(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-25
(54)【発明の名称】REDCAPユーザ機器に対するBWPベースの動作
(51)【国際特許分類】
H04W 72/23 20230101AFI20240315BHJP
H04W 4/70 20180101ALI20240315BHJP
H04W 72/0453 20230101ALI20240315BHJP
H04W 74/0833 20240101ALI20240315BHJP
【FI】
H04W72/23
H04W4/70
H04W72/0453
H04W74/0833
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023560664
(86)(22)【出願日】2022-03-22
(85)【翻訳文提出日】2023-09-29
(86)【国際出願番号】 US2022021305
(87)【国際公開番号】W WO2022212122
(87)【国際公開日】2022-10-06
(32)【優先日】2021-03-29
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-04-07
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-05-10
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-10-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-10-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】593096712
【氏名又は名称】インテル コーポレイション
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】チャタジー,デブディープ
(72)【発明者】
【氏名】ション,ガン
(72)【発明者】
【氏名】イスラム,トウフィクル
(72)【発明者】
【氏名】リ,インヤン
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA21
5K067DD23
5K067DD34
5K067EE02
5K067EE10
5K067EE16
5K067EE64
(57)【要約】
【要約書】コンピュータ可読記憶媒体は、命令を記憶し、命令は、5G NRネットワークにおけるRedCap(Reduced Capability)動作のためにUEを設定し、かつUEに動作を実行させる。動作は、マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することと、下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、DCIフォーマットは、CORESET及びCSSに基づいて受信される、ことと、SIBを使用して、別個の初期DL BWP内に追加のCORESETを決定することと、別個の初期DL BWPにおいて、PDCCHタイプ1CSS(Common Search Space)セットにおける物理下りリンク制御チャネル(PDCCH)、又はRA(Random Access)手順に関連付けられたPDSCHの受信を実行することと、を含む。
【特許請求の範囲】
【請求項1】
5G NR(Fifth Generation New Radio)ネットワークにおいて動作するように構成されたユーザ機器(UE)のための装置であって、
処理回路機構であって、前記5G NRネットワークにおけるRedCap(Reduced Capability)動作のために前記UEを設定するために、
マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することと、
下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、前記DCIフォーマットは、前記CORESET及び前記CSSに基づいて受信される、ことと、
前記SIBを使用して、別個の初期DL BWP内に追加のCORESETを決定することと、
前記別個の初期DL BWPにおいて、PDCCHタイプ1CSS(Common Search Space)セットにおける物理下りリンク制御チャネル(PDCCH)、又はRA(Random Access)手順に関連付けられたPDSCHの受信を実行することと、を行う処理回路機構と、
前記処理回路機構に結合され、かつ前記MIB及び前記SIBを記憶するように構成されたメモリと、を含む、装置。
【請求項2】
前記処理回路機構は、
PDCCHタイプ2 CSSセット内のPDCCH、又はRedCap動作のための前記別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行するように構成されている、請求項1に記載の装置。
【請求項3】
前記処理回路機構は、
提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する前記初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPのうちの1つとして、前記UEがRRC_CONNECTED状態に遷移するときの前記初期DL BWPを決定するように構成されている、請求項1に記載の装置。
【請求項4】
前記処理回路機構は、
提供される場合、( initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する前記初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPか、そうでなければ、MIBによって示されるCORESETによって定義される初期DL BWPのうちの1つとして、前記UEがRRC_CONNECTED状態に遷移するときの前記初期DL BWPを決定するように構成されている、請求項1に記載の装置。
【請求項5】
前記処理回路機構は、
前記UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、前記追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、前記ページング監視を実行するように構成されている、請求項2に記載の装置。
【請求項6】
前記処理回路機構は、
PDCCHタイプ1 CSSが前記追加のCORESETにマッピングされるように示されており、前記UEがRRC_CONNECTEDモードにあり、前記追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれ、前記アクティブDL BWPと前記別個の初期DL BWPは同じSCSを有するときに、前記追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ランダムアクセス関連DL受信を実行するように構成されている、請求項1に記載の装置。
【請求項7】
前記UEがRRC_CONNECTED状態にあるときに、前記UEが同期信号ブロック(SSB)なしでDL BWPにおいて動作する能力を示さない場合、前記UEは、アクティブRRC設定DL BWPがセル定義同期信号ブロック(CD-SSB)を含むか、又は前記アクティブDL BWP内の非CD-SSBのための別個の設定が提供されることを期待し、前記非CD-SSBは、PCID(Primary Cell IDentity)を決定するためにもSIB1スケジューリング情報(PDCCHタイプ0 CSS設定)を取得するためにも使用されないSSBである、請求項1に記載の装置。
【請求項8】
前記処理回路機構は、
前記PDCCHの復調参照信号(DMRS)及び前記別個の初期DL BWPにおける前記PDSCHのDMRSが、セル定義同期信号ブロック(CD-SSB)とQCL-ed(Quasi-Co-Located)にあると決定するように構成されている、請求項1~7のいずれか一項に記載の装置。
【請求項9】
前記処理回路機構は、
SIB1(System Information Block Type 1)信号の受信に基づいて、Msg1(Message 1)、Msg3(Message 3)、MsgA(Message A)又はMsg4(Message 4)若しくはMsgB(Message B)に応答したPUCCHのうちの1つ以上を含むRA(Random Access)手順の一部としてのUL送信に対して、初期上りリンク(UL)BWP又はRedCap動作に関連付けられた別個の初期UL BWPを決定するように構成されている、請求項1~8のいずれか一項に記載の装置。
【請求項10】
不対スペクトルにおける動作に対して、前記別個の初期DL BWP及び前記初期UL BWP、又はRA手順に関連するUL送信に対して設定される前記別個の初期UL BWPは、同じ中心周波数を共有する、請求項9に記載の装置。
【請求項11】
前記処理回路機構に結合されたトランシーバ回路機構と、前記トランシーバ回路機構に結合された1つ以上のアンテナと、をさらに含む、請求項1~10のいずれか一項に記載の装置。
【請求項12】
ソース基地局の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のために前記基地局を設定し、かつ前記基地局に動作を実行させ、前記動作は、
RedCapユーザ機器(UE)への送信のためにマスタ情報ブロック(MIB)を符号化することであって、前記MIBは、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を設定する、ことと、
前記RedCap UEへの送信のためにシステム情報ブロック(SIB)を符号化することであって、前記SIBは、下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)において送信され、前記DCIフォーマットは、前記CORESET及び前記CSSに基づいて送信され、前記SIBは、前記RedCap UEのために別個の初期DL BWP内に追加のCORESETをさらに設定する、ことと、
前記別個の初期DL BWP内に設定されたPDCCHタイプ1 CSSセットにおける物理下りリンク制御チャネル(PDCCH)又は物理下りリンク共有チャネル(PDSCH)を使用してDLにおける前記RedCap UEへの送信のためにRA手順に関連付けられた情報を符号化することと、を含む、コンピュータ可読記憶媒体。
【請求項13】
前記追加のCORESETの周波数領域におけるスパンは、前記別個の初期DL BWPのための周波数領域におけるスパン以下である、請求項12に記載のコンピュータ可読記憶媒体。
【請求項14】
ユーザ機器(UE)の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のために前記UEを設定し、かつ前記UEに動作を実行させ、前記動作は、
マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することと、
下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、前記DCIフォーマットは、前記CORESET及び前記CSSに基づいて受信される、ことと、
前記SIBを使用して、別個の初期DL BWP内に追加のCORESETを決定することと、
前記別個の初期DL BWPにおいて、PDCCHタイプ1CSS(Common Search Space)セットにおける物理下りリンク制御チャネル(PDCCH)、又はRA(Random Access)手順に関連付けられたPDSCHの受信を実行することと、を含む、コンピュータ可読記憶媒体。
【請求項15】
前記動作は、
PDCCHタイプ2 CSSセット内のPDCCH、又はRedCap動作のための前記別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行することをさらに含む、請求項14に記載のコンピュータ可読記憶媒体。
【請求項16】
前記動作は、
提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する前記初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPのうちの1つとして、前記UEがRRC_CONNECTED状態に遷移するときの前記初期DL BWPを決定することをさらに含む、請求項14に記載のコンピュータ可読記憶媒体。
【請求項17】
前記動作は、
提供される場合、( initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する前記初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPか、そうでなければ、MIBによって示されるCORESETによって定義される初期DL BWPのうちの1つとして、前記UEがRRC_CONNECTED状態に遷移するときの前記初期DL BWPを決定することをさらに含む、請求項14に記載のコンピュータ可読記憶媒体。
【請求項18】
前記動作は、
前記UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、前記追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、前記ページング監視を実行することをさらに含む、請求項15に記載のコンピュータ可読記憶媒体。
【請求項19】
前記動作は、
PDCCHタイプ1 CSSが前記追加のCORESETにマッピングされるように示されており、前記UEがRRC_CONNECTEDモードにあり、前記追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれ、前記アクティブDL BWPと前記別個の初期DL BWPは同じSCSを有するときに、前記追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ランダムアクセス関連DL受信を実行することをさらに含む、請求項14~17のいずれか一項にコンピュータ可読記憶媒体。
【請求項20】
前記UEがRRC_CONNECTED状態にあるときに、前記UEが同期信号ブロック(SSB)なしでDL BWPにおいて動作する能力を示さない場合、前記UEは、アクティブRRC設定DL BWPがセル定義同期信号ブロック(CD-SSB)を含むか、又は前記アクティブDL BWP内の非CD-SSBのための別個の設定が提供されることを期待し、前記非CD-SSBは、PCID(Primary Cell IDentity)を決定するためにもSIB1スケジューリング情報(PDCCHタイプ0 CSS設定)を取得するためにも使用されないSSBである、請求項14~17のいずれか一項にコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、以下の米国仮特許出願に対する優先権の利益を主張する。
【0002】
「BANDWIDTH PART (BWP)-BASED OPERATIONS FOR REDCAP USER EQUIPMENTS IN RADIO RESOURCE CONTROL (RRC) IDLE OR RRC INACTIVE MODES」と題する2021年5月29日に出願された米国仮特許出願第63/167,580号。
【0003】
「BANDWIDTH PART (BWP)-BASED OPERATIONS FOR REDCAP USER EQUIPMENTS IN RADIO RESOURCE CONTROL (RRC) IDLE OR RRC INACTIVE MODES」と題する2021年4月7日に出願された米国仮特許出願第63/171,982号。
【0004】
「BANDWIDTH PART (BWP)-BASED OPERATIONS FOR REDCAP USER EQUIPMENTS IN RADIO RESOURCE CONTROL (RRC) IDLE OR RRC INACTIVE MODES」と題する2021年5月10日に出願された米国仮特許出願第63/186,736号。
【0005】
「BANDWIDTH PART (BWP)-BASED OPERATIONS FORREDCAPUSER EQUIPMENTS INRADIO RESOURCE CONTROL (RRC) IDLEORRRC INACTIVE MODES」と題する2021年10月1日に出願された米国仮特許出願第63/251,298号。
【0006】
「BANDWIDTH PART (BWP)-BASED OPERATIONS FOR REDCAP USER EQUIPMENTS IN RADIO RESOURCE CONTROL (RRC) IDLE OR RRC INACTIVE MODES」と題する2021年10月12日に出願された米国仮特許出願第63/254,847号。
【0007】
上記に列挙された特許出願の各々は、その全体が参照により本明細書に組み込まれる。
【0008】
態様は、無線通信に関する。いくつかの態様は、3GPP(登録商標)(Third Generation Partnership Project)ネットワーク、3GPP LTE (Long Term Evolution)ネットワーク、3GPP LTE-A (LTE Advanced)ネットワーク、(MulteFire, LTE-U)、及び5G(fifth-generation)NR(new radio)(又は5G-NR)ネットワークを含む5Gネットワーク以上のもの、5G NRライセンス不要スペクトル(NR-U)ネットワークなどの5G-LTEネットワーク、及びWi-Fi、CBRS(OnGo)などの他のライセンス不要ネットワークを含む無線ネットワークに関連する。他の態様は、5G-NR(以上の)ネットワークにおいて、RedCap(Reduced Capacity)ユーザ機器(UE)(例えば、RRCアイドルモード及びRRC非アクティブモードにおけるUE)に対して帯域幅部分(BWP)ベースの動作を設定する技術に向けられる。
【背景技術】
【0009】
モバイル通信は、初期の音声システムから、今日の高度に洗練された統合通信プラットフォームへと大きく進化した。様々なネットワークデバイスと通信する異なるタイプのデバイスの増加により、3GPP LTEシステムの利用が増加している。モバイルデバイス(ユーザ機器、又はUE)の現代社会における浸透は、多くの多様な環境における多様なネットワーク接続されたデバイスに対する需要を牽引し続けてきた。5G(fifth-generation)無線システムが間近にせまっており、より高速、接続性、及びユーザビリティを可能にすることが期待されている。次世代5Gネットワーク(又はNRネットワーク)は、スループット、カバレッジ、堅牢性を向上させ、レイテンシと運用及び資本支出を低減することが期待されている。5G-NRネットワークは、高速で豊かなコンテンツ及びサービスを送達するシームレスな無線接続ソリューションで人々の生活を豊かにするために、追加の可能な新たな無線アクセス技術(RAT)と共に3GPP LTE-Advancedに基づいて進化し続けるであろう。現在のセルラネットワーク周波数が飽和すると、ミリ波(mmWave)周波数のようなより高い周波数が、それらの高い帯域幅のために有益である可能性がある。
【0010】
ライセンス不要スペクトルにおける可能なLTE動作は、DC(dual connectivity)又はDCベースLAAを介したライセンス不要スペクトルにおけるLTE動作、及びライセンス不要スペクトルにおけるスタンドアロンLTEシステムを含む(が、これらに限定されない)。これによると、LTEベースの技術は、MulteFireと呼ばれる、ライセンス不要スペクトルにおける「アンカー」を必要とせずにライセンス不要スペクトルにおいてのみ動作する。今後のリリースや5G(以上の)システムでは、ライセンス不要スペクトルだけでなく、ライセンススペクトルにおけるLTE及びNRシステムのさらなる強化された動作が期待されている。そのような強化された動作は、5G-NR(以上の)ネットワークにおいて、RedCap UE(例えば、RRCアイドルモード及びRRC非アクティブモードにおけるUE)に対してBWPベースの動作を設定する技術を含むことができる。
【図面の簡単な説明】
【0011】
図では、図は必ずしも縮尺通りに描かれていないが、類似の番号は類似の要素を互いに異なる視点で記載してもよい。末尾の文字が異なる類似の番号は、類似のコンポーネントの異なる例を表わしてもよい。図は、限定ではなく例として、本文書で議論した様々な態様を一般的に例示する。
【0012】
【
図1A】いくつかの態様による、ネットワークのアーキテクチャを例示する。
【0013】
【
図1B】いくつかの態様による非ローミング5Gシステムアーキテクチャを例示する。
【
図1C】いくつかの態様による非ローミング5Gシステムアーキテクチャを例示する。
【0014】
【
図2】開示された実施形態の態様を実装し得る様々なシステム、デバイス、及びコンポーネントを例示する。
【
