IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ブレインソニックス コーポレイションの特許一覧

特表2024-510938適切な超音波照射を確実にするための品質保証デバイスおよび方法
<>
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図1
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図2
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図3
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図4
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図5
  • 特表-適切な超音波照射を確実にするための品質保証デバイスおよび方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-12
(54)【発明の名称】適切な超音波照射を確実にするための品質保証デバイスおよび方法
(51)【国際特許分類】
   H04R 29/00 20060101AFI20240305BHJP
【FI】
H04R29/00 330
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023553286
(86)(22)【出願日】2022-03-04
(85)【翻訳文提出日】2023-10-11
(86)【国際出願番号】 US2022018849
(87)【国際公開番号】W WO2022187582
(87)【国際公開日】2022-09-09
(31)【優先権主張番号】63/157,248
(32)【優先日】2021-03-05
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519214008
【氏名又は名称】ブレインソニックス コーポレイション
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】シェーファー, マーク イー.
(72)【発明者】
【氏名】シェーファー, サマンサ エフ.
(72)【発明者】
【氏名】ゲッセルト, ジェイムズ エム.
【テーマコード(参考)】
5D019
【Fターム(参考)】
5D019AA27
5D019FF04
(57)【要約】
適切な超音波照射を確実にする較正または品質保証デバイスおよび方法。超音波トランスデューサを較正するための装置が、提供される。装置は、固体材料を含む層と、層の固体材料内に埋め込まれた水中聴音器要素とを有する水中聴音器アセンブリを含む。超音波トランスデューサとシステム電子機器とを含む療法用超音波システムを較正する方法も、提供される。方法は、超音波トランスデューサを電子機器モジュールに接続することと、別個に、システム電子機器を電子機器モジュールに接続することと、超音波トランスデューサを所与の周波数において駆動し、超音波ビームを放出することと、水中聴音器要素を用いて超音波ビームを感知することと、水中聴音器要素から出力される信号を測定することとを含み得る。
【特許請求の範囲】
【請求項1】
超音波トランスデューサを較正するための装置であって、前記装置は、
第1の固体材料を備えている第1の層と、前記第1の層の前記第1の固体材料の中に埋め込まれた水中聴音器要素とを含む水中聴音器アセンブリを備えている、装置。
【請求項2】
前記水中聴音器要素は、圧電材料を備えている、請求項1に記載の装置。
【請求項3】
前記第1の固体材料は、低デュロメータウレタンまたは低デュロメータポリウレタンを備えている、請求項1に記載の装置。
【請求項4】
前記水中聴音器アセンブリは、前記第1の固体材料と異なる第2の固体材料を備えている第2の層を含み、前記第1の層は、少なくとも部分的に前記第2の層と前記水中聴音器要素との間に位置付けられている、請求項1に記載の装置。
【請求項5】
前記水中聴音器アセンブリは、前記超音波トランスデューサを保持するように構成された合致要素を含み、前記第2の層は、前記合致要素と前記水中聴音器要素との間に位置付けられている、請求項4に記載の装置。
【請求項6】
前記第1の固体材料は、低デュロメータウレタンまたは低デュロメータポリウレタンを備え、前記第2の固体材料は、アクリルを備えている、請求項4に記載の装置。
【請求項7】
前記第1の固体材料は、低デュロメータウレタンまたは低デュロメータポリウレタンを備え、前記第2の固体材料は、高デュロメータウレタン、高デュロメータポリウレタン、または高デュロメータシリコーンを備えている、請求項4に記載の装置。
【請求項8】
前記水中聴音器アセンブリは、前記超音波トランスデューサを受け取るように構成された合致要素を含み、前記第1の層および前記水中聴音器要素は、前記合致要素と前記第2の層との間に位置付けられている、請求項4に記載の装置。
【請求項9】
前記第1の層および前記第2の層は、界面に沿って隣接し、前記界面は、前記超音波トランスデューサから超音波ビームの伝搬方向に対して角度付けられている、請求項8に記載の装置。
【請求項10】
前記第2の固体材料は前記第1の固体材料より高い音響減衰を有する、請求項9に記載の装置。
【請求項11】
前記第2の固体材料は、前記第1の固体材料より高い音速を有する、請求項9に記載の装置。
【請求項12】
前記水中聴音器アセンブリは、前記第1の固体材料および前記第2の固体材料と異なる第3の固体材料を備えている第3の層を含み、前記第1の層および前記水中聴音器要素は、前記第2の層と前記第3の層との間に位置付けられている、請求項4に記載の装置。
【請求項13】
前記第1の固体材料は、低デュロメータウレタンまたは低デュロメータポリウレタンを備え、前記第2の固体材料は、アクリルを備え、前記第3の固体材料は、高デュロメータウレタン、高デュロメータポリウレタン、または高デュロメータシリコーンを備えている、請求項12に記載の装置。
【請求項14】
前記水中聴音器アセンブリは、前記超音波トランスデューサを受け取り、前記超音波トランスデューサから放出される超音波ビームの中心軸を前記水中聴音器要素の面の中心と整列させるように構成された合致要素を含む、請求項1に記載の装置。
【請求項15】
前記水中聴音器アセンブリは、筐体を含み、前記筐体は、前記合致要素の周りに延びているトラフ領域を含む。請求項14に記載の装置。
【請求項16】
前記水中聴音器アセンブリは、前記水中聴音器要素に隣接した前記第1の層の中に位置付けられた温度感知要素をさらに含む、請求項1に記載の装置。
【請求項17】
超音波トランスデューサとシステム電子機器とを含む療法用超音波システムを較正する方法であって、前記方法は、
前記超音波トランスデューサを電子機器モジュールに接続することと、
別個に、前記システム電子機器を前記電子機器モジュールに接続することと、
前記システム電子機器を前記超音波トランスデューサに前記電子機器モジュール内で接続することと、
前記超音波トランスデューサを第1の周波数において駆動し、第1の超音波ビームを放出することと、
水中聴音器要素を用いて前記超音波ビームを感知することと、
