IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ グロツ・ベッケルト コマンディートゲゼルシャフトの特許一覧

<>
  • 特表-カードワイヤのレーザー硬化法 図1
  • 特表-カードワイヤのレーザー硬化法 図2
  • 特表-カードワイヤのレーザー硬化法 図3
  • 特表-カードワイヤのレーザー硬化法 図4
  • 特表-カードワイヤのレーザー硬化法 図5
  • 特表-カードワイヤのレーザー硬化法 図6
  • 特表-カードワイヤのレーザー硬化法 図7
  • 特表-カードワイヤのレーザー硬化法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-15
(54)【発明の名称】カードワイヤのレーザー硬化法
(51)【国際特許分類】
   C21D 9/24 20060101AFI20240308BHJP
   C21D 9/26 20060101ALI20240308BHJP
   C21D 1/09 20060101ALI20240308BHJP
   D01G 15/88 20060101ALI20240308BHJP
【FI】
C21D9/24
C21D9/26
C21D1/09 A
D01G15/88
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023546321
(86)(22)【出願日】2021-12-17
(85)【翻訳文提出日】2023-09-11
(86)【国際出願番号】 EP2021086569
(87)【国際公開番号】W WO2022167138
(87)【国際公開日】2022-08-11
(31)【優先権主張番号】21154814.4
(32)【優先日】2021-02-02
(33)【優先権主張国・地域又は機関】EP
(31)【優先権主張番号】102021102373.4
(32)【優先日】2021-02-02
(33)【優先権主張国・地域又は機関】DE
(81)【指定国・地域】
(71)【出願人】
【識別番号】598132646
【氏名又は名称】グロツ・ベッケルト コマンディートゲゼルシャフト
(74)【代理人】
【識別番号】100123342
【弁理士】
【氏名又は名称】中村 承平
(72)【発明者】
【氏名】ヨハネス ブルスケ
(72)【発明者】
【氏名】ヨッヘン シュタウス
【テーマコード(参考)】
3B151
4K042
【Fターム(参考)】
3B151AA18
3B151AB27
3B151AC20
3B151AC47
3B151CA11
4K042AA10
4K042BA03
4K042BA14
4K042DA01
4K042DA02
4K042DB04
4K042DC04
4K042DC05
4K042DD04
4K042DD05
4K042DE02
4K042DF01
4K042EA01
4K042EA02
4K042EA03
(57)【要約】
本発明は、カードワイヤ10の硬化対象区間Aのレーザービーム硬化法に関する。これによりカードワイヤ10は、作業空間26を通って搬送方向に移動する。作業空間26内には、不活性ガスGを連続的又は非連続的に導入することにより不活性ガス雰囲気が作り出される。作業空間26内には、カードワイヤ10の硬化対象区間Aが移動するレーザービーム領域27が形成される。これにより硬化対象区間Aが加熱される。レーザービーム領域27から出た後、硬化対象区間Aは冷却され、この温度プロファイルを進行させることによって硬化される。作業空間26内の不活性ガス雰囲気中での硬化により、酸化物層の形成(スケーリング)及び焼戻し色が回避される。
【特許請求の範囲】
【請求項1】
基部(11)と、前記基部から突出する複数の歯(12)と、を備えたカードワイヤ(10)のレーザー硬化法であって、
作業空間(26)の内部に少なくとも1つの連続するレーザービーム領域(27)を形成する工程と、
前記作業空間(26)に不活性ガス(G)を供給する工程と、
前記カードワイヤ(10)を搬送方向(F)で前記作業空間(26)に搬送し、各歯(12)の硬化対象区間(A)が前記少なくとも1つのレーザービーム領域(27)を通って移動するようにし、よって各硬化対象区間(A)の少なくとも1つの外面(18、19)が前記少なくとも1つのレーザービーム領域(27)を通じて移動し、前記硬化対象区間(A)が加熱されるようにする工程と、
前記硬化対象区間(A)を冷却する工程と、
を備えるレーザー硬化法。
【請求項2】
前記カードワイヤ(10)が搬送方向(F)に停止することなく連続的に移動する、ことを特徴とする請求項1に記載の方法。
【請求項3】
前記カードワイヤ(10)が搬送方向(F)に一定速度で移動する、ことを特徴とする請求項2に記載の方法。
【請求項4】
前記少なくとも1つのレーザービーム領域(27)は、搬送方向(F)の長さ(x)と、前記搬送方向(F)に直交する幅(y)を有する非円形の輪郭を有し、前記幅(y)は前記長さ(x)よりも特に短い、ことを特徴とする請求項1乃至3の何れか1つに記載の方法。
【請求項5】
前記少なくとも1つのレーザービーム領域(27)は、少なくとも1つの直線外縁を含む、ことを特徴とする請求項1乃至4の何れか1つに記載の方法。
【請求項6】
