IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クゥアルコム・インコーポレイテッドの特許一覧

特表2024-512487複数スロット送信上のアップリンク制御情報多重化についてのタイムライン
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-19
(54)【発明の名称】複数スロット送信上のアップリンク制御情報多重化についてのタイムライン
(51)【国際特許分類】
   H04W 28/06 20090101AFI20240312BHJP
   H04W 72/0446 20230101ALI20240312BHJP
   H04W 72/21 20230101ALI20240312BHJP
   H04W 72/1268 20230101ALI20240312BHJP
   H04L 27/26 20060101ALI20240312BHJP
【FI】
H04W28/06 110
H04W72/0446
H04W72/21
H04W72/1268
H04L27/26 113
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023557198
(86)(22)【出願日】2022-03-24
(85)【翻訳文提出日】2023-09-15
(86)【国際出願番号】 US2022021807
(87)【国際公開番号】W WO2022204439
(87)【国際公開日】2022-09-29
(31)【優先権主張番号】63/166,961
(32)【優先日】2021-03-26
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/656,209
(32)【優先日】2022-03-23
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】スリドハラン、ゴクル
(72)【発明者】
【氏名】ホッセイニ、サイードキアヌーシュ
(72)【発明者】
【氏名】リー、フン・ディン
(72)【発明者】
【氏名】ヤン、ウェイ
(72)【発明者】
【氏名】ファン、イー
(72)【発明者】
【氏名】ガール、ピーター
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA11
5K067CC04
5K067DD11
5K067EE02
5K067EE10
5K067HH28
5K067LL11
(57)【要約】
ワイヤレス通信のための方法、コンピュータ可読媒体、および装置が提供される。本装置は、複数スロット物理アップリンク共有チャネル(PUSCH)送信の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用する。本装置は、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信する。
【特許請求の範囲】
【請求項1】
ユーザ機器(UE)におけるワイヤレス通信の方法であって、
複数スロット物理アップリンク共有チャネル(PUSCH)送信の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用することと、
前記処理タイムラインが満たされることに基づいて、多重化UCIとともに前記複数スロットPUSCH送信を送信することと
を備える、方法。
【請求項2】
前記UCIが、ハイブリッド自動再送要求(HARQ)フィードバックを備え、前記処理タイムラインが、物理ダウンリンク共有チャネル(PDSCH)の受信と前記PDSCHについてのHARQフィードバックペイロードを搬送する物理アップリンク制御チャネル(PUCCH)の開始との間の時間ギャップに対応する、請求項1に記載の方法。
【請求項3】
前記UCIが、チャネル状態情報(CSI)報告を備え、前記処理タイムラインが、チャネル状態情報基準信号(CSI-RS)の最後のシンボルの受信と前記CSI-RSの測定に基づく前記CSI報告を搬送する物理アップリンク制御チャネル(PUCCH)の開始との間の時間ギャップに対応する、請求項1に記載の方法。
【請求項4】
前記処理タイムラインを適用することが、
前記複数スロットPUSCH送信の開始に基づいて前記処理タイムラインを適用すること
を含む、請求項1に記載の方法。
【請求項5】
前記複数スロットPUSCH送信が、連続スロットのセットを備える送信オケージョンにおいて送信される、請求項4に記載の方法。
【請求項6】
前記処理タイムラインは、
前記UCIと時間的に重複する、前記複数スロットPUSCH送信の重複したスロット、
前記複数スロットPUSCH送信において、前記UCIがそこにおいて多重化されるべきである、多重化スロット、
前記複数スロットPUSCH送信内での前記UCIについての送信オケージョンベースの多重化、
前記複数スロットPUSCH送信についての送信オケージョンベースのインターリービング、または
前記複数スロットPUSCH送信についての送信オケージョンベースのレートマッチング
のうちの1つまたは複数に基づく、前記複数スロットPUSCH送信の前記開始に基づく、請求項5に記載の方法。
【請求項7】
前記処理タイムラインは、
前記UCIが、前記複数スロットPUSCH送信の重複したスロットにおいて多重化されること、
前記複数スロットPUSCH送信内での前記UCIについてのスロットベースの多重化、
前記複数スロットPUSCH送信についてのスロットベースのインターリービング、または
前記複数スロットPUSCH送信についてのスロットベースのレートマッチング
のうちの1つまたは複数に基づく、前記複数スロットPUSCH送信の重複したスロットの前記開始に基づく、請求項5に記載の方法。
【請求項8】
前記UCIを多重化することが、
前記複数スロットPUSCH送信と重複する、第1のUCIおよび第2のUCIを多重化すること
を含む、請求項1に記載の方法。
【請求項9】
前記複数スロットPUSCH送信の開始に基づいて前記第1のUCIと前記第2のUCIとについて前記処理タイムラインを適用すること
をさらに備える、請求項8に記載の方法。
【請求項10】
前記第1のUCIと前記第2のUCIとが、送信オケージョンの異なるスロットにおいて重複し、前記処理タイムラインが、前記第1のUCIと前記第2のUCIとによって重複された前記送信オケージョンのそれぞれのスロットに基づいて、前記第1のUCIと前記第2のUCIとについて別様に決定される、請求項8に記載の方法。
【請求項11】
前記複数スロットPUSCH送信が、不連続スロットのセットを備える送信オケージョンにおいて送信され、ここにおいて、前記処理タイムラインは、前記UCIがそこにおいて多重化される、前記送信オケージョンの連続部分に基づいて決定される、請求項1に記載の方法。
【請求項12】
前記処理タイムラインが、前記連続部分の開始に基づく、請求項11に記載の方法。
【請求項13】
前記複数スロットPUSCH送信の異なる連続部分と重複する、第1のUCIおよび第2のUCIを多重化すること
をさらに備え、ここにおいて、前記処理タイムラインは、それぞれのUCIがそこにおいて多重化される、前記送信オケージョンの前記連続部分に基づいて決定される、請求項11に記載の方法。
【請求項14】
ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
メモリと、
前記メモリに結合された少なくとも1つのプロセッサと
を備え、前記少なくとも1つのプロセッサは、
複数スロット物理アップリンク共有チャネル(PUSCH)送信の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用することと、
前記処理タイムラインが満たされることに基づいて、多重化UCIとともに前記複数スロットPUSCH送信を送信することと
を行うように構成された、装置。
【請求項15】
前記UCIが、ハイブリッド自動再送要求(HARQ)フィードバックを備え、前記処理タイムラインが、物理ダウンリンク共有チャネル(PDSCH)の受信と前記PDSCHについてのHARQフィードバックペイロードを搬送する物理アップリンク制御チャネル(PUCCH)の開始との間の時間ギャップに対応する、請求項14に記載の装置。
【請求項16】
前記UCIが、チャネル状態情報(CSI)報告を備え、前記処理タイムラインが、チャネル状態情報基準信号(CSI-RS)の最後のシンボルの受信と前記CSI-RSの測定に基づく前記CSI報告を搬送する物理アップリンク制御チャネル(PUCCH)の開始との間の時間ギャップに対応する、請求項14に記載の装置。
【請求項17】
前記処理タイムラインを適用するために、前記少なくとも1つのプロセッサが、
前記複数スロットPUSCH送信の開始に基づいて前記処理タイムラインを適用すること
を行うようにさらに構成された、請求項14に記載の装置。
【請求項18】
前記複数スロットPUSCH送信が、連続スロットのセットを備える送信オケージョンにおいて送信される、請求項17に記載の装置。
【請求項19】
前記処理タイムラインは、
前記UCIと時間的に重複する、前記複数スロットPUSCH送信の重複したスロット、
前記複数スロットPUSCH送信において、前記UCIがそこにおいて多重化されるべきである、多重化スロット、
前記複数スロットPUSCH送信内での前記UCIについての送信オケージョンベースの多重化、
前記複数スロットPUSCH送信についての送信オケージョンベースのインターリービング、または
前記複数スロットPUSCH送信についての送信オケージョンベースのレートマッチング
のうちの1つまたは複数に基づく、前記複数スロットPUSCH送信の前記開始に基づく、請求項18に記載の装置。
【請求項20】
前記処理タイムラインは、
前記UCIが、前記複数スロットPUSCH送信の重複したスロットにおいて多重化されること、
前記複数スロットPUSCH送信内での前記UCIについてのスロットベースの多重化、
前記複数スロットPUSCH送信についてのスロットベースのインターリービング、または
前記複数スロットPUSCH送信についてのスロットベースのレートマッチング
のうちの1つまたは複数に基づく、前記複数スロットPUSCH送信の重複したスロットの前記開始に基づく、請求項18に記載の装置。
【請求項21】
前記UCIを多重化するために、前記少なくとも1つのプロセッサが、
前記複数スロットPUSCH送信と重複する、第1のUCIおよび第2のUCIを多重化すること
を行うようにさらに構成された、請求項14に記載の装置。
【請求項22】
前記少なくとも1つのプロセッサが、
前記複数スロットPUSCH送信の開始に基づいて前記第1のUCIと前記第2のUCIとについて前記処理タイムラインを適用すること
を行うようにさらに構成された、請求項21に記載の装置。
【請求項23】
前記第1のUCIと前記第2のUCIとが、送信オケージョンの異なるスロットにおいて重複し、前記処理タイムラインが、前記第1のUCIと前記第2のUCIとによって重複された前記送信オケージョンのそれぞれのスロットに基づいて、前記第1のUCIと前記第2のUCIとについて別様に決定される、請求項21に記載の装置。
【請求項24】
前記複数スロットPUSCH送信が、不連続スロットのセットを備える送信オケージョンにおけるものであり、ここにおいて、前記処理タイムラインは、前記UCIがそこにおいて多重化される、前記送信オケージョンの連続部分に基づく、請求項14に記載の装置。
【請求項25】
前記処理タイムラインが、前記連続部分の開始に基づく、請求項24に記載の装置。
【請求項26】
前記少なくとも1つのプロセッサが、
前記複数スロットPUSCH送信の異なる連続部分と重複する、第1のUCIおよび第2のUCIを多重化すること
を行うようにさらに構成され、ここにおいて、前記処理タイムラインは、それぞれのUCIがそこにおいて多重化される、前記送信オケージョンの前記連続部分に基づいて決定される、請求項24に記載の装置。
【請求項27】
前記少なくとも1つのプロセッサに結合された少なくとも1つのトランシーバ
をさらに備える、請求項14に記載の装置。
【請求項28】
ユーザ機器(UE)におけるワイヤレス通信のための装置であって、
複数スロット物理アップリンク共有チャネル(PUSCH)送信の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用するための手段と、
前記処理タイムラインが満たされることに基づいて、多重化UCIとともに前記複数スロットPUSCH送信を送信するための手段と
を備える、装置。
【請求項29】
ユーザ機器(UE)におけるコンピュータ実行可能コードを記憶する非一時的コンピュータ可読媒体であって、前記コードは、プロセッサによって実行されたとき、前記プロセッサに、
複数スロット物理アップリンク共有チャネル(PUSCH)送信の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用することと、
前記処理タイムラインが満たされることに基づいて、多重化UCIとともに前記複数スロットPUSCH送信を送信することと
を行わせる、非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、その全体が参照により本明細書に明確に組み込まれる、2021年3月26日に出願された「Timelines for Uplink Control Information Multiplexing Over Multiple Slot Transmissions」と題する米国仮出願第63/166,961号、および2022年3月23日に出願された「Timelines for Uplink Control Information Multiplexing Over Multiple Slot Transmissions」と題する米国非仮特許出願第17/656,209号の利益および優先権を主張する。
【0002】
[0002]本開示は、一般に、通信システムに関し、より詳細には、アップリンク制御情報(UCI)を含むワイヤレス通信に関する。
【背景技術】
【0003】
[0003]ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソースを共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムを含む。
【0004】
[0004]これらの多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。例示的な電気通信規格は5G新無線(NR)である。5G NRは、(たとえば、モノのインターネット(IoT)に関する)レイテンシ、信頼性、セキュリティ、スケーラビリティに関連する新しい要件、および他の要件を満足するための、第3世代パートナーシッププロジェクト(3GPP(登録商標))によって公表された継続的モバイルブロードバンド発展の一部である。5G NRは、拡張モバイルブロードバンド(eMBB)、マッシブマシンタイプ通信(mMTC)、および超高信頼低レイテンシ通信(URLLC)に関連するサービスを含む。5G NRのいくつかの態様は、4Gロングタームエボリューション(LTE(登録商標))規格に基づき得る。5G NR技術のさらなる改善が必要である。これらの改善はまた、他の多元接続技術と、これらの技術を採用する電気通信規格とに適用可能であり得る。
【発明の概要】
【0005】
[0005]以下は、1つまたは複数の態様の基本的理解を提供するために、そのような態様の簡略化された概要を提示する。この概要は、すべての企図された態様の包括的な概観ではなく、すべての態様の主要または重要な要素を識別するものでも、いずれかまたはすべての態様の範囲を定めるものでもない。その唯一の目的は、後に提示されるより詳細な説明の導入として、1つまたは複数の態様のいくつかの概念を簡略化された形で提示することである。
【0006】
[0006]本開示の一態様では、方法、コンピュータ可読媒体、および装置が提供される。本装置は、複数スロット物理アップリンク共有チャネル(PUSCH)送信(multiple slot physical uplink shared channel (PUSCH) transmission)の少なくとも1つのスロットにおいてアップリンク制御情報(UCI)を多重化するために処理タイムラインを適用する。本装置は、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信する。
【0007】
[0007]上記の目的および関係する目的を達成するために、1つまたは複数の態様は、以下で十分に説明され、特に特許請求の範囲において指摘される特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に示している。ただし、これらの特徴は、様々な態様の原理が採用され得る様々な方法のうちのほんのいくつかを示すものであり、この説明は、すべてのそのような態様およびそれらの均等物を含むものとする。
【図面の簡単な説明】
【0008】
図1】[0008]本開示の様々な態様による、ワイヤレス通信システムおよびアクセスネットワークの一例を示す図。
図2A】[0009]本開示の様々な態様による、第1のフレームの一例を示す図。
図2B】[0010]本開示の様々な態様による、サブフレーム内のDLチャネルの一例を示す図。
図2C】[0011]本開示の様々な態様による、第2のフレームの一例を示す図。
図2D】[0012]本開示の様々な態様による、サブフレーム内のULチャネルの一例を示す図。
図3】[0013]本開示の様々な態様による、アクセスネットワーク中の基地局とユーザ機器(UE)との一例を示す図。
図4】[0014]本開示の様々な態様による、複数スロットPUSCH送信についての送信オケージョンの様々なオプションを示す図。
図5A】[0015]本開示の様々な態様による、複数スロットPUSCHの複数の送信オケージョンについての冗長バージョン(RV)循環の例示的な態様を示す図。
図5B】本開示の様々な態様による、複数スロットPUSCHの複数の送信オケージョンについての冗長バージョン(RV)循環の例示的な態様を示す図。
図6】[0016]本開示の様々な態様による、複数スロットPUSCH送信についての送信オケージョンベースのインターリービングの例示的な態様を示す図。
図7】[0017]本開示の様々な態様による、複数スロットPUSCH送信についてのスロットベースのインターリービングの例示的な態様を示す図。
図8】[0018]本開示の様々な態様による、リソースの不連続セグメントを有する送信オケージョンにおける複数スロットPUSCH送信についてのセグメントベースのインターリービングの例示的な態様を示す図。
図9】[0019]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンと時間的に重複するUCIの一例を示す図。
図10】[0020]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンの重複したスロットにおいてUCIを多重化することの一例を示す図。
図11】[0021]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンにわたってUCIを多重化することの一例を示す図。
図12】[0022]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンの重複したスロットにおいてUCIを多重化することの一例を示す図。
図13】[0023]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョン上でUCIを多重化することの一例を示す図。
図14】[0024]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンにおいてUCIの反復を多重化することの一例を示す図。
図15】[0025]本開示の様々な態様による、UCIを複数スロットPUSCH送信と多重化するための例示的な処理タイムライン考慮を示す図。
図16】[0026]本開示の様々な態様による、UCIを複数スロットPUSCH送信と多重化するための例示的な処理タイムライン考慮を示す図。
