(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-07
(54)【発明の名称】ハイブリッド式発電装置の複数の要素の同時空冷
(51)【国際特許分類】
B64D 35/024 20240101AFI20240229BHJP
B64D 33/10 20060101ALI20240229BHJP
B64U 50/33 20230101ALI20240229BHJP
B64U 50/19 20230101ALI20240229BHJP
B64U 20/96 20230101ALI20240229BHJP
B64U 20/98 20230101ALI20240229BHJP
【FI】
B64D35/024
B64D33/10
B64U50/33
B64U50/19
B64U20/96
B64U20/98
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023557176
(86)(22)【出願日】2022-03-16
(85)【翻訳文提出日】2023-11-14
(86)【国際出願番号】 US2022020602
(87)【国際公開番号】W WO2022197838
(87)【国際公開日】2022-09-22
(32)【優先日】2021-03-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-11-17
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】520051953
【氏名又は名称】ヴェルデゴ エアロ,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】アンダーソン,リチャード パット
(72)【発明者】
【氏名】スピッツァー,デイヴィッド エヌ.
(72)【発明者】
【氏名】リックリック,マーク
(72)【発明者】
【氏名】カッセルズ,オースティン
(72)【発明者】
【氏名】バーチュ,エリック リチャード
(57)【要約】
航空宇宙ハイブリッド式パワートレインシステムは、エンジンと、動力シャフトと、動力シャフトを内部に有するか又は動力シャフトを通過する電気機械とを含む。航空宇宙ハイブリッド式パワートレインシステムは、動力シャフトに接続され、エンジン又は電気機械の少なくとも一方の構成要素に向けて空気を導くように構成されたファン、インペラ、又はブロワをさらに含む。ファン、インペラ、又はブロワは、ピストン燃焼機関又は電気機械の少なくとも一方の構成要素を冷却するように配置された熱交換器又はフィン付きヒートシンク等の冷却素子に向けて空気を導くようにさらに構成され得る。
【特許請求の範囲】
【請求項1】
航空宇宙ハイブリッド式パワートレインシステムであって、当該航空宇宙ハイブリッド式パワートレインシステムは、
エンジンと、
動力シャフトと、
該動力シャフトを内部に有するか又は前記動力シャフトを通過する電気機械であって、該電気機械は直流(DC)バスに電力を出力するように構成され、前記DCバス上の電力が航空機を推進するために使用されるように構成される、電気機械と、
前記動力シャフトに接続されたファン、インペラ、又はブロワを含み、
前記ファン、インペラ、又はブロワは、空気を、
前記エンジン又は前記電気機械の少なくとも一方の構成要素、又は
前記エンジン又は前記電気機械の少なくとも一方の前記構成要素を冷却するように構成された熱交換器又はフィン付きヒートシンクの少なくとも一方を含む冷却素子、に向けて導くように構成される、
航空宇宙ハイブリッド式パワートレインシステム。
【請求項2】
前記電気機械は、電気エネルギ蓄積装置から電気入出力を介して電力を受け取り、前記動力シャフトを駆動するように構成されており、
前記電気機械は、前記エンジンによる前記動力シャフトの回転時に、電気入出力を介して電気モータ及び/又は前記電気エネルギ蓄積装置に電力を出力するように構成され、
前記電気機械は、前記前記空気が前記ファン、インペラ、又はブロワによって導かれた結果として、前記冷却素子によって冷却される、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項3】
前記電気機械は、前記エンジンが前記動力シャフトを駆動している間に、該動力シャフトから供給されるエネルギの50~100パーセントを、出力電力として電気に変換するように構成される、請求項2に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項4】
前記エンジンは、前記空気が前記ファン、インペラ、又はブロワによって導かれた結果として冷却される空冷シリンダを含む、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項5】
前記エンジンは、ディーゼル燃料、ジェットA燃料、ガソリン、水素、バイオ燃料、合成燃料代替品のいずれかを含む液体燃料を使用する、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項6】
前記ファン、インペラ、又はブロワは、
該ファン、インペラ、又はブロワが前記動力シャフトによって直接駆動されるように、前記動力シャフトに直接結合される、又は
ギアボックス、プーリ、又はトルクコンバータを介して前記動力シャフトに間接的に結合される、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項7】
前記ファン、インペラ、又はブロワは第1のファン、インペラ、又はブロワであり、当該システムは、前記動力シャフトに接続された第2のファン、インペラ、又はブロワをさらに含む、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項8】
少なくとも2つの空気ダクトをさらに含み、該少なくとも2つの空気ダクトは、前記ファン、インペラ、又はブロワから空気を受け取り、前記エンジン又は前記電気機械の少なくとも一方の前記構成要素を冷却するために空気を導くように構成される、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項9】
前記少なくとも2つの空気ダクトのうちの第1のダクトが、前記エンジンのシリンダを冷却するように空気を導くように構成される、請求項7に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項10】
前記少なくとも2つの空気ダクトのうちの第1のダクトが、前記エンジンのエンジンオイル用冷却器に空気を導くように構成される、請求項7に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項11】
前記少なくとも2つの空気ダクトのうちの第1のダクトが、エンジンインタークーラー又は給気冷却器に空気を導くように構成される、請求項7に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項12】
前記少なくとも2つの空気ダクトのうちの第1のダクトが、シュラウドであり、前記電気機械又はその関連部品を冷却するために空気を導くように構成される、請求項7に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項13】
前記エンジンは、ピストンエンジン、ロータリエンジン、ターボシャフトエンジン、ターボプロップエンジン、ターボファンエンジン、又はターボジェットエンジンである、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項14】
前記電気機械の交流(AC)出力を直流(DC)に変換するパワーエレクトロニクスをさらに含む、請求項1に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項15】
DCバス上のDC電力は、航空機の推進部品に電力を供給するように構成される、請求項14に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項16】
航空宇宙ハイブリッド式パワートレインシステムであって、当該航空宇宙ハイブリッド式パワートレインシステムは、
エンジンと、
動力シャフトと、
該動力シャフトを内部に有する又は前記動力シャフトを通過する電気機械であって、該電気機械は直流(DC)バスに電力を出力するように構成され、前記DCバス上の電力は航空機を推進するために使用されるように構成される、電気機械と、
ファン、インペラ、又はブロワシャフトに接続されたファン、インペラ、又はブロワと、を含み、
該ファン、インペラ、又はブロワは、空気を、
前記エンジン又は前記電気機械の少なくとも一方の構成要素、又は
前記エンジン又は前記電気機械の少なくとも一方の前記構成要素を冷却するように構成された熱交換器又はフィン付きヒートシンクの少なくとも一方を含む冷却素子、に向けて導くように構成され、
前記ファン、インペラ、又はブロワシャフトには、前記動力シャフトから機械的動力が間接的に供給される、
航空宇宙ハイブリッド式パワートレインシステム。
【請求項17】
前記動力シャフトと、前記ファン、インペラ、又はブロワシャフトとがギアボックス、プーリ、又はトルクコンバータによって接続され、それによって前記ファン、インペラ、又はブロワシャフトは前記動力シャフトとは異なる毎分回転数(RPM)で回転できるようになる、請求項16に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項18】
前記ギアボックス、プーリ、又はトルクコンバータを調整して、前記ファン、インペラ、又はブロワシャフトのRPMを第1のRPMと第2のRPMとの間で調整するように構成されたコントローラをさらに含む、請求項17に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項19】
前記エンジンは、ピストンエンジン、ロータリエンジン、ターボシャフトエンジン、ターボプロップエンジン、ターボファンエンジン、又はターボジェットエンジンである、請求項16に記載の航空宇宙ハイブリッド式パワートレインシステム。
【請求項20】
航空宇宙ハイブリッド式パワートレインシステムの冷却を制御するための方法であって、当該方法は、
コンピューティング装置のプロセッサが、前記航空宇宙ハイブリッド式パワートレインシステムの構成要素に関連する温度、或いは周囲温度又は環境温度の少なくとも1つを示すデータを受信するステップと、
前記プロセッサが、前記航空宇宙ハイブリッド式パワートレインシステムの前記構成要素に関連する前記温度、或いは前記周囲温度又は環境温度に基づいて、前記構成要素に望ましい冷却レベルを決定するステップと、
前記プロセッサが、前記望ましい冷却レベルの前記決定に基づいて、前記航空宇宙ハイブリッド式パワートレインシステムの構成要素への空気流を調整するために、空気流制御装置の状態を変更するように構成された制御信号を出力するステップと、を含む、
方法。
【請求項21】
前記航空宇宙ハイブリッド式パワートレインシステムは、
エンジンと、
動力シャフトと、
該動力シャフトを内部に有する又は前記動力シャフトを通過する電気機械であって、航空機を推進するために使用されるように構成された電力を出力するように構成された電気機械と、
前記動力シャフトに接続されたファン、インペラ、又はブロワと、を含み、
該ファン、インペラ、又はブロワは、空気を、
前記エンジン又は前記電気機械の少なくとも一方の構成要素、又は
前記エンジン又は前記電気機械の少なくとも一方の構成要素を冷却するように構成された熱交換器又はフィン付きヒートシンクの少なくとも一方を含む冷却素子、に向けて導くように構成される、請求項20に記載の方法。
【請求項22】
冷却される前記航空宇宙ハイブリッド式パワートレインシステムの構成要素が、エンジンの少なくとも1つのシリンダである、請求項20に記載の方法。
【請求項23】
前記空気流制御装置は、バタフライスロットル、バレルスロットル、又はスライドスロットルを含む、請求項20に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連する特許出願の相互参照
本願は、2021年11月17日に出願した米国仮特許出願第63/280,568号、及び2021年3月19日に出願した米国仮特許出願第63/163,165号の利益を主張するものであり、それぞれの出願の内容全体が参照により全体として本明細書に組み込まれる。
【背景技術】
【0002】
プロペラ、タービン又はジェットエンジン、ロケット、又はラムジェット等、異なる種類の推進機構を使用して推進される様々なタイプの航空機が存在する。異なるタイプの推進機構は、異なる方法で動力を供給され得る。例えば、プロペラ等のいくつかの推進機構は、内燃機関又は電気モータによって動力を供給され得る。そのため、推進機構とそれらの推進機構に動力を供給する方法との組合せは、多くの場合、特定の航空機用に特別に設計されており、それによって推進機構及びそれらの推進機構に動力を供給する方法は、航空機を適切且つ安全に推進するために必要な仕様を満たす。
【発明の概要】
【0003】
一実施形態では、航空宇宙ハイブリッド式パワートレインシステムは、エンジンと、動力シャフトと、動力シャフトを内部に有するか又は動力シャフトを通過する電気機械とを含む。航空宇宙ハイブリッド式パワートレインシステムは、動力シャフトに接続されたファン、インペラ、又はブロワをさらに含み、ファン、インペラ、又はブロワは、エンジン又は電気機械の少なくとも一方の構成要素に向けて空気を導くように構成され得る。ファン、インペラ、又はブロワは、エンジン又は電気機械の少なくとも一方の構成要素を冷却するように配置された熱交換器又はフィン付きヒートシンク等の冷却素子に向けて空気を導くようにさらに構成され得る。
【0004】
一実施形態では、航空宇宙ハイブリッド式パワートレインシステムは、エンジンと、動力シャフトと、動力シャフトを内部に有するか又は動力シャフトを通過する電気機械とを含む。電気機械は、直流(DC)バスに電力を出力するように構成され、DCバス上の電力は航空機を推進するために使用されるように構成される。航空宇宙ハイブリッド式パワートレインシステムは、ファン、インペラ、又はブロワシャフトに接続されたファン、インペラ、又はブロワをさらに含む。ファン、インペラ、又はブロワは、エンジン、電気機械、又はエンジン又は電気機械の少なくとも一方の構成要素を冷却するように構成された熱交換器又はフィン付きヒートシンクの少なくとも一方を含む冷却素子の少なくとも一方の構成要素に向けて空気を導くように構成される。ファン、インペラ、又はブロワシャフトには、動力シャフトから間接的に機械動力が供給される。
【0005】
一実施形態では、航空宇宙ハイブリッド式パワートレインシステムの冷却を制御するための方法は、コンピューティング装置のプロセッサが、航空宇宙ハイブリッド式パワートレインシステムの構成要素に関連する温度、或いは周囲温度又は環境温度の少なくとも1つを示すデータを受信するステップを含む。この方法はさらに、プロセッサが、航空宇宙ハイブリッド式パワートレインシステムの構成要素に関連する温度、或いは周囲温度又は環境温度に基づいて、構成要素に望ましい冷却レベルを決定するステップを含む。この方法はさらに、プロセッサが、望ましい冷却レベルの決定に基づいて、航空宇宙ハイブリッド式パワートレインシステムの構成要素への空気流を調整するために空気流制御装置の状態を変更するように構成された制御信号を出力するステップと、を含む。
【図面の簡単な説明】
【0006】
【
図1A】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの例を示す図である。
【
図1B】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの追加の例を示す図である。
【
図2A】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャとともに使用される第1の航空機制御システムを表すブロック図である。
【
図2B】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャとともに使用するための第2の航空機制御システムを表すブロック図である。
【
図3】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用することができる航空機の第1の例を示す図である。
【
図4】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用することができる航空機の第2の例を示す図である。
【
図5】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用することができる航空機の第3の例を示す図である。
【
図6】例示的な実施形態による、メイン推進プロペラを備えた航空機の異なる飛行段階において航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用するための第1の例示的な方法を示すフローチャートである。
【
図7】例示的な実施形態による、メイン推進プロペラを備えた航空機の異なる飛行段階において航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用するための第2の例示的な方法を示すフローチャートである。
【
図8A】例示的な実施形態によるフライホイールを有する航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの例を示す図である。
【
図8B】例示的な実施形態による、フライホイール及びばね連結器を有する航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの例を示す図である。
【
図9】例示的な実施形態による、ハイブリッド式発電装置の冷却システムの例の概略図である。
【
図10】例示的な実施形態による、冷却システムを備えたハイブリッド式発電装置の例を示す図である。
【
図11】例示的な実施形態による、
図10の冷却システムを備えたハイブリッド式発電装置の例の断面図である。
【
図12】例示的な実施形態による、
図10の冷却システムを備えたハイブリッド式発電装置の例の部分断面斜視図である。
【
図13】例示的な実施形態による、ハイブリッド式発電装置の冷却システムの第2の例の概略図である。
【
図14】例示的な実施形態による、ハイブリッド式発電装置の冷却システムの第3の例の概略図である。
【
図15】例示的な実施形態による、ハイブリッド式発電装置の冷却システムの第4の例の概略図である。
【
図16】例示的な実施形態による、ハイブリッド式発電装置の冷却システムの第5の例の概略図である。
【
図17】例示的な実施形態による、冷却システムを備えたハイブリッド式発電装置の例の上面図である。
【
図18】例示的な実施形態による、
図17のA-A線に沿った断面図であり、
図17のハイブリッド式発電装置の例を示す。
【
図19】例示的な実施形態による、
図18のB-B線に沿った断面図であり、
図17のハイブリッド式発電装置の例を示す。
【
図20】例示的な実施形態による、
図17のハイブリッド式発電装置の例の代替図であり、エンジンの冷却フィンの詳細を示す。
【
図21】例示的な実施形態による、冷却システムを備えた
