(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-06
(54)【発明の名称】変形玩具
(51)【国際特許分類】
A63F 9/08 20060101AFI20240228BHJP
A63H 33/00 20060101ALI20240228BHJP
A63H 33/10 20060101ALI20240228BHJP
【FI】
A63F9/08 503Z
A63H33/00 302C
A63H33/10 D
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023537227
(86)(22)【出願日】2021-12-16
(85)【翻訳文提出日】2023-08-15
(86)【国際出願番号】 IB2021061868
(87)【国際公開番号】W WO2022130285
(87)【国際公開日】2022-06-23
(32)【優先日】2020-12-16
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】523038241
【氏名又は名称】ヘーニヒシュミット アンドレアス
(74)【代理人】
【識別番号】100128347
【氏名又は名称】西内 盛二
(72)【発明者】
【氏名】ヘーニヒシュミット アンドレアス
【テーマコード(参考)】
2C150
【Fターム(参考)】
2C150AA28
2C150BA17
2C150BA41
2C150BA64
2C150BB01
2C150DC03
2C150EB44
2C150EH30
2C150FB28
(57)【要約】
【課題】本発明は、変形玩具に関する。
【解決手段】変形玩具(1)は、少なくとも6つの多面体本体(2)と、少なくとも1つの接続ストリップ(3)と、少なくとも1つの磁石(4)とを含み、少なくとも1つの接続ストリップ(3)は、多面体本体(2)をチェーンに接続し、接続ストリップ(3)は、当該チェーンの各対の隣接する多面体本体(20,22)の間にヒンジ(30)を提供し、ヒンジ(30)は、全ての多面体本体(2)の組合体の少なくとも2つの異なる幾何学的変形(G,G´)の間での多面体本体(2)の移動を促進し、少なくとも1つの磁石(4)は、各多面体本体(2)内に配置されて、組合体を少なくとも2つの異なる変形(G、G´)のそれぞれに保持し、少なくとも1つの接続ストリップ(3)は、少なくとも3つの隣接する多面体本体(2)に接続されて、各対の隣接する多面体本体(20,22)の間にヒンジ(30)を形成する。
【選択図】
図1B
【特許請求の範囲】
【請求項1】
変形玩具(1)であって、
少なくとも6つの多面体本体(2)と、少なくとも1つの接続ストリップ(3)と、少なくとも1つの磁石(4)とを含み、
少なくとも1つの接続ストリップ(3)は、前記多面体本体(2)をチェーンに接続するために用いられ、前記接続ストリップ(3)は、前記チェーンの各対の隣接する多面体本体(20、22)の間にヒンジ(30)を提供し、前記ヒンジ(30)は、全ての多面体本体(2)の組合体の少なくとも2つの異なる幾何学的変形(G、G´)の間での前記多面体本体(2)の移動を促進し、
少なくとも1つの磁石(4)は、各前記多面体本体(2)内に配置されて、前記組合体を少なくとも2つの異なる変形(G、G´)のそれぞれに保持し、
少なくとも1つの前記接続ストリップ(3)は、少なくとも3つの隣接する多面体本体(2)を接続して、各対の隣接する多面体本体(20、22)の間にヒンジ(30)を形成する、ことを特徴とする変形玩具。
【請求項2】
全ての多面体本体(2)は、前記接続ストリップによって閉ループ配置で接続されて、四面体の回転ループを形成する、ことを特徴とする請求項1に記載の変形玩具。
【請求項3】
単一の接続ストリップ(3)が設けられて全ての多面体本体(2)を接続するために用いられる、ことを特徴とする請求項1又は2に記載の変形玩具。
【請求項4】
前記単一の接続ストリップ(3)は、互いに接続される開始部分(302)及び終了部分(304)を有して、連続ループを形成する、ことを特徴とする請求項3に記載の変形玩具。
【請求項5】
前記開始部分(302)及び前記終了部分(304)は、互いに重ね合わせて前記接続ストリップ(3)の連続ループを形成できるように成形され、或いは、前記開始部分(302)及び前記終了部分(304)は、互いに隣接して前記接続ストリップ(3)の連続ループを形成できるように成形される、ことを特徴とする請求項4に記載の変形玩具。
【請求項6】
各々の多面体本体(2)は、2つの接続可能部材(24、26)から構成され、且つ前記接続ストリップ(3)は、前記接続可能部材(24、26)の間に配置されている、ことを特徴とする請求項1~5のいずれか1項に記載の変形玩具。
【請求項7】
第1多面体本体(2)と第2多面体本体(2´)との間のヒンジ(30)は、前記接続ストリップの第1部分の第1半分部分(320)を前記第1多面体本体(2)の2つの接続可能部材(24、26)の間に挿入し、且つ前記接続ストリップの前記第1部分の第2半分部分(322)を前記第2多面体本体(2´)の2つの接続可能部材(24´、26´)の間に挿入することで形成されることによって、前記第1多面体本体(2)の接続エッジ(28)と前記第2多面体(2´)の接続エッジ(28´)とが互いに隣接するとともに、前記接続ストリップ(3)の前記第1部分(32)によって枢動可能に接続される、ことを特徴とする請求項6に記載の変形玩具。
【請求項8】
前記多面体本体(2)の前記2つの接続可能部材(24、26)は、少なくとも1つの磁石(4)を受け入れるためのキャビティ(25)を呈する、ことを特徴とする請求項6又は7に記載の変形玩具。
【請求項9】
前記多面体本体(2)の前記2つの接続可能部材(24、26)は、前記2つの接続可能部材(24、26)を互いに固定するためのピン(27)及び穴(29)を呈する、ことを特徴とする請求項6~8のいずれか1項に記載の変形玩具。