前記水中聴音器要素から出力される、第1の信号を測定することと
を含む、方法。
【請求項18】
前記超音波トランスデューサから前記システム電子機器を前記電子機器モジュール内で接続解除することと、
第2の超音波ビームを放出するように、第2の周波数で前記電子機器モジュールから前記超音波トランスデューサを駆動することと、
前記水中聴音器要素を用いて前記第2の超音波ビームを感知することと、
前記水中聴音器要素から出力される第2の信号を測定することと
をさらに含む、請求項17に記載の方法。
【請求項19】
前記超音波トランスデューサから前記システム電子機器を前記電子機器モジュール内で接続解除することと、
前記電子機器モジュールで前記システム電子機器から電気駆動信号を受信することと、
電圧振幅、周波数、帯域幅、パルス持続時間、パルス繰り返し周波数、または平均電力に関して、前記電気駆動信号を分析することと
をさらに含む、請求項17に記載の方法。
【請求項20】
前記超音波トランスデューサからシステム電子機器を前記電子機器モジュール内で接続解除することと、
前記超音波トランスデューサの電気インピーダンスを決定することと
をさらに含む、請求項17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、参照することによってその全体として本明細書に組み込まれる2021年3月5日に出願された米国仮出願第63/157,248号の利益を主張する。
【0002】
(技術分野)
技術分野は、加熱またはキャビテーション等の損傷を引き起こさないエネルギーレベルを使用した組織の超音波および集束超音波治療に関し、特に、適切な超音波照射を確実にする較正または品質保証デバイスおよび方法に関する。
【背景技術】
【0003】
超音波を用いて組織を治療するとき、治療は、意図されるレベルの超音波エネルギーを用いて行われるべきである。エネルギーレベルが低すぎる場合、治療は、効果がないこともある。エネルギーレベルが、高すぎる場合、治療は、意図されない生物学的悪影響を引き起こし得る。一貫性が、過剰治療または過少治療のいずれも生じないことを確実にする。
【0004】
超音波治療システムは、必要な電気駆動信号を生じさせ得るシステム;次いで組織の中に伝送される超音(機械)波にそれらの電気信号を転換するトランスデューサ;および、駆動システムとトランスデューサとを相互接続する接続部(典型的に、ケーブル)を含む。トランスデューサは、その中に1つ以上の電気音響転換デバイス(典型的に、限定ではないが、圧電セラミック、複合材、または単結晶要素)を有し得る。治療システム全体の他の部分(位置決め、誘導等)も、存在する。
【0005】
超音波治療システムが、治療施設(例えば、病院、診療所、医師の診療室)に最初に送達され、据え付けられ、または設定されるとき、それは、完全に正常に運転できる状態にあることが想定される。これは、通常、機器に精通している要員によって、典型的に、そのシステムを製造した企業の据え付けサービス要員によって確認される。その時点で、そのシステムの音響出力特性が、把握される。そして、目標は、適切な治療が提供されるように、出力がその既知のレベルに留まることを確実にすることである。その初期条件に対する音響出力は、そのシステムの条件における変化、潜在的に、不正確な治療源のインジケータである。
【0006】
不正確または不適切な治療の潜在的原因が、存在する(主として、伝送超音波トランスデューサの効率、内部接続性、集束、または幾何学形状における変化;トランスデューサを電気的に駆動する電子システムにおける変化;または、電子システムと伝送トランスデューサとの間の接続における変化)。
【0007】
伝送トランスデューサは、繰り返された使用の後、エージングにさらされる(特に、そのような治療のために使用され得る高駆動レベルに伴って)。より一般的に、トランスデューサは、偶発的に落とされること、またはトランスデューサの出力に影響を及ぼすが目視検査を通して査定され得るどんな損傷も引き起こさない方法において誤って取り扱われることがある。例えば、内部構造の層間剥離は、音響出力に影響を及ぼすであろうが、目視検査によって検出可能ではないであろう。同様に、トランスデューサに内在する検出可能不可能であろう切断された接続も、生じ得る。
【0008】
トランスデューサを駆動する電子システムは、構成要素(駆動回路トランジスタまたはフィードバックレジスタ等)の品質の低下を被り得、劣化は、伝送電圧における変化を引き起こし得る(伝送電圧を増加させるか、または減少させる)。いずれの場合でも、組織の治療は、予期されるようなものではないであろう。
【0009】
電子システムとトランスデューサとの間のケーブルまたは他のタイプの接続も、隠れた損傷を受けやすい(例えば、機器カートの車輪によって轢かれた場合)。このタイプの損傷は、容易に見えないが、システム全体の出力性能に悪影響を及ぼし得る。
【0010】
これらの課題は、当該場所、すなわち、治療が生じることになる医師の診療室、病院、診療所、または他の医療施設において生じ得る。治療を投与し得る要員は、多くの場合、超音波システムの出力の適切な評価を実施するために必要な工学技能において、技術的資格を与えられているわけではない。治療は、システムが再現可能に、かつ予期されるまたは必要な臨床的限界内で働いていることを確実にするために、超音波の実際の投与の直前にチェックされるべきである(意図されるレベルより上、および下の両方)。
【0011】
さらに、臨床的研究調査のために、治療は、調査全体の持続時間(数ヶ月または数年を含み得る)にわたって一貫性があるべきである。超音波システムが、時間に伴って劣化する場合、臨床治験の終了時に治療される対象が、治験の開始時における対象と同じ治療を受けていないこともあり、それは、治験全体を無効にし得る。
【0012】
従来のシステムは、組織に送達される超音波に関する再現性情報を提供するための単純な定量的手段を提供するために存在する。そのような従来のシステムは、非常に定性的で一貫していないか、非技術的要員が動作させることが困難であるか、または、単一のシステムのために特に設計されており、普遍的に適用可能ではない。
【0013】
したがって、超音波治療システムの超音波出力一貫性を評価するための使用し易く、技術的に洗練されたシステムまたはデバイスの必要性が、存在する。デバイスは、伝送機電子機器と超音波トランスデューサとの両方をチェックすべきである。同時に、デバイスは、非技術的要員、例えば、看護師、医師、医療技師によって確実に動作させられるために十分に単純でなければならない。デバイスはまた、治療施設において、特に、MRIシステムの近く(MRI部屋内の磁性材料または伝導性ループを除く)において使用されるように持ち運び可能であるべきである。
【発明の概要】
【課題を解決するための手段】
【0014】
ある実施形態では、超音波トランスデューサを較正するための装置が、提供される。装置は、固体材料を備えている層と層の固体材料内に埋め込まれた水中聴音器要素とを含む水中聴音器アセンブリを備えている。
【0015】