図17のハイブリッド式発電装置の例の側面図である。
【
図22】例示的な実施形態による、冷却システムを制御するための例示的な方法を示すフローチャートである。
【
図23】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの例の斜視図である。
【
図24】例示的な実施形態による、
図23の柔軟なアーキテクチャの例の上面図である。
【
図25】例示的な実施形態による、
図23の柔軟なアーキテクチャの例の側面図である。
【
図26】例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの別の例の斜視図である。
【
図27】例示的な実施形態による、航空機を推進するための下流側部品及び上流側部品の例を示す図である。
【
図28A】例示的な実施形態による、冷却システムのダクト構造の断面を含む冷却システムの一部を示す図である。
【
図28B】例示的な実施形態による、冷却システムのダクト構造の断面を含む冷却システムの一部を示す図である。
【
図28C】例示的な実施形態による、冷却システムのダクト構造の断面を含む冷却システムの一部を示す図である。
【
図29A】例示的な実施形態による、冷却システムのダクト構造の追加の詳細を含む、冷却システムの追加の部分を示す図である。
【
図29B】例示的な実施形態による、冷却システムのダクト構造の追加の詳細を含む、冷却システムの追加の部分を示す図である。
【
図30】例示的な実施形態による、コンピューティング環境の例の線図である。
【発明を実施するための形態】
【0007】
航空機は、典型的に、カスタム設計した推進機構と、それらの推進機構に動力を供給する方法とを有する。このようにして、推進機構とそれらの推進機構に供給される動力を最適化して、航空機内の構成要素の重量を最小限に抑えながら、特定のタイプ及びサイズの航空機に必要な推進量を供給することができる。換言すれば、推進機構とそれらの推進機構の動力とは、多くの場合、特定のタイプ及びサイズの航空機に合わせて最適化されるため、ある航空機の構成要素を、直接駆動航空機、並列駆動航空機、及び直列駆動航空機等の異なるタイプの航空機駆動アーキテクチャで容易に使用することはできない。
【0008】
本明細書では、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャ及びその最適化した構成要素の様々な実施形態について説明する。ハイブリッドシステムは、燃料がピストン、タービン、ロータリ、又は他のエンジン内で燃焼され、エンジンの出力を発電機に動作可能に接続して電力を出力するシステムであってもよく、又はこのシステムを含んでもよい。本明細書で説明する実施形態は、多くの異なるタイプの航空機及び推進機構に動力を供給できる柔軟なシステムを含むことができる。このようなシステムは、有利には、異なるタイプの航空機の設計の複雑さを軽減し、カスタマイズが少ないことでシステムの量産における規模の経済性が可能になるため、そのようなシステムの製造コストを削減し、最終的には、本明細書で説明するシステムを使用する航空機の複雑さを軽減することができる。
【0009】
本明細書で説明する柔軟なアーキテクチャは、同じ航空機内又は異なる航空機内で、異なる方法で推進機構に動力を供給するためにさらに使用され得る。例えば、推進機構に動力を供給するための柔軟なアーキテクチャは、複数の異なるモードで動作して、異なるタイプの推進機構に動力を供給することができ得る。第1の航空機は、柔軟なアーキテクチャが動作できる複数の異なるモードのうちの1つ、一部、又は全てを利用することができる。第2の航空機は、複数の異なるモードのうちの1つ、一部、又は全てを利用することができ、第2の航空機が利用するモードは、第1の航空機が利用するモードとは異なる場合がある。
【0010】
従って、異なる航空機は、本明細書で説明する柔軟なアーキテクチャによって提供される推進機構に動力を供給する異なるモードを利用することができる。柔軟なアーキテクチャの使用はこのようにカスタマイズすることができるが、柔軟なアーキテクチャの物理的ハードウェアは、本明細書で説明する柔軟なアーキテクチャの物理的構成要素に最小限の変更を加えるか全く変更せずに、異なる航空機による使用に適合させることができる。代わりに、異なる航空機での異なるモードの使用は、主に、プロセッサ又はコントローラを使用して柔軟なアーキテクチャの構成要素をどの様に制御するかに基づいて達成され得る。従って、コンピュータ可読命令は、プロセッサ又はコントローラに動作可能に結合したメモリに格納してもよく、それによって、命令がプロセッサ又はコントローラによって実行されると、プロセッサ又はコントローラを含むコンピューティング装置が、本明細書で説明する柔軟なアーキテクチャの様々な構成要素を制御して、特定の実施態様、航空機、飛行段階等に望ましいあらゆる可能な使用モードを利用することができる。
【0011】
航空機のための発電及び推進システムはまた、航空機の様々な構成要素が動作のために安全な温度に保たれることを保証するため、並びに構成要素がより効率的に動作できる温度範囲内に構成要素を維持することを保証するために、様々な冷却システムを利用することもできる。さらに、本明細書では、航空機の推進機構に動力を供給するための柔軟なアーキテクチャの構成要素を効率的に冷却するために、本明細書で説明するハイブリッド式アーキテクチャの様々な態様を利用する有利な冷却システムについて説明する。
【0012】
異なるモードの動力を推進機構に供給するためのハードウェアを有する航空機は、冷却を与えることが望ましい様々な構成要素を有している可能性がある。こうして、異なる動力モードを可能にする様々な構成要素に空気を効率的に移動させる単一の冷却システムは、航空機の重量だけでなく、冷却システムの消費電力も削減することができる。
図1~
図8及びそれに付随する以下の説明は、特に、航空機の推進システムに動力を供給するための柔軟なアーキテクチャの例に関する。
図9~
図21及びそれに付随する以下の説明は、柔軟なアーキテクチャの例のための冷却システムの様々な実施形態に関する。
【0013】
図1Aは、例示的な実施形態による航空宇宙ハイブリッドシステムの柔軟なアーキテクチャ101の例を示す。本明細書で議論するように、柔軟なアーキテクチャ100は、航空機の要件及び飛行段階に応じて複数の方法で適用できる(例えば、異なるモードで使用される)単一のハイブリッド式発電機システムを備えた幅広い用途で効率的に使用することができる。
【0014】
図1Aの柔軟なアーキテクチャ100は、エンジン105、クラッチ115、発電機/モータ(電動機)121、及び動力シャフト111を含むハイブリッド式発電機である。以下でさらに説明するように、柔軟なアーキテクチャ100は、必要に応じて、特定の航空機の設置要件又は特定の飛行段階に応じて、様々な異なるモードを実現するために使用することができる。エンジン105は、内燃機関等の燃焼機関であってもよい。エンジン105はさらに具体的には、ピストン内燃機関、ロータリエンジン、又はタービンエンジンのうちの1つであってもよい。このようなエンジンは、標準的なガソリン、ジェット燃料(例えば、Jet A、Jet A-1、Jet B燃料)、ディーゼル燃料、灯油、ガソリン、水素、バイオ燃料、合成燃料代替品(例えば、バイオ燃料代替品)等を使用することができる。様々な実施形態では、ドローンの実施態様の小型エンジン(Rotaxガソリンエンジン等)他のタイプのエンジンも使用することができる。
【0015】
上述したように、エンジン105はピストン、ロータリ、又はタービン燃焼エンジンであってもよい。ピストン燃焼機関は、他のエンジンよりも発電機及び/又は推進機構(例えば、プロペラ)に動力を供給するための直接出力にとってより望ましい毎分回転数(RPM)で出力ロータ又はシャフトを有利に回転させることができる。例えば、ピストン燃焼機関は、数千RPM程度の出力を有する場合もある。例えば、ピストン燃焼機関の出力は2200~2500RPMの範囲にあり得、これはプロペラにとって望ましいRPMとなり得る。特に、プロペラは、ピストン燃焼機関のRPM出力(例えば、2200~2500RPM)に基づいて、プロペラの所望の翼端速度をもたらすサイズを有するように設計され得る。タービンエンジン等の他のタイプのエンジンは、ピストン燃焼機関よりもはるかに高い、数万RPM程度の回転パワーを出力する場合がある。例えば、ターボジェット、ターボプロップ、及び/又はターボファンエンジンは、同様のRPMでシャフト出力を供給することができるが、ピストンエンジンよりも高いRPM、例えば5000~30,000RPMのいずれかであり得る。別の例では、ターボシャフトエンジン等のギアボックスを備えたタービンエンジンは、エンジンの出力RPMを段階的に増減できるギアボックスの柔軟性により、ピストンエンジンと同様のRPM又は他の望ましいRPM範囲で動作する場合もある。他の実施形態は、効率、動力出力(power output)、又は他の重要な因子に利益をもたらすために、タービン又はロータリエンジンのより高いRPMでモータ/発電機を駆動することができる。いくつかの実施形態では、高RPMエンジンの出力と
図1Aの他の構成要素との間にギアボックスを追加して、エンジン105の出力RPMを下げることができる。しかしながら、ギアボックスの追加は、システムの重量を増大させる可能性もある。ピストン燃焼機関は、タービンエンジンと比較して、騒音の発生が少ない可能性がある。タービンエンジンはピストン燃焼機関よりも音が大きく、及び/又はピストン燃焼機関とは異なる(例えば、より高い)周波数の騒音を発生する可能性があり、人間が知覚するタービンエンジンからのそのような騒音は、ピストン燃焼機関によって発生する騒音よりも聴取者にとって不快である。騒音の低減が望まれる都市部又は密集環境では、より静かなエンジンの価値がより高まる場合もある。ピストンエンジンはタービンエンジンよりも燃料効率がよい場合もあり、そのため、所与の実施形態において燃料効率が望ましい場合に、どのタイプのエンジンを使用するかを決定する際にその効率を考慮することができる。
【0016】
エンジン105は、クラッチ115に回転動力を出力することができ、クラッチ115は、動力シャフト111を係合又は係合解除するように制御され得る。換言すれば、動力シャフト111は、クラッチ115によってエンジン105の回転出力と係合され得、それによって、トルク/回転力がエンジン105の出力と動力シャフト111との間で伝達され得る。クラッチ115をエンジン105の出力と動力シャフト111とから係合解除すると、動力シャフト111はエンジン105の出力とは独立して回転することができる。クラッチ115は、エンジン105と発電機/モータ121との間に物理的に配置することができ、柔軟なアーキテクチャの全体的な設置面積を減らすために、エンジン105及び発電機/モータ121の反対側に接触することさえできる。
図1Aにおいて、クラッチ115が本明細書でさらに説明され、他の図に示される。しかしながら、様々な実施形態では、エンジン105と動力シャフト111とを解放可能に結合解除することができる任意の機構を、クラッチに加えて、又はクラッチに代えて使用することができる。例えば、この結合解除は、オーバーランニングクラッチ等における、エンジン105の出力と動力シャフト111との間の絶対回転数(RPM)又は相対RPMに基づくことができる。様々な実施形態において、本明細書で(例えば、
図8Bに関して)説明するように、クラッチを使用しなくてもよい。代わりに、中実シャフトを使用してもよく、そのような実施形態は、エンジン105の出力から動力シャフト111に動力を伝達するために、ばね連結器、フライホイール、及び/又はトルクコンバータ(例えば、流体トルクコンバータ)を使用してもよい。
【0017】
発電機/モータ121は、動力シャフト111と係合する、又は動力シャフト111との係合を解除することもできる。換言すれば、発電機/モータ121は、動力シャフト111の回転によって発電機/モータ121が電力を発生させないように、スイッチオフにするように制御してもよい。同様に、発電機/モータ121は、動力シャフトの回転によって発電機/モータ121が電力を発生させるように、スイッチオンにするように制御してもよい。発電機/モータ121は、発電機としてもモータとしても機能し得るため、発電機/モータと呼ばれる。様々な実施形態では、発電機/モータ121は電気機械と呼ばれ得、電気機械は、発電機、電気モータ、又はその両方であり得る。
【0018】
柔軟なアーキテクチャは、発電機/モータ121に接続された電力入出力(I/O)125をさらに含む。本明細書でさらに説明するように、発電機/モータ121は、電力I/O125を介して出力される動力シャフト111の回転に基づいて電力を生成してもよく、又は動力シャフト111を駆動するために使用され得る電力を電力I/O125を介して受け取ってもよい。電力I/O125の配線は複数のワイヤを含んでもよい。様々な実施形態では、発電機/モータ121に電力を入力するための配線は、発電機/モータ121から電力を出力するために使用される配線と同じであってもよい。他の様々な実施形態では、第1の配線は電力の入力のために使用してもよく、異なる第2の配線は電力の出力のために使用してもよい(入力用及び出力用に異なる配線を使用する)。様々な実施形態では、発電機/モータ121はまた、発電機/モータ121の制御に使用され、発電機/モータ121の動作に関するセンサ又は他のデータをコントローラ等に中継するために接続される配線を有してもよい。
【0019】
発電機/モータ121は、動力シャフト111のドライバとしても機能することができる。システム内の他の場所にあるバッテリ又は何らかの他の形態の電気エネルギ蓄積装置から電力I/O125を介して電力を受け取ると、発電機/モータ121は、動力シャフト111に回転力を与えて、動力シャフト111を駆動することができる。これは、発電機/モータ121が動力シャフト111と係合するようにスイッチオンにされるように制御されている限り起こり得る。発電機/モータ121が動力シャフト111と係合しないようにスイッチオフにされるように制御されると、動力シャフト111は、発電機/モータ121によって回転されなくなり得る。
【0020】
電力I/O125からの電力出力は、電気推進機構(例えば、プロペラ)のための電気モータを駆動するために使用され得る。電力I/O125からの電力出力は、航空機又は航空宇宙機上の他の装置に電力を供給及び/又は充電するために使用することもできる。例えば、電力I/O125から出力される電力は、1つ又は複数のバッテリを充電するために使用され得る。電力I/O125からの電力出力は、航空機又は航空宇宙機上の他の装置又はアクセサリに電力を供給するために使用することもできる。電力I/O125も入力を有するため、動力シャフト111は、1つ又は複数のバッテリからの電力等、電力I/O125を介して受け取られる任意の電力によって駆動され得る。発電機/モータ121によって生成される電力は、交流(AC)電力であってもよい。そのAC電力は、パワーエレクトロニクス(例えば、整流器又はインバータ)によって直流(DC)電力に変換され、DCバスに出力され得る。このDCバスは、バッテリ及び/又は電気推進機構に接続され得る。このようにして、電気推進機構にDCバスを介して電力を供給することができる。様々な実施形態では、電気推進機構のモータはAC電力を使用することができ、従って、DCバスからのDC電力は、電気推進機構(例えば、インバータ)によって使用される前に、DC電力からAC電力に変換され得る。
【0021】
動力シャフト111自体の任意の回転は、エンジン105によって駆動されるか又は発電機/モータ121によって駆動されるかにかかわらず、1つ又は複数の推進機構を駆動するために使用することもできる。例えば、動力シャフト111の回転は、プロペラを直接駆動するために使用してもよく、又は推進機構を駆動する電気モータに電力を供給するために使用してもよい。動力シャフト111の回転はまた、航空機の様々な用途のための1つ又は複数のプロペラ、1つ又は複数のロータ、又は他の回転装置等の別の構成要素に動作可能に接続されたギアボックスを駆動することもできる。
【0022】
アクセサリパッド130は、エンジン105に結合することもでき、高電圧及び高電力I/Oのために構成され得る発電機/モータ121及び電力I/O125とは別個の電力用の低電圧直流(DC)発電機を含むことができる。いくつかの実施形態では、発電機/モータ121は2つの異なる巻線を有してもよく、電力I/O125は2つの異なる出力(例えば、高電圧及び低電圧)を有してもよい。アクセサリ電源は、アクセサリパッド130の出力に加えて、又はアクセサリパッド130の出力の代わりに、電力I/O125の出力のうちの1つに関連付けることができる。アクセサリパッド130は、電力I/O125において発電機/モータ121によって出力され得る高電圧又は電流出力を必要としない航空機又は航空宇宙機上の装置又はアクセサリに電力を供給するために使用され得る。航空機の電圧(HV)は、例えば400ボルト(V)、800V、1200V、又は3000Vであり得るが、様々な実施形態では50V~3000Vの間のいずれかになることもあり得る。航空機の低電圧(LV)は、12V、14V、28V、又は50V未満の他の電圧であってもよい。
【0023】
図1Bは、例示的な実施形態による航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャ150の追加の例を示す。特に、
図1Bの柔軟なアーキテクチャ150は、
図1Aに関して上述した構成要素と同一又は類似であり得るいくつかの構成要素を含み、柔軟なアーキテクチャ150は、エンジン155、クラッチ175、動力シャフト180、及び/又は発電機/モータ185を含む。柔軟なアーキテクチャ150は、クランクシャフト160の形態でエンジン155の出力をさらに示し、クランクシャフト160は、出力フランジ165に堅固に接続される。出力フランジ165は、ボルト170を用いてクラッチ175の片側に堅固に接続される。
【0024】
クラッチ175は、動力シャフト180と係合して、クランクシャフト160及び出力フランジ165から動力シャフト180に回転運動を移すように構成され得る。クラッチ175はさらに、動力シャフト180から係合を解除するように構成され得、それによって、動力シャフト180は、クランクシャフト160及び出力フランジ165に対して独立して回転することができる。さらに、
図1Bは、どの様にして柔軟なアーキテクチャ150の回転可能な構成要素全てを単一の軸線190に沿って整列させるかを示している。
図1Aの回転可能な構成要素は、
図1Bに示されるように、同様に単一の軸線に沿って同様に整列され得る。さらに、動力シャフト180は、クラッチ175及び発電機/モータ185の内径開口部に嵌合するスプラインシャフトであってもよい。テーパ等、スプライン以外の他の特徴を使用してもよい。いずれの場合でも、発電機/モータ185及び/又はクラッチ175は、構成要素が互いに適切に係合できるように、動力シャフト180上のスプライン、テーパ、又は他の特徴に適合して接続するように構成され得る。
【0025】
様々な実施形態では、クラッチ175は、エンジン155の出力から動力シャフト180を結合解除することができる、異なるタイプのクラッチ又は他の機構であってもよい。例えば、クラッチ175は、プレート式クラッチであってもよく、また、乾式又は湿式クラッチであってもよい。このようなプレート式クラッチは、機械的、油圧的、及び/又は電気的に(例えば、
