IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デックスコム・インコーポレーテッドの特許一覧

特表2024-513059カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS GLUCOSE MONITOR、CGM)信号のフィルタリング
<>
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図1
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図2
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図3
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図4
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図5
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図6
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図7
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図8
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図9
  • 特表-カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS  GLUCOSE  MONITOR、CGM)信号のフィルタリング 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-21
(54)【発明の名称】カルマンフィルタを用いた連続的グルコースモニタ(CONTINUOUS GLUCOSE MONITOR、CGM)信号のフィルタリング
(51)【国際特許分類】
   A61B 5/145 20060101AFI20240313BHJP
   A61B 5/00 20060101ALI20240313BHJP
【FI】
A61B5/145
A61B5/00 102A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023560675
(86)(22)【出願日】2022-03-30
(85)【翻訳文提出日】2023-09-29
(86)【国際出願番号】 US2022022558
(87)【国際公開番号】W WO2022212512
(87)【国際公開日】2022-10-06
(31)【優先権主張番号】63/168,867
(32)【優先日】2021-03-31
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】63/208,362
(32)【優先日】2021-06-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】504016422
【氏名又は名称】デックスコム・インコーポレーテッド
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】シュエタ・アール・エドラ
(72)【発明者】
【氏名】ラソール・ユセフィ
(72)【発明者】
【氏名】ネダ・エティアティ
(72)【発明者】
【氏名】ガザラ・アール・エスマイリ
【テーマコード(参考)】
4C038
4C117
【Fターム(参考)】
4C038KK10
4C038KL01
4C038KL05
4C038KL07
4C038KL09
4C038KM01
4C038KX02
4C117XB01
4C117XB02
4C117XB04
4C117XE04
4C117XJ17
(57)【要約】
分析物濃度を監視するためのシステム及び/又は方法によれば、ホストにおける分析物濃度を示すセンサ信号は、分析物センサから受信され得る。センサ信号は、プロセス共分散を有するプロセスノイズ及び測定共分散を有する測定ノイズを有するカルマンフィルタを使用してフィルタリングされ得る。フィルタリングすることは、カルマンフィルタのモデルにおいて用いられる1つ以上のパラメータに関連付けられる値を使用して、プロセス共分散及び測定共分散のうちの少なくとも1つに関連付けられる値を更新することを含み得る。ホストにおける分析物濃度を表すフィルタリング済みセンサ信号は、カルマンフィルタから出力され得る。
【特許請求の範囲】
【請求項1】
分析物濃度を監視するための方法であって、前記方法は、
分析物センサから、ホストにおける分析物濃度を示すセンサ信号を受信することと、
プロセス共分散を有するプロセスノイズ及び測定共分散を有する測定ノイズを有するカルマンフィルタを使用して前記センサ信号をフィルタリングすることであって、前記フィルタリングすることは、前記カルマンフィルタのモデルにおいて用いられる1つ以上のパラメータの値を使用して前記プロセス共分散又は前記測定共分散のうちの少なくとも1つの値を更新することを含む、フィルタリングすることと、
前記カルマンフィルタから、前記ホストにおける前記分析物濃度を表すフィルタリング済みセンサ信号を出力することと、を含む、方法。
【請求項2】
前記プロセス共分散及び前記測定共分散のうちの少なくとも1つを更新するために使用される前記1つ以上のパラメータは、前記カルマンフィルタのモデルにおいて用いられるイノベーション項及び残留項の値を含む、請求項1に記載の方法。
【請求項3】
前記更新することは、1つ以上の所定のアーチファクトが前記センサ信号において検出されたときに実行される、請求項1又は2に記載の方法。
【請求項4】
前記分析物センサから受信された前記センサ信号と、前記カルマンフィルタを使用して前記センサ信号をフィルタリングした後の前記センサ信号との間の差である残留信号を検査することによって、前記1つ以上の所定のアーチファクトを検出することを更に含む、請求項3に記載の方法。
【請求項5】
前記残留信号は、前記分析物センサから受信された前記センサ信号と、前記プロセス共分散及び前記測定共分散のうちの前記少なくとも1つが更新される前に前記フィルタを使用して前記センサ信号をフィルタリングした後の前記センサ信号との間の差である一時的残留信号である、請求項4に記載の方法。
【請求項6】
前記残留信号は、前記分析物センサから受信された前記センサ信号と、前記プロセス共分散及び前記測定共分散のうちの前記少なくとも1つが更新された後に前記フィルタを使用して前記センサ信号をフィルタリングした後の前記センサ信号との間の差である最終的残留信号である、請求項4に記載の方法。
【請求項7】
前記所定のアーチファクトのうちの1つは、前記残留信号が1つ以上の選択された時間窓にわたって一貫して正又は負の値を有することを反映する残留バイアスである、請求項4に記載の方法。
【請求項8】
前記所定のアーチファクトのうちの1つは、最終的残留信号のゼロ交差であり、前記最終的残留信号の前記ゼロ交差は、1つ以上の選択された時間窓にわたる、前記最終的残留信号の値の符号が正から負へ又は負から正へ変化する回数を反映する、請求項7に記載の方法。
【請求項9】
前記センサ信号における1つ以上の指定されたアーチファクトを検出すると、前記プロセス共分散及び前記測定共分散のうちの少なくとも1つの前記値に対する以前の更新を取り消すことを更に含む、請求項1~8のいずれか一項に記載の方法。
【請求項10】
前記プロセス共分散及び前記測定共分散のうちの少なくとも1つを更新するために使用される前記1つ以上のパラメータは、前記カルマンフィルタのモデルにおいて用いられるイノベーション項及びイノベーション共分散の値に基づくフォールトメトリックを含む、請求項1~9のいずれか一項に記載の方法。
【請求項11】
前記フォールトメトリックは、前記分析物センサから受信された特定数の測定サンプルにわたって平均化された瞬時フォールトメトリックの移動平均である、請求項10に記載の方法。
【請求項12】
前記センサ信号が低分解能信号であるとき、前記センサ信号において1つ以上のアーチファクトを検出すると、是正処置を実行することを更に含み、前記是正処置は、残留信号の符号によって少なくとも部分的に判定され、前記残留信号は、前記分析物センサから受信された前記センサ信号と、前記カルマンフィルタを使用して前記センサ信号をフィルタリングした後の前記センサ信号との間の差である、請求項1~11のいずれか一項に記載の方法。
【請求項13】
前記センサ信号が高分解能信号であるときに、以前に用いられた最適カルマンフィルタモデルを履歴データから遡及的に判定することを更に含む、請求項1~12のいずれか一項に記載の方法。
【請求項14】
前記判定することは、残留バイアス及びゼロ交差を使用して実行され、前記残留バイアスは、残留信号が1つ以上の選択された時間窓にわたって一貫して正又は負の値を有することを反映し、前記ゼロ交差は、1つ以上の選択された時間窓にわたる、前記残留信号の符号が正から負へ又は負から正へ変化する回数を反映する、請求項13に記載の方法。
【請求項15】
分析物濃度を監視するための方法であって、前記方法は、
分析物センサから、ホストにおける分析物濃度を示すセンサ信号を受信することと、
カルマンフィルタを使用して前記センサ信号をフィルタリングすることと、
前記センサ信号における1つ以上のアーチファクトを検出することと、
前記センサ信号において前記1つ以上のアーチファクトを検出すると、是正処置を実行することであって、前記是正処置は、前記カルマンフィルタのモデルにおいて用いられるパラメータのうちの1つ以上の値を更新することを含む、実行することと、
前記カルマンフィルタから、前記ホストにおける前記分析物濃度を表すフィルタリング済みセンサ信号を出力することと、を含む、方法。
【請求項16】
前記センサ信号における前記1つ以上のアーチファクトを前記検出することは、前記アーチファクトを検出するために前記カルマンフィルタのうちの1つ以上の内部変数を検査することを含み、前記1つ以上の内部変数は、フォールトメトリックを含む、請求項15に記載の方法。
【請求項17】
分析物濃度を監視するための方法であって、前記方法は、
分析物センサから、ホストにおける分析物濃度を示すセンサ信号を受信することと、
カルマンフィルタを使用して前記センサ信号をフィルタリングすることと、
前記フィルタリングすることの間に、前記センサ信号におけるアーチファクトを検出するために残留信号を検査することであって、前記残留信号は、前記センサ信号と前記カルマンフィルタによって生成された推定フィルタリング済みセンサ信号との間の差を含む、検査することと、
前記センサ信号における前記アーチファクトを検出することに応答して、前記推定フィルタリング済みセンサ信号を更新することと、を含む、方法。
【請求項18】
前記アーチファクトは、前記残留信号が1つ以上の期間にわたって一貫して正又は負の値を有することを反映する残留バイアスに基づいて検出される、請求項17に記載の方法。
【請求項19】
前記アーチファクトは、1つ以上の期間にわたる、前記残留信号の符号が変化する回数を示すゼロ交差に基づいて検出される、請求項17又は18に記載の方法。
【請求項20】
前記アーチファクトは、前記残留信号を所定の閾値と比較することによって検出される、請求項17~19のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願)
