(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-12
(54)【発明の名称】埋め込み型可膨張装置のための流体制御システム
(51)【国際特許分類】
A61F 2/48 20060101AFI20240305BHJP
【FI】
A61F2/48
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023558764
(86)(22)【出願日】2022-03-23
(85)【翻訳文提出日】2023-09-25
(86)【国際出願番号】 US2022071296
(87)【国際公開番号】W WO2022204700
(87)【国際公開日】2022-09-29
(32)【優先日】2021-03-25
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2022-03-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】506192652
【氏名又は名称】ボストン サイエンティフィック サイムド,インコーポレイテッド
【氏名又は名称原語表記】BOSTON SCIENTIFIC SCIMED,INC.
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(72)【発明者】
【氏名】ノーラン ダラー
(72)【発明者】
【氏名】ワチュケ ブライアン ピー
(72)【発明者】
【氏名】スミス ノエル
(72)【発明者】
【氏名】スウィーニー モイラ ビー
(72)【発明者】
【氏名】フューワー ピーター
(72)【発明者】
【氏名】シノット トーマス
(72)【発明者】
【氏名】パーシー リチャード
(72)【発明者】
【氏名】ボルゴス ナタリー アン
(72)【発明者】
【氏名】マルコス ラランジェイラ エドゥアルド
(72)【発明者】
【氏名】ギルデア ジョン
(72)【発明者】
【氏名】マレーナ エヴァニア アン
【テーマコード(参考)】
4C097
【Fターム(参考)】
4C097AA20
4C097BB01
4C097CC01
4C097CC18
4C097DD10
(57)【要約】
埋め込み型流体作動式装置が、流体を保持するように構成された流体リザーバと、可膨張部材と、流体リザーバと可膨張部材との間で流体を移送するように構成されたポンプアセンブリとを含むことができる。ポンプアセンブリは、1又は2以上の流体ポンプ及び1又は2以上のバルブを含む。電子制御システムが、1又は2以上の検知装置から受け取られた流体圧力測定値及び/又は流体流測定値に基づいてポンプアセンブリの動作を制御することができる。電子制御システムは、埋め込み型装置と共に設置された内部コンポーネントと、ユーザがユーザ入力を提供して埋め込み型装置から出力を受け取るために操作できる外部コンポーネントとを含むことができる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
埋め込み型流体作動式可膨張装置であって、
流体リザーバと、
可膨張部材と、
前記流体リザーバと前記可膨張部材との間に結合されて、前記流体リザーバと前記可膨張部材との間で流体を制御するように構成された電子流体制御システムと、
を備え、前記電子流体制御システムは、
ハウジングと、
前記ハウジング内の流体通路内に配置された少なくとも1つのポンプ装置を含む流体アーキテクチャを含む、前記ハウジング内に収容された流体制御システムと、
前記ハウジング内に収容された電子制御システムと、
を含み、前記電子制御システムは、
前記少なくとも1つのポンプ装置の動作を制御するように構成された少なくとも1つのプロセッサと、
少なくとも1つの外部入力を受け取るように構成された通信モジュールと、
を含み、
前記埋め込み型流体作動式可膨張装置内の流体圧力を検知して、検知された圧力を前記電子制御システムに送信するように構成された、少なくとも1つの圧力検知装置をさらに備えた、埋め込み型流体作動式可膨張装置。
【請求項2】
前記リザーバは、前記ハウジングの外面に結合されている、請求項1に記載の埋め込み型流体作動式可膨張装置。
【請求項3】
前記リザーバは、該リザーバから流体が排出されるにつれ収縮し、前記リザーバに流体が流入するにつれ膨張するように構成されたベローズ構造を含む、請求項1又は2に記載の埋め込み型流体作動式可膨張装置。
【請求項4】
前記リザーバは前記ハウジング内に収容され、前記リザーバから流体が排出されるにつれて収縮し、前記リザーバに流体が流入するにつれて膨張するように構成されたベローズ構造を含み、
前記埋め込み型流体作動式可膨張装置は、前記ハウジング内に閉鎖型ベローズをさらに備え、前記閉鎖型ベローズは、前記リザーバの膨張に応答して収縮し、前記リザーバの収縮に応答して膨張するように構成されるように圧縮性流体で満たされる、請求項3に記載の埋め込み型流体作動式可膨張装置。
【請求項5】
前記電子制御システムは、前記少なくとも1つの外部入力を外部装置から受け取り、受け取ったユーザ入力に応答して前記少なくとも1つのポンプ装置の動作を制御するように構成されている、請求項1~4のいずれかに記載の埋め込み型流体作動式可膨張装置。
【請求項6】
前記電子制御システムは、前記流体制御式可膨張装置に対応して配置された磁石と前記電子制御システムとの相互作用によって生成された信号が予め設定された期間にわたって検出されたことに応答して、前記可膨張部材の圧力を低下させて前記可膨張部材の収縮を開始するように前記少なくとも1つのポンプ装置の動作を調整するよう構成されている、請求項5に記載の埋め込み型流体作動式可膨張装置。
【請求項7】
前記電子制御システムは、
タッピング入力又はタギング入力に応答して前記少なくとも1つの検知装置によって検出された圧力の変動、又は、
前記流体作動式可膨張装置又は前記外部装置の動き検出装置によって検出された動きイベント、
の少なくとも一方を含むユーザ入力に応答して、前記少なくとも1つのポンプ装置の動作を制御するように構成されている、請求項1~4のいずれかに記載の埋め込み型流体作動式可膨張装置。
【請求項8】
前記外部入力は、前記少なくとも1つのポンプ装置の圧電素子によって検出された予め設定されたシーケンスでの一連のタップを含む、請求項7に記載の埋め込み型流体作動式可膨張装置。
【請求項9】
前記予め設定されたシーケンスは、
第1のパターンの第1の数のタップによって定められる第1のタッピングシーケンスを含む、前記流体作動式可膨張装置を目覚めさせるウェイクアップシーケンスと、
第2のパターンの第2の数のタップによって定められる第2のタッピングシーケンスを含む、ユーザ入力に対応する作動シーケンスと、
を含む、請求項8に記載の埋め込み型流体作動式可膨張装置。
【請求項10】
前記電子制御システムは、前記流体制御式可膨張装置内の圧力レベルをモニタし、検出された圧力の変動に応答して、
前記可膨張部材が予め設定された期間よりも長く膨張状態にあることを検出したことに応答して、前記可膨張部材の圧力を減少させて前記可膨張部材を収縮させるように前記少なくとも1つのポンプ装置を制御することと、
予め設定された期間よりも短い継続時間を有する圧力の増加又は減少を検出したことに応答して、前記流体制御式可膨張装置の現在の状態を維持するように前記少なくとも1つのポンプ装置を制御することと、
大気状態の変化を検出したことに応答して、前記流体制御式可膨張装置の現在の状態を維持するように前記少なくとも1つのポンプ装置を制御することと、
を含む、前記少なくとも1つのポンプ装置の動作の制御を行うように構成されている、請求項1~9のいずれかに記載の埋め込み型流体作動式可膨張装置。
【請求項11】
前記電子制御システムは、
設定圧力に到達するまでの時間が設定期間を超えること又は前記設定圧力に到達できないことを検出したことに応答して前記流体制御式可膨張装置の故障を検出し、
検出された前記故障についてのアラートを前記外部装置に出力し、
検出された前記故障のエリアから流体を隔離する、
ように構成されている、請求項1~10のいずれかに記載の埋め込み型流体作動式可膨張装置。
【請求項12】
前記少なくとも1つのポンプ装置は、前記流体アーキテクチャの第1の流体チャネル内の第1の圧電ポンプと、前記流体アーキテクチャの第2の流体チャネル内の第2の圧電ポンプとを含み、
収縮モードにおいて、
前記第1の圧電ポンプは、前記可膨張部材から前記リザーバに流体をポンピングするように動作するよう構成される一方で、前記第2の圧電ポンプは待機モードにあり、
前記第1の圧電ポンプの動作によって生じた振動が、前記待機モードにある前記第2の圧電ポンプによってエネルギーへの変換のために取り込まれ、
膨張モードにおいて、
前記第2の圧電ポンプは、前記リザーバから前記可膨張部材に流体をポンピングするように動作するよう構成される一方で、前記第1の圧電ポンプは待機モードにあり、
前記第2の圧電ポンプの動作によって生じた振動が、前記待機モードにある前記第1の圧電ポンプによってエネルギーへの変換のために取り込まれ、
前記第1の圧電ポンプ及び前記第2の圧電ポンプがいずれも前記待機モードにある前記流体作動式可膨張装置の待機モードにおいて、
前記流体作動式可膨張装置が埋め込まれた患者の動きによって生じた振動が、前記第1の圧電ポンプ及び前記第2の圧電ポンプによってエネルギーへの変換のために取り込まれる、請求項1~11のいずれかに記載の埋め込み型流体作動式可膨張装置。
【請求項13】
前記流体アーキテクチャは、
前記可膨張部材から前記リザーバに向かう第1の方向の流体流を選択的に発生させて制御する、第1の流体通路内に配置された第1の一方向ポンプ及び第1の受動バルブと、
前記リザーバから前記可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する、第2の流体通路内に配置された第2の一方向ポンプ及び第2の受動バルブと、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
前記可膨張部材に沿って配置された能動バルブと、
を含み、
第1のモードにおいて、前記能動バルブは、前記可膨張部材における圧力スパイクの検出に応答して、前記可膨張部材の収縮を防ぐために前記電子制御システムによって閉じられるように構成され、
第2のモードにおいて、前記能動バルブは、前記電子流体制御システムへの電力損失の検出に応答して、前記可膨張部材の収縮を可能にするために前記電子制御システムによって開かれるように構成されている、請求項1に記載の埋め込み型流体作動式可膨張装置。
【請求項14】
前記流体アーキテクチャは、
第1の流体通路内に配置されて、前記可膨張部材から前記リザーバに向かう第1の方向の流体流を発生させるように構成された第1の一方向ポンプと、
第2の流体通路内に配置されて、前記リザーバから前記可膨張部材に向かう第2の方向の流体流を発生させるように構成された第2の一方向ポンプと、
前記第1の流体通路内の前記第1の方向の流体流を制限するとともに、前記第2の一方向ポンプが動作モードにあって前記第1の一方向ポンプが待機モードにある間に前記第1の流体通路内の流体の逆流を防ぐように、前記第1の流体通路内の前記第1の一方向ポンプと前記リザーバとの間に配置された第1の受動バルブと、
前記第2の流体通路内の前記第2の方向の流体流を制限するとともに、前記第1の一方向ポンプが動作モードにあって前記第2の一方向ポンプが待機モードにある間に前記第2の流体通路内の流体の逆流を防ぐように、前記第2の流体通路内の前記第2の一方向ポンプと前記リザーバとの間に配置された第2の受動バルブと、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
を含む、請求項1に記載の埋め込み型流体作動式可膨張装置。
【請求項15】
前記流体アーキテクチャは、
第1の流体通路内に配置されて、前記可膨張部材から前記リザーバに向かう第1の方向の流体流を選択的に発生させて制御する第1の複合ポンプ及びバルブ装置と、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
第2の流体通路内に配置されて、前記リザーバから前記可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する第2の複合ポンプ及びバルブ装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