【請求項10】
少なくとも1つの多面体本体(2)は、単一の接続ストリップ(3)の前記開始部分(302)と前記終了部分(304)を接続して、連続ループを形成する、ことを特徴とする請求項6~9のいずれか1項に記載の変形玩具。
【請求項11】
前記多面体本体(2)は、四面体である、ことを特徴とする請求項1~10のいずれか1項に記載の変形玩具。
【請求項12】
前記多面体本体(2)として、12個の四面体が設けられ、且つ前記四面体を接続する12個のヒンジが設けられている、ことを特徴とする請求項1~11のいずれか1項に記載の変形玩具。
【請求項13】
前記接続ストリップ(3)は、固定ピン(27)を位置決めて前記多面体本体(2)を固定するための開口(37)を呈する、ことを特徴とする請求項1~12のいずれか1項に記載の変形玩具。
【請求項14】
前記接続ストリップ(3)は、皮革で製造される、ことを特徴とする請求項1~13のいずれか1項に記載の変形玩具。
【請求項15】
前記多面体本体(2)は、凸状である、ことを特徴とする請求項1~14のいずれか1項に記載の変形玩具。
【請求項16】
全ての多面体本体(2)は、同一の形状及び大きさを有する、ことを特徴とする請求項1~15のいずれか1項に記載の変形玩具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変形玩具に関し、当該変形玩具は、少なくとも6つの多面体本体を含み、異なる幾何学的変形を形成できるようにする。
【背景技術】
【0002】
幾何学玩具は、Rubrikの有名な立方体などの幾何学パズルとしても知られている。このような玩具の目的は、1組の特定の幾何学オブジェクトに秩序をもたらすことであり、また、可能な秩序操作は、1組の自由度によって制限される。例えば、Rubrikの立方体は、立方体セルの層が特定の回転軸周りに回転することを秩序操作として可能にする。
【0003】
例えばUS 10,569,185 B2に示されているような幾何学玩具もある。この特定の幾何学玩具では、四面体本体は、軸周りに回転することができ、これは、隣接する四面体本体の間のヒンジによって実現される。各々の四面体本体は、少なくとも他の2つの四面体本体に連結されるため、単一の四面体本体の特定の軸周りの単純な変形は、複数の連結される四面体本体の変形をもたらすことになる。このような幾何学玩具の目的は、玩具の初期形状を異なる可能な形状に変形させることにある。
【0004】
上記した従来技術では、四面体は、可撓性接着フィルムで互いに連結されているため、幾何学玩具の製造は、困難である。
【発明の概要】
【発明が解決しようとする課題】
【0005】
既知の従来技術に基づき、本発明の課題は、改良された変形玩具を提供することにある。
【課題を解決するための手段】
【0006】
この課題は、請求項1の特征を備える変形玩具によって解決される。従属請求項、図面及び本明細書に関して、有利なさらなる実施例が示される。
【0007】
従って、変形玩具が提供され、当該変形玩具は、少なくとも6つの多面体本体と、多面体本体をチェーンに接続するための少なくとも1つの接続ストリップと、各多面体本体の内部に配置される少なくとも1つの磁石とを含み、接続ストリップは、チェーンの各対の隣接する多面体本体の間にヒンジを提供し、ヒンジは、全ての多面体本体の組合体の少なくとも2つの異なる幾何学的変形の間での多面体本体の移動を促進し、少なくとも1つの磁石は、組合体本体を少なくとも2つの異なる変形のそれぞれに保持するために用いられ、少なくとも1つの接続ストリップは、少なくとも3つの隣接する多面体本体を接続して、各対の隣接する多面体本体の間にヒンジを形成する。
【0008】
変形玩具は、特定の方式で接続された複数の幾何学的に定義されたユニットを呈するものであると理解され、なお、複数の幾何学的に定義されたユニットは、互いの配置に対して幾何学的に変形して、異なる全体の幾何学的形状を構成することができる。例えば、変形玩具の第1全体の幾何学的形状は、ピラミッドであり、第2全体の幾何学的形状は、立方体であり、第3全体の幾何学的形状は、星状体であってもよい。全ての上記形状は、幾何学的に定義された同一組のユニットから定められた態様で移動することにより生成することができる。以下では、異なる全体の幾何学的形状は、玩具の異なる変形とも呼ばれる。換言すれば、ピラミッドは、立方体又は星状体に変形可能であり、これらは、いずれもピラミッドの変形であり、ピラミッド自体は、変形となる。
【0009】
幾何学的に定義された各ユニットは、多面体本体である。多面体本体は、平坦な多面体の面及び直線のエッジを有する3次元形状である。多角形の面は、n個角点を含み、また、隣接する角点は、線で接続され、当該線は、多角形の面のエッジとも用バレル。多角形の面は、多角形の面のエッジを介して隣接する多角形の面に接続される。多面体本体は、さらに閉じることにより、所望の複数の多角形の面で3次元体積を囲むことができる。
【0010】
例えば、立方体は、多面体本体である。立方体は、6面の多面体本体であり、また、各多角形の面は、四面体である。例えば、ピラミッドは、多面体本体である。ピラミッドは、多角形の底面、例えば三角形の底面又は2次の底面及びいわゆる頂点を有し、頂点は、多角形の底面の全ての角点が接続される点である。そのため、底面の2つの隣接する角と頂点は、三角形を形成する。例えば、四面体は、多面体本体である。通常の四面体は、6つの直線のエッジを有する四面体であり、また、各エッジの長さは、同じである。
【0011】
多面体本体は、接続ストリップによって接続される。当該接続は、多面体本体を好ましい幾何学的配置に保持する。接続ストリップの別の役割は、多面体本体の間にヒンジを提供することにある。多面体本体の間のヒンジは、多面体本体がヒンジによって提供される自由度に沿って移動することを可能にする。
【0012】