図3】開示された実施形態の態様を実装し得る様々なシステム、デバイス、及びコンポーネントを例示する。
【
図4】開示された実施形態の態様を実装し得る様々なシステム、デバイス、及びコンポーネントを例示する。
【0015】
【
図5】いくつかの態様による、例示的な別個の初期下りリンク(DL)BWP設定オプションの図を例示する。
【0016】
【
図6】いくつかの態様による、異なる初期上りリンク(UL)BWPにおけるRedCap及び非RedCap UEに対する異なる物理ランダムアクセスチャネル(PRACH)リソースを例示する。
【0017】
【
図7】いくつかの態様による、発展型Node-B、新世代Node-B(gNB)(又は別のRANノード若しくは基地局)、送受信ポイント(TRP)、アクセスポイント(AP)、無線局(STA)、移動局(MS)、ユーザ機器(UE)などの通信デバイスのブロック図を例示する。
【発明を実施するための形態】
【0018】
以下の説明及び図面は、当業者がそれらを実施することができるように、態様を十分に例示している。他の態様は、構造的、論理的、電気的、プロセス、及び他の変更を組み込んでもよい。いくつかの態様の一部及び特徴は、他の態様のものに含まれてもよく、又は他の態様のものに置き換えられてもよい。特許請求の範囲に概説される態様は、それらの特許請求の範囲のすべての利用可能な等価物を包含する。
【0019】
図1Aは、いくつかの態様によるネットワークのアーキテクチャを例示する。ネットワーク140Aは、ユーザ機器(UE)101及びUE102を含むことが示されている。UE101及びUE102は、スマートフォン(例えば、1つ以上のセルラネットワークに接続可能なハンドヘルドタッチスクリーンモバイルコンピューティングデバイス)として例示されているが、パーソナルデータアシスタント(PDA)、ポケットベル、ラップトップコンピュータ、デスクトップコンピュータ、無線ハンドセット、ドローン、又は有線及び/又は無線通信インターフェースを含む任意の他のコンピューティングデバイスなどの、任意のモバイル又は非モバイルコンピューティングデバイスも含んでもよい。UE101及びUE102は、本明細書においてUE101と総称することができ、UE101は、本明細書において開示された技術のうちの1つ以上を実行するために使用することができる。
【0020】
本明細書に記載される(例えば、ネットワーク140A又は任意の他の例示されたネットワークで使用されるような)無線リンクのうちの任意のものは、任意の例示的な無線通信技術及び/又は標準に従って動作してもよい。
【0021】
LTE及びLTE-Advancedは、携帯電話などのUEための高速データの無線通信のための標準である。LTE-Advanced及び様々な無線システムでは、キャリアアグリゲーションは、異なる周波数で動作する複数のキャリア信号を使用して単一のUEのための通信を搬送してもよく、それにより単一のデバイスが利用できる帯域幅を増加させる技術である。いくつかの態様では、1つ以上のコンポーネントキャリアがライセンス不要の周波数で動作する場合、キャリアアグリゲーションが使用されてもよい。
【0022】
本明細書に記載された態様は、例えば、ライセンス専用スペクトル、ライセンス不要スペクトル、(ライセンス)共有スペクトル(2.3~2.4GHz、3.4~3.6GHz、3.6~3.8GHz及びそれ以上におけるLSA(Licensed Shared Access)、3.55~3.7GHz及びそれ以上のSAS(Spectrum Access System)など)を含むいかなるスペクトル管理スキームにおいて使用され得る。
【0023】
本明細書に記載された態様は、OFDMキャリアデータビットベクトルを対応するシンボルリソースに割り当てることによって、異なる単一のキャリア又はOFDMフレーバ(CP-OFDM、SC-FDMA、SC-OFDM、フィルタバンクベースのマルチキャリア(FBMC)、OFDMAなど)、特に、3GPP NR(New Radio)に適用することもできる。
【0024】
いくつかの態様では、UE101及び102のいずれかは、モノのインターネット(IoT)UE又はセルラIoT (CIoT)UEを含むことができ、これらは、短寿命UE接続を利用する低電力IoTアプリケーションのために設計されたネットワークアクセス層を含むことができる。いくつかの態様では、UE101及び102のいずれかは、狭帯域(NB)IoT UE (例えば、eNB-IoT(enhanced NB-IoT)UE及びFeNB-IoT(Further Enhanced NB-IoT)UE)を含むことができる。IoT UEは、PLMN(public land mobile network)、ProSe(Proximity-Based Service)、又はD2D(device-to-device)通信、センサネットワーク、又はIoTネットワークを介してMTCサーバ又はデバイスとデータを交換するために、M2M(machine-to-machine)又はMTC(machine-type communication)などの技術を利用することができる。データのM2M又はMTC交換は、機械起動によるデータ交換であってもよい。IoTネットワークは、IoT UEを相互接続することを含み、IoT UEは、短寿命の接続で、(インターネットインフラストラクチャ内に)一意に識別可能な埋め込みコンピューティングデバイスを含んでもよい。IoT UEは、IoTネットワークの接続を容易にするために、バックグラウンドアプリケーション(例えば、キープアライブメッセージ、ステータス更新など)を実行してもよい。
【0025】
いくつかの態様では、UE101及びUE102のいずれかは、eMTC(enhanced MTC)UE又はFeMTC(further enhanced MTC)UEを含むことができる。
【0026】
UE101及びUE102は、例えば無線アクセスネットワーク(RAN)110と接続、例えば通信可能に結合するように構成されてもよい。RAN110は、例えば、UMTS(Universal Mobile Telecommunications System)、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)、NG RAN(NextGen RAN)、又は何らかの他のタイプのRANであってもよい。UE101及び102は、(以下にさらに議論される)それぞれ、各々が物理通信インターフェース又は層を含む接続103及び104を利用する。この例では、接続103及び104は、通信結合を可能にするエアインターフェースとして例示されており、GSM(Global System for Mobile Communications)プロトコル、符号分割多元接続(CDMA)ネットワークプロトコル、PTT(Push-to-Talk)プロトコル、POC(PTT over Cellular)プロトコル、UMTS(Universal Mobile Telecommunications System)プロトコル、3GP LTE(Long Term Evolution)プロトコル、第5世代(5G)プロトコル、NR(New Radio)プロトコルなどのセルラ通信プロトコルと整合することができる。
【0027】
一態様では、UE101及びUE102は、さらに、ProSeインターフェース105を介して通信データを直接交換してもよい。また、ProSeインターフェース105は、代替的には、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel )、PSDCH(Physical Sidelink Discovery Channel)、及びPSBCH(Physical Sidelink Broadcast Channel)を含むが、これらに限定されない、1つ以上の論理チャネルを含むサイドリンクインターフェースと呼ばれてもよい。
【0028】
UE102は、接続107を介してアクセスポイント(AP)106にアクセスするように構成されているように示されている。接続107は、例えば、任意のIEEE 802.11プロトコルと整合する接続のようなローカル無線接続を含むことができ、それに従って、AP106はWiFi(登録商標)(wireless fidelity)ルータを含むことができる。この例では、AP106は、(さらに以下に記載される)無線システムのコアネットワークに接続することなく、インターネットに接続されることが示されている。
【0029】
RAN110は、接続103及び接続104を可能にする1つ以上のアクセスノードを含むことができる。これらのアクセスノード(AN)は、基地局(BS)、NodeB、eNB(evolved NodeB)、gNB(Next Generation NodeB)、RANネットワークノードなどと呼ぶことができ、地上局(例えば、陸上アクセスポイント)又は地理的領域(例えば、セル)内でカバレッジを提供する衛星局を含むことができる。いくつかの態様では、通信ノード111及び112は、送信/受信ポイント(TRP)とすることができる。通信ノード111及び通信ノード112がNodeB(例えば、eNB又はgNB)であるときのインスタンスでは、1つ以上のTRPは、NodeBの通信セル内で機能することができる。RAN110は、マクロセルを提供するための1つ以上のRANノード、例えば、マクロRANノード111、及びフェムトセル又はピコセル(例えば、マクロセルと比較して、カバレッジエリアが小さく、ユーザ容量が小さく、又は帯域幅が大きいセル)を提供するための1つ以上のRANノード、例えば、低電力(LP)RANノード112又はライセンス不要スペクトルベースの二次RANノード112を含んでもよい。
【0030】
RANノード111及びRANノード112のいずれも、エアインターフェースプロトコルを終端することができ、UE101及びUE102の第1の接点とすることができる。いくつかの態様では、RANノード111及びRANノード112のいずれかは、無線ベアラ管理、上りリンク及び下りリンク動的無線リソース管理、データパケットスケジューリング、及びモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含むが、これらに限定されない、RAN110のための様々な論理機能を果たすことができる。一例では、ノード111及び/又はノード112のいずれかは、gNB(new generation Node-B)、eNB(evolved node-B)、又は別のタイプのRANノードとすることができる。
【0031】
RAN110は、S1インターフェース113を介してコアネットワーク(CN)120に通信可能に結合されていることが示されている。態様では、CN120は、EPC(evolved packet core)ネットワーク、NPC(NextGen Packet Core)ネットワーク、又は何らかの他のタイプのCN (例えば、
図1B~
図1Cを参照して例示されているように)であってもよい。この態様では、S1インターフェース113は、2つの部分、すなわち、RANノード111及び112とサービスゲートウェイ(S-GW)122との間のユーザトラフィックデータを搬送するS1-Uインターフェース114と、RANノード111及び112とMME121との間のシグナリングインターフェースであるS1-モビリティ管理エンティティ(MME)インターフェース115とにスプリットされる。
【0032】
この態様では、CN120は、MME121、S-GW122、P-GW(PDN(Packet Data Network)Gateway)123、及びHSS(home subscriber server)124を含む。MME121は、レガシーSGSN(GPRS(Serving General Packet Radio Service)Support Node)の制御プレーンと機能的に同様であってもよい。MME121は、ゲートウェイ選択及びトラッキングエリアリスト管理などのアクセスにおけるモビリティ態様を管理してもよい。HSS124は、ネットワークエンティティの通信セッションの処理をサポートするための加入者関連情報を含む、ネットワークユーザのためのデータベースを含んでもよい。CN120は、モバイル加入者の数、機器の容量、ネットワークの組織などに応じて、1つ以上のHSS124を含んでもよい。例えば、HSS124は、ルーティング/ローミング、認証、認可、ネーミング/アドレス解決、位置依存性などのサポートを提供することができる。
【0033】
S-GW122は、RAN110に向かってS1インターフェース113を終端し、RAN110とCN120との間でデータパケットをルーティングしてもよい。追加的に、S-GW122は、RANノード間ハンドオーバのためのローカルモビリティアンカー点であってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。S-GW122の他の担当としては、合法的な傍受、課金、及び何らかのポリシー実施を含んでもよい。
【0034】
P-GW123は、PDNに対するSGiインターフェースを終端してもよい。P-GW123は、インターネットプロトコル(IP)インターフェース125を介して、EPCネットワーク120と、アプリケーションサーバ184を含むネットワークなどの外部ネットワーク(代替的には、アプリケーション機能(AF)と呼ばれる)との間のデータパケットをルーティングしてもよい。P-GW123はまた、インターネット、IPS(IP multimedia subsystem)ネットワーク、及び他のネットワークを含むことができる他の外部ネットワーク131Aとデータを通信することができる。一般に、アプリケーションサーバ184は、コアネットワーク(例えば、UMTS PS(Packet Services)ドメイン、LTE PSデータサービスなど)と共にIPベアラリソースを使用するアプリケーションを提供する要素であってもよい。この態様では、P-GW123は、IPインターフェース125を介してアプリケーションサーバ184に通信可能に結合されていることが示されている。アプリケーションサーバ184はまた、CN120を介してUE101及び102のための1つ以上の通信サービス(例えば、VoIP(Voice-over-Internet Protocol)セッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)をサポートするように構成することができる。
【0035】
P-GW123は、さらに、ポリシー実施及び課金データ収集のためのノードであってもよい。PCRF(Policy and Charging Rules Function)126は、CN120のポリシー及び課金制御要素である。非ローミングシナリオでは、いくつかの態様では、UEのIP-CAN(Internet Protocol Connectivity Access Network)セッションに関連付けられたHPLMN(Home Public Land Mobile Network)において単一のPCRFがあってもよい。トラフィックのローカルブレークアウトを用いるローミングのシナリオでは、UEのIP-CANセッションに関連付けられた2つのPCRF、すなわち、HPLMN内のH-PCRF(Home PCRF)と、VPLMN(Visited Public Land Mobile Network)内のV-PCRF(Visited PCRF))があってもよい。PCRF126は、P-GW123を介してアプリケーションサーバ184に通信可能に結合されてもよい。
【0036】
いくつかの態様では、通信ネットワーク140Aは、IoTネットワーク又はされたライセンス(5G NR)スペクトル及びライセンス不要(5G NR-U)スペクトルの通信を使用する5G new radioネットワークを含む5Gネットワークとすることができる。IoTの現在のイネーブラの1つはNB‐IoT(narrowband-IoT)である。
【0037】
NGシステムアーキテクチャは、RAN110及び5Gネットワークコア(5GC)120を含むことができる。NG-RAN110は、gNB及びNG-eNBなどの複数のノードを含むことができる。コアネットワーク120(例えば、5Gコアネットワーク又は5GC)は、アクセス及びモビリティ機能(AMF)及び/又はユーザプレーン機能(UPF)を含むことができる。AMF及びUPFは、NGインターフェースを介してgNB及びNG-eNBに通信可能に結合することができる。より具体的には、いくつかの態様では、gNB及びNG-eNBは、NG-CインターフェースによってAMFに、NG-UインターフェースによってUPFに接続することができる。gNBとNG-eNBは、Xnインターフェースを介して互いに結合することができる。
【0038】
いくつかの態様では、NGシステムアーキテクチャは、3GPP TS(Technical Specification)23.501(例えば、V15.4.0、2018-12)によって提供されるように、様々なノード間の参照点を使用することができる。いくつかの態様、gNB及びNG-eNBの各々は、基地局、モバイルエッジサーバ、スモールセル、ホームeNB、RANネットワークノードなどとして実装することができる。いくつかの態様では、5Gアーキテクチャにおいて、gNBは、マスタノード(MN)であり、NG‐eNBは、セカンダリノード(SN)とすることができる。いくつかの態様では、マスタ/プライマリノードは、ライセンス帯域で動作してもよく、セカンダリノードは、ライセンス不要帯域で動作してもよい。
【0039】
図1Bは、いくつかの態様による、非ローミング5Gシステムアーキテクチャを例示する。
図1Bを参照すると、参照点表現における5Gシステムアーキテクチャ140Bが例示されている。より具体的には、UE102は、1つ以上の他の5Gコア(5GC)ネットワークエンティティと同様に、RAN110と通信することができる。5Gシステムアーキテクチャ140Bは、アクセス及び移動管理機能(AMF)132、ロケーション管理機能(LMF)133、セッション管理機能(SMF)136、ポリシー制御機能(PCF)148、アプリケーション機能(AF)150、ユーザプレーン機能(UPF)134、ネットワークスライス選択機能(NSSF)142、認証サーバ機能(AUSF)144、及び統合データ管理(UDM)/ホーム加入者サーバ(HSS)146などの複数のネットワーク機能(NF)を含む。UPF134は、例えば、オペレータサービス、インターネットアクセス、又は第三者サービスを含むことができるデータネットワーク(DN)152への接続を提供することができる。AMF132は、アクセス制御及びモビリティを管理するために使用することができ、また、ネットワークスライス選択機能を含むこともできる。SMF136は、ネットワークポリシーに従って様々なセッションをセットアップし、管理するように構成することができる。UPF134は、所望のサービスタイプに従って1つ以上の構成で展開され得る。PCF148は、ネットワークスライシング、モビリティ管理、ローミング(4G通信システムにおけるPCRFと同様)を使用して、ポリシーフレームワークを提供するように構成することができる。UDMは、加入者プロファイル及びデータ(4G通信システムのHSSと同様)を記憶するように構成することができる。
【0040】
LMF133は、5G測位機能に関連して使用されてもよい。いくつかの態様では、LMF133は、次世代無線アクセスネットワーク(NG-RAN)110及びモバイルデバイス(例えば、UE101)から、AMF132を介してNLsインターフェースを介して測定値及び支援情報を受信し、UE101の位置を計算する。いくつかの態様では、NR測位プロトコルA(NRPPa)を使用して、次世代制御プレーンインターフェイス(NG-C)を介してNG-RANとLMF133との間で測位情報を搬送してもよい。いくつかの態様では、LMF133は、AMF132を介してLTE測位プロトコル(LPP)を使用してUEを設定する。NG RAN110は、LTE-Uu及びNR-Uuインターフェースを介して無線リソース制御(RRC)プロトコルを使用してUE101を設定する。
【0041】
いくつかの態様では、5Gシステムアーキテクチャ140Bは、測位測定を可能にするために異なる参照信号を設定する。測位測定に使用され得る例示的な参照信号は、下りリンクにおける測位参照信号(NR PRS)と、上りリンクにおける測位のためのサウンディング参照信号(SRS)と、を含む。下りリンク測位参照信号(PRS)は、下りリンクベースの測位方法をサポートするように設定された基準信号である。
【0042】
いくつかの態様では、5Gシステムアーキテクチャ140Bは、IPマルチメディアサブシステム168B、及び呼セッション制御機能(CSCF)などの複数のIPマルチメディアコアネットワークサブシステムエンティティを含む。より具体的には、IMS168Bは、P-CSCF(proxy CSCF)162Bとして作用することができるCSCF、S-CSCF(serving CSCF)164B、E-CSCF(emergency CSCF)(