を含む、請求項1に記載の埋め込み型流体作動式可膨張装置。
【請求項16】
埋め込み型流体作動式可膨張装置であって、
流体リザーバと、
可膨張部材と、
前記流体リザーバと前記可膨張部材との間に結合されて、前記流体リザーバと前記可膨張部材との間で流体を制御するように構成された電子流体制御システムと、
を備え、前記電子流体制御システムは、
ハウジングと、
前記ハウジング内の流体通路内に配置されたポンプ装置を含む流体アーキテクチャを含む、前記ハウジング内に収容された流体制御システムと、
前記ハウジング内に収容された電子制御システムと、
を含み、前記電子制御システムは、
前記少なくとも1つのポンプ及び少なくとも1つのバルブの動作を制御するように構成された少なくとも1つのプロセッサと、
少なくとも1つの外部装置と通信するように構成された通信モジュールと、
を含み、
前記埋め込み型流体作動式可膨張装置内の流体圧力を検知して、検知された圧力を前記電子制御システムに送信するように構成された、少なくとも1つの圧力検知装置をさらに備えた、埋め込み型流体作動式可膨張装置。
【請求項17】
前記リザーバは、前記ハウジングの外面に結合される、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項18】
前記リザーバは、該リザーバから流体が排出されるにつれ収縮し、前記リザーバに流体が流入するにつれ膨張するように構成されたベローズ構造を含む、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項19】
前記リザーバは、前記ハウジング内に収容されている、請求項18に記載の埋め込み型流体作動式可膨張装置。
【請求項20】
前記ハウジング内に閉鎖型ベローズをさらに備え、前記閉鎖型ベローズは、前記リザーバの膨張に応答して収縮し、前記リザーバの収縮に応答して膨張するように構成されるように圧縮性流体で満たされる、請求項19に記載の埋め込み型流体作動式可膨張装置。
【請求項21】
前記電子制御システムは、前記外部装置からユーザ入力を受け取り、受け取ったユーザ入力に応答して前記少なくとも1つのポンプ装置の動作を制御するように構成されている、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項22】
前記電子制御システムは、前記流体制御式可膨張装置に対応して配置された磁石と前記電子制御システムとの相互作用によって生成された信号が予め設定された期間にわたって検出されたことに応答して、前記可膨張部材の圧力を低下させて前記可膨張部材の収縮を開始するように前記少なくとも1つのポンプ装置の動作を調整するよう構成されている、請求項21に記載の埋め込み型流体作動式可膨張装置。
【請求項23】
前記電子制御システムは、
タッピング入力又はタギング入力に応答して前記少なくとも1つの検知装置によって検出された圧力の変動、又は、
前記流体作動式可膨張装置又は前記外部装置の動き検出装置によって検出された動きイベント、
の少なくとも一方を含むユーザ入力に応答して、前記少なくとも1つのポンプ装置の動作を制御するように構成されている、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項24】
前記タッピング入力は、前記少なくとも1つのポンプ装置の圧電素子によって検出された予め設定されたシーケンスでの一連のタップを含む、請求項23に記載の埋め込み型流体作動式可膨張装置。
【請求項25】
前記予め設定されたシーケンスは、
第1のパターンの第1の数のタップによって定められる第1のタッピングシーケンスを含む、前記流体作動式可膨張装置を目覚めさせるウェイクアップシーケンスと、
第2のパターンの第2の数のタップによって定められる第2のタッピングシーケンスを含む、ユーザ入力に対応する作動シーケンスと、
を含む、請求項24に記載の埋め込み型流体作動式可膨張装置。
【請求項26】
前記電子制御システムは、前記流体制御式可膨張装置内の圧力レベルをモニタし、検出された圧力の変動に応答して、
前記可膨張部材が予め設定された期間よりも長く膨張状態にあることを検出したことに応答して、前記可膨張部材の圧力を減少させて前記可膨張部材を収縮させるように前記少なくとも1つのポンプ装置を制御することと、
予め設定された期間よりも短い継続時間を有する圧力のスパイクを検出したことに応答して、前記流体制御式可膨張装置の現在の状態を維持するように前記少なくとも1つのポンプ装置を制御することと、
大気状態の変化を検出したことに応答して、前記流体制御式可膨張装置の現在の状態を維持するように前記少なくとも1つのポンプ装置を制御することと、
を含む、前記少なくとも1つのポンプ装置の動作の制御を行うように構成されている、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項27】
前記電子制御システムは、
設定圧力に到達するまでの時間が設定期間を超えること又は前記設定圧力に到達できないことを検出したことに応答して前記流体制御式可膨張装置の故障を検出し、
前記検出された故障についてのアラートを前記外部装置に出力し、
前記検出された故障のエリアから流体を隔離する、
ように構成されている、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項28】
前記少なくとも1つのポンプ装置は、前記流体アーキテクチャの第1の流体チャネル内の第1の圧電ポンプと、前記流体アーキテクチャの第2の流体チャネル内の第2の圧電ポンプとを含み、
収縮モードにおいて、
前記第1の圧電ポンプは、前記可膨張部材から前記リザーバに流体をポンピングするように動作するよう構成される一方で、前記第2の圧電ポンプは待機モードにあり、
前記第1の圧電ポンプの動作によって生じた振動が、前記待機モードにある前記第2の圧電ポンプによってエネルギーへの変換のために取り込まれ、
膨張モードにおいて、
前記第2の圧電ポンプは、前記リザーバから前記可膨張部材に流体をポンピングするように動作するよう構成される一方で、前記第1の圧電ポンプは待機モードにあり、
前記第2の圧電ポンプの動作によって生じた振動が、前記待機モードにある前記第1の圧電ポンプによってエネルギーへの変換のために取り込まれる、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項29】
前記第1の圧電ポンプ及び前記第2の圧電ポンプがいずれも前記待機モードにある前記流体作動式可膨張装置の待機モードにおいて、
前記流体作動式可膨張装置が埋め込まれた患者の動きによって生じた振動が、前記第1の圧電ポンプ及び前記第2の圧電ポンプによってエネルギーへの変換のために取り込まれる、請求項28に記載の埋め込み型流体作動式可膨張装置。
【請求項30】
前記流体アーキテクチャは、
前記可膨張部材から前記リザーバに向かう第1の方向の流体流を選択的に発生させて制御する、第1の流体通路内に配置された第1の一方向ポンプ及び第1の受動バルブと、
前記リザーバから前記可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する、第2の流体通路内に配置された第2の一方向ポンプ及び第2の受動バルブと、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
前記可膨張部材に沿って配置された能動バルブと、
を含み、
第1のモードにおいて、前記能動バルブは、前記可膨張部材における圧力スパイクの検出に応答して、前記可膨張部材の収縮を防ぐために前記電子制御システムによって閉じられるように構成され、
第2のモードにおいて、前記能動バルブは、前記電子流体制御システムへの電力損失の検出に応答して、前記可膨張部材の収縮を可能にするために前記電子制御システムによって開かれるように構成されている、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項31】
前記流体アーキテクチャは、
第1の流体通路内に配置されて、前記可膨張部材から前記リザーバに向かう第1の方向の流体流を発生させるように構成された第1の一方向ポンプと、
第2の流体通路内に配置されて、前記リザーバから前記可膨張部材に向かう第2の方向の流体流を発生させるように構成された第2の一方向ポンプと、
前記第1の流体通路内の前記第1の方向の流体流を制限するとともに、前記第2の一方向ポンプが動作モードにあって前記第1の一方向ポンプが待機モードにある間に前記第1の流体通路内の流体の逆流を防ぐように、前記第1の流体通路内の前記第1の一方向ポンプと前記リザーバとの間に配置された第1の受動バルブと、
前記第2の流体通路内の前記第2の方向の流体流を制限するとともに、前記第1の一方向ポンプが動作モードにあって前記第2の一方向ポンプが待機モードにある間に前記第2の流体通路内の流体の逆流を防ぐように、前記第2の流体通路内の前記第2の一方向ポンプと前記リザーバとの間に配置された第2の受動バルブと、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
を含む、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項32】
前記流体アーキテクチャは、
流体通路内に配置された一方向ポンプと、
前記流体通路内で前記ポンプと前記リザーバとの間に配置されて、前記電子制御システムによって選択的に作動されるように構成された第1の能動バルブと、
前記流体通路内で前記ポンプと前記可膨張部材との間に配置されて、前記電子制御システムによって選択的に作動されるように構成された第2の能動バルブと、
前記流体通路内で前記ポンプと前記リザーバとの間に配置されて、前記電子制御システムによって選択的に作動されるように構成された第3の能動バルブと、
前記流体通路内で前記ポンプと前記可膨張部材との間に配置されて、前記電子制御システムによって選択的に作動されるように構成された第4の能動バルブと、
を含み、
膨張モードにおいて、前記電子制御システムによって前記第1の能動バルブ及び前記第2の能動バルブが開かれ、前記電子制御システムによって前記第3の能動バルブ及び前記第4の能動バルブが閉じられることにより、前記リザーバから前記可膨張部材に流体がポンピングされ、
収縮モードにおいて、前記電子制御システムによって前記第3の能動バルブ及び前記第4の能動バルブが開かれ、前記電子制御システムによって前記第1の能動バルブ及び前記第2の能動バルブが閉じられることにより、前記可膨張部材から前記リザーバに流体がポンピングされる、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項33】
前記流体アーキテクチャは、
第1の流体通路内に配置されて、前記可膨張部材から前記リザーバに向かう第1の方向の流体流を選択的に発生させて制御する第1の複合ポンプ及びバルブ装置と、
前記リザーバの流体圧力を検知するように配置された第1の検知装置と、
第2の流体通路内に配置されて、前記リザーバから前記可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する第2の複合ポンプ及びバルブ装置と、
前記可膨張部材の流体圧力を検知するように配置された第2の検知装置と、
を含む、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項34】
前記流体アーキテクチャは、
第1の流体通路内に配置されて、前記可膨張部材から前記リザーバに向かう第1の方向の流体流を選択的に発生させて制御し、前記リザーバの流体圧力を検知するように構成された、第1の圧電ポンプ及びバルブ装置と、
第2の流体通路内に配置されて、前記リザーバから前記可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御し、前記可膨張部材の流体圧力を検知するように構成された、第2の圧電ポンプ及びバルブ装置と、
を含む、請求項16に記載の埋め込み型流体作動式可膨張装置。
【請求項35】
前記流体アーキテクチャは、
ポンプと、
前記ポンプとの流体連通を維持するように開く第1のポートを有する、前記ポンプと前記リザーバとの間に配置された第1の三方向バルブと、