例えば、点状のヒンジは、多面体本体に対して全ての3つの空間次元の回転自由度を提供することができ、それにより、多面体本体は、ヒンジの各角度の周りに回転することができる。このような変形の間に、多面体本体の角点とヒンジとの間の距離は、一定である。具体的には、ヒンジは、さらに回転軸周りの回転自由度を提供することもできる。そして、多面体本体の移動は、単一の回転角度に制限される。
【0013】
第2多面体本体が、第1多面体本体と第2多面体本体との間の第1ヒンジの自由度を中心に移動し、同時に第2多面体本体も第2ヒンジを介して第3多面体本体に連結される場合、連結された多面体本体の向きは、互いに独立して調整することができない。従って、幾何学的変形(特に、多面体本体の多面体の面のエッジの周りに回転する)は、連結された複数の多面体本体の幾何学的変形をもたらして、変形玩具が第1幾何学的変形から第2幾何学的変形へ変形することをもたらす。
【0014】
接続ストリップは、さらに多面体本体をチェーンの形態で接続し、即ち、多面体本体は、多くても2つの隣接する多面体本体に連結される。
【0015】
接続ストリップが少なくとも3つの多面体本体を接続することにより、部品点数を削減することができるため、変形玩具の製造を改善することができる。
【0016】
磁場を使用することにより、幾何学的変形を安定させることができ、即ち、各多面体本体は、それが隣接する多面体本体に対して現在の位置を保持する。
【0017】
静磁場は、磁石によって生成されることが可能であり、また、磁場は、各多面体本体の少なくとも1つの多角形の面を通って、第2个多面体本体の第2磁石からの磁場に結合する。磁石の分極によって吸引性の磁力が生じると、多面体本体は、互いに固定され、幾何学的変形を安定させる。しかし、磁力が反発的であると、幾何学的変形は、安定されない。
【0018】
磁石は、多面体本体に固定されることが可能であり、それにより、多面体本体の多角形の面を通る静磁場は、幾何学的変形でも固定されたままである。しかし、磁石は、多面体本体に可動に接続されてもよい。具体的には、可動な接続は、磁石の移動及び/又はスライド及び/又は回転及び/又は類似の移動を可能にする。このようにして、各移動磁石は、多面体本体の2つの又はそれよりも多い多角形の面を通じて、2つの又はそれよりも多い方向に所定の極性を示す。例えば、第1多面体本体の移動磁石は、第2多面体本体の磁石の近くの磁場の存在に応答して移動するように配置される。そして、移動磁石は、第2多面体本体の磁場に対してエネルギー的に有利な方向に自動的に整列し、その結果、磁石の間の吸引力が生じて、幾何学的変形を安定させる。しかし、別の幾何学的変形では、多面体本体の多角形の面を通る磁場は、異なる可能性があり、磁場は、2つ以上の方向に整列することができるようにする。
【0019】
従って、各移動磁石は、複数の固定磁石(非移動磁石)を有利にシミュレーションすることができる。例えば、12個の多面体本体のみを有する変形玩具では、各多面体本体は、単一の移動磁石のみを含み、即ち、変形玩具中に合計12個の移動磁石を含む。各移動磁石の移動によって、このような実施例は、24、36個又は他の数の固定磁石を有する幾何学的芸術玩具の機能を有利にシミュレーションする。これにより、生産コストが削減され、製造手順が簡略化される。
【0020】
変形玩具の全ての多面体本体は、接続ストリップによって閉ループ配置で接続されて、四面体のカライドサイクルを形成することができる。
【0021】
ここで、閉ループ配置とは、このような変形玩具が、最初に接続ストリップの方向に沿って配向された1組の多面体本体から構築できることを意味する。接続ストリップの両端が一体に接続されると、接続ストリップは、接続された多面体本体とともにループ状に類似する構造を構築する。
【0022】
四面体の回転ループは、柔軟性のある多面体であり、そのループ軸周りに回転することができる。ループ軸は、配置されるループによって与えられる。全ての多面体本体は、いずれも配置されたループ軸周りに時計周り、又は反時計回りに回転することができる。このようにして、限られた数の変形ステップの後、四面体の回転ループの連続的な変形により、最初の幾何学的配置をもたらす。
【0023】
単一の接続ストリップによって、全ての多面体本体を接続することができる。
【0024】
単一の接続ストリップを使用することは、特に従来技術の実施例と比較して、せん断力を低減するのに有利である。この実施例によれば、多面体は、多面体の外部に貼り付けられたシールやフィルムによって接続される。内部の接続ストリップを使用することにより、得られるヒンジは、せん断力による影響をさらに受けにくく、変形中に加えられるトルクを受けるのにより適する。
【0025】
このようにすることは、1つの生産ステップにおいて接続ストリップを生産できるという利点がある。そして、接続ストリップは、底面とすることができ、全ての多面体本体は、底面に取り付けることができ、変形玩具の生産を簡略化させる。
【0026】
好ましくは、単一の接続ストリップは、開始部分及び終了部分を有し、該開始部分及び終了部分は、互いに接続して連続したループを形成する。このようにして、扁平な材料で製造できる接続ストリップを相対的に簡単に製造することができる。それにもかかわらず、単一の接続ストリップは、変形玩具の全ての多面体本体の閉ループ配置を形成するのに用いることができる。
【0027】
好ましい実施例では、開始部分及び終了部分は、互いに重ね合わせて接続ストリップの連続ループを形成するように成形される。これは、全てのヒンジの安定性を維持しながら、変形玩具を非常に効率的に製造することにつながる。
【0028】
代替可能な実施例では、開始部分及び終了部分は、互いに隣接するように配置して、接続ストリップの連続ループを形成するように成形される。この実施例では、全てのヒンジの感触が同じになるように、接続ストリップの両端を接続するときに材料を倍増することを回避することができる。
【0029】