図1Bには例示せず)、又はI-CSCF(interrogating CSCF)166Bを含む。P-CSCF162Bは、IMサブシステム168B内のUE102のための第1の接点となるように構成することができる。S-CSCF164Bは、ネットワーク内のセッション状態を処理するように構成することができ、E-CSCFは、緊急要求を正しい緊急センター又はPSAPにルーティングするなど、緊急セッションの一定の態様を処理するように構成することができる。I-CSCF166Bは、そのネットワークオペレータの加入者、又はそのネットワークオペレータのサービスエリア内に現在位置するローミング加入者に向けられたすべてのIMS接続について、オペレータのネットワーク内の接点として機能するように構成することができる。いくつかの態様では、I-CSCF166Bは、別のIPマルチメディアネットワーク170E、例えば、別のネットワークオペレータによって動作するIMSに接続することができる。
【0043】
いくつかの態様では、UDM/HSS146は、電話アプリケーションサーバ(TAS)又は別のアプリケーションサーバ(AS)を含むことができるアプリケーションサーバ160Eに結合され得る。AS160Bは、S-CSCF164B又はI-CSCF166Bを介してIMS168Bに結合され得る。
【0044】
基準点表現は、対応するNFサービス間の相互作用が存在し得ることを示す。例えば、
図1Bは、基準点、すなわち、N1(UE102とAMF132との間)、N2(RAN110とAMF132との間)、N3(RAN110とUPF134との間)、N4(SMF136とUPF134との間)、N5(PCF148とAF150との間、図示せず)、N6(UPF134とDN152との間)、N7(SMF136とPCF148との間、図示せず)、N8(UDM146とAMF132との間、図示せず)、N9(2つのUPF134間、図示せず)、N10(UDM146とSMF136との間、図示せず)、N11(AMF132とSMF136との間)、N12(AUSF144とAMF132との間、図示せず)、N13(AUSF144とUDM146との間、図示せず)、N14(2つのAMF間、図示せず)、N15(非ローミングシナリオの場合のPCF148とAMF132の間、ローミングシナリオの場合のPCF148及び訪問ネットワークとAMF132との間、図示せず)、N16(2つのSMF間、図示せず)、N22(AMF132とNSSF142との間、図示せず)を例示する。
図1Bに示されていない他の基準点表現も使用することができる。
【0045】
図1Cは、5Gシステムアーキテクチャ140C及びサービスベースの表現を例示する。
図1Bに例示するネットワークエンティティに加えて、システムアーキテクチャ140Cは、ネットワーク公開機能(NEF)154及びネットワークリポジトリ機能(NRF)156も含むことができる。いくつかの態様では、5Gシステムアーキテクチャは、サービスベースとすることができ、ネットワーク機能間の相互作用は、対応するポイントツーポイント基準点Niによって、又はサービスベースのインターフェースとして表現することができる。
【0046】
いくつかの態様では、
図1Cに例示するように、サービスベースの表現を使用して、他の認可されたネットワーク機能がそれらのサービスにアクセスすることを可能にする制御プレーン内のネットワーク機能を表現することができる。これに関して、5Gシステムアーキテクチャ140Cは、サービスベースのインターフェース、すなわちNamf 158H(AMF132によって公開されるサービスベースのインターフェース)、Nsmf158I(SMF136によって呈されるサービスベースのインターフェース)、Nnef158B(NEF154によって呈されるサービスベースのインターフェース)、Npcf158D(PCF148によって呈されるサービスベースのインターフェース)、Nudm158E(UDM146によって呈されるサービスベースのインターフェース)、NaF158f(AF150によって呈されるサービスベースのインターフェース)、Nnrf 158C(NRF156によって呈されるサービスベースのインターフェース)、Nnssf 158A(NSSF142によって呈されるサービスベースのインターフェース)、Nausf 158G(AUSF144によって呈されるサービスベースのインターフェース)を含むことができる。
図1Cに示されていない他のサービスベースのインターフェース(例えば、Nudr、N5g-eir、及びNudsf)も使用することができる。
【0047】
図2、
図3及び
図4は、5G-NR(以上の)ネットワークなどの異なる通信システムにおける、開示された実施形態の態様を実装し得る様々なシステム、デバイス、及びコンポーネントを例示する。
図1A~
図4に関連して議論されるUE、基地局(gNBSなど)、及び/又は他のノード(例えば、衛星又は他のNTNノード)は、開示された技術を実行するように構成され得る。
【0048】
図2は、様々な実施形態による無線ネットワーク200を例示する。ネットワーク200は、LTE又は5G/NRシステムに対する3GPP技術仕様に整合する方法で動作してもよい。しかしながら、例示的な実施形態は、この点に関して限定されず、記載された実施形態は、本明細書に記載された原理から利益を得る他のネットワーク、例えば、今後の3GPPシステムなどに適用されてもよい。
【0049】
ネットワーク200は、UE202を含んでもよく、このUEは、オーバザエア接続を介してRAN204と通信するように設計された任意のモバイル又は非モバイルコンピューティングデバイスを含んでもよい。UE202は、スマートフォン、タブレットコンピュータ、ウェアラブルコンピューティングデバイス、デスクトップコンピュータ、ラップトップコンピュータ、車載インフォティメント、車内エンターテインメントデバイス、計器クラスタ、ヘッドアップディスプレイデバイス、オンボード診断デバイス、ダッシュトップモバイル機器、モバイルデータ端末、電子エンジン管理システム、電子/エンジン制御ユニット、電子/エンジン制御モジュール、埋め込みシステム、センサ、マイクロコントローラ、制御モジュール、エンジン管理システム、ネットワーク接続されたアプライアンス、機械タイプ通信デバイス、M2M又はD2Dデバイス、IoTデバイスなどであってもよいが、これらに限定されない。
【0050】
いくつかの実施形態では、ネットワーク200は、サイドリンクインターフェースを介して互いに直接結合された複数のUEを含んでもよい。UEは、限定されるわけではないが、PSBCH、PSDCH、PSSCH、PSCCH、PSFCHなどの物理サイドリンクチャネルを使用して通信するM2M/D2Dデバイスであってもよい。
【0051】
いくつかの実施形態では、UE202は、オーバザエア接続を介してAP206と追加的に通信してもよい。AP206は、無線LAN接続を管理してもよく、これは、RAN204からの一部/すべてのネットワークトラフィックをオフロードするのに役立つ。UE202とAP206との間の接続は、任意のIEEE 802.11プロトコルと整合してもよく、AP206は、Wi-Fi(wireless fidelity)ルータとすることができる。いくつかの実施形態では、UE202、RAN204、及びAP206は、セルラWLANアグリゲーション(例えば、LWA/LWIP)を利用してもよい。セルラWLANアグリゲーションは、UE202がセルラ無線リソースとWLANリソースの両方を利用するためにRAN204によって設定されることを伴ってもよい。
【0052】
RAN204は、1つ以上のアクセスノード、例えば、アクセスノード(AN)208を含んでもよい。AN208は、RRC、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC、及びL1プロトコルを含むアクセス層プロトコルを提供することによって、UE202のためのエアインターフェースプロトコルを終端してもよい。このようにして、AN208は、コアネットワーク(CN)220とUE202との間のデータ/音声接続を可能にしてもよい。いくつかの実施形態では、AN208は、ディスクリートデバイス、又は、例えば、CRAN又は仮想ベースバンドユニットプールと呼ばれることがある仮想ネットワークの一部としてサーバコンピュータ上で動作する1つ以上のソフトウェアエンティティとして実装されてもよい。AN208は、BS、gNB、RANノード、eNB、ng-eNB、NodeB、RSU、TRxP、TRPなどと呼ばれる。AN208は、マクロセル基地局又はフェムトセル、ピコセル、若しくはマクロセルと比較してカバレッジエリアが小さく、ユーザ容量が小さく、又は帯域幅が大きい他の同様のセルを提供するための低電力基地局であってもよい。
【0053】
RAN204が複数のANを含む実施形態では、それらは、X2インターフェース(RAN204がLTE RANである場合)又はXnインターフェース(RAN204が5G RANである場合)を介して互いに結合されてもよい。X2/Xnインターフェースは、いくつかの実施形態では制御/ユーザプレーンインターフェースに分離されてもよいが、ANがハンドオーバ、データ/コンテキスト転送、モビリティ、負荷管理、干渉調整などに関連する情報を通信することを可能にしてもよい。
【0054】
RAN204のANは各々、1つ以上のセル、セルグループ、コンポーネントキャリアなどを管理して、UE202にネットワークアクセスのためのエアインターフェースを提供してもよい。UE202は、RAN204の同じ又は異なるANによって提供される複数のセルと同時に接続されてもよい。例えば、UE202及びRAN204は、キャリアアグリゲーションを使用して、各々がPセル又はScellに対応する複数のコンポーネントキャリアとUE202が接続することを可能にしてもよい。デュアルコネクティビティシナリオでは、第1のANが、MCGを提供するマスタノードであってもよく、第2のANが、SCGを提供するセカンダリノードであってもよい。第1/第2のANは、eNB、gNB、ng-eNBなどの任意の組み合わせであってもよい。
【0055】
RAN204は、ライセンススペクトル又はライセンス不要スペクトルを介してエアインターフェースを提供してもよい。ライセンス不要スペクトルにおいて動作するために、ノードは、PCells/Scellsを用いたCA技術に基づいてLAA、eLAA、及び/又はfeLAAメカニズムを使用してもよい。ライセンス不要スペクトルにアクセスする前に、ノードは、例えば、LBT(listen-before-talk)プロトコルに基づいて、媒体/キャリア検知動作を実行してもよい。
【0056】
V2Xシナリオでは、UE202又はAN208は、路側ユニット(RSU)であるか、又はそれとして作用してもよく、これは、V2X通信に使用されるあらゆる輸送インフラエンティティを指す。RSUは、好適なAN又は静止(又は比較的静止した)UEで実装されてもよい。UEにおいて実装されたか、又はそれによって実装されたRSUは、「UEタイプRSU」と呼ばれることがあり、eNBは、「eNBタイプRSU」と呼ばれることがあり、gNBは、「gNBタイプRSU」と呼ばれることがあるなどである。一例では、RSUは、接続サポートを通過する車両UEに提供する、路側に位置する無線周波数回路と結合された計算デバイスである。RSUはまた、交差点マップ形状、トラフィック統計、メディア、並びに進行中の車両及び歩行者トラフィックを感知及び制御するアプリケーション/ソフトウェアを記憶する内部データ記憶回路機構を含んでもよい。RSUは、衝突回避、交通警告などのような高速イベントに必要な非常にレイテンシの小さい通信を提供してもよい。追加的又は代替的に、RSUは、他のセルラ/WLAN通信サービスを提供してもよい。RSUのコンポーネントは屋外設置に適した耐候性エンクロージャ内にパッケージされてもよく、有線接続(例えば、Ethernet)を交通信号コントローラ又はバックホールネットワークに提供するネットワークインターフェースコントローラを含んでもよい。
【0057】
いくつかの実施形態では、RAN204は、eNB、例えばeNB212を有するLTE RAN210であってもよい。LTE RAN210は、15kHzのサブキャリア間隔(SCS)、下りリンク(DL)に対するCP-OFDM波形(DL)及び上りリンク(UL)に対するSC-FDMA波形(UL)、データのためのターボコード及び制御のためのTBCCなどの特性を有するLTEエアインターフェースを提供してもよい。LTEエアインターフェースは、CSI取得及びビーム管理に対するCSI-RS、PDSCH/PDCCH復調に対するPDSCH/PDCCH DMRS、UEにおけるコヒーレント復調/検出に対するセルサーチ及び初期取得、チャネル品質測定、チャネル推定に対するCRSに依存してもよい。LTEエアインターフェースは、サブ6GHz帯域で動作してもよい。
【0058】
いくつかの実施形態では、RAN204は、gNB、例えばgNB216、又はng-eNB、例えば、ng-eNB218を有するNG-RAN214であってもよい。gNB216は、5G NRインターフェースを使用して、5GイネーブルUEと接続してもよい。gNB216は、N2インターフェース又はN3インターフェースを含むNGインターフェースを介して5Gコアと接続してもよい。ng-eNB218はまた、NGインターフェースを介して5Gコアと接続してもよいが、LTEエアインターフェースを介してUEと接続してもよい。gNB216及びng-eNB218は、Xnインターフェースを介して接続してもよい。
【0059】
いくつかの実施形態において、NGインターフェースは、NG-RAN214のノードとUPF248との間のトラフィックデータを搬送するNGユーザプレーン(NG-U)インターフェース(例えば、N3インターフェース)と、NG-RAN214のノードとAMF244との間のシグナリングインターフェースであるNG制御プレーン(NG-C)インターフェース(例えば、N2インターフェース)であるとの2つの部分にスプリットされてもよい。
【0060】
NG-RAN214は、可変SCS、DLに対するCP-OFDM、ULに対するCP-OFDM及びDFT-s-OFDM、制御に対するポーラ、反復、単純、及びReed-Mullerコード及びデータに対するLDPCの特性を有する5G-NRエアインターフェースを提供してもよい。5G-NRエアインターフェースは、LTEエアインターフェースと同様に、CSI-RS、PDSCH/PDCCH DMRSに依存してもよい。5G-NRエアインターフェースは、CRSを使用しなくてもよく、PBCH復調に対してPBCH DMRS、PDSCHの位相トラッキングに対してPTRS、時間トラッキングに対してトラッキング参照信号を使用してもよい。5G-NRエアインターフェースは、24.25GHz~52.6GHzまでの帯域を含むサブ6GHzの帯域又はFR2の帯域を含むFR1帯域で動作してもよい。5G-NRエアインターフェースは、同期信号と、PSS/SSS/PBCHを含む下りリンクリソースグリッドのエリアである物理ブロードキャスチャネル(SS/PBCH)ブロック(SSB)と、を含んでもよい。
【0061】
いくつかの実施形態では、5G-NRエアインターフェースは、様々な目的のためにBWP(bandwidth part)を利用してもよい。例えば、BWPは、SCSの動的適応のために使用することができる。例えば、UE202に、各BWP設定が異なるSCSを有する複数のBWPが設定され得る。BWP変更がUE202に示されるときに、送信のSCSも同様に変更される。BWPの別のユースケース例は、電力節約に関連する。特に、複数のBWPは、異なるトラフィック負荷シナリオの下でデータ送信をサポートするために、異なる量の周波数リソース(例えば、PRB)がUE202に対して設定され得る。より少ない数のPRBを含むBWPは、UE202で、場合によってはgNB216で電力節約を可能にしながら、小さなトラフィック負荷を伴うデータ送信に使用することができる。より多くの数のPRBを含むBWPは、より高いトラフィック負荷を伴うシナリオに使用することができる。
【0062】
RAN204は、顧客/加入者(例えば、UE202のユーザ)にデータ及び通信サービスをサポートするための様々な機能を提供するためにネットワーク要素を含むCN220に通信可能に結合される。CN220のコンポーネントは、1つの物理ノード又は別個の物理ノードにおいて実装されてもよい。いくつかの実施形態において、NFVは、CN220のネットワーク要素によって提供される機能のいずれか又はすべてを、サーバ、スイッチなどの物理コンピューティング/記憶リソース上に仮想化するために利用されてもよい。CN220の論理インスタンス化はネットワークスライスと呼ばれることがあり、CN220の一部分の論理インスタンス化はネットワークサブスライスと呼ばれることがある。
【0063】
いくつかの実施形態では、CN220は、EPC(又は、強化パケットコア)とも呼ばれることがあるEPS(Enhanced Packet System)222の一部として、LTE無線ネットワークに接続されてもよい。EPC222は、図示のように、インターフェース(又は「参照点」)を介して互いに結合されたMME224、SGW226、SGSN228、HSS230、PGW232、及び、PCRF234を含んでもよい。EPC222の各要素の機能は、以下のように簡潔に紹介されてもよい。
【0064】
MME224は、ページング、ベアラの起動/停止、ハンドオーバ、ゲートウェイ選択、認証などを容易にするために、UE202の現在位置を追跡するモビリティ管理機能を実装してもよい。
【0065】
SGW226は、RANに向かってS1インターフェースを終端し、RANとEPC222との間のデータパケットをルーティングしてもよい。追加的に、S-GW226は、RANノード間ハンドオーバのためのローカルモビリティアンカーポイントであってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。他の担当としては、合法的な傍受、課金、及び何らかのポリシー実施を含んでもよい。
【0066】
SGSN228は、UE202の位置を追跡し、セキュリティ機能及びアクセス制御を実行してもよい。追加的に、SGSN228は、異なるRATネットワーク間のモビリティ、MME224によって特定されるPDN及びS-GW選択、ハンドオーバのためのMME選択などのために、EPCノード間シグナリングを実行してもよい。MME224とSGSN228との間のS3参照点は、アイドル/アクティブ状態における3GPP間アクセスネットワークモビリティのためのユーザとベアラとの情報交換を可能にしてもよい。
【0067】
HSS230は、ネットワークエンティティの通信セッションの処理をサポートするための加入者関連情報を含む、ネットワークユーザのためのデータベースを含んでもよい。HSS230は、ルーティング/ローミング、認証、認可、ネーミング/アドレス解決、位置依存性などのサポートを提供することができる。HSS230とMME224との間のS6a参照点は、LTE CN220へのユーザアクセスを認証/認可するためのサブスクリプション及び認証データの転送を可能にしてもよい。
【0068】
PGW232は、アプリケーション/コンテンツサーバ238を含み得るデータネットワーク(DN)236に向かってSGiインターフェースを終端してもよい。PGW232は、LTE CN220とデータネットワーク236との間でデータパケットをルーティングしてもよい。PGW232は、ユーザプレーントンネリング及びトンネル管理を容易にするために、S5参照点によってSGW226と結合されてもよい。PGW232は、さらに、ポリシー実施及び課金データ収集(例えば、PCEF)のためのノードを含んでもよい。追加的に、PGW232とデータネットワーク236との間のSGi参照点は、例えば、IMSサービスを提供するための、オペレータ外部パブリック、プライベートPDN、又はオペレータ内パケットデータネットワークであってもよい。PGW232は、Gx参照点を介してPCRF234と結合されてもよい
【0069】
PCRF234は、LTE CN220のポリシー及び課金制御要素である。PCRF234は、アプリケーション/コンテンツサーバ238と通信可能に結合されて、サービスフローのための適切なQoS及び課金パラメータを決定してもよい。PCRF234は、適切なTFT及びQCIと共に、(Gx参照点を介して)PCEFに関連するルールを提供してもよい。
【0070】
いくつかの実施形態では、CN220は、5GC240であってもよい。5GC240は、図示のように、インターフェース(又は「参照点」)を介して互いに結合されたAUSF242、AMF244、SMF246、UPF248、NSSF250、NEF252、NRF254、PCF256、UDM258、及びAF260を含んでもよい。5GC240の各要素の機能は、以下のように簡潔に紹介されてもよい。
【0071】
AUSF242は、UE202の認証のためのデータを記憶し、認証関連機能性を処理してもよい。AUSF242は、様々なアクセスタイプに対する共通認証フレームワークを容易にしてもよい。図示のように、参照点を介して5GC240の他の要素と通信することに加えて、AUSF242は、Nausfサービスベースのインターフェースを提示してもよい。
【0072】
