を含む、実施形態9に記載の方法である。
【0097】
実施形態11は、コンクリート混合物の推定レオメトリ測定値の決定が、特性に基づいて、少なくとも1つの成分の粒子充填効率を決定すること、及び粒子充填効率に少なくとも部分的に基づいて推定レオメトリ測定値を決定することを含む、実施形態10に記載の方法である。
【0098】
実施形態12は、粒子充填効率に少なくとも部分的に基づいて推定レオメトリ測定値を決定することが、粒子充填効率を、粒子充填効率を実験的に決定された予想レオメトリ測定値に関連付ける多次元ルックアップテーブルと比較することを含む、実施形態11に記載の方法である。
【0099】
実施形態13は、粒子充填効率を決定することが、ベイズ最適化アルゴリズムへの入力として特性を適用することを含む、実施形態11又は12に記載の方法である。
【0100】
実施形態14は、停止条件が達成されるまでコンクリート混合物を反復的に調整する工程であって、各反復が、コンクリート混合物のレオメトリ測定値を得ること、レオメトリ測定値に基づいて、コンクリート混合物が停止条件を満たすかどうかを決定すること、レオメトリ測定値が停止条件を満たさないことに応答して、目標コンクリート特性のセットを満たすためにコンクリート混合物に添加される成分の1つ以上の追加部分を決定すること、及び、追加部分を測定してコンクリート混合物に添加するように成分計量システムを制御すること、並びに、コンクリート混合物が停止条件を満たすと判定したことに応答して、コンクリート混合物の反復的な調整を停止することを更に含む、実施形態9~13のいずれか一項に記載の方法である。
【0101】
実施形態15は、停止条件が、目標コンクリート特性のセットである、実施形態14に記載の方法である。
【0102】
実施形態16は、コンクリート混合物が停止条件を満たすかどうかを判定することが、レオメトリ測定値が、コンクリート混合物が閾値内で目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することを含む、実施形態14又は15に記載の方法である。
【0103】
実施形態17は、レオメトリ測定値が、コンクリート混合物が目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することが、実験的に得られた硬化後特性を既知のレオロジー特性を有するコンクリート混合物に関連付ける多次元ルックアップテーブルに基づいて、目標レオメトリパラメータを決定すること、及び、レオメトリ測定値を目標レオメトリパラメータと比較することを含む、実施形態16に記載の方法である。
【0104】
実施形態18は、1つ以上のコンピュータと、1つ以上のコンピュータによって実行された場合に、1つ以上のコンピュータに請求項1~17のいずれか一項に記載の方法を実行させるように動作可能な命令を記憶する1つ以上の記憶装置とを備えるシステムである。
【0105】
実施形態19は、コンピュータプログラムで符号化されたコンピュータ記憶媒体であり、プログラムは、データ処理装置によって実行された場合に、データ処理装置に請求項1~17のいずれか一項に記載の方法を実行させるように動作可能な命令を含む、コンピュータプログラムで符号化されたコンピュータ記憶媒体である。
図1
図2
図3
図4
【手続補正書】
【提出日】2023-08-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
再生コンクリート骨材(RCA)を調製する方法であって、
RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
前記第1の光学測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
炭酸化RCA粒子を得るために前記RCA粒子に対して炭酸化プロセスを反復的に実行することであって各反復の後、
前記炭酸化RCA粒子の第2の光学測定値を取得し、
前記第2の光学測定値から、前記RCA粒子の第2の特性評価を決定ここで、前記炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、前記炭酸化プロセスの条件が後続の反復において前記第2の特性評価に基づいて調整される、前記炭酸化プロセスを反復的に実行すること、
目標炭酸化特性を満たす前記第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
改良された炭酸化RCA粒子を得るために前記炭酸化RCA粒子に対して高密度化プロセスを反復的に実行することであって各反復の後、
前記改良された炭酸化RCA粒子の第3の光学測定値を取得し、
前記第3の光学測定値から、前記RCA粒子の第3の特性評価を決定ここで、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化プロセスの条件が、後続の反復において前記第3の特性評価に基づいて調整される、前記高密度化プロセスを反復的に実行すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含む方法。