レーザービーム領域(27)の前記少なくとも1つの直線外縁は、前記搬送方向(F)と平行に方向付けられる、ことを特徴とする請求項5に記載の方法。
【請求項7】
前記レーザー光の強度は、前記レーザービーム領域(27)の各直線外縁で急激に変化する、ことを特徴とする請求項1乃至6の何れか1つに記載の方法。
【請求項8】
前記少なくとも1つのレーザービーム領域(27)は入射レーザービーム(30)を出射レーザービーム(32)にする少なくとも1つのビーム形成光学系(31)によって形成され、よって前記出射レーザービームは前記少なくとも1つのレーザービーム領域(27)のうちの少なくとも1つを形成する、ことを特徴とする請求項1乃至7の何れか1つに記載の方法。
【請求項9】
前記出射レーザービーム(32)の前記レーザー光の少なくとも一部を取り込むように構成されたビームダンプ(38)が存在する、ことを特徴とする請求項1乃至8の何れか1つに記載の方法。
【請求項10】
前記ビームダンプ(38)は、冷却媒体(K)によって冷却される、ことを特徴とする請求項5又は6に記載の方法。
【請求項11】
前記ビームダンプ(38)は、前記少なくとも1つのレーザービーム領域(27)を通過する前記レーザー光の進行方向に対して斜めに方向付けられた前記出射レーザービーム(32)の少なくとも1つの入射面(39)を備える、ことを特徴とする請求項5乃至7の何れか1つに記載の方法。
【請求項12】
レーザービーム源(28)は、900nm-1100nmの波長を有する前記少なくとも1つのレーザービーム領域(27)の形成のためのレーザービーム(29)を発光する、ことを特徴とする請求項1乃至11の何れか1つに記載の方法。
【請求項13】
前記少なくとも1つのレーザービーム領域(27)において前記レーザービーム領域(A)への前記レーザー光の印加期間は、50msから70msである、ことを特徴とする請求項1乃至12の何れか1つに記載の方法。
【請求項14】
前記カードワイヤ(10)は、前記少なくとも1つのレーザービーム領域(27)に入る前に焼戻される、ことを特徴とする請求項1乃至13の何れか1つに記載の方法。
【請求項15】
前記カードワイヤ(10)は、前記少なくとも1つのレーザービーム領域(27)に入る前に洗浄される、ことを特徴とする請求項1乃至14の何れか1つに記載の方法。
【請求項16】
第1のレーザービーム領域(27a)及び距離を置いた第2のレーザービーム領域(27b)が形成される、ことを特徴とする請求項1乃至15の何れか1つに記載の方法。
【請求項17】
前記硬化対象区間(A)の第1の外面(18)は前記第1のレーザービーム領域(27a)を通って移動し、前記硬化対象区間(A)の前記第1の外面(18)とは反対側の第2の外表面(19)は、前記第2のレーザービーム領域(27b)を通って移動する、ことを特徴とする請求項13に記載の方法。
【請求項18】
前記硬化対象区間(A)の加熱が測定される、ことを特徴とする請求項1乃至17の何れか1つに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カードワイヤの硬化対象区間のレーザー硬化法に関する。
【背景技術】
【0002】
レーザー硬化法は、例えば、特許文献1から既知である。そこでは、レーザービームが開口部を通って作業空間に向けられ、その作業空間を通してカードワイヤが搬送方向に移動する。カードワイヤは、作業空間の前で搬送方向にガスバーナーによって予熱される。搬送方向における作業空間の後方で、カードワイヤはスプレーノズルによって冷却される。作業空間はその内側が球状で、カードワイヤから反射したレーザー光を、作業空間の内側からカードワイヤに反射して戻すことができる。このようにして、2つの対向する側面からカードワイヤにレーザー光を向けることができる。
【0003】
カードワイヤのレーザー硬化法は、特許文献2にも記載されている。
【0004】
特許文献3は、誘導加熱によるカードワイヤの硬化及びそれに続く冷却媒体による冷却について説明している。この文献は、レーザービームのエネルギーのために局所的な過熱が発生する可能性があるため、レーザー硬化は優位性に欠けると述べている。カードワイヤの誘導加熱は、特許文献4からも既知である。
【0005】
特許文献5は電子ビームによる、帯のこ等の被加工物又は工具の硬化法を記載しており、電子ビームエネルギーは硬化対象区間の形状及び/又は位置に適合させる。
【0006】
レーザービーム切断のためのレーザーの使用は、特許文献6から既知である。これにより、例えば、カードワイヤの輪郭を被加工物から切断することができる。
【0007】
カードワイヤは、カードワイヤがローラに巻かれる基部を有する。歯は略三角形の輪郭を有し、基部から突出する。カードワイヤ又は基部の延長方向では、直接隣接する2つの歯が隙間によって互いに分離されている。
【0008】
カーディング中、織物繊維はローラに巻かれたカードワイヤによって取り出され、カードワイヤの隣接する巻線間の隙間でローラの周りの円周方向に方向付けられる。これにより、カードワイヤの歯は、織物繊維を取り出し、織物繊維を解き放つまで保持するように構成される。したがって、これらの歯に十分な硬度を付与し、織物繊維との摩擦による過度の摩耗が生じないようにすることが望ましい。カードワイヤの基部は、順番にローラに巻き付ける必要があるため、それぞれ弾性を有する必要がある。したがって、全鋼製の針布用のカードワイヤの製造中、カードワイヤは異なる領域で異なる硬度を有することが望ましい。