単一のストリップに代えて、少なくとも2つの略平行に走行するストリップを用いて、なくとも3つの多面体本体を接続することができる。複数の平行に走行するストリップを使用すると、多面体間に設けられる材料量を減少させることができ、多面体が変形間でより滑らかに移行できるようにする。同様に、特に2つのストリップのサイズが冗長に設計される場合、各2つの多面体間の接続のロバスト性を改善させることができる。
【0030】
各多面体本体は、2つの接続可能部材から構成され、且つ接続ストリップは、接続可能部材の間に配置されてもよい。換言すれば、接続ストリップは、多面体の内側でそれらを通り続ける。そのため、ヒンジは、幾何学的に意図された位置に配置され、ヒンジにかかるせん断力が可能な限り軽減されるため、非常に安定する。
【0031】
接続可能部材は、内部部材と外部部材、又は上部部材と下部部材とすることが可能であり、ここで、内部と外部、又は上部と下部とは、変形玩具が閉じた状態又は初期状態にあるときの接続可能部材の位置を指す。
【0032】
接続ストリップを接続可能部材の間に配置することにより、接続可能部材は、接続ストリップに固定されることが可能であり、また、接続可能部材は、互いに接続することもできる。固定されることによって、多面体本体が接続ストリップに沿って並進移動することができなくなる。許容される唯一の移動は、隣接する多面体本体の接続エッジ間に形成されたヒンジで提供される自由度によって与えられる。
【0033】
接続可能部材を接続ストリップに接続することにより、非常に正確な位置決めを実現することができ、且つ、全ての多面体本体に対して非常に正確な位置決めを維持することができ、変形玩具の非常に正確な製造を実現することができる。
【0034】
接続ストリップが多面体本体の体積内に配置されることが可能であるため、接続ストリップは、ほとんど隠されており、ユーザに見えない。
【0035】
接続ストリップの第1部分の第1半分部分を第1多面体本体の2つの接続可能部材の間に挿入し、且つ接続ストリップの第1部分の第2半分部分を第2多面体本体の2つの接続可能部材の間に挿入することで第1多面体本体と第2多面体本体との間のヒンジを形成することにより、第1多面体本体の接続エッジと第2多面体本体の接続エッジは、互いに隣接し、接続ストリップの第1部分によって枢動可能に接続される。
【0036】
ここで、接続ストリップは、異なる部分を含み、また、少なくとも2つの多面体本体は、各部分に取り付けることができる。各部分は、第1半分部分と第2半分部分に分けることができ、また、第1多面体本体は、この部分の第1半分部分に取り付けることができ、第2多面体本体は、第2半分部分に取り付けることができる。このようにして、接続ストリップは、多面体本体をチェーン状の構造に接続することを可能にするとともに、多面体本体の枢動可能な接続を提供し、即ち、多面体本体は、多面体本体の多角形の面のエッジの周りに回転することができ、接続ストリップとともに落下することができる。
【0037】
多面体本体の2つの接続可能部材は、少なくとも1つの磁石を配置するためのキャビティを呈することができる。
【0038】
変形玩具の幾何学的変形を安定させるように、磁場を生成する磁石を提供することができ、即ち、多面体は、その位置を維持する。このようにして、実現される玩具の幾何学的変形は、実現された秩序を破壊することなく、変形玩具をユーザから別のユーザに渡すことができるため、他の人に表すことができる。
【0039】
好ましくは、キャビティの位置は、磁場の中心方向が多面体本体の中心に位置するように選択される。これにより、多面体本体にかかる追加のトルクを回避できるため、幾何学的変形を安定させることができる。
【0040】
多面体本体の2つの接続可能部材は、2つの接続可能部材を互いに固定するためのピン及び穴を示す。
【0041】
接続可能部材を接続するために、ピンは、それぞれの接続可能部材の穴に挿入される。接続可能部材は、ピン及び穴を含むことができ、対応する接続可能部材は、対応する位置に穴及びピンを含む。
【0042】
ピンにより、全ての接続可能部材を接続ストリップに正確に位置決めることを実現することができる。
【0043】
これらの部材を互いに接着したり、ピン及び穴が摩擦によって接続可能部材を保持したりすることができる。フック又はバーブと穴の突起を使用してピンを固定することもでき、また、フックと突起は、スナップイン接続を形成する。
【0044】
このようにして、変形玩具は、機械的に安定であり、使用中の玩具の意図しない破壊を防止できる。
【0045】
多面体本体は、3Dプリンティングによって形成でき、単一のステップで多面体本体のピン及びキャビティをプリントアウトすることができる。多面体本体は、プラスチック又は硬質カードボックス、又は複合材料又は加工された金属で製造することができる。
【0046】
異なる材料の異なる表面特性、例えば反射及び色を利用して、玩具の特定の光学的外観を実現することができる。これは、特定の幾何学的変形を記憶することに役立つが、光学的対称性も導入でき、玩具の特定の幾何学的変形がユーザーの目に非常に美しく見えるようになる。
【0047】
多面体本体は、四面体であってもよい。
【0048】
四面体は、4つの三角形の面、6つのエッジ及び4つの角を含む。エッジは、異なるサイズを有する。全てのエッジが同じ長さを有する特別な場合は、いわゆる正四面体である。
【0049】
複数の四面体により、ある所定の多面体本体の体積を埋めることが可能であり、また、体積自体は、多角形の面を有する。
【0050】
多面体本体として、12個の四面体を提供することができ、12個のヒンジを提供して四面体を接続することができる。
【0051】
例えば、立方体の対角線の平面に沿って1組の切断が実行されると、後に示すように、12個の四面体は、立方体から容易に得ることができる。
【0052】
多面体本体は、凸状であってもよい。
【0053】