AMF244は、5GC240の他の機能が、UE202及びRAN204と通信し、UE202に関するモビリティイベントに関する通知にサブスクライブすることを可能にしてもよい。AMF244は、(例えば、UE202を登録するための)登録管理、接続管理、到達可能性管理、モビリティ管理、AMF関連イベントの合法的傍受、並びにアクセス認証及び認可を担当してもよい。AMF244は、UE202とSMF246との間のSMメッセージのためのトランスポートを提供し、SMメッセージをルーティングするための透過型プロキシとして作用する。AMF244はまた、UE202とSMSFとの間のSMSメッセージのためのトランスポートを提供してもよい。AMF244は、AUSF242及びUE202と相互作用して、様々なセキュリティアンカー及びコンテキスト管理機能を実行してもよい。さらに、AMF244は、RAN204とAMF244との間のN2参照ポイントを含んでもよく、又はN2参照点であってもよいRAN CPインターフェースの終端点であってもよく、AMF244は、NAS(N1)シグナリングの終端点であり、NAS暗号化及び完全性保護を実行してもよい。AMF244はまた、N3 IWFインターフェースを介してUE202とのNASシグナリングをサポートしてもよい。
【0073】
SMF246は、SM(例えば、セッション確立、UPF248とAN208との間のトンネル管理)、UE IPアドレス割り当て及び管理(オプションの認可を含む)、UP機能の選択及び制御、UPF248でトラフィックを適切な宛先にルーティングするようにトラフィックステアリングを設定すること、ポリシー制御機能に向かったインターフェースの終端、ポリシー実施、課金、及びQoSの一部の制御、合法的な傍受(SMイベント及びLIシステムへのインターフェースのため)、NASメッセージのSM部分の終端、下りリンクデータ通知、N2を介してAMF244を介してAN208に送信されるAN特定のSM情報の開始、及びセッションのSSCモードの決定を担当してもよい。SMは、PDUセッションの管理を指してもよく、PDUセッション又は「セッション」は、UE202とデータネットワーク236との間のPDUの交換を提供又は可能にするPDU接続性サービスを参照してもよい。
【0074】
UPF248は、RAT内及びRAT間モビリティのためのアンカーポイント、データネットワーク236に相互接続する外部PDUセッションポイント、及びマルチホームPDUセッションをサポートするための分岐ポイントとして作用してもよい。UPF248はまた、パケットのルーティング及び転送を実行し、パケットの検査を実行し、ポリシールールのユーザプレーン部分を実施し、合法的にパケットを傍受し(UP収集)、トラフィック使用量の報告を実行し、ユーザプレーンのためのQoS処理を実行し(例えば、パケットフィルタリング、ゲーティング、UL/DLレート実施)、上りリンクトラフィックの検証を実行し(例えば、SDF-to-QoSフローマッピング)、上りリンク及び下りリンクにおけるトランスポートレベルパケットのマーキングを行い、下りリンクパケットのバッファリング及び下りリンクデータ通知トリガを実行してもよい。UPF248は、データネットワークへのルーティングトラフィックフローをサポートする上りリンク分類器を含んでもよい。
【0075】
NSSF250は、UE202にサービスするネットワークスライスインスタンスのセットを選択してもよい。NSSF250はまた、必要に応じて、可能にされたNSSAI及びサブスクライブされたS-NSSAIへのマッピングを決定してもよい。NSSF250はまた、UE202にサービスするために使用されるAMFセット、又は、好適な設定に基づいて、可能であればNRF254に問い合わせることによって、候補AMFのリストを決定してもよい。UE202のためのネットワークスライスインスタンスのセットの選択は、NSSF250と相互作用することによってUE202が登録されているAMF244によってトリガされてもよく、AMFの変更につながることがある。NSSF250は、N22参照ポイントを介してAMF244と相互作用してもよく、N31参照点(図示せず)を介して訪問ネットワーク内の別のNSSFと通信してもよい。追加的に、NSSF250は、Nnssfサービスベースのインターフェースを提示してもよい。
【0076】
NEF252は、サードパーティ、内部公開/再公開、AF(例えば、AF260)、エッジコンピューティング又はフォグコンピューティングシステムなどに対して3GPPネットワーク機能によって提供されるサービス及び能力を安全に公開してもよい。そのような実施形態では、NEF252は、AFを認証し、認可し、又は制限してもよい。NEF252はまた、AF260と交換される情報及び内部ネットワーク機能と交換される情報を変換してもよい。例えば、NEF252は、AFサービス識別子と内部5GC情報との間で変換してもよい。NEF252はまた、他のNFの公開された能力に基づいて、他のNFから情報を受信してもよい。この情報は、構造化データとしてNEF252、又は標準化されたインターフェースを使用してデータストレージNFに記憶されてもよい。次いで、記憶された情報は、NEF252によって他のNF及びAFに再公開されるか、又は分析などの他の目的に使用することができる。追加的に、NEF252は、Nnefサービスベースのインターフェースを提示してもよい。
【0077】
NRF254は、サービスディスカバリ機能をサポートし、NFインスタンスからNFディスカバリ要求を受信し、ディスカバリされたNFインスタンスの情報をNFインスタンスに提供してもよい。NRF254はまた、利用可能なNFインスタンス及びそれらのサポートされるサービスに対する情報も維持する。本明細書で使用する場合、「インスタンス化」、「インスタンス化」などという用語は、インスタンスの作成を指し、「インスタンス」は、例えば、プログラムコードの実行中に発生し得る、オブジェクトの具体的な発生を指してもよい。追加的に、NRF254は、Nnrfサービスベースのインターフェースを提示してもよい。
【0078】
PCF256は、それらを実施するために制御プレーン機能にポリシールールを提供してもよく、また、ネットワーク挙動を統括するための統一されたポリシーフレームワークをサポートしてもよい。PCF256はまた、UDM258のUDRにおけるポリシー判定に関連するサブスクリプション情報にアクセスするためのフロントエンドを実装してもよい。図示のように、参照点を介して機能と通信することに加えて、PCF256はNpcfサービスベースのインターフェースを提示する。
【0079】
UDM258は、ネットワークエンティティの通信セッションの処理をサポートするためにサブスクリプション関連情報を処理してもよく、UE202のサブスクリプションデータを記憶してもよい。例えば、サブスクリプションデータは、UDM258とAMF244との間のN8参照点を介して通信されてもよい。UDM258は、アプリケーションフロントエンドとUDRの2つの部分を含んでもよい。UDRは、UDM 258及びPCF256のためのサブスクリプションデータ及びポリシーデータ、及び/又はNEF252のための公開及びアプリケーションデータのための構造化データ(アプリケーション検出のためのPFD、複数のUEのためのアプリケーション要求情報を含む)を記憶してもよい。Nuderサービスベースのインターフェースが、UDRによって提示されて、UDM 258、PCF256、及びNEF252が記憶されたデータの特定のセットにアクセスすることを可能にすると共に、UDRにおける関連データ変更の通知の読み出し、更新(例えば、追加、修正)、削除、及び通知にサブスクライブすることを可能にしてもよい。UDMは、クレデンシャルの処理、位置管理、サブスクリプション管理などを担当するUDM-FEを含んでもよい。いくつかの異なるフロントエンドは、異なるトランザクションにおいて同じユーザにサービスしてもよい。UDM-FEは、UDRに記憶されたサブスクリプション情報にアクセスし、認証クレデンシャル処理、ユーザ識別処理、アクセス認可、登録/モビリティ管理、及びサブスクリプション管理を実行する。図示のように、参照点を介して他のNFと通信することに加えて、UDM 258は、Nudmサービスベースのインターフェースを提示してもよい。
【0080】
AF260は、トラフィックルーティングに対するアプリケーションの影響を提供し、NEFへのアクセスを提供し、ポリシー制御のためのポリシーフレームワークと相互作用してもよい。
【0081】
いくつかの実施形態では、5GC240は、オペレータ/サードパーティサービスを選択することによって、UE202がネットワークにアタッチされる点に地理的に近くなるようなエッジコンピューティングを可能にしてもよい。これにより、ネットワーク上のレイテンシと負荷が低減されてもよい。エッジコンピューティング実装を提供するために、5GC240は、UE202に近いUPF248を選択し、UPF248からN6インターフェースを介してデータネットワーク236へのトラフィックステアリングを実行してもよい。これは、UEサブスクリプションデータ、UEロケーション、及びAF260によって提供される情報に基づいてもよい。このようにして、AF260は、UPF(再)選択及びトラフィックルーティングに影響を与えてもよい。オペレータの展開に基づいて、AF260がトラステッドエンティティであると考えられるときに、ネットワークオペレータは、AF260が関連するNFと直接相互作用することを許可してもよい。追加的に、AF260は、Nafサービスベースのインターフェースを提示してもよい。
【0082】
データネットワーク236は、様々なネットワークオペレータサービス、インターネットアクセス、又は例えば、アプリケーション/コンテンツサーバ238を含む1つ以上のサーバによって提供されてもよいサードパーティサービスを表してもよい。
【0083】
図3は、様々な実施形態による無線ネットワーク300を概略的に例示する。無線ネットワーク300は、AN304と無線通信するUE302を含んでもよい。UE302及びAN304は、本明細書の他の箇所に記載されている同様の名称のコンポーネントと同様、かつ実質的に交換可能であってもよい。
【0084】
UE302は、接続306を介してAN304と通信可能に結合されてもよい。接続306は、通信結合を可能にするためのエアインターフェースとして例示されており、LTEプロトコル又はmmWave又はサブ6GHzの周波数で動作する5G NRプロトコルなどのセルラ通信プロトコルと整合することができる。
【0085】
UE302は、モデムプラットフォーム310と結合されたホストプラットフォーム308を含んでもよい。ホストプラットフォーム308は、モデムプラットフォーム310のプロトコル処理回路機構314と結合され得るアプリケーション処理回路機構312を含んでもよい。アプリケーション処理回路機構312は、アプリケーションデータをソース/シンクするUE302のための様々なアプリケーションを動作させてもよい。アプリケーション処理回路機構312は、データネットワークとの間でアプリケーションデータを送信/受信する1つ以上の層動作をさらに実装してもよい。これらの層動作は、トランスポート(例えば、UDP)及びインターネット(例えば、IP)動作を含んでもよい。
【0086】
プロトコル処理回路機構314は、接続306を介したデータの送信又は受信を容易にするために、1つ以上の層動作を実装してもよい。プロトコル処理回路機構314によって実装される層動作は、例えば、MAC、RLC、PDCP、RRC、及びNAS動作を含んでもよい。
【0087】
モデムプラットフォーム310は、ネットワークプロトコルスタックにおいてプロトコル処理回路機構314によって実行される「下位」層動作である1つ以上の層動作を実装し得るデジタルベースバンド回路機構316をさらに含んでもよい。これらの動作は、例えば、1つ以上のHARQ-ACK動作、スクランブル/デスクランブル、符号化/復号、レイヤマッピング/デマッピング、変調シンボルマッピング、受信シンボル/ビットメトリック決定、マルチアンテナポートプレコーディング/復号化を含むPHY動作を含み、これらは、空間時間、空間周波数又は空間コーディング、参照信号生成/検出、プリアンブルシーケンス生成及び/又は復号化、同期シーケンス生成/検出、制御チャネル信号ブラインド復号、及び他の関連機能のうちの1つ以上を含んでもよい。
【0088】
モデムプラットフォーム310はさらに、送信回路318、受信回路320、RF回路322、及びRFフロントエンド(RFFE)324を含んでもよく、これらは1つ以上のアンテナパネル326を含むか、又はこれに接続してもよい。簡潔には、送信回路機構318は、デジタル-アナログ変換器、ミキサ、中間周波数(IF)コンポーネントなどを含んでもよく、受信回路機構320は、アナログ-デジタル変換器、ミキサ、IFコンポーネントなどを含んでもよく、RF回路機構322は、低雑音増幅器、電力増幅器、電力追跡コンポーネントなどを含んでもよく、RFFE324は、フィルタ(例えば、サーフェス/バルク音響波フィルタ)、スイッチ、アンテナチューナ、ビームフォーミングコンポーネント(例えば、位相アレイアンテナコンポーネント)などを含んでもよい。送信回路機構318、受信回路機構320、RF回路機構322、RFFE324、及びアンテナパネル326のコンポーネントの選択及び配置(一般的に「送信/受信コンポーネント」と呼ばれる)は、例えば、通信がTDM又はFDMであるか、mmWaveかサブ6GHz周波数であるかなど、特定の実装の詳細に固有のものであってもよい。いくつかの実施形態では、送信/受信コンポーネントは、複数の並列送信/受信チェーンに配置されてもよく、同じ又は異なるチップ/モジュール配設されるなどであってもよい。
【0089】
いくつかの実施形態では、プロトコル処理回路機構314は、送信/受信コンポーネントのための制御機能を提供する制御回路機構(図示せず)の1つ以上のインスタンスを含んでもよい。
【0090】
UE受信は、アンテナパネル326、RFFE324、RF回路機構322、受信回路機構320、デジタルベースバンド回路機構316、及びプロトコル処理回路機構314によって、及びそれらを介して確立されてもよい。いくつかの実施形態では、アンテナパネル326は、1つ以上のアンテナパネル326の複数のアンテナ/アンテナ要素によって受信される受信ビームフォーミング信号によって、AN304から送信を受信してもよい。
【0091】
UE送信は、プロトコル処理回路機構314、デジタルベースバンド回路機構316、送信回路機構318、RF回路機構322、RFFE324、及びアンテナパネル326によって、及びそれらを介して確立されてもよい。いくつかの実施形態において、UE302のコンポーネントは、アンテナパネル326のアンテナ素子によって放出される送信ビームを形成するためにされるデータに空間フィルタを適用してもよい。
【0092】
UE302と同様に、AN304は、モデムプラットフォーム330と結合されたホストプラットフォーム328を含んでもよい。ホストプラットフォーム328は、モデムプラットフォーム330のプロトコル処理回路機構334と結合されたアプリケーション処理回路機構332を含んでもよい。モデムプラットフォームは、さらに、デジタルベースバンド回路機構336、送信回路機構338、受信回路機構340、RF回路機構342、RFFE回路機構344、及びアンテナパネル346を含んでもよい。AN304のコンポーネントは、UE302の同様の名称のコンポーネントと同様、かつ実質的に交換可能であってもよい。上述のようにデータ送信/受信を実行することに加えて、AN304のコンポーネントは、例えば、無線ベアラ管理、上りリンク及び下りリンクのダイナミック無線リソース管理、及びデータパケットスケジューリングなどのRNC機能を含む様々な論理機能を実行してもよい。
【0093】
図4は、いくつかの例示的な実施形態による、機械可読又はコンピュータ可読媒体(例えば、非一時的な機械可読記憶媒体)から命令を読み取り、本明細書で議論された方法論のうちのいずれか1つ以上を実行することが可能なコンポーネントを例示するブロック図である。具体的には、
図4は、1つ以上のプロセッサ(又はプロセッサコア)410、1つ以上のメモリ/記憶デバイス420、及び1つ以上の通信リソース430を含むハードウェアリソース400の概略図を示し、これらの各々は、バス440又は他のインターフェース回路機構を介して通信可能に結合されてもよい。ノード仮想化(例えば、NFV)が利用される実施形態の場合、ハイパーバイザ402を実行して、ハードウェアリソース400を利用するための1つ以上のネットワークスライス/サブスライスのための実行環境を提供してもよい。
【0094】
プロセッサ410は、例えば、プロセッサ412及びプロセッサ414を含んでもよい。プロセッサ410は、例えば、中央処理ユニット(CPU)、縮小命令セットコンピューティング(RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、ベースバンドプロセッサなどのDSP、ASIC、FPGA、無線周波集積回路(RFIC)、別のプロセッサ(本明細書で議論されるものを含む)、又はそれらの任意の好適な組み合わせであってもよい。
【0095】
メモリ/記憶デバイス420は、メインメモリ、ディスクストレージ、又はそれらの任意の好適な組み合わせを含んでもよい。メモリ/記憶デバイス420は、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意のタイプの揮発性メモリ、不揮発性メモリ、又は半揮発性メモリを含んでもよいが、これらに限定されない。
【0096】
通信リソース430は、1つ以上の周辺デバイス404、1つ以上のデータベース406又はネットワーク408を介して他のネットワーク要素と通信するために、相互接続又はネットワークインターフェースコントローラ、コンポーネント、又は他の好適なデバイスを含んでもよい。例えば、通信リソース430は、(例えば、USB、Ethernetなどを介して結合するための)有線通信コンポーネント、セルラ通信コンポーネント、NFCコンポーネント、Bluetooth(登録商標)(又はBluetooth Low Energy)コンポーネント、Wi-Fiコンポーネント、及び他の通信コンポーネントを含んでもよい。
【0097】
命令450は、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は、少なくともいずれかのプロセッサ410に、本明細書で議論される方法論のいずれか1つ以上を実行させるための他の実行可能なコードを含んでもよい。命令450は、プロセッサ410(例えば、プロセッサのキャッシュメモリ内)、メモリ/記憶デバイス420、又はそれらの任意の好適な組み合わせのうちの少なくとも1つ内に、完全に又は部分的に常駐してもよい。さらに、命令450の任意の部分は、周辺デバイス404又はデータベース406の任意の組み合わせからハードウェアリソース400に転送されてもよい。したがって、プロセッサ410のメモリ、メモリ/記憶デバイス420、周辺デバイス404、及びデータベース406は、コンピュータ可読及び機械可読媒体の例である。
【0098】
1つ以上の実施形態に対して、前述の図のうちの1つ以上で概説されたコンポーネントのうちの少なくとも1つは、以下の例示的なセクションで概説されているように、1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成されてもよい。例えば、前述の図のうちの1つ以上に関連付けられるベースバンド回路機構は、以下に記載される例のうちの1つ以上に従って動作するように構成されてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、衛星、ネットワーク要素などに関連付けられた回路は、例示セクションで以下に記載される例のうちの1つ以上にしたがって動作するように構成されてもよい。
【0099】
「アプリケーション」という用語は、動作環境において一定の機能を達成するための、完全で展開可能なパッケージ、環境を指してもよい。「AI/MLアプリケーション」という用語などは、いくつかの人工知能(AI)/機械学習(ML)モデル及びアプリケーションレベルの記述を含むアプリケーションであってもよい。いくつかの実施形態では、AI/MLアプリケーションは、開示される態様のうち1つ以上を設定又は実装するために使用されてもよい。
【0100】
「機械学習」又は「ML」という用語は、アルゴリズム及び/又は統計モデルを実装するコンピュータシステムを使用して、明示的な命令を使用することなく、パターン及び推論に依存して、特定のタスクを実行することを指す。MLアルゴリズムは、サンプルデータ(「訓練データ」、「モデル訓練情報」など)に基づいて、数学モデル(「MLモデル」などと呼ばれる)を構築又は推定し、そのようなタスクを実行するように明示的にプログラムされることなく、予測又は判定を行う。一般に、MLアルゴリズムは、何らかのタスク及び何等かの性能測定に関する経験から学習するコンピュータプログラムであり、MLモデルは、MLアルゴリズムが1つ以上の訓練データセットで訓練された後に作成される任意のオブジェクト又はデータ構造であってもよい。訓練後、MLモデルを使用して新しいデータセットに対して予測を行ってもよい。「MLアルゴリズム」という用語は、「MLモデル」という用語とは異なる概念を指すが、本明細書において議論される用語は、本開示のために互換的に使用されてもよい。