【0009】
したがって、カードワイヤの各歯の少なくとも硬化対象区間は硬化されなければならず、一方、基部は硬化対象区間と比較して硬度が低い。これにより、すでに硬化した部品と非硬化部品の間に遷移領域が形成される。遷移領域では、カードワイヤの硬度が正確に定義されていないため、カードワイヤ又はカードワイヤの各歯の欠点となり得る。また、加熱(スケーリング)により金属酸化物層が形成され得ることも不利である。次に、さらなるプロセスでイオン酸化物層を再度除去することが一般的に必要である。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許第4924062号
【特許文献2】スイス国特許第670455号
【特許文献3】独国特許出願公開第102014106574号明細書
【特許文献4】日本国特許2909774号
【特許文献5】独国特許第2018793号
【特許文献6】独国特許出願公開第102006030418号明細書
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、本発明の目的は、スケール形成を回避しつつ、省スペース装置を用いてカードワイヤを効率的に硬化させることができる方法を提供することである。
【課題を解決するための手段】
【0012】
この目的は、請求項1に記載の特徴を有する方法により達成される。
【0013】
本発明では、レーザーを用いてカードワイヤをカードワイヤの硬化対象区間において硬化する。カードワイヤには、歯が突出した状態の連続した基部がある。基部が延長方向に直線的に延びている場合、歯は共通の面に平行に向けられ、延長方向に一列ずつ配置される。この方法には次の工程が含まれる。
【0014】
作業空間では、少なくとも1つの作業面に少なくとも1つのレーザービーム領域が形成される。丁度1つのレーザービーム領域が1つの作業面内に形成されること、又は第1のレーザービーム領域が第1の作業面内に形成され且つ第2のレーザービーム領域が第2の作業面内に形成されることが好ましい。これにより、作業面は互いに距離を置いて配置される。レーザービーム領域は、連続レーザービームの断面によって形成することができる。レーザービーム領域の輪郭は変化してもよく、例えば、多角形、特に矩形とすることができる。レーザービーム領域は、直線的に延びる少なくとも1つ、好ましくは4つの外縁を含むと優位性がある。各直線外縁では、レーザー光の強度又はレーザービーム領域のエネルギー密度が急激に変化する。変化率mは、レーザービーム領域の外縁におけるレーザー光の強度の勾配を表し、例えば、以下のように定義することができる。
【0015】
【数1】
ここで、
m:強度の変化率
:レーザービーム領域の強度Iの平均値
w:平均強度
の50%で直線外縁に直交するレーザービーム領域の幅
x1:平均強度
の10%で直線外縁に直交するレーザービーム領域の幅の半分
x2:平均強度
の90%で直線外縁に直交するレーザービーム領域の幅の半分。
【0016】
変化率は5より大きいことが好ましく、7より大きいことが特に好ましく、8より大きいことがさらに好ましい。
【0017】
作業空間には不活性ガスが導入される。この不活性ガスの導入は、連続的又は非連続的に行うことができる。このようにして作業空間内に不活性ガス雰囲気を作り出すことができる。例えば、窒素及び/又はアルゴン及び/又は他の希ガスを不活性ガスとして使用することができる。そうすることで、作業空間に不活性及び/又は化学反応性の低い雰囲気が作り出される。
【0018】
カードワイヤは搬送方向、特にカードワイヤの作業空間への延長方向に搬送される。よって、カードワイヤの各歯の硬化対象区間は、作業空間内でレーザー光の出射方向に対して斜め又は直交するよう方向付けられることが好ましい。カードワイヤは、各硬化対象区間が少なくとも1つのレーザービーム領域に沿って、又は少なくとも1つのレーザービーム領域を通って移動するように搬送される。各硬化対象区間は、各作業面に沿いに、割り当てられた少なくとも1つのレーザービーム領域を通じた硬化対象区間の移動中に移動する少なくとも1つの外面を有する。例えば、1つの単一のレーザービーム領域を1つの単一の作業面内に形成することができ、各硬化対象区間の外面は、レーザービーム領域を通って作業面に沿って移動する。互いに平行に配置され、硬化対象区間の厚さに対応する搬送方向に直交する方向で離れている2つの作業面に2つのレーザービーム領域を形成することも可能である。そうすることで、各硬化対象区間の2つの対向する外面を、割り当てられたレーザービーム領域を介してそれぞれ2つの作業面の1つに沿って移動させることができる。したがって、各硬化対象区間は、レーザービーム領域によって片側から、又は2つのレーザービーム領域によって対向する両側から加熱することができる。
【0019】
硬化対象区間が少なくとも1つのレーザービーム領域を通って移動している間、それは加熱される。カードワイヤの搬送運動により、硬化対象区間は少なくとも1つのレーザービーム領域を移動して遠ざかり、硬化対象区間に追加のエネルギー又は熱が導入されないようにする。カードワイヤの材料の熱伝導、及びカードワイヤと作業空間内の周囲の雰囲気との間の熱伝導により、加熱対象区間は急速に冷却され、よって硬度が向上する。不活性ガスの供給によりガス流が生成され、追加の冷却効果がオプションとして得られる。この場合、不活性ガスを作業空間に連続的に導入することができる。別途の追加冷却媒体の供給は、全ての態様において必要ではない。カードワイヤの各硬化対象区間の加熱と冷却は、完全に作業空間内で行われる。