ある実施形態では、超音波トランスデューサとシステム電子機器とを含む療法用超音波システムを較正する方法が、提供される。方法は、超音波トランスデューサを電子機器モジュールに接続することと、別個に、システム電子機器を電子機器モジュールに接続することと、超音波トランスデューサを所与の周波数において駆動し、超音波ビームを放出することと、水中聴音器要素を用いて超音波ビームを感知することと、水中聴音器要素から出力される、信号を測定することとを含む。
【図面の簡単な説明】
【0016】
図1図1は、本発明の実施形態による超音波治療システムの略図である。
【0017】
図2図2は、本発明の実施形態による超音波治療システムの略図である。
【0018】
図3図3は、本発明の実施形態による電子機器モジュールの略図である。
【0019】
図4図4は、本発明の実施形態による水中聴音器アセンブリの略図である。
【0020】
図5図5は、本発明の実施形態による図2のシステムの動作を示すフローチャートである。
【0021】
図6図6は、検査からの結果のある実施例である。
【発明を実施するための形態】
【0022】
本明細書に説明される発明の実施形態は、臨床現場において、技術(工学)的技能または大量の水なしで、超音波出力の迅速な検査を可能にし得る。本明細書に説明される発明の実施形態は、非常に再現可能である様式において、超音波出力、トランスデューサの電気的特性、および電気駆動信号についての情報を提供し得る。関連のある臨床的課題は、初期の据え付け時におけるそれに対する出力における変化であるので、絶対的な較正は、要求されない。本明細書に説明される発明の実施形態は、水タンクを要求しない様式での超音波の圧力振幅に関連した測定も提供し得る。
【0023】
図1を参照すると、本発明の実施形態によると、システム100は、電気駆動信号を生じさせるように構成され得、トランスデューサ200が、その電気駆動信号を超音(機械)波に転換し、その超音波は、続いて、組織の中に伝送される。システム100は、相互接続部105を有する導電体(ケーブル)を含み、相互接続部105は、システム100をトランスデューサ200に接続すること、それから接続解除することを行うための接続部を提供する。使用時、システム100およびトランスデューサ200は、相互接続部105を介して接続される。ケーブルは、トランスデューサ200内の要素の数に応じて、単一の同軸要素(RG-58等)または多導体ケーブルであることができる。解説を容易にするために、トランスデューサ200が単要素円形球状集束トランスデューサであり、ケーブルが単一のRG-58であると仮定され得る。相互接続部105は、BNCコネクタのオス型/メス型の対であり得るが、他のコネクタタイプも、可能である。使用時、トランスデューサ200は、焦点ゾーンが治療されるべき組織領域に適切に狙いを定められているように位置付けられ、システム100は、ケーブルを通してトランスデューサ200に電気信号を印加するためにオンにされ、それによって、トランスデューサ200は、組織を適切に治療する。
【0024】
システム100とトランスデューサ200との間の接続は、相互接続部105において分離され、再接続され得る。典型的に、分離は、BNCコネクタのオス型/メス型の対の接続解除を伴うが、他の形態の接続/接続解除も、可能である。トランスデューサ200が、システム100からの電気駆動の複数のチャネルによって駆動される複数の要素から成る場合、システム100は、電気駆動の各チャネルと多要素トランスデューサの各要素とを制御するように構成され得る。
【0025】
図2を参照すると、本発明の実施形態によると、システムは、電子機器モジュール300と、水中聴音器アセンブリ400と、コンピュータ500とを含む。システムは、図1のシステム100およびトランスデューサ200を検査するために使用され得る。システム100とトランスデューサ200との間の相互接続は、相互接続部105のコネクタ105Aおよび105Bによって、電子機器モジュール300に再接続される。接続のうちの一方が、コネクタ105Aを介してシステム100と電子機器モジュール300との間で行われ得る。接続の別のものが、コネクタ105Bを使用して電子機器モジュール300とトランスデューサ200との間で行われ得る。したがって、電子機器モジュール300は、システム100とトランスデューサ200との間に電気的に挿入される。加えて、トランスデューサ200は、以下で解説されるように、水中聴音器アセンブリ400に音響的に結合される。トランスデューサ200からの超音波出力波が、水中聴音器アセンブリ400の中に向かわせられる。コンピュータ500は、電子機器モジュール300に接続され、コンピュータ500上で起動するソフトウェアを介して制御を提供する。コンピュータ500は、図示されるように別個であり得るか、または、代替として、電子機器モジュール300の中に組み込まれ得るか、またはそれと組み合わせられ得る。電子機器モジュール300は、ユーザインターフェースの複雑性、検査データの記録の複雑性等に応じて、コンピュータまたはマイクロコンピュータではなく、マイクロコントローラによっても動作させられ得る。別個である場合、コンピュータ500と電子機器モジュール300との間の接続は、USB、イーサネット(登録商標)、RS-232等のいくつかの接続のうちのいずれかであり得る。コンピュータ500と電子機器モジュール300との間の接続は、例えば、USB接続を使用して、電子機器モジュール300に動作電力を供給し得、USB接続は、5ボルト、および使用されるUSBのタイプに応じて、異なる電流レベルにおける電力をもたらす。電子機器モジュール300は、壁変圧器、(再充電可能または交換可能な)バッテリ等の別個の電力供給源も有し得る。
【0026】
コンピュータ500上で起動するソフトウェアは、コンピュータ500と相互作用するオペレータの指示下で、電子機器モジュール300の活動を制御し得、その場合、オペレータは、タスクにとって好適なユーザインターフェース(UI)を利用し得る。UIの正確な本質は、いくつかの数の形式のうちのいずれかをとり得る。
【0027】
図3は、電子機器モジュール300の要素の略図である。システム100からの電気駆動信号が、コネクタ105Aを介して入って来る。この信号は、中継器310、また、トリガ回路346に進行する。中継器310が、電子機器モジュール300とトランスデューサ200とを電気的に接続または絶縁するために使用される。絶縁されているとき、電気駆動信号は、トランスデューサ200から独立して評価されることができる。同様に、絶縁された状態では、トランスデューサ200は、その電気特性、具体的に、その電気インピーダンスに関して評価されることができる。接続されているとき、システム100からの電気駆動信号が、トランスデューサ200まで行き、トランスデューサ200からの音響出力が、測定され、同時に、電気駆動信号が、測定されることができ、それによって、トランスデューサ200の電気音響効率が、評価されることができる。
【0028】