図17】[0027]本開示の様々な態様による、UCIを複数スロットPUSCH送信と多重化するための例示的な処理タイムライン考慮を示す図。
図18】[0028]本開示の様々な態様による、複数スロットPUSCH送信についての、連続リソースを有する送信オケージョンと重複する複数のUCIの一例を示す図。
図19】[0029]本開示の様々な態様による、複数スロットPUSCH送信についての送信オケージョンと重複する複数のUCIを重複したスロットごとに多重化することの一例を示す図。
図20】[0030]本開示の様々な態様による、複数スロットPUSCH送信についての送信オケージョンと重複する複数のUCIを送信オケージョンごとに多重化することの一例を示す図。
図21】[0031]本開示の様々な態様による、複数のPUCCHからのUCIを複数スロットPUSCH送信と多重化するための例示的な処理タイムライン考慮を示す図。
図22】[0032]本開示の様々な態様による、複数スロットPUSCH送信についての、リソースの不連続セグメントを有する送信オケージョンと時間的に重複するUCIの一例を示す図。
図23】[0033]本開示の様々な態様による、複数スロットPUSCH送信についての、リソースの不連続セグメントを有する送信オケージョンと重複するUCIをセグメントごとに多重化することの一例を示す図。
図24】[0034]本開示の様々な態様による、不連続セグメントを有する送信オケージョンにおいてUCIを複数スロットPUSCH送信と多重化するための例示的な処理タイムライン考慮を示す図。
図25】[0035]本開示の様々な態様による、複数スロットPUSCH送信と多重化するための処理タイムラインの適用例を含む、UEと基地局との間の例示的な通信フロー。
図26A】[0036]本開示の様々な態様による、複数スロットPUSCH送信と多重化するための処理タイムラインの適用例を含む、ワイヤレス通信の方法のフローチャート。
図26B】本開示の様々な態様による、複数スロットPUSCH送信と多重化するための処理タイムラインの適用例を含む、ワイヤレス通信の方法のフローチャート。
図27】[0037]本開示の様々な態様による、例示的な装置のためのハードウェア実装形態の一例を示す図。
図28】[0038]例示的なディスアグリゲーテッド(disaggregated)基地局アーキテクチャを示す図。
【発明を実施するための形態】
【0009】
[0039]UEが、複数のスロットに及ぶ送信オケージョン上でPUSCHを送信し得る。UEは、送信オケージョンの複数のスロット内で単一のTBを送信し得る。時々、UEは、PUSCHについての送信オケージョンと時間的に重複する物理アップリンク制御チャネル(PUCCH)における送信についてのアップリンク制御情報(UCI)を有し得る。時間的な重複に基づいて、UEは、UCIをPUSCHと多重化し得る。本明細書で提示される態様は、UEがUCIを複数スロットPUSCHと多重化するための、様々な方法を提供する。UCIについてのリソースの数、UCIについてのロケーション、多重化のハンドリング、タイムライン、PUSCHのレートマッチング、および/またはPUSCHのインターリービングの任意の組合せを含む多重化態様は、送信オケージョンのタイプ(たとえば、連続または不連続)に基づいて異なり得る。多重化態様は、重複されるPUSCH送信オケージョンのスロットに基づいて異なり得る。多重化態様は、PUSCHハンドリングのタイプ、たとえばスロットごとの、送信オケージョンごとの、またはセグメントごとのインターリービングおよびRV循環、に基づいて異なり得る。
【0010】
[0040]添付の図面に関して以下に記載される発明を実施するための形態は、様々な構成の説明として意図されており、本明細書で説明される概念が実践され得る構成のみを表すことが意図されていない。発明を実施するための形態は、様々な概念の完全な理解を提供するための具体的な詳細を含む。ただし、これらの概念はこれらの具体的な詳細なしに実践され得ることが当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にすることを回避するために、よく知られている構造および構成要素がブロック図の形態で示されている。
【0011】
[0041]次に、様々な装置および方法に関して電気通信システムのいくつかの態様が提示される。これらの装置および方法は、以下の発明を実施するための形態において説明され、(「要素」と総称される)様々なブロック、構成要素、回路、プロセス、アルゴリズムなどによって添付の図面に示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるのかソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。
【0012】
[0042]例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」として実装され得る。プロセッサの例は、マイクロプロセッサ、マイクロコントローラ、グラフィックス処理ユニット(GPU)、中央処理ユニット(CPU)、アプリケーションプロセッサ、デジタル信号プロセッサ(DSP)、縮小命令セットコンピューティング(RISC)プロセッサ、システムオンチップ(SoC)、ベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実施するように構成された他の好適なハードウェアを含む。処理システム中の1つまたは複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェア構成要素、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味すると広く解釈されたい。
【0013】
[0043]したがって、1つまたは複数の例示的な実施形態では、説明される機能は、ハードウェア、ソフトウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体上に1つまたは複数の命令またはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、光ディスクストレージ、磁気ディスクストレージ、他の磁気ストレージデバイス、そのタイプのコンピュータ可読媒体の組合せ、あるいはコンピュータによってアクセスされ得る、命令またはデータ構造の形態のコンピュータ実行可能コードを記憶するために使用され得る任意の他の媒体を備えることができる。
【0014】
[0044]態様および実装形態は、いくつかの例に対する説明によって本出願で説明されるが、追加の実装形態および使用事例が多くの異なる構成およびシナリオにおいて起こり得ることを、当業者は理解されよう。本明細書で説明される態様は、多くの異なるプラットフォームタイプ、デバイス、システム、形状、サイズ、およびパッケージング構成にわたって実装され得る。たとえば、実装形態および/または使用は、集積チップ実装形態および他の非モジュール構成要素ベースのデバイス(たとえば、エンドユーザデバイス、車両、通信デバイス、コンピューティングデバイス、工業機器、小売り/購買デバイス、医療デバイス、人工知能(AI)対応デバイスなど)を介して生じ得る。いくつかの例は使用事例または適用例を特に対象とすることも対象としないこともあるが、説明される態様の適用可能性の広い組合せが行われ得る。実装形態は、チップレベルまたはモジュラー構成要素から非モジュラー非チップレベル実装形態までの、さらには説明される態様の1つまたは複数の態様を組み込んでいるアグリゲート、分散、または相手先商標製造会社(OEM)デバイスまたはシステムまでの範囲にわたり得る。いくつかの実際の設定では、説明される態様および特徴を組み込んでいるデバイスはまた、請求および説明される態様の実装および実践のために追加の構成要素および特徴を含み得る。たとえば、ワイヤレス信号の送信および受信は、アナログおよびデジタル目的のためのいくつかの構成要素(たとえば、アンテナ、RFチェーン、電力増幅器、変調器、バッファ、(1つまたは複数の)プロセッサ、インターリーバ、アダー/加算器などを含むハードウェア構成要素)を必ず含む。本明細書で説明される態様は、異なるサイズ、形状および構造の多種多様なデバイス、チップレベル構成要素、システム、分散構成、アグリゲーテッド(aggregated)構成要素またはディスアグリゲーテッド構成要素、エンドユーザデバイスなどにおいて実践され得ることが意図される。
【0015】
[0045]図1は、基地局102または180とUE104とを含む、ワイヤレス通信システムおよびアクセスネットワーク100の一例を示す図である。本明細書で説明されるように、UE104は、UCIマルチプレクサ構成要素198を含み得る。いくつかの態様では、UCIマルチプレクサ構成要素198は、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するためにタイムラインを適用するように構成され得る。UE104は、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信するように構成され得る。基地局102または180、あるいは基地局の構成要素は、多重化UCI受信構成要素199を含み得る。基地局102または180、あるいは基地局の構成要素は、複数スロットPUSCH送信についてUE104にリソースを割り振り得る。いくつかの態様では、多重化UCI受信構成要素199は、UCI多重化についての処理タイムラインに基づいて複数スロットPUSCH送信の少なくとも1つのスロットにおいて多重化されたUCIを備える、複数スロットPUSCH送信を受信するように構成され得る。以下の説明は5G NRに焦点が合わせられ得るが、本明細書で説明される概念は、LTE、LTE-A、CDMA、GSM(登録商標)、および他のワイヤレス技術など、他の同様のエリアに適用可能であり得る。
【0016】
[0046](ワイヤレスワイドエリアネットワーク(WWAN)とも呼ばれる)ワイヤレス通信システムは、基地局102と、UE104と、発展型パケットコア(EPC)160と、別のコアネットワーク190(たとえば、5Gコア(5GC))とを含む。基地局102は、マクロセル(高電力セルラー基地局)および/またはスモールセル(低電力セルラー基地局)を含み得る。マクロセルは基地局を含む。スモールセルは、フェムトセルと、ピコセルと、マイクロセルとを含む。
【0017】
[0047](発展型ユニバーサルモバイルテレコミュニケーションズシステム(UMTS)地上波無線アクセスネットワーク(E-UTRAN)と総称される)4G LTEのために構成された基地局102は、第1のバックホールリンク132(たとえば、S1インターフェース)を通してEPC160とインターフェースし得る。(次世代RAN(NG-RAN)と総称される)5G NRのために構成された基地局102は、第2のバックホールリンク184を通してコアネットワーク190とインターフェースし得る。他の機能に加えて、基地局102は、以下の機能、すなわち、ユーザデータの転送と、無線チャネル暗号化および解読と、完全性保護と、ヘッダ圧縮と、モビリティ制御機能(たとえば、ハンドオーバ、デュアル接続性)と、セル間干渉協調と、接続セットアップおよび解放と、負荷分散と、非アクセス層(NAS)メッセージのための配信と、NASノード選択と、同期と、無線アクセスネットワーク(RAN)共有と、マルチメディアブロードキャストマルチキャストサービス(MBMS)と、加入者および機器トレースと、RAN情報管理(RIM)と、ページングと、測位と、警告メッセージの配信とのうちの1つまたは複数を実施し得る。基地局102は、第3のバックホールリンク134(たとえば、X2インターフェース)上で互いと直接的または間接的に(たとえば、EPC160またはコアネットワーク190を通して)通信し得る。第1のバックホールリンク132、第2のバックホールリンク184(たとえば、Xnインターフェース)、および第3のバックホールリンク134は、ワイヤードまたはワイヤレスであり得る。
【0018】
[0048]いくつかの態様では、基地局102または180は、RANと呼ばれることがあり、アグリゲーテッド構成要素またはディスアグリゲーテッド構成要素を含み得る。ディスアグリゲーテッドRANの一例として、基地局は、図1に示されているように、中央ユニット(CU)106、1つまたは複数の分散ユニット(DU)105、および/または1つまたは複数のリモートユニット(RU)109を含み得る。RANは、RU109とアグリゲーテッドCU/DUとの間のスプリットによりディスアグリゲートされ得る。RANは、CU106と、DU105と、RU109との間のスプリットによりディスアグリゲートされ得る。RANは、CU106とアグリゲーテッドDU/RUとの間のスプリットによりディスアグリゲートされ得る。CU106と1つまたは複数のDU105とは、F1インターフェースを介して接続され得る。DU105とRU109とは、フロントホールインターフェースを介して接続され得る。CU106とDU105との間の接続がミッドホールと呼ばれることがあり、DU105とRU109との間の接続がフロントホールと呼ばれることがある。CU106とコアネットワークとの間の接続がバックホールと呼ばれることがある。RANは、RANの様々な構成要素間の、たとえば、CU106、DU105、またはRU109間の機能的スプリットに基づき得る。CUは、たとえば、プロトコルスタックの1つまたは複数のレイヤをハンドリングする、ワイヤレス通信プロトコルの1つまたは複数の態様を実施するように構成され得、(1つまたは複数の)DUは、ワイヤレス通信プロトコルの他の態様、たとえば、プロトコルスタックの他のレイヤをハンドリングするように構成され得る。異なる実装形態では、CUによってハンドリングされるレイヤとDUによってハンドリングされるレイヤとの間のスプリットは、プロトコルスタックの異なるレイヤにおいて行われ得る。1つの非限定的な例として、DU105が、機能的スプリットに基づいて、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤと、物理(PHY)レイヤの少なくとも一部分とをホストするための論理ノードを提供し得る。RUが、PHYレイヤの少なくとも一部分と無線周波数(RF)処理とをホストするように構成された論理ノードを提供し得る。CU106が、たとえば、サービスデータ適応プロトコル(SDAP)レイヤ、パケットデータコンバージェンスプロトコル(PDCP)レイヤなど、RLCレイヤより上の、上位レイヤ機能をホストし得る。他の実装形態では、CU、DU、またはRUによって提供されるレイヤ機能間のスプリットは異なり得る。
【0019】
[0049]アクセスネットワークは、コアネットワークへのアクセスおよびバックホールを提供するためにUE104または他の統合アクセスおよびバックホール(IAB:integrated access and backhaul)ノード111とワイヤレス通信を交換する、1つまたは複数のIABノード111を含み得る。複数のIABノードのIABネットワークでは、アンカーノードがIABドナーと呼ばれることがある。IABドナーは、コアネットワーク190またはEPC160へのアクセスおよび/あるいは1つまたは複数のIABノード111に対する制御を提供する基地局102または180であり得る。IABドナーは、CU106とDU105とを含み得る。IABノード111は、DU105とモバイル着信(MT:mobile termination)とを含み得る。IABノード111のDU105は親ノードとして動作し得、MTは子ノードとして動作し得る。
【0020】
[0050]基地局102は、UE104とワイヤレス通信し得る。基地局102の各々は、それぞれの地理的カバレージエリア110に通信カバレージを提供し得る。重複する地理的カバレージエリア110があり得る。たとえば、スモールセル102’は、1つまたは複数のマクロ基地局102のカバレージエリア110と重複するカバレージエリア110’を有し得る。スモールセルとマクロセルの両方を含むネットワークが、異種ネットワークとして知られ得る。異種ネットワークはまた、限定加入者グループ(CSG)として知られる限定グループにサービスを提供し得るホーム発展型ノードB(eNB)(HeNB)を含み得る。基地局102とUE104との間の通信リンク120は、UE104から基地局102への(逆方向リンクとも呼ばれる)アップリンク(UL)送信、および/または基地局102からUE104への(順方向リンクとも呼ばれる)ダウンリンク(DL)送信を含み得る。通信リンク120は、空間多重化、ビームフォーミング、および/または送信ダイバーシティを含む、多入力多出力(MIMO)アンテナ技術を使用し得る。通信リンクは、1つまたは複数のキャリアを通したものであり得る。基地局102/UE104は、各方向において送信のために使用される最高合計Yx MHz(x個のコンポーネントキャリア)のキャリアアグリゲーションにおいて割り振られた、キャリアごとの最高Y MHz(たとえば、5、10、15、20、100、400MHzなど)帯域幅のスペクトルを使用し得る。キャリアは、互いに隣接することも、隣接しないこともある。キャリアの割振りは、DLとULとに関して非対称であり得る(たとえば、DLの場合、ULの場合よりも多いまたは少ないキャリアが割り振られ得る)。コンポーネントキャリアは、1次コンポーネントキャリアと、1つまたは複数の2次コンポーネントキャリアとを含み得る。1次コンポーネントキャリアは1次セル(PCell)と呼ばれることがあり、2次コンポーネントキャリアは2次セル(SCell)と呼ばれることがある。
【0021】
[0051]いくつかのUE104は、デバイスツーデバイス(D2D)通信リンク158を使用して互いと通信し得る。D2D通信リンク158は、DL/UL WWANスペクトルを使用し得る。D2D通信リンク158は、物理サイドリンクブロードキャストチャネル(PSBCH)、物理サイドリンク発見チャネル(PSDCH)、物理サイドリンク共有チャネル(PSSCH)、および物理サイドリンク制御チャネル(PSCCH)など、1つまたは複数のサイドリンクチャネルを使用し得る。D2D通信は、たとえば、WiMedia、Bluetooth(登録商標)、ZigBee(登録商標)、米国電気電子技術者協会(IEEE)802.11規格に基づくWi-Fi(登録商標)、LTE、またはNRなど、様々なワイヤレスD2D通信システムを通したものであり得る。
【0022】
[0052]ワイヤレス通信システムは、たとえば、5GHz無認可周波数スペクトルなどにおいて、通信リンク154を介してWi-Fi局(STA)152と通信しているWi-Fiアクセスポイント(AP)150をさらに含み得る。無認可周波数スペクトル中で通信するとき、STA152/AP150は、チャネルが利用可能であるかどうかを決定するために、通信するより前にクリアチャネルアセスメント(CCA)を実施し得る。
【0023】
[0053]スモールセル102’は、認可および/または無認可周波数スペクトル中で動作し得る。無認可周波数スペクトル中で動作するとき、スモールセル102’は、NRを採用し、Wi-Fi AP150によって使用されるのと同じ無認可周波数スペクトル(たとえば、5GHzなど)を使用し得る。無認可周波数スペクトル中でNRを採用するスモールセル102’は、アクセスネットワークへのカバレージをブーストし、および/またはアクセスネットワークの容量を増加させ得る。
【0024】
[0054]電磁スペクトルは、しばしば、周波数/波長に基づいて、様々なクラス、帯域、チャネルなどに再分割される。5G NRでは、2つの初期動作帯域が、周波数範囲指定FR1(410MHz~7.125GHz)およびFR2(24.25GHz~52.6GHz)として識別されている。FR1の一部分は6GHzよりも大きいが、FR1は、しばしば、様々なドキュメントおよび論文において「サブ6GHz」帯域と(互換的に)呼ばれる。同様の名称問題が、FR2に関して時々起こり、FR2は、国際電気通信連合(ITU)によって「ミリメートル波」帯域と識別される極高周波(EHF)帯域(30GHz~300GHz)とは異なるにもかかわらず、しばしば、ドキュメントおよび論文において「ミリメートル波」帯域と(互換的に)呼ばれる。
【0025】