本出願は、2021年3月31日に出願され、「Filtering of CGM Signals with a Kalman Filter」と題された米国仮特許出願第63/168,867号、及び2021年6月8日に出願され、「Filtering of Continuous Glucose Monitor(CGM)Signals with a Kalman Filter」と題された米国仮特許出願第63/208,362号に対して、米国特許法第119条(e)に基づく優先権を主張するものであり、それらの開示全体は、参照により本明細書に組み込まれる。
【背景技術】
【0002】
真性糖尿病は、膵臓が十分なインスリンを作ることができない(I型若しくはインスリン依存性)、かつ/又はインスリンが有効ではない(II型若しくは非インスリン依存性)疾患である。糖尿病の状態では、患者又は使用者は、高血糖に悩まされ、それは、小血管の悪化と関連した多くの生理学的な障害、例えば、腎不全、皮膚潰瘍、又は眼球の硝子への出血を引き起こす場合がある。低血糖反応(低血糖)は、インスリンの不注意な過剰投与によって、又は異常な運動若しくは不十分な食物摂取を伴うインスリン若しくはグルコース低下剤の正常な投与後に誘導され得る。
【0003】
従来、糖尿病を患う人は、自己監視血糖(self-monitoring blood glucose、SMBG)モニタを持ち運び、それは典型的には、不快な指穿刺法を必要とする。快適さ及び便利さに欠けるため、糖尿病を患う人は通常、1日当たり2~4回グルコースレベルを測定するのみである。残念ながら、そのような時間間隔は、あまりに離れて分散しているため、糖尿病を患う人は、高血糖又は低血糖状態を知るのが手遅れになる可能性があり、時に危険な副作用を招く。糖尿病を患う人が遅れずに危険な状態に気づいて、それに対抗する可能性は低いだけでなく、従来の方法に基づいて自分の血中のグルコース濃度が上昇している(より高い)か又は下降している(より低い)かを知らない可能性も高い。したがって、糖尿病患者は、教育されたインスリン療法の決定を行うことを阻止され得る。
【0004】
一部の糖尿病患者が自分の血中グルコースを監視するために使用する別のデバイスは、連続的分析物センサ、例えば、連続的グルコースモニタ(CGM)システムである。CGMシステムは、典型的には、侵襲的に、低侵襲的に、又は非侵襲的に設置されるセンサを含む。センサは、体内の所与の分析物、例えばグルコースの濃度を測定し、センサに関連付けられた電子機器を使用して生信号を生成する。生信号は、ディスプレイ上にレンダリングされる出力値に変換される。生信号の変換から生じる出力値は、典型的には、ユーザに意味のある情報を提供する形式で表され、その形式では、ユーザは、mg/dLで表される血中グルコースなどの分析に慣れている。
【0005】
いくつかのCGMシステムは、血中グルコース(blood glucose、BG)フィンガースティックメータ値に依存して、センサ信号を臨床血中グルコースに相関させるが、他のものは、リアルタイムBGフィンガースティックメータ値を必要とせず、センサ導出生信号を、(例えば、代わりに工場情報に基づいて)患者内のグルコース濃度を表す臨床血中グルコース等価値に相関させる(較正/変換する)。いずれの種類のシステムも、特にセンサの寿命の始まり又は終わり付近では不正確さが損なわれる場合があり、これは、BG値又は較正コードが非常に単純に解釈されることに起因する場合がある。
【発明の概要】
【課題を解決するための手段】
【0006】
第1の態様では、ホストにおける血液分析物濃度を監視するための方法であって、連続的分析物センサから、ホストにおける血液分析物濃度を示すセンサ信号を受信することと、プロセス共分散を有するプロセスノイズ及び測定共分散を有する測定ノイズを有するカルマンフィルタを使用してセンサ信号をフィルタリングすることであって、フィルタリングすることは、カルマンフィルタのモデルにおいて用いられる1つ以上のパラメータの値を使用してプロセス共分散及び測定共分散のうちの少なくとも1つの値を更新することを含む、フィルタリングすることと、カルマンフィルタから、ホストにおける血液分析物濃度を表すフィルタリング済みセンサ信号を出力することと、を含む、方法が提供される。
【0007】
第1の態様の一実施形態では、プロセス共分散及び測定共分散のうちの少なくとも1つを更新するために使用される1つ以上のパラメータは、カルマンフィルタモデルにおいて用いられるイノベーション項及び残留項の値を含む。
【0008】
第1の態様の一実施形態では、更新することは、1つ以上の所定のアーチファクトがセンサ信号において検出されたときに実行される。
【0009】
第1の態様の一実施形態では、更新することは、カルマンフィルタを使用してセンサ信号をフィルタリングした後に、1つ以上の所定のアーチファクトがセンサ信号において検出されたときに実行される。
【0010】
第1の態様の一実施形態では、本方法は、分析物センサから受信されたセンサ信号と、カルマンフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である残留信号を検査することによって、1つ以上の所定のアーチファクトを検出することを更に含む。
【0011】
第1の態様の一実施形態では、残留信号は、分析物センサから受信されたセンサ信号と、プロセス共分散及び測定共分散のうちの少なくとも1つが更新される前にフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である一時的残留信号である。
【0012】
第1の態様の一実施形態では、残留信号は、分析物センサから受信されたセンサ信号と、プロセス共分散及び測定共分散のうちの少なくとも1つが更新された後にフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である最終的残留信号である。
【0013】
第1の態様の一実施形態では、所定のアーチファクトのうちの1つは、閾値を超える残留差の値又は残留差の導関数であり、残留差は、一時的残留信号の値と最終的残留信号の値との間の差であり、一時的残留信号は、分析物センサから受信されたセンサ信号と、プロセス共分散及び測定共分散のうちの少なくとも1つが更新される前にフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差であり、最終的残留信号は、分析物センサから受信されたセンサ信号と、プロセス共分散及び測定共分散のうちの少なくとも1つが更新された後にフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である。
【0014】
第1の態様の一実施形態では、所定のアーチファクトのうちの1つは、残留信号が1つ以上の選択された時間窓にわたって一貫して正又は負の値を有することを反映する残留バイアスである。
【0015】
第1の態様の一実施形態では、所定のアーチファクトのうちの1つは、最終的残留信号のゼロ交差であり、最終的残留信号のゼロ交差は、1つ以上の選択された時間窓にわたる、最終的残留信号の値の符号が正から負へ又は負から正へ変化する回数を反映する。
【0016】
第1の態様の一実施形態では、1つ以上の所定のアーチファクトは、センサ信号のモデルに基づく。
【0017】
第1の態様の一実施形態では、本方法は、センサ信号における1つ以上の指定されたアーチファクトを検出すると、プロセス共分散及び測定共分散のうちの少なくとも1つの値に対する以前の更新を取り消すことを更に含む。
【0018】
第1の態様の一実施形態では、プロセス共分散及び測定共分散のうちの少なくとも1つを更新するために使用される1つ以上のパラメータは、カルマンフィルタモデルにおいて用いられるイノベーション項及びイノベーション共分散の値に基づくフォールトメトリックを含む。
【0019】
第1の態様の一実施形態では、フォールトメトリックは、分析物センサから受信された特定数の測定サンプルにわたって平均化された瞬時フォールトメトリックの移動平均である。
【0020】
第1の態様の一実施形態では、1つ以上の所定のアーチファクトは、閾値を超えるフォールトメトリックの値を含み、フォールトメトリックは、カルマンフィルタモデルにおいて用いられるイノベーション項及びイノベーション共分散に基づく。
【0021】
第1の態様の一実施形態では、本方法は、フィルタリングすることの各反復後に更新することを適応的に実行することを更に含む。
【0022】
第1の態様の一実施形態では、更新することは、残留信号及び指定されたステップサイズ係数を使用して適応的に実行され、残留信号は、分析物センサから受信されたセンサ信号と、カルマンフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である。
【0023】
第1の態様の一実施形態では、指定されたステップサイズ係数は、フォールトメトリックに基づく伝達関数を使用して調整される。
【0024】
第1の態様の一実施形態では、プロセス共分散は、伝達関数を使用して調整される最小値を有する。
【0025】
第1の態様の一実施形態では、本方法は、信号平滑化と時間の遅れとの間の所定のトレードオフを達成するために、伝達関数において用いられる設計パラメータを調整することを更に含む。
【0026】
第1の態様の一実施形態では、本方法は、センサ信号が低分解能信号であるとき、センサ信号において1つ以上のアーチファクトを検出すると、是正処置を実行することを更に含み、是正処置は、残留信号の符号によって少なくとも部分的に判定され、残留信号は、分析物センサから受信されたセンサ信号と、カルマンフィルタを使用してセンサ信号をフィルタリングした後のセンサ信号との間の差である。
【0027】
第1の態様の一実施形態では、本方法は、センサ信号が高分解能信号であるときに、以前に用いられた最適カルマンフィルタモデルを履歴データから遡及的に判定することを更に含む。
【0028】
第1の態様の一実施形態では、判定することは、残留バイアス及びゼロ交差を使用して実行され、残留バイアスは、残留信号が1つ以上の選択された時間窓にわたって一貫して正又は負の値を有することを反映し、ゼロ交差は、1つ以上の選択された時間窓にわたる、残留信号の符号が正から負へ又は負から正へ変化する回数を反映する。
【0029】
第1の態様の一実施形態では、本方法は、センサ信号における1つ以上のアーチファクトを検出すると、是正処置を実行することを含み、是正処置は、カルマンフィルタモデルにおいて用いられるパラメータのうちの1つ以上の値を更新することを含み、更新された値は、達成されるべき分析物センサ信号平滑化の量と分析物センサ信号における変化を追跡することにおける時間の遅れとの間の所定のトレードオフを達成するように選択される。
【0030】
第1の態様の一実施形態では、本方法は、臨床データを使用して訓練された規則ベースのモデルを使用して、センサ信号において識別された特徴が所定のアーチファクトとして分類されるかどうかを判定することを更に含む。
【0031】
第1の態様の一実施形態では、本方法は、機械学習モデルを使用して、センサ信号において識別された特徴が所定のアーチファクトとして分類されるかどうかを判定することを更に含む。
【0032】
第1の態様の一実施形態では、所定のアーチファクトのうちの1つは、残留尖度の値又はR/Q値である。
【0033】
第1の態様の一実施形態では、アーチファクトのうちの少なくとも1つは、センサ信号領域において識別される。
【0034】
第1の態様の一実施形態では、アーチファクトのうちの少なくとも1つは、センサ信号が対応する血中グルコース値に変換された後に識別される。
【0035】
第2の態様では、ホストにおける血液分析物濃度を監視するための方法であって、連続的分析物センサから、ホストにおける血液分析物濃度を示すセンサ信号を受信することと、カルマンフィルタを使用してセンサ信号をフィルタリングすることと、センサ信号における1つ以上の所定のアーチファクトを検出することと、センサ信号において1つ以上のアーチファクトを検出すると、カルマンフィルタのモデルにおいて用いられるパラメータのうちの1つ以上の値を更新することを含む是正処置を実行することと、カルマンフィルタから、ホストにおける血液分析物濃度を表すフィルタリング済みセンサ信号を出力することと、を含む、方法が提供される。