前記ポンプとの流体連通を維持するように開く第1のポートを有する、前記ポンプと前記可膨張部材との間に配置された第2の三方向バルブと、
を含み、
収縮モードにおいて、
前記第1の三方向バルブの第2のポートが開き、前記第1の三方向バルブの第3のポートが閉じて、前記第1の三方向バルブの前記第1のポートから前記第2のポートに流体流が向けられ、
前記第2の三方向バルブの第2のポートが開き、前記第2の三方向バルブの第3のポートが閉じて、前記第2の三方向バルブの前記第1のポートから前記第2のポートに流体流が向けられ、
膨張モードにおいて、
前記第1の三方向バルブの前記第2のポートが閉じ、前記第1の三方向バルブの前記第3のポートが開いて、前記第1の三方向バルブの前記第1のポートから前記第3のポートに流体流が向けられ、
前記第2の三方向バルブの前記第2のポートが閉じ、前記第2の三方向バルブの前記第3のポートが開いて、前記第2の三方向バルブの前記第1のポートから前記第3のポートに流体流が向けられる、請求項16に記載の埋め込み型流体作動式可膨張装置。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願との相互参照〕
本出願は、2021年3月25日に出願された「埋め込み型可膨張装置のための流体制御システム(FLUID CONTROL SYSTEM FOR AN IMPLANTABLE INFLATABLE DEVICE)」という名称の米国仮特許出願第63/200,739号に対する優先権を主張する2022年3月22日に出願された「埋め込み型可膨張装置のための流体制御システム」という名称の米国本特許出願第17/655,958号の継続出願であるとともに該本特許出願に対する優先権を主張するものであり、これらの文献の開示はその全体が引用により本明細書に組み入れられる。
【0002】
本出願は、2021年3月25日に出願された米国仮特許出願第63/200,739号に対する優先権を主張するものでもあり、この文献の開示はその全体が引用により本明細書に組み入れられる。
【0003】
本開示は、一般に身体インプラントに関し、具体的にはポンプを含む身体インプラントに関する。
【背景技術】
【0004】
多くの場合、能動的埋め込み型流体作動式装置は、埋め込み型装置の異なる部分間の流体流を調整する1又は2以上のポンプを含む。装置の流体通路内に1又は2以上のバルブを配置して、装置の異なる流体充填式インプラントコンポーネントの膨張、収縮、加圧、減圧、作動、非作動などを達成するように流体流を導いて制御することができる。一部の埋め込み型流体作動式装置では、センサを使用して装置の流体通路内の流体圧力及び/又は流体量をモニタすることができる。圧力モニタリング及び流量モニタリングを含む装置内の状態の正確なモニタリングは、装置動作の制御の改善、診断の改善、及び装置の有効性の改善を可能にすることができる。また、センサを使用して加速度、角度、気圧及び温度を含む装置の外部条件をモニタすることにより、装置の動作モードの決定を容易にすることもできる。
【発明の概要】
【課題を解決するための手段】
【0005】
一般的態様では、埋め込み型流体作動式可膨張装置が、流体リザーバと、可膨張部材と、流体リザーバと可膨張部材との間に結合されて、流体リザーバと可膨張部材との間で流体を制御するように構成された電子流体制御システムと、を含む。電子流体制御システムは、ハウジングと、ハウジング内の流体通路内に配置された少なくとも1つのバルブ及び少なくとも1つのポンプを含む流体アーキテクチャを含む、ハウジング内に収容された流体制御システムと、ハウジング内に収容された電子制御システムとを含み、電子制御システムは、少なくとも1つのポンプ及び少なくとも1つのバルブの動作を制御するように構成された少なくとも1つのプロセッサと、少なくとも1つの外部装置と通信するように構成された通信モジュールとを含む。埋め込み型流体作動式可膨張装置は、埋め込み型流体作動式可膨張装置内の流体圧力を検知して、検知された圧力を電子制御システムに送信するように構成された、少なくとも1つの圧力検知装置を含むこともできる。
【0006】
いくつかの実装では、リザーバがハウジングの外面に結合される。いくつかの実装では、リザーバが、リザーバから流体が排出されるにつれて収縮し、リザーバに流体が流入するにつれて膨張するように構成されたベローズ構造を含む。いくつかの実装では、リザーバがハウジング内に収容される。いくつかの実装では、リザーバの膨張に応答して収縮し、リザーバの収縮に応答して膨張するように構成されるように圧縮性流体で満たされた閉鎖型ベローズがハウジング内に設けられる。
【0007】
いくつかの実装では、電子制御システムが、外部装置からユーザ入力を受け取り、受け取ったユーザ入力に応答して少なくとも1つのポンプ及び少なくとも1つのバルブの動作を制御するように構成される。いくつかの実装では、電子制御システムが、流体制御式可膨張装置に対応して配置された磁石と電子制御システムとの相互作用によって生成された信号が予め設定された期間にわたって検出されたことに応答して可膨張部材の圧力を低下させて可膨張部材の収縮を開始するように少なくとも1つのポンプ及び少なくとも1つのバルブの動作を調整するよう構成される。いくつかの実装では、電子制御システムが、タッピング入力又はタギング入力に応答して少なくとも1つの検知装置によって検出された圧力の変動、或いは流体作動式可膨張装置又は外部装置の動き検出装置によって検出された動きイベントの少なくとも一方を含むユーザ入力に応答して少なくとも1つのポンプ及び少なくとも1つのバルブの動作を制御するように構成される。タッピング入力は、少なくとも1つのポンプ又は少なくとも1つのバルブの圧電素子によって検出された予め設定されたシーケンスでの一連のタップを含む、ことができる。予め設定されたシーケンスは、第1のパターンの第1の数のタップによって定められる第1のタッピングシーケンスを含む、流体作動式可膨張装置を目覚めさせるウェイクアップシーケンスと、第2のパターンの第2の数のタップによって定められる第2のタッピングシーケンスを含む、ユーザ入力に対応する作動シーケンスと、を含むことができる。
【0008】
いくつかの実装では、電子制御システムが、流体制御式可膨張装置内の圧力レベルをモニタし、検出された圧力の変動に応答して、可膨張部材が予め設定された期間よりも長く膨張状態にあることを検出したことに応答して、可膨張部材の圧力を減少させて可膨張部材を収縮させるように少なくとも1つのポンプ及び少なくとも1つのバルブを制御することと、予め設定された期間よりも短い継続時間を有する圧力のスパイクを検出したことに応答して、流体制御式可膨張装置の現在の状態を維持するように少なくとも1つのポンプ及び少なくとも1つのバルブを制御することと、大気状態の変化を検出したことに応答して、流体制御式可膨張装置の現在の状態を維持するように少なくとも1つのポンプ及び少なくとも1つのバルブを制御することとを含む、少なくとも1つのポンプ及び少なくとも1つのバルブの動作の制御を行うように構成される。
【0009】
いくつかの実装では、電子制御システムが、設定圧力に到達するまでの時間が設定期間を超えること又は設定圧力に到達できないことを検出したことに応答して流体制御式可膨張装置の故障を検出し、検出された故障についてのアラートを外部装置に出力し、検出された故障のエリアから流体を隔離する、ように構成される。
【0010】
いくつかの実装では、少なくとも1つのポンプが、流体アーキテクチャの第1の流体チャネル内の第1の圧電ポンプと、流体アーキテクチャの第2の流体チャネル内の第2の圧電ポンプとを含み、収縮モードでは、第1の圧電ポンプが、可膨張部材からリザーバに流体をポンピングするように動作するよう構成される一方で、第2の圧電ポンプが待機モードにあり、待機モードにある第2の圧電ポンプが、第1の圧電ポンプの動作によって生じた振動をエネルギーへの変換のために取り込むことができる。膨張モードでは、第2の圧電ポンプが、リザーバから可膨張部材に流体をポンピングするように動作するよう構成される一方で、第1の圧電ポンプが待機モードにあり、待機モードにある第1の圧電ポンプが、第2の圧電ポンプの動作によって生じた振動をエネルギーへの変換のために取り込むことができる。第1の圧電ポンプ及び第2の圧電ポンプがいずれも待機モードにある流体作動式可膨張装置の待機モードでは、第1の圧電ポンプ及び第2の圧電ポンプが、流体作動式可膨張装置が埋め込まれた患者の動きによって生じた振動をエネルギーへの変換のために取り込むことができる。
【0011】
いくつかの実装では、流体アーキテクチャが、可膨張部材からリザーバに向かう第1の方向の流体流を選択的に発生させて制御する、第1の流体通路内に配置された第1の一方向ポンプ及び第1の受動バルブと、リザーバから可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する、第2の流体通路内に配置された第2の一方向ポンプ及び第2の受動バルブと、リザーバの流体圧力を検知するように配置された第1の検知装置と、可膨張部材の流体圧力を検知するように配置された第2の検知装置と、可膨張部材に沿って配置された能動バルブと、を含む。第1のモードでは、能動バルブを、可膨張部材における圧力スパイクの検出に応答して、可膨張部材の収縮を防ぐために電子制御システムによって閉じられるように構成することができる。第2のモードでは、能動バルブを、電子流体制御システムへの電力損失の検出に応答して、可膨張部材の収縮を可能にするために電子制御によって開かれるように構成することができる。
【0012】
いくつかの実装では、流体アーキテクチャが、第1の流体通路内に配置されて、可膨張部材からリザーバに向かう第1の方向の流体流を発生させるように構成された第1の一方向ポンプと、第2の流体通路内に配置されて、リザーバから可膨張部材に向かう第2の方向の流体流を発生させるように構成された第2の一方向ポンプと、第1の流体通路内の第1の方向の流体流を制限するとともに、第2の一方向ポンプが動作モードにあって第1の一方向ポンプが待機モードにある間に第1の流体通路内の流体の逆流を防ぐように、第1の流体通路内の第1の一方向ポンプとリザーバとの間に配置された第1の受動バルブと、第2の流体通路内の第2の方向の流体流を制限するとともに、第1の一方向ポンプが動作モードにあって第2の一方向ポンプが待機モードにある間に第2の流体通路内の流体の逆流を防ぐように、第2の流体通路内の第2の一方向ポンプとリザーバとの間に配置された第2の受動バルブと、リザーバの流体圧力を検知するように配置された第1の検知装置と、可膨張部材の流体圧力を検知するように配置された第2の検知装置と、を含む。
【0013】
いくつかの実装では、流体アーキテクチャが、流体通路内に配置された一方向ポンプと、流体通路内のポンプとリザーバとの間に配置されて、電子制御システムによって選択的に作動されるように構成された第1の能動バルブと、流体通路内のポンプと可膨張部材との間に配置されて、電子制御システムによって選択的に作動されるように構成された第2の能動バルブと、流体通路内のポンプとリザーバとの間に配置されて、電子制御システムによって選択的に作動されるように構成された第3の能動バルブと、流体通路内のポンプと可膨張部材との間に配置されて、電子制御システムによって選択的に作動されるように構成された第4の能動バルブと、を含む。膨張モードでは、電子制御システムによって第1の能動バルブ及び第2の能動バルブが開かれ、電子制御システムによって第3の能動バルブ及び第4の能動バルブが閉じられることにより、リザーバから可膨張部材に流体がポンピングされる。収縮モードでは、電子制御システムによって第3の能動バルブ及び第4の能動バルブが開かれ、電子制御システムによって第1の能動バルブ及び第2の能動バルブが閉じられることにより、可膨張部材からリザーバに流体がポンピングされる。
【0014】
いくつかの実装では、流体アーキテクチャが、第1の流体通路内に配置されて、可膨張部材からリザーバに向かう第1の方向の流体流を選択的に発生させて制御する第1の複合ポンプ及びバルブ装置と、リザーバの流体圧力を検知するように配置された第1の検知装置と、第2の流体通路内に配置されて、リザーバから可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御する第2の複合ポンプ及びバルブ装置と、可膨張部材の流体圧力を検知するように配置された第2の検知装置と、を含む。