【0101】
「機械学習モデル」、「MLモデル」などという用語はまた、ML支援ソリューションによって使用されるML方法及び概念を指してもよい。「ML支援ソリューション」は、動作中のMLアルゴリズムを使用して特定のユースケースに対処するソリューションである。MLモデルとしては、教師付き学習(例えば、線形回帰、k-最近傍(KNN)、ディシジョンツリーアルゴリズム、サポートマシンベクトル、ベイズアルゴリズム、アンサンブルアルゴリズムなど)、教師なし学習(例えば、K-meansクラスタリング、主成分分析(PCA)など)、強化学習(例えば、Q-学習、多重アーム帯域学習、ディープRLなど)、ニューラルネットワークなどを含む。実装に依存して、特定のMLモデルは、コンポーネントとして多くのサブモデルを有することができ、MLモデルは、すべてのサブモデルを一緒に訓練してもよい。別々に訓練されたMLモデルは、推論の間、MLパイプラインにおいて一緒にチェーンにされてもよい。「MLパイプライン」は、ML支援ソリューションに特有の機能性、機能、又は機能エンティティのセットであり、MLパイプラインは、データパイプライン、モデル訓練パイプライン、モデル評価パイプライン、及びアクターにおける1つ以上のデータソースを含んでもよい。「アクター」は、MLモデル推論の出力を使用して、ML支援ソリューションをホストするエンティティである。「ML訓練ホスト」という用語は、モデルの訓練をホストするネットワーク機能のようなエンティティを指す。「ML推論ホスト」という用語は、推論モード中にモデルをホストする、ネットワーク機能のようなエンティティを指す(これは、適用可能な場合には、モデルの実行とオンライン学習の両方を含む)。MLホストはアクターにMLアルゴリズムの出力を知らせ、アクターはアクションを決定する(「アクション」はML支援ソリューションの出力の結果としてアクターによって実行される)。「モデル推論情報」という用語は、推論を決定するためのMLモデルへの入力として使用される情報を指し、MLモデルを訓練するために使用されるデータ及び推論を決定するために使用されるデータは重複することがあるが、「訓練データ」及び「推論データ」は、異なる概念を指す。
【0102】
5G NR 3GPP技術仕様(TS)は、拡張モバイルブロードバンド(eMBB)及び新たに導入されたURLLCサービスを含む、様々な垂直市場とユースケースをサポートしている。LPWA(Low Power Wide Areaに対するサポート、及び超カバレッジ及び超長バッテリ寿命を目標とした超低複雑性/コストデバイスに対するユースケースが、 MTC(Category M UE)及びNB-IoT(Category NB UEs)によってサービスされることが期待されている。
【0103】
いくつかの態様において、開示された技術は、Rel-15 NR UEよりも低い複雑性及び電力消費レベルを有するNR UEのクラスをサポートし、産業無線センサネットワーク(IWSN)、特定のクラスのウェアラブル、及びビデオ監視のようなユースケースに対応し、現在のLPWAソリューションとNRにおけるeMBBソリューションとの間のギャップを埋めるために、また、比較的低度から中程度の参照(例えば、中央値)及びピークユーザスループット、低いデバイス複雑性、小さいデバイスフォームファクタ、及び比較的長いバッテリ寿命を必要とする関連ユースケースをサービスする現在展開されている帯域について、3.5G及び4G技術から5G(NR)技術への円滑な移行をさらに促進するために使用されてもよい。
【0104】
上記に向けて、現在規定されている5G NRフレームワークを使用して、ネットワークリソース利用、システムスペクトル効率、及び動作効率への悪影響を最小限に抑えながら、デバイスの複雑性と電力消費を制限するために必要な適応と強化を伴ってサービスされ得るRedCap(Reduced Capability)NR UE(User Equipment )のクラスが定義されることが期待されている。いくつかの態様では、RedCap UEは、周波数範囲1(FR1)バンドにおいて20MHzの最大UE BW、及びFR2バンドにおいて100MHzの最大UE BWをサポートしてもよい。
【0105】
開示された技術は、非RedCap UEとの共存及びRedCap UEに対するBW制限を考慮した、RRC_IDLE又はRRC_INACTIVEモードにおけるRedCap UEに対する帯域幅部分(BWP)動作のための方法を含む。特に、開示された技術は、(a)RedCap UEに、アイドル/非アクティブモードにおおいて少なくともいくつかの共通制御受信のために追加のDL BWPが提供され得るとき、(b)RedCap UEに、非RedCap UEとは異なる初期UL BWPの別個の設定が提供され得るとき、及び(c)RedCap UEに、RRC_IDLE/INACTIVEモードにおいてPEI(Paging Early Indication)又はTRS/CSI-R設定が設定されるときに、RedCap UEのためのBWP設定及び動作のための方法を含む。
【0106】
システム情報ブロック1(SIB1)及びSIBx(x>1)受信
SIB1及びSIBx(x>1)の受信は、RedCap及び非RedCap UEに対して共通であり得、マスタ情報ブロック(MIB)によって定義されるCORESET#0内に限定され得る。
【0107】
RedCap UEのためのページング又はランダムアクセスのための別個のCORESET及びDL BWP
図5は、いくつかの態様による、例示的な別個の初期下りDLBWP設定オプションの
図500を例示する。より具体的には、
図5は、別個の初期DL BWP設定オプション(例えば、別個のiDL BWP A、B、C)の例を例示する。例示された「接続モードにおけるアクティブDL BWP X/Y」は、CD-SSBを完全には含まない接続モードにおけるRRC設定DL BWPsの例である。このような場合、RRC設定DL BWPにおいてSSBなしの動作のサポートを示さないUEは、それぞれ「アクティブDL BWP X/Y」においてNCD-SSBを期待する。
【0108】
図6は、いくつかの態様による、異なる初期UL BWPsにおけるRedCap及び非RedCap UEのための異なるPRACHリソースの
図600を例示する。
図6に例示されるように、別個の初期DL BWPがRedCap UEに提供されて、RedCap UEに対する初期DLとUL BWPとの間で中心周波を整合させてもよい。
図6では、「非RedCap UEに対する初期DL BWP」は、MIB表示「CORESET#0」に対応する。
【0109】
いくつかの態様では、ページングのためのPDCCHタイプ2共通サーチスペース(CSS)及び関連付けられるPDSCHは、プライマリセルのCORESET#0に制限され得る。
【0110】
いくつかの態様では、RedCap UEに対して、追加のDL BWP(「別個の初期DL BWP」とも呼ばれることがある)において定義されるCORESET#0Aと呼ばれる追加のCORESETが、主に共通制御のオフロード及びCORESET#0における輻輳を回避するために、SIB(System Information Block)メッセージを介して設定されてもよい。一例では、SIB1を介して設定され得る。
【0111】
いくつかの実施形態では、ページング監視のためのPDCCH及びPDSCHの受信のために、追加のCORESET(CORESET#0A)が、DL BWP#0Aと呼ばれる追加のDL BWP(「別個の初期DL BWP」とも呼ばれ得る)内に定義され得る。別の例として、DL BWP#0Aは、ランダムアクセス手順に関連付けられたいくつか又はすべてのPDCCH及びPDSCH、すなわち、Msg2を搬送するPDSCHのスケジューリング、Msg3を搬送するPUSCHの再送信のスケジューリング、及びMsg4を搬送するPDSCHのスケジューリングのための1つ以上のPDCCHタイプ1 CSSの受信に使用されてもよい。
【0112】
時分割二重(TDD)展開では、同じBWPインデックスを持つ、同時に設定されたDL及びUL BWPの中心周波数が同じになる可能性がある。一実施形態では、不対スペクトル(TDD展開)に対して、UEに、UL BWP#0の中心周波数とは異なる中心周波数を有し得るDL BWP#0Aが設定されてもよい。このような場合、UEは、DLにおける受信とULにおける送信との間の任意の遷移の間にRF周波数再チューニングを実行する必要がある。したがって、実施形態の一例では、現在(例えば、3GPP TS 38.211において)規定されているRx-to-Tx及びTx-to-Rxスイッチング時間に加えて、それぞれ、UEがDL物理チャネル又は信号を受信し得る最後のDLシンボルと、UEからの送信に使用される最初のULシンボルとの間、及びその逆の間に、周波数再チューニングギャップが規定されてもよい。周波数再チューニングギャップは、OS(OFDM Symbol)の数又は時間単位で定義されてもよい。
【0113】
いくつかの実施形態では、CSSで監視されるDCIフォーマット1_0のサイズは、CORESET#0がセル内に設定されているときにはCORESET#0のサイズに基づいて決定され、CORESET#0がセル内に設定されていない場合、初期DL BWPのサイズに基づいて決定される。ページング又はランダムアクセスの少なくとも1つに対してCORESET#0Aが提供されるRedCap UEに対しては、SI(System Information)メッセージの受信のためにSI-RNTIでスクランブルされたCRC(Cyclic Redundancy Check)を有するDCIフォーマット1_0を監視することも必要である。一般に、CORESET#0とCORESET#0Aのサイズが異なる場合、CSSにおけるDCIフォーマット1_0監視に2つのサイズをもたらす可能性がある。
【0114】
いくつかの実施形態では、ページング及びランダムアクセス関連DL受信のうちの1つ以上に対してCORESET#0Aが提供されるときに、周波数領域におけるCORESET#0Aのサイズは、CORESET#0に対するサイズと同じになるように制約されてもよい。その結果、DCIフォーマット1_0のサイズは、周波数領域においてCORESET#0又はCORESET#0Aのいずれかのサイズに従って決定されてもよい。さらに、DL BWP#0及びDL BWP#0Aの両方に同じサブキャリア間隔(SCS)が設定されると仮定されてもよいことに留意する。代替的には、CORESET#0とCORESET#0Aのサイズは異なってもよく、CSSにおいて監視されるDCIフォーマット1_0のサイズは、CORESET#0に従って決定されてもよい。この場合、一例では、ページングPDSCH、Msg2 PDSCH、又はMsg4 PDSCHのスケジューリングのために、CORESET#0のBWがCORESET#0AのBWより大きいか小さいかに応じて、Type 2 CSS(ページング用)又はType 1 CSS(ランダムアクセス関連PDSCH受信用)において受信されるDCIフォーマット1_0の受信ビットフィールドに対して、いくつかの最上位ビット(MSB)の打ち切りを適用するか、又は0パディング(ゼロを付加する)を適用することによって、FDRA(Frequency Domain Resource Allocation)がUEによって決定されてもよい。
【0115】
いくつかの態様では、ページング受信のためにCORESET#0A、DL BWP#0Aが設定されるときに、及びRRC_CONNECTEDモードにあるときに、CORESET#0AのすべてのPR BがUEのアクティブDL BWP内に含まれ、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有する限り、UEは、CORESET#0AにおいてPDCCHタイプ2 CSS(pagingSearchSpaceによって示される)を監視することが期待されてもよい。
【0116】
いくつかの実施形態では、RRC_CONNECTEDモードにあるときに、PDCCHタイプ1 CSS(ra-SearchSpaceによって示される)が、CORESET#0の代わりにCORESET#0Aにマッピングするように示される場合、CORESET#0AのすべてのPRBがUEのアクティブDL BWP内に含まれ、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有する限り、UEは、CORESET#0AにおいてPDCCHタイプ1 CSS(ra-SearchSpaceによって示される)を監視することが期待されてもよい。
【0117】
いくつかの実施形態では、CORESET#0Aが提供されるときに、インデックス0Aを有するCORESETに対して、UEは、CORESETにおけるPDCCH受信のためのDM-RSアンテナポートが、TCI状態によって設定された1つ以上のDL RSとQCL-ed(quasi co-located)であると仮定してもよく、TCI状態は、もしあれば、CORESETに対するMAC CEアクティブ化コマンドによって示される。代替的には、CORESETに対するTCI状態を示すMAC CEアクティブ化コマンドが最新のランダムアクセス手順後に受信されない場合、競合なしランダムアクセス手順をトリガするPDCCH命令によって開始されない最新のランダムアクセス手順中にUEが識別したSS/PBCHブロック。
【0118】
いくつかの実施形態では、インデックス0Aを有するCORESETに対して、UEは、CORESETに対するMAC CEアクティブ化コマンドによって示されるTCI状態において「typeD」にセットされたqclTypeが設定されたCSI-RSが、SS/PBCHブロックによって提供されることを期待してもよい。UEが、TCI状態のうちの1つに対するMAC CEアクティブ化コマンドを受信する場合、UEは、スロットk+3Nスロットサブフレームμの後にある最初のスロットにおいてアクティブ化コマンドを適用し、kは、UEがアクティブ化コマンドを提供するPDSCHのためのHARQ-ACK情報を有するPUCCHを送信するであろうスロットであり、μは、PUCCHのためのSCS設定である。アクティブBWPは、アクティブ化コマンドが適用されるときに、スロット内のアクティブBWPとして定義される。
【0119】
いくつかの態様では、CORESET#0Aのための周波数領域におけるスパンは、別個の初期DL BWP(DL BWP#0A)のためのものと同じである。代替的には、CORESET#0Aのための周波数領域におけるスパンは、DL BWP#0Aのための周波数領域におけるスパンよりも小さくてもよい(すなわち、その適切なサブセット)。
【0120】
いくつかの実施形態では、RedCap UEは、DL BWP#0Aにもページング受信のためのタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して設定される別個の初期DL BWP(DL BWP#0A)において、SSB(Synchronization Signal Block)の設定を期待してもよく、SSB周期性及びインデックス付けは、キャンピングセル又はサービングセルのためのセル定義SSB(CD-SSB)と同一であるが、周波数領域においてNR周波数ラスタから非0オフセットで位置する。
【0121】
代替的には、いくつかの態様では、SSB周期性は、CD-SSBの周期性と異なっていてもよい。さらなる例では、CD-SSBと比較して同じか又はより長い周期性値に対して、別個の初期DL BWPにおけるSSB機会は、CD-SSBに対するSSB機会と同じか、又はその適切なサブセットであってもよい。
【0122】
別の実施形態では、SSBなしのアクティブDL BWPにおける動作をサポートすることができないRedCap UEは、RRC_CONNECTED状態にあるときに、アクティブDL BWP内に(1)CD-SSB、又は(2)別個の初期DL BWP(DL BWP#0A)内に設定されたSSB、又は(3)非セル定義SSBの別個の設定のうちのいずれかが設定されると期待してもよい。
【0123】
いくつかの実施形態では、RedCap UEは、DL BWP#0Aにもページング受信のためのタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して設定される別個の初期DL BWP(DL BWP#0A)において、RMSI(Remaining Minimum System Information)及びOSI(Other System Information)のためのタイプ0及びタイプ0Aのための設定及びSSB(Synchronization Signal Block)の設定をそれぞれ期待してもよく、SSB周期性及びインデックス付けは、キャンピングセル又はサービングセルのためのセル定義SSB(CD-SSB)と同一であるが、周波数領域においてNR同期ラスタから非0オフセットで位置する。したがって、DL BWP#0AにおけるSSBもRMSIと関連付けられてもよいが、このようなSSBは、同期ラスタ上に位置していないため、セル定義SSB(CD-SSB)として解釈されなくてもよい。
【0124】
いくつかの態様では、RedCap UEに、CORESET#0に対して定義されたものと同じ監視機会(MO)を有するタイプ0又は0A PDCCH CSSの設定が提供されてもよい。代替的には、別個の初期DL BWPにおけるCORESET#0Aにおけるタイプ0/0A PDCCH CSSセットに対するMOは、CORESET#0におけるタイプ0/0A PDCCH CSSセットに対する監視機会とは独立して、RedCap UEに提供されてもよい。さらなる例では、タイプ0 PDCCH CSSのための設定のシグナリングは、MIBによって定義されるCORESET#0のためのMIB(Master Information Block)シグナリングを介して使用される4ビットを使用してUEに提供される。別の例では、RedCap UEは、CORESET#0と同じSI(System Information)監視ウィンドウ設定を仮定してもよく、これは、時間オフセット、持続時間、及び周期性を含む。代替的には、SI監視ウィンドウ設定は、SIB1を介してUEに別個に提供されてもよく、CORESET#0に対するものとは異なってもよい。
【0125】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)におけるSSBとCORESET#0Aとの間の多重化は、CD-SSBとCORESET#0との間で使用されるのと同じ多重化パターンに従ってもよい。代替的には、RedCap UEに、SIB1シグナリングを介して、別個の初期DL BWPにおけるSSBとCORESET#0Aとの間に多重化パターンが提供され、使用されるパターンは、SSB-CORESET#0多重化パターンとは独立してもよい。
【0126】
いくつかの実施形態では、RedCap UEは、ページング監視のための強化されたページング受信及びPEI(Paging Early Indication)が設定されるときに、DL BWP#0Aにもページング受信のためのタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して設定される別個の初期DL BWP(DL BWP#0A)において、PEIの設定及びSSB(Synchronization Signal Block)の設定が提供されると期待してもよく、SSB周期性及びインデックス付けは、キャンピングセル又はサービングセルのためのセル定義SSB(CD-SSB)と同一であるが、周波数領域においてNR同期ラスタから非0オフセットで位置する。
【0127】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)においてSSB設定が提供されるRedCap UEに、SIB1シグナリングを介してSSBの周波数位置が提供されてもよい。実施形態の一例では、UEに、SSBのための開始(最低)PRBインデックスが提供されてもよく、PRBインデックスは、(1)CRB(Common Resource Block)グリッド、又は(2)DL BWP#0A内でインデックス付けされたPRBのセット内で定義されること(すなわち、DL BWP#0Aの最低PRBからのPRBの数における周波数オフセットの表示)、又は(3)CORESET#0Aの最低PRBからのPRBの数における周波数オフセットの表示のうちの1つに基づいてもよい。
【0128】
いくつかの実施形態では、UEは、任意選択で、SIB1を介して、FR1に対して0~23の範囲を有する15kHzのサブキャリア間隔(SCS)におけるサブキャリア単位のオフセット(kSSB DLBWP0A)、又はFR2に対してそれぞれ0~11の範囲を有するCORESET#0(DL BWP#0)によって定義された初期DL BWPに対するSCSにおけるサブキャリア単位のオフセットがそれぞれ提供されてもよく、オフセットはPRBグリッドに関して定義される。代替的には、提供されない場合、UEは、別個の初期DL BWP(DL BWP#0A)において送信された非CD-SSBに対してサブキャリアレベルオフセットの値を0と仮定してもよい。