【0036】
生センサ信号とカルマンフィルタによるフィルタリング済み信号との間の差は、信号上のノイズを表す。この値は、信号の信号対ノイズ比を測定するために使用され、信号品質を示す。他のメトリックは、状態推定値の精度の尺度であることができるカルマンフィルタによって計算された誤差の共分散などの、追加の信号品質メトリックを提供するために、使用されることができる。
【図面の簡単な説明】
【0037】
本開示の詳細は、その構造及び動作の両方に関して、同様の参照番号が同様の部分を指す添付の図面を検討することによって部分的に理解され得る。図面は必ずしも縮尺通りではなく、代わりに、本開示の原理を例解することに重点が置かれている。
【0038】
図1】連続的グルコースセンサ及び薬剤送達デバイスを含む統合システムの一実施例の図である。
図2】本システム及び方法とともに使用するように構成された電子デバイスの正面立面図である。
図3図2の電子デバイスの機能ブロック図である。
図4】カルマンフィルタモジュールへの一次入力及びカルマンフィルタモジュールからの一次出力を示す簡略ブロック図である。
図5】生センサ信号がフィルタリングされる前に、CGMシステムによって提供される、ある期間にわたる患者のグルコースレベルを示すグラフを示す。
図6】カルマンフィルタ状態更新モジュールによって出力されるセンサ信号を検査するためにアーチファクト検出モジュールが用いられるカルマンフィルタの実施例の簡略ブロック図を示す。
図7】カルマンフィルタ更新モジュールによって使用される様々な内部変数を検査するためにフォールトメトリック計算モジュールが用いられるカルマンフィルタの実施例の簡略ブロック図を示す。
図8図5に示される生センサ信号を示すが、本信号は、本明細書に説明される技法に従って構成されたカルマンフィルタを使用してフィルタリングされることを除く。
図9】生センサ信号と、3つの異なるパラメータのセットを使用してカルマンフィルタでフィルタリングした後のフィルタリング済みセンサ信号とを示す。
図10】ホストにおける血液分析物濃度を監視するための方法を示すフローチャートである。
【発明を実施するための形態】
【0039】
本明細書に開示される例示的な実施形態は、グルコースの濃度又は分析物の濃度若しくは存在を示す物質を測定するグルコースセンサの使用に関する。いくつかの実施形態では、グルコースセンサは、連続的デバイス、例えば、皮下、経皮的(transdermal)、経皮性(transcutaneous)、非侵襲的、眼内及び/又は血管内(例えば、静脈内)デバイスである。いくつかの実施形態では、デバイスは、非連続的デバイスである。いくつかの実施形態では、デバイスは、複数の間欠的血液サンプルを分析することができる。グルコースセンサは、酵素的、化学的、物理的、電気化学的、光学的、光化学的、蛍光ベース、分光光度的、分光学的(例えば、光吸収分光法、ラマン分光法など)、旋光分析的、熱量測定、イオン泳動的、及び放射測定的、又は同様のものを含む、グルコース測定の任意の方法を使用することができる。
【0040】
グルコースセンサは、ホストにおける分析物の濃度を示すデータストリームを提供するために、侵襲的、低侵襲的、及び非侵襲的感知技法を含む任意の既知の検出方法を使用することができる。データストリームは、典型的には、センサを使用している可能性がある患者又は医療専門家(例えば、医師)などのユーザに分析物の有用な値を提供するために使用される生データ信号である。
【0041】
説明及び実施例の多くは、ホストにおけるグルコース濃度を測定することができる埋め込み型グルコースセンサに向けられているが、実施形態のシステム及び方法は、任意の測定可能な1つの、及び/又は複数の分析物に適用されることができる。本明細書に説明されるシステム、デバイス及び/又は方法は、分析物の濃度を検出し、分析物の濃度を表す出力信号を提供することができる任意のシステム、デバイス及び/又は方法に適用できることを理解されたい。
【0042】
上述したように、いくつかの実施形態では、分析物センサは、米国特許第6,001,067号及び米国特許出願公開第2011/0027127-A1号を参照して説明されるような埋め込み型グルコースセンサである。いくつかの実施形態では、分析物センサは、米国特許出願公開第2006/0020187-A1号を参照して説明されるような経皮性グルコースセンサである。更に他の実施形態では、分析物センサは、米国特許出願公開第2009/0137887-A1号を参照して説明されるような二重電極分析物センサである。更に他の実施形態では、センサは、米国特許出願公開第2007/0027385-A1号に説明されているように、ホスト血管又は体外に埋め込まれるように構成されている。これらの特許及び出版物は、それらの全体が参照により本明細書に組み込まれる。
【0043】
以下の説明及び実施例は、図面を参照して本実施形態を説明する。図面では、参照番号は、本実施形態の要素をラベル付けする。これらの参照番号は、対応する図面の特徴の考察に関連して以下に再現される。
【0044】
図1は、連続的グルコースセンサ及び薬剤送達デバイスを含む、好ましい実施形態の統合システムのブロック図である。これは、本明細書に説明されるいくつかの実施形態が実装され得る例示的な環境である。ここで、分析物監視システム100は、連続的分析物センサシステム8を含む。連続的分析物センサシステム8は、センサ電子機器(例えば、センサ電子機器モジュール)12と、連続的分析物センサ10とを含む。システム100はまた、薬剤送達ポンプ2及び/又は基準分析物メータ4などの、他のデバイス及び/又はセンサを含むことができる。連続的分析物センサ10は、センサ電子機器12に物理的に接続され得る。センサ電子機器12は、連続的分析物センサ10と一体化され(取り外し不可能に取り付けられ)、又は連続的分析物センサ10に取り外し可能に取り付けられ得る。代替的に、連続的分析物センサ10は、センサ電子機器12から物理的に分離され得るが、誘導結合などを介して電子的に結合され得る。更に、センサ電子機器12、薬剤送達ポンプ2、及び/又は分析物基準メータ4は、表示デバイス14、16、18、及び/又は20のいずれか又は全てなどの1つ以上の追加的デバイスと通信し得る。表示デバイス14、16、18、及び20は、概して、意思決定支援モジュールを含むアプリケーションを実行するのに十分な、プロセッサ、メモリ、記憶装置、及び他の構成要素を含み得る。
【0045】
本明細書で使用される場合、分析物監視に関連して使用される「連続的」という用語は、デバイスが時間間隔で(例えば、1時間毎、30分毎、5分毎など)グルコース測定値を生成するように構成され得るように、実質的に連続的に測定値を生成するデバイスの能力を指し得る。しかしながら、様々な実施形態では、本明細書で議論されるシステム及び技法は、非連続的センサ及びシステムを使用して実装され得る。例えば、連続的分析物センサシステム8は、要求されたときに、例えば、ユーザ要求に応答して、分析物測定値(例えば、グルコース測定値)を生成するように構成され得る、非連続的分析物センサで実装され得る。
【0046】
いくつかの実装形態では、図1のシステム100はまた、センサシステム8、薬剤送達ポンプ2、基準分析物メータ4、及び/又は表示デバイス14、16、18、20のうちの1つ以上から直接的又は間接的にネットワーク24を介して提供される、分析物データ、薬剤送達データ、及び/又は他のユーザ関連データを分析するように構成される、プロセッサ(例えば、クラウドベース)22を含み得る。受信されたデータに基づいて、プロセッサ22は更に、データを処理し、処理されたデータに基づいて統計を提供するレポートを生成し、ホスト又はホストの世話人に関連付けられた電子デバイスへの通知をトリガし、かつ/又は図1の他のデバイスのいずれかに処理された情報を提供することができる。いくつかの例示的な実装形態では、プロセッサ22は、1つ以上のサーバを備える。プロセッサ22が複数のサーバを備える場合、サーバは、地理的にローカルであることができる、又は互いに離れていることができる。ネットワーク24は、WiFiネットワーク、セルラーネットワーク、インターネット、及びそれらの任意の組み合わせを含む、データを送信するための任意の有線及び無線通信媒体を含むことができる。
【0047】
いくつかの例示的な実装態様では、センサ電子機器12は、連続的分析物センサ10によって生成されたデータを測定及び処理することに関連付けられた電子回路を含み得る。この生成された連続的分析物センサデータはまた、連続的分析物センサデータを処理及び較正するために使用されることができるアルゴリズムを含むことができるが、これらのアルゴリズムは、デバイス14、16、18、及び/又は20など、他の方法でも提供され得る。センサ電子機器12は、連続的分析物センサ又は非連続的分析物センサ(例えば、連続的グルコースセンサ又は非連続的グルコースセンサ)を介して分析物のレベルの測定を提供するために、ハードウェア、ファームウェア、ソフトウェア、又はそれらの組み合わせを含み得る。
【0048】
センサ電子機器12は、上述したように、表示デバイス14、16、18、及び20のいずれか又は全てなどの1つ以上のデバイスと(例えば、無線などで)結合し得る。表示デバイス14、16、18、及び/又は20は、表示デバイスでの表示のための、センサ電子機器モジュール12によって送信されたセンサ情報などの情報を処理及び提示するように構成され得る。表示デバイス14、16、18、及び20はまた、分析物センサデータに基づいて、アラームをトリガし、かつ/又は意思決定支援推奨を提供することができる。
【0049】
図1では、表示デバイス14は、キーフォブ(key fob)のような表示デバイスであり、表示デバイス16は、ハンドヘルド特定用途向けコンピューティングデバイス(例えば、DexCom受信機及び/又はDexCom社から市販されているか若しくは以前に市販されていた他の受信機)であり、表示デバイス18は、汎用スマートフォン又はタブレットコンピューティングデバイス20(例えば、Android(商標)OSを実行する電話、Apple社から市販されているか若しくは以前に市販されていたApple(商標)iPhone(登録商標)、iPad(登録商標)、又はiPod(登録商標) Touch(商標))であり、表示デバイス20は、コンピュータワークステーション20である。いくつかの例示的な実装態様では、比較的小さいキーフォブのような表示デバイス14は、腕時計、ベルト、ネックレス、ペンダント、宝飾品、接着パッチ、ポケットベル、キーフォブ、プラスチックカード(例えば、クレジットカード)、識別(ID)カード、及び/又は同等物に具現化されたコンピューティングデバイスであり得る。この小型表示デバイス14は、比較的小さいディスプレイ(例えば、表示デバイス18よりも小さい)を含み得、数値26及び矢印28などの表示可能なセンサ情報の限定されたセットを表示するように構成され得る。いくつかのシステムはまた、2013年11月14日に出願され、「Devices and Methods for Continuous Analyte Monitoring」と題された米国仮特許出願第61/904,341号に説明されるようなウェアラブルデバイス21を含み得、その開示全体が参照により明示的に本明細書に組み込まれる。ウェアラブルデバイス21は、ユーザの視域、衣服、及び/又は身体に装着される、又は統合される、任意のデバイスを含み得る。例示的なデバイスは、ウェアラブルデバイス、アンクレット、眼鏡(glasses)、指輪、ネックレス、アームバンド、ペンダント、ベルトクリップ、ヘアクリップ/ネクタイ、ピン、カフスボタン、入れ墨、ステッカー、靴下、袖、手袋、衣類(例えば、シャツ、パンツ、下着、ブラジャーなど)、ジッパーの引き手、ボタンなどの「衣類宝飾」、時計、靴、コンタクトレンズ、皮下インプラント、眼鏡(eyeglasses)、人工内耳、靴中敷き、矯正具(口)、矯正具(体)、医療用ラッピング、スポーツバンド(リストバンド、ヘッドバンド)、帽子、包帯、ヘアウィーブ、マニキュア液、人工関節/身体部分、整形外科用ピン/デバイス、埋め込み型心臓又は神経デバイスなどを含む。小型表示デバイス14及び/又はウェアラブルデバイス21は、比較的小さいディスプレイ(例えば、表示デバイス18よりも小さい)を含み得、数値26及び/又は矢印28などのセンサ情報のグラフィカル表現及び/又は数値表現を表示するように構成され得る。対照的に、表示デバイス16、18及び20は、数値及び矢印などの他の情報に加えて、及び/又はその代わりに、ハンドヘルド受信機16上に描かれたトレンドグラフ30などの、より大きなセット及び/又は異なる表示可能情報若しくは形式の表示可能情報を表示することが可能であり得る、より大きな表示デバイスであり得る。