【0015】
いくつかの実装では、流体アーキテクチャが、第1の流体通路内に配置されて、可膨張部材からリザーバに向かう第1の方向の流体流を選択的に発生させて制御し、リザーバの流体圧力を検知するように構成された、第1の圧電ポンプ及びバルブ装置と、第2の流体通路内に配置されて、リザーバから可膨張部材に向かう第2の方向の流体流を選択的に発生させて制御し、可膨張部材の流体圧力を検知するように構成された、第2の圧電ポンプ及びバルブ装置と、を含む。いくつかの実装では、流体アーキテクチャが、ポンプと、ポンプとの流体連通を維持するように開く第1のポートを有する、ポンプとリザーバとの間に配置された第1の三方向バルブと、ポンプとの流体連通を維持するように開く第1のポートを有する、ポンプと可膨張部材との間に配置された第2の三方向バルブと、を含む。収縮モードでは、第1の三方向バルブの第2のポートが開き、第1の三方向バルブの第3のポートが閉じて、第1の三方向バルブの第1のポートから第2のポートに流体流が向けられ、第2の三方向バルブの第2のポートが開き、第2の三方向バルブの第3のポートが閉じて、第2の三方向バルブの第1のポートから第2のポートに流体流が向けられる。膨張モードでは、第1の三方向バルブの第2のポートが閉じ、第1の三方向バルブの第3のポートが開いて、第1の三方向バルブの第1のポートから第3のポートに流体流が向けられ、第2の三方向バルブの第2のポートが閉じ、第2の三方向バルブの第3のポートが開いて、第2の三方向バルブの第1のポートから第3のポートに流体流が向けられる。
【図面の簡単な説明】
【0016】
【
図1】ある態様による埋め込み型流体作動式可膨張装置のブロック図である。
【
図2A】ある態様による埋め込み型流体作動式可膨張装置例を示す図である。
【
図2B】ある態様による埋め込み型流体作動式可膨張装置例を示す図である。
【
図3】ある態様による埋め込み型流体作動式可膨張装置の流体アーキテクチャの概略図である。
【
図4】埋め込み型流体作動式可膨張装置の電子流体制御システム例の概略図である。
【
図5】
図4に示す流体制御システム例の第1の流体アーキテクチャ例の概略図である。
【
図6】
図4に示す流体制御システム例の第2の流体アーキテクチャ例の概略図である。
【
図7】
図4に示す流体制御システム例の第3の流体アーキテクチャ例の概略図である。
【
図8】
図4に示す流体制御システム例の第4の流体アーキテクチャ例の概略図である。
【
図9】
図4に示す流体制御システム例の第5の流体アーキテクチャ例の概略図である。
【
図10】
図4に示す流体制御システム例の第6の流体アーキテクチャ例の概略図である。
【
図11】
図4に示す流体制御システム例の第7の流体アーキテクチャ例の概略図である。
【
図12A】ある態様による埋め込み型流体作動式可膨張装置例の概略図である。
【
図12B】ある態様による埋め込み型流体作動式可膨張装置例の概略図である。
【
図12C】ある態様による埋め込み型流体作動式可膨張装置例の概略図である。
【
図13A】ある態様による埋め込み型流体作動式可膨張装置例の概略図である。
【
図13B】ある態様による埋め込み型流体作動式可膨張装置例の概略図である。
【発明を実施するための形態】
【0017】
本明細書では詳細な実装を開示する。しかしながら、開示する実装は一例にすぎず、様々な形態で具体化することができると理解されたい。従って、本明細書に開示する特定の構造的及び機能的詳細は、限定としてではなく、単に特許請求の範囲の根拠として、またこれらの実装を実質的にあらゆる適切な詳細構造で様々に採用できることを当業者に教示するための代表的根拠として解釈されたい。さらに、本明細書で使用する用語及び表現は限定を意図するものではなく、本開示の理解可能な説明を提供するためのものである。
【0018】
本明細書で使用する「1つの(英文不定冠詞)」という用語は、1又は1よりも多くの、と定義される。本明細書で使用する「別の」という用語は、少なくとも第2の又はそれ以上の、と定義される。本明細書で使用する「含む(including)」及び/又は「有する(having)」という用語は、備える(comprising)(すなわち、オープンな遷移(open transition))、と定義される。本明細書で使用する「結合された(coupled)」又は「移動可能に結合された(moveably coupled)」という用語は、接続された、と定義されるが、必ずしも直接かつ機械的なものである必要はない。
【0019】
一般に、実装は身体インプラントに関する。以下、患者又はユーザという用語は、本開示において開示する医療装置又は方法の恩恵を受ける人物に使用することができる。例えば、患者は、医療装置又は本開示によって医療装置を動作させるための開示する方法が身体に埋め込まれる人物であることができる。
【0020】
図1は、埋め込み型流体作動式可膨張装置例100のブロック図である。
図1に示す装置例100は、流体リザーバ102と、可膨張部材104と、流体リザーバ102と可膨張部材104との間で流体を移送するように構成された1又は2以上のポンプ及び1又は2以上のバルブなどの流体コンポーネントを含む流体制御システム106とを含む。流体制御システム106は、例えば装置100の流体システム内の流体圧力及び流体流量などの状態を検知する1又は2以上の検知装置を含むことができる。いくつかの実装では、装置例100が電子制御システム108を含む。電子制御システム108は、流体制御システム106の様々な流体コンポーネントの動作のモニタリング及び/又は制御、及び/又は埋め込み型流体作動式可膨張装置100内の1又は2以上の検知装置との通信、及び/又は1又は2以上の外部装置との通信を可能にすることができる。いくつかの例では、電子制御システム108が、例えばプロセッサ、メモリ、通信モジュール、電力貯蔵装置又はバッテリ、例えば加速度計などの検知装置、及び埋め込み型流体作動式可膨張装置100の動作及び制御を可能にするように構成された他のこのようなコンポーネントを含む。例えば、通信モジュールは、例えば外部コントローラ120などの1又は2以上の外部装置との通信を可能にすることができる。外部コントローラ120は、例えばユーザインターフェイスを通じてユーザ入力を受け取り、例えば通信モジュールを通じてこのユーザ入力を装置100の処理、動作及び制御のために電子制御システム108に送信するように構成することができる。電子制御システム108は、通信モジュールを通じて外部コントローラ120に動作情報を送信することができる。これにより、例えばユーザインターフェイスを通じてユーザに可膨張装置100の動作状態を提供し、医師に診断情報を提供することなどを可能にすることができる。いくつかの例では、外部コントローラ120が、内部電子制御システム108のコンポーネントの充電を可能にする電力伝送モジュールを含む。いくつかの例では、内部電子制御システム108の再充電のための電力伝送が、外部コントローラ120とは別の外部装置において行われる。いくつかの実装では、外部コントローラ120が、圧力センサ、加速度センサ、及びその他のこのような検知装置などの検知装置を含むことができる。外部コントローラ120内の外部圧力センサは、可膨張装置100が圧力変動を補償できるように、内部電子制御システム108に局所的大気圧又は作動圧をなど提供することができる。外部コントローラ120の加速度計は、可膨張装置100の制御のために、検出された患者の動きを内部電子制御システム108に提供することができる。流体リザーバ102、可膨張部材104及び流体制御システム106は、患者の体内に埋め込むことができる。いくつかの実装では、電子制御システム108が、流体制御システム106のハウジングに結合され又は組み込まれる。いくつかの実装では、電子制御システム108の少なくとも一部が流体制御システム106から物理的に分離される。いくつかの実装では、電子制御システム108のいくつかのモジュールが流体制御システム106に結合され又は組み込まれ、電子制御システム108のいくつかのモジュールが流体制御システム106から分離される。例えば、いくつかの実装では、電子制御システム108のいくつかのモジュールが、埋め込み型装置100に含まれる電子制御システム108の他のモジュールと通信する(外部コントローラ120などの)外部装置に含まれる。いくつかの実装では、埋め込み型流体作動式可膨張装置100の動作を手動で制御することができる。
【0021】
いくつかの例では、流体作動式可膨張装置100の電子モニタリング及び制御が、患者による装置の制御の改善、患者の快適性の改善、及び患者の安全性の改善を可能にすることができる。いくつかの例では、流体作動式装置100の電子モニタリング及び制御が、医師がさらなる外科的介入を伴わずに装置100の動作を調整する機会を提供することができる。ポンプ、バルブ及び検知装置などの流体コンポーネントの配置を含む、流体作動式可膨張装置100を通じた流体の流れ及び制御を定める流体アーキテクチャは、装置100がユーザ入力に効果的に応答して、可膨張装置100の内部条件の変化(圧力及び流量などの変化)及び可膨張装置100の外部条件の変化(身体活動及び衝撃などによる圧力急増、大気条件の変化による持続的圧力変化、及びその他のこのような外部条件の変化)の両方に素早く効果的に適応することを可能にすることができる。
【0022】
埋め込み型流体作動式可膨張装置例100は、複数の異なるタイプの埋め込み型流体作動式装置を表すことができる。例えば、
図1に示す装置100は、
図2Aに示すような人工尿道括約筋100A、
図2Bに示すような可膨張陰茎プロテーゼ100B、並びに装置のコンポーネントへの流体流の制御に依拠して膨張、加圧、収縮、減圧及び非作動などを達成する他のこのような埋め込み型可膨張装置を表すことができる。
【0023】
図2Aに示す人工尿道括約筋例100Aは、流体通路内に配置されたポンプ、バルブ及び検知装置などの流体コンポーネントを含む流体制御システム106Aと、流体コンポーネントを介したリザーバ102Aと可膨張カフ104Aとの間の流体の移送を可能にするように構成された電子制御システム108Aとを含む。流体制御システム106Aの流体コンポーネント及び電子制御システム108Aの電子コンポーネントは、ハウジング110A内に収容することができる。ハウジング110A内に収容された流体制御システム106A/電子制御システム108Aの第1の流体ポート107Aは、第1の導管103Aによってリザーバ102Aに接続される。ハウジング110A内に収容された流体制御システム106A/電子制御システム108Aの第2の流体ポート109Aは、第2の導管105Aによって可膨張カフ104Aに接続される。
【0024】
図2Bに示す陰茎プロテーゼ例100Bは、流体通路内に配置されたポンプ、バルブ及び検知装置などの流体コンポーネントを含む流体制御システム106Bと、流体コンポーネントを介した流体リザーバ102Bと可膨張シリンダ104Bとの間の流体の移送を可能にするように構成された電子制御システム108Bとを含む。流体制御システム106Bの流体コンポーネント及び電子制御システム108Bの電子コンポーネントは、ハウジング110B内に収容することができる。ハウジング110B内に収容された流体制御システム106B/電子制御システム108Bの第1の流体ポート107Bは、第1の導管103Bによってリザーバ102Bに接続される。ハウジング内に収容された流体制御システム106A/電子制御システム108Aの1又は2以上の第2の流体ポート109Bは、1又は2以上の第2の導管105Bによって可膨張シリンダ104Bに接続される。
【0025】
本明細書で説明する原理は、効果的な動作のために様々な流体コンポーネントを含むポンプアセンブリに依拠して異なる流体充填式埋め込み型コンポーネント間の流体の移送を可能にして膨張、収縮、加圧、減圧、非作動及び閉塞などを達成するこれらの及びその他のタイプの埋め込み型流体作動式可膨張装置に適用することができる。
図2A及び
図2Bに示す装置例100A、100Bは、それぞれの装置100A、100Bを通る圧力及び/又は流体流のモニタリング及び制御を可能にする電子制御システム108A、108Bを含むことができる。本明細書で説明する原理の一部は、手動で制御される埋め込み型流体作動式装置にも適用することができる。
【0026】