【0129】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)においてSSB構成が提供されるRedCap UEは、同じSSBインデックスを有するSSBがQCL-ed(Quasi-Co-Located)であると仮定してもよい。言い換えれば、UEは、SS/PBCHバーストセット周期性と共に繰り返される同じインデックスを有するSS/PBCHブロックの送信に使用されるアンテナポートは、空間、平均利得、遅延、及びドップラーパラメータに関して疑似コロケーションにあると仮定してもよい。デフォルトでは、UEは、異なるインデックスを有するSSBの送信に使用されるアンテナポートが、空間、平均利得、遅延、及びドップラーパラメータに関して疑似コロケーションにあると仮定しなくてもよい。
【0130】
いくつかの態様では、別個の初期DL BWP(DL BWP#0A)が提供されるRedCap UEは、CORESET#0AにおけるPDCCHのDMRS及びタイプ0/0A/1/2 PDCCH CSSセット又は関連付けられたPDSCHの1つ以上の受信のためのPDSCHのDMRSが、対応するCD-SSBとQCL-ed(Quasi-Co-Located)にあると仮定してもよく、CD-SSBインデックスへのマッピングは、CORESET#0に対するマッピングと同じであるか、又はSIB1シグナリングを介して明示的に定義される。
【0131】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)が提供されるRedCap UEは、非CD-SSBが別個の初期DL BWP(DL BWP#0A)内に構成されている場合、CORESET#0AにおけるPDCCHのDMRS及びタイプ0/0A/1/2 PDCCH CSSセット又は関連付けられたPDSCHの1つ以上の受信のためのPDSCHのDMRSが、対応する非CD-SSBとQCL-ed(Quasi-Co-Located)にあると仮定してもよく、CD-SSBインデックスへのマッピングは、CORESET#0に対するマッピングと同じであるか、又はSIB1シグナリングを介して明示的に定義される。
【0132】
CORESET#0A/DL BWP#0Aが提供されるRedCap UEに対するRRC_IDLE/RRC_INACTIVEモードにおけるPEI及びTRS/CSI-RS
いくつかの態様では、CORESET 0A/DL BWP 0Aが設定されたUEに、ページング早期表示(PEI)機能がさらに設定されてもよく、PEIは、ページングメッセージ受信のために1つ以上の後続のPOを監視するかどうかをUEに示す。一実施形態では、UEは、BWP 0又は0Aのいずれかであり得るデフォルトDL BWPにおいてPEIのみを監視してもよい。代替的には、UEは、監視時にアクティブであるDL BWPにおいてPEIを監視することができる。別の実施形態では、UEは、ページング受信のためにタイプ2 PDCCH CSSを監視するように構成されている同じCORESET又はDL BWPにおいてPEIを監視するように構成されてもよい。
【0133】
いくつかの実施形態では、UEは、第1のDL BWPにおいてPEIを監視してもよく、PEIがUEにPOを監視するように示す場合、UEは、第1のDL BWPとは異なり得る第2のDL BWPにおいてページングメッセージ(ページングDCI及び/又はページングPDSCH)を受信してもよい。実施形態の一例では、UEは、第1及び第2のDL BWPを識別するために、SIBx(x=1,2,…)などの上位レイヤシグナリングによって設定されてもよい。実施形態の別の例では、PEIは、UEがページングメッセージを受信することを期待するDL BWPインデックスを示してもよく、これは、PEIが受信されたDL BWPと同じか、又は異なり得る。上記の例において、PEIは、シーケンスベースの送信又はPDCCHベースの送信であり得る。一実施形態では、PEI及びPOが異なるBWPにおいて監視される場合、UEは、最後の有効なPEI監視機会とPOの開始との間に最小の時間ギャップを観測することを期待してもよい。一例では、最小時間ギャップは、(例えば、アクティブDL BWP又は参照DL BWPのヌメロロジに基づいて)スロット又はミリ秒で表現され得る。
【0134】
いくつかの実施形態では、UEは、アイドル/非アクティブモードにおいてTRS/CSI-RS機会を有するSIBxシグナリングによって設定され得、これは、時間/周波数トラッキング、AGC、及び/又はセル測定のために使用され得る。一実施形態では、TRS/CSI-RS機会は、UEがページング受信を監視するように構成されているDL BWPにおいて設定されてもよい。別の実施形態では、TRS/CSI-RS機会は、CORESET#0によって定義されたDL BWP#0において設定されてもよい。
【0135】
いくつかの実施形態では、TRS/CSI-RS機会は、BWP 0又はBWP 0Aのいずれかであり得る任意のアクティブDL BWPにおいて監視され得、アクティブDL BWP外でTRS/CSI-RSを受信することは期待されない。これは、設定された機会でのTRS/CSI-RSのBWが、BWP 0又は0Aのいずれかであり得る初期DL BWP又はアクティブDL BWPによって制限されなくてもよいことを示唆する。代替的には、UEは、BWP 0又はBWP 0Aのいずれかであり得るデフォルトBWPにおいてTRS/CSI-RSのみを監視してもよい。いくつかの態様では、UEに、BWP 0又はBWP 0A設定の一部として、対応するBWPがアクティブであるときにTRS/CSI-RS機会を監視するかどうかに関するパラメータが提供されてもよい。
【0136】
いくつかの実施形態では、UEに、TRS/CSI-RS機会に対する可用性表示が提供されてもよく、可用性表示は、UEに対して、設定された機会においてTRS/CSI-RSが送信されるかどうかを通知する。一実施形態では、可用性表示は、例えば、BWP 0又はBWP 0AであるDL BWPに固有であり得る。代替的には、可用性表示は、一般に、任意の設定されたDL BWPに適用されてもよく、UEは、任意のアクティブなDL BWPにおいて、TRS/CSI-RS機会が使用可能であると示されると、TRS/CSI-RS機会を監視する。
【0137】
いくつかの実施形態では、TRS/CSI-RS送信のヌメロロジは、アクティブDL BWPと同じであると仮定され得、このアクティブDL BWPは、BWP 0又はBWP0Aであり得るか、又は参照ヌメロロジに基づき得る。例えば、参照ヌメロロジは、TRS/CSI-RS設定の一部として示され得る。参照ヌメロロジは、BWO 0又は0Aのヌメロロジと同じか、又は異なり得る。代替的には、TRS/CSI-RSのヌメロロジは、アクティブDL BWPのヌメロロジにかかわらず、初期BWP 0と同じか、又はSSBと同じと仮定され得る。一例では、UEが、TRS/CSI-RSのヌメロロジがアクティブDL BWPのヌメロロジと異なると識別する場合、UEは、アクティブDL BWPと重複するTRS/CSI-RS機会を監視しないことを選択してもよい。代替的には、UEは、TRS/CSI-RSのヌメロロジにスイッチングし、アクティブDL BWPのヌメロロジに戻る前にそれらを監視してもよく、すなわち、UEは、ギャップを観察してもよい。
【0138】
いくつかの実施形態では、別個のTRS/CSI-RS設定が各DL BWP 0及び0Aに対して提供され得る。一例では、BWP IDがTRS/CSI-RS設定に含められ得、又はTRS/CSI-RS設定がBWP設定の一部として含められ得る。
【0139】
RedCap UEに対する初期UL BWP
いくつかの実施形態では、初期UL BWP(UL BWP#0と呼ばれる)は、SIB1メッセージを介してUEに提供される。RedCap UEと非RedCap UEとの間のUL BWP#0の別個の設定は、例えば、非RedCap UEに対するUL BWP#0が、ULにおける最大RedCap UE BW、すなわち、FR1における20 MHz、FR2における100 MHzより大きくなってもよい場合に有益であり得る。
【0140】
いくつかの実施形態では、TDD展開に対して、RedCap UEに対する初期DL BWP(DL BWP#0/#0A)及びUL BWP#0は、共通の中心周波数を共有しなくてもよい。このような場合、周波数再チューニングギャップは、それぞれ、DLからULへの遷移及びULからDLへの遷移の間のRx-to-Tx及びTx-to-Rxのスイッチング時間に加えて定義され得る。
【0141】
いくつかの実施形態では、RedCap UEに対して、UL BWP#0は、非RedCap UEに対するものとは別個に提供されてもよい。そのような設定は、例えばSIB1メッセージを介して明示的であり得るか、又は例えば非RedCap UE(Rel-15仕様に従う)に対するUL BWP#0の設定及び設定RACH機会(RO)、又はランダムアクセス応答(RAR)におけるULグラントで示されるようにMsg3 PUSCHのために示されたFDRAのうちの1つ以上に基づいて黙示的に決定され得る。
【0142】
いくつかの態様では、RedCap UEのための初期UL BWPを決定するためにROを使用するオプションは、後述されるオプションの組み合わせを使用して実現されてもよい。
【0143】
(a)初期UL BWPのための参照設定がUEに提供され、これは、BWPのための実際の周波数領域リソースを除いて、(initialUplinkBWPを使用して)初期UL BWP設定を介して提供され得るすべてのパラメータを提供する。一例では、RedCap UEのための初期UL BWPのための参照設定は、非RedCap UEのためにSIB1で提供されるものと同じであり得る。さらに、一例では、初期UL BWPのBWは、RedCap UEに対して別個に、例えば、初期UL BWPのための参照設定において示されたのと同じSCSを仮定するPRBの数で提供されてもよい。別の例では、RedCap UEのための初期UL BWPのBWは、(i)(initialUplinkBWPを介して)非RedCap UEに対してSIB1で設定された初期UL BWPのBW、及び(ii)対応する周波数範囲(FR)におけるRedCap UEに対する最大UE BWの最小値として決定されてもよい。
【0144】
(b)startPRB及びnumPRBの明示的な設定の代わりに、UEに、参照周波数位置が提供されてもよい。
【0145】
(b.1)一例では、参照周波数位置は、非RedCap UEに対してSIB1に設定されたUL BWP#0の開始PRBである。
【0146】
(b.2)別の例では、参照周波数位置は、BWP-UplinkCommonにおけるRACH-ConfigCommonを介して、非RedCap UEに対するSIB1における初期UL BWP設定の一部として提供されるROの開始PRBである。さらなる例では、複数のROが異なる周波数位置で提供される場合、初期UL BWPの開始PRBを定義するために使用されるROは、RedCap UEからのMsg1送信のために選択されたROに基づいて決定される。
【0147】
(b.3)いくつかの態様では、RACH設定は、RedCap及び非RedCap UEに別個に提供される。具体的には、「参照UL BWP#0」位置を提供するために、別個のUL BWP#0設定がSIB1を介してRedCap UEに提供されてもよい。別個のUL BWP#0設定は、RACH設定を含んでもよく、UEは、上述したように、RO位置に基づいて実際のUL BWP#0を決定してもよい。
【0148】
(b.4)さらに別の例では、参照周波数位置は、RARにおけるULグラントによってスケジューリングされたMsg3 PUSCHの開始PRBである。この場合、一例では、RedCap UEは、BWP-UplinkCommonにおけるRACH-ConfigCommonを介して設定され得るROを使用してMsg1を送信してもよい。代替的には、1つ以上のROは、ULキャリアに提供されたCRB(Common Resource Block)グリッドに関して示されたROに対する周波数リソースを有するRedCap UEに対して別々に設定されてもよい。さらに、一例では、Msg3 PUSCHのためのFDRAは、CRBグリッドに関して、又は(initialUplinkBWPを介して)非RedCap UEに対して設定された初期UL BWPのPRB#0に関して定義されてもよい。
【0149】
いくつかの実施形態では、初期UL BWPがRedCap UEによって決定されると、後続のUL送信は、Msg1送信、Msg3送信、Msg3再送信、及びMsg4 PDSCH(初期UL BWPがRedCap UEによって決定される初期アクセス中の段階に応じて)に応答したHARQ-ACKフィードバックを伴うPUCCH送信、MsgA PRACH及びPUSCH、2ステップRACHのためのMsgB PDSCHに応答したHARQ-ACKフィードバックを伴うPUCCH送信のうちの1つ以上を含んでもよく、RedCap UEのための初期UL BWPにおいて送信される。
【0150】
いくつかの実施形態では、アイドル/非アクティブモードにおいて、RedCap UEは、初期DL BWPが少なくともランダムアクセス関連監視のためにUEに設定される、すなわち少なくともタイプ1 PDCCH CSS設定を含み、PRACHリソースがRedCap UEに対して設定される初期UL BWP(RedCap UEに対して別個に設定され得る)が同じ中心周波数を共有することを期待してもよい。ここで、初期DL BWPは、MIB表示CORESET#0か、又はSIB1を介してUEに提供された別個の初期DL BWPのいずれかであり得る。言い換えれば、RedCap UEは、RRCアイドルモード又は非アクティブモードにおいて、RedCap UEに対して設定されるUL BWP#0が、初期DL BWPと同じ中心周波数を共有することを期待することができ、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視のためにタイプ2 PDCCH CSS候補を監視することが期待される。
【0151】
いくつかの実施形態では、RedCap UEは、RRCアイドルモード又は非アクティブモードにおいて、RedCap UEに対して設定されるUL BWP#0が、初期DL BWPと同じ中心周波数を共有することを期待することができ、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視のためにタイプ1 PDCCH CSS候補を監視することが期待される。
【0152】
いくつかの実施形態では、RedCap UEに、RRC非アクティブ状態にあるときにUL送信を可能にする4ステップ又は2ステップRACH(RA-SDT)上のSDT(Small Data Transmission)特徴が設定される場合、RedCap UEのためにRACH機会(RO)が設定される初期UL BWPは、4ステップ又は2ステップRACHのいずれかに基づいてSDTのトリガのために使用されてもよい。
【0153】
いくつかの実施形態では、RA-SDT特徴が設定されたRedCap UEは、RRC非アクティブモードにおいて、メッセージ1又はメッセージA送信のためのROがRedCap UEに設定される初期UL BWPが、初期DL BWPと同じ中心周波数を共有することを期待してもよく、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視するためにタイプ1 PDCCH CSS候補を監視することが期待される。
【0154】
別の実施形態では、RedCap UEに、RRC非アクティブ状態にあるときにUL送信を可能にするCG-SDT(Configured Grant PUSCH)上のSDT(Small Data Transmission)特徴が設定される場合、RedCap UEのためにRO(RACH Occasion)が設定される初期UL BWPに、RedCap UEがCG-SDTをトリガするためのCG PUSCH機会が設定され得る。 代替的には、RedCap UEに、RRC非アクティブ状態にあるときにUL送信を可能にするCG-SDT(Configured Grant PUSCH)上のSDT(Small Data Transmission)特徴が設定されるときに、RedCap UEのためにRO(RACH Occasion)が設定される初期UL BWPとは異なるUL BWPに、RedCap UEがCG CG-SDTをトリガするためのCG PUSCH機会が設定され得る。
【0155】
いくつかの実施形態では、CG-SDT特徴が設定されたRedCap UEは、RRC非アクティブモードにおいて、CG-SDTをトリガするためにCG PUSCHがRedCap UEに設定される初期UL BWPが、DL BWPと同じ中心周波数を共有することを期待してもよく、このDL BWPにおいて、RedCap UEは、CG-SDT送信に応答したgNBからのPDCCHを監視するためにPDCCHサーチスペース(SS)セット候補を監視することが期待される。この実施形態の一例では、RedCap UEが、CG-SDT送信に応答したgNBからのPDCCHを監視するためにPDCCHサーチスペース(SS)セット候補を監視することが期待されるDL BWPは、RedCap UEが、RA(Random Access)手順のためにタイプ1 PDCCH CSS候補を監視するために使用することが期待される初期DL BWPと同じである。
【0156】
いくつかの態様では、SDTに関する上記の実施形態及び例は、後者の特徴がサポートされる場合、RRCアイドルモードからのSDTの場合に拡張され得る。
【0157】
SIB設定DL BWP
いくつかの態様では、UEに、SIB1を介して初期DL BWPのための設定が提供されてもよく、この設定は、UEがRRC_CONNECTEDモードになると、CORESET#0によって定義された初期DL BWPを置き換える。すなわち、RRC_IDLEモード及びRRC_INACTIVEモードに対して、CORESET#0によって定義されたDL BWP#0がDL受信に使用される。
【0158】
いくつかの実施形態では、RedCap UEの導入に伴い、SIB1を介して提供される初期DL BWPの設定は、非RedCap UE及びRedCap UEに別々に適用されてもよい。一実施形態では、(initialDownlinkBWPにおける)SIB1を介して示される初期DL BWPの設定は、RedCap UEによって使用されなくてもよい。いくつかの態様では、インデックスは、非RedCap UEにのみ適用される。実施形態の一例では、一度RRC_CONNECTEDモードにあるRedCap UEは、初期DL BWPを定義するために、(i)CORESET#0によって定義された初期DL BWP、(ii)少なくともページング及びランダムアクセス関連のPDL受信のうちの1つ以上に対して、UEにサポートされ提供される場合、CORESET#0Aによって定義された初期DL BWP、並びに(iii)initialDownlinkBWPを介して非RedCap UEに対する初期DL BWP表示とは別個のSIBシグナリングを介してUEに任意選択で提供され得るRedCap UEに対する初期DL BWP設定のうちの1つ以上を仮定してもよい。
【0159】
実施形態の一例では、一度RRC_CONNECTEDモードにあるRedCap UEは、初期DL BWPを定義するために、(i)CORESET#0によって定義された初期DL BWP、(ii)少なくともページング及びランダムアクセス関連のPDL受信のうちの1つ以上に対して、UEにサポートされ提供される場合、CORESET#0Aによって定義された初期DL BWP、(iii)initialDownlinkBWPを介して非RedCap UEに対する初期DL BWP表示とは別個のSIBシグナリングを介してUEに任意選択で提供され得るRedCap UEに対する初期DL BWP設定、並びに(iv)非RedCap UEに対して示される初期DL BWP設定のうちの1つ以上を仮定してもよい。さらなる例では、対応するBWが最大RedCap UE BWを超えない場合、非RedCap UEに対して示される初期DL BWP設定が、RedCap UEによって使用される。したがって、RRC_CONNECTEDモードにおいて初期DL BWPを決定するための全体的なメカニズムの一例は、以下のように要約され得る。
【0160】
いくつかの態様では、接続モードにおけるRedCap UEに対する初期DL BWPは、(a)提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される初期DL BWPか、そうでなければ、(b)BWが最大RedCap UE BWを超えない場合、(initialDownlinkBWPを介して示される)非RedCap UEに対して設定される初期DL BWP、そうでなければ、(c)提供され示される場合、CORESET#0Aによって定義される初期DL BWP、そうでなければ、(d)CORESET#0によって定義される初期DL BWPによって与えられる。