トリガ回路346が、電気駆動信号をサンプリングし、駆動信号を閾値電圧と比較することによって、電気駆動信号の開始が、決定されることができる。多くの場合では、電気駆動信号が、パルス化されているので、すなわち、オンであることとオフであることとの繰り返されるシーケンスを有しているので、トリガ回路346は、信号が開始したときを確立する。このトリガは、次いで、アナログ/デジタルコンバータ(ADC)340を使用して、電気駆動信号のサンプリングを開始するために使用される。タイミング回路344が、トリガ回路346およびADCクロック342からの出力を使用し、ADC340のアクションを制御する。代替として、トリガが、異なる様式において提供され得る。例えば、ADC340は、ADCクロック342を使用して連続的に起動し得、トリガ出力が、パルスの開始に対応するADC340からのサンプル出力流内の特定の時間を示すために使用され得る。略図に図示されていないが、トリガ回路346は、調節可能なトリガ閾値レベルを有し、そのようなレベルは、制御および通信ユニットまたはコントローラ350によって制御されることができる。コントローラ350は、マイクロプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、複合プログラマブル論理デバイス(CPLD)等から成り得る。コントローラ350は、システム100からの電気駆動信号との比較のための電圧レベルを設定するデジタル/アナログコンバータ(DAC)(図示せず)を制御し得る。閾値レベルが超過されると、ADCプロセスが、トリガされる。システム100からの電気駆動信号は、トリガ回路346によってサンプリングされる前、増幅器によって増幅されるか、または減衰器(図示せず)によって減衰され得、そのような増幅または減衰は、コントローラ350によってデジタル的に制御され得る。増幅または減衰された電気駆動信号は、電気駆動信号がADC340を使用してサンプリングされ得るように、コントローラ350の制御下で、マルチプレクサ330を通してルーティングされる。
【0029】
駆動信号は、振幅、周波数、およびパルス持続時間、およびパルスが生じる率(パルス繰り返し間隔)等のパルス特性に関して測定されることができる。これらのデータは、システム100の公称設定と比較され、システム100が意図されるように動作しているかどうかを決定することができる。駆動信号周波数は、コンピュータ500上でソフトウェアを使用して、高速フーリエ変換(FFT)または他の周波数測定アプローチから決定されることができる。駆動信号は、既知の抵抗負荷に接続されているときに、測定され得る。例えば、50オームの負荷が、システム100からの電気駆動信号に印加され、基準条件を提供し得る。
【0030】
中継器310がシステム100からトランスデューサ200を絶縁するとき、トランスデューサ200の電気インピーダンスが、インピーダンス測定回路320を使用して測定されることができる。インピーダンス測定回路320は、コントローラ350の制御下にある周波数源によって設定された周波数において動作する。インピーダンス測定回路320の信号が、マルチプレクサ330を通して、信号がサンプリングされるADC340にルーティングされる。デジタル信号が、分析のためにコントローラ350を通してコンピュータ500に通される。インピーダンス測定回路320は、駆動信号をトランスデューサ200に提供し、トランスデューサ200へのこの駆動信号および結果として生じる電流流動の両方をADC340に提供する。アナログデバイスAD9248等の二重ADCを使用することによって、電圧および電流の振幅および相対位相が、周波数源325によって設定されるような任意の周波数でのトランスデューサ200の複素インピーダンスを決定するために使用されることができる。より具体的に、周波数源325が、コンピュータ500上のソフトウェアによって測定されるような駆動信号の周波数に設定されることができる。したがって、駆動周波数におけるトランスデューサ200の電気特性が、確立されることができる。
【0031】
中継器310がトランスデューサ200をシステム100に接続しているとき、駆動信号における変化が、観察されることができ、駆動信号における変化は、システム100の条件の別の指示である。トランスデューサ200は、水中聴音器アセンブリ400に音響的に結合され得、トランスデューサ200の超音波波形出力が、水中聴音器アセンブリ400内の水中聴音器要素450を使用して測定されることができ、その出力が、ADC340を使用して、マルチプレクサ330を介してサンプリングされる。マルチプレクサ330は、同じADC340が複数の測定のために使用されることを可能にする。しかしながら、別の実施形態は、各測定の必要性のために、別個のADCを有し得る。再び、図示されないが、水中聴音器アセンブリ400からの出力は、それが低すぎる場合に信号をブーストするために、または、それが高すぎる場合に信号飽和を防止するために、必要に応じて、増幅器または減衰器によって増幅または減衰され得る。減衰または増幅は、コントローラ350の制御下で提供され得る。
【0032】
トランスデューサ200がシステム100に接続されている状態で、駆動インピーダンスが、負荷下で測定され、それによって、システム完全性の別の測定データ点を提供し得る。これは、システム100とトランスデューサ200との間の接続の中に挿入される、小さい直列レジスタを用いて測定されることができる(図3に図示せず)。
【0033】
図4は、水中聴音器アセンブリ400の略図である。概略図は、代表的実施形態では、円筒物である水中聴音器アセンブリ400の断面を表す。水中聴音器アセンブリ400は、外側ケーシングまたは筐体410を有する。トランスデューサ200が、筐体410の上に位置している状態で示される。筐体410の上部エリアは、合致要素415を有し、合致要素は、トランスデューサ200の前面外側縁または面の対応する領域に合致し、それと嵌め合うように設計され、それによって、トランスデューサ200が、水中聴音器アセンブリ400の上に設置され、水中聴音器アセンブリ400によって受け取られると、トランスデューサ200は、水中聴音器アセンブリ400の中心軸と同一線上にあるように中心を置かれ、トランスデューサ200の前面は、水中聴音器アセンブリ400の中心軸に対して直角である。そのように、トランスデューサ200から放出される超音波ビームの中心軸は、水中聴音器アセンブリ400の中心軸に沿って整列させられる。超音波ビームの中心軸は、合致要素415によって、水中聴音器要素450の中心に、ビーム径の最も狭い範囲の4分の1または8分の1未満以内まで整列させられ得る。これは、水中聴音器要素450のさらなる機械的整列または位置決めの必要性を排除する。
【0034】
超音波トランスデューサ200からの超音波エネルギーを水中聴音器アセンブリ400の中に音響的に結合するために、連続的な機械的伝導経路が、要求される。水中聴音器アセンブリ450内に含まれる固体材料の層430、440に起因して、連続的な機械的伝導経路が、水中聴音器アセンブリ400の上部領域内で層430の上に設置された少量の水420を用いて確立され得る。水の量は、圧力測定のための典型的水タンクよりかなり少ない約20ccであり得る。従来のタンクは、重く、不便である数十リットルの水を含むことができる。筐体410の上部領域の内側縁が、前に記載されたように、合致要素415を使用して、トランスデューサ200の正面と嵌め合う。トランスデューサ200が、定位置に置かれ、合致要素415によって受け取られると、ある過剰な水が、縁を越えてあふれ出て合致要素415に隣接した筐体410内のトラフ領域405によって捕捉され得る。トラフ領域405は、水が筐体410の側面を越えてあふれ出ることを防止する。代替として、音響結合ゲルが、水の代わりに使用され得る。代替として、トランスデューサ200の面の正確な形状が既知である場合、層440を生成するために使用されるそれに類似した固体結合材料が、トランスデューサ200の面の正確な反転物を形成するために作成され得る。この固体結合材料は、トランスデューサ200が、図4に示されるように、トランスデューサアセンブリ400上の定位置にある(すなわち、受け取られる)と、水420の形状を有するであろう。この場合、非常に少量のみの追加の水または音響結合ゲルが、音響結合を提供するために必要とされるであろう。