図1に関して上述したように、流体制御システム106は、例えば流体リザーバ102と可膨張部材104との間の移送流体を制御する、ポンプアセンブリの流体回路内に配置された1又は2以上のポンプ及び1又は2以上のバルブを含むポンプアセンブリを含むことができる。いくつかの例では、(単複の)ポンプ及び/又は(単複の)バルブが電子的に制御される。いくつかの例では、(単複の)ポンプ及び/又は(単複の)バルブが手動で制御される。いくつかの例では、ポンプアセンブリが、流体回路を定める流体チャネルが内部に形成された流体マニホールドを含む。ポンプアセンブリが電子的に駆動及び/又は制御される例では、マニホールドが、漏れ及び/又はガス交換を防ぐように流体流を封じ込めてポンプアセンブリの電子コンポーネントから区分化できる密閉型マニホールドであることができる。いくつかの例では、ポンプアセンブリが、流体回路及び/又は可膨張部材内の流体流及び/又は流体圧力の比較的正確なモニタリング及び制御を可能にする1又は2以上の圧力検知装置を流体回路内に含む。このように構成された流体回路は、埋め込み型流体作動式装置のコンポーネントの正しい膨張、収縮、加圧、減圧及び非作動を容易にして、患者の安全性及び装置の有効性をもたらすことができる。
【0027】
図3は、ある態様による埋め込み型流体作動式可膨張装置の流体アーキテクチャ例の概略図である。埋め込み型流体作動式可膨張装置の流体アーキテクチャは、
図3に示すもの以外の流体チャネル、(単複の)バルブ、(単複の)圧力センサ及びその他のコンポーネントを含むこともできる。背圧及び圧力急増などに対応できる流体アーキテクチャは、流体作動式装置100の性能、有効性及び効率を高める。
【0028】
図3に示す流体アーキテクチャ例は、リザーバ102と可膨張部材104との間で流体流を導くチャネルを含む。
図3に示す例では、第1の流体チャネルの第1のバルブV1が、第1のポンプP1によって発生する可膨張部材104からリザーバ102への流体流を制御する。第2の流体チャネルの第2のバルブV2は、第2のポンプP2によって発生するリザーバ102から可膨張部材104への流体流を制御する。第1の検知装置S1はリザーバ102の流体圧力を検知し、第2の検知装置S2は可膨張部材104の流体圧力を検知する。第1及び第2の検知装置S1、S2は、流体チャネル内の流体流及び/又は流体圧力のモニタリングを可能にすることができる。
図3に示す配置では、第1のポンプP1又は第2のポンプP2の一方が作動する一方で第1のポンプP1又は第2のポンプP2の他方は待機モードにあり、通常、第1及び第2のポンプは同時に動作しない。上述したような制御システム108は、第1及び第2のポンプP1、P2、並びに第1及び第2のバルブV1、V2の(開いた状態と閉じた状態との間の)動作を、第1及び第2の検知装置S1、S2によって検知された、リザーバ102及び可膨張部材104に近接するエリアにおける第1及び第2の流体チャネル内の条件(例えば、流体圧力及び/又は流体流量)に基づいて制御することができる。
【0029】
例えば、第1のバルブV1が開いた状態で(かつ第2のポンプP2が待機モードにあって第2のバルブV2が閉じた状態で)第1のポンプP1が動作すると、可膨張部材104が収縮することができる。第1のポンプP1は、(可膨張部材104に沿った)第2の検知装置S2に検知された圧力によって可膨張部材104の所望の収縮状態が達成されたことが示されるまで(例えば、第2の検知装置S2によって検知された流体圧力に基づいて)動作し続ける。収縮状態を維持するには、第1及び第2のポンプP1、P2をいずれも待機モードに置き、第1及び第2のバルブV1、V2をいずれも閉じることができる。第2のバルブV2が開いた状態で(かつ第1のポンプP1が待機モードにあって第1のバルブV1が閉じた状態で)第2のポンプP2が動作すると、可膨張部材104が膨張することができる。第2のポンプP2は、第1の検知装置S1に検知された圧力によって可膨張部材104の所望の膨張状態が達成されたことが示されるまで(例えば、第1の検知装置S2によって検知された流体圧力に基づいて)動作し続ける。膨張状態を維持するには、第1及び第2のポンプP1、P2をいずれも待機モードに置き、第1及び第2のバルブV1、V2をいずれも閉じることができる。バルブV1、V2は、流体作動式装置の設定状態を維持するように、それぞれの流体チャネルの選択的密閉を可能にすることができる。バルブV1、V2との相互作用(及び装置の流体アーキテクチャを通る流体流の対応する変化)は、流体作動式装置の設定状態を変化させることができる。患者が装置の設定状態の変更を必要として装置の設定状態の必要な変更を開始するまで装置の設定状態を維持するバルブV1、V2は、患者の安全性の強化及び装置の有効性の改善をもたらす。
【0030】
いくつかの例では、流体アーキテクチャに含まれる1又は2以上のバルブが常開バルブである。常開バルブは、デフォルトでは開いた状態であり、電力の付与に応答して閉じる(そして閉じた状態を保つ)。
図3に示す配置例における常開バルブの使用は、例えばポンプP1、P2及び/又はバルブV1、V2の制御が失われてしまう停電又はその他のシステム故障の場合にフェイルセーフ手段をもたらすことができる。例えば、可膨張部材104が膨張し、バルブV1、V2が閉じ、ポンプP1、P2が待機状態にある状態で電源喪失(又はその他のシステム故障)によってこの種の制御不能が生じると、患者が不快感を覚え、及び/又は患者の安全が損なわれる恐れがある。流体アーキテクチャにおいて常開バルブを使用すると、電源喪失時にバルブV1、V2が開き、可膨張部材104から圧力が解放され、システム内の流体が均衡になることができる。
【0031】
いくつかの例では、流体アーキテクチャに含まれるバルブのうちの1つ又は2つ以上を、デフォルトでは閉じた状態であり、電力の付与に応答して開く(そして開いた状態を保つ)常閉バルブとすることができる。常閉バルブは、流体アーキテクチャ内の常閉バルブの位置によっては上述したフェイルセーフ手段をもたらさない場合がある。しかしながら、流体アーキテクチャにおいて1又は2以上の常閉バルブを使用すると、流体作動式可膨張装置100の電力消費量を抑えることができる。流体アーキテクチャに含まれるバルブの多くは、(例えば、流体作動式可膨張装置100の現在の状態を維持するために)開いた状態にあるよりもかなりの長い時間にわたって閉じた状態を保つ。常閉バルブは、デフォルトでは閉じた状態であり、閉じた状態を維持するために電力の付与に依拠しないため、流体アーキテクチャにおいて1又は2以上の常閉バルブを使用すると(常開バルブの使用と比べて)電力消費量を抑えることができる。この結果、流体作動式可膨張装置100の寿命を延ばし、継続動作に必要な医師の介入(例えば、動力電池の交換)を抑え、及び/又は再充電要件を低減し及び/又は再充電間隔を延ばすことができる。
【0032】
電力消費量は、流体作動式可膨張装置100の流体チャネルを通じて流体を受動的に動かして、可膨張部材104の所望の収縮レベルを達成するのに必要なポンピングの量を抑えることを通じて低減することができる。例えば、膨張状態では、可膨張部材104における圧力の方がリザーバ102における圧力よりも高い。
図3に示す配置例では、可膨張部材104の所望の収縮レベルを達成するために、(第1のポンプP1が作動しておらず、第2のバルブV2が閉じており、第2のポンプP2が待機モードにある状態で)第1のバルブV1を開いて可膨張部材104から自然に流体を流出させることができる。このような可膨張部材104からの受動的な流体流によって除去されなかったいずれかの残圧を除去するために、第1の及び/又は第2の検知装置S1、S2によって検知された流体圧力に基づいて第1のポンプP1を作動させることができる。
【0033】
いくつかの例では、(
図3に示す流体アーキテクチャ例に示す検知装置S1、S2などの)圧力検知装置が、流体作動式可膨張装置100の流体アーキテクチャにおける様々な異なる圧力調整、測定及び制御方法をサポートすることができ、これらの圧力検知装置は、リザーバ102及び可膨張部材104における流体圧力のモニタリングを可能にするように配置することができる。例えば、検知装置S1、S2(及び/又は他の圧力検知装置)は、流体作動式可膨張装置100内の様々な位置における流体圧力の急増又はスパイクを検出し、これに応じてポンプP1、P2及びバルブV1、V2を制御して流体作動式可膨張装置100の現在の状態を維持し、及び/又は患者の快適性及び安全性を可能にするように配置することができる。
【0034】
例えば、
図2Aに関して上述した人工尿括約筋例100Aの流体リザーバ102Aは患者の腹腔内に配置される。従って、流体リザーバ102Aに配置された(第1の検知装置S1などの)圧力検知装置は腹圧の指標を提供することができる。(例えば、身体活動、衝撃及び転倒などによる)圧力のスパイク又は急増が第1の検知装置S1によって検出された場合、システムは、例えば可膨張カフ104Aの圧力を増加させることによって応答することができ、患者は、圧力スパイク中を通じて自制を保つことができる。リザーバ102Aに第1の検知装置S1を含み、可膨張カフ104Aに第2の検知装置S2を含む例では、センサS1、S2の各々によって取得された圧力測定値を使用して、例えばリザーバ102Aの圧力のスパイクに対抗するために可膨張カフ104Aにどれほどの圧力が必要であるかを決定することができる。
【0035】
上述したように、膨張状態では、可膨張部材104における圧力の方がリザーバ102における圧力よりも高い。可膨張部材104とリザーバ102との間の圧力差は、可膨張部材104の受動的収縮に使用することができる。可膨張装置100内の流体が均衡になると、
図3の流体アーキテクチャ例に示すようにリザーバ102及び可膨張部材104に配置された検知装置S1、S2からの測定値を使用して、可膨張部材104を膨張状態から所望の収縮レベルに移行させる時点を管理しながら、エネルギー保存を最大化するために第1のポンプP1をいつ関与させるべきであるかを決定することができる。いくつかの例では、図示のような第1及び第2の検知装置S1、S2の位置付けが、流体アーキテクチャ内の閉塞及び低速漏れ(slow leaks)などを検出できるとともに、検出された障害を補償するようにシステムがポンプP1、P2及びバルブV1、V2を動作させることを可能にすることができる。
【0036】
図3に示す配置例では、可膨張部材104の所望の収縮レベルを達成するために、(第1のポンプP1が作動しておらず、第2のバルブV2が閉じており、第2のポンプP2が待機モードにある状態で)第1のバルブV1を開いて可膨張部材104から自然に流体を流出させることができる。このような可膨張部材104からの受動的な流体流によって除去されなかったいずれかの残圧を除去するために、第1の及び/又は第2の検知装置S1、S2によって検知された流体圧力に基づいて第1のポンプP1を作動させることができる。
【0037】
図4は、ある態様による、埋め込み型流体作動式可膨張装置の電子流体制御システム例400の概略図である。いくつかの例では、電子流体制御システム400が、リザーバ102と可膨張部材104との間の流体の移送と、流体制御システム106内の流体アーキテクチャのコンポーネントのモニタリング及び制御とを可能にする。いくつかの例では、電子制御システム108が、流体制御システム106の流体アーキテクチャのコンポーネントの動作を制御する。いくつかの例では、電子制御システム108がプリント基板(PBC)140を含む。いくつかの例では、PCB140が、プロセッサと、メモリと、通信モジュールと、検知装置と、その他のこのようなコンポーネントとを含む。いくつかの例では、電子制御システム108が、外部コントローラ120と通信して、例えばユーザ入力の受信及びユーザへの情報の出力などを行うことができる。いくつかの例では、制御システム108が、電子制御システム108のコンポーネントの動作及び流体制御システム106のコンポーネントの動作のために電力を供給する電力貯蔵装置130又はバッテリ130を含む。いくつかの例では、電力貯蔵装置130を、例えば外部再充電装置150によって再充電することができる。いくつかの例では、流体制御システム106及びそのコンポーネント、並びに電子制御システム108及びそのコンポーネントがハウジング110内に収容される。
【0038】