【0161】
いくつかの実施形態において、別個のinitialDownlinkBWP設定を提供する代わりに、initialDownlinkBWPに使用されるDownlinkConfigCommonSIBを介して提供されるBWP-DownlinkCommon構造は、initialDownlinkBWP設定に関連付けられたlocationAndBandwidthパラメータを置き換えるためにRedCap UEが使用するように構成され得る新たな任意選択のパラメータlocationAndBandwidth-r17で拡張されてもよく、一方、他のパラメータは、initialDownlinkBWPを介して提供されるように使用される。
【0162】
いくつかの実施形態では、別個のDL BWP#0が、initialDownlinkBWPの別個の設定若しくはlocationAndBandwidthパラメータの別個の設定、又は0より大きいインデックスを有するUE設定に構成されたDL BWPを介してRedCap UEに提供される場合、UEは、別個に示されたDL BWP#0又は0より大きいインデックスを有するDL BWPが、少なくともDL BWP#0及びSSB及び/又はCORESET#0をカバーする周波数におけるスパンが最大RedCap UE BWを超え得る場合、サービングセルに対するSSB及びCORESET#0も含むことを期待する。別の例では、サービスセルのSSB及びCORESET#0を含むための別個のDL BWP#0の制約は、FR1帯のみに制限される。
【0163】
いくつかの実施形態では、RRC接続時に、SSB及び/又はCORESET#0がRedCap UEのアクティブDL BWP内に含まれておらず、アクティブDL BWP及びSSB及び/又はCORESET#0をカバーする周波数におけるスパンが最大RedCap UE BWを超え得る場合、SIB1におけるssbPositionsInBurst又はServingCellConfigCommonにおけるssb-PositionsInBurstによってUEに示されるスロットのシンボルのセット、SS/PBCHブロックの受信、及びUEがCORESET#0においてPDCCHを受信することが期待されるシンボルのセット、例えば、SI-RNTI、P-RNTI、RA-RNTIでスクランブルされたCRCを有するPDCCH及び任意の関連付けられたPDSCHのために、UEは、DL受信のためにCORESET#0によって定義された周波数領域に再チューニングすることが期待されてもよい。すなわち、CORESET#0は、シンボルのセットにおいてアクティブDL BWPを定義してもよいが、一方、DL BWP設定を介して提供される他のパラメータ(例えば、少なくともpdcch-ConfigCommon、pdsch-ConfigCommon)は、別個に提供されない場合、アクティブDL BWPのためのものから再利用されてもよい。代替的には、UEに、DL BWP設定、例えば、DL BWP#0、又はUEに、SSB及びCORESET#0のうちの1つ以上を含まないことがあるDL BWPが設定される場合、常にCORESET#0及びSSBを含む別のUE固有に設定されるDL BWPが提供されてもよい。不対スペクトルに対して、同じ中心周波数を共有するために、SSB及びCORESET#0を有するこのDL BWPに対応してUL BWPも定義されてもよい。複数のDL BWP設定、及びCORESET#0を含まない少なくとも1つのDL BWP設定があり得る場合、SSB及びCORESET#0を含み、かつ最小のBWPインデックスを有するDL BWP設定が選択される。
【0164】
DL BWP設定がアクティブDL BWP設定から部分的に再利用されるいくつかの実施形態では、CORESET#0又はCORESET#0によって定義された周波数領域及びSSBの外側のリソースにマッピングされ得るPDCCH監視又はPDSCH受信を除くすべてのパラメータが、アクティブDL BWP設定から再利用されてもよい。したがって、UEは、CORESET#0に設定及びマッピングされている場合、C-RNTI、CS-RNTI、MCS-C-RNTIのうちの1つでスクランブルされたCRCを有するPDCCH、又はタイプ3 PDCCH CSSサーチスペースセットのうちのいずれかを受信することが期待されてもよい。さらに、UEは、CORESET#0によって定義された周波数領域の外のDLチャネル又は信号で動的にスケジューリングされることが期待されなくてもよい。
【0165】
いくつかの実施形態では、周波数再チューニングギャップは、スロットのシンボルのセットの前後に定義されてもよく、SSB又はCORESET#0(それぞれ)がアクティブDL BWPに含まれなくてもよいときに、UEは、SSBを受信するか、又はCORESET#0においてDLにおいて受信することが期待される。一例では、周波数再チューニングギャップは、周波数再チューニングのみを説明し、Rel-15 NR仕様によって規定されたBWPスイッチング時間よりも短い。
【0166】
いくつかの実施形態では、CORESET#0におけるPDCCH及び任意の関連付けられたPDSCHの受信のために、シンボルのセットは、PDCCH監視機会(MO)に対応するシンボル、及び適用可能なPDSCH時間領域リソース割り当て(TDRA)テーブルによって定義されるようなCORESET#0において監視されるDCIフォーマットに対するPDCCHとPDSCHとの間のK0スロットオフセットの最大値とスケジューリングされたPDSCHの最大持続時間(例えば、通常(又は拡張)サイクリックプレフィックスに対して14(又は12)シンボル)の和に対応するスロット及びシンボルの最大数を含んでもよい。別の例では、シンボルのセットは、CORESET#0において監視するために、対応するSSB機会又はPDCCH MOを有する第1のスロットから開始するスロット数で定義されてもよい。
【0167】
いくつかの態様では、不対スペクトルに対して、UEは、アクティブUL BWPにおいて動作を継続してもよいが、一方、アクティブDL BWPとCORESET#0との間にBWPスイッチがあってもよく、したがって、周波数再チューニングギャップが、DL受信とUL送信との間、及びその逆に定義されてもよい。代替的には、不対スペクトルに対して、UEは、そのアクティブなUL BWPを、DLにおいてCORESET#0によって定義された周波数領域にスイッチングしてもよく、これは、UEのためにSIB1を介して提供されたUL BWP#0設定と一致してもしなくてもよい。
【0168】
開示された技術の例示的な態様は、以下の機能性のうちの1つ以上を含んでもよい。第5世代(5G)又は新しい無線(NR)システムのための無線通信のシステム及び方法は、RedCap(reduced capability)NR UEのサポートを含む。RedCap UEに対して、(a)ページング及びランダムアクセス手順の少なくとも1つに関連するPDCCH及び/又はPDSCHの受信のために、DL BWP#0に加えてDL BWP(DL BWP#0A)を定義する追加のCORESET(例えば、CORESET#0A)、及び(b)非RedCap UEのための初期UL BWP設定とは別の初期UL BWP設定のうちの1つ以上が設定されてもよい。
【0169】
いくつかの実施形態では、不対スペクトル(TDD展開)に対して、UEに、UL BWP#0の中心周波数とは異なる中心周波数を有し得るDL BWP#0Aが設定される。
【0170】
いくつかの実施形態では、現在[3GPP TS 38.211]規定されているRx-to-Tx及びTx-to-Rxスイッチング時間に加えて、それぞれ、UEがDL物理チャネル又は信号を受信し得る最後のDLシンボルと、UEからの送信に使用される最初のULシンボルとの間、及びその逆の間に、周波数再チューニングギャップが規定され、周波数再チューニングギャップは、OS(OFDM Symbol)の数又は時間単位で定義される。
【0171】
いくつかの実施形態では、ページング及びランダムアクセス関連DL受信のうちの1つ以上に対してCORESET#0Aが提供されるときに、周波数領域におけるCORESET#0Aのサイズは、CORESET#0に対するサイズと同じである。
【0172】
いくつかの実施形態では、ページング及びランダムアクセス関連DL受信のうちの1つ以上に対してCORESET#0Aが提供されるときに、CORESET#0及びCORESET#0Aのサイズは、異なってもよく、CSSにおいて監視されるDCIフォーマット1_0のサイズは、CORESET#0に従って決定される。
【0173】
いくつかの実施形態では、ページング及びランダムアクセス関連DL受信のうちの1つ以上に対してCORESET#0Aが提供されるときに、インデックス0Aを有するCORESETに対して、UEは、CORESETにおけるPDCCH受信のためのDM-RSアンテナポートが、TCI状態によって設定される1つ以上のDL RSと疑似コロケーションにあると仮定してもよく、TCI状態は、(もしあれば、)CORESETに対するMAC CEアクティブ化コマンドによって示され、あるいは、CORESETに対するTCI状態を示すMAC CEアクティブ化コマンドが最新のランダムアクセス手順後に受信されない場合、競合なしランダムアクセス手順をトリガするPDCCH命令によって開始されない最新のランダムアクセス手順中にUEが識別したSS/PBCHブロック。
【0174】
いくつかの実施形態では、PEIがページングメッセージ受信のために1つ以上の後続のPOを監視するかどうかをUEに示すページング早期表示(PEI)機能が設定されるときに、UEは、BWP 0又は0Aのいずれかであり得るデフォルトDL BWPにおいてPEIのみを監視してもよい。
【0175】
いくつかの実施形態では、PEIがページングメッセージ受信のために1つ以上の後続のPOを監視するかどうかをUEに示すページング早期表示(PEI)機能が設定されるときに、UEは、UEがページング受信を監視するCORESET又はDL BWPにおいてPEIのみを監視してもよい(すなわち、タイプ2 PDCCH CSSが設定される)。
【0176】
いくつかの実施形態では、PEIがページングメッセージ受信のために1つ以上の後続のPOを監視するかどうかをUEに示すページング早期表示(PEI)機能が設定されるときに、UEは、第1のDL BWPにおいてPEIを監視し、PEIがPOを監視するようにUEに示す場合、UEは、第1のDL BWPとは異なる第2のDL BWPにおいてページングメッセージ(ページングDCI及び/又はページングPDSCH)を受信する。
【0177】
いくつかの実施形態では、RRC_INACTIVE又はRRC_IDLEモードで使用するためにTRS又はCSI-RS機会が設定されるときに、TRS/CSI-RS機会は、DL BWPで構成され、そのDL BWPにおいて、UEは、ページング受信を監視するように設定される(すなわち、タイプ2 PDCCH CSSが設定される)。
【0178】
いくつかの実施形態では、RRC_INACTIVE又はRRC_IDLEモードで使用するためにTRS又はCSI-RS機会が設定されるときに、TRS/CSI-RS機会は、CORESET#0によって定義されるDL BWP#0において設定される。
【0179】
いくつかの実施形態では、RRC_INACTIVE又はRRC_IDLEモードで使用するためにTRS又はCSI-RS機会が設定されるときに、TRS/CSI-RS機会は、CORESET#0によって定義されたDL BWP#0及びDL BWP#0Aにも別個に設定される。
【0180】
いくつかの実施形態では、不対スペクトル(TDD展開)に対して、SIB1を介して初期UL BWP(UL BWP#0)が設定されるときに、RedCap UEに対する初期DL BWP(提供される場合、DL BWP#0又はDL#0A)及びUL BWP#0は、共通の中心周波数を共有しなくてもよい。
【0181】
いくつかの態様では、(initialDownlinkBWPにおける)SIB1を介して示される初期DL BWPの設定は、RedCap UEによって使用されなくてもよい。
【0182】
いくつかの実施形態では、RedCap UEに対して、RRC_CONNECTEDモードにあるときに、初期DL BWPを定義するために、(i)CORESET#0によって定義された初期DL BWP、(ii)少なくともページング及びランダムアクセス関連のPDL受信のうちの1つ以上に対して、UEにサポートされ提供される場合、CORESET#0Aによって定義された初期DL BWP、並びに(iii)initialDownlinkBWPを介して非RedCap UEに対する初期DL BWP表示とは別個のSIBシグナリングを介してUEに任意選択で提供され得るRedCap UEに対する初期DL BWP設定のうちの1つ以上が使用されてもよい。
【0183】
いくつかの実施形態では、RedCap UEに対して、RRC_CONNECTEDモードにあるときに、初期DL BWPを定義するために、(i)CORESET#0によって定義された初期DL BWP、(ii)少なくともページング及びランダムアクセス関連のPDL受信のうちの1つ以上に対して、提供される場合、CORESET#0Aによって定義された初期DL BWP、並びに(iii)initialDownlinkBWPを介して非RedCap UEに対する初期DL BWP表示とは別個のSIBシグナリングを介してUEに任意選択で提供され得るRedCap UEに対する初期DL BWP設定のうちの1つ以上が仮定される。
【0184】
いくつかの実施形態では、RedCap UEに対して、RRC_CONNECTEDモードにあるときに、初期DL BWPを定義するために、(i)CORESET#0によって定義された初期DL BWP、(ii)少なくともページング及びランダムアクセス関連のPDL受信のうちの1つ以上に対して、提供される場合、CORESET#0Aによって定義された初期DL BWP、(iii)initialDownlinkBWPを介して非RedCap UEに対する初期DL BWP表示とは別個のSIBシグナリングを介してUEに任意選択で提供され得るRedCap UEに対する初期DL BWP設定、並びに(iv)非RedCap UEに対して示される初期DL BWP設定のうちの1つ以上が仮定される。
【0185】
いくつかの実施形態では、接続モードにおけるRedCap UEに対する初期DL BWPは、提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される初期DL BWPか、そうでなければ、BWが最大RedCap UE BWを超えない場合、(initialDownlinkBWPを介して示される)非RedCap UEに対して設定される初期DL BWP、そうでなければ、提供され示される場合、CORESET#0Aによって定義される初期DL BWP、そうでなければ、ORESET#0によって定義される初期DL BWPによって与えられる。
【0186】
いくつかの実施形態において、initialDownlinkBWPに使用されるDownlinkConfigCommonSIBを介して提供されるBWP-DownlinkCommon構造は、initialDownlinkBWP設定に関連付けられたlocationAndBandwidthパラメータを置き換えるためにRedCap UEが使用するように構成され得る任意選択のパラメータlocationAndBandwidth-r17で拡張され、一方、他のパラメータは、initialDownlinkBWPを介して提供されるように使用される。
【0187】
いくつかの実施形態では、別個のDL BWP#0が、initialDownlinkBWPの別個の設定若しくはlocationAndBandwidthパラメータの別個の設定、又は0より大きいインデックスを有するUE設定に構成されたDL BWPを介してRedCap UEに提供される場合、UEは、別個に示されたDL BWP#0又は0より大きいインデックスを有するDL BWPが、少なくともDL BWP#0及びSSB及び/又はCORESET#0をカバーする周波数におけるスパンが最大RedCap UE BWを超え得る場合、サービングセルに対するSSB及びCORESET#0も含むことを期待する。
【0188】
いくつかの実施形態では、RRC接続時に、SSB及び/又はCORESET#0がRedCap UEのアクティブDL BWP内に含まれておらず、アクティブDL BWP及びSSB及び/又はCORESET#0をカバーする周波数におけるスパンが最大RedCap UE BWを超え得る場合、SIB1におけるssbPositionsInBurst又はServingCellConfigCommonにおけるssb-PositionsInBurstによってUEに示されるスロットのシンボルを含むシンボルのセット、SS/PBCHブロックの受信、及びUEがCORESET#0においてPDCCHを受信することが期待されるシンボルを含むシンボルのセット、例えば、SI-RNTI、P-RNTI、RA-RNTIでスクランブルされたCRCを有するPDCCH及び任意の関連付けられたPDSCHのために、UEは、DL受信のためにCORESET#0によって定義された周波数領域に再チューニングすることが期待されてもよい。
【0189】
いくつかの実施形態では、UEに、SSB及びCORESET#0のうちの1つ以上を含まないことがあるDL BWPが設定される場合、UEに、常にCORESET#0及びSSBを含むDL BWP設定が提供される。
【0190】
いくつかの実施形態では、DL BWP設定は、DL BWP#0、又は別のUE固有に設定されたDL BWPである。
【0191】
いくつかの実施形態では、複数のDL BWP設定、及びSSB又はCORESET#0を含まない少なくとも1つのDL BWP設定の場合に、SSB及びCORESET#0を含み、かつ最小のBWPインデックスを有するDL BWP設定が選択される。
【0192】
いくつかの実施形態では、CORESET#0Aのための周波数領域におけるスパンは、別個の初期DL BWP(DL BWP#0A)のためのものと同じである。
【0193】
いくつかの実施形態では、CORESET#0Aのための周波数領域におけるスパンは、DL BWP#0Aのための周波数領域におけるスパンよりも小さくてもよい(すなわち、その適切なサブセット)。
【0194】
いくつかの実施形態では、 UEは、DL BWP#0Aにもページング受信のためにタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して設定される別個の初期DL BWP(DL BWP#0A)において、SSB(Synchronization Signal Block)の設定を期待してもよく、SSB周期性及びインデックス付けは、キャンピングセル又はサービングセルのためのセル定義SSB(CD-SSB)と同一であるが、周波数領域においてNR周波数ラスタから非0オフセットで位置する。
【0195】
いくつかの実施形態では、UEは、DL BWP#0Aにもページング受信のためにタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して構成される別個の初期DL BWP(DL BWP#0A)において、RMSI(Remaining Minimum System Information)及びOSI(Other System Information)のためのタイプ0及び0Aのための設定及びSSB(Synchronization Signal Block)の設定を期待してもよく、SSBの周期性及びインデックス付けは、キャンピングセル又はサービスセルのためのCD-SSB(Cell Defining SSB)と同一であるが、周波数領域においてNR同期ラスタから非0オフセットで位置する。
【0196】
いくつかの態様では、UEに、CORESET#0に対して定義されたものと同じ監視機会(MO)を有するタイプ0又は0A PDCCH CSSの設定が提供されてもよい。
【0197】
いくつかの態様では、UEは、CORESET#0におけるタイプ0/0A PDCCH CSSセットに対する監視機会とは別個に提供される、別個の初期DL BWPにおけるCORESET#0Aにおけるタイプ0/0A PDCCH CSSセットに対するPDCCH MO(Monitoring Occasion)の設定が提供される。
【0198】
いくつかの実施形態では、タイプ0 PDCCH CSSのための設定のシグナリングは、MIBによって定義されるCORESET#0のためのMIB(Master Information Block)シグナリングを介して使用される4ビットを使用してUEに提供される。
【0199】
いくつかの実施形態では、 UEは、CORESET#0と同じSI(System Information)監視ウィンドウ設定を仮定してもよく、これは、時間オフセット、持続時間、及び周期性を含む。
【0200】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)におけるSSBとCORESET#0Aとの間の多重化は、CD-SSB(Cell Defining-SSB)とCORESET#0との間で使用されるのと同じ多重化パターンに従ってもよい。