【0035】
破線220は、典型的な集束超音波ビームを図式的に表す。ビーム220は、トランスデューサ200の面からある距離離れた焦点領域を有し、焦点領域は、ビームが最も狭く、振幅が最も高く、波が平面状の方式において進行している領域である。超音波測定は、焦点の領域内またはそれを越えた場所、すなわち、波が平面状である場所において、最も再現可能である。焦点よりトランスデューサに近接して得られた測定値は、それが、いわゆる、トランスデューサの「近接場」であるので、非常に変動し易くあり得、焦点またはそれを越えた「遠方場」は、空間変動性、特に、位相均一性の観点から、非常に変動しにくい。水中聴音器アセンブリ400は、水中聴音器または超音波センサを超音波ビームの中心に、焦点距離またはそれを越えて、再現可能に設置するように構成される。それらの内部設計に応じて、異なるトランスデューサ200が、異なる焦点深度において集束させられることができる。それらの深度は、先験的に既知ではないこともあり、従って、アプローチは、水中聴音器要素450を任意の予期される焦点深度より深い位置に位置付けることであり得る。これは、比較的に背の高い水中聴音器アセンブリ400につながる。
【0036】
この距離を短くするために、水中聴音器アセンブリ400は、要素または層430を含む。層430は、超音波ビーム220がより短い距離に再集束させられるように、後続層440の固体材料と異なる音速を伴う固体材料のディスクまたは層である。これは、水中聴音器アセンブリ400のサイズおよびコストの両方を減らし得る。層430は、後続層440への界面において、凸面または凹面湾曲または平坦表面を有し得る。材料がより高い音速を用いて選定されるか、より低い音速を用いて選定されるかに応じることは、細い集束レンズを提供するために、底部表面が、凸面形であるか、凹面形であるかを駆動するであろう。好適な固体材料は、アクリル等のポリマーまたはプラスチックを含み、それらは、層440の固体材料と比較して比較的に低減衰性であるが、音速がより高い(アクリルに関して、2,730m/秒)。層440のそのような固体材料は、トランスデューサ200に面する平滑な上部表面を提供するために、かつ水420を含むための漏出防止シールを提供するためにも機械加工され得る。
【0037】
水中聴音器アセンブリ400の後続層440は、比較的に少ない吸収または減衰(散乱)を伴う超音波ビーム220の伝搬を可能にする固体材料であり、したがって、従来の水中聴音器システム内で使用される水の代用物である。層440の固体材料は、層430の固体材料と異なる。好適な固体材料は、1,450m/秒~1,700m/秒の音速を伴う低デュロメータウレタンと、低デュロメータポリウレタンとを含み得る。ある実施形態では、層440の低デュロメータ固体材料の硬度は、Shore A硬度スケールで15~30の範囲に及び得る。低デュロメータウレタンの別の側面は、それらが室温において鋳造され得ることである。これは、水中聴音器要素450が筐体410内に位置付けられることを可能にし、層440の結合材料が、層440の周囲に鋳造され、水中聴音器要素450を定位置に固定し、水中聴音器要素450を埋め込み得る。水中聴音器要素450は、最大感度の方向が、超音波ビーム220の軸に対して直交して整列させられるように中心に置かれ、位置付けられ得る。例えば、ディスク形状の水中聴音器要素は、ディスクの平面に対して直角である最大感度の方向を有するであろう。
【0038】
水中聴音器要素450を越えて(すなわち、超音波ビーム220の伝搬経路に沿ってより深く、より遠い位置において)、下方から水中聴音器要素450と交差し、不要な信号干渉を引き起こすであろういかなる反射も、上向きに戻らない、またはごくわずかしか上向きに戻らないように、材料および幾何学形状が、選定され得る。したがって、吸音材料の層470が、層440の背後に鋳造され得る。層470の固体材料は、層430の固体材料と異なり、層440の固体材料とも異なる。吸音材料の層470は、高デュロメータウレタン、高デュロメータポリウレタン、または高デュロメータシリコーン等のいくつかの固体材料のうちのいずれかであり得る。ある実施形態では、層470の高デュロメータ固体材料の硬度は、Shore A硬度スケールで75~100の範囲に及び得る。ある実施形態では、層470の高デュロメータ固体材料の硬度は、層440の低デュロメータ固体材料の硬度を上回り得る。タングステンのような微細粒粉末等の音響散乱体が、層470の材料の中に混合され、材料の超音波吸収を増加させ得る。水中聴音器要素450が埋め込まれる層440および吸音材料の層470は、界面に沿って隣接し、層440と層470との間の界面は、反射の余地をさらに最小化するために、超音波ビーム220の伝搬方向に対して角度付けられ得る。斑状表面界面等の他のアプローチも、同様に使用され得る。
【0039】
層440は、少なくとも部分的に層470と水中聴音器要素450との間に位置付けられる。層440は、少なくとも部分的に層430と水中聴音器要素450との間にも位置付けられる。その結果、指向性超音波ビーム220の伝搬は、水中聴音器要素450に到達するために、層430および層440の一部を横断する。層430は、合致要素415と水中聴音器要素450との間に位置付けられる。層430、層440、および水中聴音器要素450は、合致要素415と層470との間に位置付けられる。層440は、層430と層470との間に位置付けられ、層430を層470から完全に分離し得る。層470の固体材料は、層430の固体材料より高い音響減衰を有し、層430の固体材料より高い音速も有する。
【0040】
温度感知要素455が、水中聴音器要素450に隣接して位置付けられ得る。温度感知要素455は、材料440の温度を監視し得る。トランスデューサ200が、システム100によって駆動されている間に過剰な熱を生成する場合、過剰な熱は、水中聴音器要素450のみならず、層440内の固体材料を損傷させ得る。システム100は、過剰な熱を生成しないが、依然として、水中聴音器要素450上に測定可能な信号を提供するために十分なエネルギーを有するようなレベルに設定されるべきである。このレベルは、検査に先立って未知であり得るか、または、偶発的に超過され得るので、温度感知要素455は、水中聴音器要素450を保護するために、システム100がユーザによってシャットダウンされるべきこと、または中継器310を使用して接続解除されるべきことのフィードバックを提供する。シャットダウンまたは接続解除の後、検査は、温度が許容可能なレベルまで降下し、システム100の出力が減らされた後、再開され得る。温度感知要素455の出力は、マルチプレクサ330に接続され得るか、または、別のタイプの器具によって測定され得る。