【請求項2】
前記炭酸化プロセスが、一定濃度の二酸化炭素ガスで前記RCA粒子をインキュベートして、前記RCA粒子内の水酸化カルシウム及び水の反応による二酸化炭素の吸収を促進することを含む、請求項1に記載の方法。
【請求項3】
前記炭酸化プロセスの条件が、一定濃度の二酸化炭素ガス、水蒸気の量、及び前記炭酸化プロセスに使用される温度のうちの少なくとも1つを含む、請求項2に記載の方法。
【請求項4】
前記高密度化プロセスが、前記炭酸化RCA粒子を1つ以上のケイ酸塩と反応させて、前記RCA粒子内の細孔を埋めることによって前記炭酸化RCAを強化することを含これにより改良された炭酸化RCA粒子が得られる、請求項1に記載の方法。
【請求項5】
前記高密度化プロセスの条件が、前記高密度化プロセスに使用されるシリカの量、シリカの種類、触媒の量、及び触媒の種類のうちの少なくとも1つを含む、請求項4に記載の方法。
【請求項6】
前記第1の光学測定値が、粒径、形状、多孔度、又は密度のうちの少なくとも1つの近赤外(NIR)測定値を含み、
前記初期特性評価の決定が、回帰モデルを適用して、前記第1の光学測定値を前記RCA粒子中の反応物含有量に相関させることを含む、請求項1に記載の方法。
【請求項7】
前記反応物含有量が、前記RCA粒子中のカルシウム含有量を含む、請求項6に記載の方法。
【請求項8】
前記改良された炭酸化RCA粒子の最終的な光学測定値を得ること、及び、
最終的な光学測定値に基づいて、前記改良された炭酸化RCA粒子の最終的な特性を決定することを更に含み、前記最終的な特性評価は、前記RCA粒子の形状又は圧縮強度の少なくとも1つを含む、請求項1に記載の方法。
【請求項9】
前記最終的な特性評価に基づいて前記改良された炭酸化RCA粒子を測定してコンクリート混合物に添加するように成分計量システムを制御すること、
前記最終的な特性評価に基づいて、前記コンクリート混合物の実際のレオメトリ測定値を得ることによって前記コンクリート混合物の推定レオメトリ測定値を決定すること、及び、
前記推定レオメトリ測定値と前記実際のレオメトリ測定値との比較に基づいて、より多くの改良された炭酸化RCA粒子又は追加の成分を前記コンクリート混合物に添加するように前記成分計量システムを選択的に制御することを更に含む、請求項8に記載の方法。
【請求項10】
前記追加の成分のうちの少なくとも1つの特性が、粒径分布、粒子形状分布、又は粒子球形度のうちの1つ以上を含む、請求項9に記載の方法。
【請求項11】
前記コンクリート混合物の推定レオメトリ測定値の決定が、前記特性に基づいて、前記少なくとも1つの成分の粒子充填効率を決定すること、及び前記粒子充填効率に少なくとも部分的に基づいて前記推定レオメトリ測定値を決定することを含む、請求項10に記載の方法。
【請求項12】
前記粒子充填効率に少なくとも部分的に基づいて前記推定レオメトリ測定値を決定することが、前記粒子充填効率を、粒子充填効率を実験的に決定された予想レオメトリ測定値に関連付ける多次元ルックアップテーブルと比較することを含む、請求項11に記載の方法。
【請求項13】
前記粒子充填効率を決定することが、ベイズ最適化アルゴリズムへの入力として特性を適用することを含む、請求項11に記載の方法。
【請求項14】
停止条件が達成されるまで前記コンクリート混合物を反復的に調整することであって、各反復が、
前記コンクリート混合物のレオメトリ測定値を得ること、
前記レオメトリ測定値に基づいて、前記コンクリート混合物が停止条件を満たすかどうかを決定すること、
前記レオメトリ測定値が前記停止条件を満たさないことに応答して、
目標コンクリート特性のセットを満たすために前記コンクリート混合物に添加される成分の1つ以上の追加部分を決定すること、及び
前記追加部分を測定して前記コンクリート混合物に添加するように前記成分計量システムを制御すること、並びに、
前記コンクリート混合物が前記停止条件を満たすと判定したことに応答して、前記コンクリート混合物の前記反復的な調整を停止すること、
を更に含む、請求項9に記載の方法。
【請求項15】
前記停止条件が、前記目標コンクリート特性のセットである、請求項14に記載の方法。
【請求項16】
前記コンクリート混合物が前記停止条件を満たすかどうかを判定することが、前記レオメトリ測定値が、前記コンクリート混合物が閾値内で前記目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することを含む、請求項14に記載の方法。
【請求項17】
前記レオメトリ測定値が、前記コンクリート混合物が前記目標コンクリート特性のセットの少なくとも一方を達成する可能性が高いことを示すかどうかを判定することが、
実験的に得られた硬化後特性を既知のレオロジー特性を有するコンクリート混合物に関連付ける多次元ルックアップテーブルに基づいて、目標レオメトリパラメータを決定すること、及び、