[0055]FR1とFR2との間の周波数は、しばしば、ミッドバンド周波数と呼ばれる。最近の5G NRの研究は、これらのミッドバンド周波数の動作帯域を周波数範囲指定FR3(7.125GHz~24.25GHz)として識別している。FR3内に入る周波数帯域は、FR1特性および/またはFR2特性を継承し得、したがって、FR1および/またはFR2の特徴をミッドバンド周波数に効果的に拡大し得る。さらに、5G NR動作を52.6GHzを越えて拡大するためにより高い周波数帯域が現在探求されている。たとえば、3つのより高い動作帯域が、周波数範囲指定FR2-2(52.6GHz~71GHz)、FR4(71GHz~114.25GHz)、およびFR5(114.25GHz~300GHz)として識別されている。これらのより高い周波数帯域の各々がEHF帯域内に入る。
【0026】
[0056]上記の態様を念頭に置いて、別段に明記されていない限り、「サブ6GHz」などの用語は、本明細書で使用される場合、6GHz未満であり得るか、FR1内にあり得るか、またはミッドバンド周波数を含み得る周波数を広く表し得ることを理解されたい。さらに、別段に明記されていない限り、「ミリメートル波」などの用語は、本明細書で使用される場合、ミッドバンド周波数を含み得るか、FR2、FR4、FR2-2、および/またはFR5内にあり得るか、あるいはEHF帯域内にあり得る周波数を広く表し得ることを理解されたい。
【0027】
[0057]基地局102は、スモールセル102’なのかラージセル(たとえば、マクロ基地局)なのかにかかわらず、eNB、gノードB(gNB)、または別のタイプの基地局を含み、および/あるいはそのように呼ばれることがある。gNB180などのいくつかの基地局は、UE104との通信において、従来のサブ6GHzスペクトル中で、ミリメートル波周波数中で、および/または近ミリメートル波周波数で動作し得る。gNB180がミリメートル波または近ミリメートル波周波数で動作するとき、gNB180は、ミリメートル波基地局と呼ばれることがある。ミリメートル波基地局180は、経路損失と短い範囲とを補償するために、UE104とのビームフォーミング182を利用し得る。基地局180およびUE104は、各々、ビームフォーミングを可能にするために、アンテナ要素、アンテナパネル、および/またはアンテナアレイなど、複数のアンテナを含み得る。
【0028】
[0058]基地局180は、1つまたは複数の送信方向182’でUE104にビームフォーミングされた信号を送信し得る。UE104は、1つまたは複数の受信方向182’’で基地局180からビームフォーミングされた信号を受信し得る。UE104はまた、1つまたは複数の送信方向で基地局180にビームフォーミングされた信号を送信し得る。基地局180は、1つまたは複数の受信方向でUE104からビームフォーミングされた信号を受信し得る。基地局180/UE104は、基地局180/UE104の各々のための最良の受信方向と送信方向とを決定するために、ビームトレーニングを実施し得る。基地局180のための送信方向と受信方向とは、同じであることも同じでないこともある。UE104のための送信方向と受信方向とは、同じであることも同じでないこともある。
【0029】
[0059]EPC160は、モビリティ管理エンティティ(MME)162と、他のMME164と、サービングゲートウェイ166と、マルチメディアブロードキャストマルチキャストサービス(MBMS)ゲートウェイ168と、ブロードキャストマルチキャストサービスセンタ(BM-SC)170と、パケットデータネットワーク(PDN)ゲートウェイ172とを含み得る。MME162は、ホーム加入者サーバ(HSS)174と通信していることがある。MME162は、UE104とEPC160との間のシグナリングを処理する制御ノードである。概して、MME162は、ベアラおよび接続管理を提供する。すべてのユーザインターネットプロトコル(IP)パケットは、サービングゲートウェイ166を通して転送され、サービングゲートウェイ166自体は、PDNゲートウェイ172に接続される。PDNゲートウェイ172は、UEのIPアドレス割振りならびに他の機能を提供する。PDNゲートウェイ172とBM-SC170とはIPサービス176に接続される。IPサービス176は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、PSストリーミングサービス、および/または他のIPサービスを含み得る。BM-SC170は、MBMSユーザサービスプロビジョニングおよび配信のための機能を提供し得る。BM-SC170は、コンテンツプロバイダMBMS送信のためのエントリポイントとして働き得、パブリックランドモバイルネットワーク(PLMN)内のMBMSベアラサービスを許可し、開始するために使用され得、MBMS送信をスケジュールするために使用され得る。MBMSゲートウェイ168は、特定のサービスをブロードキャストするマルチキャストブロードキャスト単一周波数ネットワーク(MBSFN)エリアに属する基地局102にMBMSトラフィックを配信するために使用され得、セッション管理(開始/停止)と、eMBMS関係の課金情報を収集することとを担当し得る。
【0030】
[0060]コアネットワーク190は、アクセスおよびモビリティ管理機能(AMF)192と、他のAMF193と、セッション管理機能(SMF)194と、ユーザプレーン機能(UPF)195とを含み得る。AMF192は、統合データ管理(UDM)196と通信していることがある。AMF192は、UE104とコアネットワーク190との間のシグナリングを処理する制御ノードである。概して、AMF192は、QoSフローおよびセッション管理を提供する。すべてのユーザインターネットプロトコル(IP)パケットがUPF195を通して転送される。UPF195は、UEのIPアドレス割振りならびに他の機能を提供する。UPF195はIPサービス197に接続される。IPサービス197は、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、パケット交換(PS)ストリーミング(PSS)サービス、および/または他のIPサービスを含み得る。
【0031】
[0061]基地局は、gNB、ノードB、eNB、アクセスポイント、基地トランシーバ局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、送信受信ポイント(TRP)、または何らかの他の好適な用語を含み、および/あるいはそのように呼ばれることがある。基地局102は、UE104にEPC160またはコアネットワーク190へのアクセスポイントを提供する。UE104の例は、セルラーフォン、スマートフォン、セッション開始プロトコル(SIP)電話、ラップトップ、携帯情報端末(PDA)、衛星無線、全地球測位システム、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲーム機、タブレット、スマートデバイス、ウェアラブルデバイス、車両、電気メーター、ガスポンプ、大きいまたは小さいキッチン器具、ヘルスケアデバイス、インプラント、センサー/アクチュエータ、ディスプレイ、あるいは任意の他の同様の機能デバイスを含む。UE104のうちのいくつかは、IoTデバイス(たとえば、パーキングメーター、ガスポンプ、トースター、車両、心臓モニタなど)と呼ばれることがある。UE104は、局、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、または何らかの他の好適な用語で呼ばれることもある。
【0032】
[0062]図2Aは、5G NRフレーム構造内の第1のサブフレームの一例を示す図200である。図2Bは、5G NRサブフレーム内のDLチャネルの一例を示す図230である。図2Cは、5G NRフレーム構造内の第2のサブフレームの一例を示す図250である。図2Dは、5G NRサブフレーム内のULチャネルの一例を示す図280である。5G NRフレーム構造は、サブキャリアの特定のセット(キャリアシステム帯域幅)についてサブキャリアのセット内のサブフレームがDLまたはULのいずれかに専用である周波数分割複信(FDD)であり得るか、あるいは、サブキャリアの特定のセット(キャリアシステム帯域幅)についてサブキャリアのセット内のサブフレームがDLとULの両方に専用である時分割複信(TDD)であり得る。図2A図2Cによって提供された例では、5G NRフレーム構造は、TDDであると仮定され、サブフレーム4は、スロットフォーマット28で(大部分はDLで)構成され、ここで、DはDLであり、UはULであり、Fは、DL/ULの間の使用のためにフレキシブルであり、サブフレーム3は、スロットフォーマット1で(すべてULで)構成される。サブフレーム3、4が、それぞれ、スロットフォーマット1、28で示されているが、任意の特定のサブフレームが、様々な利用可能なスロットフォーマット0~61のいずれかで構成され得る。スロットフォーマット0、1は、それぞれ、すべてDL、ULである。他のスロットフォーマット2~61は、DL、UL、およびフレキシブルなシンボルの混合を含む。UEは、受信されたスロットフォーマットインジケータ(SFI)を通して(DL制御情報(DCI)を通して動的に、または無線リソース制御(RRC)シグナリングを通して半静的に/静的に)スロットフォーマットで構成される。説明は、TDDである5G NRフレーム構造にも適用される。
【0033】
[0063]図2A図2Dはフレーム構造を示しており、本開示の態様は、異なるフレーム構造および/または異なるチャネルを有し得る、他のワイヤレス通信技術に適用可能であり得る。フレーム(10ms)は、10個の等しいサイズのサブフレーム(1ms)に分割され得る。各サブフレームは、1つまたは複数のタイムスロットを含み得る。サブフレームはまた、7つ、4つ、または2つのシンボルを含み得るミニスロットを含み得る。サイクリックプレフィックス(CP)がノーマルであるのか拡張であるのかに応じて、各スロットは、14個または12個のシンボルを含み得る。ノーマルCPの場合、各スロットは14個のシンボルを含み得、拡張CPの場合、各スロットは12個のシンボルを含み得る。DL上のシンボルは、CP直交周波数分割多重化(OFDM)(CP-OFDM)シンボルであり得る。UL上のシンボルは、(高スループットシナリオの場合)CP-OFDMシンボル、または(単一のストリーム送信に限定された電力制限シナリオの場合)(シングルキャリア周波数分割多元接続(SC-FDMA)シンボルとも呼ばれる)離散フーリエ変換(DFT)拡散OFDM(DFT-s-OFDM)シンボルであり得る。サブフレーム内のスロットの数は、CPとヌメロロジーとに基づく。ヌメロロジーは、サブキャリア間隔(SCS)と、事実上、1/SCSに等しいシンボル長/持続時間とを定義する。
【0034】
【表1】
【0035】
ノーマルCP(14個のシンボル/スロット)の場合、異なるヌメロロジーμ0~4が、サブフレームごとに、それぞれ、1つ、2つ、4つ、8つ、および16個のスロットを可能にする。拡張CPの場合、ヌメロロジー2は、サブフレームごとに4つのスロットを可能にする。したがって、ノーマルCPおよびヌメロロジーμの場合、14個のシンボル/スロットと2μ個のスロット/サブフレームとがある。サブキャリア間隔は2μ*15kHzに等しくなり得、ここで、μはヌメロロジー0~4である。したがって、ヌメロロジーμ=0は15kHzのサブキャリア間隔を有し、ヌメロロジーμ=4は240kHzのサブキャリア間隔を有する。シンボル長/持続時間は、サブキャリア間隔と逆関係にある。図2A図2Dは、スロットごとに14個のシンボルをもつノーマルCPおよびサブフレームごとに4つのスロットをもつヌメロロジーμ=2の一例を提供する。スロット持続時間は0.25msであり、サブキャリア間隔は60kHzであり、シンボル持続時間は約16.67μsである。フレームのセット内に、周波数分割多重化された1つまたは複数の異なる帯域幅部分(BWP)(図2B参照)があり得る。各BWPは、特定のヌメロロジーおよびCP(ノーマルまたは拡張)を有し得る。
【0036】
[0064]フレーム構造を表すためにリソースグリッドが使用され得る。各タイムスロットは、12個の連続するサブキャリアを拡張する(物理リソースブロック(RB)(PRB)とも呼ばれる)RBを含む。リソースグリッドは複数のリソース要素(RE)に分割される。各REによって搬送されるビット数は変調方式に依存する。
【0037】
[0065]図2Aに示されているように、REのうちのいくつかは、UEのための基準(パイロット)信号(RS)を搬送する。RSは、UEにおけるチャネル推定のために、(1つの特定の構成についてRとして示されるが、他のDM-RS構成が可能である)復調RS(DM-RS)と、チャネル状態情報基準信号(CSI-RS)とを含み得る。RSは、ビーム測定RS(BRS)と、ビーム改良RS(BRRS)と、位相追跡RS(PT-RS)とをも含み得る。
【0038】
[0066]図2Bは、フレームのサブフレーム内の様々なDLチャネルの一例を示す。物理ダウンリンク制御チャネル(PDCCH)は、1つまたは複数の制御チャネル要素(CCE)(たとえば、1つ、2つ、4つ、8つ、または16個のCCE)内でDCIを搬送し、各CCEは6つのREグループ(REG)を含み、各REGは、RBのOFDMシンボル中に12個の連続するREを含む。1つのBWP内のPDCCHは、制御リソースセット(CORESET)と呼ばれることがある。UEは、CORESET上でPDCCH監視オケージョン中に、PDCCH探索空間(たとえば、共通探索空間、UE固有探索空間)においてPDCCH候補を監視するように構成され、ここで、PDCCH候補は、異なるDCIフォーマットと異なるアグリゲーションレベルとを有する。追加のBWPが、チャネル帯域幅にわたって、より大きいおよび/またはより低い周波数に位置し得る。1次同期信号(PSS)は、フレームの特定のサブフレームのシンボル2内にあり得る。PSSは、サブフレーム/シンボルタイミングと物理レイヤ識別情報とを決定するためにUE104によって使用される。2次同期信号(SSS)は、フレームの特定のサブフレームのシンボル4内にあり得る。SSSは、物理レイヤセル識別情報グループ番号と無線フレームタイミングとを決定するためにUEによって使用される。物理レイヤ識別情報および物理レイヤセル識別情報グループ番号に基づいて、UEは物理セル識別子(PCI)を決定することができる。PCIに基づいて、UEはDM-RSのロケーションを決定することができる。マスタ情報ブロック(MIB)を搬送する物理ブロードキャストチャネル(PBCH)は、(SSブロック(SSB)とも呼ばれる)同期信号(SS)/PBCHブロックを形成するためにPSSおよびSSSを用いて論理的にグループ化され得る。MIBは、システム帯域幅中のRBの数と、システムフレーム番号(SFN)とを提供する。物理ダウンリンク共有チャネル(PDSCH)は、ユーザデータと、システム情報ブロック(SIB)などのPBCHを通して送信されないブロードキャストシステム情報と、ページングメッセージとを搬送する。
【0039】
[0067]図2Cに示されているように、REのうちのいくつかは、基地局におけるチャネル推定のために(1つの特定の構成についてRとして示されるが、他のDM-RS構成が可能である)DM-RSを搬送する。UEは、物理アップリンク制御チャネル(PUCCH)のためのDM-RSと物理アップリンク共有チャネル(PUSCH)のためのDM-RSとを送信し得る。PUSCH DM-RSは、PUSCHの最初の1つまたは2つのシンボル中で送信され得る。PUCCH DM-RSは、短いPUCCHが送信されるのか長いPUCCHが送信されるのかに応じて、および使用される特定のPUCCHフォーマットに応じて、異なる構成で送信され得る。UEは、サウンディング基準信号(SRS)を送信し得る。SRSは、サブフレームの最後のシンボル中で送信され得る。SRSはコム構造を有し得、UEは、コムのうちの1つの上でSRSを送信し得る。SRSは、基地局によって、UL上での周波数依存スケジューリングを可能にするために、チャネル品質推定のために使用され得る。
【0040】
[0068]図2Dは、フレームのサブフレーム内の様々なULチャネルの一例を示す。PUCCHは、一構成では図示のように位置し得る。PUCCHは、スケジューリング要求、チャネル品質インジケータ(CQI)、プリコーディング行列インジケータ(PMI)、ランクインジケータ(RI)、およびハイブリッド自動再送要求(HARQ)肯定応答(ACK)(HARQ-ACK)情報(ACK/否定ACK(NACK))フィードバックなど、アップリンク制御情報(UCI)を搬送する。PUSCHは、データを搬送し、バッファステータス報告(BSR)、電力ヘッドルーム報告(PHR)、および/またはUCIを搬送するためにさらに使用され得る。
【0041】
[0069]図3は、アクセスネットワーク中でUE350と通信している基地局310のブロック図である。DLでは、EPC160からのIPパケットがコントローラ/プロセッサ375に提供され得る。コントローラ/プロセッサ375はレイヤ3およびレイヤ2機能を実装する。レイヤ3は無線リソース制御(RRC)レイヤを含み、レイヤ2は、サービスデータ適応プロトコル(SDAP)レイヤと、パケットデータコンバージェンスプロトコル(PDCP)レイヤと、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤとを含む。コントローラ/プロセッサ375は、システム情報(たとえば、MIB、SIB)のブロードキャスティングと、RRC接続制御(たとえば、RRC接続ページング、RRC接続確立、RRC接続変更、およびRRC接続解放)と、無線アクセス技術(RAT)間モビリティと、UE測定報告のための測定構成とに関連するRRCレイヤ機能、ならびにヘッダ圧縮/解凍と、セキュリティ(暗号化、解読、完全性保護、完全性検証)と、ハンドオーバサポート機能とに関連するPDCPレイヤ機能、ならびに上位レイヤパケットデータユニット(PDU)の転送と、ARQを介した誤り訂正と、RLCサービスデータユニット(SDU)の連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、トランスポートブロック(TB)上へのMAC SDUの多重化と、TBからのMAC SDUの多重分離と、スケジューリング情報報告と、HARQを介した誤り訂正と、優先度ハンドリングと、論理チャネル優先度付けとに関連するMACレイヤ機能を提供する。
【0042】
[0070]送信(TX)プロセッサ316および受信(RX)プロセッサ370は、様々な信号処理機能に関連するレイヤ1機能を実装する。物理(PHY)レイヤを含むレイヤ1は、トランスポートチャネル上の誤り検出と、トランスポートチャネルの前方誤り訂正(FEC)コーディング/復号と、インターリービングと、レートマッチングと、物理チャネル上へのマッピングと、物理チャネルの変調/復調と、MIMOアンテナ処理とを含み得る。TXプロセッサ316は、様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、M直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングをハンドリングする。コーディングされ、変調されたシンボルは、次いで、並列ストリームにスプリットされ得る。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域中で基準信号(たとえば、パイロット)と多重化され、次いで逆高速フーリエ変換(IFFT)を使用して互いに合成され得る。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器374からのチャネル推定値は、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用され得る。チャネル推定値は、UE350によって送信される基準信号および/またはチャネル状態フィードバックから導出され得る。各空間ストリームは、次いで、別個の送信機318TXを介して異なるアンテナ320に提供され得る。各送信機318TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
【0043】