図2A及び
図2Bのコントローラ205、220、及び/又は280によって)係合/係合解除され、又はそうでなければ制御され得る。プレート式クラッチには、3枚、5枚、又は10枚のプレート等、様々な数のプレートがある場合もある。様々な実施形態では、クラッチ175又は本明細書で説明する他のクラッチは、一方向クラッチ、オーバーランニング(overrunning)クラッチ、又はスプラグ(sprag)クラッチであってもよい。一方向クラッチ又はスプラグクラッチは、電気機械がエンジンの出力よりも速く動力シャフトを回転させている間に、エンジンの出力を動力シャフトから係合解除する(disengage:切り離す)ように構成され得る。換言すれば、エンジン155が発電機/モータ185よりも小さい動力を動力シャフト180に出力している場合に、クラッチ175は、例えばその係合解除を達成するために使用されるいかなる電気制御入力もなしに、エンジン155の出力を動力シャフト180から自動的に機械的に係合解除することができる。エンジン155がより高いRPMを有するか、又は発電機/モータ185よりも多くの動力を出力すると、一方向クラッチ又はスプラグクラッチが係合するため、動力がエンジン155の出力から動力シャフト180に加えられる。使用できる別のタイプのクラッチは遠心クラッチであり、RPMが増加するにつれて、クラッチのプレートの重みによって1つ又は複数のレバーが徐々に作動し、遠心クラッチのプレートが圧迫され、プレートが係合して、例えばエンジン155の出力及び動力シャフト180が接続される。
【0026】
有利には、
図1Aの発電機/モータ121及び/又は発電機/モータ185は、それぞれエンジン105又はエンジン155のスタータとして使用され得る。換言すれば、エンジン155を始動するためにクラッチ175が係合される間に、発電機/モータ185を使用してクランクシャフト160を回転させることができる。このようなシステムは、例えば発電機/モータ185にバッテリ又は他の電源によって電力を供給できる場合に有利となり得る。従って、エンジン155は、本明細書で説明するピストン、ロータリ、タービン燃焼機関であってもよく、別個のスタータ構成要素を必要とせず、本明細書で説明する柔軟なアーキテクチャの重量及び複雑さを軽減することができる。
【0027】
図2Aは、例示的な実施形態による、航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャ201とともに使用される航空機制御システム200を表すブロック図を示す。航空機制御システム200は、例えば、本明細書で説明する柔軟なアーキテクチャを使用することができる、以下で議論する様々なモードのうちの1つ又は複数を実現するために使用され得る。柔軟なアーキテクチャ201は、
図1A及び/又は
図1Bの柔軟なアーキテクチャ101及び/又は150の構成要素と同じ、類似であってもよく、又はそれらの構成要素の一部又は全てを有することができる。航空機制御システム200は、1つ又は複数のプロセッサ又はコントローラ205(以下、コントローラ205と呼ぶ)、メモリ210、航空機メインコントローラ220、エンジン230、発電機/モータ235、クラッチ240、電力I/O245、アクセサリパッド250、及び1つ又は複数のセンサ260を含むことができる。
図2Aの接続は、航空機制御システム200の構成要素同士の間の制御信号関連の接続を示している。
図2Aに示されない他の接続は、航空機の高電圧(HV)又は低電圧(LV)電力等の電力を供給するために、航空機及び/又は航空機制御システム200の異なる態様の間に存在し得る。
【0028】
メモリ210は、命令を記憶するように構成されたコンピュータ可読媒体であってもよい。このような命令は、本明細書の柔軟なアーキテクチャを使用する様々なモード及びこれらのモードの組合せを含む、本明細書で説明する様々な方法及びシステムを実現するためにコントローラ205によって実行されるコンピュータ実行可能コードであってもよい。コンピュータコードは、本明細書の柔軟なアーキテクチャの異なるモードを実現する様々な方法が、例えば、特定の飛行段階(例えば、着陸、離陸、巡航等)を示す様々な入力に基づいて自動的に実施されるように記述され得る。様々な実施形態では、コンピュータコードは、航空機又は航空宇宙機のユーザ又はパイロットからの入力に基づいて、本明細書の様々なモードを実現するように記述してもよく、又はユーザ入力と非人的入力(例えば、計画した飛行計画等に基づいて、航空機上又は航空機外のセンサから)に基づく自動実施との組合せに基づいて実現してもよい。コントローラ205は、アクセサリパッド130、1つ又は複数のバッテリ、電力I/O125の出力、任意の電源によって電力供給される航空機の電力バス、及び/又は利用可能な任意の他の電源等の、航空機又は航空宇宙機上の電源によって電力を供給され得る。
【0029】
コントローラ205は、エンジン230、発電機/モータ235、クラッチ240、電力I/O245、アクセサリパッド250、及び/又はセンサ260のそれぞれと通信することもできる。このようにして、柔軟なアーキテクチャの構成要素を制御して、本明細書で説明する様々なモードを実現することができる。様々な実施形態では、エンジン230、発電機/モータ235、クラッチ240、電力I/O245、及びアクセサリパッド250は、
図1Aに示し、
図1Aに関して上述した同様の名前の構成要素と同様であってもよく、又は同様の名前が付いた構成要素であってもよい。電力I/O245はまた、例えば、本明細書で説明する直流(DC)バスを含む柔軟なアーキテクチャの電気部品を起動時の過剰な突入電流から保護するための、プリチャージ電子部品を含んでもよい。例えば、高電圧(HV)バスが400Vであり、新しい構成要素が0VのHVバスに接続される場合に、瞬間的な突入電流が非常に大きくなり、HVバス及び/又は構成要素に損傷を与える可能性がある。その結果、プリチャージ電子部品は、HVバス又は他の電源に完全に接続する前に、構成要素の電圧をゆっくりと上昇させることができる。様々な実施形態において、HVバスは、DCバス又はACバスであってもよく、或いはDCバス又はACバスのいずれかである複数のバスが存在してもよい。ACバスが使用される場合に、AC電力はモータ/発電機からACバスに直接出力され得る。DCバスが使用される場合に、インバータを使用してモータ/発電機からのAC電力をDC電力に変換し、DCバスに出力することができる。
【0030】
センサ260は、柔軟なアーキテクチャ201の異なる構成要素を監視するための様々なセンサを含むことができる。そのようなセンサには、例えばクラッチ250の現在の状態を決定するために、温度センサ、タコメータ、流体圧力センサ、電圧センサ、電流センサ、状態センサ、又は他のタイプのセンサが含まれ得る。例えば、電圧及び/又は電流センサは、モータ/発電機の機能及び設定、クラッチに選択された状態を知らせる、又はシステムの他の構成要素を調整するために使用され得る。状態センサは、柔軟なアーキテクチャが使用されている特定のモードを示すこともでき、システムは(例えば、パイロットから、自動飛行制御装置から)入力を受け取って、システムを今後の特定の飛行段階のための異なる状態又はモードに変更することができる。他のセンサには、航空機の対気速度を測定するためのピトー管、航空機の高度を測定するための高度計、及び/又は地上及び/又は既知の/マッピングされた構造物に対する位置を決定するための全地球測位システム(GPS)又は同様の地理的位置センサが含まれ得る。
【0031】
図2Aの柔軟なアーキテクチャ201の破線内の構成要素は、本明細書で説明する柔軟なアーキテクチャに関連付けられ得る一方、航空機メインコントローラ220は、より広範な航空機システムに関連付けられ得る。換言すれば、航空機メインコントローラ220は、柔軟なアーキテクチャ201以外の航空機の態様を制御することができる一方、コントローラ205は、柔軟なアーキテクチャ201に関連する航空機の態様を制御することができる。航空機メインコントローラ220及びコントローラ205は、互いに通信して、航空機の様々な推進機構に動力を供給するように調整することができる。例えば、航空機メインコントローラ220は、1つ又は複数の特定の推進機構に対する特定の動力出力レベルを要求する信号を制御装置205に送信することができる。コントローラ205は、そのような制御信号を受信し、航空機メインコントローラ220からの制御信号に基づいて所望の動力レベルを出力するために柔軟なアーキテクチャ201をどの様に調整するか(例えば、どのモードに入るか、柔軟なアーキテクチャ201の要素をどの様に制御するか)を決定することができる。様々な実施形態では、航空機メインコントローラ220は、柔軟なアーキテクチャ201の特定の態様の制御に関連する信号を送信することができる。換言すると、コントローラ205は、所望の動力出力信号をコントローラ205に送信することに加えて、又はその代わりに、航空機メインコントローラ220からの制御信号を柔軟なアーキテクチャ201の構成要素に再送信するための中継器として機能することができ、コントローラ205は、その制御信号から柔軟なアーキテクチャ201の個々の構成要素をどの様に制御するかを決定する。
【0032】
様々な実施形態では、航空機メインコントローラ220は、将来の所望の動力出力、将来の飛行段階又は飛行計画情報等に関連する制御信号を送信することもできる。このようにして、コントローラ205は、航空機の予想される動力要求に関する情報を受信してこれを使用して、現時点と将来との両方で柔軟なアーキテクチャ201の態様をどの様に制御するかを決定するすることができる。例えば、飛行計画情報は、いつバッテリ電力を使用すべきか、いつバッテリを充電すべきか等を決定するために使用され得る。別の例では、大きな電力需要が予想される場合に、コントローラ205は、エンジン230が所望のRPMで動作しており、エンジンがどの位の量の燃料を使用するか(例えば、ディーゼルピストン、ディーゼルロータリ、又はタービンエンジンが使用される場合)及び/又はエンジンがどの位の量の空気を使用するか(例えば、ガソリンピストンエンジンが使用される場合)によってエンジン出力を制御することによって所望のレベルの動力の伝達を開始するのを保証し得る。
【0033】
様々な実施形態では、コントローラ205はまた、1つ又は複数のバッテリと通信して、それらの充電レベルを監視し、バッテリをいつ充電又は放電するかを制御し、バッテリをいつ使用して発電機/モータ235に電力を供給するかを制御し、バッテリをいつ使用して航空機の別の態様に直接電力を供給するかを制御することもできる。しかしながら、他の実施形態では、航空機メインコントローラ220は、航空機のバッテリと通信することができ、及び/又はバッテリ及びその制御に関する情報をコントローラ205に中継することができる。同様に、航空機のバッテリがコントローラ205ではなく航空機メインコントローラ220を用いて制御される場合に、コントローラ205は、バッテリが柔軟なアーキテクチャ201の機能に関して必要又は所望に応じて制御され得るように、バッテリに関連する制御信号を航空機メインコントローラに送信することができる。バッテリの制御は、バッテリコントローラとの通信を通じて達成され得る。バッテリの制御は、追加的又は代替的に、バッテリが接続されるバスの電圧、並びにバッテリエネルギ蓄積システム(例えば、バッテリのバンク及び/又はバッテリコントローラ)に流入及び/又は流出する電流を監視することによって達成され得る。例えば、制御システム(例えば、コントローラ/プロセッサ)は、測定したバス電圧及び/又はバッテリに流入及び/又は流出する電流に基づいて、エンジン制御、モータ/発電機制御、及び/又は安全性、信頼性、エネルギ効率の高い動作に必要な他の特徴について有利な決定を下すことができる。
【0034】
様々な実施形態では、電力I/O245は、発電機/モータ235の2つの異なる巻線に関連付けられた2つの異なる出力(例えば、高電圧(HV)出力及び低電圧(LV)出力)を含み得る。こうして、2つの異なる電圧(例えば、HV及びLV)が、出力され、コントローラ205及び/又は航空機メインコントローラ220によって制御され得る。電力I/O245は、追加的に又は代替的に、2つ以上の異なる電圧を出力できるように電圧変換部品(例えば、DC/DCコンバータ)を有することができる。このような実施形態では、2つの別個の巻線を使用することなく、2つの異なる出力を達成することができる。2つの異なる出力は、例えば、HVバス及びLVバス等、航空機の異なる電力バスに出力される場合がある。電力I/O245の2つの出力は、コントローラ205によって個別に制御することもできる。そのため、(例えば、モータ/発電機の界磁電流をオフにすることで、発電機の動力シャフト及びロータをモータ/発電機の残りの部分に対して回転又はフリーホイール(freewheel:自由回転)させることによって)出力をオフにすることができる。様々な実施形態では、動力シャフトは、発電機/モータ235内で実際にフリーホイールしていなくてもよい。代わりに、ステータが静止したままで、動力シャフトがモータ/発電機235のロータを回転させてもよいが、コントローラ205を使用して、モータ/発電機235によって実際に出力される電力が殆どない又は全くないように、出力を制御することができる。様々な実施形態では、コントローラ205は、動力シャフトによって残りの動力を(例えば、推進機構に)出力している間に、モータ/発電機235から所望のレベル又は閾値レベルの電力を出力するようにモータ/発電機235を制御することができる。例えば、コントローラ205は、エンジンから動力シャフトに出力される動力の0%~100%までを電力として生成するようにモータ/発電機235を制御することができる。例えば、コントローラ205は、モータ/発電機235に、動力シャフトからの動力の0%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%、又は100%を電力として発生させてもよい。
【0035】
いくつかの実施形態では、アクセサリパッドは、コントローラ205及び/又は航空機メインコントローラ220によって制御しなくてもよい。アクセサリパッドは、航空機のアクセサリに電力を供給するためにエンジン230が動作しているときにオンであってもよい。
【0036】
いくつかの実施形態では、コントローラ205は、航空機又は航空宇宙機に搭載され得る無線トランシーバと通信することができ、それによって、コントローラ205は、システム200に配線接続されていない他のコンピューティング装置と通信することができる。このようにして、本明細書で説明する柔軟なアーキテクチャの様々なモードを実現するための命令又は入力を、リモート装置コンピューティング装置から無線で受信することもできる。他の実施形態では、システム200は、航空機に搭載された構成要素とのみ通信することができる。
【0037】
コントローラ205はさらに、柔軟なアーキテクチャ201の冷却システム285の1つ又は複数の態様に接続してもよい。例えば、冷却システム285は、1つ又は複数のバルブ又は他の構成要素を含んでおり、どの構成要素が冷却を必要とするか、又は冷却を必要としないかに基づいて、柔軟なアーキテクチャ201の様々な構成要素に向けてどの位の空気量を導くかを制限又は制御することができる。冷却システム285はまた、冷却システムのブロワ又はファンの回転速度を調整するためのギアボックス又は他の構成要素を含んでもよく、それによりさらに冷却システムの制御が可能になる。そのため、コントローラ205及び/又はコントローラ220は、冷却システム285の1つ又は複数の態様を制御して、柔軟なアーキテクチャ201の様々な構成要素の冷却を制御することができる。冷却システム285は、
図9~
図21のいずれかに関するものを含め、本明細書で説明する冷却システムの様々な構成要素であってもよく、又はその構成要素を含んでもよい。
図22は、冷却システムの構成要素(例えば、冷却システム285)の冷却空気流を調整するために、冷却システムの態様をどのように制御することができるかについての例示的な方法をさらに含む。
【0038】
図2Bは、例示的な実施形態による、航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャとともに使用される第2の航空機制御システム275を表すブロック図を示す。
図2Bの例では、システム275は、
図2Aのような別個の航空機メインコントローラを有していない。その代わりに、航空機全体は、柔軟なアーキテクチャ及び航空機(例えば、航空機の推進機構255を含む)の全ての態様を制御する単一のメインコントローラ280を有する。
【0039】
コントローラ280は、航空機上の1つ又は複数の推進機構255と通信して、それら推進機構255を制御することができる。コントローラ280は、航空機又は航空宇宙機上の1つ又は複数のセンサ270と通信することもでき、これらのセンサは、航空機のセンサ及び柔軟なアーキテクチャのセンサであってもよい。特に、センサ260は、上述した
図1A及び/又は
図1Bの構成要素のいずれかに埋め込むこともでき、従って、
図1A及び/又は
図1Bの装置がどの様に制御されるか、及び/又は本明細書で説明するモードがどの様に本明細書で説明するように実現されるかを知らせるために使用することができる。
【0040】
図2A又は
図2Bのいずれにおいても、コントローラ205、コントローラ280、及び/又は航空機メインコントローラ220は、柔軟なアーキテクチャの任意の構成要素、1つ又は複数のバッテリ、又は航空機の他の態様を冷却及び/又は加熱するように構成された冷却システムと通信することもできる。そのため、冷却システムは、本明細書で説明する他のシステム及び方法と連携して制御することもできる。
【0041】
本明細書で説明する柔軟なアーキテクチャ(例えば、
図1A、
図1B、
図2A、及び
図2Bに示され、それらに関して説明した柔軟なアーキテクチャを含む)の様々な実施形態を使用して実現され得る5つの特定のモードについて以下に説明する。
【0042】
本明細書ではハイブリッド式発電機モードと呼ばれ得る第1のモードにおいて、クラッチ(例えば、
図1Aのクラッチ115及び/又は
図1Bのクラッチ175)は、エンジン(例えば、
図1Aのエンジン105及び/又は
図1Bのエンジン155)を、クラッチと発電機/モータ(例えば、
図1Aの発電機/モータ121及び/又は
図1Bの発電機/モータ185)との間に延びる動力シャフト(例えば、
図1Aの動力シャフト111及び/又はクラッチ出力/動力シャフト180)に係合するように制御され得、それによって、エンジンが発電機/モータ内の動力シャフトを回転させて、電力I/O(例えば、
図1Aの電力I/O125)を介して、推進機構/システム等の航空機上の他のシステムに供給される電力を生成する。例えば、そのような推進機構/システムは、電気モータを使用して電力を供給され得、第1のモードにおいて発電機/モータによって出力された電力は、そのような推進機構/システムを駆動するために使用され得る。つまり、第1のモードでは、クラッチを用いてエンジンを動力シャフトに係合させて発電機/モータを駆動し、発電機/モータから電力を出力することができる。様々な実施形態では、第1のモードは、クラッチを有さないシステム(例えば、
図8Bのシステム)を用いて実現され得る。
【0043】