【0050】
少なくとも情報(例えば、薬剤送達情報、離散自己監視分析物読み取り値、心拍数モニタ、カロリー摂取量モニタなど)を提示するように構成された任意の他のユーザ機器(例えば、コンピューティングデバイス)が、図1を参照して議論されたものに加えて、又はその代わりに使用され得ることを理解されたい。
【0051】
図1のいくつかの例示的な実装態様では、連続的分析物センサ10は、分析物を検出及び/又は測定するためのセンサを含み得、連続的分析物センサ10は、非侵襲的デバイス、皮下デバイス、経皮的デバイス、及び/又は血管内デバイスとして、分析物を連続的に検出及び/又は測定するように構成され得る。いくつかの例示的な実装態様では、連続的分析物センサ10は、複数の間欠的血液サンプルを分析し得るが、他の分析物も同様に使用され得る。1つ以上の実装形態では、センサ10は、代わりに、非連続的分析物センサとして実装され得る。
【0052】
図1のいくつかの例示的な実装態様では、連続的分析物センサ10は、酵素的、化学的、物理的、電気化学的、蛍光的、分光光度的、旋光分析的、熱量測定的、イオン泳動的、放射測定的、又は免疫化学的などの1つ以上の測定技法を使用して、血液中のグルコースを測定するように構成されたグルコースセンサを含むことができる。連続的分析物センサ10がグルコースセンサを含む実装態様では、グルコースセンサは、グルコースの濃度を測定することが可能な任意のデバイスを備え得、侵襲的、低侵襲的、及び非侵襲的感知技法(例えば、蛍光的監視)を含む、グルコースを測定するための様々な技法を使用して、ホストにおけるグルコースの濃度を示すデータストリームなどのデータを提供し得る。このデータストリームは、ユーザ、患者、又は介護者(例えば、親、親族、保護者、教師、医師、看護師、又はホストの健康に関心を有する任意の他の個人)などのホストにグルコースの値を提供するために使用される、較正及び/又はフィルタリング済みデータストリームに変換される、生データ信号であり得る。更に、連続的分析物センサ10は、以下の種類のセンサ、すなわち、埋め込み型グルコースセンサ、経皮性グルコースセンサ、ホスト血管内若しくは体外に埋め込まれたもの、皮下センサ、補充可能な皮下センサ、眼内の、又は血管内センサのうちの少なくとも1つとして埋め込まれ得る。全体を通して説明されるように、センサ10は、代替として、1つ以上の実施形態では、非連続的グルコースセンサとして実装され得る。
【0053】
図2は、本システム及び方法とともに使用するように構成された電子デバイス200の一実施形態を例解する。電子デバイス200は、ディスプレイ202と、1つ以上のボタン204及び/又はスイッチ206などの1つ以上の入力/出力(input/output、I/O)デバイスとを含み、これらは、起動される(例えば、クリックされる及び/又は操作される)と、1つ以上の機能を実行する。いくつかの実施形態では、電子デバイス200は、モバイル通信デバイスであり得る。例えば、例解された実施形態では、電子デバイス200は、スマートフォンであり、ディスプレイ202は、I/Oデバイスとしても機能するタッチスクリーンを備える。他の実施形態では、電子デバイス200は、CGMシステムの受信機、スマートウォッチ、タブレットコンピュータ、ミニタブレットコンピュータ、ハンドヘルド携帯情報端末(personal digital assistant、PDA)、ゲーム機、マルチメディアプレーヤ、上記で説明したようなウェアラブルデバイス、自動車又は他の車両内のスクリーンなど、スマートフォン以外の1つの、又は複数のデバイスを備え得る。電子デバイス200は、図ではスマートフォンとして例解されているが、電子デバイス200は、本明細書で言及される他の電子デバイスのいずれかであることができ、かつ/又は他の電子デバイスのいずれか若しくは全ての機能を組み込むことができ、機能の一部又は全てがリモートサーバ上で具現化されることを含む。本明細書でより詳細に説明されるように、特定の実施形態では、本明細書で議論されるデータ(例えば、CGMシステムのデータ)などのデータの処理は、電子デバイス200の1つ以上のプロセッサを使用して電子デバイス200によって実行され得る。代替として、又は追加的に、本明細書で議論されるデータの処理及びフィルタリングは、デバイス200以外の1つ以上のデバイスによって実行され得る。例えば、本明細書で議論される処理及びフィルタリング技法は、ユーザの身体に装着され、電子デバイス200などの別のデバイスに情報を通信するウェアラブルデバイス(例えば、ウェアラブルデバイス21)によって、少なくとも部分的に実行され得る。
【0054】
図3は、いくつかの実施形態によるその機能構成要素を例解している、図2に示される電子デバイス200のブロック図である。電子デバイス200は、図2に関して上述したように、ディスプレイ202と、1つ以上の入力/出力(「I/O」)デバイス204、206とを含む。ディスプレイ202は、LCD又はLEDスクリーンなどの、出力を表示することが可能な任意のデバイスであり得る。入力/出力(I/O)デバイス202、204、206は、例えば、キーボード(図示せず)、1つ以上のボタン204、1つ以上のスイッチ206などを備え得る。タッチスクリーンを含む実施形態では、ディスプレイ202はまた、I/Oデバイスとして機能する。
【0055】
電子デバイス200は、プロセッサ208(中央処理ユニット(central processing unit、CPU)とも称される)と、メモリ210と、記憶デバイス212と、トランシーバ214とを更に含み、他の構成要素又はデバイス(図示せず)を含み得る。メモリ210は、システムバス又はローカルメモリバス216を介してプロセッサ208に結合されている。プロセッサ208は、1つ以上のプログラマブル汎用又は専用マイクロプロセッサ、デジタル信号プロセッサ(digital signal processor、DSP)、プログラマブルコントローラ、特定用途向け集積回路(application specific integrated circuit、ASIC)、プログラマブル論理デバイス(programmable logic device、PLD)など、又はそのようなハードウェアベースのデバイスの組み合わせであり得、又はそれらを含み得る。
【0056】
メモリ210は、プロセッサ208に、実行時にメモリ210に記憶されるデータ及びプログラム情報へのアクセスを提供する。典型的には、メモリ210は、ランダムアクセスメモリ(random access memory、RAM)回路、読み取り専用メモリ(read-only memory、ROM)、フラッシュメモリなど、又はそのようなデバイスの組み合わせを含む。
【0057】
記憶デバイス212は、1つ以上の内部及び/又は外部大容量記憶デバイスを備え得、それは、不揮発性様式で大量のデータを記憶するための任意の従来の媒体であり得、又はそれを含み得る。例えば、記憶デバイス212は、従来の磁気ディスク、光ディスク、光磁気(magneto-optical、MO)記憶装置、フラッシュベースの記憶デバイス、又は構造化若しくは非構造化データを記憶するのに好適な任意の他の種類の不揮発性記憶デバイスを含み得る。記憶デバイス212はまた、いわゆるクラウドコンピューティングを使用する「クラウド」内の記憶装置を備え得る。クラウドコンピューティングは、コンピューティングリソースとその基礎となる技術アーキテクチャ(例えば、サーバ、記憶装置、ネットワーク)との間の抽象化を提供し、最小限の管理労力又はサービスプロバイダ対話で迅速にプロビジョニング及びリリースされることができる構成可能なコンピューティングリソースの共有プールへの便利なオンデマンドネットワークアクセスを可能にするコンピューティング能力に関する。
【0058】
電子デバイス200は、例えば、データを相関させること、パターン分析、及び他のプロセスなど、様々なプロセスを実行し得る。いくつかの実施形態では、電子デバイス200は、そのようなプロセスを自分自身で実行し得る。代替的に、そのようなプロセスは、上記で説明した1つ以上のクラウドベースのプロセッサ22など、1つ以上の他のデバイスによって実行され得る。更なる実施形態では、これらのプロセスは、電子デバイス200によって部分的に実行され、他のデバイスによって部分的に実行され得る。様々な例示的なプロセスは、電子デバイス200を参照して本明細書で説明される。これらの例示的なプロセスは、電子デバイス200のみによって実行されることに限定されないことを理解されたい。更に、本明細書で使用される場合、「電子デバイス」という用語は、1つ以上のクラウドベースのプロセッサ、サーバなど、電子デバイス200が対話する他のデバイスを含むと解釈されるべきである。
【0059】
電子デバイス200はまた、様々な機能を実行するための他のデバイス/インターフェースを含み得る。例えば、電子デバイス200は、カメラ(図示せず)を含み得る。
【0060】
トランシーバ214は、電子デバイス200がネットワークを介して他のコンピューティングシステム、記憶デバイス、及び他のデバイスと通信することを可能にする。例解された実施形態は、トランシーバ214を含むが、代替実施形態では、別個の送信機及び別個の受信機は、トランシーバ214の代わりに用いられ得る。
【0061】
いくつかの実施形態では、プロセッサ208は、電子デバイス200に搭載された様々なアプリケーション、例えば、CGMアプリケーションを実行し得る。アプリケーション(例えば、CGMアプリケーション)は、インターネット及び/又はセルラーネットワークなどを介して電子デバイス200にダウンロードされ得る。様々なアプリケーションのためのデータは、電子デバイス200と1つ以上の他のデバイス/システムとの間で共有され、記憶装置212によって、及び/又は1つ以上の他のデバイス/システム上に記憶され得る。このCGMアプリケーションは、意思決定支援電子機器(例えば、意思決定支援モジュール)を含み得、かつ/又は以下で説明されるような意思決定支援評価機能及び方法を動作させるのに十分な処理を含み得る。
【0062】