【0041】
ある実施形態では、水中聴音器要素450は、いくつかのセンサ材料のいずれかから成り得る。ある実施形態では、水中聴音器要素45は、圧電セラミック、圧電セラミック複合材、または圧電ポリマー(例えば、ポリフッ化ビニリデン、すなわち、PVDF、またはコポリマー)等の圧電材料から成り得る。代替実施形態では、水中聴音器要素450は、電磁センサまたは容量性センサ等の異なるタイプのデバイスであり得る。圧電ポリマーは、音響的に透過的であり、超音波場を乱さず、反射を引き起こさず、かつ、概して、それらがある範囲の周波数に応答するように広い帯域幅を有し得る。圧電セラミックは、概して、所与の圧力振幅に関して、圧電ポリマーより高い出力電圧を生じさせる。ある実施形態では、水中聴音器要素450のセンサ材料は、圧電効果に従って電荷を発生させることによって、超音波ビーム220によって印加された機械的圧力に応答するように選定され得る。
【0042】
水中聴音器要素450の物理的サイズが、焦点ゾーンおよび超音波ビーム220の予期される幅に合致させられ得る。サイズが小さいほど、水中聴音器の感度は、より低くなる(圧力暴露と比較した電圧出力)。より小さいサイズは、水中聴音器アセンブリ400の上部上のトランスデューサ200の適切な物理的整列のための要件も増大させ得る。しかしながら、大きすぎる水中聴音器開口は、ビームの空間平均化につながり得、それは、測定中の不要な信号不安定性も引き起こし得る。ある実施形態では、水中聴音器要素450は、円形ディスク形状であり、水中聴音器要素450の直径は、おおよそ超音波ビーム220の予期される直径の大きさである。小さいリングまたは円筒物等の他の水中聴音器構成も同様に、可能である。システムは、ビーム幅特性の測定を可能にする複数の水中聴音器要素を含むようにも修正され得る。多水中聴音器要素システムは、必要に応じて、潜在的に複数の前置増幅器等との追加のマルチプレクサ入力接続を要求し得る。
【0043】
したがって、水中聴音器アセンブリ400の設計は、トランスデューサ200の設計および超音波ビーム220の形状に合致させられる。超音波ビーム220の深度および幅の両方が、考慮される。焦点深度は、使用されている場合、再集束層430を考慮して、水中聴音器要素450までの距離を設定する。焦点幅は、超音波ビーム220のメインローブの大部分が水中聴音器要素450によって捕捉されるが、いかなるサイドローブ(概して、メインローブと位相がずれている)も捕捉されないように、水中聴音器要素450の直径を設定する。水中聴音器要素450は、波が平面状であるように、超音波ビーム220の遠方場領域内にあるべきである。
【0044】
水中聴音器要素450からの電気接続が、配線482および484として示される。これらは、層470の背面から出現し、次いで、電子機器モジュール300の残部を備えている回路に接続される。増幅段が、水中聴音器要素450とマルチプレクサ330との間に挿入され得るか、または、複数のADCが存在する設計の場合、増幅段が、水中聴音器要素450とADCとの間に挿入され得る。増幅段は、可変であり得、利得が、ADC340の入力における適正な信号対ノイズ比(SNR)および感度の要件を満たすために変化する。
【0045】
図4に示される層470は、水中聴音器要素450による無関係な電気干渉の採取を防止するために使用される、電気的遮蔽を提供し得る。水中聴音器要素450は、低周波数(60および120Hz)電力ライン信号のみならず、トランスデューサ200の駆動周波数におけるより高い周波数信号、およびMRI機械、コンピュータ等の近傍の電子的機器からの高周波数電磁信号に影響され易くあり得る。ある実施形態では、信号配線482および484が、遮蔽されたツイストペアとして電子機器モジュール300に進み、ツイストペアは、電気的導通の層470によって提供される遮蔽と電気的に連続した遮蔽を有し、したがって、水中聴音器要素450を干渉から完全に遮蔽する。これは、システムの信号対ノイズ比(SNR)を著しく改良することができる。
【0046】
水中聴音器アセンブリ400は、電子機器モジュール300から遠隔に位置し得る。これは、トランスデューサ200がシステム100から遠隔に位置する場合、例えば、トランスデューサ200がMRIシステムを伴う部屋の中にある場合、必要であり得る。これは、MRI部屋が線の右側に記載される図2の垂直な破線によって記載される。そのような場合、MRIが活性ではないときにも、部屋の中にある強力な磁場が、存在する。その状況では、電子機器モジュール300内の電子構成要素は、静磁場とマイナスに相互作用し得る。主にプラスチックとポリマー材料とから成る水中聴音器アセンブリ400は、磁場によって影響を受けない。好適な前置増幅器(または、複数の水中聴音器要素の場合、複数の前置増幅器)が、信号を水中聴音器要素450から、MRI部屋の外側に位置するであろう電子機器モジュール300に伝送するために、水中聴音器アセンブリ400とともに位置し得る。
【0047】
図5は、本発明の実施形態によるシステム100の動作を図示するフローチャートである。このプロセスは、ユーザが、コネクタ105Aを介してシステム100を電子機器モジュール300に接続し、コネクタ105Bを介してトランスデューサ200を電子機器モジュール300に接続することから開始する(ブロック512)。フローチャートに記載されるように、ブロック512、514、516、528、532、および534は、ユーザによって行われ得る一方、他のブロックは、限定ではないが、コンピュータシステム500のソフトウェア制御下で実行され得る。
【0048】
ブロック514において、ユーザは、その時点で行われるべき測定および全ての機能測定が公称上同じ条件下で行われるように、システム100を定められた出力条件に設定する。システム100は、結果として生じる駆動波形が、高忠実度の測定値をもたらすように、駆動電圧、パルス持続時間、およびパルス繰り返し間隔の便利な組み合わせに設定され得る。
【0049】
システム100の出力は、水中聴音器アセンブリ400の過度の加熱を引き起こすように高くあるべきでも、水中聴音器要素450に関わる信号対ノイズ問題を招くように低くあるべきでもない。パルス持続時間は、良好な信号対ノイズ比のために十分に長いが、水中聴音器要素450において受信される超音波信号が、電気駆動信号の時間から時間的に分離されるように十分に短くあるべきである。これは、トランスデューサ200が十分に電気的に遮蔽されていないが、水中聴音器アセンブリ400全体が、遮蔽体460を含み、電気干渉を防止または最小化する場合、妥当であり得る。例えば、トランスデューサ200から、水420、層430、および層440を通した水中聴音器要素450への音響伝搬時間が40マイクロ秒である場合、パルス持続時間は、40マイクロ秒未満であるべきである。伝搬時間は、介在する水420、層430、および層400の音速、および水420、層430、および層400の各々を通した音進行の距離の関数であろう。トランスデューサ200が、適正に遮蔽されている場合、感知される音響信号から駆動を「時間分離」することは、必要ではないであろう。
【0050】