本明細書では直接駆動エンジンモードと呼ばれ得る第2のモードでは、クラッチ(例えば、
図1Aのクラッチ115及び/又は
図1Bのクラッチ175)は、エンジン(例えば、
図1Aのエンジン105及び/又は
図1Bのエンジン155)出力を、発電機/モータ(例えば、
図1Aの発電機/モータ121及び/又は
図1Bの発電機モータ185)を通って延びる動力シャフト(例えば、
図1Aの動力シャフト111及び/又はクラッチ出力/動力シャフト180)に係合して、航空機のプロペラのような推進機構に機械的動力を供給することができる。このようなモードでは、発電機/モータの動力シャフト及びロータが回転又はフリーホイーリングし、従って、発電機/モータの電力I/O(例えば、
図1Aの電力I/O125)が係合解除され、電力を出力しないように、発電機/モータから磁場を除去してもよい(例えば、発電機/モータがオフ又は係合解除されるように制御してもよい)。つまり、第2のモードでは、エンジンは動力シャフトを駆動して機械的又は他の方法で推進機構に動力を供給することができる一方、動力シャフトは電力I/Oで電力を受け取り又は出力することなく発電機/モータ内で回転する。本明細書で説明するように、コントローラは、動力シャフト上の残りの動力を推進装置に機械的な動力として出力できるようにしながら、電力I/Oで発電機/モータがどの位の電力の量を生成及び出力するかを制御するために使用することもできる。推進装置は、例えば、ロータ、プロペラ、ファン、又は推進力を与える他の手段のいずれであってもよい。そのため、例えば、航空機のバッテリがフル充電で、航空機の電気モータが使用されていない場合に、機械的動力のみを推進装置に出力し、動力シャフト上の動力を電力に一切変換しないことが望ましい場合がある。他の例では、動力シャフトからの機械的動力の一部だけを電力に変換することが望ましい場合がある。例えば、コントローラは、モータ/発電機に動力シャフトからの一定の割合の動力を電力に変換させることができ、又は動力シャフトを監視して、最小閾値の機械的動力が推進機構(例えば、特定の対気速度又は推進機構のRPMを維持するため)に出力され、次に動力シャフトからの残りの動力を電力に変換する(例えば、航空機に搭載されたバッテリ又は他のエネルギ蓄積装置を充電するため)ことを保証することができる。そのため、本明細書で説明する様々な実施形態は、モータ/発電機の動力シャフト及びロータが回転している間でも発電機/モータが一定量の電力を出力するか、又は電力を出力しない/殆ど出力しないように制御できるため、航空機に搭載されたバッテリの過充電を防止するのに役立ち、全体の燃料消費量等を削減することができる。様々な実施形態では、これは、発電機を使用してどれ位の電気エネルギを出力するかを制御するためにコントローラによって制御してもよく、又はモータ/発電機のロータから動力シャフトを係合解除するか又は部分的に係合解除することによって(又はその逆に、動力シャフトからロータを係合解除することによって)制御してもよい。様々な実施形態では、第2のモードは、クラッチを有さないシステム(例えば、
図8Bのシステム)を用いて実現され得る。
【0044】
本明細書では推力増強(augmented thrust)モードと呼ばれ得る第3のモードでは、クラッチ(例えば、
図1Aのクラッチ115及び/又は
図1Bのクラッチ175)が、エンジン(例えば、
図1Aのエンジン105及び/又は
図1Bのエンジン155)を、発電機/モータ(例えば、
図1Aの発電機/モータ121及び/又は
図1Bの発電機モータ185)を通って延びる動力シャフト(例えば、
図1Aの動力シャフト111及び/又はクラッチ出力/動力シャフト180)に係合することができ、発電機/モータは、バッテリパック等の外部ソースからの電力I/O(例えば、
図1Aの電力I/O125)を介して電力を引き込むモータとして使用される。これにより、エンジン又は発電機/モータが供給できるよりも高い機械的動力出力が動力シャフトに与えられる。つまり、第3のモードでは、エンジンと発電機/モータとの両方を使用して動力シャフトを同時に駆動し、推進機構に動力(電力)を送る。様々な実施形態では、第3のモードは、クラッチを有さないシステム(例えば、
図8Bのシステム)を用いて実現され得る。
【0045】
本明細書では直接駆動発電機/モータモードと呼ばれ得る第4のモードでは、クラッチ(例えば、
図1Aのクラッチ115及び/又は
図1Bのクラッチ175)が、発電機/モータ(例えば、
図1Aの発電機/モータ121及び/又は
図1Bの発電機/モータ185)からエンジン(例えば、
図1Aのエンジン105及び/又は
図1Bのエンジン155)を係合解除することができ、それによって、電力が電力I/O(例えば、
図1Aの電力I/O125)を介して発電機/モータに供給され、発電機/モータをモータとして駆動し、機械的動力を動力シャフト(例えば、
図1Aの動力シャフト111及び/又はクラッチ出力/動力シャフト180)に供給することができる。つまり、第4のモードでは、発電機/モータのみが、電力I/Oで受け取った電力に基づいて動力(電力)を推進機構に供給することができる。
【0046】
本明細書ではエンジン出力分割モードと呼ばれ得る第5のモードでは、クラッチ(例えば、
図1Aのクラッチ115及び/又は
図1Bのクラッチ175)が、エンジン(例えば、
図1Aのエンジン105及び/又は
図1Bのエンジン155)を、発電機/モータ(例えば、
図1Aの発電機/モータ121及び/又は
図1Bの発電機/モータ185)に係合することができ、それによって、エンジンは、発電機/モータを発電機として回転させ、電力I/O(例えば、
図1Aの電力I/O125)を介して航空機上の他のシステムに電力を供給するだけでなく、機械的動力を動力シャフト(例えば、
図1Aの動力シャフト111及び/又はクラッチ出力/動力シャフト180)に与えて、プロペラのようなシステムを駆動することもできる。つまり、第5のモードでは、エンジンを使用して動力シャフト及び発電機/モータを駆動して、電力I/O及び動力シャフトを介して動力(電力)を出力することができる。様々な実施形態では、第5のモードは、クラッチを有さないシステム(例えば、
図8Bのシステム)を用いて実現され得る。
【0047】
本明細書で説明するように、これらの5つのモード(又はその変形)のいずれも、本明細書で説明する単一の柔軟なアーキテクチャとともに使用することができる。さらに、特定のモード及び/又はモードの組合せは、特定の航空機又は航空宇宙機のタイプ、特定の推進機構タイプ、航空機又は航空宇宙機の特定の飛行段階等にとって有益であり得る。電気機械(例えば、発電機/モーター等)を使用して大量の電力を生成するこれらのモードのいずれかでは、電気機械が大量の熱を発生させる場合がある。例えば、電気機械がエンジンからの動力出力の10~100パーセント(%)を電力として生成している場合に、電気機械はかなりの熱も発生する可能性がある。これには、電気機械が、エンジンからのエネルギの10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、又は100のいずれかを電気エネルギとして生成している例が含まれ、電気機械がエンジンからのエネルギの半分以上(例えば、過半数、50~100パーセント)を電力として生成しているあらゆる例を含む。電気機械がかなりの熱を発生するこのような場合には、電気機械を冷却するために本明細書で説明するような冷却システムを使用することが有益であり得る。
【0048】
例えば、電気モータ駆動プロペラを備えたハイブリッド式電気垂直離着陸(VTOL)航空機では、本明細書の柔軟なアーキテクチャは、電力源としてのみ使用され得る。そのため、柔軟なアーキテクチャは、航空機の電力バス又は航空機の1つ又は複数のモータに電力を供給しなければならない飛行段階の任意の部分中に、航空機を第1のモード(例えば、ハイブリッド式発電機モード)で駆動することができる。
【0049】
別の例では、単一の大きなメイン推進(pusher)プロペラ(例えば、航空機の胴体後部)と電気モータ/プロペラ(例えば、航空機の翼上)のアレイとを備えた航空機では、柔軟なアーキテクチャは、離陸中に第5のモード(例えば、エンジン出力分割モード)で使用され、メイン推進プロペラに機械的に動力を供給し、翼に取り付けられたモータに電気的に電力を供給することができる。
図3及び
図4は、例示的な実施形態による航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャを使用することができるそのような航空機300及び400の2つの例を示す。例えば、航空機300はメイン推進プロペラ305を有し、航空機400はダクト推進ファンの形態のメイン推進プロペラ405を有する。両方の例において、本明細書で説明する第5のモードは、動力シャフトからメイン推進プロペラ305及び405に機械的に動力を供給するために使用され得る。さらに、翼に取り付けられた電気モータ/プロペラ310及び410は、本明細書で説明するようにモータ/発電機からの電力で駆動され得る。
【0050】
あるいはまた、本明細書で説明する柔軟なアーキテクチャを使用して、
図3及び
図4に示すような構成に、離陸時にバッテリパックが翼に取り付けられた両方のモータに電力を供給することによる第3のモード(例えば、推力増強モード)で電力を供給し、メイン推進プロペラを駆動する動力シャフトに対するエンジン出力を増強することもできる。巡航飛行中に、航空機は、メイン推進プロペラのみを駆動するために第2のモード(例えば、直接駆動エンジンモード)を使用することができる。別の例では、巡航飛行中に、航空機は動力シャフトと推進プロペラとの間にクラッチを備えてもよく、コントローラは、動力シャフトを推進プロペラから係合解除し、発電機/モータから翼に取り付けられたモータに電力を出力することによって、航空機を、翼に取り付けられたモータを駆動する第1のモード(例えば、ハイブリッド式発電機モード)で動作させてもよい。別の例(例えば、エンジン故障等の緊急事態)では、推進プロップは、1つ又は複数のバッテリ等の電力I/Oへの電力入力を使用して、第4のモード(例えば、直接駆動発電機/モータモード)で駆動され得る。
【0051】
別の例では、航空機は、動力を与えられて又は動力を与えられずに動作することができ、翼に取り付けられた前方推進モータ及びプロペラを有し得る、ジャイロコプタ型のメインロータを備えたVTOL航空機であってもよい。一実施形態では、柔軟なアーキテクチャは、電力入力/出力(及び発電機/モータ)から供給される電力が、ジャイロコプタ型のメインロータに結合されたモータを駆動させ、電力を使用して翼に取り付けられたモータを駆動する、第1のモード(例えば、ハイブリッド式発電機モード)で完全に使用され得る。一実施形態では、航空機は、柔軟なアーキテクチャが第2のモード(例えば、直接駆動エンジンモード)又は第3のモード(例えば、推力増強モード)を使用して、ジャイロコプタ型のメインロータを回転させる(例えば、ジャイロコプタ型のロータを離陸速度に上げる)ことができるように、動力シャフトとジャイロコプタ型のメインロータとの間にクラッチを備えるように構成してもよい。このような例では、コントローラは、ジャイロコプタ型ロータが速度に達した後に、柔軟なアーキテクチャを第1のモード(例えば、ハイブリッド式発電機モード)に切り替えることができる(例えば、巡航飛行のために第1のモードに切り替える)。第4のモード(例えば、直接駆動発電機/モータモード)は、エンジン故障の場合に再び使用され、電力を使用して、1つ又は複数のバッテリ等の電源により動力シャフト(従ってジャイロコプタ型のロータ)を駆動することができる。
【0052】
図5は、例示的な実施形態による、航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャを使用することができる別の例示的な航空機500を示す。例えば、航空機500は、Tilt翼上に複数(例えば、8個)の電気モータ/プロペラ505を含んでもよく、これらは、本明細書で説明する第1のモード(例えば、ハイブリッド式発電機モード)を使用して電力供給され得、エンジンは、クラッチを使用して動力シャフトと係合され、発電機/モータを駆動し、発電機/モータからTilt翼上の様々な電気モータ/プロペラ505に電力を出力することができる。
【0053】
従って、本明細書では、推進機構に動力を供給するための様々なモードを達成することができる航空機のための有利な柔軟なアーキテクチャについて説明する。特定の航空機及び推進機構の構成は、柔軟なアーキテクチャが可能な本明細書で説明する各モードを利用しない場合があるが、柔軟なアーキテクチャは、依然として異なるモードを達成するために異なる航空機に実装することができる。同様に、推進機構に動力を供給するための5つの異なるモードを有する柔軟なアーキテクチャの一例を本明細書で詳細に説明するが、推進機構に動力を供給するためのより少ない、より多い、又は異なるモードを有する他の柔軟なアーキテクチャも本明細書で企図される。
【0054】
例えば、柔軟なアーキテクチャは、本明細書で説明するようなクラッチを有さない場合があるが、エンジン出力をシステムのモータ/発電機及び/又は動力出力シャフトに結合することが望ましい場合に、依然として本明細書で説明する様々なモードを実現することができる。例えば、第1のモードにおいて、エンジンが動力シャフトを回転させて、発電機によって電気を発生させることができる。第2のモードでは、エンジンは、例えば機械的推進部品を直接駆動することができるが、モータ/発電機をオフにする、又はモータ/発電機の動力シャフト及びロータをモータ/発電機内でフリーホイールさせることができるため、エンジンをモータ/発電機又は動力シャフトから係合解除する必要はない。第3のモードでは、エンジン及びモータ/発電機が動力シャフトの駆動に使用されるため、クラッチを使用してエンジン及びモータ/発電機を係合解除することは望ましくない。第5のモードでは、エンジンは動力シャフトを回転させて、発電機によって電気を発生させ、動力シャフトが推進機構に機械的に動力を供給することができる。そのため、上述の第1、第2、第3、及び/又は第5のモードのいずれかを利用する航空機では、動力シャフトをエンジン出力から係合解除する必要はない。そのため、第1、第2、第3、及び/又は第5のモード(第4のモードではない)の任意の組合せを使用する実施態様では、システムがエンジンの出力をモータ/発電機の動力シャフトに常に接続している可能性があるため、クラッチを使用しない場合がある。クラッチは重い、及び/又は信頼性が低い可能性があるため、そのような実施形態は価値があり得る。
【0055】
図6は、例示的な実施形態による、メイン推進プロペラを備えた航空機の異なる飛行段階において航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用するための第1の例示的な方法601を示すフローチャートである。特に、航空機は、単一のより大型の推進プロペラと、翼上の電気モータ及び対応するより小型なプロペラのアレイとを備えた航空機であってもよい。602での離陸飛行段階中に、本明細書で説明する第5のモードを使用して、メイン推進プロペラに機械的に動力を供給し、翼に取り付けられたモータに電力を供給することができる。604での巡航飛行段階中に、本明細書で説明する第2のモードを使用して、メイン推進プロペラのみに機械的に動力を供給し、より小型の電気モータ/プロペラには電力を供給しないようにすることができる。
【0056】
図7は、例示的な実施形態による、メイン推進プロペラを備えた航空機の異なる飛行段階において航空宇宙ハイブリッドシステムの柔軟なアーキテクチャを使用するための第2の例示的な方法700を示すフローチャートである。特に、航空機は、単一のより大型の推進プロペラと、翼上の電気モータ及び対応するより小型プロペラのアレイとを備えた航空機であってもよい。702での離陸飛行段階中に、本明細書で説明する推力増強と呼ばれる第3のモードを使用して、発電機/モータを介してメイン推進プロペラに電力を供給し(バッテリから電力を引き出す)、エンジンからメイン推進プロペラに機械的に直接動力を供給することができる。さらに、離陸中に電力(発電機/モータによって生成される、及び/又はバッテリから直接生成される)を翼上の電気モータに供給することもできる。704での巡航飛行段階中に、本明細書で説明する第2のモードを使用して、メイン推進プロペラのみに機械的に動力を供給し、より小型の電気モータ/プロペラには電力を供給しないようにすることができる。
【0057】
図1Aに戻って参照すると、エンジン105が動力シャフト111に動力を加え、発電機/モータ121が作動しない、又はオンにならないようにクラッチ115が係合されている場合に、動力シャフト111は発電機/モータ121内で(例えば、上述の第2のモードで)フリーホイールすることができる。同様に、
図1Bの動力シャフト180は、様々な実施形態において、発電機/モータ185内でフリーホイールすることができる。しかしながら、エンジン105及び/又はエンジン155は、クラッチ115及び/又はクラッチ175がそれぞれの動力シャフト111及び/又は180と係合する場合に、発電機/モータ121及び/又は発電機/モータ185等の発電機にとって危険となり得るトルクパルスを動力シャフト111及び/又は動力シャフト180上に発生させる可能性がある。換言すれば、あるタイプのエンジン(例えば、ディーゼルピストン内燃機関)が点火するときに発生し得るものと同様の大きなトルクパルスがシャフトに発生することによって、動力シャフト111及び/又は180に結合された発電機/モータ121及び/又は発電機/モータ185の構成要素に疲労又は損傷を生じさせ得る高い角加速度を引き起こす可能性がある。そのため、このトルクを緩和するための構成要素は、フライホイール又は他の強力な減衰又はばね結合システム等を使用して、動力シャフト111及び/又は180上のトルクを平滑化することができる。
【0058】
図8Aは、例示的な実施形態による、振動トルクを吸収するためのフライホイールを有する航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャ800の例を示す。特に、柔軟なアーキテクチャ800は、
図1Bに示し、
図1Bに関して説明したものと同様又は同じ構成要素を含むが、ボルト170を用いて出力フランジ165に堅固に接続されたフライホイール195を含む。フライホイール195はさらに、ボルト198によってクラッチ175の片側に堅固に接続される。従って、回転運動は、エンジン155からクランクシャフト160、出力フランジ165、及びフライホイール195を介してクラッチ175に移され得る。クラッチ175は、フライホイール195から受け取った回転運動を動力シャフト180に選択的に移すために、動力シャフト180と係合又は係合解除することができる。フライホイール195はさらに、例えば二重質量フライホイール又はばね連結器であってもよい。
【0059】
他の様々な実施形態では、フライホイールを使用しない場合がある。例えば、動力シャフト(例えば動力シャフト111)上のトルクを減衰させることができるが、フライホイールを含まない減衰システム及び減衰装置の更なる実施形態を本明細書で説明する。さらに、様々な実施形態では、フライホイール及び他の減衰システム又は構成要素を組み合わせて使用して、動力シャフトに加えられるトルクを減衰又は平滑化することができる。
【0060】