本実施形態の一部では、図1の連続的分析物センサシステム8のセンサ10は、ホストの皮膚に挿入されている。新しいセンサセッションは、センサ10、センサ電子機器12、及び電子デバイス200によって開始される。数多くの技法は、センサ10を初期化するために用いられ得る。例えば、初期化は、センサ電子機器12がセンサ10に関与するときに、トリガされ得る。別の実施例では、初期化は、センサ電子機器12を受容するスナップイン基部上のスイッチ(図示せず)などの機械的スイッチによってトリガされ得る。センサ電子機器12が基部に嵌め込まれたときに、スイッチは、自動的に作動する。別の実施例では、初期化は、メニュー駆動型であり得、ユーザは、電子デバイス200のディスプレイ202上のユーザインターフェースによって促されて、ボタンを押すこと、又はディスプレイ202(タッチスクリーンを備え得る)上の指定されたエリアに触れることによってなど、ユーザインターフェース上で選択を行うことによって、初期化を開始し得る。別の実施例では、初期化は、センサ10からセンサ電子機器12によって受信された信号などの、信号特性の評価又は分析に基づき得る。着用者の皮膚に適用される非侵襲的センサを含む別の実施例では、センサ10は、それが皮膚と接触しているときを感知し、自動的に開始し得る。更に、分析物センサシステム8は、上記の技法のいずれかを使用して新しいセンサ10の使用を検出し、システム8のユーザインターフェース上のプロンプトによって新しいセンサセッションを確認するようにユーザに自動的に促し、プロンプトに応答してユーザ確認に対する初期化応答を開始することができる。センサ10を初期化する追加の実施例は、2013年3月12日に出願された米国特許出願第13/796,185号に見出され、その開示全体が参照により本明細書に組み込まれる。
【0063】
好ましい実施形態は、対象の分析物の濃度又は分析物の濃度若しくは存在を示す物質を測定する連続的分析物センサを提供する。いくつかの実施形態では、分析物センサは、例えば皮下、経皮的、又は血管内、又は体外デバイスなどの侵襲的、低侵襲的、又は非侵襲的デバイスである。いくつかの実施形態では、分析物センサは、複数の間欠的生体サンプルを分析し得る。分析物センサは、酵素的、化学的、物理的、電気化学的、分光光度的、旋光分析的、熱量測定的、放射測定的、又は同様のものを含む、任意の分析物測定の方法を使用し得る。
【0064】
いくつかの実施形態では、分析物センサは、拡散ベースのセンサとして広く特徴付けられ得る。拡散ベースのセンサのいくつかの特定の実施形態は、より具体的には、電気化学的又は電極ベースのセンサであり得る。いくつかの実施形態では、電気化学的又は電極ベースのセンサは、GOXベースのセンサ又はGOXベースのHセンサなどの酵素センサであり得る。
【0065】
概して、分析物センサは、少なくとも1つの作用電極及び少なくとも1つの参照電極を提供し、これらは、以下でより詳細に説明され、当業者によって理解されるように、ホストにおける分析物の濃度に関連付けられた信号を測定するように構成されている。出力信号は、典型的には、例えば、ホストにおける測定された分析物濃度の有用な値を患者又は医師に提供するために使用される生データストリームである。しかしながら、いくつかの実施形態の分析物センサは、本明細書の他の箇所で議論されるように、少なくとも1つの追加の信号を測定するように構成された少なくとも1つの追加の作用電極を備える。例えば、いくつかの実施形態では、追加の信号は、分析物センサのベースライン及び/又は感度に関連付けられ、それによって、経時的に連続的分析物センサにおいて生じ得るベースライン及び/又は感度変化の監視を可能にする。
【0066】
概して、連続的分析物センサは、センサ生成測定値(例えば、pA、nA単位の電流、又はA/D変換後のデジタルカウント)と、ユーザ(例えば、患者又は医師)にとって意味のある基準測定値(例えば、グルコース濃度mg/dL又はmmol/L)との間の関係を定義する。埋め込み型拡散ベースのグルコースオキシダーゼ電気化学的グルコースセンサの場合、感知機構は、概して、グルコース濃度に対して線形である現象、例えば、(1)埋め込み部位及び/又は電極表面の間に位置する膜系(例えば、生体界面膜及び膜系)を通るグルコースの拡散、(2)膜系内での酵素反応、及び(3)センサへのHの拡散に依存する。この線形性のために、センサの較正は、次方程式を解くことによって理解することができる。
y=mx+b
ここで、yは、センサ信号(例えば、カウント)を表し、xは、推定グルコース濃度(例えば、mg/dL)を表し、mは、グルコースに対するセンサ感度(例えば、カウント/mg/dL)を表し、bは、ベースライン信号(例えば、カウント)を表す。感度m及びベースライン(バックグラウンド)bの両方がインビボで経時的に変化する場合、較正は、概して、m及びbを解くために少なくとも2つの独立したマッチドデータ対(x、y;x、y)を必要とし、したがって、センサ信号yのみが利用可能であるとき、グルコース推定を可能にする。マッチドデータ対は、米国特許出願公開第2005/0027463-A1号に記載されているように、1つ以上のマッチドデータ対を提供するために、基準データ(例えば、血中グルコースメータからの1つ以上の基準グルコースデータ点など)を実質的に時間に対応するセンサデータ(例えば、1つ以上のグルコースセンサデータ点)と一致させることによって作成されることができる。その全体が参照により本明細書に組み込まれる、Hellerらへの米国特許第6,329,161号により詳細に記載されているようないくつかの埋め込み型グルコースセンサでは、感知層は、拡散メディエータを使用するのではなく、酵素を作用電極に電気的に接続するために固定化メディエータ(例えば、レドックス化合物)を利用する。米国特許第4,703,756号により詳細に記載されているようないくつかの埋め込み型グルコースセンサでは、システムは、酸素透過性ハウジング内に位置する2つの酸素センサを有し、一方のセンサは、不変であり、他方は、グルコースオキシダーゼに接触しており、グルコースレベルを示す体液又は組織中の酸素含有量の示差測定法を可能にする。ホストにおけるグルコースを測定する様々なシステム及び方法は、知られており、それらの全ては、非定常ノイズによって実質的に影響されない信号対ノイズ比を有するセンサを提供するために、いくつかの実施形態から利益を得ることができる。分析物センサ構成の更なる説明は、2007年3月27日に出願され、「DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR」と題された米国特許出願第11/692,154号、米国特許出願公開第2007/0027385-A1号、及び米国特許出願公開第2005/0143635-A1号に見出されることができる。
【0067】
概して、埋め込み型センサは、ホストにおける対象の分析物に関連する信号を測定する。例えば、電気化学的センサは、動物(例えば、ヒト)などのホストにおけるグルコース、クレアチニン、又は尿素を測定することができる。概して、信号は、分析物濃度などの分析物状態を示す数値に数学的に変換される。センサが特定のレベルのノイズを経験することは珍しいことではない。概して、「定常ノイズ」(定常バックグラウンド又はベースラインと称されることもある)は、概して、定常(例えば、毎日の)代謝プロセスから発生する電気活性種を含むがこれに限定されない、経時的に比較的安定している非分析物関連因子によって引き起こされる。定常ノイズは、ホスト間で大きく異なることができる。対照的に、「非定常ノイズ」(非定常バックグラウンドと称されることもある)は、ホスト代謝プロセス(例えば、創傷治癒又は病気に応答して)中などの一過性事象中に、又は特定の化合物(例えば、特定の薬物)の摂取に起因して発生する非定常非分析物関連種(例えば、非定常ノイズを引き起こす電気活性種)によって引き起こされる。いくつかの状況では、ノイズは、様々なノイズを引き起こす電気活性種によって引き起こされることができる。
【0068】
概して、ノイズは、機械的要因から生物学的要因に及ぶ、様々な要因によって引き起こされることができる。例えば、いくつかの実施形態では、マクロ又はミクロ運動、虚血、pH変化、温度変化、圧力、ストレス、又は未知の機械的、電気的、及び/若しくは生化学的ソースでさえも、ノイズを引き起こすことができる。非定常ノイズを引き起こす干渉種は、ホストに投与された薬物などの化合物、又は様々なホスト代謝プロセスの断続的に産生された産物であることができる。例示的な干渉物質は、様々な薬物(例えば、アセトアミノフェン)、外部ソースからのH(例えば、センサ膜系の外側で生成される)、及び反応性代謝種(例えば、活性酸素及び窒素種、いくつかのホルモンなど)を含むが、これらに限定されない。グルコースセンサのためのいくつかの既知の干渉種は、アセトアミノフェン、アスコルビン酸、ビリルビン、コレステロール、クレアチニン、ドーパミン、エフェドリン、イブプロフェン、L-ドーパ、メチルドーパ、サリチル酸、テトラサイクリン、トラザミド、トルブタミド、トリグリセリド、及び尿酸を含むがこれらに限定されない。いくつかの場合では、ノイズはまた、睡眠中又は長時間座っている間など、ホストが断続的に座っているときに発生し得る。ホストが再び動き始めるときに、ノイズは、急速に消散し得る。
【0069】
ノイズは、分析物濃度が実際の分析物濃度よりも高く又は低く見えるようにする信号を提供することなどによって、誤差を誘発することができ、センサ性能を低下させることができるので、臨床的に重要である。例えば、上方又は高ノイズ(例えば、信号を増加させるノイズ)は、ホストのグルコース濃度を実際よりも高く見せる可能性があり、これは不適切な治療決定につながる可能性がある。同様に、下方又は低ノイズ(例えば、信号を減少させるノイズ)は、ホストのグルコース濃度をそれよりも低く見せる可能性があり、これもまた不適切な治療決定につながる可能性がある。したがって、分析物センサにおいて発生するノイズを低減することができる分析物センサシステムは、重要な技術的利点を提供する。
【0070】
生センサ信号をフィルタリングするための従来の技法は、必ずしも満足のいく結果をもたらすとは限らない。例えば、図5は、生センサ信号がフィルタリングされる前に、CGMシステムによって提供される、ある期間にわたる患者のグルコースレベルを示す。生センサ信号は、時刻7.65の直前に著しくノイズが多くなり、時刻7.65を過ぎてもノイズが多いままである。ノイズの多いデータは、例として、患者の動き又は電子誤差による患者におけるセンサの変位を含む、様々なソースから発生し得る。本図はまた、従来のIIRフィルタを使用してフィルタリングされた後の信号を示す。しかしながら、フィルタリング済み信号は、明らかに、ノイズのあるデータが受信された後しばらくの間、センサからの信号を正確に追跡しない。したがって、データは、長期間ユーザに提示されない可能性がある。図5はまた、ユーザに表示されたデータ、及びこの期間中のグルコースレベルについてほぼゼロの値が、この期間全体にわたってデータが表示されていないことを示すことを示す。
【0071】
カルマンフィルタは、ノイズの多い測定値及び変数についての何らかの事前知識が与えられた未知の変数又は状態のセットについての情報を抽出するアルゴリズムのグループである、ベイズ推定のクラスに属する。カルマンフィルタリングは、未知の変数が離散値ではなく確率密度関数によって表されると仮定することによって、未知の変数についての情報を抽出するために、2ステップの推定プロセスを使用することができる。カルマンフィルタ推定プロセスの追加の詳細は、概して、その全体が参照により本明細書に組み込まれている、S.Akhlaghi、N.Zhou及びZ.Huang、「Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation」,2017 IEEE Power&Energy Society General Meeting,Chicago,IL,2017,pp.1-5(「Akhlaghi」)に見出され得る。この推定プロセスは、以下で説明するように、連続的グルコースモニタ(CGM)測定に適用されることができる。
【0072】
一実施例では、分析物(例えば、CGM)測定値に適用されるように、カルマンフィルタは、CGMセンサからの生分析物(例えば、グルコース)信号(ノイズ測定値)を処理し、生分析物信号からノイズを除去することによって、フィルタリング済み分析物(例えば、グルコース)信号(第1の未知変数)の推定値を提供する。それはまた、分析物(例えば、グルコース)信号変化率(第2の未知変数)の大まかな推定値を提供する。