[0071]UE350において、各受信機354RXは、それのそれぞれのアンテナ352を通して信号を受信する。各受信機354RXは、RFキャリア上に変調された情報を復元し、その情報を受信(RX)プロセッサ356に提供する。TXプロセッサ368およびRXプロセッサ356は、様々な信号処理機能に関連するレイヤ1機能を実装する。RXプロセッサ356は、UE350に宛てられた任意の空間ストリームを復元するために、情報に対して空間処理を実施し得る。複数の空間ストリームがUE350に宛てられた場合、それらの空間ストリームは、RXプロセッサ356によって単一のOFDMシンボルストリームに合成され得る。RXプロセッサ356は、次いで、高速フーリエ変換(FFT)を使用して、OFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号の各サブキャリアについて別個のOFDMシンボルストリームを備える。各サブキャリア上のシンボルと、基準信号とは、基地局310によって送信される、可能性が最も高い信号コンスタレーションポイントを決定することによって復元され、復調される。これらの軟判定は、チャネル推定器358によって算出されるチャネル推定値に基づき得る。軟判定は、次いで、物理チャネル上で基地局310によって最初に送信されたデータおよび制御信号を復元するために復号およびデインターリーブされる。データおよび制御信号は、次いで、レイヤ3およびレイヤ2機能を実装するコントローラ/プロセッサ359に提供される。
【0044】
[0072]コントローラ/プロセッサ359は、プログラムコードとデータとを記憶するメモリ360に関連し得る。メモリ360は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ359は、EPC160からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、解読と、ヘッダ解凍と、制御信号処理とを提供する。コントローラ/プロセッサ359はまた、HARQ動作をサポートするために、ACKおよび/またはNACKプロトコルを使用する誤り検出を担当する。
【0045】
[0073]基地局310によるDL送信に関して説明された機能と同様に、コントローラ/プロセッサ359は、システム情報(たとえば、MIB、SIB)獲得と、RRC接続と、測定報告とに関連するRRCレイヤ機能、ならびにヘッダ圧縮/解凍と、セキュリティ(暗号化、解読、完全性保護、完全性検証)とに関連するPDCPレイヤ機能、ならびに上位レイヤPDUの転送と、ARQを介した誤り訂正と、RLC SDUの連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、TB上へのMAC SDUの多重化と、TBからのMAC SDUの多重分離と、スケジューリング情報報告と、HARQを介した誤り訂正と、優先度ハンドリングと、論理チャネル優先度付けとに関連するMACレイヤ機能を提供する。
【0046】
[0074]基地局310によって送信される基準信号またはフィードバックからの、チャネル推定器358によって導出されるチャネル推定値は、適切なコーディングおよび変調方式を選択することと、空間処理を可能にすることとを行うために、TXプロセッサ368によって使用され得る。TXプロセッサ368によって生成された空間ストリームは、別個の送信機354TXを介して異なるアンテナ352に提供され得る。各送信機354TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
【0047】
[0075]UL送信は、UE350における受信機機能に関して説明された様式と同様の様式で基地局310において処理される。各受信機318RXは、それのそれぞれのアンテナ320を通して信号を受信する。各受信機318RXは、RFキャリア上に変調された情報を復元し、その情報をRXプロセッサ370に提供する。
【0048】
[0076]コントローラ/プロセッサ375は、プログラムコードとデータとを記憶するメモリ376に関連し得る。メモリ376は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ375は、UE350からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、解読と、ヘッダ解凍と、制御信号処理とを提供する。コントローラ/プロセッサ375からのIPパケットは、EPC160に提供され得る。コントローラ/プロセッサ375はまた、HARQ動作をサポートするためにACKおよび/またはNACKプロトコルを使用する誤り検出を担当する。
【0049】
[0077]TXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359のうちの少なくとも1つは、図1のUCIマルチプレクサ構成要素198に関する態様を実施するように構成され得る。
【0050】
[0078]TXプロセッサ316、RXプロセッサ370、およびコントローラ/プロセッサ375のうちの少なくとも1つは、図1の多重化UCI受信構成要素199に関する態様を実施するように構成され得る。
【0051】
[0079]PUSCHが、複数スロットPUSCH送信として、複数のスロットにわたって送信され得る。PUSCH送信は、複数の送信オケージョンに及び得る。送信オケージョンは、PUSCHの送信のためにUEに割り振られたリソースをもつ、アップリンクリソース、たとえば、アップリンクスロットを含み得る。図4は、複数スロットPUSCH送信についての2つの異なるオプションを示す図400を示す。図4は、例示的なスロットパターン406、たとえば、TDDアップリンク/ダウンリンクスロットパターンをも示す。たとえば、図4中でオプション(a)として示されている、第1のオプションでは、複数スロットPUSCH送信の各送信オケージョンが、たとえば、送信オケージョン402について示されているように、1つまたは複数のスロットに及ぶ連続リソース(たとえば、連続シンボルまたは連続スロット)を含む。いくつかの態様では、連続リソースは、2つの異なるスロットに及ぶ連続シンボルを含み得る。図4は、各送信オケージョンの連続リソースが、ダウンリンクスロットなど、PUSCH送信の一部でないリソースによって分離され得ることを示す。たとえば、図4中でオプション(b)として示されている、第2のオプションでは、各送信オケージョンは不連続リソースを含み得る。不連続リソースは、送信オケージョン404について示されているように、連続リソースの複数のセットを含み得る。
【0052】
[0080]複数スロットPUSCH送信オケージョンの時間領域リソース割振り(TDRA)は、送信オケージョンの連続するシンボルまたは連続しないシンボルのセットを提供する。連続リソースの送信オケージョン、たとえば、図4中のオプション(a)の場合、TDRAは、連続リソースについての開始シンボル(S)と送信オケージョンの連続リソースの長さ(L)とのペア、たとえば、ペア(S,L)として示され得る。図4は、概念を示すために(S,L)=(0,20)の一例を示す。S=0は、アップリンク許可のアップリンクスロットの第1のシンボルに対応し得、L=20は、20個のシンボルの長さに対応し得る。不連続リソースの送信オケージョン、たとえば、図4中のオプション(b)の場合、TDRAは、(D,S,L)のトリプレットとして示され得、ここにおいて、Dは、基準スロットに対するスロットインデックスをさらに示す。基準スロットは、UEが、アップリンク許可をもつDCIを基地局から受信する、スロットであり得る。基準スロットは、送信オケージョンの始まりとしてDCIによって示されるスロットであり得、これは、パラメータK2によって参照され得る。図4は、概念を示すために(D,S,L)={(0,0,28),(5,0,28)}の一例を示す。第1のトリプレットでは、D=0は、送信オケージョンが基準スロットから0スロットのところで始まることを示し得、S=0は、開始シンボルとしてスロットの第1のシンボルを示し、L=28は、28個のシンボルの長さを示す。第2のトリプレットでは、D=5は、送信オケージョンが基準スロットから5スロットのところで始まることを示し得、S=0は、開始シンボルとしてスロットの第1のシンボルを示し、L=28は、28個のシンボルの長さを示す。したがって、第1のトリプレットは連続リソースの第1のセットを示し、第2のトリプレットは連続リソースの第2のセットを示し、連続リソースの第1のセットと連続リソースの第2のセットとは互いに不連続である。Lは、本例のように、両方のトリプレットにおいて同じであり得る。他の態様では、送信オケージョンの不連続リソースを形成する連続リソースのセットは、異なる長さを有し得る。
【0053】
[0081]PUSCHの単一のトランスポートブロック(TB)が、送信オケージョンにおいて送信され得る。反復が可能にされる場合、TBは、複数の送信オケージョン上で送信され得る。したがって、複数スロットPUSCH反復が送信オケージョンのセット上で行われ得、TBの各反復が単一の送信オケージョン内で送信される。図5Aは、オプション(a)による、連続リソースの4つの送信オケージョンにおけるPUSCH TBの4つの反復の一例と、オプション(b)による、リソースの不連続セットを含む2つの送信オケージョンにおけるPUSCH TBの2つの反復の一例とを示す。いくつかの態様では、反復係数が、たとえば、複数スロットPUSCH送信についてのTDRAと一緒に、基地局によってUEに示され得る。反復係数は量反復をUEに示し得る。いくつかの態様では、TDRAと一緒に、基地局は、反復についての間隔をUEに示し得る、周期性またはオフセットパラメータをUEに示し得る。たとえば、基地局は、シンボルまたはスロットにおける反復間ギャップを示し得る。図5Aは、オプション(a)について反復間の例示的なギャップ502を示す。ギャップは、たとえば、1つの送信オケージョンの終わりと次の送信オケージョンの始まりとの間の時間的な分離を示し得るか、または、1つの送信オケージョンの始まりと次の送信オケージョンの始まりとの間の時間的な分離を示し得る。
【0054】
[0082]図5Aおよび図5Bは、複数スロットPUSCH送信として送信されるTBの反復にわたる冗長バージョン(RV)循環の異なる例を示す。図5Aおよび図5Bにおける例は、TBについての同じソースペイロードに対応し、同じソースペイロードが送信オケージョンのリソースにわたって別様に符号化され得ることを示し得る。図5A中の図500では、RVは、送信オケージョン間で、たとえば、ギャップ502においてリフレッシュ、たとえば、変更される。図5Aでは、RV0は、第1の送信オケージョンの連続リソースに適用される。RVインデックスは、後続の送信オケージョンにおいてRV2に変更される。RVインデックスは、次いで、後続の送信オケージョンについてRV3およびRV1に変更される。同様に、オプション(b)における不連続リソースセットの送信オケージョンの場合、RVインデックスは、同様に、単一の送信オケージョンの不連続リソースセットにわたって維持され、後続の送信オケージョンについて、変更またはリフレッシュされる。それらの例は、単一の送信オケージョン上のTBの送信について示されている。したがって、RVは、異なる送信オケージョンにおけるTBの反復にわたって循環する。
【0055】
[0083]図5Bは、RVが、図5Aの場合のように送信オケージョン間ではなく、個々の送信オケージョン内で循環され得る、図550を示す。図5B中のオプション(b)について示されているように、単一のRVインデックスが、不連続送信オケージョンの連続シンボルのセット上で使用され得、同じ送信オケージョン内の連続シンボルの後続のセットにおいて、異なるRVインデックスに変更され得る。したがって、RVは、単一の送信オケージョンの連続リソース間のギャップにおいて、リフレッシュまたは変更され得る。図5B中のオプション(a)について示されているように、単一のRVインデックスが、単一のスロットのシンボル上で使用され得、異なるRVインデックスが、送信オケージョンの後続のスロットのシンボルに適用され得る。したがって、RVは、単一の送信オケージョンのスロット境界において、リフレッシュまたは変更され得る。
【0056】
[0084]本明細書で提示される態様は、単一のコードブックを用いた複数スロットPUSCH送信のために適用され得る。いくつかの例では、本明細書で提示される態様は、マルチコードブックPUSCH送信のために適用され得る。しかしながら、マルチコードブックPUSCH送信は、単一コードブック実装形態と比較してより少ない利得を提供し得る。いくつかの態様では、TBサイズが、約100ビットから1000ビットにわたり得るが、態様は、同様に、その範囲よりも小さいまたはそれよりも大きいTBサイズに適用され得る。
【0057】
[0085]UEが複数のスロットに及ぶPUSCHを送信したとき、UEは、スロットにわたる送信の状態を知り/記憶し得る。いくつかの態様では、状態は、最後に送信されたビットの状態を指し得る。UEがPUSCH送信をインターリーブする場合、スロットにわたってまたは不連続シンボルにわたってPUSCHを送信することはUEにとって困難であり得る。たとえば、UEは、インターリーブされたシーケンスのうちのどのくらいが送信されたかに関する情報を使用し得、および/または、送信されていないシーケンスを記憶し得る。UEの動作を簡略化するために、UEは、たとえば、スロット内でインターリービングを適用し得る。
【0058】
[0086]図6は、複数スロットPUSCHの送信についてTBをインターリーブすることの例示的な態様を示す、図600を示す。図6は、たとえば、図4中のオプション(a)と同様の、連続リソースの送信オケージョンのパターンを示す。TBは、送信オケージョン602のスロット0、たとえば、604およびスロット1、たとえば、606においてなど、単一の送信オケージョン内で送信され得る。UEは、たとえば、610に示されているように、RVインデックスによって示される開始位置に基づいて、サーキュラーバッファからTBの情報ビットを読み取り得る。TBの情報ビットは、たとえば、RB0において開始し得る。サーキュラーバッファから読み取られたレートマッチングビットが620に示されている。レートマッチングは、PUSCH送信についての利用可能なリソース上で送信され得る符号化ビットの数が決定されるプロセスを含み得る。たとえば、総ビット数が、変調次数を乗算された利用可能なREの総数に等しくなり得る。次いで、符号化ビットの決定された数は、サーキュラーバッファから読み取られ得る。本明細書で使用される「レートマッチングビット」は、レートマッチング要件および/または原理に基づいて送信のために選択された符号化ビットを指す。ビット量は、いくつかの態様では、送信オケージョン602内でTBをレートマッチングするためのビット量に基づいて選択され得る。ビットを読み出した後に、UEは、ビットにインターリービングを適用し得る。たとえば、PUSCH送信のためのチャネルコーディング処理が、TBの各CBについてのビットレベルインターリーバを含み得る。図6は、ビットが、複数の列に編成される、たとえば、読み取られるまたは配置され得る、行-列インターリービング(row-column interleaving)の一例を示す。図6は、第1の行630と第2の行632とを示す。ビットは、その場合、列に基づいて2つの行(たとえば、630、632)から読み取られる。したがって、行630の第1の列からのビットが、スロット0における送信のためのビット640に対応する。行632の第1の列からのビットが、スロット0における送信のためのビット642に対応する。プロセスは、行630の第2の列におけるビットが644において配置されることに続き、その後に、行632の第2の列におけるビットが646において配置されることが続き、以下同様である。送信オケージョン全体にわたるレートマッチングのためのビットは、図6に示されているように、インターリーブされ、送信され得、これは、送信オケージョン602のスロット0およびスロット1にわたって適用されるインターリービングを示す。他の態様では、レートマッチングのためのビットは、図7に示されているように、スロットごとに選択され得、送信の前にスロットごとにインターリーブされ得る。図7は、スロット0についてのビットが行730および行732に読み取られ得、スロット1についてのビットが行734および736に読み取られ得ることを示す、図700を示す。その場合、スロット0についてのビットは、スロット0についてのスロットベースのインターリーブされたパターン740を形成するために行730および732から列様式で読み取られ、スロット1についてのビットは、スロット1についてのスロットベースのインターリーブされたパターン742を形成するために行734および736から列様式で読み取られる。
【0059】
[0087]図6図7、および図8は、TB全体が単一のコードブロック(CB)において符号化されることに基づく。TBは、複数のCBにわたって符号化され得る。TB全体が単一のCBを使用して符号化されたとき、送信のための(サーキュラーバッファにおける)符号化ビットは、スロットごとにまたはTOごとに選定され得る。これらの選定されたビットは、レートマッチングされたビットと呼ばれる。インターリーバは、レートマッチングされたビットに対して動作する。レートマッチングされたビットがTO全体について一度に選定されたとき、インターリーバはTO全体にわたって及ぶ。レートマッチングされたビットがスロットごとに選定されたとき、インターリーバは単一のスロットに及ぶ。レートマッチングされたビットがスロットごとに選定されたとき、レートマッチングされたビットの複数のセットが、TO全体にわたるリソースが使用されるように、選択され、個々にインターリーブされることになる。
【0060】
[0088]図6における例は、図4のオプション(b)においてなど、単一の送信オケージョンの不連続リソースについての送信オケージョンベースのレートマッチングおよびインターリービングのために適用され得る。図6の場合のように、ビットがスロット0およびスロット1についてのものであるのではなく、ビットは、同じ送信オケージョン中に備えられる不連続スロットについてのものであり得る。図8は、図8に示されているオプション(b)においてなど、単一の送信オケージョンの不連続リソースについてのセグメントベースのレートマッチングおよびインターリービングの一例の図800を示す。図8は、連続リソースの第1のセグメント804と連続リソースの第2のセグメント806とを含む送信オケージョン802を示す。図7の場合のように、スロットごとにレートマッチングされ、インターリーブされるのではなく、ビットは、連続リソースの第1のセグメント(たとえば、804)のインターリーブされたビット840と連続リソースの第2のセグメント(たとえば、806)のインターリーブされたビット842とを取得するために、レートマッチング、および行-列インターリービングなどのインターリービングのために読み出され得る。
【0061】
[0089]したがって、第1のオプションでは、レートマッチングおよびインターリービングは、図6に示されているように、送信オケージョン全体にわたるビットに適用され得、これは、送信オケージョンベースのレートマッチングおよびインターリービングと呼ばれることがあるか、または送信オケージョンにわたるレートマッチングおよびインターリービングと呼ばれることがある。したがって、ビットは、送信オケージョンについて選択されるか、読み取られるか、またはさもなければ入力され得る。送信オケージョンについてのビットは、次いで、UEによってレートマッチングされ、インターリーブされ、送信され得る。第2のオプションでは、図7に示されているように、ビットはスロットごとに選択され得、インターリービングはスロットについてのビットに適用され得、これは、スロットベースのインターリービング、スロットごとのインターリービング、またはスロットにわたるインターリービングと呼ばれることがある。したがって、ビットは、スロットについて選択されるか、読み取られるか、またはさもなければ入力され得る。スロットについてのビットは、次いで、UEによってインターリーブされ、送信され得る。第3のオプションでは、図8に示されているように、ビットは、不連続セグメントをもつ送信オケージョンのセグメントごとに選択され得、インターリービングは、それぞれのセグメントについてのビットに適用され得、これは、セグメントベースのインターリービング、セグメントごとのインターリービング、またはセグメントにわたるインターリービングと呼ばれることがある。したがって、ビットは、セグメントについて選択されるか、読み取られるか、またはさもなければ入力され得る。セグメントについてのビットは、次いで、UEによってインターリーブされ、送信され得る。