ブロック516において、ユーザは、トランスデューサ200を水中聴音器アセンブリ400の上部上の定位置に設置し、水420が、トランスデューサ面と完全に接触し、トラフ領域405の中にわずかにあふれ出ること、およびトランスデューサ200が、中心に置かれていることおよび整列させられていることを確実にする。筐体410の上部の設計は、筐体410の上部がトランスデューサ200の正面に対する物理的合致物であるようなものである。異なるトランスデューサは、異なる前面設計を有し得る。したがって、筐体410の置換可能な上部区分が、円形、長方形、長円形等を含む異なるトランスデューサ設計に適合するために必要とされ得る。トランスデューサ200が筐体410の上部上に正確に位置付けられると、ユーザは、システム100に電流を通し、電気駆動信号を生じさせる。
【0051】
ブロック518において、電子機器モジュール300内のコントローラ350にインターフェース接続されるコンピュータ500のソフトウェア制御下で、中継器310が、トランスデューサ200からシステム100を絶縁するように設定される。システム100は、検査目的のために、固定された抵抗負荷に接続され得る。
【0052】
ブロック520において、システム100からの電気駆動信号が、限定ではないが、電圧振幅、周波数、帯域幅、パルス持続時間、パルス繰り返し周波数、平均電力等の特性に関して分析される。分析は、アナログ/デジタル転換および波形サンプリング、コンピュータ500へのデータ転送、コンピュータ500上で起動するプログラムによるデータ分析によって行われる。(アナログデバイスAD8436またはAD636等の)RMS/電圧コンバータ、ピーク検出器回路、フィルタ等を含む、代替分析デバイスも、使用され得る。分析は、サンプリングされた信号に対して直接行われ得るか、または、それは、より低い基底帯域周波数範囲にダウンコンバートされ得る。
【0053】
ブロック522において、トランスデューサ200の電気インピーダンス特性が、測定され、具体的に、ブロック520の分析に基づく駆動信号の周波数を把握することによって、知らされる。トランスデューサ200の複素インピーダンスが、要素320からの特定の周波数において固定電圧信号を用いて駆動し、電流を検出し、同時に、電圧および電流信号を測定し、振幅および位相関係を決定することによって、決定され得る。専用のインピーダンスハードウェアである、要素320が、高側ソースレジスタを横断した電圧降下を測定することに基づいて、電流を計算する。トランスデューサ複素インピーダンスにおける変化は、接続障害、圧電セラミック要素の亀裂、内部層間剥離等の課題を示し得る。インピーダンス測定も、ある範囲の周波数にわたって行われ得る。
【0054】
ブロック524において、トランスデューサ200が電子機器モジュール300内の回路(図3に図示せず)から規定された周波数(または他の周波数)において駆動され、水中聴音器要素450からの信号を測定する。ある実施形態では、電子機器モジュール300は、PC500へのUSB接続から給電されており、音響信号が水中聴音器要素450によって測定されるほどトランスデューサ200を駆動するための十分な電力がないこともある。しかしながら、他の配置が、代表的な駆動信号がトランスデューサ200に提供される十分なレベルで電子機器モジュール300に電力を供給するために、別個に使用され得る。駆動信号が、電子機器モジュール300から提供される場合、それは、トランスデューサ200の機能および条件を査定するための独立した再現可能な測定条件を提供する。
【0055】
ブロック526において、ソフトウェアは、コンピュータおよびコントローラ350への接続を介して、システム100およびトランスデューサ200が接続されるように、中継器310の状態を変更する。負荷が、単なる抵抗負荷(ブロック520)からトランスデューサ200の実際の負荷に切り替えられるにつれて生じた駆動電圧における変化は、システム100の駆動電子機器の条件の指示を提供する。駆動活性のインピーダンス測定は、感知レジスタ内の電流波形を測定することによって、行われ得る。トランスデューサ200の出力が、水中聴音器要素450を使用して測定され、トランスデューサ200の電気音響効率の推定が、行われることができる。加えて、トランスデューサ200の出力の経時的な変化が、方法の規則的使用によって、監視されることができる。
【0056】
ブロック528において、直上で説明された種々の測定によって採集されたデータが、記録される。この記録は、ユーザによって手動で、またはコンピュータ500上で起動するソフトウェアによって自動的に行われることができる。
【0057】
ブロック530において、データが、以前の測定値と比較され、設定された量より大きい変化、または以前の値またはある基準値からの割合変化があるかどうかについて評価される。値が仕様内である場合、ユーザは、システム100をトランスデューサ200に接続し、組織の治療を進める(ステップ534)。値が仕様外である場合、トランスデューサ200またはシステム100が、疑わしいと見なされ、それらは、さらなる調査、潜在的に、再較正または修復なしに使用されるべきではない(ステップ532)。
【0058】
本発明の実施形態は、電気的検査および音響的検査の両方を単一のデバイス内に組み込み、臨床的環境において、非技術的ユーザに便利なである様式において、そのように行われる。
【0059】
本発明の実施形態は、電気的および音響的に、独立的におよび協調的に、システム100およびトランスデューサ200を自動的に評価する。
【0060】
本発明の実施形態は、測定システムにおける水中聴音器アセンブリ400を提供し、水中聴音器アセンブリ400は、最低限の水を使用する。水中聴音器要素450は、水のタンクではなく、固体材料の音響通路を提供する材料の鋳造可能な層440の中に埋め込まれる。固体材料内への埋め込みは、水中聴音器要素450の位置決めの安定性を著しく改良する。筐体410へのトランスデューサ200の嵌め合わせは、超音波ビーム220および水中聴音器要素450の高精度の整列を提供する。
【0061】
筐体410の上部における結合水の少ない量は、他の水タンクベースの水中聴音器測定システムより著しく少ない。オーバーフロートラフアプローチ(すなわち、トラフ領域405)が、臨床的環境内での水のあふれの機会を最小化しながら、同時に、水中聴音器アセンブリ400によって提供される測定システムへのトランスデューサ200の完全な音響結合を確実にする。
【0062】
水中聴音器要素450は、圧力波形が平面状であり、同相である超音波ビーム220の遠方場内に一貫して位置付けられ得る。
【0063】
層430は、焦点深度を短縮し、水中聴音器アセンブリ400の全体長を減らすために使用され得、それは、層430の材料の選択、材料の音速、材料の厚さ、および凸面形または凹面形の底部表面の曲率半径によって制御可能である。
【0064】
層440は、固体材料である水等価媒体を提供し、水中聴音器要素450を埋め込まれた要素として含むことができる。この材料を鋳造することによって、それは、最小限のコストを用いてより便利なに構築されることができる。
【0065】
水中聴音器要素450は、超音波ビーム220における圧力に比例する電気信号を提供する平面状または他の適切な形状にある、適切な圧電材料の小さいセンサである。
【0066】
(実施例)