多面体本体の体積中の2点が線で接続できる場合、多面体本体は、凸状であり、また、線の全ての点も、多面体本体に含まれる。
【0054】
例えば、立方体、四面体及び全ての正多面体は、いずれも凸状の多面体本体である。例えば、U形チューブは、「U」の第1部分における点と「U」の第2部分における点は、U形体から離れることなく互いに接続できないため、凸ではない。
【0055】
全ての多面体本体は、いずれも同じ形状及びサイズを有することができる。
【0056】
このようにすることで、異なる部材の数が減少するため、変形玩具の生産も簡略化されるという利点を有する。
【0057】
例えば、全ての多面体本体は、四面体であり、また、底層の三角形の辺長は、√2、1、1であり、且つ、四面体の全ての他の3つの辺の長さは、√3/2である。
【図面の簡単な説明】
【0058】
以下、図面の説明で本発明の好ましい実施例を説明する。それは、以下のように示される。
【
図1A】第1幾何学的配置及び第2幾何学的配置における第1実施例の模式図である。
【
図1B】第1幾何学的配置及び第2幾何学的配置における第1実施例の模式図である。
【
図1C】第1幾何学的配置及び第2幾何学的配置における第1実施例の模式図である。
【
図1D】第1幾何学的配置及び第2幾何学的配置における第1実施例の模式図である。
【
図2A】異なる幾何学的配置における第2実施例の模式図である。
【
図2B】異なる幾何学的配置における第2実施例の模式図である。
【
図2C】異なる幾何学的配置における第2実施例の模式図である。
【
図2D】異なる幾何学的配置における第2実施例の模式図である。
【
図2E】異なる幾何学的配置における第2実施例の模式図である。
【
図2F】異なる幾何学的配置における第2実施例の模式図である。
【
図2G】異なる幾何学的配置における第2実施例の模式図である。
【
図2F】異なる幾何学的配置における第2実施例の模式図である。
【
図2G】異なる幾何学的配置における第2実施例の模式図である。
【
図2H】異なる幾何学的配置における第2実施例の模式図である。
【
図2I】異なる幾何学的配置における第2実施例の模式図である。
【
図5A】多面体本体が接続ストリップに取り付けられる模式図である。
【
図5B】多面体本体が接続ストリップに取り付けられる模式図である。
【
図5C】多面体本体が接続ストリップに取り付けられる模式図である。
【
図5D】多面体本体が接続ストリップに取り付けられる模式図である。
【
図5E】多面体本体が接続ストリップに取り付けられる模式図である。
【
図5F】多面体本体が接続ストリップに取り付けられる模式図である。
【
図6】多面体本体が接続ストリップに取り付けられて変形玩具を形成する接続の模式図である。
【発明を実施するための形態】
【0059】
以下では、好ましい実施例を図面を用いて説明する。異なる図面における同一、類似または類似の作用をする要素は、同一の参照符号によって識別され、これらの要素の繰り返しの説明は、重複を避けるために部分的に省略される。
【0060】
図1Aでは、第1種の幾何学的配置における変形玩具1が示される。
【0061】
本実施例の変形玩具1は、6つの多面体本体2を含む。本実施例では、多面体本体2の全ての面は、いずれも平坦な二等辺三角形として設けられている。多面体本体2の各面が正三角形の形状であるように成形されると、このような多面体本体2は、正四面体とも呼ばれる。
【0062】
各多面体本体2は、少なくとも1つの他の多面体本体2´に接続され、また、隣接する多面体本体20、22間の接続は、接続ストリップ3(下記のように)によって提供され、多面体本体2は、接続ストリップ3に固定される。このような配置では、第1多面体本体20のエッジと、それに隣接する多面体本体22のエッジとは、互いに隣接し、接続ストリップ3は、2つの多面体本体20、22の間のヒンジ30とする。従って、ヒンジ30の存在により、第1多面体本体20は、それに隣接する多面体本体22のエッジの周りに回転することができ、また、その逆も可能である。ヒンジ30は、回転を促進し、回転軸Rの周りに回転することをもたらす、この回転軸Rは、通常、隣接する多面体本体20、22の隣接するエッジに平行な位置にある。
【0063】
これには、接続ストリップ3の少なくとも一部が可撓性を有することが必要となり、多面体本体20、22の互いに対する回転に有利である。
【0064】
接続ストリップ3は、
図1Aの実施例に示すチェーン状の形態で少なくとも3つの多面体本体2を接続してもよく、好ましくは、全ての多面体本体2を接続する。
図1Aの実施例では、多面体本体2のチェーンは、多面体本体2が線形的に連続する幾何学的本体を形成するように、閉じられていないものとする。多面体本体2は、それぞれの回転軸Rの周りに互いに対して回転することができ、この回転軸Rは、2つの隣接する多面体本体2の間に位置する。
【0065】
図1Bには、
図1Aの変形玩具1の別の幾何学的配置が模式的に示されている。この第2幾何学的配置は、閉ループ配置であり、
図1Aの上部の多面体本体2´と下部の多面体本体2´´を接続することにより得られる。
図1Aにおける黒色の矢印は、閉じた配置を提供するためのオプションを模式的に示す。
【0066】
このような幾何学的配置は、ループ軸R*の周りにねじることができる四面体の回転ループを形成する(
図1Cを参照)。ループ軸R*の周りに四面体の回転ループをねじることにより、多面体本体2の全ての4つの側面を頂面に移動させることができる。多面体本体2のそれぞれの側面のループにおける異なる配置は、異なる変形と呼ばれる。
【0067】
図1Cでは、ねじれ運動が模式的に示されている。多面体本体2は、各々の多面体本体2がループ軸R*の周りに時計回り(又は反時計回り)に局所的に回転ように、ループ軸R*の周りに回転する。ループ軸R*の周りに多面体本体2をねじることにより、幾何学的配置の異なる変形を得ることができる。
【0068】
図1Dに示すように、変形玩具1は、その異なる幾何学的変形において安定することができる。