図5に、第1の流体アーキテクチャ例410を有する流体制御システム106を含む電子流体制御システム例400を示す。第1の流体アーキテクチャ例410は、可膨張部材104からリザーバ102への第1の方向の流体流を制御する第1のポンプP1及び第1のバルブV1と、リザーバ102から可膨張部材104への第2の方向の流体流を制御する第2のポンプP2及び第2のバルブV2とを含む。
図5に示す第1の流体アーキテクチャ例410では、第1のポンプP1が一方向ポンプであり、第1のバルブV1が、第1の流体チャネル内の流れを制限して第1の方向の流れのみを可能にする受動チェックバルブである。第2のポンプP2は一方向ポンプであり、第2のバルブV2は、第2の流体チャネル内の流れを制限して第2の方向の流れのみを可能にする受動チェックバルブである。第1の検知装置S1は、リザーバ102における流体圧力を検知するように配置され、第2の検知装置S2は、可膨張部材104における流体圧力を検知するように配置される。第1及び第2のポンプP1、P2に対して図示のように配置された第1及び第2の受動チェックバルブV1、V2は、ポンプP1、P2を通る流体の逆流を防ぐ。第1の流体アーキテクチャ例410は、可膨張部材104に沿って配置された能動バルブAVを含む。図示のように配置された能動バルブAVは、例えば衝撃、身体的運動及び転倒などに起因する可膨張部材104における突然の圧力スパイクに応答して、流体が可膨張部材104から漏れて第1のポンプP1を逆流して意図せず可膨張部材104を収縮させてしまうのを防ぐことができる。
【0039】
図6には、第2の流体アーキテクチャ例420を有する流体制御システム106を含む電子流体制御システム例400を示す。第2の流体アーキテクチャ例420は、可膨張部材104からリザーバ102への第1の方向の流体流を制御する第1のポンプP1及び第1のバルブV1と、リザーバ102から可膨張部材104への第2の方向の流体流を制御する第2のポンプP2及び第2のバルブV2とを含む。
図6に示す第2の流体アーキテクチャ例420では、第1のポンプP1が一方向ポンプであり、第1のバルブV1が、第1の流体チャネル内の流れを制限して第1の方向の流れのみを可能にする受動チェックバルブである。第2のポンプP2は一方向ポンプであり、第2のバルブV2は、第2の流体チャネル内の流れを制限して第2の方向の流れのみを可能にする受動チェックバルブである。第1の検知装置S1は、リザーバ102における流体圧力を検知するように配置され、第2の検知装置S2は、可膨張部材104における流体圧力を検知するように配置される。第1のポンプP1に対して図示のように配置された第1の受動チェックバルブV1は、第1のポンプP1を通る流体の逆流と、可膨張部材104からリザーバ102への偶発的な流体流とを防ぐ。図示のように配置された第2の受動チェックバルブV2は、第2のポンプP2を通る流体の逆流を防ぐ。
【0040】
図7には、第3の流体アーキテクチャ例430を有する流体制御システム106を含む電子流体制御システム例400を示す。第3の流体アーキテクチャ例430は、可膨張部材104からリザーバ102への第1の方向の流体流を制御する第1のポンプP1及び第1のバルブV1と、リザーバ102から可膨張部材104への第2の方向の流体流を制御する第2のポンプP2及び第2のバルブV2とを含む。第3の流体アーキテクチャ例430では、第1のポンプP1が一方向ポンプであり、第1のバルブV1が、第1の流体チャネル内の流れを制限して第1の方向の流れのみを可能にする受動チェックバルブである。第2のポンプP2は一方向ポンプであり、第2のバルブV2は、第2の流体チャネル内の流れを制限して第2の方向の流れのみを可能にする受動チェックバルブである。第1の検知装置S1は、リザーバ102における流体圧力を検知するように配置され、第2の検知装置S2は、可膨張部材104における流体圧力を検知するように配置される。第1及び第2のポンプP1、P2に対して図示のように配置された第1及び第2の受動チェックバルブV1、V2は、ポンプP1、P2を通る流体の逆流を防ぐ。第3の流体アーキテクチャ例430は、電源喪失時にフェイルセーフとして機能するように配置された能動バルブAVを含む。第3の流体アーキテクチャ例に示すコンポーネントの配置では、能動バルブAVが常開バルブであることができる。電子流体制御システム400への電力が失われた場合には、能動バルブAVが開いて可膨張部材104の減圧を可能にし、従って患者の快適性及び安全性を可能にする。
【0041】
図8には、第4の流体アーキテクチャ例440を有する流体制御システム106を含む電子流体制御システム例400を示す。第4の流体アーキテクチャ例440は、リザーバ102と可膨張部材104との間で流体を移送するために1つのポンプP2と4つの能動バルブAV1、AV2、AV3及びAV4とを採用する。能動バルブが圧電バルブである例では、第1、第2、第3及び第4の能動バルブAV1、AV2、AV3、AV4が選択的な電圧の付与に応答して能動的かつ選択的に開閉することができる。第1の能動バルブAV1及び第2の能動バルブAV2を能動的に開き、第3の能動バルブAV3及び第4の能動バルブAV4を能動的に閉じることにより、流体をリザーバ102から可膨張部材104にポンピングして可膨張部材104を膨張させることができる。第1の能動バルブAV1及び第2の能動バルブAV2を能動的に閉じ、第3の能動バルブAV3及び第4能動バルブAV4を能動的に開くことにより、可膨張部材104からリザーバ102に流体をポンピングして可膨張部材104を収縮させることができる。
【0042】
図9には、第5の流体アーキテクチャ例450を有する流体制御システム106を含む電子流体制御システム例400を示す。第5の流体アーキテクチャ例440は、第4の流体アーキテクチャ例440と同様に1つのポンプP1を採用する。
図9に示す第5の流体アーキテクチャ例450は、
図8に示す4つの能動バルブAV1、AV2、AV3、AV4を2つの三方向ラッチバルブLV1、LV2に置き換えたものである。第5の流体アーキテクチャ例では、第1のラッチバルブLV1のポート1及び第2のラッチバルブLV2のポート1が常に開いている。第1のラッチバルブLV1に通電すると、第1のラッチバルブLV1の他のポート2又は3の一方が開いたポート1と連通できるようになる。同様に、第2のラッチバルブLV2に通電すると、第2のラッチバルブLV2の他のポート2又は3の一方が開いたポート1と連通できるようになる。第1のラッチバルブLV1及び第2のラッチバルブLV2の両方でポート2を選択することにより、第1のラッチバルブLV1及び第2のラッチバルブLV2の各々のポート3が閉じるので、流体がポート1とポート2との間を流れてポンプP1が可膨張部材104からリザーバ102に流体を移送できるようになる。同様に、各ラッチバルブLV1、LV2のポート3を選択する(従って、ポート2を閉じる)ことにより、流体がポート1とポート3との間を流れてポンプがリザーバ102から可膨張部材104に流体を移送できるようになる。
【0043】
図10には、第6の流体アーキテクチャ例460を有する流体制御システム106を含む電子流体制御システム例400を示す。第6の流体アーキテクチャ例は、可膨張部材104からリザーバ102への第1の方向の流体流を発生させる第1のポンプP1と、リザーバ102から可膨張部材104への第2の方向の流体流を発生させる第2のポンプP2とを含む。
図10に示す第6の流体アーキテクチャ例460では、第1のポンプP1及び第2のポンプP2が複合ポンプ及びバルブ装置である。例えば、第1のポンプP1は、待機モードにある時、従って動作中でない/ポンピング中でない時に第1の流体チャネルを通る流体流を防ぐ。同様に、第2のポンプP2は、待機モードにある時に第2の流体チャネルを通る流体流を防ぐ。
【0044】
図11には、第7の流体アーキテクチャ例470を有する流体制御システム106を含む電子流体制御システム例400を示す。第7の流体アーキテクチャ例は、可膨張部材104からリザーバ102への第1の方向の流体流を発生させる第1のポンプP1と、リザーバ102から可膨張部材104への第2の方向の流体流を発生させる第2のポンプP2とを含む。
図11に示す第7の流体アーキテクチャ例470では、
図10に示す第6の流体アーキテクチャ例460と同様に第1のポンプP1及び第2のポンプP2が複合ポンプ及びバルブ装置であり、従って流体チャネルを通る流体流を発生させることに加えて、リザーバ102と可膨張部材104との間の流体チャネルを通る流れを選択的に制限することができる。しかしながら、
図11に示す第7の流体アーキテクチャ例470では、第1及び第2のポンプP1、P2が圧電ポンプであることができる。圧電ポンプの圧電素子は、圧力の変化を検知することができる。従って、第7の流体アーキテクチャ例470では、(圧電ポンプの形態の)第1及び第2のポンプP1、P2が圧力検知装置としても機能することができ、従ってこれまでの流体アーキテクチャに示した検知装置S1、S2を排除することができる。この結果、流体制御システム106の流体アーキテクチャを単純化して、電子流体制御システム400の全体的サイズを縮小することができる。
【0045】
このように、いくつかの例では、流体制御システム106の流体アーキテクチャに含まれるバルブのうちの1つ又は2つ以上を圧電バルブとすることができる。圧電材料は、機械的な引張の変形を受けると電気エネルギーを発生する。これとは逆に、圧電材料は電場の付与に応答して変形する。すなわち、圧電材料は電荷を動きに変換し、動きを電荷に変換することができる。これらの特性は、バルブへの電圧の付与を通じた機械バルブの電子的制御を可能にする。動作中、流体作動式可膨張装置100は、振動などの外部刺激を受け又は体験することができる。振動のソースは、例えばこれらのポンプのうちの1つの動作によって発生する振動、流体作動式可膨張装置100を通る流体の動きによって発生する振動、ユーザの動き及び/又はその他の身体活動、並びに装置100の内部及び外部の他のこのようなソースであることができる。圧電バルブの圧電材料が強制的な動きに応答して電位を発生できることを考えれば、これらの外部刺激をエネルギーに変換することができる。いくつかの例では、振動を受けた時点で待機モードにあるポンプが、例えば振動の形態の外部刺激をエネルギーに変換することができる。
【0046】
図3に示す流体アーキテクチャ例に関して上述したように、(第1のバルブV1が開いており、第2のポンプP2が待機モードにあり、第2のバルブV2が閉じている状態で)第1のポンプP1が動作すると、可膨張部材104を収縮させる(可膨張部材104からリザーバ102への)第1の方向の流体流が発生する。(第2のバルブV2が開いており、第1のポンプP1が待機モードであり、第1のバルブが閉じている状態で)第2のポンプP2が動作すると、可膨張部材104を膨張させる(リザーバ102から可膨張部材104への)第2の方向の流体流が発生する。流体作動式可膨張装置100の設定状態(すなわち、膨張状態又は収縮状態)を維持するには、第1及び第2のポンプP1、P2を待機モードにして第1及び第2のバルブV1、V2を閉じる。
【0047】
図3に示す流体アーキテクチャ例では、ポンプP1、P2の少なくとも一方が常に待機モードにあり、従って上述したような刺激を収集してこれらを電気変位に変換するために利用することができる。この例では、ポンプP1又はP2の一方(動作中のポンプ)がエネルギーアクチュエータ又はエネルギー生成器として機能し、ポンプP1又はP2の他方(待機モードにあるポンプ)がエネルギーハーベスタ又はエネルギー収集器として機能する。ポンプP1、P2が圧電ポンプであり、バルブV1、V2が圧電バルブである場合、
図3に示す流体アーキテクチャ例は圧電素子を4つも含むことができる。しかしながら、この例では、流体作動式可膨張装置100の動作中にバルブV1、V2のラッチ及び/又はシール能力が損なわれないように、ポンプP1、P2はアクチュエータ及びハーベスタとして機能する。
【0048】