【0073】
図4は、カルマンフィルタモジュール40への例示的な一次入力及びカルマンフィルタモジュール40からの例示的な一次出力を示す簡略ブロック図である。入力は、生グルコース信号42及びポイントワイズモデルパラメータ48を含む。生グルコース信号42は、CGMセンサから取得されたグルコース信号値を表し、これは、典型的には、規則的な時間間隔(例えば、30秒毎、5分毎など)で提供され得る。ポイントワイズモデルパラメータ48は、グルコース信号値(典型的には、paの単位で測定される)をグルコース値(典型的には、mg/dlの単位で測定される)に変換するために使用され得る。
【0074】
カルマンフィルタモジュール40からの出力は、フィルタリング済みグルコース信号44及びグルコース信号変化率46であり得る。フィルタリング済みグルコース信号44は、ノイズ除去されたグルコース信号の推定値であり得る。グルコース信号変化率46は、傾向値及び/又は他の情報若しくは分析を推定するために、後続のモジュールにおいて使用され得る。
【0075】
カルマンフィルタは、フィルタリング済みグルコース信号の予測推定値及びその変化率が最初に判定され(事前推定値と称される)、その後に、フィルタリング済みグルコース信号の予測推定値が更新される是正ステップが続く、反復(例えば、2ステップ)推定プロセスを実行し得る。
【0076】
カルマンフィルタの動作は、状態空間モデルに基づき得、ここで、
【数1】
1つの例示的な実施形態では、xは、未知の状態変数であり、g_kは、時刻kにおける未知のグルコース信号値であり、d_kは、時刻kにおけるグルコース信号の未知の変化率である。
【0077】
状態空間モデルは、各時刻kにおいて、状態空間モデルにおける未知の変数が前のステップkから、どのようにして予測されることができるかを定義し得、これは、下記によって与えられ得る。
【0078】
【数2】
【0079】
Δは、2つの反復ステップ間の時間差(例えば、生グルコース信号のサンプリング時間)を示し、これは、例えば、CGMセンサが30秒間隔で生グルコース信号値を提供する場合、0.5分に等しくあり得る。時間差及び/又はサンプルレートは、任意の好適な時間差又はサンプルレートであるように選択され得る。いくつかの場合では、時間差及び/又はサンプルレートは、動的及び/又は適応的時間差又はサンプルレートであり得る。wk-1は、状態プロセスノイズであり、ここで、平均は、ゼロに等しくあり得、プロセスノイズが多変量正規分布を有するという仮定の下で、時刻kにおけるプロセスノイズの共分散行列は、
【数3】
によって与えられると仮定され得る。
【0080】
測定モデルは、未知の(状態)変数xが、観測値又は測定値y_k(例えば、CGMセンサからの生グルコース信号)にどのように関連しているかを判定し、これは、下記によって与えられ得る。
=H×x+v
ここで、
H=[1 0]である。
は、測定ノイズであり、ここで、平均は、ゼロに等しくあり、測定ノイズが多変量正規分布を有するという仮定の下で、時刻kにおける測定ノイズの共分散行列は、
【数4】
によって与えられると仮定される。
【0081】
上記の定義が与えられると、カルマンフィルタプロセスの各反復では、予測及び是正の2つのステップは、以下で議論されるように実行され得る。
【0082】
予測ステップでは、未知の状態変数の事前推定値xは、k-1における状態変数の知識及び状態モデルに基づいて、取得される。特に、事前推定値は、
【数5】
であり、ここで、上付き文字「+」は、推定値が事後であることを示し、「-」は、推定値が事前であることを示し、これは、時刻kにおける現在の観測に関して参照される。
【0083】
予測ステップの後に起こり得る是正ステップでは、状態変数xの事前推定値は、事後推定値と称される、より正確な推定値を取得されるために修正される。具体的には、状態変数xの事後推定値は、状態変数xの事前推定値、現在のノイズの多い測定値y及び測定方程式を使用して計算される。すなわち、予測ステップは、測定値yを考慮する前に状態変数xの値を判定する。次いで、是正ステップは、時刻kにおける測定値を考慮することによって、状態変数xの値を修正する。詳細な計算は、以下に与えられる。
【0084】
【数6】
ここで、dは、イノベーション項であり、Pinnovは、イノベーション共分散である。カルマンゲインは、Gによって示される。状態変数及び共分散行列についての事後推定値は、それぞれ、
【数7】
によって与えられる。
【0085】
上記の方程式に基づいて、更新された事後状態推定値は、各カルマンフィルタ反復ステップにおいて計算されることができる。判定されるべき追加の値は、初期化ステップ中に提供され得る、
【数8】
についての初期値である。
【0086】
一実施形態では、CGMセンサからの生グルコース信号へのカルマンフィルタの適用は、以下のように要約され得る。例えば、CGMセンサが例えば30秒毎に測定値を生成する場合、カウント又はサンプルは、30秒毎にカルマンフィルタによって受信される。時刻t=150秒でカウントが受信され、この時点で、カルマンフィルタが、予測ステップでは、t=120秒までに受信されたカウントに基づいて、状態変数xが何であるかを予測すると仮定する。本予測は、センサから取得された以前に取得された測定カウントと、グルコースレベルが経時的にどのように変化するかについて状態モデルによって用いられた仮定とに基づいている。次に、是正ステップがt=150秒で実行され、状態変数の推定値が最新の測定されたカウント値を使用して更新される。したがって、t=150秒において、利用可能な未知の状態変数xの予測値及び測定値yが存在する。予測値における誤差は、これら2つの値を比較することによって取得される。この誤差は、時刻kにおける観測又は測定に基づいて取得される新しい情報であるので、測定イノベーションと称される。他の実施形態は、測定値の生成及び/又はカルマンフィルタ処理の動作のために他の時間間隔(例えば、15秒毎、1分毎、5分毎など)を使用し得る。
【0087】
2つのノイズ成分は、カルマンフィルタでは、プロセスノイズ及び測定ノイズが用いられ得る。これらのノイズ成分は、前もって知られ得、かつ/又はデータから推定され得る。測定ノイズは、観測信号上に存在するノイズにほぼ対応し得、プロセスノイズは、モデル誤差にほぼ対応し得る。これらのノイズ成分の正しい推定は、信号異常が発生するときのノイズの最適な除去及び/又はそのロバスト性という点で、カルマンフィルタの性能に影響を及ぼし得る。上述の測定イノベーションは、測定共分散R及びプロセス共分散Qを更新するために使用され得る。Q及びRの更新された値は、次いで、カルマンゲイン及び/又は事後状態値などの、カルマンフィルタによって使用される他のパラメータを更新するために使用され得る。
【0088】
従来のカルマンフィルタリングプロセスは、ノイズに関する特定の基礎となる仮定(例えば、そのガウス性)が破られるときに、高品質のフィルタリング済み信号を生成しないことがある。このフィルタリングプロセスは、グルコース値がユーザに表示されないときに、比較的長い期間のダウンタイムをもたらし得る。これらの問題は、ノイズ共分散項Q及びRを更新するプロセスを修正する、以下で説明される技法によって対処され得る。様々な実施形態は、以下に列挙され、続いてより詳細に説明されるように、この目的のために用いられ得る。
・ 各ステップにおけるイノベーション及び残留誤差値を使用して、Q及びRについての値を推定すること。
・ 信号異常の存在の可能性に基づいて計算される調整可能な適応係数を使用する各ステップにおけるイノベーション及び残留誤差値を使用して、Q及びRについての値を推定すること。
・ 信号異常が検出された場合、カルマンフィルタ推定ステップを修正すること。
・ 信号異常を検出するためにアーチファクト検出モジュールを追加すること。
【0089】
上述したように、これらのイノベーション及び残留誤差値は、例えば、一定係数を使用するか、又は適応係数を調整するためにデータ駆動特徴を使用するかのいずれかで、それらの値を適応的に調整することによって、Q及びRの値を推定するために使用され得る。これは、カルマンフィルタが、信号異常に対してよりロバストであること、並びに/又はより少ないラグでノイズを除去すること及び信号変化を追跡することの点で、より良いトレードオフを達成することを可能にし得る。
【0090】
いくつかの実施形態では、プロセス及び測定ノイズ項は、特定のアーチファクトが識別されるときに、異なって更新され得る。そのようなアーチファクトが存在すると識別又は別様に判定される様式は、異なる実装形態において異なり得る。例えば、いくつかの実施形態では、以下でより詳細に議論されるように、そのようなアーチファクトは、センサ信号における特定の特徴を検査することによって識別され得る。更に他の実施形態では、また以下で議論されるように、そのようなアーチファクトの存在の指示は、カルマンフィルタにおいて使用される内部変数に基づいて、1つ以上のメトリックを検査することによって判定され得る。
【0091】
図6は、カルマンフィルタ状態更新モジュール50によって出力されるセンサ信号を検査するためにアーチファクト検出モジュール56が用いられるカルマンフィルタの一実施例の簡略ブロック図を示す。アーチファクト検出は、カルマンフィルタがセンサ信号を更新してセンサ信号上の信号異常の存在を検出した後に実行され得る。図6の例示的なカルマンフィルタはまた、測定ノイズ共分散モジュール52及びプロセスノイズ共分散モジュール54を含み、これらはそれぞれ、測定ノイズ共分散行列及びプロセスノイズ共分散行列の更新された値を提供する。アーチファクトがアーチファクト検出モジュール56によって検出された場合、特定の予防及び/又は是正処置は、以下でより詳細に議論されるように、測定ノイズ共分散行列及びプロセスノイズ共分散行列に対する更新に関して取られ得る。
【0092】
いくつかの実施形態では、アーチファクト検出モジュールは、生センサ信号と、カルマンフィルタによって更新された後の推定(フィルタリング済み)センサ信号との間の差として定義される残留信号を検査する。残留信号は、2つの異なるステップで定義され得る。第1のステップでは、一時的残留信号は、測定共分散R、プロセス共分散Q、及びカルマンゲインGなどの他のパラメータを更新する前に定義され得る。第2のステップでは、最終的残留信号は、測定共分散R、プロセス共分散Q、及びカルマンゲインGなどの他のパラメータを更新した後に定義され得る。一時的及び/又は最終的残留信号の様々な特徴は、状態変数及び/又はノイズ共分散などのカルマンフィルタにおける内部変数に対する更新に関して取られる特定の予防及び/又は是正処置をもたらし得るアーチファクトを示し得る。概して、信号アーチファクトを示す特徴は、残留信号(一時的及び最終的)のいずれか又は両方から、及び/又は2つの残留信号間の相互作用若しくは関係から抽出され得る。
【0093】
例えば、アーチファクトを示し得る1つの特徴は、一時的残留信号(カルマンパラメータを更新する前の残留信号)の値と最終的残留信号(カルマンパラメータを更新した後の残留信号)の値との間の差として定義される残留差である。残留差(又は残留差の導関数)は、残留信号領域におけるデータ駆動型の所定の閾値などの所定の閾値と比較され得る。信号アーチファクトは、残留差が閾値を上回る(又は下回る)場合に存在し得る。1つの代替的な実施形態では、残留差は、変換又は較正を実行するために使用される必要なモデルパラメータを適用することによって、推定グルコース値における対応する差に変換され得る。このようにして、グルコース領域における残留差は、信号アーチファクトの存在を検出するために、所定の閾値と比較され得る。概して、異なる数学的演算は、信号アーチファクトを識別するために、信号領域又はグルコース値領域における残留差に適用されることができる。