【0069】
各々の多面体本体2は、磁場40を生成する少なくとも1つの磁石(多面体本体2の内部に位置し、例えば
図5Aの断面での参照符号4に示される)を含むことができる。対応的に磁石を配置することにより、磁場40は、隣接する多面体本体20、22の磁石4が吸引性極性を有する場合に、隣接する多面体本体20、22が互いに引き付けられるように配向される。磁石が反発極性を有する場合、多面体本体2は、特定の変形において安定できない。
【0070】
図2Aには、別の変形玩具1が示されている。変形玩具1は、12個の同じ多面体本体2及び12個のヒンジ30を含み、第1幾何学的変形において立方体を形成する。
【0071】
各々の多面体本体2は、
図2Bに示す多角形の網目形状から得ることができる。当該形状は、上側の二等辺直角三角形からなり、ここで、2つの辺は、同様な長さを有し、例えば単位長さ1である。従って、二等辺三角形の底面は、√2個の単位長さの長さを有する。この底面は、別の二等辺の三角形の底面であるが、その2つの辺の長さが同様で、√3/2の単位長さを有する。しかし、下側の底面三角形のそれぞれの辺は、2つの二等辺三角形の辺であり、1つの単位長さの底面長さを有する。
【0072】
この形状の外側が一緒に折り畳むと、
図2Cに示す多面体本体2を得ることができる。
【0073】
多面体本体2は、
図2Aに示すように、立方体を斜めに切断することによりを得ることもできる。
【0074】
図2Dには、立方体の形状を有する変形玩具1の初期幾何学的変形Gが示されている。
図2Eには、変形玩具1の第2幾何学的変形G´が示されている。立方体の角が立方体の反対側の角に向かって移動するとき、初期の立方体からこの第2幾何学的変形G´を得ることができる。異なる多面体本体は、接続ストリップ3によるヒンジ30によって枢結されているため、多面体本体は、互いに独立して移動することができない。1つの多面体本体2が移動されると、他の多面体本体も移動される。これは、限られた数の多面体本体2を移動することにり、変形玩具1のGからG´への全ての幾何学的変形を実行することを可能にする。
【0075】
図2E~2Kは、変形玩具1の他の様々な可能な配置を示す。以下に詳細に説明する磁石4及び接続ストリップ3の具体的な位置決め及び配向により、変形玩具1は、開示及び/又は図示した任意の他の可能な配置に保持することができる。
【0076】
より具体的には、
図2Fは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第3配置にあり、
図2Gは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第4配置にあり、
図2Hは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第5配置にあり、
図2Iは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第6配置にあり、
図2Jは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第7配置にあり、
図2Kは、
図2Aに示す変形玩具1の斜視図であり、変形玩具1は、第8配置にある。
【0077】
変形玩具1を使用する過程において、各々の多面体本体2は、ユーザが変形玩具1を開示された任意の配置にすることを可能にするために、迅速且つ容易に互いに移動及び操作することができる。なお、上述したように、磁石4の各多面体本体2内での位置決め、方向及び極性は、変形玩具1が任意のこのような配置に安定的に保持されることを可能にする。そのため、変形玩具1及び多面体本体2は、多角形の立体の研究のための教育装置として、エンターテイメント又はリラックスに用いられるパズル又は玩具、及び/又は他の人に見せる芸術作品としてみなすことができる。
【0078】
図3には、多面体本体2の異なる可能な幾何学的形状が示されている。
図3Aには、
図2Bに示されるように得られた多面体本体2が示されている。この多面体本体2は、立方体変形玩具1を生産するために使用できる全ての他の多面体本体の外部限界又は外部境界とみなすことができる。
【0079】
図3Bには、別の可能な多面体本体2が示されている。それは、
図3Aにおける多面体本体2の先端を切り取ることにより得ることができる。切断平面は、立方体の外面に平行であってもよいが、
図3Cに示すように、傾斜してもよい。
【0080】
図3D、
図3Eは、双方向に磁化された単一の移動磁石4を有する多面体本体2の代表的な実施例を模式的に示す。多面体本体2は、4つの多角形の面200A、200B、200C及び200Dを有し、面200Bが隠されている。いくつかの実施例では、200A及びD面(即ち、第1面及び第4面)は、互いに対して直角を形成し、200A又は200Dのうちの一方の面は、他方の面よりも相対的に大きく、200B及び200Cの面は、互いに大きさが実質的に同じである。示される実施例では、磁石4は、その縦軸400の周りに回転することができるように、多面体本体2の内側に位置決めされる。
【0081】
一般的には、磁石4は、多面体本体2内で制御されずに移動することが許容されない。むしろ、多面体本体2は、例えば、クレードル、コード、サスペンション、ジンバルなどの1つ又は複数の内部構造を備え、これらの構造は、移動磁石4を2つ又は3つの面の近くに保持するとともに、移動磁石4が制御される領域内で移動することを可能にする。例えば、いくつかの実施例では、多面体本体2は、内部のクレードル、トラック、溝、コンパートメント、キャビティ、支持物及び/又は類似物を備える。以下、磁石4を制御される領域内で移動することを可能にする代表的な構造を説明する。
【0082】
図3D、
図3Eに示すように、移動磁石4は、多面体本体の外殻に対して移動できるように、面200A及び200Dに隣接するように位置決めされる。