例えば、発電機/モータ自体内の動力シャフト又はロータは、発電機/モータのクランクシャフトに堅固に結合され得る。このようにして、クランクシャフト及びロータが一体となって動力シャフト又はロータ上のトルクパルスを減衰させることができ、エンジンからのトルクパルスによる接線方向の加速度を低減することができる。このような実施形態では、クラッチを省略してもよい。そのため、減衰システムは発電機/モータの内部にあり、減衰システムの設置面積及び重量は、発電機/モータの外部にあり得るフライホイール又は他の減衰システムよりも小さくすることができる。特に、動力シャフト又はロータとクランクシャフトとの堅固な結合は、動力シャフト又はロータの慣性を増大させる可能性があり、それによって、その追加の慣性は、動力シャフトが減速する、又はそうでなければエンジンのトルクパルスによる加速の影響を受けやすい方法で回転するのを防ぐのに役立つ。このような実施形態では、動力シャフト又はロータ及びクランクシャフトは、フライホイールと同様に機能することができる。
【0061】
様々な実施形態では、静止した内側部分と回転する外側部分とを有する発電機/モータが使用され得る。これにより、その回転部分の慣性が増大し、発電機/モータ内の磁石が回転して、トルクス(登録商標)パイクによって外れるのを回避できる可能性がある。換言すれば、磁石は外側部分で既に回転している可能性があるため、トルクスパイク加速による接線方向の慣性力に加えて、一定の安定化する半径方向の力が加えられる可能性がある。
【0062】
トルク減衰システムは、エンジンの出力を発電機/モータに接続する動力シャフト又はロータの一部として構成することもできる。例えば、発電機/モータの動力シャフト又はロータの間のハブには、ねじりばね特性及び/又は減衰特性を有する連結器が含まれ得る。ねじり減衰連結器には、潜在的に有害なトルクインパルスがエンジン出力から発電機の動力シャフト又はロータに伝わるのを低減する、エラストマ部品又はばね(例えば、鋼又は別の金属で作製された)が含まれ得る。ねじり減衰連結器は、共振減衰連結器と同様であるか、又は共振減衰連結器とも呼ばれ得る。例えば、そのようなねじり減衰連結器は、フライホイール又は他の大型減衰システムを使用するシステムとは対照的に、システム全体の重量及びサイズを削減することができる。1つ又は複数のねじり減衰連結器を、エンジン内、エンジンとクラッチとの間、クラッチ内、クラッチと発電機との間、及び/又は発電機内のいずれか1つ又は複数に設置して、動力シャフト又はロータが発電機自体の構成要素を損傷する前に減衰を達成することができる。
【0063】
発電機の動力シャフト又はロータ上のトルクを減衰する他の方法も使用することができる。例えば、発電機上の磁場は、発電機の動力シャフト又はロータに作用して、エンジンによって動力シャフト又はロータに与えられるトルクパルスの一部又は全てを打ち消すようにパルス状に制御され得る。発電機の磁場に対するそのようなパルスは、エンジンによって加えられるトルクパルスの測定に基づいて制御することができ、その結果、発電機の構成要素がディーゼルエンジンによって損傷されないようにすることができる。例えば、エンジンと発電機/モータとの両方が動力シャフトに動力(電力)を供給する上記の第3のモードでは、発電機から動力シャフトにパルスが供給され、動力シャフトに電力が供給され、発電機の構成要素が損傷するのを防ぐことができる。本明細書で説明する他のモードでは、動力シャフトが全体的にエンジンによって部分的に駆動されているときはいつでも、発電機を使用して動力シャフトにパルスを印加することができる。こうして、このような方法で発電機の部品を適切に保護するために、発電機の磁場によって動力シャフト又はロータに印加されるパルスは、エンジンのトルクパルスと相関してそれらのトルクパルスに適切に対抗するように構成され得る。
【0064】
図8Bは、例示的な実施形態による、振動トルクを吸収するためのフライホイール及びばね連結器を有する航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャ1400の例を示す。特に、柔軟なアーキテクチャ1400は、
図8Aに示し、
図8Aに関して説明したものと類似又は同じ構成要素を含むが、フライホイール195及び動力シャフト180に堅固に接続されたばね連結器199を含む。フライホイール195のサイズ、重量等、並びにばね連結器199の特性は、エンジン155の出力及び互いの特性に従って調整することができため、振動トルクを所望の及び/又は可能な限り低減することができる。例えば、異なるエンジンは異なる量の振動トルクを生成する可能性があるため、本明細書の様々な実施形態は、クランクシャフト160から動力シャフト180に伝わる振動を低減するために、異なる特性を有するフライホイール及び/又はばね連結器を含む。様々な実施形態では、柔軟なアーキテクチャ1400は、クランクシャフト160及び動力シャフト180が常に互いに結合されるように、クラッチを有さなくてもよい。様々な実施形態では、
図14のアーキテクチャと同様の柔軟なアーキテクチャはまた、エンジン155の出力を最終的に動力シャフト180から解放可能に係合解除することができるように、クラッチを含んでもよい。様々な実施形態では、そのようなクラッチは、ばね連結器199と動力シャフト180との間に接続され得、又は動力シャフトは、複数のシャフトにクラッチを接続して複数のシャフトに分割してもよく、又はエンジン155の出力を発電機/モータ185を介して伝わる動力シャフト180の部分から選択的に係合解除することができるように、クラッチをエンジン155と発電機/モータ185との間のいずれかの場所に配置してもよい。様々な実施形態では、動力シャフト180を負荷(例えば、航空機の推進機構)から係合解除することができるように、追加的又は代替的に、発電機/モータ185の後にクラッチを位置付けしてもよい。
【0065】
さらに、本明細書で説明する柔軟なアーキテクチャが実際の航空機にどの様にパッケージ化及び/又は使用され得るかの例を以下に説明する。例えば、特定の航空機は推進システムを駆動するために電気モータを使用する場合があるため、それらの推進システムを駆動するために十分な機内電気エネルギを有する、又はそのような機内電気エネルギを生成する方法を備えている必要がある。さらに、特定の管轄区域の規制では、航空機の運用規制に準拠するために十分な予備エネルギが必要な場合もある。本明細書で説明する柔軟なアーキテクチャは、本明細書で説明するシステムが様々な電動航空機で動作できるように、推進システムにそのような電気エネルギ及び/又は予備エネルギを供給することができる。例えば、本明細書の実施形態は、広く入手可能な燃料源を使用して電動航空機に電力を供給できるように、ジェット燃料(又は他の液体燃料又はガス燃料)の電気への効率的な変換を提供する。
【0066】
図23は、例示的な実施形態による、航空宇宙ハイブリッドシステムの柔軟なアーキテクチャの例の斜視
図2300を示す。このハイブリッドユニットは、様々な種類の航空機及び実施態様のコア発電装置(powerplant)として使用することができる。
図23のハイブリッドユニットは、
図1A、
図1B、
図2A、
図2B、及び/又は
図8A/
図8Bに示して説明したいくつかの要素、全ての要素、及び/又は追加の要素を含み得る、緊密に統合された発電装置である。
【0067】
さらに、ハイブリッドユニットは、ハイブリッドユニットの様々な態様、ハイブリッドユニットに関連する熱交換器、又はハイブリッドユニットの任意の態様に関するフィン付きアタッチメント等のヒートシンクを冷却する統合冷却システム2305を含んでもよい。動力出力2310は、回転動力がハイブリッドユニットから推進システム又は航空機の他の態様に出力され得るように、動力シャフト(例えば、
図1Aの動力シャフト110、
図1B又は
図8A/
図8Bの動力シャフト180)であってもよく、又は動力シャフトに接続してもよい。電気コネクタ2315は、本明細書で説明するように、電力を出力する(又は電力を入力する)ために使用してもよい。電気コネクタ2315は、例えば、Amphenol Surlok Plus(商標)コネクタ又は同等品であってもよく、或いは他の任意のタイプの適切なコネクタであってもよい。このようにして、ハイブリッドユニットの直流(DC)バス等のメインバスは、電気コネクタ2315(例えば、
図1Aの電力入力/出力125、
図2A又は
図2Bの電力I/O245)を介して接続され得る。これら又は他のコネクタは、コントローラエリアネットワーク(CAN)バス、CAN2.0バス、及び/又はSAE J1939バスの使用等、ハイブリッドユニットの構成要素への接続及び制御を容易にすることもできる。このような通信バスは、250キロバイト/秒(kbps)、500kbps、1000kbps等の異なる速度で動作することができる。様々な実施形態では、電気コネクタ2315及び/又は他のコネクタは、様々な種類の航空機と、それらの航空機が使用する通信及び電力システム等の特定の用途に合わせてカスタマイズすることができる。
【0068】
電力出力2310及び電気コネクタ2315のおかげで、
図9のハイブリッドユニットは、電力出力2310を介して機械的動力を出力し、及び/又はハイブリッドユニット内の電気コネクタ2315及びDCバス(例えば、
図1Aの電力入力/出力125、
図2A又は
図2Bの電力I/O245)を介して電力を出力することができる。同様に、機械的動力を動力出力2310を介して受け取って電気コネクタ2315を介して出力するための電気を生成するのと同様に、電力を電気コネクタ2315を介して受け取って動力出力2310を駆動することができる。例えば、航空機が1つ又は複数のバッテリを含む場合に、バッテリからの追加電力を電気コネクタ2315を介して受け取って、動力出力2310に加えられる動力(電力)を高めることができ、これにより、本明細書で説明するように、動力出力2310がエンジンと航空機のバッテリからの電力との両方によって駆動されるようになる。
【0069】
図23のハイブリッドユニットは、エンジンを燃料源に接続するためのコネクタ2325をさらに含むことができる。コネクタ925は、AN6クイック燃料接続等のクイック燃料接続であってもよい。このようにして、エンジンには燃料が供給されて、動力出力2310に動力を供給し、及び/又は電気コネクタ2315を介して出力される電気を生成することができる。
図23のハイブリッドユニットは、ハイブリッドユニットを航空機に取り付けるための取付ハードウェア2320をさらに含むことができる。
図23では、取付ハードウェア2320がハイブリッドユニットの上部に示されているが、他の実施形態では、取付ハードウェアは、ハイブリッドユニットを航空機に所望通りに取り付けることができるように、ハイブリッドユニットの上部、底部、側面等のいずれかに追加的又は代替的に配置することができる。
【0070】
【0071】
従って、本明細書で説明するハイブリッドユニットは、電気航空機又はハイブリッド式電気航空機に電力を供給するために使用することができ、バッテリパック単独よりも優れた電力を提供することができる。例えば、
図23~
図25に示されるようなハイブリッドユニットはバッテリよりも優れたエネルギ密度(例えば、5~7倍優れたエネルギ密度)を提供することができる。例えば、本明細書で説明するハイブリッドユニットは、600~1200以上のワット時/キログラム(Wh/kg)以上の等価エネルギ密度を有し得る。また、本明細書で説明するハイブリッドユニットは、他のシステムよりも優れた燃費(例えば、タービンエンジンよりも40%優れた燃費)を有利に有し、Jet‐A、ディーゼル、灯油、バイオ燃料代替品、或いは他の適切な又は所望の燃料等の容易に入手可能な燃料を使用することができる。換言すれば、本明細書のハイブリッドユニットは、コンパクトなパッケージ内に、空冷を使用するエンジン、発電機、インバータ、及び熱管理を含むことができ、それによって、柔軟なアーキテクチャが搭載された航空機は、これらの構成要素を発電装置として有利に利用することができる。様々な電圧(例えば、400ボルト(V)、800V、1000V、1200V等)の出力がハイブリッド式アーキテクチャから供給されるだけでなく、他のアクセサリ又はシステム電源(例えば、28V)用の接続も有している。本明細書で説明する柔軟なアーキテクチャは、他のシステムよりも静か(例えば、タービンエンジンシステムよりも静か)であり得る。例えば、現在のシステムから100フィート以下の距離では、騒音が70デシベル(dB)未満になり得る。
【0072】
本明細書で説明する柔軟なアーキテクチャは、拡張可能でもあり得る。例えば、より大型の航空機では、本明細書で説明する柔軟なアーキテクチャのうちの2つ以上を使用してもよい。この柔軟なアーキテクチャは、様々な機能及び目的に合わせて設計された様々な航空機にも使用することができる。例えば、本明細書で説明する柔軟なアーキテクチャは、電動式垂直離着陸(eVTOL)航空機、電動式短距離離着陸(eSTOL)航空機、従来の電動式離着陸(eCTOL)航空機等のアーバンエアモビリティ(UAM)システムにおいて有用であり得る。
図23~25に示されるもの等の柔軟なアーキテクチャの一例は、以下の表1に示す仕様を有することができる。
【表1】
*最大バーストシャフトパワーはバッテリ構成に依存する。
**乾燥質量は、エンジン、発電機、インバータ、及び熱システムを含む。
【0073】
上に示したように、185kWのハイブリッドユニットを設けることができる。従って、370kWの電力を供給するために、特定の航空機に2つのハイブリッドユニットを設けることができる。
【0074】
図26は、例示的な実施形態による航空宇宙ハイブリッドシステムのための柔軟なアーキテクチャの別の例の斜視
図2600を示す。
図26の柔軟なアーキテクチャは、エンジン2605及び発電機を含むが、これらはシステムの冷却ダクト等の他の構成要素により隠れているか見えない。しかしながら、
図23~
図25のハイブリッドユニットと同様に、機械的動力出力2610及び電気的動力出力2620(これらは両方ともオプションで同様に電力(動力)を受け取ることもできる)が提供される。
【0075】
このように、本明細書の様々な実施形態は、航空宇宙市場における様々な異なるタイプの航空機に組み込むことができるハイブリッド式発電装置を提供する。そうすることで、航空機メーカーは、航空機に電力(動力)を供給するためのエンジン、発電機、パワーエレクトロニクス、冷却システム、及び/又は制御システムで構成される独自のシステムを構築する必要がなくなる可能性がある。発電システムを形成し、それを航空宇宙規格に適合させるための開発プロセスには少なくとも4年以上かかり、1,000万ドル以上の費用がかかる可能性があるため、これは有利となり得る。
【0076】
このように、本明細書で説明するハイブリッド式発電装置又は柔軟なアーキテクチャは、航空機の設計とは切り離して設計、製造等することができる。柔軟なアーキテクチャのいくつかの態様は、航空機メーカーの要望に応じてカスタマイズできるが、システム全体の再設計又は再構成を生じさない方法でカスタマイズすることができる。従って、本明細書の実施形態は、航空機に搭載される1つのパッケージ内にエンジン、発電機、パワーエレクトロニクス、冷却システム、及び/又は制御システムを含める統合ユニットを提供する。これらの要素を単一のスタンドアロンユニットに組み合わせると、そのユニットがシステムとして連邦航空局(FAA)の認証プロセスを通過できるようになり、さらに有利になる。そうすれば、複数の航空機メーカーが認証システムを使用できるようになり、航空機開発者の認証の負担及び開発の負担が軽減されるだけでなく、複数の航空機メーカーが自社の航空機用に特別に設計した多くの異なる発電システムの認証を取得する必要がなくなり、効率が向上する。
【0077】
エンジン、発電機、パワーエレクトロニクス、冷却システム、及び/又は制御システムを有する複合ユニットを提供することにより、本明細書で説明するハイブリッド式の柔軟なアーキテクチャは、個別の構成要素としてではなくシステム全体として最適化され得る。部分の最適化ではなく、システム全体を最適化する。さらに、このようなハイブリッドユニットは複数の航空機設計で使用され得るが、航空機設計プロセスの一部として設計されたシステムは、他の場所で再適用することが難しいように構成される。複数の市場セグメント及び共通の電力要件を有する航空機設計に適用できるハイブリッドユニットを搭載すると、航空機の主要部品(例えば、ハイブリッドユニット又は柔軟なアーキテクチャ等)が既に認証され、生産される航空機の開発が迅速化される。
【0078】
航空用のハイブリッド電気システムは、歴史的に、各用途/航空機に対してゼロから設計されてきた。このようなプロセスは非効率的であり、本明細書の実施形態によって対処される。例えば、一部の航空機には、その航空機用に特別に設計された独自の発電装置が搭載されている。このような解決策には、カスタムエンジン、発電機、パワーエレクトロニクス、制御システム、冷却システム、バッテリパック、推進モータ、及び/又はプロペラが含まれ得る。本明細書の実施形態は、航空機の動力及び推進システム内の2つの別個の半分、すなわちパワートレイン(本明細書で説明するハイブリッド式パワートレイン等)の上流端及び下流端のうちの半分を構成することができる、航空機用のコンパクトなハイブリッドシステムを提供する。
【0079】
図27は、例示的な実施形態による、航空機2700を推進するための下流側部品2705、2710及び上流側部品2715、2720の例を示す。例えば、航空機システムの下流側部品2705、2710は、航空機の特定の設計により関連するモータ、ロータ/プロペラ、姿勢制御部品等を含み得る。異なる航空機内で反復可能であり得る航空機の上流側部品2715、2720は、エンジン、発電機、バッテリ、配電、燃料、発電機騒音軽減等のいずれかを含み得る。
【0080】
具体的には、パワートレインの上流端は、電力の生成を担うハイブリッド式パワートレイン要素を含むことができる。このような構成要素には、エンジン、発電機、パワーエレクトロニクス、制御システム(上流の発電構成要素用)、冷却システム(上流側部品用)、バッテリパック、及び/又は燃料が含まれ得る。パワートレインの下流端には、電力を推力、姿勢制御、及び/又は空力学のアクティブ制御に変換する役割を担うハイブリッド式パワートレイン要素が含まれ得る。これらの下流側部品には、電気モータ、プロペラ、モータコントローラ、及び/又は推進システムのための制御システムがさらに含まれ得る。
【0081】
そのため、同様のサイズ及び総電力要件を有する非常に異なる電動航空機設計に亘って共通の上流側パワートレインのニーズが存在し得る。ただし、下流側パワートレインは航空機の間で一貫性が殆どないため、これらの構成要素は上流側構成要素のように多くの航空機設計で機能するように標準化されていない可能性がある。さらに、標準化に役立つ上流側要素には、総エネルギ要件ではなく電力要件に関連する構成要素が含まれ得る。エンジン、発電機、パワーエレクトロニクス、冷却システム、及び/又は制御システムの場合に、上流側パワートレインのこれらの要素は、航空機の特定の電力要件(kW又はhp)に適合するようにサイズ決めすることができる。ただし、燃料の量とバッテリパックのサイズとが総エネルギ要件(kWh又はhp hr)によって決まる場合があり、これらは航空機毎に異なる場合がある。このような実施形態では、航空機設計の要件に適合するように燃料タンクのサイズを変更することによって燃料の体積を調整することができ、kWh単位でのバッテリパックの容量は、バッテリパック内のセルの並列スタックの数を調整するか、又は追加のバッテリパックを追加することによって調整することができる。