【0062】
[0090]図7の場合のように、UEが、スロットごとにビットをレートマッチングし、インターリーブする場合、UEは、各スロットについてサーキュラーバッファ内の開始位置を使用し得る。UEは、インターリーブされたビットをバッファする必要がないことがあり、代わりに、サーキュラーバッファを保存し得る。スロットごとのレートマッチングおよびインターリービングは、UEのために、改善された、タイムライン、リソース管理、および/またはメモリ管理を提供し得る。いくつかの態様では、UCIは、PUSCHと多重化され得る。UCI多重化は、たとえば、UCIがそこにおいて送信されるべきであるスロットとPUSCHがそこにおいて送信されるべきであるスロットとの間の重複に基づいて、スロットごとに考慮され得る。いくつかの態様では、タイムラインは、複数スロットPUSCH送信の始まりとは異なる基準ポイントに結び付けられ得る。
【0063】
[0091]図8における例に示されているように、セグメントごとにビットをレートマッチングし、インターリーブするために、UEは、スロットベースのインターリービングと同様に、たとえば、インターリーブされたビットをバッファすることなしに、各セグメントについてサーキュラーバッファ内の開始位置を覚えていることがある。
【0064】
[0092]たとえば、図6の場合のように、UEが、送信オケージョンにわたってビットをレートマッチングし、インターリーブする場合、システムビットが送信オケージョン内のより信頼できる位置を占有し得るので、性能が改善され得る。
【0065】
[0093]送信オケージョンまたは送信オケージョンのセグメントにわたってビットをレートマッチングし、インターリーブすることと比較して、スロットごとにレートマッチングし、インターリーブするとき、スロットごとのUCI多重化が、より容易であり得る。
【0066】
[0094]いくつかの態様では、UEが、複数スロットPUSCH送信と重複する時間における送信についてのUCIを有し得る。UEは、UCIをPUSCH送信と多重化し得る。UCIはスロット内でスケジュールされ得、PUSCHは複数のスロットにわたって及び得る。本明細書で提示される態様は、UEが、UCIのために使用するためにPUSCHについていくつのリソースが割り振られたか、PUSCH内のUCIについてのロケーション、多重化UCIをもつPUSCHについての符号化およびレートマッチングなどを決定することを可能にする。
【0067】
[0095]図9は、図4中のオプション(a)と同様の、連続リソース(たとえば、スロット904およびスロット906におけるリソース)を有する送信オケージョン902の例900を示す。図9はまた、PUSCH910のスロット906とのUCI908のPUCCH重複を示す。本明細書で提示されるように、PUSCHとPUCCHとの間の重複が、PUSCHの送信オケージョンごとに独立してハンドリングされ得る。UCIは、様々なタイプの情報を含み得る。いくつかの態様では、UCIは、基地局から受信されたPDSCHについてのACK/NACK情報、たとえば、HARQフィードバックを含み得る。他の態様では、UEは、基地局からのCSI-RSを受信し、測定し得、UCIとして基地局に送信するためのCSI報告を有し得る。
【0068】
[0096]送信オケージョンの連続リソースの複数のスロットのうちの1つが、UCIの送信についてのPUCCHリソースと時間的にそこにおいて重複される、各送信オケージョンについて、UEは、送信オケージョンのリソースにおいてPUCCH、たとえば、UCIを多重化すべきかどうかを考慮し得る。
【0069】
[0097]UEは、たとえば、送信オケージョンの他のスロット内ではなく、重複のスロット内でPUCCHのUCIを多重化すべきかどうか考慮し得る。いくつかの態様では、UCIを多重化するためのタイムラインは、重複のスロット、たとえば、図9中のスロット906に基づき得る。他の態様では、UCIを多重化するためのタイムラインは、送信オケージョン902の開始に基づき得る。
【0070】
[0098]UEは、たとえば、UCIとの重複のスロットに限定されるのではなく、送信オケージョン上でPUCCHのUCIを多重化すべきかどうかを考慮し得る。UCIを多重化するためのタイムラインは、送信オケージョン902の開始に基づき得る。
【0071】
[0099]表1は、UCIを複数スロットPUSCH送信の連続リソース送信オケージョン(たとえば、図4のオプション(a))と多重化するための考慮の様々な組合せを示す、様々なシナリオ(たとえば、例1~5)の一例を示す。
【0072】
【表2】
【0073】
[0100]図10は、UCI1008が、スロット1004および1006において連続リソースを有する送信オケージョン1002のスロット0(たとえば、スロット1004)において重複する、表1からの例1の例示的な図1000を示す。UCIは、スロット0において重複し、送信オケージョン1002のスロット0において多重化される。図10は、UCIのリソースが単一のスロット、たとえば、スロット0 1004内に備えられ得ることを示す。スロット0はまた、スロットのシンボルにおける他の送信を含み得る。たとえば、UCIは、DMRSの送信に続いて送信され得る。
【0074】
[0101]図10における例では、UEは、スロット0 1004において利用可能なリソースに基づいてUCI送信についてのリソースを決定し得る。UEは、スロット0 1004におけるPUSCH送信のために利用可能なリソースの上にベータ係数を適用し得る。単一スロットPUSCHの場合、UEは、UCIがそこにおいて多重化され得るPUSCHシンボルにわたってUCI送信のために潜在的に利用可能であるREの数を決定し得、それは、REのその数で、PUSCHビットの総数で除算されたものである。
【0075】
[0102]対照的に、図10における例に基づく複数スロットPUSCH送信の場合、UEは、代わりに、送信オケージョンにおけるPUSCHシンボルの総数で除算された、スロット0におけるシンボルの数に基づく係数でのスケーリングの後のPUSCHビットの総数で除算された、送信オケージョンの特定のスロット(たとえば、スロット0 1004)におけるPUSCHシンボルにわたってUCIのために潜在的に利用可能であるREの数を決定し得る。
【0076】
[0103]一例として、単一スロットPUSCH上にHARQ-ACKビットを含むUCIについて、UEは、
【0077】
【数1】
【0078】
として示される、HARQ-ACK送信についてのレイヤごとのコード化変調シンボルの数を以下のように決定し得る。
【0079】
【数2】
【0080】
[0104]式1のこの例では、OACKはHARQ-ACKビットの数であり、LACKはHARQ-ACKについてのCRCビットの数である。
【0081】
【数3】
【0082】
は、サブキャリアの数として表された、PUSCH送信のスケジュールされた帯域幅である。
【0083】
【数4】
【0084】
は、PUSCH送信において、
【0085】
【数5】
【0086】
について、OFDMシンボルlにおいてUCIの送信のために使用され得るリソース要素の数であり、
【0087】
【数6】
【0088】
は、DMRSのために使用されるすべてのOFDMシンボルを含む、PUSCH送信のOFDMシンボルの総数である。
【0089】
【数7】
【0090】
は、PUSCH送信における、PTRSを搬送するOFDMシンボルlにおけるサブキャリアの数である。αは、上位レイヤパラメータ、たとえば、スケーリングパラメータによって構成される。この例では、l0は、PUSCH送信における、(1つまたは複数の)第1のDMRSシンボルの後の、PUSCHのDMRSを搬送しない第1のOFDMシンボルのシンボルインデックスである。
【0091】
【数8】
【0092】
は、ベータオフセットである。
【0093】
[0105]したがって、この単一スロットPUSCHの例では、式1における
【0094】
【数9】
【0095】
は、PUSCHビットの総数に対応し得、式1における
【0096】
【数10】
【0097】
は、PUSCHシンボルのすべてにわたってUCIのために潜在的に利用可能なREの数に対応し得る。
【0098】
[0106]対照的に、図10の複数スロットPUSCH送信オケージョンの場合、式1における
【0099】
【数11】
【0100】
は、スロット0 1004におけるPUSCHシンボルにわたってUCI1008のために潜在的に利用可能なREの数に対応し得、式1における
【0101】
【数12】
【0102】
は、たとえば、スロット0 1004とスロット1 1006の両方を含む、送信オケージョン1002におけるPUSCHシンボルの総数で除算された、スロット0におけるシンボルの数によってスケーリングされた、PUSCHビットの総数に対応し得る。そのような決定は、UCI1008をスロット0に多重化するときにPUSCH送信にかけられる全体的負担をより良く考慮に入れる。
【0103】
[0107]図10中のスロット0においてUCI1008のために使用するためのリソースの数を決定した後に、UEは、スロット0 1004内のリソースのロケーションを識別し得る。UEは、次いで、スロット0 1004における識別されたリソースをUCIシンボルで充填し得る。UEは、たとえば、シンボルの周波数リソースのすべてがUCIで充填された場合、最初に、特定のシンボルの周波数リソースを充填し、次いで、追加のシンボルにおいて充填し得る。リソースのそのような充填は、周波数第1、時間第2様式(frequency first, time second manner)と呼ばれることがある。UEは、スロット0 1004およびスロット1 1006における残りのリソースを使用して、たとえば、送信オケージョンの残りのリソースに基づいてPUSCHレートマッチングビットを決定し得る。UEは、PUSCH1110のレートマッチングされたビットをインターリーブし得る。表1に示されているように、例1についてのレートマッチングおよびインターリービングならびに/またはRV循環は、(たとえば、図7に関して説明されたように)スロットごとであるか、または(たとえば、図6に関して説明されたように)送信オケージョンごとであるかのいずれかであり得る。インターリービングの後に、UEは、PUSCH1010について識別された送信オケージョン1002のリソースを、変調シンボルにマッピングされたインターリーブされたビットで充填し得る。
【0104】
[0108]図11は、送信オケージョン1102のスロット0 1104においてPUSCH1110と重複し、重複のスロットだけではなく送信オケージョン1102に基づいて多重化される、PUCCH(たとえば、UCI1108)を示す図1100である。図11は、重複するスロットがスロット0であり、多重化が送信オケージョンに基づく、表1における例2に対応する。図11に示されているように、UCI1108を多重化するためのリソースは、複数のスロットに及び得る。
【0105】
[0109]図11における例では、UEは、送信オケージョン1102において利用可能なリソースに基づいてUCIについてのリソースを決定し得る。たとえば、図11の複数スロットPUSCH送信オケージョン1102では、式1における
【0106】
【数13】
【0107】
は、(スロット0 1104とスロット1 1106とを含む)送信オケージョン1102のPUSCHシンボルにわたってUCI1108のために潜在的に利用可能なREの数に対応し得、式1における
【0108】
【数14】
【0109】
は、送信オケージョン1102の複数のスロットのPUSCHビットの総数に対応し得る。
【0110】
[0110]送信オケージョン1102におけるUCI1108のために使用するためのリソースの数を決定した後に、UEは、送信オケージョン1102内のリソースのロケーションを識別し得る。UEは、次いで、送信オケージョン1102における識別されたリソースをUCIシンボルで充填し得る。UEは、周波数第1、時間第2様式でリソースを充填し得る。UEは、送信オケージョン1102における(たとえば、スロット0 1104およびスロット1 1106における)残りのリソースを使用してPUSCHレートマッチングビットを決定し得る。UEは、PUSCHのレートマッチングされたビットをインターリーブし得る。表1に示されているように、例2において、レートマッチングおよびインターリービングならびに/またはRV循環は、(たとえば、図7に関して説明されたように)スロットごとであるか、または(たとえば、図6に関して説明されたように)送信オケージョンごとであり得る。インターリービングの後に、UEは、PUSCH1110について識別された送信オケージョン1102のリソースを、変調シンボルにマッピングされたインターリーブされたビットで充填し得る。
【0111】
[0111]図12は、図10および図11の場合のように、送信オケージョン1202の第1のスロット1204ではなく、PUSCH1210についての送信オケージョン1202のスロット1 1206と重複するPUCCH(たとえば、UCI1208)を示す図1200を示す。図12は、重複するスロットがスロット1であり、スロット1において多重化される、表1における例3に対応する。図12は、UCI1208が単一のスロット(たとえば、スロット1 1206)内で多重化される一例を示す。
【0112】
[0112]UEは、スロット1 1206においてUCI1208のために使用するためのリソースの数を決定し得る。図10に関する説明と同様に、UEは、スロット1 1206のPUSCHシンボルにおいてUCIのために潜在的に利用可能なREの数に基づいて、およびスロット1におけるシンボルの数によってスケーリングされたPUSCHビットの総数と送信オケージョンにおけるPUSCHシンボルの総数とに基づいて、リソースの数を決定し得る。
【0113】
[0113]たとえば、式1における
【0114】
【数15】
【0115】
は、スロット1 1206におけるPUSCHシンボルにわたってUCI1208のために潜在的に利用可能なREの数に対応し得、式1における
【0116】
【数16】
【0117】
は、たとえば、スロット0 1204とスロット1 1206の両方を含む、送信オケージョン1202におけるPUSCHシンボルの総数で除算された、スロット1 1206におけるシンボルの数によってスケーリングされた、PUSCHビットの総数に対応し得る。
【0118】
[0114]図12中のスロット1においてUCI1208のために使用するためのリソースの数を決定した後に、UEは、スロット1 1204内のUCIリソースのロケーションを識別し得る。UEは、次いで、スロット1 1204における識別されたリソースをUCIシンボルで充填し得る。UEは、周波数第1、時間第2様式でリソースを充填し得る。UEは、スロット1 1206における残りのリソースを使用してPUSCHレートマッチングビットを決定し得る。UEは、スロット0送信がどこで終了したかに基づいて、スロット1についてのレートマッチングされたビットを決定し得る。UEは、次いで、レートマッチングされたビットをインターリーブし得る。表1に示されているように、例3についてのレートマッチングおよびインターリービングならびに/またはRV循環は、(たとえば、図7に関して説明されたように)スロットごとであるか、または(たとえば、図6に関して説明されたように)送信オケージョンごとであるかのいずれかであり得る。インターリービングの後に、UEは、PUSCH1210について識別されたリソースを、変調シンボルにマッピングされたインターリーブされたビットで充填し得る。
【0119】
[0115]図13は、図10および図11の場合のように、送信オケージョン1302の第1のスロット1304ではなく、PUSCH1310についての送信オケージョン1302のスロット1 1306と重複するPUCCH(たとえば、UCI1308)を示す図1300を示す。図12とは対照的に、図13では、UCIは、重複のスロットではなく送信オケージョンに基づいて多重化される。したがって、図12では、UCIは、スロット0 1304において多重化され、必ずしも、UCIが重複するスロットにおいて多重化されるとは限らない。いくつかの態様では、多重化UCIは、複数のスロットに及び得る。図13は、表1における例4に対応し得る。
【0120】
[0116]図13における例では、UEは、送信オケージョン1302において利用可能なリソースに基づいてUCI1308についてのリソースを決定し得る。たとえば、図13の複数スロットPUSCH送信オケージョン1302では、式1における
【0121】
【数17】
【0122】
は、(スロット0 1304とスロット1 1306とを含む)送信オケージョン1302のPUSCHシンボルにわたってUCI1308のために潜在的に利用可能なREの数に対応し得、式1における
【0123】
【数18】
【0124】
は、送信オケージョン1302の複数のスロットのPUSCHビットの総数に対応し得る。
【0125】
[0117]送信オケージョン1302におけるUCI1308のために使用するためのリソースの数を決定した後に、UEは、送信オケージョン1302内のリソースのロケーションを識別し得る。UEは、次いで、送信オケージョン1302における識別されたリソースをUCIシンボルで充填し得る。UEは、周波数第1、時間第2様式でリソースを充填し得る。UEは、送信オケージョン1302における(たとえば、スロット0 1304およびスロット1 1306における)残りのリソースを使用してPUSCHレートマッチングビットを決定し得る。UEは、PUSCHのレートマッチングされたビットをインターリーブし得る。表1に示されているように、例4において、インターリービング/RV循環は、(たとえば、図7に関して説明されたように)スロットごとであるか、または(たとえば、図6に関して説明されたように)送信オケージョンごとであり得る。インターリービングの後に、UEは、PUSCH1310について識別された送信オケージョン1302のリソースを、変調シンボルにマッピングされたインターリーブされたビットで充填し得る。
【0126】
[0118]図14は、PUSCH1410についての送信オケージョン1402の複数のスロット(たとえば、スロット0 1404およびスロット1 1406)と多重化されるPUCCH(たとえば、UCI1408および/または1409)を示す図1400を示す。UCIを多重化するために使用するためのリソースは、単一のスロット中に備えられ得、各スロットにおいて反復され得る。UCIは、送信オケージョン1402の各スロットにおいて反復され得る。タイムラインは、送信オケージョン1402のスロット0 1404に基づき得る。図14は、表1における例5に対応し得る。
【0127】