前記レオメトリ測定値を前記目標レオメトリパラメータと比較することを含む、請求項16に記載の方法。
【請求項18】
再生コンクリート骨材(RCA)調製システムであって、
破砕されたRCAの特質を異なるプロセス段階で測定するために、システム内に配置された複数の光学センサ、
炭酸化サブシステム、
高密度化サブシステム、
前記複数の光学センサ、前記炭酸化サブシステム及び前記高密度化サブシステムと通信する少なくとも1つのプロセッサ、及び、
前記少なくとも1つのプロセッサに結合されたデータストアであって、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに以下を含む動作を実行させる命令が格納されているデータストアを含む、システムであって、動作は、
RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
前記第1の光学測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
炭酸化RCA粒子を得るために前記RCA粒子に対して炭酸化プロセスを反復的に実行することであって各反復の後、
前記炭酸化RCA粒子の第2の光学測定値を取得し、
前記第2の光学測定値から、前記RCA粒子の第2の特性評価を決定ここで、炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、前記炭酸化サブシステムが後続の反復において前記炭酸化プロセスの条件前記第2の特性評価に基づいて調整するように制御される、前記炭酸化プロセスを反復的に実行すること、
目標炭酸化特性を満たす前記第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
改良された炭酸化RCA粒子を得るために前記炭酸化RCA粒子に対して高密度化プロセスを反復的に実行することであって各反復の後、
前記RCA粒子の第3の光学測定値を取得し、前記第3の測定値から、前記RCA粒子の第3の特性評価を決定ここで、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化サブシステムが後続の反復において前記高密度化プロセスの条件を前記第3の特性評価に基づいて調整するように制御される、前記高密度化プロセスを反復的に実行すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含むシステム。
【請求項19】
前記炭酸化プロセスが、一定濃度の二酸化炭素ガスで前記RCA粒子をインキュベートして、前記RCA粒子内の水酸化カルシウム及び水の反応による二酸化炭素の吸収を促進することを含み、
前記炭酸化プロセスの条件が、炭酸化プロセスに用いる一定濃度の二酸化炭素ガス、水蒸気の量及び温度の少なくとも1つを含み、
前記高密度化プロセスが、前記炭酸化RCA粒子を1つ以上のケイ酸塩と反応させて、前記RCA粒子内の細孔を充填することによって前記炭酸化RCAを強化することを含み、これにより改良された炭酸化RCA粒子が得られ、
前記高密度化プロセスの条件が、前記高密度化プロセスに用いられるシリカの量、シリカの種類、触媒の量、及び触媒の種類の少なくとも1つを含む、請求項18に記載のシステム。
【請求項20】
少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに動作を実行させる命令を記憶する非一時的コンピュータ可読記憶媒体であって、前記動作は、
前記RCA粒子が第1の光学センサを通過して搬送されるときに、前記第1の光学センサから前記RCA粒子の第1の光学測定値を取得すること、
前記第1の光学測定値に基づいて、前記RCA粒子の初期特性評価を決定すること、
炭酸化RCA粒子を得るために前記RCA粒子に対して炭酸化プロセスを反復的に実行することであって各反復の後、
前記炭酸化RCA粒子の第2の光学測定値を取得し、
前記第2の光学測定値から、前記RCA粒子の第2の特性評価を決定ここで、前記炭酸化プロセスの条件が初期特性評価に基づいて最初に設定され、前記炭酸化プロセスの条件が後続の反復において第2の特性評価に基づいて調整される、前記炭酸化プロセスを反復的に実行すること、
目標炭酸化特性を満たす第2の特性評価に応答して前記炭酸化プロセスの反復実行を停止すること、
改良された炭酸化RCA粒子を得るために前記炭酸化RCA粒子に対して高密度化プロセスを反復的に実行することであって
前記改良された炭酸化RCA粒子の第3の光学測定値を取得し、
前記第3の光学測定値から、前記RCA粒子の第3の特性評価を決定ここで、前記高密度化プロセスの条件が、前記初期特性評価又は前記第2の特性評価に基づいて最初に設定され、前記高密度化プロセスの条件が、後続の反復において前記第3の特性評価に基づいて調整される、前記高密度化プロセスを反復的に実行すること、及び、
前記第3の特性評価が目標の高密度化特性を満たすことに応答して、前記高密度化プロセスの反復実行を停止すること、を含む非一時的コンピュータ可読記憶媒体。
【国際調査報告】