上述したように、装置100の膨張モードでの動作中には、第1のポンプP1の動作に起因して発生した振動が、例えば流体アーキテクチャが収容されたマニホールドを通じて第1のポンプP1から第2のポンプP2に伝わることができる。このシナリオでは、(待機モードにある)第2のポンプP2の圧電素子が、第2のポンプP2の圧電素子の動きとして生じる振動によって発生したエネルギーを取り込む準備が整っている。また、いくつかの状況では、油圧が第2のポンプP2に作用し、従って第2のポンプP2の圧電素子によって生じる動きの振幅に寄与し、この増幅された動きによってさらなるエネルギーが発生するようになる。第2のポンプP2が動作中であり第1のポンプP1が待機モードにある膨張モードでの動作中には、第2のポンプP2が、リザーバ102から可膨張部材104に流体を移送するように動作し、第1のポンプP1が、第2のポンプP2の動作の結果として発生したエネルギーを取り込む。いくつかの状況では、ユーザの身体的な動きがポンプP1、P2の圧電素子の動きを引き起こすことができる。第1のポンプP1及び/又は第2のポンプP2は、待機モードにある時にこの動きを取り込むこともできる。
【0049】
このようなエネルギーの取り込み及び貯蔵は、装置100を通じて消散して未使用になったはずのエネルギーを変換する。従って、このようなエネルギーの取り込み及び貯蔵は、電力貯蔵装置130の寿命を延ばすとともに、再充電又は電源の交換を伴わずに流体作動式装置100の動作時間を延ばすことができる。また、これによって小型の電力貯蔵装置130の使用が可能になり、従って電子流体制御システム400の全体的サイズを縮小させることもできる。
【0050】
上述したように、いくつかの例では、(例えば、上述した人工尿道括約筋100A又は可膨張陰茎プロテーゼ100Bの形態の)流体作動式可膨張装置100を電子制御システム108が電子的に制御することができる。電子制御システム108は、例えばユーザが操作できる外部コントローラ120と通信することができる。外部コントローラ120は、流体作動式可膨張装置100を制御するためのユーザ入力を受け取って、このユーザ入力を電子制御システム108に送信することができる。電子制御システム108は、例えば装置の動作状態、システムアラート及び動作条件などのユーザが消費する情報を外部コントローラ120に伝えることができる。外部コントローラ120と電子制御システム108との間の素早く信頼度の高い通信は、異なる条件下における装置100の正しい機能及び動作を容易にし、流体作動式可膨張装置100の耐用期間中に患者に快適性及び使いやすさを提供する。外部コントローラ120と電子制御システム108との間の素早く信頼度の高い通信は、患者の安全性を高めるとともに、流体作動式可膨張装置100が状況の変化に適応して患者及び/又は医師の介入の有無にかかわらずフェイルセーフ手段を採用することを可能にすることができる。
【0051】
いくつかの例では、外部コントローラ120が、流体作動式可膨張装置100の制御、モニタリング、及び流体作動式可膨張装置100との相互作用のために特別に調整されたフォブ(fob)を含む。いくつかの例では、外部コントローラ120を、流体作動式可膨張装置100の電子制御システム108と通信できる外部電子装置に組み込むことができる。例えば、外部コントローラ120は、スマートフォン及びタブレットコンピュータ装置などの電子装置によって実行されるアプリケーションに実装することができる。
【0052】
いくつかの状況では、外部コントローラ120と流体作動式可膨張装置100の電子制御システム108との間の通信を患者が開始することができ、流体作動式可膨張装置100の動作及び制御の変更を手動で開始することができる。いくつかの状況では、流体作動式可膨張装置100の電子制御が、電子制御システム108の制御下で自動的に実行される。
【0053】
いくつかの例では、流体作動式可膨張装置100の手動制御が、患者による手動での設定構成を可能にすることができる。例えば、いくつかの状況では、患者が、可膨張部材104の圧力を増加又は減少させれば快適性及び/又は動作性及び/又は安全性が高まると気付くことがある。例えば、人工尿道括約筋例100Aの場合、患者は、観察される装置性能及び身体活動などに基づいて、外部コントローラ120を使用して可膨張カフ104Aの圧力設定を構成することができる。例えば、患者は、現在の設定でわずかな失禁が見られる場合、外部コントローラ120を使用して可膨張カフ104Aの閉塞圧設定を高めることができる。いくつかの例では、患者が、特定の身体活動が(例えば、身体活動中に一時的に)失禁に影響を及ぼしている可能性があるという理由で可膨張カフ104Aの圧力設定を調整したいと望み、外部コントローラ120を使用して可膨張カフ104Aの調整された閉塞圧をある設定期間にわたって設定し、設定期間の経過後に装置100が以前に記憶した設定に戻ることを可能にすることができる。
【0054】
いくつかの例では、流体作動式可膨張装置100の手動制御を患者からのサブ可聴信号(sub-audible signaling)によって作動させることができる。いくつかの例では、サブ可聴信号を外部コントローラ120が検出し、流体作動式可膨張装置100の制御のために電子制御システム108に送信することができる。いくつかの例では、可聴信号を電子制御システム108が検出することができる。いくつかの例では、流体作動式可膨張装置100の手動制御を、例えば患者が実行して流体作動式可膨張装置100によって検出された連続タッピングなどのタッピングに起因して検出された圧力スパイクに応答して作動させることができる。何らかの理由(置き忘れ、未充電及び動作不能など)で患者が外部コントローラ120を使用できない状況では、流体作動式可膨張装置100が、患者からのサブ可聴信号に応答して可膨張部材104の圧力などを調整することができる。これにより、患者の安全性及び快適性を高めることができる。
【0055】
いくつかの例では、例えば患者の胴体、流体作動式可膨張装置の埋め込み位置又はその付近、又はその他の位置における構成可能な数のタップが、流体作動式可膨張装置100の手動制御をトリガーする固有のシーケンス又はパターンを定めることができる。この固有のシーケンス又はパターンは、故意ではないタップが装置100によって検出されることによる流体作動式可膨張装置100の偶発的作動を防ぐことができる。いくつかの例では、ポンプ又はバルブの圧電素子が、設定された可聴信号又はサブ可聴信号を検出できるマイクとして機能することができる。いくつかの例では、検出された信号が、例えばポンプ又はバルブに開くように命令し、対応する変位が測定可能な電流を生成することができる。
【0056】
いくつかの例では、埋め込み型流体作動式可膨張装置100及び/又は外部コントローラ120の一方又は両方が、例えば加速度計などの、動きイベントを検出できる動き検出装置を含む。いくつかの状況では、動きイベントが、装置100の動作パラメータを動きイベントに合わせて適応させることから恩恵を受けることができる流体作動式可膨張装置100内の状態の変化を引き起こすことができる。例えば、上述した人工尿道括約筋100Aでは、咳、くしゃみ、物の持ち上げ及び運動/身体活動などのイベントに関する動きが失禁の原因となる可能性がある。加速度計がこの種の動きイベントを検出すると、動きイベント中に可膨張カフ104Aの圧力を増加させて尿道にさらなる圧力を提供して失禁を防ぐアルゴリズムの実行を電子制御システム108のプロセッサなどに開始させることができる。いくつかの例では、これらのタイプの動きイベントに応じた可膨張部材104などにおけるさらなる圧力の必要性を、流体アーキテクチャに含まれる検知装置によって検出された圧力の変化/圧力変動に基づいて検出することができる。例えば、(例えば、咳又はくしゃみによる圧迫、屈曲及び/又は持ち上げ運動などに起因する)検出された腹腔内圧の増加をリザーバ102に伝え、従って装置100の内圧をリザーバ102において増加させることができる。検知装置のうちの1つによって検出されたリザーバ102の圧力の増加を電子制御システムによって実行されるアルゴリズムが処理することで、流体システム内のポンプ及びバルブの動作を、流体作動式可膨張装置100の現在の状態を維持するのに適切な圧力をリザーバ102及び可膨張部材104に加えるように調整することができる。
【0057】
いくつかの例では、何らかの理由(置き忘れ、未充電及び動作不能など)で患者が外部コントローラ120を利用できない状況での流体作動式可膨張装置100の手動制御を、磁石などのバックアップ作動装置を使用して実行することができる。例えば、外部コントローラが利用できず、患者が人工尿道括約筋100Aの可膨張カフ104Aの圧力を解放する必要がある状況では、埋め込み型装置100Aに対応する位置でバックアップ作動装置/磁石を適用してリードスイッチを作動させ、流体アーキテクチャ内のポンプ及びバルブを、可膨張カフ104Aの圧力を解放して可膨張カフ104Aを開き、尿道を解放するように制御ことができる。
【0058】
いくつかの例では、流体作動式可膨張装置100の手動制御が、とりわけ外部コントローラ120が利用できない場合に、装置100に外部から手動圧力を付与すること含むことができる。いくつかの例では、この制御が、ウェイクアップ信号として機能する圧力を外部から加える第1のシーケンスと、その後に活性化信号として機能する圧力を外部から加える第2のシーケンスとを含むことができる。例えば、陰茎を引っ張る形で外部から付与される圧力は、人工尿道括約筋100Aの流体チャネル内のとりわけ可膨張カフ104Aの近傍に圧力変動を生じさせることができる。この例では、第1の引っ張りシーケンスで人工尿道括約筋100Aを目覚めさせ、第2の引っ張りシーケンスで可膨張カフ104Aの圧力の解放を示すことで、カフを開いて尿道を解放して患者が排尿できるようにすることができる。いくつかの例では、このような引っ張りの形の圧力が、上述したようなマイクとして機能するポンプ及びバルブの圧電素子によって検出できるサブ可聴信号を生成することもできる。
【0059】
上述したように、いくつかの状況では、流体作動式可膨張装置の電子制御が電子制御システム108の制御下で自動的に実行される。これにより、実質上継続的なシステムのモニタリング、診断及び調整が可能になり、患者及び/又は医師による介入を必要とする状態の検出に応答してアラートを出力することができる。
【0060】
いくつかの例では、電子制御システム108が、流体作動式可膨張装置100の動作をモニタして、装置100の動作を危険にさらし及び/又は装置100の故障につながる恐れがある漏れ及び閉塞などを示すことができる状態を検出することができる。例えば、電子制御システム108は、流体アーキテクチャ内の特定の位置において特定の圧力に到達するまでの時間をモニタすることができる。例えば、設定閾値又は設定範囲を上回るポンピング時間の変化、及び/又は一定の圧力又は一定の圧力範囲への到達不能は、流体作動式可膨張装置100の流体チャネル内の漏れ又は閉塞を示している可能性がある。いくつかの例では、電子制御システム108が、装置100の動作を危険にさらし及び/又は装置100の故障につながる恐れがある潜在的状態について患者及び/又は医師に警告するアラートを、例えば外部コントローラ120を通じて出力するために生成する。いくつかの例では、電子制御システム108が、漏れが生じていない装置100の部分内に流体が密閉されるようにポンプ及びバルブの動作を制御することができる。
【0061】
いくつかの例では、流体作動式可膨張装置100の自動制御が、医師による診断及び患者ケアプロトコルの調整のためのデータを収集して記憶することを含む。人工尿道括約筋100Aの場合、診断は、患者が手動で記入する膀胱日誌に依拠することが多い。いくつかの例では、人工尿道括約筋100Aの電子制御システム108が、患者が1日のうちに排尿しなければならない回数、各排尿イベントの開始から終了までの時間、及びその他のこのようなデータを測定して記録することができる。いくつかの例では、各排尿イベントの経過時間を、可膨張カフ104Aが開いている時間及び/又は可膨張カフ104Aが閉じている時間に基づいて決定することができる。いくつかの例では、ポンプ及び/又はバルブの圧電素子の音響特性を使用して各排尿イベントの開始時間及び終了時間を計算することができる。このようにして収集され追跡されたデータは、医師がその後の診断及び治療のために使用することができる。
【0062】
いくつかの例では、流体作動式可膨張装置100の自動制御が、一定の条件に応答して可膨張部材104及び/又はリザーバ102の圧力を自動制御することを含む。例えば、電子制御システム108は、(何らかの理由で外部コントローラ120が利用不能又は動作不能であることを示す)外部コントローラ120から埋め込み型流体作動式可膨張装置100への通信が設定期間にわたって行われていないこと、及び/又は可膨張部材104が設定期間よりも長く膨張状態にあることなどを検出することができる。電子制御システム108は、この種の状態を検出したことに応答して、例えば可膨張部材104の圧力を緩和するためにフェイルセーフ手段として埋め込み型流体作動式可膨張装置100内の圧力設定を緩和することができる。