【0020】
よって、レーザービーム領域による各硬化対象区間のエネルギーの導入及び加熱は、小さな領域内で行うことができる。加熱と冷却は非常に短い期間で行われるため、スケーリングの危険性はすでに減少している。しかし、この短期間の硬化にもかかわらず、焼戻し色の形成及び/又はスケーリングが発生し得ることを示している。本発明によれば、この理由で不活性ガスが作業空間の内部に連続的又は非連続的に導入されることから、低反応性又は不活性雰囲気が作り出される。そうすることで、レーザー硬化がさらに改善され、カードワイヤの硬化区間の後処理を省略できる。
【0021】
レーザー光又はレーザービームの生成には、例えば、ダイオードレーザー又はガスレーザー等のレーザービーム源が使用される。レーザー光の波長は、少なくとも650nm、例えば、800nm-1400nmの範囲、及び一態様では約1000nmの光波長でよい。
【0022】
カードワイヤが搬送方向に停止することなく連続的に移動することが好ましい。搬送方向への移動は一定速度で行うことができる。カードワイヤが搬送方向に移動する速度は、少なくとも10m/min又は20m/min、例えば、40m/min-50m/minとすることができ、搬送方向における歯の寸法に応じて速度を調整することができる。搬送方向でのカードワイヤの移動中の速度が一定であるため、各硬化対象区間が少なくとも1つのレーザービーム領域を通って移動する期間も一定である。
【0023】
レーザービーム領域の少なくとも1つの特性が時間不変である場合、例えば、レーザービーム領域の輪郭及び/又はレーザーのオン期間中のレーザー光の強度及び/又はビームインパルス周波数、レーザービーム領域がレーザービームインパルスによって形成される場合、優位性がある。一態様において、レーザービーム領域はオン又はオフにスイッチされず、レーザー光のエネルギー密度はレーザービーム領域の範囲(例えば、レーザービームインパルス周波数がゼロ)において時間依存的に変化しない。レーザービーム領域の空間的延長及び作業空間におけるレーザービーム領域の位置は、一定であることが好ましい。
【0024】
好ましい態様において、少なくとも1つのレーザービーム領域は、非円形の輪郭を有してよい。少なくとも1つのレーザービーム領域は、割り当てられた作業面において、長さの方向は搬送方向で、幅の方向は搬送方向に直交する方向である。長さと幅は特に異なり、幅は長さよりも短くてよい。少なくとも1つのレーザービーム領域の長さは、最小10mm-最大100mm、好ましくは15mm-70mm、さらに好ましくは25mm又は30mm-40mmの範囲とすることができる。例えば、レーザービーム領域の長さは32mm-35mmである。レーザービーム領域の幅は、各歯で硬化対象区間の高さに応じて選択することができ、一態様では少なくとも0.5mm又は1.0mm及び/又は最大2.0mm又は3.0mmとすることができる。
【0025】
好ましい態様において、各レーザービーム領域は、入射レーザービームを出射レーザービームにする各ビーム形成光学系によって形成することができる。出射レーザービームは、入射するレーザービームとは異なる断面を有する。出射レーザービームは、割り当てられた作業面にレーザービーム領域を形成する。第1の作業面における第1のレーザービーム領域及び第2の作業面における第2のレーザービーム領域が形成される場合、このために2つの別々のビーム形成光学系を使用することができる。ビーム形成光学系は、例えば、レンズ、特にパウエルレンズに似た自由曲面レンズを備えてよい。このようなレンズに加えて、ビーム形成光学系は、追加の光収縮及び/又は光屈折及び/又は光反射部品を備えてよい。
【0026】
レーザービーム領域において、硬化対象区間に衝突せずに、レーザービーム領域を通過するレーザー光が、ビームダンプによって少なくとも部分的に受光されると、さらなる優位性がある。カードワイヤが搬送方向に移動すると、例えば、レーザー光はレーザービーム領域を部分的に、例えば、レーザービーム領域でカードワイヤの2つの隣接する歯の間に隙間が存在する領域を通過する。このレーザー光は、ビームダンプによって少なくとも部分的に捕捉することができる。このため、ビームダンプは、ビーム形成光学系の反対側に配置することができ、例えば、作業面はビーム形成光学系とビームダンプとの間に存在する。
【0027】
ビームダンプは、冷却媒体、例えば、水及び/又は空気によって冷却することができることが好ましい。ビームダンプの内部では、この目的のために冷却媒体が流れる少なくとも1つの冷却チャネルを延長することができる。追加的又は代替的に、冷却媒体を外部からビームダンプに向けることができる。
【0028】
一態様において、ビームダンプは、少なくとも1つのレーザービーム領域を通過するレーザー光の進行方向に対して斜めに方向付けられた少なくとも1つの入射面を備えることができる。そうすることで、入射面上のレーザー光のエネルギー密度は、レーザービーム領域におけるエネルギー密度に比べて小さくなる。レーザー光のエネルギー密度は、入射面上の加熱がビームダンプにとって重要ではなく、それによって導入された熱を、好ましくは冷却媒体による能動的冷却によって放散することができるように、減少させることができる。