【0082】
従って、本明細書では、エンジン、発電機、パワーエレクトロニクス、制御システム(発電システム用)、及び/又は冷却システムを、重量効率及びスペース効率の高い方法で緊密に統合するハイブリッド式発電装置を供給するための実施形態を提供し、そのハイブリッド式発電装置は、航空機から分離可能な、推進力を提供するように設計されたスタンドアロンユニットとして認証され得る。
【0083】
さらに、本明細書で説明するように、発電機内のロータは、ハイブリッド式発電装置の文脈において複数の目的を果たすように最適化することができる。従来の内燃機関は、動作の滑らかさを高めるために、回転シャフトにフライホイール質量が取り付けられている場合がある。ただし、航空宇宙システムの文脈では、余分な質量を追加することは好ましくない場合がある。本明細書で説明するように、エンジンがハイブリッド式発電装置の発電機に結合される場合に、発電機のロータは、エンジンからのトルクインパルスに耐えるように設計され得、エンジンが動作を滑らかにするために利用する回転質量となるように設計され得る。
【0084】
さらに、補助電力ユニットは従来技術で知られているが、これらのシステムは、航空機の主な推進力源としてとは異なる目的のために設計されている場合があり、従って、推進に使用するために必要である規格に認証することができる制御システムを有していない可能性がある。さらに、このようなシステムは冷却システムなしで設計することもでき、その点は機体設計者に委ねられる。そのため、これらのシステムはパート33(航空機発電装置に関するFAA規制)の認定を受けていない。また、これらの補助電力ユニットシステムは、飛行の全ての段階で使用される高効率の推進システムではなく、断続的に使用される軽量の補助システムとして設計される。さらに、補助電力ユニットは交流(AC)電力を生成するように設計され得るが、本明細書で説明するハイブリッド式発電装置は直流(DC)電力を生成することができるため、ハイブリッド式発電装置は、バッテリパックがDC電源を使用して電力供給及び充電されるので、大型の推進用バッテリパックに結合され得る。
【0085】
タービン発電機は、ハイブリッド電力用に提案されている適合型補助電力ユニットの一種である。このようなシステムには、ハイブリッド式発電装置の一部である冷却システムを機体開発者に提供する冷却システムの統合を欠いている。そのため、機体開発者は、タービン発電機の使用に伴う独自の冷却システムを設計する必要があり得る。本明細書の実施形態を使用すると、そのような冷却システムが本明細書で説明する柔軟なアーキテクチャに既に含まれているため、本明細書で説明するハイブリッド式発電装置を冷却するための別個の冷却システムを特定の機体用に設計又は開発する必要がなくなるという利点があり得る。
【0086】
そのため、本明細書で説明する柔軟なアーキテクチャ及びハイブリッド式発電装置は、液体燃料(又は気体燃料)を回転機械動力に変換するエンジン、回転機械動力を電気に変換するように構成されたエンジンに結合された発電機、及び/又は発電機の直接AC出力を高電圧DC電力に変換するように構成された発電機に結合されたパワーエレクトロニクスを有利に提供する。本明細書で説明する柔軟なアーキテクチャ及びハイブリッド式発電装置は、航空機の電力需要を満たすために、航空機のメイン推進電気バスの電力需要に適合するようにエンジンの動力出力を変更するように構成された制御システムをさらに有利に提供する。
【0087】
本明細書で説明するハイブリッド式発電装置制御システム、パワーエレクトロニクス、発電機、及び/又はエンジン設計は、航空宇宙推進システムの信頼性に関する規制要件にさらに準拠することができる(例えば、故障の確率は10-6未満又は10のマイナス6乗でなければならない)。柔軟なアーキテクチャ及びハイブリッド式発電装置は、柔軟なアーキテクチャ又はハイブリッド式発電装置が乗り物(vehicle)レベルの飛行制御システムと通信して、推進力コマンドを乗り物レベルの飛行制御システムからハイブリッド式発電装置制御システムに提供するのを可能にする制御インターフェイスをさらに含むことができ、ハイブリッド式発電装置制御システムがステータスメッセージを乗り物レベルの飛行制御システムに送り返す(例えば、柔軟なアーキテクチャ又はハイブリッド式発電装置の制御に使用するためのフィードバック)ことも有利に提供することができる。柔軟なアーキテクチャ及びハイブリッド式発電装置は、本明細書で説明する柔軟なアーキテクチャ及びハイブリッド式発電装置の動作出力の全範囲に亘って、発電機、パワーエレクトロニクス、及び/又はエンジンの温度範囲を維持する冷却システムをさらに含むことができる。
【0088】
本明細書で説明する柔軟なアーキテクチャ又はハイブリッド式発電装置の様々な実施形態は、エンジントルクを変化させることによって動力出力を変化させる、及び/又は動力出力のかなりの範囲に亘って毎分回転数(RPM)を実質的に一定に維持する制御システムをさらに含むことができる。このような実施形態は、システムの回転慣性に関するスロットル遅れ及びより長い応答時間を排除することによって、柔軟なアーキテクチャ又はハイブリッド式発電装置のより速い応答を提供することができる。
【0089】
本明細書で説明する柔軟なアーキテクチャ又はハイブリッド式発電装置の様々な実施形態は、エンジンの動力出力の一部を機械的なシャフト動力として提供し、一部をDC電力として提供するオプションをさらに含むことができる。本明細書で説明する柔軟なアーキテクチャ又はハイブリッド式発電装置の様々な実施形態は、エンジンがピストンエンジン、ディーゼルピストンエンジン、タービンエンジン、ロータリエンジン、又は他の形態の燃焼機関であり得る実施形態をさらに含み得る。本明細書で説明する柔軟なアーキテクチャ又はハイブリッド式発電装置の様々な実施形態は、発電機のロータがエンジンのフライホイールとなるように設計される例をさらに含み得る。本明細書で説明する柔軟なアーキテクチャ又はハイブリッド式発電装置の様々な実施形態は、本明細書で説明するいくつかのタイプの並列ハイブリッド設備においてエンジンが停止している間に発電機をモータとして動作させることができるように、エンジンと発電機との間にクラッチをさらに含んでもよい。
【0090】
図9~
図21に関して以下でさらに説明するように、本明細書で説明する様々な実施形態は、本明細書で説明するハイブリッド式の柔軟なアーキテクチャ等のハイブリッド式発電装置の複数の要素の同時空冷も提供する。例えば、エンジン(例えば、ピストンエンジン、ロータリエンジン、タービンエンジン等)、電気機械(例えば、本明細書で説明する発電機、モータ、又は発電機/モータ)、パワーエレクトロニクス、及び/又はハイブリッドシステムのエンジンの吸気は全て、本明細書で説明する冷却システムによって効率的且つ同時に冷却できるという利点があり得る。こうして、個別の冷却部品を備えたハイブリッド式発電装置の異種部品は、航空機の重量を軽減し、航空機の信頼性を高めることができる複合空冷システムとリンクすることができる。
【0091】
本明細書で説明する冷却システムの様々な実施形態は、空気がハイブリッド式発電装置の異なる態様又は構成要素に供給されるように空冷を利用する。空気は、水等の冷却に使用される他の媒体よりも軽い。こうして、本明細書で説明する実施形態は、冷却のための主媒体として水等の液体を使用するシステム等の他のシステムに比べて重量面で有利となり得る。水冷システムは、空気ベースのシステムよりも重量が重いことに加えて、特に高高度で運用され得るため低温に曝される航空機では、着氷の問題に直面する可能性がある。
【0092】
例示的な実施形態は、ファン、インペラ、及び/又はブロワを、本明細書で説明する柔軟なアーキテクチャの動力シャフト又はクランクシャフト(例えば、
図1Aの動力シャフト111、
図1Bのクランクシャフト160、
図1Bの動力シャフト180)に有利に接続し、それによって、ファン、インペラ、及び/又はブロワは、本明細書で説明する柔軟なアーキテクチャのエンジン(例えば、
図1Aのエンジン105、
図1Bのエンジン155)、又は発電機/モータ(例えば、
図1Aの発電機/モータ121、
図1Bの発電機/モータ185)によって動力シャフト又はクランクシャフトに与えられる動力に基づいて機械的に駆動される。そのため、ファン、インペラ、及び/又はブロワは、回転する動力シャフト及び/又はクランクシャフトから受け取った機械的動力から直接空冷を提供するように構成されており、冷却のために複数のシステム要素に空気を供給することができ、これには、冷却のために空気を構成要素に直接供給する、又は他の構成要素(例えば、独自の液冷システムを備えた構成要素)を冷却するために使用される1つ又は複数の熱交換器又はフィン付きヒートシンクに空気を供給することが含まれる。特に明記しない限り、ファン、ブロワ、及び/又はインペラという用語は、ファン、ブロワ、インペラ、又は他の同様の構成要素のいずれか、及びそのような要素の任意の組合せを指すために個別に使用され得ることを理解されたい。様々な実施形態では、単一のファン、インペラ、及び/又はブロワの代わりに、複数のファン、インペラ、及び/又はブロワが、シャフトに直接的又は間接的に(間接的な場合に、1つ又は複数のギアボックス、プーリ、トルクコンバータ、又は他の動力伝達方法を介して、ここで、単一のギアボックス又はトルクコンバータが存在する場合もあれば、ファン、インペラ、及び/又はブロワのそれぞれに関連付けられたギアボックス又はトルクコンバータの1つである場合もある)接続され、本明細書で説明する柔軟なアーキテクチャ及び/又は冷却システムの異なる構成要素に空気を導くことができる。
【0093】
本明細書で説明する実施形態は、柔軟なアーキテクチャの個々の構成要素に別個の冷却を使用するシステムよりも軽量のシステムを提供する。さらに、動力シャフト又はクランクシャフトからの機械的動力が、ファンを駆動するために直接提供され得るため、本明細書の実施形態は、電動ファンを駆動するために機械的動力を電力に変換するシステムで発生し得る変換損失を低減することができる。そのため、柔軟なアーキテクチャからの機械的動力は空冷の流れに直接変換される。本明細書で説明する実施形態は、冷却ファン及び関連するダクト構造が柔軟なアーキテクチャの残りの部分に対して緊密に結合又は配置され得るため、軽量で効率的なシステムをさらに提供し、それにより航空機に動力を供給するための効率的で軽量且つコンパクトなシステムをもたらす。実施形態はまた、空冷システムの冷却入口と冷却される装置又は構成要素との間の距離を短縮することによって効率を高める。
【0094】
図9は、例示的な実施形態によるハイブリッド式発電装置の冷却システムの例の概略図を示す。ハイブリッド式発電装置は、例えば、
図1~
図8に示し、
図1~
図8に関して議論したような、本願で説明及び/又は図示する柔軟なアーキテクチャのいずれであってもよい。
【0095】
図9の冷却システムは、発電機/モータ914を通過するシャフトからの機械エネルギを介して直接動力を供給されるブロワ902を含む。シャフトは、エンジン904にも接続され得る。このようにして、シャフトは、発電機/モータ914及びエンジン904の一方又は両方によって駆動され得る。エンジン904は、ピストンエンジン、タービンエンジン、ロータリエンジン、又は他の種類の燃焼機関又は他のエンジンであってもよい。インバータ912が、発電機/モータ914にさらに取り付けられ得、それによって、シャフトの回転から電力が生成され得るか、又は(例えば、バッテリパック又は他の電源から)電力が発電機/モータ914に入力されてシャフトを回転させるために使用され得る。エンジン904は、シリンダ906、オイル冷却システム908用のオイル、及びターボチャージャ920をさらに含むことができる。ターボチャージャ920と協働するために給気冷却器918をシステムにさらに含めることができる。システムはさらに、オイルクーラ916及び種々のハードウェア910(例えば、制御又は他の電子機器)を含む。
【0096】
ブロワ902は、ブロワ902が接続されているシャフトを回転させるエンジン904及び/又は発電機/モータ914によって回転するように構成される。ブロワ902からの冷気は、様々なダクト構造を介して、モータ/発電機914、種々のハードウェア910、エンジン904のシリンダ906、オイルクーラ916(例えば、熱交換器)、給気冷却器918(例えば、熱交換器)、又は冷却が必要な他の構成要素に導かれ得る。様々な実施形態において、空気が導かれる構成要素の一部は、熱交換器(例えば、空気-空気熱交換器、空気-流体熱交換器)であってもよく、又は熱交換器を含んでもよく、それによってブロワ902からの空気が熱交換器を介して構成要素を間接的に冷却するように使用され得る。様々な実施形態において、
図9の構成要素のいずれか、又は柔軟なアーキテクチャの一部は、構成要素からの熱をブロワ902からの空気にシンクさせるように構成された一組のフィン等のヒートシンク要素を含んでもよい。そのため、構成要素は、ヒートシンク機構を介して間接的に冷却してもよく、ヒートシンク機構は、ブロワ902からの冷却空気に接している。様々な実施形態では、熱交換器とヒートシンク(例えば、フィン)との組合せを使用して構成要素を冷却することができる。例えば、ヒートシンク要素は、熱交換器の第1の側の空気又は流体に熱を放出することができ、ブロワ902からの空気を熱交換器の第2の側に導き、熱交換器の第1の側の空気又は流体から熱を除去することができる。
【0097】
従って、ブロワ902は、本明細書でさらに説明するように、柔軟なアーキテクチャの様々な構成要素を冷却するために使用することができる。例えば、ブロワ902からの空気は、ブロワ902からの空気とオイルクーラ916内のオイルとの間で熱を交換するように構成された空気-流体熱交換器であるオイルクーラ916に導くことができる。次に、オイルクーラ916からの冷却したオイルをエンジン904のオイル冷却システム908内に循環させて、エンジン904を冷却する(例えば、熱をオイルに伝達することによってエンジン904から熱を除去する)ことができる。次に、オイル冷却システム908からの高温オイルをオイルクーラ916に戻すように循環させて、ブロワ902からの空気を介して再び冷却することができる。
【0098】
また、給気冷却器918に冷気を供給することもできる。周囲空気がターボチャージャ920に入り、圧縮されてから給気冷却器918に出力することができる。次に、ターボチャージャ920の圧縮機入口側からの圧縮空気は、ブロワ902から給気冷却器918に導かれる空気を使用して、給気冷却器918で冷却され得る。換言すれば、給気冷却器918は、空気-空気熱交換器として機能することができる。次に、冷気は、給気冷却器918からエンジン904の吸気口に出力され、例えばエンジン904の燃焼サイクルで使用され得る。次に、エンジン904からの排気出力は、タービン又はターボチャージャ920の高温側に導かれ得、その後排気として空気を環境に排出する。このようにして、ターボチャージャ及び/又はエンジンによって使用される空気は、最終的には、ターボチャージャサイクルの一部として給気冷却器の空気-空気熱交換器を使用して間接的に冷却され得る。
【0099】
こうして、本明細書で説明するような柔軟なアーキテクチャの様々な構成要素を冷却することができる。ディーゼル航空機エンジン(例えば、ピストン燃焼機関)のシリンダ(又はロータ)は、空冷又は液冷することができる。
図9の例では、シリンダ906は空冷される。しかしながら、シリンダは、シリンダ液冷システムの液体とブロワ902によって供給される冷気との間に熱交換器を追加することによって追加的又は代替的に液冷してもよい。液体冷却剤が使用される場合に、その液体は、例えば水とグリコールの混合物であってもよい。同様に、航空機ディーゼルエンジン(例えば、ピストン燃焼機関)のシリンダヘッドは、空冷、油冷、又は水-グリコールで冷却することができる。そのため、ブロワ902からの空気は、本明細書で説明するシリンダと同様に、直接的又は間接的に(熱交換器又はフィン付きヒートシンクを使用して)使用することができる。タービン又はロータリエンジン等、ピストンエンジン以外の他のエンジンでは、それらのエンジンの構成要素には液冷又は空冷システムも含まれる場合があり、従って、本明細書で説明する冷却システムからも同様に恩恵を受けることができる(例えば、ブロワ902からの空気、又はブロワ902からの空気とエンジンの又はエンジンに関連する別個の冷却システムの冷却液との間の熱交換器を介して直接冷却を通じて)。
【0100】
エンジンのエンジンオイルも柔軟なアーキテクチャで冷却することができる。
図9の例では、オイル908はオイルクーラ916を通って循環され、オイル908とブロワ902によって供給される冷気との間で熱交換が行われる。エンジン904内のオイル908によって吸収される熱は、エンジン904内の軸受せん断から生じる可能性があり、オイルは、シリンダヘッド及び/又はピストン(又はロータ)等の他の冷却にも使用され得る。
【0101】
給気(吸入空気)は典型的に空冷され、これはターボ過給のために必要とされる。航空機では、ミッションに対処するパワーで使用可能な高度の範囲を拡大するためにターボ過給が非常に一般的であり、さらにターボ過給によりエンジンの全体的な熱効率が大幅に向上する。吸入空気を圧縮するとその温度が上昇し、ピストンの冷却及び爆発等に関連する問題を回避するには、シリンダに導入する前にこの温度を下げる必要がある。
【0102】
図9のモータ/発電機914等の電気モータ/発電機(本明細書では電気機械とも呼ばれる)は、モータ/発電機914内の電気部品及び電子部品における電気抵抗及び電流の存在により冷却されることもある。この冷却は、ブロワ902等からの空冷、又はブロワ902からの空冷が供給される熱交換器等を介して液冷によって達成され得る。液冷は、例えば、水とグリコールの混合物又は誘電性(非導電性)流体を介して行うことができる。
【0103】
図9のインバータ912等のインバータ(関連するパワーエレクトロニクスを備えた)は、高速スイッチ及び内部の他のハードウェア等の電気回路内で発生する熱のために冷却され得る。このような冷却は、ブロワ902等からの空冷を介して、又はブロワ902からの冷気が供給される熱交換器等を介した液冷を介して達成することができる。液冷は、例えば、水とグリコールの混合物又は誘電性(非導電性)流体を介して行うことができる。
【0104】
本明細書で説明するハイブリッド式発電装置の他の要素は、受動的な冷却を達成することができる。換言すれば、クラッチ(存在する場合)、カプラ、監視コントローラ又は他のコントローラ、ファンベアリング/シール等を含むがこれらに限定されないシステム要素の冷却要件は、提供する冷却を強化するためのアクティブな設計特徴(ファン、ポンプ、ラジエータ)のない通常の使用環境によって満たされる可能性がある。様々な実施形態では、必要に応じて、ブロワ902からのような空冷による能動的な冷却、又はブロワ902からの冷気を供給される熱交換器等による液冷による能動的な冷却が、本明細書で説明するように航空機の任意の構成要素に提供され得る。
【0105】