[0119]図15は、複数スロットPUSCH送信においてUCIを多重化するためのタイムライン考慮の態様を示す図1500を示す。図15に示されているように、UEが、複数スロットPUSCH1504についての送信オケージョンと時間的に重複するPUCCH1510における送信についてUCIを多重化することを考慮し得る。UEは、(たとえば、PUCCH1510からの)UCIをPUSCH1504に多重化すべきかどうかを決定する際に処理タイムラインを適用し得る。いくつかの態様では、処理タイムラインは、PUSCH1504についてのアップリンクリソースをスケジュールするアップリンク許可DCI1502の受信と複数スロットPUSCH送信1504の開始との間のシンボルの最小ギャップ(N2)に基づき得る。複数スロットPUSCH送信1504の開始が、アップリンク許可DCI1502が受信されてからN2シンボル超後である場合、UEは、複数スロットPUSCH1504を送信し得る。複数スロットPUSCH送信1504の開始が、アップリンク許可DCI1502が受信されてからN2シンボル未満後である場合、UEは、複数スロットPUSCH1504を送信しないことがある。いくつかの態様では、処理タイムラインは、PDSCH1508の受信とUCI(たとえば、PDSCHの受信に関するHARQ ACK/NACKペイロード)を搬送するPUCCH1510の開始との間のシンボルの最小ギャップ(N1)に基づき得る。PUCCH1510の開始が、PDSCH1508が受信されてからN1シンボル超後である場合、UEは、PUCCH1510においてUCI(たとえば、HARQ ACK/NACK)を送信し得る。PUCCH1510の開始が、PDSCH1508が受信されてからN1シンボル未満後である場合、UEは、PUCCH1510においてUCI(たとえば、HARQ ACK/NACK)を送信しないことがある。UEが、PUCCH1510からのUCIを複数スロットPUSCH1504に多重化することを考慮しているとき、基準時間(たとえば、S0)が、N2およびN1に基づく処理タイムラインが満足されるかどうかを測定するために使用され得る。基準時間は、PUCCH重複が起こる場合、UCIが多重化されるべきである場合、UCIが多重化されるべきである様式など、UCI多重化の様々な態様に基づいて異なり得る。追加の考慮として、PUCCH1510からのHARQ ACK/NACKビットは、PDSCH1508についてのダウンリンク許可1506が複数スロットPUSCH1504についてのアップリンク許可1502より前に受信された場合、複数スロットPUSCH1504に多重化され得る。
【0128】
[0120]第1の例では、図10における例においてなど、PUCCH1510重複が複数スロットPUSCH送信1504の第1のスロットにおいて起こり、UCIが第1のスロット上に多重化される場合、基準時間S0は、図15に示されているように、複数スロットPUSCH送信1504の開始に基づき得る。
【0129】
[0121]たとえば、図11に関して説明されるように、PUCCH重複がマルチスロットPUSCH送信の第1のスロットにおいて起こり、UCIが、送信オケージョン全体にわたって乗算される場合、基準時間S0は、図15に示されているように、マルチスロットPUSCH送信1504の開始に基づき得る。
【0130】
[0122]したがって、マルチスロットPUSCH送信1504の開始における基準時間S0は、UCIが、第1のスロットに基づいて多重化されるのか、送信オケージョンにわたって多重化されるのかにかかわらず、送信オケージョンの第1のスロットと重複するUCIのために適用され得る。
【0131】
[0123]図16は、複数スロットPUSCH送信においてUCIを多重化するためのタイムライン考慮の態様を示す図1600を示す。図16に示されているように、UEが、複数スロットPUSCH1604についての送信オケージョンと時間的に重複するPUCCH1610における送信についてUCIを多重化することを考慮し得る。図16では、PUCCH1610は、図15の場合のように第1のスロットにおいてではなく、複数スロット送信オケージョンの後続のスロットにおいて、たとえば、1612において、PUSCH1604と重複し、重複したスロットにおいて多重化される。図12は、複数スロットPUSCH送信オケージョン1202の第2のスロットと重複し、第2のスロットにおいて多重化されている、UCIの一例を示す。
【0132】
[0124]図16では、PUCCH1610重複がマルチスロットPUSCH送信1604の第2のまたは後続のスロットにおいて起こり、UCIが、送信オケージョンごとに基づいてそのスロット内で多重化される場合、基準時間S01は、たとえば、1611において示されているように、マルチスロットPUSCH送信の開始によって決定され得る。いくつかの態様では、S01は、レートマッチングおよびインターリービングが送信オケージョンごとに実施される場合、適用可能であり得る。単一のインターリーバが、この例ではS01で、送信オケージョンごとに適用され得る。
【0133】
[0125]対照的に、PUCCH1610重複がマルチスロットPUSCH送信1604の第2のまたは後続のスロットにおいて起こり、UCIが、そのスロット内で多重化される場合、基準時間S02は、たとえば、1611において示されているように、マルチスロットPUSCH送信のそのスロットに基づき得る。いくつかの態様では、S02は、レートマッチングおよびインターリービングがスロットごとに実施される場合、適用可能であり得る。S02をもつタイムラインでは、単一のインターリーバが、複数スロットPUSCH送信1604のためにスロットごとに適用され得る。
【0134】
[0126]PUCCH1610重複が複数スロットPUSCH送信1604についての送信オケージョンの第2のまたは後続のスロットにおいて起こり、UCIが、スロットごとにではなく、送信オケージョンにわたって多重化される場合、基準時間は、S01であり、複数スロットPUSCH送信1604の開始に基づき得る。
【0135】
[0127]図15に関して説明されたように、DCI1602が複数スロットPUSCH送信1604をスケジュールする間の時間ギャップは、PUSCH1604を送信するためにN2個のシンボルを満足し得、UEがPUCCH1610においてUCIを送信することを計画している、PDSCH1608をスケジュールするDCI1606は、UCIをPUSCH1604と多重化するためにDCI1602の前に受信され得る。
【0136】
[0128]図17は、複数スロットPUSCH送信1704の第1のシンボルにおいて時間的に重複する非周期CSI-RS1708など、CSI-RSに基づくUCIについての図15と同様の例1700を示す。DCI1702と、スケジュールされた複数スロットPUSCH送信1704との間のギャップN2は、図15の場合と同じであり得る。PUCCH1710中に備えられるCSI報告について、最小ギャップ(Z)は、CSI-RS1708の最後のシンボルとCSI報告を搬送するPUCCH1710の開始との間で測定され得る。PUCCH1710がCSI-RSの最後のシンボルからZシンボル未満のところにある場合、UEは、CSI報告を複数スロットPUSCH送信1704と多重化しないことがある。時間ギャップが少なくともZ個のシンボルである場合、UEは、CSI報告をPUSCH1704と多重化し得る。たとえば、図16に関して説明された、追加の態様が、同様に、たとえば、受信されたCSI-RSの最後のシンボルから基準シンボルS02まで、CSIに基づくUCIのために適用され得る。
【0137】
[0129]図18は、複数スロットPUSCH送信についての送信オケージョンと様々な組合せにおいて重複する複数のPUCCH(たとえば、UCI1808、1818、1828、1838、1848、1858、1868)を示す図1800を示す。たとえば、送信オケージョン1802aは、送信オケージョンのスロット0においてUCI1808についてのPUCCHと重複し、送信オケージョンのスロット1においてUCI1818についてのPUCCHと重複する、たとえば、送信オケージョン1802aの異なるスロットとの単一のUCIの重複。送信オケージョン1802bは、たとえば、UCI1828および1838についての、複数のPUCCHと重複される単一のスロットを有する。送信オケージョン1802cは、送信オケージョン1802cの、1つのスロットにおけるUCI1848および1858との重複、ならびに別のスロットにおけるUCI1868との重複を有する。
【0138】
[0130]PUSCH送信についての複数のスロットを備える単一の送信オケージョンにおいて複数のPUCCHについての複数のUCIを多重化するとき、UEは、スロットごとに重複をハンドリングし得、スロットごとにUCIをPUSCHと多重化し得る。
【0139】
[0131]他の態様では、PUSCH送信についての複数のスロットを備える単一の送信オケージョンにおいて複数のPUCCHについての複数のUCIを多重化するとき、UEは、送信オケージョンにわたって重複をハンドリングし得る。UEは、たとえば、UCI1808および1818の場合、またはUCI1848およびUCI1868の場合など、PUCCHが、送信オケージョンの同じスロットにおいて起こらない場合でも、送信オケージョンにわたってUCIを多重化し得る。いくつかの態様では、UEは、UCIを一緒に多重化し得る。
【0140】
[0132]重複するUCIがスロットごとにハンドリングされる場合、UEは、重複される、送信オケージョンの対応するスロット内の単一のUCIなのか複数の重複するUCIなのかにかかわらず、UCIを多重化し得る。図19は、図18中のUCIが、スロットごとの例において、そこにおいてハンドリング/多重化されるスロットを、矢印で示す図1900を示す。PUSCHは、スロットごとにレートマッチングされ得る。スロット間で、UEは、サーキュラーバッファにおける開始位置を覚えているか、または記憶し得る。たとえば、図19中のサーキュラーバッファ1950は、スロット0とスロット1との間のビットについてのポイント1955を示す。PUSCHは、たとえば、図7に関して説明されたように、スロットごとにインターリーブされ得る。
【0141】
[0133]重複するUCIが送信オケージョンにわたってハンドリングされる場合、PUCCHが同じスロット内で起こらない場合でも、それらは互いの多重化に影響を及ぼし得る。UEは、送信オケージョンの始まりにおける多重化目的のためにUCIリソースを決定し得る。タイムライン目的のために、UEは、送信オケージョンの始まりより前にスロット1において重複を見ることがある。PUSCHハンドリングのために、UEは、送信オケージョン全体にわたってPUSCHをレートマッチングし得る。UEは、図6に関して説明されたように、送信オケージョンにわたってPUSCHをインターリーブし得る。図20は、図18中のUCIが送信オケージョンごとにハンドリングされることを、矢印で示す図2000を示す。PUSCHは、スロットごとにレートマッチングされ得る。たとえば、図20中のサーキュラーバッファ2050は、送信オケージョンの組み合わせられたビットについてのサーキュラーバッファの適用例を示す。
【0142】
[0134]図21は、複数スロットPUSCH送信2104において複数のUCIを多重化するためのタイムライン考慮の態様を示す図2100を示す。図21に示されているように、UEが、複数スロットPUSCH2104についての送信オケージョンと時間的に重複するPUCCH2110および/または2120における送信についてUCIを多重化することを考慮し得る。図21では、PUCCH2110は、幾分図15と同様に、複数スロット送信オケージョンの第1のスロットにおいてPUSCH2104と重複する。PUCCH2120は、第1のスロットにおいてではなく複数スロット送信オケージョンの後続のスロットにおいてPUSCH2104と重複する。PUCCH2110とPUCCH2120の両方は、PDSCH2108とPDSCH2118とをスケジュールするDCI2106とDCI2116とによってスケジュールされ、PUSCH2104をスケジュールするアップリンク許可2102の前に受信され、したがって、PUSCH2104と多重化されるためのそのしきい値を満足する。いくつかの態様では、基準時間は、UCIがどのようにおよび/またはどこで多重化されるかにかかわらず、マルチスロットPUSCH2104の開始(たとえば、S01)に基づき得る。たとえば、UEは、マルチスロットPUSCH送信のために前もって準備し得、基準S01としてのマルチスロットPUSCH1604の開始に基づいて、複数のPUCCH(2110および2120)の各々のためにタイムライン考慮を適用し得る。
【0143】
[0135]いくつかの態様では、各PUCCHを多重化するための基準は、多重化のスロットに基づき得る。たとえば、複数のPUCCHの各々が、多重化のスロットに基づく、または個々のPUCCHについて図15図17に関して説明された他の考慮に基づく、基準時間を独立して有し得る。たとえば、PUCCH2120についての基準時間はS02であり得、PUCCH2110についての基準時間はS01であり得る。いくつかの例では、異なる基準時間の決定は、インターリービングおよびレートマッチング構成に基づき得る。たとえば、PUCCHごとの基準時間の独立決定は、異なるPUCCHがスロットごとに多重化される場合、たとえば、図19に関して説明されたように、スロットごとのレートマッチング、および/またはスロットごとのインターリービングを用いて、適用され得る。
【0144】
[0136]たとえば、図20に関して説明されたように、スロットごとにではなく送信オケージョンにわたって複数のUCIの多重化がハンドリングされる場合、UEは、複数スロットPUSCH2104の開始に基づいて、PUCCHの各々にS01の共通基準時間を適用し得る。PUSCHの開始は、UCI多重化決定が、異なるPUCCHについて一緒の様式で行われ得るので、基準時間として適用され得る。共通基準時間は、UEが複数スロットPUSCH送信のために事前に準備することを可能にし得る。
【0145】
[0137]図22は、リソースの不連続セグメントを含む、たとえば、図4に関して説明されたオプション(b)の、送信オケージョン2202および2212と重複するUCI2208および2209についてのPUCCHリソースを示す図2200を示す。たとえば、送信オケージョン2202は、送信オケージョン2202中に含まれないリソースによって時間的に分離される、セグメント2205とセグメント2207とを含む。セグメント2205および2207は、各々、リソースの連続セットを含む。たとえば、セグメント2205は、第1のスロット2204と第2のスロット2206とにおいてリソースを有するものとして示されている。各送信オケージョン、たとえば、2202および2212は、UCIを、1つの送信オケージョンの複数のスロット上で送信されるPUSCHと多重化するために、独立してハンドリングされ得る。送信オケージョンごとは、PUSCHおよびPUCCHのスロットごとのハンドリングに対応する態様を有し得る。いくつかの態様では、送信オケージョン内の各連続セグメントが、(1つまたは複数の)他のセグメントから独立してハンドリングされ得る。
【0146】
[0138]いくつかの態様では、UEは、(1つまたは複数の)重複しないスロット内ではなく、重複のスロット内でPUCCHを多重化することを、考慮し、たとえば、ハンドリングまたは適用し得る。この例における多重化の態様は、たとえば、表1における例1および例3、ならびに図10および図12に関して説明されたように、連続送信オケージョンについて、重複したスロット内の多重化と同様に適用され得る。
【0147】
[0139]いくつかの態様では、UEは、不連続セグメント2205および2207を含む、送信オケージョン、たとえば、2202、全体上で多重化することを、考慮し、たとえば、ハンドリングまたは適用し得る。この例における多重化の態様は、たとえば、表1における例2および例4、ならびに図11および図13に関して説明されたように、連続送信オケージョンについて、送信オケージョン上での多重化と同様に適用され得る。
【0148】
[0140]いくつかの態様では、UEは、送信オケージョンの連続部分上で、たとえば、送信オケージョン2202の重複したセグメント2207内で多重化することを、考慮し、たとえば、ハンドリングまたは適用し得る。表2は、UCI2208についてのリソースの不連続セグメントを含む送信オケージョンのセグメントごとに複数スロットPUSCHとのUCI多重化をハンドリングすることの例示的な態様を示す。
【0149】
【表3】
【0150】
[0141]図23は、不連続送信オケージョン2302の重複したセグメントに基づいて多重化されるUCIを示す図2300を示す。送信オケージョンは、不連続セグメント2305および2307を含む。セグメント2307は、UCI1908の送信についてのPUCCHと時間的に重複される。重複に基づいて、UCI2308は、送信オケージョンにおける送信についてのPUSCH TBと多重化され得る。多重化はセグメントごとにハンドリングされ得、セグメント2307における多重化は、セグメント2305についての処理から独立してハンドリングされる。セグメント2307は、2つのスロット、たとえば、スロット5 2304とスロット6 2306とに及ぶリソースを含む。UCI2308を多重化するためのリソースは、PUCCHが多重化されるセグメントに基づいて決定され得る。UCIリソースは、セグメントのリソースに基づいて決定され得る。
【0151】
[0142]一例として、UCIを多重化するためのリソースの数は、送信オケージョンの対応するセグメントにおけるPUSCHシンボルにわたってUCIのために潜在的に利用可能なREの数に基づいて決定され得る。決定はまた、対応するセグメントにおけるシンボルの数とPUSCHシンボルの総数とによってスケーリングされたPUSCHビットの総数に基づき得る。たとえば、式1において、式1における
【0152】
【数19】
【0153】
は、送信オケージョンの対応するセグメント(たとえば、送信オケージョン2302のセグメント2307)のPUSCHシンボルにわたってUCI2308のために潜在的に利用可能なREの数に対応し得、式1における
【0154】
【数20】
【0155】
は、送信オケージョンにおけるPUSCHシンボルの総数で除算された、対応するセグメントにおけるシンボルの数によってスケーリングされた送信オケージョン2302のPUSCHビットの総数に対応し得る。
【0156】
[0143]図23中のスロット5においてUCI2308のために使用するためのリソースの数を決定した後に、UEは、スロット5 2304内のUCIリソースのロケーションを識別し得る。UEは、次いで、スロット5 2304における識別されたリソースをUCIシンボルで充填し得る。UEは、周波数第1、時間第2様式でリソースを充填し得る。UEは、残りのリソースを使用してPUSCHレートマッチングビットを決定し得、レートマッチングされたビットをインターリーブし得る。インターリービングの後に、UEは、PUSCHについて識別されたリソースを、変調シンボルにマッピングされたインターリーブされたビットで充填し得る。
【0157】
[0144]図24は、たとえば、図4および/または図23に関して説明されたオプション(b)に基づく、不連続セグメントを有する送信オケージョン2402と重複するPUCCHについての2つの潜在的なタイムラインをもつ図2400を示す。送信オケージョン2402は、不連続セグメント2405および2407を含む。各セグメントは、図23における例と同様に、リソースの連続セットを含む、たとえば、セグメント2405が、送信オケージョン2402が及ぶスロットのセットのスロット0とスロット1とにおけるリソースを含み、セグメント2407が、スロット5とスロット6とにおけるリソースを含む。複数スロットPUSCH送信は、図15図17に関して説明されたように、アップリンク許可をもつDCI2401によってスケジュールされ得、N2に基づく処理タイムラインを有し得る。
【0158】
[0145]図24は、複数スロットPUSCHについての送信オケージョン2402と重複するPUCCH2410aまたは2410bについての潜在的なタイムラインの2つの例を示す。PUCCHは、PDSCH2408aまたは2408bについてのACK/NACKなど、UCIを含み得、これは、DCI2406aまたは2406bにおけるダウンリンク許可によってスケジュールされ得る。
【0159】
[0146]第1のタイムライン例では、N1、および/またはUCIがCSIを含む場合Zの、測定のための基準時間は、PUCCHが多重化されるべきであるセグメントに基づき得る。基準時間は、たとえば、図24中のS01によって示されているように、セグメントの開始にマッピングされ得る。タイムライン1の使用は、たとえば、セグメントベースごとであることまたはスロットベースごとであることなど、多重化UCIをもつPUSCHについてのインターリービングおよびレートマッチング構成に基づき得る。
【0160】
[0147]第2の例示的なタイムラインでは、N1および/またはZの、測定についての基準時間は、たとえば、図24中のS02によって示されているように、複数スロットPUSCHの開始に基づき得る。いくつかの態様では、基準時間S02は、UCIが、複数スロットPUSCH送信内でどのようにまたはどこで多重化されることになるかにかかわらず、UEによって適用され得る。複数スロットPUSCH送信の始まりにおける基準時間を使用することは、複数スロットPUSCHのために準備するための追加された時間をUEに提供し得る。