【0029】
少なくとも1つのレーザービーム領域において硬化対象区間の各点へのレーザー光の印加期間は、最大150ms又は最大100msでよい。好ましくは、印加期間は、30ミリ秒-90ミリ秒の範囲、さらに好ましくは50ミリ秒-70ミリ秒の範囲とすることができる。一態様において、印加期間は約60ミリ秒である。印加期間は、例えば、カードワイヤの搬送速度及び/又は搬送方向における少なくとも1つのレーザービーム領域の長さに従って調整することができる。
【0030】
カードワイヤが少なくとも1つのレーザービーム領域に入る前に焼戻されることが好ましい。焼戻しは、カードワイヤの基部に限定することも、少なくともそれを網羅するようにすることもできる。また、カードワイヤ全体に焼戻し処理を施すこともできる。焼戻しには、初期温度から保持温度までの暖機、保持温度での完全加熱、及び暖機前のカードワイヤの初期温度に対応し得る目標温度までの冷却、といった工程が含まれる。目標温度及び/又は初期温度は、例えば、環境温度であり得る。
【0031】
また、方法が少なくとも1つのレーザービーム領域に移行する前にカードワイヤを洗浄する工程を備えると優位性がある。洗浄は、任意の焼戻しプロセスの前に行ってよい。洗浄は、特に、洗浄工具とカードワイヤとの直接接触なしに、例えば、カードワイヤに洗浄液を噴霧することによって行われる。水は洗浄液として使用してよい。
【0032】
少なくとも1つの硬化対象区間の暖機が、例えば、高温計によって測定されると優位性がある。このようにして、少なくとも1つのレーザービーム領域におけるレーザー光のエネルギー密度を調整し、カードワイヤの硬化対象区間における所望の温度が達成されるようにすることができる。硬化対象区間内の温度の測定により、レーザーエネルギーの閉ループ制御又は調整、そしてそれ故に少なくとも1つのレーザービーム領域におけるレーザー光のエネルギー密度も実現することができる。
【0033】
本発明の優位性のある実施例は、従属項、発明の詳細な説明、及び図面から導かれる。以下では、本発明の好ましい実施例を、添付の図面を参照しながら詳細に説明する。図は、以下の通りである。
【図面の簡単な説明】
【0034】
図1】カードワイヤの実施例の部分的な概略的斜視図である。
図2図1のカードワイヤの部分的な概略的側面図である。
図3図2の切断線III-IIIでのカードワイヤの延長方向に直交する面を示す断面図である。
図4図1乃至3のカードワイヤの既に硬化した歯の硬度の進行の基本概略図である。
図5】搬送方向から見たカードワイヤの硬化装置及び硬化法の基本概略図である。
図6】搬送方向と直交する側面における図5の装置及び方法の概略図である。
図7】長さの方向は搬送方向で、幅の方向は搬送方向に直交する方向である本発明のレーザービーム領域の基本図である。
図8】カードワイヤのレーザー硬化装置及びレーザー硬化法の変形実施例の非常に概略的な図である。
【発明を実施するための形態】
【0035】
本発明はカードワイヤ10のレーザー硬化に関し、図1乃至3に概略的に示されている。カードワイヤ10は、長手方向Lに延びる基部11を備える。基部11の断面は多角形、例えば矩形、でよい。幅方向Bでは、基部11から長手方向Lに交互に配置された複数の歯12が突出している。長手方向Lで直に隣接する2つの歯12の間には、1つの隙間13がそれぞれ存在する。各歯12は、幅方向Bにおいて基部11から離れて配置された角部14を有する略三角形の輪郭を有する。角部14は、歯12の輪郭を規定する2つの縁部15、16によって形成されている。実施例において、一つの第1の縁部15は略幅方向Bに延び、他の第2の縁部16は幅方向Bに対して斜めに傾斜して延びている。
【0036】
幅方向Bと長手方向Lとに直交する深さ方向Tにおいて、基部11は、少なくとも歯12の厚さよりも長い区間で厚さ又は強度を有する。これにより、実施例では、幅方向Bと直交するよう方向付けられた長手面17を有する基部11上に突起部が形成されている。各歯12は、第1の外面18と、第1の外面18と対向する第2の外面19とを有する。2つの外面18、19は、歯12の厚さに応じて深さ方向Tに互いに距離を置いて配置されている。2つの外面18、19は、互いに平行に配置することができる。実施例では、第2の外面19が深さ方向Tに略直交して延びているのに対し、第1の外面18は深さ方向T及び第2の外面19に対して斜めに傾斜するように向いている。第1の外面18は第1の面E1で延び、第2の外面19は第2の面E2で延びる(図3)。
【0037】
硬化対象区間Aは、各歯の角部14に隣接している。この区間では、各歯12を硬化させる。硬化対象区間Aは、長手面17に隣接する基部11の突起部まで距離をあけて配置されている。本発明のレーザー硬化により硬化対象区間Aが硬化した後、遷移領域Zは、硬度が基部11向かって連続的に低下する硬化対象区間Aに隣接する。幅方向Bにおいて、遷移領域Zは、本発明の方法によるレーザー硬化後の寸法が0.3mm未満、好ましくは0.2mm未満の範囲である。
【0038】