【0094】
アーチファクトの存在について検査され得る別の特徴は、残留バイアスであり、これは、異なる時間窓にわたる最終的残留信号において一貫した高い大きさの正又は負の値があるかどうかを判定する。これに関連して、最終的残留信号は、生センサ信号とカルマンフィルタによって出力された推定センサ信号との間の差の平滑化された値として定義される。所与の時間窓における負又は正の最終的残留値の累積は、ノイズが白色ガウスノイズであるという仮定が有効でないことを示唆し得る。このようにして、残留バイアスは、アーチファクトの存在を示す役割を果たし得る。
【0095】
アーチファクトの存在について検査され得る更に別の特徴は、最終的残留信号のゼロ交差と称される。この特徴は、異なる時間窓にわたる最終的残留信号における符号変化の数を追跡し得る。これに関連して、最終的残留は、生センサ信号とカルマンフィルタによって出力された推定信号との間の差の平滑化された値として定義され得る。多数のゼロ交差は、バイアスされていないノイズの存在を示し得るのに対して、少数のゼロ交差は、バイアスされたノイズ、したがってアーチファクトの存在を示し得る。
【0096】
アーチファクトを識別することによって、残留バイアス及び/又はゼロ交差特徴は、予防及び/又は是正処置が取られるように、信号の信頼できない部分を識別するために使用されることができ、それは以下でより詳細に議論される。これらの特徴はまた、システムの性能を改善するために、信号の過去の履歴に遡及的に適用されることができる。加えて、残留バイアスは、アーチファクトの存在を検出するためだけでなく、例えば、ユーザが横になったときなど、圧力がセンサに突然印加されたときに発生し得るステップ異常の存在を検出するためにも使用されることができる。
【0097】
他の特徴は、代替の実施形態又は実施例では、アーチファクトの存在について検査され得る。例えば、リアルタイムアーチファクト検出のために使用され得る特徴は、信号から減算される中央値/平均モデル、信号から減算される経時的な線形モデル、イノベーション値、残留値、イノベーション/残留の符号、R/Q値、及び/又は残留尖度を含む、モデルベースの変化尺度である。
【0098】
一旦アーチファクトが検出されると、ルールベースのモデルは、プロセス共分散及び測定共分散を更新させ、かつ/又は他の処置を取らせるべきアーチファクトとして特徴を分類すべきかどうかを判定するために、使用され得る。例えば、データ駆動型決定木モデルは、前述の特徴のいずれかを使用してアーチファクトを検出するために、臨床データを使用して訓練され得る。同様に、多種多様な機械学習モデルは、アーチファクトが存在することを判定するために、上記の特徴又は特徴の組み合わせに適用され得る。
【0099】
例えば、一実装形態では、アーチファクトを検出したときに取られる予防処置は、最新のカルマンフィルタパラメータ更新を取り消し、それらの値を正常範囲内に維持し得る。是正処置がトリガされた場合、様々な戦略は、例えば、センサ信号のサンプリング周波数に応じて、従われることができる。例えば、低分解能信号(すなわち、比較的低い周波数でサンプリングされた信号)利用可能性の場合では、異なる是正処置は、信号残留の符号に基づいてトリガされる。高分解能信号(すなわち、比較的高い周波数でサンプリングされた信号)利用可能性の場合では、残留バイアス及びゼロ交差(上記で説明されるような)などの追加的特徴は、関連履歴データから判定されるように、過去に使用された最適カルマンフィルタモデルを判定するために遡及的に使用され得る。概して、カルマンフィルタパラメータを更新してそれらの最適値を選択するときに取られ得る是正処置は、信号平滑化の量(信号から除去されるノイズの量)と信号における変化を追跡することにおける遅れとの間のトレードオフを含む。
【0100】
前述のように、カルマンフィルタによって処理された後のアーチファクトについてセンサ信号を検査する代わりに、及び/又はそれに加えて、他の実施形態では、そのようなアーチファクトの存在の指示は、カルマンフィルタにおいて使用される内部変数に基づいて、1つ以上のメトリックを検査することによって判定され得る。
【0101】
図7は、カルマンフィルタ更新モジュール60によって使用される様々な内部変数を検査するためにフォールトメトリック計算モジュール66が用いられるカルマンフィルタの一実施例の簡略ブロック図を示す。図7の例示的なカルマンフィルタはまた、測定ノイズ共分散モジュール62及びプロセスノイズ共分散モジュール64を含み、これらはそれぞれ、フォールトメトリック計算モジュールから受信されるフォールトメトリックの値に基づいて、測定ノイズ共分散行列及びプロセスノイズ共分散行列の更新された値を提供する。
【0102】
一実施形態では、用いられるフォールトメトリックは、Zheng et al.,A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.Sensors 2018,18,808、で議論されるフォールトメトリックに基づき得る。特に、フォールトメトリックは、指定された数(例えば、10)の測定サンプルにわたって平均された一時的又は瞬時フォールトメトリックの移動平均として定義され得る。より具体的には、一時的フォールトメトリックは、下記によって与えられ得る。
【0103】
【数9】
ここで、dは、イノベーション項であり、Pinnovは、イノベーション共分散である。一時的フォールトメトリックは、正規化されたイノベーションの二乗であり得、フォールトメトリックは、この項の移動平均である。フォールトメトリックの高い値は、信号異常が発生したことを示し得、したがって、それは、影響を受けたデータポイントに対するカルマンフィルタパラメータを再調整するために使用されることができる。
【0104】
測定ノイズ共分散行列及びプロセスノイズ共分散行列がフォールトメトリックの値に基づいてどのように更新され得るかの実施例は、以下に提示される。
【0105】
一実施形態では、測定ノイズの共分散行列(R)は、カルマンフィルタの各反復(k)において、残留信号(ε)及びステップサイズ(α)に基づいて、適応的に更新され得、下記によって与えられ得る。
【0106】
【数10】
【0107】
同様に、一実施形態では、プロセスノイズの共分散行列は、下記によって与えられ得る。
【0108】
【数11】
【0109】
いくつかの実装形態では、プロセスノイズの共分散行列Qは、2×2行列であり、ここで、要素Q(2,2)は、信号の推定変化率に対する変化を制御する。Q(2,2)のより小さい値は、推定モデルへのより遅い変化、したがって、センサ信号のより平滑化をもたらし得る。一方、Q(2,2)のより高い値は、推定モデルへのより速い変化、したがって、センサ信号のより多くの追跡をもたらし得る。最小値は、共分散行列Qにおける項に適用され得、すなわち、Q(2,2)がQmin値より小さい場合、Qminに等しくなるように上限が定められ得る。いくつかの実装形態では、最小値(Qmin)は、定常値であり得る。
【0110】
一実施形態では、フォールトメトリックが計算された後、測定及びプロセスノイズ共分散(α,α)並びに適用される最小値(Qmin)を更新することにおいて使用されるステップサイズ係数は、フォールトメトリックfに基づいて、以下の伝達関数を使用して、以下のように調整され得る。
【0111】
【数12】
【0112】
【数13】
などの設計パラメータは、高い変化率を有するエリアにおける平滑化と時間の遅れとの間の所望のトレードオフを達成するために、母集団データに基づいて最適化され得る。
【0113】
図8は、図5に示されるのと同じ生センサ信号を示すが、本信号は、本明細書で説明される技法のうちの少なくともいくつかに従って構成されるカルマンフィルタを使用してフィルタリングされることを、図8では除く。示されるように、フィルタリング済み信号は、データがユーザに連続的に提示されることを可能にする。データがユーザに提示されない期間がないか、又は低減されることは、図5に示されるフィルタリング済み信号に対する改善を表し得る。図9は、別の生センサ信号と、3つの異なるパラメータのセットを使用してカルマンフィルタでフィルタリングされた後のフィルタセンサ信号とを示す。1つの曲線は、より平滑化を提供するようにパラメータのセットが調整されたときのフィルタリング済み信号を表す。別の曲線は、より大きな時間の遅れを提供するようにパラメータのセットが調整されたときのフィルタリング済み信号を表す。第3のフィルタリング済み信号は、最適化の全体的なレベルを提供するようにパラメータのセットが調整されたときのフィルタリング済み信号を表す。
【0114】
図10は、ホストにおける血液分析物濃度を監視するための方法の一実施例を示す例示的なフローチャートである。本方法によれば、ホストにおける血液分析物濃度を示すセンサ信号は、ステップ305で、連続的分析物センサから受信される。ステップ310で、センサ信号は、カルマンフィルタを使用してフィルタリングされる。1つ以上の(例えば、所定の)アーチファクトは、ステップ315で、センサ信号において検出される。ステップ320で、是正処置は、センサ信号における1つ以上のアーチファクトを検出すると、実行される。是正処置は、カルマンフィルタのモデルにおいて用いられるパラメータのうちの1つ以上に関連付けられた値を更新することを含み得る。ホストにおける血液分析物濃度を表すフィルタリング済みセンサ信号は、ステップ325で、カルマンフィルタから出力される。代替実施形態では、追加の、より少ない、及び/若しくは異なるステップ並びに/又はステップの異なる順序は、図10に明示的に示されたものよりも実行され得る。
【0115】
上で説明される方法の様々な動作は、様々なハードウェア及び/又はソフトウェア構成要素、回路、及び/又はモジュールなど、動作を実行することが可能な任意の好適な手段によって実行され得る。概して、図に例解された任意の動作は、動作を実行することが可能な対応する機能的手段によって実行され得る。特に、「モジュール」という用語の使用は、所与のモジュールによって実行される機能を別個の離散モジュールに限定しない。代わりに、所与のモジュールによって実行されるものとして説明される機能はまた、その機能が別個のモジュールに分離されていなくても、単一のプロセッサ上で実行されるシステムによって実行され得る。
【0116】
本開示に関して説明した様々な例解的な論理ブロック、モジュール及び回路は、汎用プロセッサ、デジタル信号プロセッサ(digital signal processor、DSP)、特定用途向け集積回路(application specific integrated circuit、ASIC)、フィールドプログラマブルゲートアレイ信号(field programmable gate array signal、FPGA)若しくは他のプログラマブル論理デバイス(programmable logic device、PLD)、個別ゲート若しくはトランジスタ論理、個別ハードウェア構成要素、又は本明細書で説明した機能を実行するように設計されたそれらの任意の組み合わせを用いて実装又は実行され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコントローラ、又は状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、DSPとマイクロプロセッサとの組み合わせ、複数のマイクロプロセッサ、DSPコアと連携する1つ以上のマイクロプロセッサ、又は任意の他のそのような構成として実装され得る。
【0117】