上で議論したように、空気又は流体システムを使用して、航空機の様々な態様を冷却することができる。しかしながら、本明細書の実施形態は、航空機の様々な態様を冷却するために航空機内で使用され得る流体冷却システムの数を減らすものを提供する。流体冷却システムは、流体を循環させるために1つ又は複数のポンプを使用してもよい。このようなポンプは機械式又は電気式でもよい。機械式ポンプの場合に、ポンプに関連する重量及び複雑さが伴う。ポンプ自体も航空機に設置する必要があるため、航空機の重量が増加し、複雑さが増す。ポンプには、漏れの可能性があるベアリング、シール、及び/又は配管継手がある場合もある。ポンプが電気によって駆動される場合に、そのようなポンプは熱伝達の定格があり、従って比較的高い電力(例えば、5000ワット(W)以上)を必要とする可能性がある。
【0106】
流体システムは、使用中の流体の膨張及び収縮、システム充填中の空気の流出、使用中又は他の理由によるシステムの排出、及び/又は航空機の設計及び/又は動作における流体の流出に対応するように設計してもよい。これらの要因は全て、エンジニアリングの複雑さ及び認証の課題を表している可能性があり、それら複雑さ及び課題を回避し、本明細書で説明する空冷システムを使用することに利点がある可能性がある。
【0107】
流体システムはまた、‐35°F(‐35℃)未満の温度等で氷の形成に関する問題を抱えている可能性がある。こうして、氷が形成されるとシステムが故障する又は効率が低下する可能性があり、或いは氷を避けるための追加の構成要素が加える場合があり、これにより冷却システムの重量及び複雑さがさらに増大する。
【0108】
流体システムは、ある種の熱交換器を使用することもできる。これは、より熱い流体の熱をより冷たい流体に伝達する流体-流体である場合もあれば、船外に排出される空気に熱を伝達する流体-空気である場合もある。いずれの場合にも、各熱交換器は、重量及び体積(柔軟なアーキテクチャ/発電装置システム及び/又は航空機全体の重量に寄与する)を表し、漏れが発生し得るいくつかの潜在的な不具合点(少なくとも2つ、さらに流出及びと排出)を表し、特定の金属疲労のリスクを伴う溶接を含むことがよくある。いくつかの熱交換器は、本明細書で説明する実施形態において依然として使用され得るが(例えば、エンジンオイルを冷却するために)、本明細書で説明するように、熱交換器及び/又は流体冷却システムの数を減らすことは有利であり得る。
【0109】
流体冷却システムが流体-空気冷却器を使用するいくつかの例の航空機では、航空機及びシステム全体の設計に応じて、そのようなシステムは、専用のファンを使用して空気を動かし、所望の熱伝達を実行することができる。このようなファンは電気的に駆動される場合があるため、熱伝達の定格(例えば、5000W以上)の高出力モータが必要になる場合がある。上で議論したように、熱伝達用途での使用を考慮すると、高出力に定格された流体システム用のポンプも使用することができる。
【0110】
高出力定格のポンプ及びファンの使用は、航空機冷却システムにとって特に不利になる可能性がある。多くのポンプ、クーラー、ファンは重く、複雑で、多くのスペースを占有し、複数の潜在的な不具合点を引き起こす可能性がある。電動ポンプ及び/又はファンをある程度使用するためには、冷却システムを稼働し続けるために適切な電力も供給する必要がある。例えば、航空機が時間延長したミッション(例えば、数分以上)を行っている場合に、蓄積したエネルギ(例えば、バッテリ)では、そのようなポンプ及びファンに電力を供給するのに十分ではない可能性があり、従って発電機又は他の電源が提供されることになる。場合によっては、そのような発電機はエンジンに直接取り付けられたオルタネータである場合もあり、別個の発電機を介する場合もあり、或いは1つ又は複数のDC-DCコンバータを介する場合もある。特に、1つ又は複数のリフトモータ又は推進モータ向けの高電圧電力による分散型電気推進を特徴とする航空機では、DC-DCを使用してこの高電圧電力の一部を、ポンプ及びファンが使用する低電圧に変換することが論理的である場合がある。しかしながら、そのような構成要素は、冷却システムにさらに複雑さ及び重量を加える。
【0111】
任意の追加の電気回路は、電力、接地、及び制御のための追加の接続を有することができる。これらの接続は重い場合があり、必ずサイズ及び剛性(例えば、最小曲げ半径)を必要とするため、安全な接続と装置への電力供給とのために、特定の電子装置の周りに追加の体積が必要になる。電力を供給される各装置には、装置を保護するが、安全上の理由からリセット可能であり得るヒューズ又はブレーカ等の短絡保護部品が備えられている場合もある。様々な電子装置には、サービス乗組員の安全な取り扱いを与える構成要素も含まれる場合があり、及び/又は場合によっては、ミッションの様々なパラメータに合わせて装置の機能を調整するための制御要素が含まれる場合もある。このような構成要素は、冷却システムの重量及び複雑さをさらに増大させる。
【0112】
DC-DC変換が使用され、電圧の方向が高電圧から低電圧の方向である場合に、かなりの熱が生成され、その結果、効率が失われ、さらに別のシステム要素が能動的な冷却を必要とする可能性がある。
【0113】
さらに、追加の電動装置が加えられる場合にはどこでも、銅製の導体を使用することができる。多くの場合に、航空機内で電流を流すには銅が好まれる。銅のゲージ(ワイヤの直径)は、使用中の電流と利用可能な局所的な熱伝達との組合せによって決定される。導体、絶縁体、各端部のコネクタ、擦れを防ぐためのワイヤの物理的な支持体、及び/又は物理的な損傷を防ぐために配線に適用される追加の外装等、配線に関連する全てのものが重い場合がある。導体及びコネクタの能動的な熱伝達は実際的ではない可能性があるため、温度を低く保つために導体のサイズが大きくなり、その結果重量が増大する可能性がある。そのため、システムの重量及び複雑さを軽減するために、電動装置の数を減らすことがやはり望ましい。従って、同様に、航空機内で流体冷却を利用する構成要素又はシステムの数を減らすことも望ましい。
【0114】
図10は、例示的な実施形態による、冷却システムを備えたハイブリッド式発電装置の例を示す。
図11は、例示的な実施形態による、
図10の冷却システムを備えたハイブリッド式発電装置の例の断面図を示す。
図12は、例示的な実施形態による、
図10の冷却システムを備えたハイブリッド式発電装置の例の部分断面斜視図を示す。
【0115】
特に、
図10~
図12は、ハイブリッド式発電装置で使用され得る冷却システムを共に示しており、その冷却は機械的動力によって直接駆動され、ハイブリッド式発電装置の様々なシステムに冷気を同時に供給し、それにより航空機内に存在する流体冷却システム及び電動システムを削減する様々な利点を達成する。発電機/モータのシャフトは、エンジン1010及び/又は発電機/モータ(ハウジング1014内にあるため図示せず)からファンブレード1020に動力を供給することができる。シャフト1002は、ファン又はプロペラ等の推進機構等の機械部品に動力を供給することができる。吸気口1004は周囲空気を受け取り、ファンブレード1020は空気をダクト構造1006、1012、1013、1016、1018及びシュラウド1014(例えば、環状)に移動させる。
図10~
図12の例では、ファンブレード1020は、遠心ブロワであり、ファンブレード1020の軸に対して略垂直又は直角に空気を導くようにする。様々な実施形態において、軸流ブロワ及び/又は組合せブロワは、
図10~
図12に示されるような遠心ブロワに加えて、又は遠心ブロワに代えて使用され得る。
【0116】
ファンブレード1020等のブロワはシャフト1002から機械的に駆動され得るため、変換損失は殆どなく又はなく、消費される電力は、システムの他の構成要素を冷却するために供給される冷却空気の圧力及び流量で測定可能であり得る。対照的に、電動ファンは、シャフト動力から電力への変換(発電)、電圧の変換(DC-DC)、電力の伝送(I2R損失)、及び場合によっては他の損失による損失を受ける可能性がある。
【0117】
そのため、
図10~
図12に示される冷却システムは、空気流誘導要素が取り付けられた状態で、1つのシャフトから複数の装置及びシステムを同時に冷却し、ある設定した回転数(RPM)で回転する。様々な実施形態において、複数の空気流誘導要素(ファン又はブロワ)をシャフト1002等の単一のシャフトに取り付けてもよい。このようにして、異なる空気流誘導要素は、特定のシステム又は構成要素について説明するように、異なる圧力レベル等で異なる量の空気を異なる方向に導くことができる。
【0118】
様々な実施形態は、システム部品の様々な組合せの直列又は並列冷却(又は両方)を提供することができる。
図10~
図12に示されるシステムは、異なるダクト構造を介して様々な構成要素を並行して冷却する。空気は、ファンブレード1020からダクト構造1018(
図12の点A)に導入され、ダクト構造1006を通って熱交換器1008に移動することができる。熱交換器1008は、例えば、給気冷却器918又はオイルクーラ916として使用され得る。
図10~
図12では、給気冷却器(又は他の空気誘導熱交換器)とオイルクーラとの両方が存在し得るが、
図10~
図12の図ではそれらの構成要素のうちの1つだけが見える一方、他の構成要素は図から見えない(ただし、
図10では熱交換器1030として部分的に見える)。熱交換器1008及び1030は、2つの別個のダクトを備えたダクト構造1018に接続することができ、そのうちの1つ(例えば、ダクト構造1006)だけが
図10及び
図11に示される。
【0119】
空気は、ファンブレード1020からダクト構造1016(
図12の点B)に導入され、ダクト構造1012及び1013を通過して、エンジン1010のシリンダ(
図9のシリンダ906と同様)を冷却することができる。シュラウド1014は、電気機械(例えば、発電機モータ)の上又は周りに配置することができ、そのような電気機械を冷却するための冷気を供給するダクト構造として機能することができる。空気は、ファンブレード1020からシュラウド1014(
図12の点C)に導入され、シュラウド1014を通過して(例えば、
図9のモータ/発電機914及び/又はインバータ912を冷却するために)移動することができる。そのため、
図10~
図12では、単一の遠心ブロワが、エンジンのクランクシャフト又は動力シャフトからの動力を使用してシャフト駆動され、冷却空気を回転軸線に沿って平行にブロワに流入させることができる。次に、空気が、径方向外側に動き、ブロワホイールの周りに並んで配置された3つのボリュート(volute:渦巻き)A、B、Cによって収集される。
【0120】
さらに
図12を参照すると、ブロワホイールのハイブリッド式発電装置への取付部から最も遠いボリュートのセクションAは、空気流を密閉ダクト1018内に集める。次に、このダクト1018は、高圧の冷却空気流をV字型構成内の2つのアルミニウム製熱交換器に供給するように配置される。これらのクーラーの内の1つはエンジンオイル用であり得るが、もう1つはエンジンの吸気用であり得る。
【0121】
セクションAとCの間にあるボリュートのセクションB(例えば、中央セクション)は、互いに180度離れて正反対に配置された2つのダクト内に空気流を集める。これら2つのダクトは、ピストンエンジンのシリンダに冷却空気流を供給するように配置される。ファンブレード1020がハイブリッド式発電装置に取り付けられる場所に最も近いボリュートのセクションCは、電気モータ及びインバータの冷却専用のセクションである。この空気流はシュラウド1014内に封じ込められ、シュラウド1014を通って平行に強制的に流れることができる。シュラウド1014は、電気モータ及び/又はインバータハウジングから冷却流への冷却空気の流れと熱の移動とを可能にする目的で、電気モータ及び/又はインバータハウジングに接続された機械加工されたアルミニウム製フィンをその中に含んでもよい。
【0122】
様々な実施形態は、複数の遠心ブロワホイール又は放射状ブロワホイール及び/又は複数の軸流ファンブレードを含んでもよく、ギアボックスを使用する場合に、それらは異なるRPMで回転してもよい。これらのブロワ又はファンは、空気を複数の専用ラジエータ(例えば、流体-空気熱交換器又は空気-空気熱交換器)に供給する1つ又は複数のダクトに接続することができ、又は空気流によって冷却されるように設計された構成要素(当社のシリンダ及び当社のモータ/発電機)に直接接続することもできる。
【0123】
様々な実施形態において、単一の回転シャフトは、互いに背中合わせに接続した2つの遠心ブロワ要素とともに、本明細書で説明するように使用され、両方ともシャフトに取り付けられ得る。このような実施形態では、ハブの一方の側が、比較的高い圧力上昇及び高い質量流量を伴う複数の冷却要件を満たす、より大型のブロワを駆動することができる。ハブの反対側は、同じ又は異なる半径の比較的小型のブロワを駆動し、異なるレベルの圧力上昇及び質量流量を提供することができる。
【0124】
様々な実施形態において、1つ又は複数の遠心ブロワ及び/又は1つ又は複数の軸流ファンブレードセットを含む装置は、ハイブリッド式発電装置のクランクシャフト及び/又は動力シャフトから機械的に駆動され得る。これは、システムの異なるパッケージング要件/設置面積を達成することができ、及び/又は、特定の航空機とそのそれぞれの推進システム及び冷却のニーズとに望ましい、異なる圧力上昇、質量流量、又は他の工学パラメータを有する異なる空気流を提供するために使用することができる。
【0125】
様々な実施形態において、機械駆動システムは、単一のRPMでのみ回転するのではなく、クランクシャフト又は動力シャフトのRPMに対するファンシステムのRPMを変更するための歯車装置又は別の形式のトランスミッション(例えば、ベルト、無段変速機(CVT)、流体トルクコンバータ)を含んでもよい。このような特徴により、電気駆動の冷却システムを回避することで説明した全ての利点が達成され、歯車装置により空力ファン/ブロワの設計に柔軟性が加わる。
【0126】
様々な実施形態において、そのようなシステムのダクト構造は、軽量システムを達成するために、アルミニウム、複合材料、3次元(3D)印刷材料等、又はそれらの任意の組合せ等の様々な構成要素から作製してもよい。ダクト構造の材料は、複雑な曲面に成形することもでき、空気力学的効率等を提供する。アルミニウム又は他の金属等の材料と比較して軽量化を実現するために、カーボンファイバ及びエポキシ等の複合材料を使用してもよい。ダクト自体(例えば、シャフト駆動のブロワ又はファンと冷却を必要とする装置との間)も、発電機に対する複数の装置への圧力降下及び空気質量流量のバランスを保つのに役立つように慎重に設計される。これには、ダクトの形状及びサイズ、工学目的で直線又は簡素なダクトセクションに沿った狭窄が含まれる場合がある。
【0127】
様々な実施形態において、過冷却(例えば、周囲空気温度が低い場合)を防止するために、サーモスタット制御を追加することもできる。様々な実施形態はまた、各ダクト内を流れる(例えば、冷却される各構成要素への)空気の比率を変更するために、ダクト内にアクティブダンパを含んでもよい。冷却される構成要素の温度もコントローラによって監視され、構成要素が熱くなり過ぎる場合に、コントローラはその構成要素への空気の流れを調整して、より多くの量及び/又は圧力の冷却空気を供給することができる。
【0128】
図13は、例示的な実施形態によるハイブリッド式発電装置の冷却システムの第2の例の概略図を示す。ブロワ600は空気を取り込み、その空気を給気冷却器(例えば、エンジンインタークーラー)に供給し、そこで空気はダクト602を通ってエンジン606に送られ、エンジンのシリンダを冷却する。他の空気はダクト608を通ってエンジンオイルクーラ610を通過することができる。
【0129】
図14は、例示的な実施形態によるハイブリッド式発電装置の冷却システムの第3の例の概略図を示す。ブロワ600は、給気冷却器602に空気を供給することができ、ダクト604に空気を個別に供給して、エンジン606のシリンダを冷却することができる。他の空気はダクト608を通ってエンジンオイルクーラ610を通過することができる。
【0130】
図15は、例示的な実施形態によるハイブリッド式発電装置の冷却システムの第4の例の概略図を示す。
図15は
図13と同様であり、例えば、空気はブロワ600からモータ612(例えば、本明細書で説明する電気機械又はモータ/発電機)にも供給される。
【0131】
図16は、例示的な実施形態によるハイブリッド式発電装置の冷却システムの第5の例の概略図を示す。
図16は、ダクト614を介して追加の空気を液体空気冷却器に供給してモータ/発電機及び/又は他のパワーエレクトロニクスを冷却することを除いて、
図15と同様である。
【0132】
図17は、例示的な実施形態による冷却システムを備えたハイブリッド式発電装置の例の上面図を示す。
図18は、例示的な実施形態による
図17のA-A線に沿った断面図を示し、
図17のハイブリッド式発電装置の例を示す。
図19は、例示的な実施形態による
図18のB-B線に沿った断面図を示し、
図17のハイブリッド式発電装置の例を示す。
図20は、例示的な実施形態による
図17のハイブリッド式発電装置の例の代替図を示し、エンジンの冷却フィンの詳細を示す。
図21は、例示的な実施形態による冷却システムを備えた
図17のハイブリッド式発電装置の例の側面図を示す。
【0133】
特に、
図17~
図21はエンジン102を示しており、シャフト110がファンホイール302に動力を与え、ブロワ吸気口120を通して空気をもたらす。その空気は、上部ボリュート116、下部ボリュート118、右ダクト202、及び左ダクト204を通過する。ファンホイール302は、給気冷却器108によって取り囲まれてもよく、給気冷却器108は、ダクト112を介してターボチャージャ153吸気口から加熱した給気を受け取り、ダクト114を介して冷却した給気をエンジン102に出力し、ファンホイール302の回転によって供給された空気によって冷却される。
図19は、エンジン吸気フィルタ306及びエンジン排気308をさらに示す。
図19は、ファンホイール302のファンホイールフィン304も示している。
【0134】
モータ/発電機マウント122はまた、モータ発電機106をエンジン102に取り付ける。右ダクト202及び左ダクト204はまた、エンジンバッフリング(baffling)206に空気を供給して、エンジン102を冷却する。
図20は、ダクト202及び204からの冷気でエンジンを冷却するために使用されるエンジンシリンダフィン402を示す。
図21はさらに、ダクト202を介して空気を受け取ってエンジン用のオイルを冷却することができるエンジンオイルクーラ502を示しており、オイルは供給路504を介してエンジンに供給され、戻り路506を介して冷却器に戻される。一部の空気がエンジンシリンダに導かれる一方、他の空気がオイルクーラ502に導かれるように、ダクトセパレータ508を用いてダクト202の一部を分離することもできる。
【0135】