硬化対象区間Aを硬化させるために、硬化対象区間Aにエネルギーが導入され、加熱される。硬化対象区間Aの加熱は、レーザービームのレーザー光による放射によって行われる。レーザー硬化装置及びレーザー硬化法の実施例は、それぞれ構成図状の概略図で図5及び図6に示されている。
【0039】
レーザー硬化のため、作業空間26がハウジング25内に規定される。この作業空間26では、カードワイヤ10が硬化対象区間Aで処理され、特にレーザー硬化が行われる。実施例において、カードワイヤ10は、図示しない搬送装置によって作業空間26を通って搬送方向Fに移動する。搬送方向Fは、例えば、水平方向とすることができる。搬送方向Fでのカードワイヤ10の搬送時には、長手方向Lが搬送方向に向けられるようにカードワイヤ10が方向付けられることが好ましい。カードワイヤ10の幅方向Bは、搬送方向Fに対して直交する作業空間26の横断方向Qと平行に向けられることが好ましい。搬送方向F及び横断方向Qは、水平に延びる面を形成することができる。カードワイヤ10は、いわば横臥位で作業空間内を移動することができる。
【0040】
ここで好ましい実施例において、カードワイヤ10は作業空間26を継続的に移動し、それによって処理、特に硬化される。カードワイヤ10が搬送方向Fに移動する速度は一定であることが好ましく、実施例では少なくとも10m/min又は少なくとも20m/min、例えば、40m/min-50m/minであり、ここで速度は歯12の寸法に依存し、歯12が大きいほど低い。
【0041】
作業空間では少なくとも1つのレーザービーム領域27、及び図5及び図6に係る実施例では丁度1つのレーザービーム領域27が形成される。このために、装置は、レーザービーム29を発光するレーザービーム源28を備える。発光されたレーザービーム29は、入射レーザービーム30としてビーム形成光学系31に直接供給することも、又は代替的に1つ又はそれ以上の光学素子を介して間接的に供給することもできる。光学素子は、レーザービームを方向転換及び/又は屈折及び/又は回折及び/又は反射し、次に入射レーザービーム30としてビーム形成光学系31に供給することができる。
【0042】
レーザービーム源28によって生成されるレーザービーム29のレーザー光は、好ましくは少なくとも650nm又は少なくとも800nmの波長、例えば、800nm-1400nmの範囲、実施例では約1000nmの波長を含む。
【0043】
ビーム形成光学系31は、入射レーザービーム30を形成し、そこから出射レーザービーム32を形成するよう構成され、作業面において画定された断面を有する。このために、ビーム形成光学系31は、レンズ、特に自由曲面レンズ33などの1つ又はそれ以上の光学部品を備えてよい。
【0044】
作業空間26内部の作業面では、出射レーザービーム32がレーザービーム領域27を形成する。図5及び図6に係る実施例において、作業面は、作業空間26の内部を搬送方向F及び横断方向Qに延伸又は横断方向Qに傾斜し、作業空間内に存在する第1の外面18の第1の面E1が作業面内に略配置される。出射レーザービーム32は、作業面内に配置されたそのレーザービーム領域27において規定の寸法及びエネルギー密度を有する。図7に非常に模式的に示される通り、レーザービーム領域27は、搬送方向Fの長さxと、作業面に沿って搬送方向Fに直交、又は横断方向Qの幅yを有する。長さxは、幅yとは異なり、特に幅yより長いことが好ましい。実施例において、長さxは、最小10mm-最大100mm、好ましくは15mm-70mm、さらに好ましくは25mm又は30mm-40mm、特に32mm-35mmとすることができる。レーザービーム領域27の幅yは、歯12の硬化対象区間Aの寸法に適合させることができ、例えば、最小0.5mm又は1.0mm-2.0mm又は3.0mmの範囲とすることができる。
【0045】
少なくとも1つのレーザービーム領域27は、実施例によると、矩形又はそれ以外であれば多角形の輪郭を有する。少なくともそれは、搬送方向Fに平行に方向付けられ、基部11に向かう少なくとも1つのレーザービーム領域27を制限する直線外縁を備える。各直線外縁では、レーザー光の強度又は少なくとも1つのレーザービーム領域27のエネルギー密度が急激に変化する。変化率mは、レーザービーム領域の外縁におけるレーザー光の強度の勾配を表し、例えば、以下の通りである。
【0046】
【数2】
ここで、
m:強度の変化率
:レーザービーム領域の強度Iの平均値
w:平均強度
の50%で直線外縁に直交するレーザービーム領域の幅
x1:平均強度
の10%で直線外縁に直交するレーザービーム領域の幅の半分
x2:平均強度
の90%で直線外縁に直交するレーザービーム領域の幅の半分。
【0047】
変化率は5より大きいことが好ましく、7より大きいことが特に好ましく、8より大きいことがさらに好ましい。
【0048】
作業空間26内に低反応性又は不活性ガス雰囲気を作り、レーザー硬化による金属酸化物層(スケール)の形成及び焼戻し色の生成を回避する。この目的で、不活性ガスGが作業空間26内に導入される。このために、ハウジング25は、不活性ガスGを供給するための少なくとも1つのガス接続部37を備えることができる。不活性ガスGを、作業空間26内に連続的又は非連続的に流入させることができる。
【0049】