1つ以上の態様では、説明した機能は、ハードウェア、ソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実装され得る。ソフトウェアで実装される場合、機能は、非一時的コンピュータ可読媒体上の1つ以上の命令又はコードとして記憶又は送信され得る。限定ではなく例として、そのような非一時的コンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROM又は他の光ディスク記憶装置、磁気ディスク記憶装置又は他の磁気記憶デバイスを備えることができる。
【0118】
本明細書で開示される方法は、説明した方法を達成するための1つ以上のステップ又はアクションを含む。これらの方法ステップ及び/又は動作は、特許請求の範囲を逸脱することなく、互いに交換することができる。言い替えると、ステップ又は動作の特定の順番が特段指定されない限り、特定のステップ及び/又は動作の順番及び/又は使用は、特許請求の範囲を逸脱することなく、修正することができる。
【0119】
特定の態様は、本明細書で提示される動作を実行するためのコンピュータプログラム製品を備え得る。例えば、そのようなコンピュータプログラム製品は、そこに記憶された(及び/又は符号化された)命令を有するコンピュータ可読媒体を備え得、命令は、本明細書に説明される動作を実行するために1つ以上のプロセッサによって実行可能である。特定の態様では、コンピュータプログラム製品は、パッケージング材料を含み得る。
【0120】
ソフトウェア又は命令はまた、送信媒体を介して送信され得る。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(digital subscriber line、DSL)、又は赤外線、無線、及びマイクロ波などの無線技術を使用して、ウェブサイト、サーバ、又は他の遠隔ソースから伝送される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、又は赤外線、無線、及びマイクロ波等の無線技術は、伝送媒体の定義に含まれる。
【0121】
更に、本明細書に説明される方法及び技法を実行するためのモジュール及び/又は他の適切な手段は、適用可能な場合は、ユーザ端末及び/若しくは基地局によってダウンロードされ、かつ/又は別様で取得され得ることを理解されたい。例えば、そのようなデバイスは、本明細書に説明される方法を実行するための手段の転送を容易にするために、サーバに結合され得る。代替的に、本明細書に説明される様々な方法は、記憶手段(例えば、RAM、ROM、コンパクトディスク(compact disc、CD)又はフロッピーディスクなどの物理的記憶媒体など)を介して提供され、それによって、ユーザ端末及び/又は基地局が、記憶手段をデバイスに結合又は提供する際に様々な方法を取得できるようにすることが可能である。更に、本明細書に説明される方法及び技法をデバイスに提供するための、任意の他の好適な技法を利用することができる。
【0122】
特許請求の範囲が、上で例解される正確な構成及び構成要素に限定されないことを理解されたい。特許請求の範囲から逸脱することなく、上で説明される方法及び装置の配置、動作及び詳細において、様々な修正、変更、及び変形がなされ得る。
【0123】
特段定義されない限り、全ての用語(技術的用語及び科学的用語を含む)は、それらが当業者にとって通例的及び慣例的な意味与えられるべきものであり得、本明細書においてそのように明示的に定義されない限り、特別な又はカスタマイズされた意味に限定されるべきではない。本開示の特定の特徴又は態様を説明するときの特定の用語の使用は、その用語が関連付けられる本開示の特徴又は態様の任意の具体的な特性を含むように限定されるように、その用語が本明細書で再定義されていることを暗示するものと解釈されるべきではないことに留意されたい。本出願で使用される用語及び語句、並びにそれらの変形は、特に添付された特許請求の範囲において、他に明示的に記載されていない限り、限定することとは対照的に、オープンエンドとして解釈されるべきものである。前述の例として、「含む(including)」という用語は、「限定されることなく含む(including, without limitation)」、「含むが限定されない(including but not limited to)」、又は同様のものを意味するように読み取られるべきであり、本明細書で使用される「含む(comprising)」という用語は、「含む(including)」、「含有する(containing)」、又は「によって特徴付けられる(characterized by)」と同義であり、包括的又はオープンエンドであり、追加の列挙されていない要素又は方法ステップを除外せず、「有する(having)」という用語は、「少なくとも有する(having at least)」と解釈されるべきであり、「含む(includes)」という用語は、「含むが、限定されない(includes but is not limited to)」と解釈されるべきであり、「例(example)」という用語は、考察中の項目の例示的な事例を提供するために使用され、その網羅的なリスト又は限定的なリストではなく、「既知の(known)」、「通常の(normal)」、「標準の(standard)」などの形容詞及び同様の意味の用語は、説明される項目を所定の期間又は所定の時点で利用可能な項目に限定するものと解釈されるべきではなく、代わりに、現在又は将来の任意の時点で利用可能又は既知であり得る、既知の、通常の、又は標準の技術を包含すると読み取られるべきであり、「好ましくは(preferably)」、「好ましい(preferred)」、「所望の(desired)」、「望ましい(desirable)」などの用語及び同様の意味の言葉の使用は、特定の特徴が本発明の構造又は機能にとって重要、必須、若しくは重要であることを意味するものとして理解されるべきではなく、代わりに、本発明の特定の実施形態で利用される場合、又はされない場合がある、代替的又は追加的な特徴を強調することを単に意図していると理解されるべきである。同様に、接続詞「及び(and)」で結ばれた項目の群は、それらの項目の各々及び全てが群内に存在することを要求しているものとして読むべきではなく、むしろ、特に明記しない限り、「及び/又は(and/or)」として読まれるべきである。同様に、接続詞「又は(or)」で結ばれた項目の群は、その群の中で相互排他性を要求しているものとして読むべきではなく、むしろ、特に明記しない限り、「及び/又は(and/or)」として読まれるべきである。
【0124】
値の範囲が提供される場合、上限及び下限並びにその範囲の上限及び下限の間の各介在値が実施形態内に包含されることが理解される。
【0125】
本明細書の実質的に任意の複数形及び/又は単数形の用語の使用に関して、当業者は、文脈及び/又は用途に適切であるように、複数形から単数形に、及び/又は単数形から複数形に変換することができる。明確にするために、本明細書では様々な単数/複数の置換を明示的に記載する場合がある。不定冠詞「a」又は「an」は、複数形を除外しない。単一のプロセッサ又は他のユニットが、特許請求の範囲に記述されるいくつかの事項の機能を達成し得る。ある特定の手段が相互に異なる従属請求項に列挙されるという単なる事実は、これらの手段の組み合わせが利益を得るために使用できないことを示すわけではない。特許請求の範囲の引用符号は、範囲を制限すると解釈されるべきではない。
【0126】
導入される請求項の記述で特定の数が意図される場合、そのような意図は請求項において明示的に記述されることになり、そのような記述が存在しない場合にはそのような意図が存在しないことが、当業者には更に理解されるであろう。例えば、理解の助けとして、以下の添付の請求項は、請求項の記述を導入するための導入句「少なくとも1つの」及び「1つ以上の」の使用を含む場合がある。ただし、そのような句の使用は、不定冠詞「1つの(a)」又は「1つの(an)」によって請求項の記述を導入することが、そのように導入された請求項の記述を含む任意の特定の請求項を、そのような記述を1つしか含まない実施形態に限定することを示唆するものと解釈されるべきではなく、このことは、導入句「1つ以上の」又は「少なくとも1つの」、及び不定冠詞、例えば「1つの(a)」又は「1つの(an)」が、同じ請求項に含まれる場合ですら当てはまる(例えば、「1つの(a)」及び/又は「1つの(an)」は、典型的には、「少なくとも1つの」又は「1つ以上の」を意味するものと解釈するべきである)。同じことが、請求項の記述を導入するために使用される定冠詞の使用にも当てはまる。加えて、導入される請求項の記述で特定の数が明示的に記述されている場合、そのような記述は、典型的には、少なくとも記述された数であることを意味するものと解釈すべきであることを、当業者は認識するであろう(例えば、他の修飾語句のない「2つの記述事項」という最小限の記述は、典型的には、少なくとも2つの記述事項、又は2つ以上の記述事項を意味する)。更に、「A、B、及びCなどのうちの少なくとも1つ」に類似の慣習的表現が使用される場合、概して、そのような構造は、当業者がその慣習的表現を理解するであろうという意味で意図され、例えば、単一の構成部材を含む、列挙された項目の任意の組み合わせを含む(例えば、「A、B、及びCのうちの少なくとも1つを有するシステム」は、A単独、B単独、C単独、A及びB、A及びC、B及びC、並びに/又はA、B、及びCなどを有するシステムを含むがこれらに限定されない)。「A、B、又はCなどのうちの少なくとも1つ」に類似の慣習的表現が使用される場合、概して、そのような構造は、当業者がその慣習的表現を理解するであろうという意味で意図される(例えば、「A、B、又はCのうちの少なくとも1つを有するシステム」は、A単独、B単独、C単独、A及びB、A及びC、B及びC、並びに/又はA、B、及びCなどを有するシステムを含むがこれらに限定されない)。2つ以上の択一的な用語を提示する選言的な単語及び/又は句は事実上いずれも、明細書、特許請求の範囲、又は図面を問わず、それらの用語のうちの1つ、それらの用語のうちのいずれか、又は両方の用語を含む可能性を企図していると理解すべきであることを、当業者は更に理解するであろう。例えば、「A又はB」という句は、「A」又は「B」又は「A及びB」の可能性を含むと理解される。
【0127】
本明細書で使用される成分量、反応条件などの数量を表す全ての数は、全ての場合において「約(about)」という用語で修飾されているものと理解される。したがって、本明細書に明記された数値パラメータは、反対の指示がない限り、取得しようとする所望の特性に応じて変化し得る近似値である。最低限でも、本出願に対する優先権を主張する任意の出願における任意の請求項の範囲に対する均等論の適用を限定する試みとしてではなく、各数値パラメータは、有効桁数及び通常の丸め手法を考慮して解釈されるべきである。
【0128】
本明細書に引用された全ての参考文献は、それらの全体が参照により本明細書に組み込まれる。参照により組み込まれた刊行物及び特許又は特許出願が、本明細書に含まれる本開示と矛盾する範囲では、本明細書は、そのようないかなる矛盾する材料に取って代わり、かつ/又はそれに優先することが意図されている。
【0129】
更に、上記は、明確さ及び理解の目的のため、例示及び実施例を使ってある程度詳細に説明されているが、特定の変更及び修正が実施され得ることは、当業者にとって明らかである。したがって、説明及び実施例は、本発明の範囲を本明細書に説明される具体的な実施形態及び例に限定するものと解釈されるべきではなく、むしろ、本発明の真の範囲及び趣旨に付随する全ての修正及び代替案も対象とすると解釈されるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【国際調査報告】