【0161】
[0148]図25は、複数スロットPUSCH送信と多重化されたUCIの送信2528を含む、UE2502と基地局2504との間の例示的な通信フロー2500を示す。2506において示されているように、基地局2504は、PUSCH送信についてUE2502にリソースを割り振る、または許可する、DCIを送信し得る。割り振られたリソースは、図4に関して説明されたように、複数のスロットに及ぶ送信オケージョンを含み得る。2510において、UEは、UCIについてのPUCCHリソースとPUSCHについての送信オケージョンとの間の時間的な重複を決定することに基づいて、複数スロットPUSCH送信とのUCIの多重化をトリガし得る。概念を示すための非限定的な例として、UEは、UEが、基地局2504に送信するためのUCIを有する、ダウンリンク送信2508を受信し得る。ダウンリンク送信はPDSCHを含み得、これは、2506におけるアップリンク許可の前または後に送信され得る。UEは、PUSCHについてのリソースと重複するUCIとして送信するための、PDSCHに関するACK/NACK情報を有し得る。PDSCHは、PDSCHをスケジュールするDCI2505に基づき得、これは、2506におけるアップリンク許可をもつDCIより前に受信され得る。別の例として、ダウンリンク送信2508は、CSI-RSを含み得、UEは、UCIとして基地局に報告するためのCSIを有し得る。
【0162】
[0149]UCIを複数スロットPUSCH送信と多重化することを決定することの一部として、2510において、UEは、処理タイムラインを適用し得る。処理タイムラインは、図15図17図21、または図24のいずれかに関して説明されたように、N1および/またはZに基づき得る。UEは、たとえば、UCIに関連するPUCCHについてのN1またはZが、UCIをPUSCHと多重化するための最小ギャップを満足するかどうかを決定するとき、処理タイムラインについての基準時間(たとえば、S0、S01、またはS02)を適用し得る。
【0163】
[0150]2512において示されているように、UCIをPUSCH送信と多重化するために、UEは、UCIについてのリソースの量を決定し得る。UEは、送信オケージョンのタイプ(たとえば、図4に関して説明されたような、連続または不連続セグメント)に基づいてリソースを決定し得る。UEはまた、多重化が、スロットごとにハンドリングされるのか、送信オケージョンごとにハンドリングされるのか、送信オケージョンのセグメントごとにハンドリングされるのかに基づいて、リソースを決定し得る。UEはまた、重複が、送信オケージョン、またはセグメントの第1のスロットにおいて起こるのか、後続のスロットにおいて起こるのかに基づいて、リソースを決定し得る。決定は、図10図14図18図20、および/または図22図23に関して説明された態様のいずれかに基づき得る。決定は、本明細書で説明されるように、式1の修正された態様に基づき得る。
【0164】
[0151]2514において、UEは、PUSCH送信オケージョン内のUCIについてのリソースのロケーションを決定し得る。2516において、UEは、識別されたリソースをUCIシンボルで充填し得る。いくつかの態様では、UEは、周波数第1、時間第2様式でリソースを充填し得る。2520において、UEは、たとえば、送信オケージョンのリソースの一部をUCIで充填した後に残る、PUSCH送信のために利用可能である送信オケージョンの残りのリソースを識別する。2522において、UEは、残りのリソースに基づいてレートマッチングおよびインターリービングを適用する。レートマッチングおよびインターリービングは、図4図24における例に関して説明された態様のいずれかに基づき得る。一例として、インターリービングは、図7の場合のようにスロットごとであるか、図6の場合のように送信オケージョンごとであるか、または図8の場合のようにセグメントごとであり得る。レートマッチングおよびインターリービングのタイプは、本明細書で説明されるように、送信オケージョンのタイプと、UCIが多重化される様式とに基づき得る。2524において、UEは、インターリーブされたビットを変調シンボルにマッピングし、2526において、UEは、2524においてマッピングされた変調シンボルを、送信オケージョンの残りのリソースにマッピングすることによって、送信オケージョンの残りのリソースをPUSCH送信で充填する。2528において、UE2502は、PUSCHと多重化UCIとを基地局2504に送信する。2530において示されているように、基地局は、UCIにおける情報を取得するために、PUSCHからUCIを多重分離し得る。
【0165】
[0152]図26Aは、ワイヤレス通信の方法のフローチャート2600である。本方法は、UE(たとえば、UE104、350、2502、装置2702)によって実施され得る。本方法は、UEが、複数スロットPUSCHについての送信オケージョン内でUCIを多重化することを可能にし得、UEがUCIを複数スロットPUSCHと多重化するための処理タイムラインを提供する。
【0166】
[0153]2602において、UEは、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するための処理タイムラインを適用する。図25は、2511においてUE2502が処理タイムラインを適用することの一例を示す。処理タイムラインは、図15図17図21、および/または図24に関して説明された態様のいずれかに基づき得る。タイムラインの適用は、たとえば、図27中の装置2702のタイムライン構成要素2744によって実施され得る。
【0167】
[0154]2604において、UEは、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信する。多重化および/または送信は、図4図25に関して説明された態様のいずれかに基づき得る。図25は、2528においてUE2502が多重化UCIとともにPUSCHを基地局2504に送信することの一例を示す。送信は、たとえば、送信構成要素2734および/またはRFトランシーバ2722を介して、たとえば、装置2702のPUSCH構成要素2742によって、実施され得る。
【0168】
[0155]図26Bは、ワイヤレス通信の方法のフローチャート2650である。本方法は、UE(たとえば、UE104、350、2502、装置2702)によって実施され得る。本方法は、図26Bに関して説明されるように、2602と2604とを含み得る。
【0169】
[0156]いくつかの態様では、UCIはHARQフィードバックを備え得、処理タイムラインは、PDSCHの受信とPDSCHについてのHARQフィードバックペイロードを搬送するPUCCHの開始との間の時間ギャップ(たとえば、N1)に対応し得る。
【0170】
[0157]いくつかの態様では、UCIはCSI報告を備え得、処理タイムラインは、たとえば、図17に関して説明されたように、CSI-RSの最後のシンボルの受信とCSI-RSの測定に基づくCSI報告を搬送するPUCCHの開始との間の時間ギャップ(たとえば、Z)に対応し得る。
【0171】
[0158]いくつかの態様では、UEは、2606において示されているように、複数スロットPUSCH送信の開始に基づいて処理タイムラインを適用し得る。いくつかの態様では、複数スロットPUSCH送信は、連続スロットのセットを備える送信オケージョンにおいて送信され得る。いくつかの態様では、処理タイムラインは、UCIと時間的に重複する、複数スロットPUSCH送信の重複したスロット、複数スロットPUSCH送信において、UCIがそこにおいて多重化されるべきである、多重化スロット、複数スロットPUSCH送信内でのUCIについての送信オケージョンベースの多重化、複数スロットPUSCH送信についての送信オケージョンベースのインターリービング、または複数スロットPUSCH送信についての送信オケージョンベースのレートマッチングのうちの1つまたは複数に基づく、複数スロットPUSCH送信の開始に基づく。一例として、タイムラインは、図15図17に関して説明された態様のいずれかに基づく、複数スロットPUSCHの開始に基づき得る。
【0172】
[0159]いくつかの態様では、複数スロットPUSCH送信は、連続スロットのセットを備える送信オケージョン、たとえば、図4のオプション(a)、において送信され得、たとえば、2608において示されているように、処理タイムラインを適用することは、UCIと重複し、UCIがそこにおいて多重化される、複数スロットPUSCH送信の重複するスロットの開始に基づいて処理タイムラインを適用すること含み得る。いくつかの態様では、処理タイムラインは、UCIが、複数スロットPUSCH送信の重複したスロットにおいて多重化されること、複数スロットPUSCH送信内でのUCIについてのスロットベースの多重化、複数スロットPUSCH送信についてのスロットベースのインターリービング、または複数スロットPUSCH送信についてのスロットベースのレートマッチングのうちの1つまたは複数に基づく、複数スロットPUSCH送信の重複したスロットの開始に基づき得る。図16中の基準時間S02は、処理タイムラインが、重複するスロットの開始に基づくことの一例を示す。
【0173】
[0160]いくつかの態様では、UEは、複数スロットPUSCHと重複する、複数のPUCCHからのUCIを多重化し得る。たとえば、図18図21のいずれかに関して説明されたように、UEは、複数スロットPUSCH送信と重複する、第1のUCIおよび第2のUCIを多重化し得る。UEは、2602において、たとえば、図21中のS01によって示されているように、複数スロットPUSCH送信の開始に基づいて第1のUCIと第2のUCIとについて処理タイムラインを適用し得る。
【0174】
[0161]いくつかの態様では、第1のUCIと第2のUCIとは、送信オケージョンの異なるスロットにおいて重複し得、処理タイムラインは、たとえば、図21中のS02によって示されているように、第1のUCIと第2のUCIとによって重複された送信オケージョンのそれぞれのスロットに基づいて、第1のUCIと第2のUCIとについて別様に決定され得る。いくつかの態様では、第1のUCIと第2のUCIとは、送信オケージョンの連続スロットにわたって多重化され得る。
【0175】
[0162]いくつかの態様では、複数スロットPUSCH送信は、不連続スロットのセットを備える送信オケージョン、たとえば、図4中のオプション(b)において送信され得、処理タイムラインは、2610において、UCIがそこにおいて多重化される、送信オケージョンの連続部分に基づいて決定され得る。図24は、重複のセグメントに基づく処理タイムライン(たとえば、タイムライン1)の一例を示す。処理タイムラインは、たとえば、図21中のS01によって示されているように、連続部分の開始に基づき得る。いくつかの態様では、UEは、複数スロットPUSCH送信の異なる連続部分と重複する、第1のUCIおよび第2のUCIを多重化し得、処理タイムラインは、それぞれのUCIがそこにおいて多重化される、送信オケージョンの連続部分に基づき得る。
【0176】
[0163]2603において、UEは、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化する。図25に関して説明されたように、UEは、UCIが、PUSCH送信についての送信オケージョンと時間的に重複して送信されるべきである、リソースに基づいてUCIを多重化することを決定し得る。多重化は、図4図25に関して説明された態様のいずれかを含み得る。多重化は、たとえば、図27中の装置2702のUCIマルチプレクサ構成要素2740によって実施され得る。
【0177】
[0164]図27は、装置2702のためのハードウェア実装形態の一例を示す図2700である。装置2702は、UE、UEの構成要素であり得るか、またはUE機能を実装し得る。いくつかの態様では、装置2702は、セルラーRFトランシーバ2722に結合された(モデムとも呼ばれる)セルラーベースバンドプロセッサ2704を含み得る。装置2702は、1つまたは複数の加入者識別モジュール(SIM)カード2720、セキュアデジタル(SD)カード2708およびスクリーン2710に結合されたアプリケーションプロセッサ2706、Bluetoothモジュール2712、ワイヤレスローカルエリアネットワーク(WLAN)モジュール2714、全地球測位システム(GPS)モジュール2716、ならびに/または電源2718をさらに含み得る。セルラーベースバンドプロセッサ2704は、セルラーRFトランシーバ2722を通して、UE104および/または基地局102/180と通信する。セルラーベースバンドプロセッサ2704は、コンピュータ可読媒体/メモリを含み得る。コンピュータ可読媒体/メモリは非一時的であり得る。セルラーベースバンドプロセッサ2704は、コンピュータ可読媒体/メモリに記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、セルラーベースバンドプロセッサ2704によって実行されたとき、セルラーベースバンドプロセッサ2704に、本明細書で説明される様々な機能を実施させる。コンピュータ可読媒体/メモリはまた、ソフトウェアを実行するときにセルラーベースバンドプロセッサ2704によって操作されるデータを記憶するために使用され得る。セルラーベースバンドプロセッサ2704は、受信構成要素2730と、通信マネージャ2732と、送信構成要素2734とをさらに含む。通信マネージャ2732は、1つまたは複数の図示された構成要素を含む。通信マネージャ2732内の構成要素は、コンピュータ可読媒体/メモリに記憶され、および/またはセルラーベースバンドプロセッサ2704内のハードウェアとして構成され得る。セルラーベースバンドプロセッサ2704は、UE350の構成要素であり得、メモリ360、および/またはTXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とのうちの少なくとも1つを含み得る。一構成では、装置2702は、モデムチップであり、ただベースバンドプロセッサ2704を含み得、別の構成では、装置2702は、UE全体(たとえば、図3の350参照)であり、装置2702の追加のモジュールを含み得る。
【0178】
[0165]通信マネージャ2732は、たとえば、図26B中の2603に関して説明されたように、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するように構成されたUCIマルチプレクサ構成要素2740を含む。通信マネージャ2732は、たとえば、図26Aまたは図26B中の2604に関して説明されたように、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信するように構成されたPUSCH構成要素2742をさらに含む。通信マネージャ2732は、たとえば、図26Aまたは図26B中の2602に関して説明されたように、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用するように構成されたタイムライン構成要素2744をさらに含む。
【0179】
[0166]装置は、図26A図26Bのフローチャート中のアルゴリズムのブロック、および/または図25中のUEによって実施される態様の各々を実施する追加の構成要素を含み得る。したがって、図26A図26Bのフローチャート中の各ブロック、および/または図25中のUEによって実施される態様は、構成要素によって実施され得、装置は、それらの構成要素のうちの1つまたは複数を含み得る。構成要素は、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実施するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。
【0180】
[0167]一構成では、装置2702、および特にセルラーベースバンドプロセッサ2704は、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用するための手段と、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信するための手段とを含む。装置は、複数スロットPUSCH送信の少なくとも1つのスロット内でUCIを多重化するための手段をさらに含み得る。手段は、その手段によって具陳された機能を実施するように構成された装置2702の構成要素のうちの1つまたは複数であり得る。本明細書で説明されるように、装置2702は、TXプロセッサ368と、RXプロセッサ356と、コントローラ/プロセッサ359とを含み得る。したがって、一構成では、手段は、その手段によって具陳された機能を実施するように構成されたTXプロセッサ368、RXプロセッサ356、およびコントローラ/プロセッサ359であり得る。
【0181】
[0168]5G新無線(NR)システムなど、通信システムの展開は、様々な構成要素または構成部品で、複数の様式で構成され得る。5G NRシステム、またはネットワークでは、ネットワークノード、ネットワークエンティティ、ネットワークのモビリティ要素、無線アクセスネットワーク(RAN)ノード、コアネットワークノード、ネットワーク要素、あるいは、基地局(BS)、または基地局機能を実施する1つまたは複数のユニット(または1つまたは複数の構成要素)など、ネットワーク機器は、アグリゲーテッドアーキテクチャまたはディスアグリゲーテッドアーキテクチャで実装され得る。たとえば、(ノードB(NB)、発展型NB(eNB)、NR BS、5G NB、アクセスポイント(AP)、送信受信ポイント(TRP)、またはセルなどの)BSは、(スタンドアロンBSまたはモノリシックBSとしても知られる)アグリゲーテッド基地局またはディスアグリゲーテッド基地局として実装され得る。
【0182】
[0169]アグリゲーテッド基地局は、単一のRANノード内に物理的にまたは論理的に組み込まれた無線プロトコルスタックを利用するように構成され得る。ディスアグリゲーテッド基地局は、(1つまたは複数の中央または集中型ユニット(CU)、1つまたは複数の分散ユニット(DU)、あるいは1つまたは複数の無線ユニット(RU)などの)2つまたはそれ以上のユニットの間で物理的にまたは論理的に分散されたプロトコルスタックを利用するように構成され得る。いくつかの態様では、CUはRANノード内に実装され得、1つまたは複数のDUは、CUとコロケートされ得るか、あるいは代替的に、1つまたは複数の他のRANノード全体にわたって地理的にまたは仮想的に分散され得る。DUは、1つまたは複数のRUと通信するように実装され得る。CU、DUおよびRUの各々はまた、仮想ユニット、すなわち、仮想中央ユニット(VCU)、仮想分散ユニット(VDU)、または仮想無線ユニット(VRU)として実装され得る。
【0183】
[0170]基地局タイプ動作またはネットワーク設計は、基地局機能のアグリゲーション特性を考慮し得る。たとえば、ディスアグリゲーテッド基地局は、統合アクセスバックホール(IAB:integrated access backhaul)ネットワーク、オープン無線アクセスネットワーク(O-RAN:open radio access network(O-RANアライアンスによって後援されるネットワーク構成など))、または仮想化無線アクセスネットワーク(vRAN:virtualized radio access network、クラウド無線アクセスネットワーク(C-RAN)としても知られる)において利用され得る。ディスアグリゲーションは、様々な物理的ロケーションにおける2つまたはそれ以上のユニットにわたって機能を分散させること、ならびに少なくとも1つのユニットのための機能を仮想的に分散させることを含み得、これは、ネットワーク設計におけるフレキシビリティを可能にすることができる。ディスアグリゲーテッド基地局の様々なユニット、またはディスアグリゲーテッドRANアーキテクチャは、少なくとも1つの他のユニットとのワイヤードまたはワイヤレス通信のために構成され得る。
【0184】