不活性ガスGは、ビーム形成光学系31に隣接する作業空間26に導入され、出射レーザービーム32の進行方向に対して斜め又は直交、例えば、横断方向Q及び/又は搬送方向Fに流れるようにするのが好ましい。実施例において、不活性ガスGは、作業面又はレーザービーム領域27とビーム形成光学系31との間に垂直に導入される。不活性ガスGの流れはビーム形成光学系31を保護することができ、作業空間26におけるレーザー硬化及び/又は他の処理中に生成されるいわゆるヒューム及び/又は蒸気のシールガスとして機能することができる。不活性ガスGは、レーザービーム領域27からヒューム及び/又は蒸気を除去することができる。したがって、不活性ガスGは、実施例による作業空間26内の低反応性又は不活性雰囲気の生成だけでなく、同時に、ビーム形成光学系31の保護、及び/又はカードワイヤ10の表面のレーザービーム領域27における均一なエネルギー密度を可能な限り維持する役割をする。
【0050】
不活性ガスGとして、窒素、アルゴンもしくは他の希ガス又はこれらの任意の組み合わせを用いることができる。
【0051】
レーザー硬化のために、カードワイヤ10は作業空間26を通じて移動し、個々の歯12の硬化対象区間Aがその後にレーザービーム領域27を通じて移動する。この移動の間、硬化対象区間Aは、レーザービーム領域27において加熱され、レーザービーム領域27を出た後に急速に冷却され、よって硬度が向上する。この冷却は、カードワイヤ10内の熱が、加熱された硬化対象区間から基部11に向かう方向に伝導することによって行われる。追加の冷却は、作業空間26内の雰囲気中の熱放散によって達成することができる。作業空間26の内部への不活性ガスGの導入によってもたらされるガス流は、加熱された区間のさらなる冷却に寄与することができる。
【0052】
図7に模式的に示されるように、レーザービーム領域27は、歯12の硬化対象区間Aのみがレーザービーム領域27を通じて移動するように位置決めされる。硬化してはならないカードワイヤ10の他の区間、特に基部11は、作業空間26を通じてレーザービーム領域27の外に移動される。
【0053】
実施例において、レーザービーム領域27での出射レーザービーム32のレーザー光が、そこを通過する硬化対象区間Aの各点に作用する印加期間は、最大150ms又は最大100msである。好ましくは、印加期間は、30ミリ秒-90ミリ秒の範囲、さらに好ましくは50ミリ秒-70ミリ秒の範囲とすることができる。実施例において、印加期間は約60ミリ秒である。
【0054】
歯12の硬化対象区間Aの硬化後、歯12は、基本的に図4に模式的に示される硬度が進行する。図の横座標は、歯12の角部14からの幅方向Bの距離dを定義している。縦軸は距離dに基づく硬度Hを示す。硬化後の硬度Hは、各硬化対象区間Aで最大且つ略一定である。遷移領域Zでは硬度が低下する。硬化部Aの外側で、硬度Hは、カードワイヤ10の非硬化材料の値に相当する。幅方向Bにおける遷移領域Zの寸法は小さく、0.2mm未満であることが好ましい。非硬化基部11は十分な弾性及び変形性を付与し、カードワイヤ10は亀裂やその他の損傷を伴うことなく問題なく硬化後にローラに巻くこともできる。
【0055】
図5及び図6に示される通り、カードワイヤ10が作業空間26を通って移動する作業面又は面の後ろでは、出射レーザービーム32の進行方向にビームダンプ38が存在し得る。ビームダンプ38は、カードワイヤ10に衝突しないものの、レーザービーム領域27、特に2つの歯12の間の隙間13を通過する出射レーザービーム32のレーザー光を少なくとも部分的に捕捉するように構成される(図7も比較)。ビームダンプ38は、出射レーザービーム32のレーザー光の進行方向に対して斜めに配置された少なくとも1つの入射面39、実施例では2つの入射面39を有する。入射面39は、例えば、V字状に配置することができる。レーザー光の進行方向に対する入射面39の傾きにより、レーザービーム領域27の面積と比較して、レーザー光が少なくとも1つの入射面39に衝突する領域が拡大される。したがって、少なくとも1つの入射面39に衝突するレーザー光のエネルギー密度は低下する。そのため、ビームダンプ38においても単位面積当たりの吸収が十分に低い。
【0056】
本実施例において、少なくとも1つの入射面39は、ヒートシンク40の外面によって実現される。ヒートシンク40、加えてそれ故に少なくとも1つの入射面39は、冷却媒体K、例えば、空気、水、又は別の流体によって冷却することができる。この目的のために、ヒートシンク40の内部には少なくとも1つの冷却チャネル41が、冷却媒体Kが流れる態様において存在することができる。冷却媒体Kの冷却回路は、図5に非常に概略的に示されるのみである。
【0057】
図6に基づいて、方法を実施するため、又は装置の構成のために、任意の追加的構成の可能性が示される。カードワイヤ10を処理するための追加のステーションは、好ましくはカードワイヤ10の移動方向でレーザービーム領域27の前に配置されるハウジング25の内部にあってよい。例えば、それは洗浄ステーションや焼戻しステーション42でよい。洗浄ステーション41は、少なくともカードワイヤ10の硬化対象区間Aを洗浄するように構成されている。焼戻しステーション42は、カードワイヤ10の基部11を少なくとも焼戻すように構成されている。
【0058】