図3Dには、磁石4の北の部分は、面200Aに隣接する。それに対して、
図3Eには、磁石4は、北の部分が面200Dに隣接するように、軸400の周りに回転している。磁石のこのような移動によって、磁石4の北の面及び南の面は、いずれも200A又は200D面に隣接して配置されることが可能である。従って、磁石4は、200A又は200D面を介して第1極性(例えば、正極性又は負極性)を交互に示すことができる。「交互に」とは、本開示において、磁石4が1度に1つの面を介して第1極性を示すことを意味する。有利となるのは、これによって、単一の移動磁石4が、
図5Aに示すように複数の固定磁石4をシミュレーションすることを可能にする。
【0083】
3D及び3Eの実施例は、代表的なものであり、限定するものではない。いくつかの実施例では、磁石4は、円柱体磁石、円盤磁石、球状磁石又は他の磁石タイプである。いくつかの実施例では、磁石4は、多角形の面200A~Dに対して並進、変位、スライド又は転倒して、面200A又は面200Bを介して交互に第1極性を示す。いくつかの実施例では、磁石4は、1以上の方向に回転し、例えば、球状の磁石4である場合、中心の周りに回転する。これは、磁石が2つ以上の面(例えば3つの面)を介して交互に極性を示すことを可能にすることに有利である。いくつかの実施例では、磁石4は、異なる面に隣接し、例えば、面200A及び200C、200A及び200D、200B及び200C、200B及び200D、又は200D及び200Cに隣接するように位置決めされる。いくつかの実施例では、磁石4は、2つ以上の面に隣接し、例えば、面200A、200B及び200Cに隣接するように位置決めされる。いくつかの実施例では、磁石4は、3つの面が接する頂点(例えば、面200A、200B及び200Cが接する箇所)に隣接するように位置決めされる。
【0084】
いくつかの実施例では、本開示の変形玩具1は、強化されたエンターテイメントの提供、製造コストの削減及び/又は他の有益な点のために、
図3Dや
図3Eに示すように、1つ又は複数の移動磁石4を含む。いくつかの実施例では、変形玩具1は、2種類又はより多くの種類の異なるタイプ(例えば、第1タイプ及び第2タイプ)の移動磁石を含み、各種類のタイプは、異なる面を介して交互に磁石の極性を示すように配置された異なる移動磁石の配置を有する。上述のように、いくつかの実施例では、移動磁石は、多面体本体を1つ以上の構成、例えば
図2D~
図2Kに示すいずれか1つ以上の構成で磁気的に結合可能にするように配置される。
【0085】
図4Aには、接続ストリップ3が示され、
図4Bには、接続ストリップ3の一部32の詳細図が示されている。接続ストリップ3は、全ての12個の多面体本体2に接続されることが可能であるとともに、立方体の全てのエッジにおいてヒンジ30を提供するように成形される。そのため、このような特定の接続ストリップ3は、立方体の変形玩具1の全ての多面体本体2を接続するために使用することができる。
【0086】
接続ストリップの各部分32は、下記のように、多面体本体2の固定ピン26を位置決めするための開口37を含む。なお、各部分32は、変形玩具1の現在の幾何学的変形Gを安定させるための磁石4のための開口37´を含むことができる。接続ストリップ3の部分32における開口37、37´は、対称的にヒンジ30の回転軸として使用される対称軸に位置する。
【0087】
図4Bには、形状が平坦であり且つ二等辺三角形である多面体本体2のフットプリント(footprint)の非常に模式的な表現が含まれ、その目的は、接続ストリップ3に対する多面体本体2の位置を示すことにある。当然ながら、多面体本体2の形状は、変化してもよく、単なる一例として理解されるべきである。
【0088】
ループを閉じ、閉ループ構成で全ての多面体本体を接続するために、一実施例では、接続ストリップ3の開始部分302及び終了部分304は、互いに重ね合わせて配置され、接続ストリップ3に接続された多面体本体2によって以下に
図5Aを参照しながら説明する態様で接続される。換言すれば、閉ループは、接続ストリップ3がループ形状である必要がなく、線形の接続ストリップ3であれば十分であり、それは、両端で接続されて、多面体本体2のループ状の配置を形成し、さらに四面体の回転ループを形成する。
【0089】
接続ストリップ3は、皮革又は柔軟なプラスチックで製造することができ、これは、接続ストリップ3の部分32が対称軸周りに曲げることを可能にする。この材料は、変形玩具1の使用中に破断したり、割れたり、脆くなったりすることなく、このような機械的な圧力に耐えることができる。
【0090】
機械的応力による如何なる損傷をさらに防止するために、接続ストリップの強応力領域に摩耗防止孔38が挿入されている。このようにして、亀裂又は裂け目がヒンジ30の方向に沿って伝播することを防止する。
【0091】
図4Cには、接続ストリップ3の別の実施例が示されている。接続ストリップ3は、例えば、
図4Aにおける開口37、37´と同様の配置を提供する。しかし、接続ストリップ3は、より大きい表面積を含み、多面体本体2の接続をより安全にすることができる。
【0092】
図4D及び4Eには、さらに接続ストリップ3の実施例が示され、それは、
図4Aに示す接続ストリップと類似するが、開始部分302及び終了部分304は、重なりを少なくして開始部分302及び終了部分304を配置できるように、ループを閉じることができるように成形される。開始部分302と終了部分304との間の接続は、2つの多面体本体によって実現され、この2つの多面体本体は、2つの部分をチェーンジョイントのように互いに接続する。開口37´のみが、目のガイド物として示されることに留意されたい。接続ストリップ3は、開口37を含むこともできる。
【0093】
図5A、