固体材料内に埋め込まれた、水中聴音器が、受信機として使用された。水中聴音器は、20Vp-p、650kHzのパルス化された波形を用いて駆動される直径61mm、焦点距離80mmのトランスデューサを使用して検査された。PVDFと、圧電コポリマーと、セラミックとから成る水中聴音器要素が、高インピーダンスの低静電容量入力を使用して、0.5~3Vp-pの出力電圧を用いて検査された。センサは、2%未満の出力差を伴って経時的に安定していることが実証された。
【0067】
図6は、そのような検査からの結果のある実施例である。上側波形は、61mm、80mm焦点距離トランスデューサに対する駆動波形の測定値であり、20Vp-p、650kHzのパルス化された波形を示す。典型的であるように、圧電要素等の容量性負荷を駆動するとき、パルスの開始および終了時、電圧オーバーシュートが、存在する。
【0068】
図6の下側波形は、図4に示されるような構築設計を伴う鋳造されたウレタン円筒物内に埋め込まれた5mmの活性直径を伴うPVDFセンサからの受信された波形の測定値である。受信された波形は、超音波がウレタンを通して伝送トランスデューサから受信機まで進行するために要する時間に対応する伝送パルスからの時間オフセット(遅延)において、約1.5Vp-pの振幅を有する。これは、信号が、アナログ/デジタル転換、さらに、信号分析のために十分であり、良好な信号忠実度を有する振幅において、良好な信号対ノイズ比を伴って受信され得ることを実証する。
【0069】
本発明の実施形態は、療法用超音波システム電子機器およびトランスデューサの両方を別個および一緒に検査し、治療の有効性に直接関連する特定のメトリック(圧力波形データ)を提供する単一のシステムを提供し得る。
【0070】
本発明の実施形態は、臨床的環境において非技術的要員によって使用され得る測定システムおよび方法を提供し、経時的に容易に追跡され得る定量的メトリックを提供し得る。
【0071】
本発明の実施形態は、超音波トランスデューサを測定システムに結合するために水を殆ど要求しない測定システムを提供し得る。
【0072】
本発明の実施形態は、非技術的ユーザによって使用され得る便利な相互接続方法を提供し得る。
【0073】
本発明の実施形態は、プロセスが超音波駆動電子機器およびトランスデューサの内部中継接続および接続解除の使用を通して自動化された比較的に高性能の測定プロセスの単純なフローを通してユーザを誘導するコンピュータ化された方法を提供し得る。
【0074】
本発明の実施形態は、両方の要素を独立的に検査し得、システムの機能を全体として検査し得、駆動電子機器に及ぼすトランスデューサの影響を評価し得る超音波駆動電子機器とトランスデューサとの間に設置された検査デバイスを提供し得る。
【0075】
本発明の実施形態は、トランスデューサの複素インピーダンス測定を行うための周波数を決定するための駆動波形の周波数分析を提供する。
【0076】
本発明の実施形態は、同じ器具内の電気駆動、音響出力、およびインピーダンスを測定することの組み合わせを提供し得る。
【0077】
本発明の実施形態は、検査下の療法用超音波システムが正確に動作していることを決定するための広範囲の測定および評価技法を提供し得る。
【0078】
本発明の実施形態は、大きい水タンクの必要性を除去する特定の深度において特定の材料内に埋め込まれた水中聴音器を提供し得る。
【0079】
本発明の実施形態は、水中聴音器要素の周囲に水を要求することなく信号音響信号忠実度を提供する水中聴音器測定システムを提供し得る。
【0080】
本発明の実施形態は、二次集束要素(すなわち、層430)を含むことによってトランスデューサと水中聴音器との間に要求される物理的距離を短くする水中聴音器測定システムを提供し得る。
【0081】
本発明の実施形態は、改良された信号忠実度のために、平面波伝搬が主である超音波ビームの遠方場内に水中聴音器を位置付ける水中聴音器測定システムを提供し得る。
【0082】
本発明の実施形態は、改良された信号忠実度および安定性のために、超音波ビームのメインローブを捕捉し、サイドローブのうちの任意のもの捕捉しないようにサイズを決定された水中聴音器能動受信エリアを有する水中聴音器測定システムを提供し得る。
【0083】
本発明の実施形態は、治療セッションの直前または直後の超音波トランスデューサのその稼働環境内でのピーク圧力、平均強度、およびパルス特性を提供し得る。
【0084】
本発明の実施形態は、絶縁された条件にあるとき、および超音波トランスデューサを駆動している間の両方における超音波駆動システムのその稼働環境内でのピーク電圧、平均電力、およびパルス特性を提供し得る。
【0085】
本発明の実施形態は、いかなる走査または水中聴音器の位置決めも要求されず、同じ測定条件(トランスデューサおよび水中聴音器の幾何学形状)が、繰り返され得、経時的に一貫性チェックを可能にするように、水中聴音器に対して係止または固定されるような伝送トランスデューサの位置決めを可能にし得る。
【0086】
ある代替的実施形態では、フローチャート、シーケンス図、および/またはブロック図内に規定される、機能、行為、および/または動作は、本発明の実施形態と一貫して、並べ替えられ、逐次処理され、および/または並行して処理され得る。さらに、フローチャート、シーケンス図、および/またはブロック図のいずれも、本発明の実施形態と一貫して、図示されるものより多いまたはより少ないブロックを含み得る。
【0087】
本明細書において使用される専門用語は、特定の実施形態を説明する目的のためにすぎず、本発明の実施形態を限定することを意図していない。本明細書で使用されるように、単数形「a」、「an」、および「the(前記)」は、文脈が明確に別様に示さない限り、同様に、複数形を含むことを意図する。用語「comprises(~を備えている)」および/または「comprising(~を備えている)」が、本明細書で使用されるとき、記載される特徴、整数、ステップ、動作、要素、および/または構成要素の存在を規定するが、1つ以上の他の特徴、整数、ステップ、動作、要素、構成要素、および/またはそれらの群の存在または追加を除外するものではないことをさらに理解されたい。さらに、用語「includes(~を含む)」、「having(~を有する)」、「has(~を有する)」、「with(~を伴う)」、「comprised of(~から成る)」、またはそれらの異形が、詳細な説明または請求項のいずれかにおいて使用される限り、そのような用語は、用語「comprising(~を備えている)」に類似した様式において包括的であることを意図する。
【0088】
本発明の全てが、種々の実施形態の説明によって例証されており、これらの実施形態は、かなり詳細に説明されているが、添付される請求項の範囲をそのような詳細に制限すること、またはいかようにも限定したりすることは、本出願者の意図ではない。付加的利点および修正が、当業者に容易に想起されるであろう。本発明は、そのより広義の側面において、したがって、具体的詳細、代表的な装置および方法、および示され、説明される例証的実施例に限定されない。故に、逸脱が、本出願者の一般的な発明概念の精神または範囲から逸脱することなく、そのような詳細からなされ得る。
図1
図2
図3
図4
図5
図6
【国際調査報告】