洗浄ステーション41は、洗浄物質を出力し、それをカードワイヤ10の硬化対象区間Aに噴霧して汚れを除去する構成とすることができる。オプションとして、カードワイヤ10は、続いて洗浄ステーション41において、例えば、ガスを用いたブロー乾燥によって乾燥することができる。
【0059】
焼戻しステーション42は、カードワイヤ10の基部11又はカードワイヤ10全体を少なくとも焼戻しするように構成されている。このために焼戻しステーション42は、加熱装置43、冷却装置44、加えてオプションとして乾燥装置45を備えることができる。加熱装置43は、カードワイヤ10の基部11に少なくとも熱を導入し、保持温度まで加熱する役割を果たす。続いて、このようにして加熱されたカードワイヤ10の部分は、冷却装置44によって、例えば、水等の冷却物質を噴霧することによって冷却される。続いて、カードワイヤ10は、乾燥装置45によって、例えば、気体を用いたブロー乾燥によって乾燥することができる。
【0060】
洗浄ステーション41での洗浄及び/又は焼戻しステーション42での焼戻しの後、硬化対象区間Aは、レーザー硬化によって作業空間で硬化される。実施例において、これらの処理工程の全ては、作業空間26の内部で行われる。
【0061】
図8は、カードワイヤ10の硬化対象区間Aのレーザー硬化のためのさらなる実施例を、非常に簡略化された概略的基本説明図として示す。この実施例において、2つの出射レーザービーム32は、それぞれの場合にレーザービーム領域を形成する2つの別個のビーム形成光学系31によって生成され、実施例では、第1の作業面における第1のレーザービーム領域27aと、そこまで距離を隔てて配置された第2の作業面における第2のレーザービーム領域27bが形成される。2つの作業面は、互いに平行又は傾斜するように延ばすことができ且つ実施例に従って方向付けられ、硬化対象区間Aの第1の面E1が第1の作業面に沿って移動し、硬化対象区間Aの第2の面E2が第2の作業面に沿って移動するようにする。この配置では、レーザー光のエネルギーを、カードワイヤ10の硬化対象区間Aに2つの対向する側、すなわち第1のレーザービーム領域27aの第1の外面18及び第2のレーザービーム領域27bの第2の外面19から導入することができる。
【0062】
搬送方向Fにおいてレーザービーム領域27a、27bは、互いにずらして配置されてもよいし、交互に少なくとも部分的に重なり合ってもよい。
【0063】
図8にさらに示されるように、2つの出射レーザービーム32に、2つの別個のビームダンプ38を設けることができる。出射レーザービーム32は、共通軸に平行に方向付けられていないものの、進行方向は互いに180°未満の角度に方向付けられている。
【0064】
2つのビーム形成光学系31によって2つの出射レーザービーム32を生成するために、共通のレーザービーム源28の出射レーザービーム29を使用することができる。オプションとして、2つの別個のレーザービーム源28を使用することができる。
【0065】
割り当てられたレーザービーム領域27を通って移動する少なくとも1つの硬化対象区間Aの加熱を監視することができる。例えば、図5に概略的に示されるように、高温計46をこの目的のために使用することができる。高温計46によって、少なくとも1つの硬化対象区間Aでカードワイヤ10の加熱された箇所から発生する熱放射Wを決定することができる。したがって、少なくとも1つの硬化対象区間Aに十分なエネルギーが注入されたかどうかを高温計46によって検査することができる。応用可能であれば、レーザービーム源28の調整は、エネルギー注入を適応させるために変更を加えることができる。
【0066】
本発明は、カードワイヤ10の硬化対象区間Aのレーザービーム硬化法に関する。これによりカードワイヤ10は、作業空間26を通って搬送方向に移動する。作業空間26内には、不活性ガスGを連続的又は非連続的に導入することにより不活性ガス雰囲気が作り出される。作業空間26内にはレーザービーム領域27が形成され、それを通してカードワイヤ10の硬化対象区間Aが移動する。これにより硬化対象区間Aが加熱される。レーザービーム領域27から出た後、硬化対象区間Aは冷却され、この温度プロファイルを通じて進行させることによって硬化される。作業空間26内の不活性ガス雰囲気中での硬化により、酸化物層の形成(スケーリング)や焼戻し色が回避される。
【符号の説明】
【0067】
10 カードワイヤ
11 基部
12 歯
13 間隙
14 角部
15 第1の縁
16 第2の縁
17 長手面
18 第1の外面1
19 第2の外面
25 ハウジング
26 作業空間
27 レーザービーム領域
27a 第1のレーザービーム領域
27b 第2のレーザービーム領域
28 レーザービーム源
29 レーザービーム
30 入射レーザービーム
31 ビーム形成光学系
32 出射レーザービーム
33 自由曲面レンズ
37 ガス接続部
38 ビームダンプ
39 当接面
40 ヒートシンク
41 洗浄ステーション
42 焼戻しステーション
43 加熱装置
44 冷却装置
45 乾燥装置
46 高温計
A 硬化対象区間
B 幅方向
d 距離
E1 第1の面
E2 第2の面
F 搬送方向
G 不活性ガス
H 硬度
K 冷却媒体
L 長さ方向
Q 横断方向
T 深さ方向
W 熱放射
x レーザービーム領域の長さ
y レーザービーム領域の幅
Z 遷移領域
図1
図2
図3
図4
図5
図6
図7
図8
【国際調査報告】