様々な実施形態では、柔軟なアーキテクチャ又は発電装置の構成要素が所望の温度である又は所望の温度範囲内にあることを保証するために、冷却システムの様々な態様も制御され得る。周囲環境温度及び/又は冷却システム内の様々な位置の温度を感知し、これを使用して冷却システムの様々な態様を制御することができる。温度センサは、本明細書で説明する冷却システム又は柔軟なアーキテクチャのいずれかの構成要素上、内部、又はその近くに配置してもよい。さらに、温度センサは、例えば、冷却システム及び柔軟なアーキテクチャのエンクロージャ上、エンクロージャ内、又はエンクロージャの近くに配置してもよい。これらの温度センサを使用して、様々な構成要素の実際の温度又はおおよその温度、及びエンクロージャ内又はエンクロージャの外の周囲空気温度を測定することができる。ほんの一例として、ピストンエンジンのシリンダは、本明細書で説明する冷却システムによって空冷され得る。例えば、環境(例えば、周囲温度)が寒い場合に、シリンダの外部が大幅な空冷により冷たくなり過ぎる一方、シリンダ内部の燃焼による熱によりピストンが膨張する可能性がある(シリンダは大幅な空冷により逆に収縮する可能性がある)。従って、温度差によるエンジンのピストン及びシリンダボアの焼き付きを回避するために、冷却システムを制御して、エンジンのシリンダを冷却するために使用される空気の量を制限することができる。そのため、様々な実施形態は、冷却システムからの空気流の一部又は全部が発電装置の態様、ここではエンジンのシリンダを冷却するために使用されるのを防ぐために、1つ又は複数のスロットル、バルブ、及び/又はリストリクタ(restrictor:絞り弁)を含んでもよい。スロットル、バルブ、及び/又はリストリクタは、本明細書で説明するように、冷却システムの様々なダクト構造内に配置してもよく、又はそうでなければブロワ/ファンと冷却される構成要素との間の流体経路内に配置して空気の流れを制限してもよい。例えば、
図2A又は
図2Bのコントローラ/プロセッサを使用して、スロットル又はバルブを制御するための電気制御信号を送信し、それによって空気の流れを必要に応じて特定の構成要素に制限することができる(構成要素のダクトを通る空気の流れを完全にオフにするか、又は全開と全閉との間どこかで空気の流れを制限することによって)。従って、閉ループ制御等の制御は、発電装置の特定の構成要素にどれ位の空気流及び冷却を到達させるかを制御するために達成され得る。制御可能なバタフライスロットル、スライドスロットル、バレルスロットル等の様々なタイプのスロットル、バルブ、及び/又はリストリクタを使用してもよい。制御は、季節又は環境の平均温度等に基づいて手動で行うこともできる。例えば、様々なサイズの開口部を備えた半永久的に設置されるリストリクタディスクをダクトに取り付け、ダクトから交換して、季節や地理等(全てが平均温度に影響を与える可能性がある)に基づいてどの位の気流の量を特定の構成要素に到達させるかを制御することができる。
【0136】
図22は、例示的な実施形態による冷却システムを制御するための例示的な方法2200を示すフローチャートである。2202において、温度情報がコントローラ又はプロセッサにおいて温度センサから受信され、温度センサは、冷却されることが望ましい発電装置の構成要素に、内部に、又はその近くに設置される。2204において、周囲温度情報が、プロセッサ又はコントローラにおいて例えば柔軟なアーキテクチャが封入されるエンクロージャ内、エンクロージャ上、又はエンクロージャ近くの温度センサから受信される。
【0137】
動作2206において、プロセッサ又はコントローラは、発電装置の構成要素に関連する温度又は周囲温度の少なくとも1つに基づいて、発電装置の構成要素に望ましい冷却レベルを決定する。その決定に基づいて、2208において、プロセッサは、電気的に制御されるスロットル又はバルブ機構(又は空気流を制御又は制限できる冷却システムの他の構成要素)に信号を出力して、発電装置の構成要素に供給される冷却のレベルを制御することができる。例えば、スロットル又はバルブ機構を使用して発電装置の特定の構成要素への空気流を制御する代わりに、又はそれに加えて、プロセッサ又はコントローラは、冷却システムのファン、インペラ、又はブロワによってどの位の空気流を実際に生成すると影響を与えるかについての、冷却システムの態様も制御することができる。例えば、制御信号がファン、インペラ、又はブロワに取り付けられたギアボックスに送信され、ファン、インペラ、又はブロワに動力を供給するシャフト間で異なるギア比が使用されるようになり、それによりファン、インペラ、又はブロワを異なるRPMで回転させ、それにより冷却システムの空気流を制御する。
【0138】
図28A~
図28Cは、例示的な実施形態による冷却システムのダクト構造の断面を含む冷却システムの一部を示す。
図29A及び
図29Bは、例示的な実施形態による、冷却システムのダクト構造の追加の詳細を含む、冷却システムの追加の部分を示す。特に、
図28A~
図28C及び
図29A及び
図29Bは、例示的な冷却システムのダクト構造の寸法及び/又は可能な比率の例を示す。構成要素の様々な特定のサイズについては以下で説明するが、これらのサイズは限定的ではなく、これらの範囲又は値以外の他のサイズを使用してもよい。例えば、冷却システムが、フラット4構成、油冷シリンダヘッド、及び空冷シリンダジャグを使用するターボチャージャ付き5.0リッタ・ディーゼル圧縮点火ピストン燃焼機関用に設計される場合、以下のサイズを使用してもよい。
【0139】
図28Aは、エンジンの冷却空気シリンダに向かう2つのダクトの断面cを示す
図2800を示す。2つのダクトのそれぞれは、空気が流れる内部面積が9.62平方インチ(in
2)を有し得る。様々な実施形態では、ダクトのそれぞれの面積は、6平方インチ、6.5平方インチ、7平方インチ、7.5平方インチ、8平方インチ、8.5平方インチ、9平方インチ、9.5平方インチ、10平方平方インチ、10.5平方インチ、11平方インチ、11.5平方インチ、12平方インチ、12.5平方インチ、13平方インチ、13.5平方インチ、14平方インチ、14.5平方インチ、又は15平方インチを含む、6~15平方インチのいずれであってもよい。
図28Bは、ファンホイールの直径aを示す
図2810を示しており、一例では、これは例えば18.75インチ(in)であり得る。様々な実施形態では、ファンの直径は、12インチ、13インチ、14インチ、15インチ、16インチ、17インチ、18インチ、19インチ、20インチ、21インチ、22インチ、23インチ、24インチ、25インチ等、12~25インチのいずれであってもよい。
図28Bは、寸法d及びeをさらに示し、ここで、dは、柔軟なアーキテクチャの1つ又は複数の熱交換器に空気を導くファン、インペラ、又はブロワの軸方向長さであり、eは、空冷シリンダに向けて(例えば、
図28Aに示されるダクトcを通して)空気を導くファン、インペラ、又はブロワの軸方向長さである。柔軟なアーキテクチャの様々な構成要素に空気を導くために、空気の様々な比率を使用することができる。
図28Bの例では、軸方向長さdの60%が熱交換器に関連している(そのため、ファン、インペラ、又はブロワによって動かされる空気の約60%がシステムの熱交換器に向けられる)一方、動かされる空気の40%はシリンダの冷却に向けられる。異なる実施形態では、空気の20~80%が熱交換器に向けられ、空気の20~80%がシリンダ冷却に向けられる等、異なる割合が可能である。様々な実施形態では、20/80、25/75、30/70、35/65、40/60、45/55、50/50、55/45、60/40、65/35、70/30、75/25、又は80/20等の異なる分割が可能である。
図28Cは、1つ又は複数の熱交換器に向けて空気を導くダクトの断面bが示される
図2820を示す。ダクトbは、空気が流れる内部面積が15.8平方インチ(in
2)であってもよい。様々な実施形態では、ダクトのそれぞれの面積は、8平方インチ、8.5平方インチ、9平方インチ、9.5平方インチ、10平方インチ、10.5平方インチ、11平方インチ、11.5平方インチ、12平方平方インチ、12.5平方インチ、13平方インチ、13.5平方インチ、14平方インチ、14.5平方インチ、15平方インチ、15.5平方インチ、16平方インチ、16.5平方インチ、17平方インチ、17.5平方インチ、18平方インチ、18.5平方インチ、19平方インチ、19.5平方インチ、20平方インチ、20.5平方インチ、21平方インチ、21.5平方インチ、22平方インチ、22.5平方インチ、23平方インチ、23.5平方インチ、又は24平方インチを含む、8~24平方インチのいずれであってもよい。
【0140】
図29Aは、ファン、インペラ、又はブロワの周りのダクトの側面
図2900及びその寸法例を示す。
図29Bは、ファン、インペラ、又はブロワの周りのダクトの側面
図2910及びその寸法例を示す。
図29Aにおいて、空気を1つ又は複数の熱交換器に導くダクトに関連する寸法が示される。
図29Bにおいて、空気をエンジンのシリンダに導くダクトに関連する寸法が示される。
図29Bの寸法と同様の別のダクトもまた、本明細書で説明するように、ファン、インペラ、又はブロワの反対側に含めてもよい。
図29A及び
図29Bに示される寸法は、ファン、インペラ、又はブロワの軸に関してインチ単位である。一方、
図29A及び
図29Bは寸法の例を示しているが、様々な実施形態では他の寸法を使用してもよい。例えば、示される各寸法は、表示される寸法のプラス又はマイナス6インチ、5.5インチ、5インチ、4.5インチ、4インチ、3.5インチ、3インチ、2.5インチ、2インチ、1.5インチ、1インチ、又は0.5インチの範囲内で変動し得る。
【0141】
図30は、デスクトップコンピュータ、ラップトップ、スマートフォン、タブレット、又は命令を実行する能力を有する他の同様の装置等の汎用コンピューティングシステム環境100を含むコンピューティング環境の一例の線図であり、そのような命令は非一時的なコンピュータ可読媒体内に保存される。本明細書で開示する様々なコンピューティング装置(例えば、プロセッサ/コントローラ205、航空機メインコントローラ220、プロセッサ/コントローラ280、又はこれらのコントローラと通信する任意の他のコンピューティング装置、コントローラは、航空機に搭載されるか、又は航空機から離れているかにかかわらず、航空機の他の構成要素又は制御システムの一部であってもよい)は、コンピューティングシステム100と同様であってもよく、又はコンピューティングシステム100のいくつかの構成要素を含んでもよい。また、単一のコンピューティングシステム100の文脈で説明し図示しているが、当業者であれば、以下に説明する様々なタスクが、ローカル又はワイドエリアネットワークを介してリンクされた複数のコンピューティングシステム100を有する分散環境で実施できることも理解されよう。そして、その環境で、実行可能命令は、複数のコンピューティングシステム100のうちの1つ又は複数に関連付けられ、及び/又はそれによって実行され得る。
【0142】
その最も基本的な構成では、コンピューティングシステム環境100は、典型的に、バス106を介してリンクされ得る少なくとも1つの処理ユニット102及び少なくとも1つのメモリ104を含む。コンピューティングシステム環境の正確な構成及びタイプに応じて、メモリ104は、揮発性(RAM110等)、不揮発性(ROM108、フラッシュメモリ等)、又はこれら2つの組合せであってもよい。コンピューティングシステム環境100は、追加の特徴及び/又は機能を有することができる。例えば、コンピューティングシステム環境100は、磁気ディスク又は光ディスク、テープドライブ及び/又はフラッシュドライブを含むがこれらに限定されない追加の記憶装置(リムーバブル及び/又は非リムーバブル)を含むこともできる。このような追加のメモリ装置は、例えば、ハードディスク駆動インターフェイス112、磁気ディスク駆動インターフェイス114、及び/又は光ディスク駆動インターフェイス116によって、コンピューティングシステム環境100にアクセス可能にすることができる。理解されるように、これらの装置は、それぞれシステムバス306にリンクされ、ハードディスク118に対する読み書き、リムーバブル磁気ディスク120に対する読み書き、及び/又はCD/DVD ROM又は他の光媒体等のリムーバブル光ディスク122に対する読み書きを可能にする。駆動インターフェイス及びそれらに関連するコンピュータ可読媒体は、コンピュータシステム環境100のためのコンピュータ可読命令、データ構造、プログラムモジュール及び他のデータの不揮発性記憶を可能にする。さらに、当業者であれば、データを保存できる他のタイプのコンピュータ可読媒体がこの同じ目的に使用できることを理解するだろう。このような媒体装置の例には、磁気カセット、フラッシュメモリカード、デジタルビデオディスク、ベルヌーイカートリッジ、ランダムアクセスメモリ、ナノドライブ、メモリスティック、他の読み取り/書き込み及び/又は読み取り専用メモリ、及び/又はコンピュータ可読命令、データ構造、プログラムモジュール、又は他のデータ等の情報を保存するための他の方法又は技術含まれるが、これらに限定されない。このようなコンピュータ記憶媒体はいずれも、コンピューティングシステム環境100の一部であってもよい。
【0143】
多くのプログラムモジュールが、1つ又は複数のメモリ/媒体装置に格納され得る。例えば、起動中等、コンピューティングシステム環境100内の要素同士の間で情報を転送するのに役立つ基本ルーチンを含む基本入出力システム(BIOS)124は、ROM108に記憶され得る。同様に、RAM110、ハードドライブ118、及び/又は周辺メモリ装置は、オペレーティングシステム126、1つ又は複数のアプリケーションプログラム128(例えば、本明細書に開示する機能を含み得る)、他のプログラムモジュール130、及び/又はプログラムデータ122を含むコンピュータ実行可能命令を記憶するために使用され得る。さらに、コンピュータ実行可能命令は、必要に応じて、例えばネットワーク接続を介してコンピューティング環境100にダウンロードしてもよい。
【0144】
エンドユーザは、キーボード134及び/又はポインティング装置136等の入力装置を介して、コンピューティングシステム環境100にコマンド及び情報を入力することができる。図示していないが、他の入力装置には、マイクロホン、ジョイスティック、ゲームパッド、スキャナ等が含まれ得る。これら及び他の入力装置は、典型的に、バス106に結合される周辺インターフェイス138によって処理ユニット102に接続される。入力装置は、直接的又は間接的に、例えば、パラレルポート、ゲームポート、ファイアワイヤ、又はユニバーサルシリアルバス(USB)等のインターフェイスを介してプロセッサ102に接続され得る。コンピューティングシステム環境100からの情報を見るために、ビデオアダプタ132等のインターフェイスを介して、モニタ140又は他のタイプの表示装置をバス106に接続してもよい。モニタ140に加えて、コンピューティングシステム環境100は、スピーカ及びプリンタ等、図示していない他の周辺出力装置も含み得る。
【0145】
コンピューティングシステム環境100は、1つ又は複数のコンピューティングシステム環境への論理接続を利用することもできる。コンピューティングシステム環境100とリモートコンピューティングシステム環境との間の通信は、ネットワークルーティングを担当するネットワークルータ152等の更なる処理装置を介して交換され得る。ネットワークルータ152との通信は、ネットワークインターフェイス構成要素154を介して実行され得る。こうして、そのようなネットワーク環境、例えば、インターネット、ワールドワイドウェブ、LAN、又は他の同様のタイプの有線又は無線ネットワーク内では、コンピューティングシステム環境100に関して示したプログラムモジュール、又はその一部が、コンピューティングシステム環境100のメモリ記憶装置に記憶され得ることが理解されよう。
【0146】
コンピューティングシステム環境100は、コンピューティングシステム環境100の位置を決定するための位置特定ハードウェア186を含むこともできる。場合によっては、位置特定ハードウェア156は、例えば、GPSアンテナ、RFIDチップ又はリーダー、WiFiアンテナ、又はコンピューティングシステム環境100の位置を決定するために使用され得る信号を捕捉又は送信するために使用され得る他のコンピューティングハードウェアを含み得る。
【0147】
本開示は特定の実施形態を説明してきたが、特許請求の範囲に明示的に記載している場合を除き、特許請求の範囲はこれらの実施形態に限定されることを意図していないことが理解されよう。逆に、本開示は、本開示の精神及び範囲内に含まれ得る代替物、修正物及び均等物を網羅することを意図している。さらに、本開示の詳細な説明では、開示した実施形態の完全な理解を与えるために、多くの特定の詳細を記載している。しかしながら、当業者には、本開示と一致するシステム及び方法が、これらの特定の詳細がなくても実施し得ることが明らかであろう。他の場合には、本開示の様々な態様を不必要に曖昧にしないように、周知の方法、手順、構成要素、及び回路については詳細に説明していない。
【0148】
本開示の詳細な説明のいくつかの部分は、コンピュータ又はデジタルシステムメモリ内のデータビットに対する操作の手順、論理ブロック、処理、及び他の記号表現に関して提示されている。これらの説明及び表現は、データ処理技術の当業者がその仕事の内容を他の当業者に最も効果的に伝えるために使用する手段である。手順、論理ブロック、プロセス等は、本明細書では、そして一般に、所望の結果につながるステップ又は命令の自己一貫性のあるシーケンスであると考えられる。これらのステップは、物理量の物理的操作を必要とするステップである。必ずではないが、通常、これらの物理的操作は、コンピュータシステム又は同様の電子計算装置で保存、転送、結合、比較、他に操作が可能な電気又は磁気データの形式をとる。便宜上の理由から、一般的な使用法を参照して、このようなデータは、現在開示している様々な実施形態に関して、ビット、値、要素、記号、文字、用語、数字等と呼ばれる。
【0149】
しかしながら、これらの用語は物理的な操作及び量を指すものとして解釈すべきであり、当技術分野で一般的に使用される用語を考慮してさらに解釈すべき単なる便宜的なラベルであることに留意すべきである。特に明記しない限り、本明細書の議論から明らかなように、本実施形態の議論を通じて、「決定する」、又は「出力する」、又は「送信する」、又は「記録する」、又は「位置特定する」、又は「記憶する」、又は「表示する」、又は「受信する」、又は「認識する」、又は「利用する」、又は「生成する」、又は「提供する」、又は「アクセスする」、又は「確認する」、又は「通知する」、又は「配信する」等の用語を利用した議論は、データを操作及び変換するコンピュータシステム又は同様の電子計算装置の動作及びプロセスを指す理解される。データは、コンピュータシステムのレジスタ及びメモリ内で物理的(電子)量として表され、コンピュータシステムのメモリ又はレジスタ、又は本明細書で説明する又はそうでなければ当業者には理解される他のそのような情報記憶装置、送信装置、又は表示装置内で同様に物理量として表される他のデータに変換される。
【0150】
例示的な実施形態では、本明細書で説明する動作のいずれも、コンピュータ可読媒体又はメモリに格納されたコンピュータ可読命令として少なくとも部分的に実装され得る。プロセッサによってコンピュータ可読命令が実行されると、コンピュータ可読命令はコンピューティング装置に動作を実行させることができる。
【0151】
例示的な実施形態の前述の説明は、例示及び説明の目的で提示したものである。その説明は、開示した正確な形態に関して網羅的又は限定的なものではなく、上記の教示に照らして、又は開示した実施形態の実践から修正及び変更が可能である。本発明の範囲は、添付の特許請求の範囲及びその均等物によって規定されることを意図している。
【国際調査報告】