[0171]図28は、例示的なディスアグリゲーテッド基地局2800アーキテクチャを示す図を示す。ディスアグリゲーテッド基地局2800アーキテクチャは、バックホールリンクを介してコアネットワーク2820と直接、または、(E2リンクを介したニアリアルタイム(Near-Real Time)(ニアRT)RANインテリジェントコントローラ(RIC)2825、またはサービス管理およびオーケストレーション(SMO:Service Management and Orchestration)フレームワーク2805に関連する非リアルタイム(非RT)RIC2815、またはその両方などの)1つまたは複数のディスアグリゲーテッド基地局ユニットを通してコアネットワーク2820と間接的に通信することができる、1つまたは複数の中央ユニット(CU)2810を含み得る。CU2810は、F1インターフェースなど、それぞれのミッドホールリンクを介して1つまたは複数の分散ユニット(DU)2830と通信し得る。DU2830は、それぞれのフロントホールリンクを介して1つまたは複数の無線ユニット(RU)2840と通信し得る。RU2840は、1つまたは複数の無線周波数(RF)アクセスリンクを介してそれぞれのUE104と通信し得る。いくつかの実装形態では、UE104は、複数のRU2840によって同時にサービスされ得る。
【0185】
[0172]ユニットの各々、すなわち、CU2810、DU2830、RU2840、ならびにニアRT RIC2825、非RT RIC2815およびSMOフレームワーク2805は、ワイヤードまたはワイヤレス伝送媒体を介して信号、データ、または情報(まとめて、信号)を受信または送信するように構成された、1つまたは複数のインターフェースを含むか、あるいは1つまたは複数のインターフェースに結合され得る。ユニットの各々、あるいは、ユニットの通信インターフェースに命令を提供する、関連するプロセッサまたはコントローラは、伝送媒体を介して他のユニットのうちの1つまたは複数と通信するように構成され得る。たとえば、ユニットは、他のユニットのうちの1つまたは複数にワイヤード伝送媒体上で信号を受信または送信するように構成されたワイヤードインターフェースを含むことができる。さらに、ユニットは、他のユニットのうちの1つまたは複数にワイヤレス伝送媒体上で、信号を受信することまたは送信すること、あるいはその両方を行うように構成された、受信機、送信機または(無線周波数(RF)トランシーバなどの)トランシーバを含み得る、ワイヤレスインターフェースを含むことができる。
【0186】
[0173]いくつかの態様では、CU2810は、1つまたは複数の上位レイヤ制御機能をホストし得る。そのような制御機能は、無線リソース制御(RRC)、パケットデータコンバージェンスプロトコル(PDCP)、サービスデータ適応プロトコル(SDAP)などを含むことができる。各制御機能は、CU2810によってホストされる他の制御機能と信号を通信するように構成されたインターフェースで実装され得る。CU2810は、ユーザプレーン機能(すなわち、中央ユニット-ユーザプレーン(CU-UP))、制御プレーン機能(すなわち、中央ユニット-制御プレーン(CU-CP))、またはそれらの組合せをハンドリングするように構成され得る。いくつかの実装形態では、CU2810は、1つまたは複数のCU-UPユニットと1つまたは複数のCU-CPユニットとに論理的にスプリットされ得る。CU-UPユニットは、O-RAN構成において実装されるとき、E1インターフェースなど、インターフェースを介してCU-CPユニットと双方向に通信することができる。CU2810は、必要に応じて、ネットワーク制御およびシグナリングのために、DU2830と通信するように実装され得る。
【0187】
[0174]DU2830は、1つまたは複数のRU2840の動作を制御するための1つまたは複数の基地局機能を含む、論理ユニットに対応し得る。いくつかの態様では、DU2830は、第3世代パートナーシッププロジェクト(3GPP)によって定義されるものなど、少なくとも部分的に、機能的スプリットに応じて、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤと、(前方誤り訂正(FEC)符号化および復号、スクランブリング、変調および復調などのためのモジュールなどの)1つまたは複数の高物理(PHY)レイヤとのうちの1つまたは複数をホストし得る。いくつかの態様では、DU2830は、1つまたは複数の低PHYレイヤをさらにホストし得る。各レイヤ(またはモジュール)は、DU2830によってホストされる他のレイヤ(および、モジュール)と、またはCU2810によってホストされる制御機能と、信号を通信するように構成されたインターフェースで実装され得る。
【0188】
[0175]下位レイヤ機能は、1つまたは複数のRU2840によって実装され得る。いくつかの展開では、DU2830によって制御される、RU2840は、下位レイヤ機能的スプリットなど、機能的スプリットに少なくとも部分的に基づいて、RF処理機能、または(高速フーリエ変換(FFT)、逆FFT(iFFT)、デジタルビームフォーミング、物理ランダムアクセスチャネル(PRACH)抽出およびフィルタ処理などを実施することなどの)低PHYレイヤ機能、またはその両方をホストする、論理ノードに対応し得る。そのようなアーキテクチャでは、(1つまたは複数の)RU2840は、1つまたは複数のUE104とのオーバージエア(OTA)通信をハンドリングするように実装され得る。いくつかの実装形態では、(1つまたは複数の)RU2840との制御プレーン通信およびユーザプレーン通信のリアルタイムおよび非リアルタイム態様は、対応するDU2830によって制御され得る。いくつかのシナリオでは、この構成は、(1つまたは複数の)DU2830とCU2810とが、vRANアーキテクチャなど、クラウドベースのRANアーキテクチャにおいて実装されることを可能にすることができる。
【0189】
[0176]SMOフレームワーク2805は、非仮想化ネットワーク要素および仮想化ネットワーク要素のRAN展開およびプロビジョニングをサポートするように構成され得る。非仮想化ネットワーク要素の場合、SMOフレームワーク2805は、(O1インターフェースなどの)運用および保守インターフェースを介して管理され得る、RANカバレージ要件についての専用物理リソースの展開をサポートするように構成され得る。仮想化ネットワーク要素の場合、SMOフレームワーク2805は、(O2インターフェースなどの)クラウドコンピューティングプラットフォームインターフェースを介して(仮想化ネットワーク要素をインスタンス化するためになど)ネットワーク要素ライフサイクル管理を実施するために、(オープンクラウド(O-クラウド)2890などの)クラウドコンピューティングプラットフォームと対話するように構成され得る。そのような仮想化ネットワーク要素は、限定はしないが、CU2810と、DU2830と、RU2840と、ニアRT RIC2825とを含むことができる。いくつかの実装形態では、SMOフレームワーク2805は、O1インターフェースを介して、オープンeNB(O-eNB)2811など、4G RANのハードウェア態様と通信することができる。さらに、いくつかの実装形態では、SMOフレームワーク2805は、O1インターフェースを介して1つまたは複数のRU2840と直接通信することができる。SMOフレームワーク2805は、SMOフレームワーク2805の機能をサポートするように構成された非RT RIC2815をも含み得る。
【0190】
[0177]非RT RIC2815は、RAN要素およびリソースの非リアルタイム制御および最適化、モデルトレーニングおよび更新を含む人工知能/機械学習(AI/ML)ワークフロー、またはニアRT RIC2825におけるアプリケーション/特徴のポリシーベースのガイダンスを可能にする論理機能を含むように構成され得る。非RT RIC2815は、(A1インターフェースを介してなど)ニアRT RIC2825に結合されるかまたはニアRT RIC2825と通信し得る。ニアRT RIC2825は、1つまたは複数のCU2810、1つまたは複数のDU2830、またはその両方、ならびにO-eNBを、ニアRT RIC2825と接続する、(E2インターフェースを介したなどの)インターフェース上のデータ収集およびアクションを介した、RAN要素およびリソースのニアリアルタイム制御および最適化を可能にする論理機能を含むように構成され得る。
【0191】
[0178]いくつかの実装形態では、ニアRT RIC2825において展開されるべきAI/MLモデルを生成するために、非RT RIC2815は、外部サーバからパラメータまたは外部エンリッチメント情報(enrichment information)を受信し得る。そのような情報は、ニアRT RIC2825によって利用され得、非ネットワークデータソースからまたはネットワーク機能から、SMOフレームワーク2805または非RT RIC2815において受信され得る。いくつかの例では、非RT RIC2815またはニアRT RIC2825は、RAN挙動または性能を調整するように構成され得る。たとえば、非RT RIC2815は、性能について長期傾向およびパターンを監視し、AI/MLモデルを採用して、(O1を介した再構成などの)SMOフレームワーク2805を通した修正アクション、または(A1ポリシーなどの)RAN管理ポリシーの作成を介した修正アクションを実施し得る。
【0192】
[0179]開示されたプロセス/フローチャート中のブロックの特定の順序または階層は、例示的な手法の一例であることを理解されたい。設計選好に基づいて、プロセス/フローチャート中のブロックの特定の順序または階層は再構成され得ることを理解されたい。さらに、いくつかのブロックは組み合わせられるかまたは省略され得る。添付の方法クレームは、様々なブロックの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。
【0193】
[0180]以上の説明は、当業者が本明細書で説明された様々な態様を実施することを可能にするために提供された。これらの態様への様々な修正は当業者には容易に明らかであり、本明細書で定義された一般原理は他の態様に適用され得る。したがって、特許請求の範囲は、本明細書で示された態様に限定されるものではなく、クレーム文言に矛盾しない全範囲を与えられるべきであり、ここにおいて、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。「場合(if)」、「とき(when)」、および「間(while)」などの用語は、即時の時間関係または反応を暗示するのではなく、「という条件の下で」を意味すると解釈されるべきである。すなわち、これらの句、たとえば、「とき」は、アクションの発生に応答する、またはアクションの発生中の、即時のアクションを暗示せず、単に、条件が満たされた場合、アクションが発生するが、アクションが発生すべき特定のまたは即時の時間制約を必要としないことを暗示する。「例示的」という単語は、「例、事例、または例示の働きをすること」を意味するために本明細書で使用される。「例示的」として本明細書で説明されたいかなる態様も、必ずしも他の態様よりも好適または有利であると解釈されるべきではない。別段に明記されていない限り、「いくつか」という用語は1つまたは複数を指す。「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、A、B、および/またはCの任意の組合せを含み、複数のA、複数のB、または複数のCを含み得る。詳細には、「A、B、またはCのうちの少なくとも1つ」、「A、B、またはCのうちの1つまたは複数」、「A、B、およびCのうちの少なくとも1つ」、「A、B、およびCのうちの1つまたは複数」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCであり得、ここで、いかなるそのような組合せも、A、B、またはCのうちの1つまたは複数のメンバーを含んでいることがある。当業者に知られている、または後に知られることになる、本開示全体にわたって説明された様々な態様の要素のすべての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。その上、本明細書で開示されるいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供するものではない。「モジュール」、「機構」、「要素」、「デバイス」などという単語は、「手段」という単語の代用でないことがある。したがって、いかなるクレーム要素も、その要素が「ための手段」という句を使用して明確に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
【0194】
[0181]以下の態様は、例示的なものにすぎず、限定はしないが、本明細書で説明される他の態様または教示と組み合わせられ得る。
【0195】
[0182]態様1は、UEにおけるワイヤレス通信の方法であって、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用することと、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信することとを備える、方法である。
【0196】
[0183]態様2では、態様1に記載の方法は、UCIが、HARQフィードバックを備え、処理タイムラインが、PDSCHの受信とPDSCHについてのHARQフィードバックペイロードを搬送するPUCCHの開始との間の時間ギャップに対応することをさらに含む。
【0197】
[0184]態様3では、態様1に記載の方法は、UCIが、CSI報告を備え、処理タイムラインが、CSI-RSの最後のシンボルの受信とCSI-RSの測定に基づくCSI報告を搬送するPUCCHの開始との間の時間ギャップに対応することをさらに含む。
【0198】
[0185]態様4では、態様1から3のいずれかに記載の方法は、処理タイムラインを適用することが、複数スロットPUSCH送信の開始に基づいて処理タイムラインを適用することを含むことをさらに含む。
【0199】
[0186]態様5では、態様1から4のいずれかに記載の方法は、複数スロットPUSCH送信が、連続スロットのセットを備える送信オケージョンにおいて送信されることをさらに含む。
【0200】
[0187]態様6では、態様1から5のいずれかに記載の方法は、処理タイムラインが、UCIと時間的に重複する、複数スロットPUSCH送信の重複したスロット、複数スロットPUSCH送信において、UCIがそこにおいて多重化されるべきである、多重化スロット、複数スロットPUSCH送信内でのUCIについての送信オケージョンベースの多重化、複数スロットPUSCH送信についての送信オケージョンベースのインターリービング、または複数スロットPUSCH送信についての送信オケージョンベースのレートマッチングのうちの1つまたは複数に基づく、複数スロットPUSCH送信の開始に基づくことをさらに含む。
【0201】
[0188]態様7では、態様1から5のいずれかに記載の方法は、処理タイムラインが、UCIが、複数スロットPUSCH送信の重複したスロットにおいて多重化されること、複数スロットPUSCH送信内でのUCIについてのスロットベースの多重化、複数スロットPUSCH送信についてのスロットベースのインターリービング、または複数スロットPUSCH送信についてのスロットベースのレートマッチングのうちの1つまたは複数に基づく、複数スロットPUSCH送信の重複したスロットの開始に基づくことをさらに含む。
【0202】
[0189]態様8では、態様1から7のいずれかに記載の方法は、UCIを多重化することが、複数スロットPUSCH送信と重複する、第1のUCIおよび第2のUCIを多重化することを含むことをさらに含む。
【0203】
[0190]態様9では、態様8に記載の方法は、複数スロットPUSCH送信の開始に基づいて第1のUCIと第2のUCIとについて処理タイムラインを適用することをさらに含む。
【0204】
[0191]態様10では、態様8に記載の方法は、第1のUCIと第2のUCIとが、送信オケージョンの異なるスロットにおいて重複し、処理タイムラインが、第1のUCIと第2のUCIとによって重複された送信オケージョンのそれぞれのスロットに基づいて、第1のUCIと第2のUCIとについて別様に決定されることをさらに含む。
【0205】
[0192]態様11では、態様1から3のいずれかに記載の方法は、複数スロットPUSCH送信が、不連続スロットのセットを備える送信オケージョンにおいて送信され、ここにおいて、処理タイムラインが、UCIがそこにおいて多重化される、送信オケージョンの連続部分に基づいて決定されることをさらに含む。
【0206】
[0193]態様12では、態様11に記載の方法は、処理タイムラインが、連続部分の開始に基づくことをさらに含む。
【0207】
[0194]態様13では、態様11または態様12に記載の方法は、複数スロットPUSCH送信の異なる連続部分と重複する、第1のUCIおよび第2のUCIを多重化することをさらに含み、ここにおいて、処理タイムラインは、それぞれのUCIがそこにおいて多重化される、送信オケージョンの連続部分に基づいて決定される。
【0208】
[0195]態様14は、ユーザ機器UEにおけるワイヤレス通信のための装置であって、メモリと、メモリに結合された少なくとも1つのプロセッサとを備え、少なくとも1つのプロセッサは、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用することと、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信することとを行うように構成された、装置である。
【0209】
[0196]態様15では、態様14に記載のワイヤレス通信のための装置は、態様2から13のいずれかに記載の方法を実施するようにさらに構成された、メモリと少なくとも1つのプロセッサとを含む。
【0210】
[0197]態様16では、態様14または15のいずれかに記載の装置は、少なくとも1つのプロセッサに結合された少なくとも1つのトランシーバをさらに含む。
【0211】
[0198]態様17では、態様14から16のいずれかに記載の装置は、少なくとも1つのプロセッサに結合された少なくとも1つのアンテナをさらに含む。
【0212】
[0199]態様18は、UEにおけるワイヤレス通信のための装置であって、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用するための手段と、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信するための手段とを備える、装置である。
【0213】
[0200]態様19では、態様18に記載のワイヤレス通信のための装置は、請求項2から13のいずれかに記載の方法を実施するための手段をさらに備える。
【0214】
[0201]態様20では、態様18または19のいずれかに記載の装置は、少なくとも1つのトランシーバをさらに含む。
【0215】
[0202]態様21では、態様18から20のいずれかに記載の装置は、少なくとも1つのアンテナをさらに含む。
【0216】
[0203]態様22は、UEにおけるコンピュータ実行可能コードを記憶する非一時的コンピュータ可読媒体であって、コードは、プロセッサによって実行されたとき、プロセッサに、複数スロットPUSCH送信の少なくとも1つのスロットにおいてUCIを多重化するために処理タイムラインを適用することと、処理タイムラインが満たされることに基づいて、多重化UCIとともに複数スロットPUSCH送信を送信することとを行わせる、非一時的コンピュータ可読媒体である。
【0217】
[0204]態様23では、態様22に記載のコンピュータ可読媒体は、プロセッサによって実行されたとき、プロセッサに、請求項2から13のいずれかに記載の方法を実施させるコードをさらに備える。
図1
図2A
図2B
図2C
図2D
図3
図4
図5A
図5B
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26A
図26B
図27
図28
【国際調査報告】