【0063】
いくつかの例では、流体作動式可膨張装置100の自動制御が感染の検出を可能にすることができる。装置100内の1又は2以上の熱電対などの検知装置は、患者の体内温度を示す温度を記録することができる。これらの温度は、例えば電子制御システム108のメモリに記憶することができる。検知温度、並びに検知温度の変動及び/又は上昇は、早期感染指標を提供することができる。いくつかの例では、この早期感染予測が、医師による治療のために外部コントローラ120を通じてユーザにアラートが出力されるきっかけとなることができる。
【0064】
いくつかの例では、流体作動式可膨張装置100の自動制御が、外部コントローラ120などの外部装置によって検出されて電子制御システム108に送信される大気圧又は気圧に基づく内部装置圧力の補正を可能にすることができる。いくつかの例では基本的にリアルタイムで行われる大気圧(及び大気圧の変化)の識別は、電子制御システム108が、検出された大気圧に基づいて装置100の内部圧力を調整するようにポンプ及びバルブの動作を自動的に制御することを可能にする。大気圧の変化を考慮して装置の動作を自動的に調整する能力は、たとえ大気条件が変化した場合でも埋め込み型流体作動式可膨張装置100が正しい内部圧力を維持することを確実にすることができる。
【0065】
上述した(例えば、人工尿道括約筋100A及び/又は可膨張陰茎プロテーゼ100Bの形態の)埋め込み型流体作動式可膨張装置例100は、リザーバ102と可膨張部材104との間の流体の移送を可能にするように流体導管103、105によって電子流体制御システム400によって可膨張部材104に接続された流体リザーバ102を含む。
図12A~
図12Cに、流体リザーバが電子流体制御システムのハウジングに結合された埋め込み型流体作動式可膨張装置例を示す。
図13A及び
図13Bには、流体リザーバが電子流体制御システムのハウジング内に収容された埋め込み型流体作動式可膨張装置例を示す。
【0066】
図12A~
図12Cは、埋め込み型流体作動式可膨張装置例600の概略図である。具体的には、
図12Aは第1の埋め込み型流体作動式可膨張装置例600Aの概略図であり、
図12Bは第2の埋め込み型流体作動式可膨張装置例600Bの概略図であり、
図12Cは第3の埋め込み型流体作動式可膨張装置例600Cの概略図である。
図12A~
図12Cに示す3つの流体作動式可膨張装置例600A、600B、600Cの各々は、流体導管605によって電子流体制御システム640に結合された可膨張部材604と、電子流体制御システム640のハウジング610に例えば直接結合された流体リザーバ602とを含む。
【0067】
電子流体制御システム例640は、例えば
図5~
図11に関して上述したような電力貯蔵装置130、電子制御システム108のPCB140、及びハウジング110内に収容された流体アーキテクチャ例を含む流体制御システム106を含む、
図5~
図11に関して上述した電子流体制御システム例400に含まれるコンポーネントを含むことができる。埋め込み型流体作動式可膨張装置例600A、600B、600Cに関して説明する原理は、例えば上述した人工尿道括約筋100A及び可膨張陰茎プロテーゼ100Bを含む様々な異なるタイプの埋め込み型流体作動式可膨張装置に適用することができる。
【0068】
図12Aに示す流体作動式可膨張装置例600Aは、密閉ハウジング610内に収容された上述したような電子コンポーネント及び流体コンポーネントを含む電子流体制御システム640を含む。流体導管605は、可膨張部材604に結合された第1の端部と、ハウジング610内に収容された流体制御システムに接続して可膨張部材704との間の流体の移送を可能にする、ハウジング610に形成されたポート620を貫通する第2の端部とを有する。
図12Aに示す配置では、リザーバ602Aが、(
図12Aに示す配向例では)密閉ハウジング610の上面部分又は密閉ハウジング610の横断面に結合される。いくつかの例では、リザーバ602Aがハウジング610に固定され、例えば接着又は結合される。流体導管603Aは、リザーバ602Aに接続された第1の端部と、ハウジング610内に収容された流体制御システムに接続してリザーバ602Aとの間の流体の移送を可能にする、ハウジング610内のポート630Aを貫通する第2の端部とを有する。この配置例は、密閉ハウジング610とリザーバ602Aとの間の嵌合表面積が狭いことを示すことができ、患者の動きによってリザーバ602Aに加わる圧力を(例えば
図12Bに示す配置例よりも)減少させることができる。いくつかの例では、リザーバ602Aに外圧が加わるのを防ぐために、リザーバ602Aの外側を取り囲む(
図12Aには示していない)格子を配置することができる。
【0069】
図12Bに示す流体作動式可膨張装置例600Bは、密閉ハウジング610内に収容された流体制御システムに上述したような流体導管605を介して接続された可膨張部材604を含む電子流体制御システム640を含む。流体作動式可膨張装置例600Bは、(
図12Bに示す配向例では)密閉ハウジング610の側部又はハウジング610の冠状面(coronal plane)に結合されたリザーバ602Bを含む。いくつかの例では、リザーバ602Bがハウジング610に固定され、例えば接着又は結合される。導管603Bは、リザーバ602Bに接続された第1の端部と、ハウジング610内に収容された流体制御システムに接続してリザーバ602Bとの間の流体の移送を可能にする、ハウジング610内のポート630Bを貫通する第2の端部とを有する。
図12Bに示す配置例では、リザーバ602Bがハウジング610の最も広い表面に結合されている。リザーバ602Bの表面積が広いと、リザーバ602Bに必要とされる膨張が(
図12Aに示す配置例に比べて)減少してしまうことがある。
【0070】
図12Cに示す流体作動式可膨張装置例600Cは、上述したような流体導管605を介して密閉ハウジング610内に収容された流体制御システムに接続された可膨張部材604を含む電子流体制御システム640を含む。流体作動式可膨張装置例600Cは、(
図12Cに示す配向例では)密閉ハウジング610の上部に結合されたベローズ構造を有するリザーバ602Cを含む。いくつかの例では、リザーバ602Cの底部などの一部がハウジング610に固定され、例えば接着又は結合されて、リザーバ602Cを形成するベローズ構造の残り部分の膨張及び収縮を可能にする。導管603Cは、リザーバ602Cに接続された第1の端部と、ハウジング610内に収容された流体制御システムに接続してリザーバ602Cとの間の流体の移送を可能にする、ハウジング610内のポート630Cを貫通する第2の端部とを有する。
図12Cに示すリザーバ例602Cのベローズ構造は、リザーバ602Cから流体が排出されると収縮し、リザーバ602Cに流体が流入すると膨張する。
図12Cに示すリザーバ例602Cのベローズ構造は、リザーバ602Cが密閉ハウジング610に密閉されることを可能にする、例えばチタンポリメトリック材料を含む幅広い材料がリザーバ602Cに使用されることを可能にする。いくつかの例では、リザーバ602Cに外圧が加わるのを防ぐために、リザーバ602Cの外側を取り囲む(
図12Cには示していない)格子を配置することができる。
【0071】
密閉ハウジング610に取り付けられた外部流体リザーバ602A、602B、602Cを含むツーピース構造の流体作動式可膨張装置例600A、600B、600Cは、密閉ハウジング610の外側のリザーバ602A、602B、602Cの膨張及び収縮を制限された抵抗で可能にする一方で、装置600全体を2つのコンポーネント(すなわち、可膨張部材604、及びリザーバ602が取り付けられたハウジング610)に減少させる。いくつかの状況では、この設計が外科手術の時間及び複雑さを低減する。いくつかの状況では、この設計が、密閉ハウジング610が患者内の適所に縫合されることを可能にし、従って埋め込み型流体作動式可膨張装置600の寿命中における生体内ドリフト(in-vivo drift)を抑えることができる。
【0072】
図13A及び
図13Bは、埋め込み型流体作動式可膨張装置例700の概略図である。具体的には、
図13Aは第1の埋め込み型流体作動式可膨張装置例700Aの概略図であり、
図13Bは第2の埋め込み型流体作動式可膨張装置例700Bの概略図である。
図13A及び
図13Bに示す流体作動式可膨張装置例700A、700Bの各々は、流体導管705によって電子流体制御システム740に結合された可膨張部材704と、電子流体制御システム740の密閉ハウジング710内に収容された流体リザーバ702とを含む。
【0073】
電子流体制御システム例740は、例えば
図5~
図11に関して上述したような電力貯蔵装置130、電子制御システム108のPCB140、及びハウジング110内に収容された流体アーキテクチャ例を含む流体制御システム106を含む、
図5~
図11に関して上述した電子流体制御システム例400に含まれるコンポーネントを含むことができる。埋め込み型流体作動式可膨張装置例700A及び700Bに関して説明する原理は、例えば上述した人工尿道括約筋100A及び可膨張陰茎プロテーゼ100Bを含む様々な異なるタイプの埋め込み型流体作動式可膨張装置に適用することができる。
【0074】
図12Aに示す流体作動式可膨張装置例700Aは、密閉ハウジング710内に収容された上述したような電子コンポーネント及び流体コンポーネントを含む電子流体制御システム740を含む。流体導管705は、可膨張部材704に結合された第1の端部と、ハウジング710内に収容された流体制御システムに接続して可膨張部材704との間の流体の移送を可能にする、ハウジング710に形成されたポート720を貫通する第2の端部とを有する。
図13Aに示す配置では、リザーバ702Aが密閉ハウジング710内に収容される。密閉ハウジング710内の環境は一定量の気体/流体を保持しているので、リザーバ702内の容積が変化すると密閉ハウジング710内の圧力の変化が生じ、リザーバ702が密閉ハウジング710内で膨張及び収縮できる量が制限されてしまう。とりわけ密閉ハウジング710が例えばヘリウム又はアルゴンなどの比較的圧縮が容易な気体で満たされている場合には、リザーバ702にベローズ構造を使用することでこの制限を緩和することができる。
【0075】
図12Bに示す流体作動式装置例700Bは、密閉ハウジング710内に閉鎖型ベローズ12を含む。閉鎖型ベローズ712は、犠牲気体(sacrificial gas)として作用する圧縮性流体で満たされて、リザーバ702が収縮すると閉鎖型ベローズ712が膨張し、リザーバ702が膨張すると閉鎖型ベローズ712が収縮することができる。すなわち、リザーバ702内に流体が導入されると(ベローズ構造を有する)リザーバ702が膨張し、リザーバ702の膨張に応答して閉鎖型ベローズ712が収縮する。リザーバ702から流体が排出されるとリザーバ702が収縮し、リザーバ702の収縮に応答して閉鎖型ベローズ712が膨張する。
【0076】
密閉ハウジング610内に取り付けられた内部流体リザーバ702を含む例示的なツーピース構造の流体作動式可膨張装置700A、700Bは、埋め込み型流体作動式可膨張装置700の全体的サイズを縮小させることができる。いくつかの状況では、この設計が外科手術の時間及び複雑さを低減する。いくつかの状況では、この設計が、密閉ハウジング710が患者内の適所に縫合されることを可能にし、従って埋め込み型流体作動式可膨張装置700の寿命中における生体内ドリフトを抑えることができる。
【0077】
本明細書では、説明した実装のいくつかの特徴について説明したが、当業者には多くの修正、置換、変更及び同等物が思い浮かぶであろう。従って、添付の特許請求の範囲は、本実施形態の範囲に含まれるこのような全ての修正及び変更をカバーするように意図するものであると理解されたい。
【符号の説明】
【0078】
102 リザーバ
104 可膨張部材
106 流体制御システム
108 電子制御システム
120 外部コントローラ
【国際調査報告】