図5Bには、多面体本体2、2´がどのように接続ストリップ3に固定されることが示されている。各多面体本体2、2´は、2つの接続可能部材24、26を含む。接続は、ピン27及び穴29によって実現され、また、1つの接続可能部材24、26のピンを対応する接続可能部材26、24の対応する穴29に挿入することができる。ピン27は、穴29にインターロックされるか、或いは穴29に接着されるか、或いはピン27の外面と穴29の内面との間の摩擦によって穴29にロックされることが可能である。なお、接続可能部材は、キャビティ25を含むことができ、磁石4をその中に挿入することで、変形玩具1の幾何学的変形を安定させることができる。
【0094】
接続可能部材24、26のピン27と穴29及びキャビティ25は、ピン27が接続ストリップ3の開口37、37´を接続することによって配置できるように、配置される。なお、接続ストリップ3の開口37´は、磁石4が多面体本体の中心に配置されることを可能にする。これは、磁石が多面体本体2の質量中心に配置できるため、幾何学的変形の安定化機構によって有利である。
【0095】
第1多面体本体2の接続可能部材24、26は、接続ストリップ3の第1部分32の第1半分部分320を囲む上記のピン27及び穴29を用いて互いに接続される。接続ストリップ3の第1部分32の第2半分部分322は、第2多面体本体2´の接続可能部材24´、26´によって囲まれる。第1多面体本体2及び第2多面体本体2´は、互いに隣接し、また、第1多面体本体2の接続エッジ28は、第2接続体2´の接続エッジ28´に平行である。接続エッジ28、28´は、互いに接触してもよいが、例えば5mm未満の微小な距離で位置決めされてもよい。このようにして、接続ストリップ3は、ほとんど見えないが、長さのスケールが多面体本体2、2´がヒンジ30の回転軸周りに安定的に回転できるのに十分に小さく、これは、接続ストリップ3によって提供される。
【0096】
換言すれば、各々の多面体本体2は、少なくとも2つの接続可能部材24、26から構成され、且つ接続ストリップ3は、接続可能部材24、26の間に配置される。
【0097】
第1多面体本体2と第2多面体本体2´との間のヒンジ30は、接続ストリップ320の第1部分の第1半分部分を第1多面体本体2の2つの接続可能部材24、26の間に挿入するとともに、接続ストリップ322の第1部分の第2半半分部分を第2多面体本体2´の2つの接続可能部材24´、26´の間に挿入することによって、形成される。そのため、第1多面体本体2´の接続エッジ28と第2多面体本体2´の接続エッジ28´は、互いに隣接し、接続ストリップ3の第1部分32によって枢動可能に接続される。
【0098】
図5Cには、幾何学的変形が示され、ここで、多面体本体2、2´は、ヒンジ30による回転軸の周りに互いに回転する。換言すれば、接続ストリップ3は、ヒンジ30を提供し、多面体本体2、2´は、ヒンジ30の周りに回転することができる。
【0099】
多面体本体2、2´における磁石4は、磁場40を提供し、磁石4間の磁力が吸引力である場合、幾何学的変形Gを安定させることができる。磁力が反発力である場合、幾何学的変形は、安定化されず、多面体本体2、2´は、磁石4間の距離を増加させるために回転しようとする。
【0100】
図5Dには、接続可能部材24、26間の別の可能な固定機構が示されている。スナップイン接続を使用することができ、また、ピン27は、穴の突起290でロックできるフック状構造270を含む。
【0101】
図5E、
図5Fには、本開示の実施例が模式的に示され、また、磁石4は、キャビティ25内で移動することができ、当該キャビティは、接続可能部材24、26によって形成される。キャビティ25は、例えば管状の形状を有し、また、接続ストリップ32の平面に垂直なキャビティ25の長さは、磁石4のサイズよりもはるかに大きい。これによって、磁石4が接続ストリップ32の平面に垂直な方向に移動することを可能にする。例えば、磁石4は、キャビティ25の両端に向かって回転できるように、球状の形状を有することができ、そして、磁石4は、変形玩具1からの周囲の磁場に従って、その磁場40を整列させることができる。
【0102】
しかしながら、磁石4は、接続ストリップ32の平面に垂直な方向に移動できるように、円柱状の形態を有することもできる。また、円柱状の磁石4は、キャビティの長さ方向に沿って分極することができる。さらに、磁石の移動は、多面体本体の少なくとも1つの多角形の面200のみを介して磁場の強度を調整する。代替的に、円柱状の磁石4は、キャビティ25の長さ方向に垂直に分極することができる。このように、磁石4は、回転の自由度も有し、これによって、、磁石4が変形玩具1の周囲磁場に従ってその磁場40を整列させることを可能にする。
【0103】
図6には、多面体本体2の全ての接続可能部材24、26がいずれも単一の接続ストリップ3に接続されることが示されている。このようにして、接続ストリップは、底面を提供し、全ての多面体本体2は、いずれもこの底面に取り付けることができる。最後の生産段階でのみ、示された多面体本体2のチェーンにおける一つ目の多面体本体2と最後の多面体本体2は、互いに接続される。これは、変形玩具1の生産プロセスを高速化することを可能にする。多面体本体のチェーンの一つ目の多面体本体2と最後の多面体本体2を接続することにより、変形玩具1が形成される。
【0104】
適用可能である限り、実施例に示される全ての個々の特徴は、本発明の分野を逸脱することなく、組み合わせられ、および/または交換され得る。
【符号の説明】
【0105】
1 変形玩具
2 多面体本体
20,22 隣接する多面体本体
200 多面体の面
24 第1接続可能部材
25 磁石のキャビティ
26 第2接続可能部材
27 ピン
270 フック
28 接続エッジ
29 穴
290 突出部分
3 接続ストリップ
30 ヒンジ
32 接続ストリップの部分
320 第1半分部分
322 第2半分部分
37 開口
38 摩耗防止孔
4 磁石
40 磁場
G,G´ 幾何学的変形
R 回転軸
R* ループ軸
【国際調査報告】