【0201】
いくつかの態様では、UEに、SIB1シグナリングを介して、別個の初期DL BWPにおけるSSBとCORESET#0Aとの間の多重化パターンが提供される。
【0202】
いくつかの実施形態では、UEは、ページング監視のための強化されたページング受信及びPEI(Paging Early Indication)が設定されるときに、DL BWP#0Aにもページング受信のためのタイプ2 PDCCH CSSが設定される場合、RedCap UEのためのランダムアクセス関連DL受信のためのタイプ1 PDCCH CSSがSIBシグナリングを介して設定される別個の初期DL BWP(DL BWP#0A)において、PEIの設定及びSSB(Synchronization Signal Block)の設定が提供されると期待してもよく、SSB周期性及びインデックス付けは、キャンピングセル又はサービングセルのためのセル定義SSB(CD-SSB)と同一であるが、周波数領域においてNR同期ラスタから非0オフセットで位置する。
【0203】
いくつかの態様では、別個の初期DL BWP(DL BWP#0A)においてSSB設定が提供されるRedCap UEに、SIB1シグナリングを介してSSBの周波数位置が提供されてもよい。
【0204】
いくつかの実施形態のでは、UEに、SSBのための開始(最低)PRBインデックスが提供され、PRBインデックスは、(1)CRB(Common Resource Block)グリッド、又は(2)DL BWP#0A内でインデックス付けされたPRBのセット内で定義されること(すなわち、DL BWP#0Aの最低PRBからのPRBの数における周波数オフセットの表示)、又は(3)CORESET#0Aの最低PRBからのPRBの数における周波数オフセットの表示のうちの1つに基づく。
【0205】
いくつかの態様では、UEは、任意選択で、SIB1を介して、FR1に対して0~23の範囲を有する15kHzのサブキャリア間隔(SCS)におけるサブキャリア単位のオフセット(kSSB DLBWP0A)、又はFR2に対してそれぞれ0~11の範囲を有するCORESET#0(DL BWP#0)によって定義された初期DL BWPに対するSCSにおけるサブキャリア単位のオフセットがそれぞれ提供されてもよく、オフセットはPRBグリッドに関して定義され、提供されない場合、UEは、別個の初期DL BWP(DL BWP#0A)において送信された非CD-SSBに対してサブキャリアレベルオフセットの値を0として仮定してもよい。
【0206】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)においてSSB設定が提供されたUEは、同じSSBインデックスを有するSSBがQCL-ed(Quasi-Co-Located)にあると仮定してもよく、すなわち、UEは、SS/PBCHバーストセット周期性で繰り返される同じインデックスを有するSS/PBCHブロックの送信に使用されるアンテナポートが、空間、平均利得、遅延、及びドップラーパラメータに関して疑似コロケーションにあると仮定してもよい。デフォルトでは、UEは、異なるインデックスを有するSSBの送信に使用されるアンテナポートが、空間、平均利得、遅延、及びドップラーパラメータに関して疑似コロケーションにあると仮定しなくてもよい。
【0207】
いくつかの実施形態では、SSBなしのアクティブDL BWPにおける動作をサポートすることができないRedCap UEは、RRC_CONNECTED状態にあるときに、アクティブDL BWP内に(1)CD-SSB、又は(2)別個の初期DL BWP(DL BWP#0A)内に設定されたSSB、又は(3)非セル定義SSBの別個の設定のうちのいずれかが設定されると期待してもよい。
【0208】
いくつかの実施形態では、別個の初期DL BWP(DL BWP#0A)が提供されたUEは、CORESET#0AにおけるPDCCHのDMRS及びタイプ0/0A/1/2 PDCCH CSSセットのうちの1つ以上の受信のためのPDSCH又は関連付けれられたPDSCHのDMRSが、対応するCD-SSBとQCL-ed(Quasi-Co-Located)にあり、CD-SSBインデックスへのマッピングは、CORESET#0に対するものと同じであるか、又はSIB1シグナリングを介して明示的に定義されると仮定してもよい。
【0209】
いくつかの態様では、別個の初期DL BWP(DL BWP#0A)が提供されたUEは、非CD-SSBが別個の初期DL BWP(DL BWP#0A)に設定されている場合、CORESET#0AにおけるPDCCHのDMRS及びタイプ0/0A/1/2 PDCCH CSSセットのうちの1つ以上の受信のためのPDSCH又は関連付けられたPDSCHのDMRSが、対応する非CD-SSBとQCL-ed(Quasi-Co-Located)にあり、CD-SSBインデックスへのマッピングは、CORESET#0に対するものと同じであるか、又はSIB1シグナリングを介して明示的に定義される。
【0210】
いくつかの実施形態では、アイドルモード又は非アクティブモードにおいて、UEは、RedCap UEに対して設定されるUL BWP#0が、初期DL BWPと同じ中心周波数を共有することを期待することができ、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視のためにタイプ2 PDCCH CSS候補を監視することが期待される。
【0211】
いくつかの実施形態では、アイドルモード又は非アクティブモードにおいて、UEは、RedCap UEに対して設定されるUL BWP#0が、初期DL BWPと同じ中心周波数を共有することを期待することができ、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視のためにタイプ1 PDCCH CSS候補を監視することが期待される。
【0212】
いくつかの態様では、4ステップ又は2ステップRACH(RA-SDT)上のSDT(Small Data Transmission)特徴が設定されるときに、RedCap UEのためにRACH機会(RO)が設定される初期UL BWPは、4ステップ又は2ステップRACHのいずれかに基づいてSDTのトリガのために使用され得る。
【0213】
いくつかの態様では、RA-SDT特徴が設定されたRedCap UEは、RRC非アクティブモードにおいて、メッセージ1又はメッセージA送信のためのROがRedCap UEに設定される初期UL BWPが、初期DL BWPと同じ中心周波数を共有することを期待してもよく、この初期DL BWPにおいて、RedCap UEは、ランダムアクセス手順の一部として監視するためにタイプ1 PDCCH CSS候補を監視することが期待される。
【0214】
いくつかの実施形態では、RedCap UEに、RRC非アクティブ状態にあるときにUL送信を可能にするCG-SDT(Configured Grant PUSCH)上のSDT(Small Data Transmission)特徴が設定される場合、RedCap UEのためにRO(RACH Occasion)が設定される初期UL BWPに、RedCap UEがCG-SDTをトリガするためのCG PUSCH機会が設定され得る。
【0215】
いくつかの実施形態では、CG-SDT特徴が設定されたときに、RRC非アクティブモードにおいて、CG-SDTをトリガするためにCG PUSCHがRedCap UEに設定される初期UL BWPが、DL BWPと同じ中心周波数を共有することを期待してもよく、このDL BWPにおいて、RedCap UEは、CG-SDT送信に応答したgNBからのPDCCHを監視するためにPDCCHサーチスペース(SS)セット候補を監視することが期待される。
【0216】
いくつかの態様では、CG-SDT特徴が設定されたときに、UEが、CG-SDT送信に応答したgNBからのPDCCHを監視するためにPDCCHサーチスペース(SS)セット候補を監視することが期待されるDL BWPは、UEが、RA(Random Access)手順のためにタイプ1 PDCCH CSS候補を監視するために使用することが期待される初期DL BWPと同じである。
【0217】
図7は、いくつかの態様による、発展型Node-B、次世代Node-B(gNB)(又は別のRANノード)、送受信ポイント(TRP)、アクセスポイント(AP)、無線局(STA)、移動局(MS)、ユーザ機器(UE)などの通信デバイスのブロック図を例示する。代替的な態様では、通信デバイス700は、スタンドアロンデバイスとして動作してもよく、又は他の通信デバイスに接続(例えば、ネットワーク接続)されてもよい。
【0218】
回路機構(例えば、処理回路機構)は、ハードウェア(例えば、単純な回路、ゲート、論理など)を含む、デバイス700の有形のエンティティに実装される回路の集合である。回路機構メンバーシップは、時間の経過につれて柔軟であってもよい。回路は、動作するときに特定の動作を単独又は組み合わせて実行してもよい部材を含む。一例では、回路のハードウェアは、特定の動作を実行するように、不変的に設計されてもよい(例えば、ハードワイヤード)。一実施形態では、回路機構のハードウェアは、特定の動作の命令を符号化するために物理的に(例えば、磁気的に、電気的に、不変質量粒子の移動可能な配置など)修正された機械可読媒体を含む、可変的に接続された物理コンポーネント(例えば、実行ユニット、トランジスタ、単純な回路など)を含んでもよい。
【0219】
物理コンポーネントを接続する際に、ハードウェア構成要素の基礎となる電気的特性は、例えば、絶縁体から導体に、又はその逆に変更される。命令は、組み込みハードウェア(例えば、実行ユニット又はローディングメカニズム)が可変接続を介して、ハードウェアにおいて回路機構の部材を作成して、動作の際に特定の動作の一部を実行することを可能にする。したがって、一例では、機械可読媒体要素は、回路機構の一部であるか、又はデバイスが動作しているときに回路機構の他のコンポーネントに通信可能に結合される。一例では、物理コンポーネントのいずれかが、複数の回路の複数の部材において使用されてもよい。例えば、動作中に、実行ユニットは、一時点で第1の回路機構の第1の回路において使用され、異なる時間において、第1の回路機構における第2の回路によって、又は第2の回路機構における第3の回路によって再利用されてもよい。デバイス700に関するこれらのコンポーネントの追加的な例は、以下のようである。
【0220】
いくつかの態様では、デバイス700は、スタンドアロンデバイスとして動作してもよく、又は他のデバイスに接続(例えば、ネットワーク接続)されてもよい。ネットワーク接続された展開では、通信デバイス700は、サーバ-クライアントネットワーク環境において、サーバ通信デバイス、クライアント通信デバイス、又はその両方として動作してもよい。一例では、通信デバイス700は、ピアツーピア(P2P)(又は他の分散)ネットワーク環境におけるピア通信デバイスとして作用してもよい。通信デバイス700は、UE、eNB、PC、タブレットPC、STB、PDA、携帯電話、スマートフォン、ウェブアプライアンス、ネットワークルータ、スイッチ若しくはブリッジ、又はその通信デバイスがとるべきアクションを指定する命令を(順次又は他の方法で)実行することが可能である任意の通信デバイスであってもよい。さらに、単一の通信デバイスのみが例示されているが、「通信デバイス」という用語は、クラウドコンピューティング、SaaS(software as a service)、及び他のコンピュータクラスタ設定など、本明細書で議論される任意の1つ以上の方法を実行するための命令のセット(又は複数のセット)を個別に又は併せて実行する任意の通信デバイスの集合も含むと解釈されるものとする。
【0221】
本明細書に記載されるように、例は、論理又は多数のコンポーネント、モジュール、又はメカニズムを含んでもよいし、それらに対して動作してもよい。モジュールは、特定の動作を実行することができる有形のエンティティ(例えば、ハードウェア)であり、一定の方式で設定又は配置されてもよい。一例では、回路は、特定の方法で(例えば、内部的に、又は他の回路などの外部エンティティに対して)、モジュールとして配置されてもよい。一例では、1つ以上のコンピュータシステム(例えば、スタンドアロン、クライアント若しくはサーバコンピュータシステム)又は1つ以上のハードウェアプロセッサの全体又は一部は、特定の動作を実行するために動作するモジュールとして、ファームウェア又はソフトウェア(例えば、命令、アプリケーション部分、又はアプリケーション)によって構成されてもよい。一例では、ソフトウェアは、通信デバイス可読媒体上に常駐してもよい。一例では、ソフトウェアは、モジュールの基礎となるハードウェアによって実行されるときに、ハードウェアに特定の動作を実行させる。
【0222】
したがって、「モジュール」という用語は、有形エンティティ、すなわち、物理的に構築されたか、具体的に構成され(例えば、ハードワイヤード)たか、又は一時的に(例えば、一過性的に)構成され(例えば、プログラムされ)て、特定の方法で動作するか、又は本明細書で記載される任意の動作の一部もしくは全部を実行するエンティティを包含すると理解される。モジュールが一時的に構成されている例を考えると、モジュールの各々は、いつ何時においてもインスタンス化される必要はない。例えば、モジュールがソフトウェアを用いて構成された汎用ハードウェアプロセッサを含む場合、汎用ハードウェアプロセッサは、異なる時間にそれぞれ異なるモジュールとして構成されてもよい。したがって、ソフトウェアは、ハードウェアプロセッサを、例えば、時間インスタンスにおいて特定のモジュールを構成し、異なる時間インスタンスにおいて異なるモジュールを構成するように構成してもよい。
【0223】
通信デバイス(例えば、UE)700は、ハードウェアプロセッサ702(例えば、中央処理ユニット(CPU)、グラフィック処理ユニット(GPU)、ハードウェアプロセッサコア、又はそれらの任意の組み合わせ)、メインメモリ704、スタティックメモリ706、及び記憶デバイス707(例えば、ハードドライブ、テープドライブ、フラッシュ記憶デバイス、又は他のブロック若しくは記憶デバイス)を含んでもよく、それらの一部又は全部は、インターリンク(例えば、バス)708を介して互いに通信してもよい。
【0224】
コンピュータシステム700は、ディスプレイデバイス710、英数字入力デバイス712(例えば、キーボード)、及びユーザインターフェース(UI)ナビゲーションデバイス714(例えば、マウス)をさらに含んでもよい。一例では、ディスプレイデバイス710、入力デバイス712、及びUIナビゲーションデバイス714は、タッチスクリーンディスプレイであってもよい。通信デバイス700は、追加的に、信号生成デバイス718(例えば、スピーカ)、ネットワークインターフェースデバイス720、及び、全地球測位システム(GPS)センサ、コンパス、加速度計、又は別のセンサなどの1つ以上のセンサ721を含んでもよい。通信デバイス700は、1つ以上の周辺デバイス(例えば、プリンタ、カードリーダなど)を通信又は制御するために、シリアル(例えば、ユニバーサルシリアルバ(USB))、パラレル、又は他の有線若しくは無線(例えば、赤外線(IR)、近接場通信(NFC)など)接続などの出力コントローラ728を含んでもよい。
【0225】
記憶デバイス707は、通信デバイス可読媒体722を含むことができ、その上に、本明細書に記載される技術又は機能のうちの任意の1つ以上によって具体化又は利用されるデータ構造又は命令(例えば、ソフトウェア)の1つ以上セットが記憶される。いくつかの態様では、プロセッサ702のレジスタ、メインメモリ704、スタティックメモリ706、及び/又は記憶デバイス707は、本明細書に記載される技術又は機能のうちのいずれか1つ以上によって具体化又は利用されるデータ構造又は命令724の1つ以上のセットが記憶されるデバイス可読媒体722であってもよく、又はこれを(完全に又は少なくとも部分的に)含んでもよい。一例では、ハードウェアプロセッサ702、メインメモリ704、スタティックメモリ706、又は大容量ストレージ716の1つ又は任意の組み合わせが、デバイス可読媒体722を構成してもよい。
【0226】
本明細書において使用される場合、「デバイス可読媒体」という用語は、「コンピュータ可読媒体」又は「機械可読媒体」と互換性がある。通信デバイス可読媒体722が単一の媒体として例示されているが、「通信デバイス可読媒体」という用語は、1つ以上の命令724を記憶するように構成された単一の媒体又は複数の媒体(例えば、集中型又は分散型データベース、及び/又は関連するキャッシュ及びサーバ)を含んでもよい。「通信デバイス可読媒体」という用語は、「機械可読媒体」又は「コンピュータ可読媒体」という用語を含み、通信デバイス700による実行のための命令(例えば、命令724)を記憶、符号化、又は搬送することが可能であり、かつ通信デバイス700に本開示の技術のうちのいずれか1つ以上を実行させるか、又はそのような命令によって使用されるか、若しくは関連付けられたデータ構造を記憶、符号化、又は搬送することが可能である任意の媒体を含んでもよい。非限定的な通信デバイス可読媒体の例としては、ソリッドステートメモリ、光媒体及び磁気媒体を含んでもよい。通信デバイス可読媒体の特定の例としては、半導体メモリデバイス(例えば、EPROM(Electrically Programmable Read-Only Memor)、EEPROM(Electrically Erasable Programmable Read-Only Memory))及びフラッシュメモリデバイスのような不揮発性メモリ、内部ハードディスク及び取り外し可能ディスクのような磁気ディスク、磁気光学ディスク、RAM(Random Access Memory)、並びにCD-ROM及びDVD-ROMディスクを含んでもよい。いくつかの例では、通信デバイス可読媒体は、非一時的な通信デバイス可読媒体を含んでもよい。いくつかの例では、通信デバイス可読媒体は、一時的な伝搬信号ではない通信デバイス可読媒体を含んでもよい。
【0227】
命令724は、さらに、多数の転送プロトコルのうちのいずれか1つを利用して、ネットワークインターフェースデバイス720を介して送信媒体を使用して、通信ネットワーク726を介して送信又は受信されてもよい。一例では、ネットワークインターフェースデバイス720は、通信ネットワーク726に接続するための1つ以上の物理的なジャック(例えば、イーサネット、同軸、又は電話ジャック)又は1つ以上のアンテナを含んでもよい。一例では、ネットワークインターフェースデバイス720は、SIMO(single-input-multiple-output)、MIMO、又はMISO(multiple-input-single-output)技術のうちの少なくとも1つを使用して、無線通信するための複数のアンテナを含んでもよい。いくつかの例では、ネットワークインターフェースデバイス720は、マルチプルユーザMIMO技術を使用して、無線通信してもよい。
【0228】
「送信媒体」という用語は、機械による実行のための命令を記憶、符号化、又は搬送することが可能である任意の無形媒体を含み、デジタルもしくはアナログ通信信号又はそのようなソフトウェアの通信を容易にするための別の無形媒体を含むと解釈されるものとする。この点において、本開示の文脈における送信媒体は、デバイス可読媒体である。
【0229】
「機械可読媒体」、「コンピュータ可読媒体」及び「デバイス可読媒体」という用語は、同じものを意味し、本開示において互換的に使用されてもよい。これらの用語は、機械記憶媒体と送信媒体の両方を含むように定義される。したがって、これらの用語は、記憶デバイス/媒体及び搬送波/変調されたデータ信号の両方を含む。
【0230】
主題の記載された実装は、以下に例として例示するように、1つ以上複数の特徴を単独でか、又は組み合わせて含むことができる。
【0231】
例1は、5G NR(Fifth Generation New Radio)ネットワークにおいて動作するように構成されたユーザ機器(UE)のための装置であって、処理回路機構であって、5G NRネットワークにおけるRedCap(Reduced Capability)動作のためにUEを設定するために、マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することとであって、CORESETは、下りリンク(DL)帯域幅部分(BWP)を定義する、ことと、下りリンク制御情報(DCI)を介して設定されたシステム情報ブロック(SIB)を復号することであって、DCIは、CORESET及びCSSに基づいて受信される、ことと、SIBを使用して追加のCORESETを決定することであって、追加のCORESETは、追加のDL BWPを定義する、ことと、追加のDL BWP内に設定された物理下りリンク共有チャネル(PDSCH)又は物理下りリンク制御チャネル(PDCCH)を使用してRedCap動作に関連付けられたページング監視を実行することと、を行う処理回路機構と、処理回路機構に結合され、かつMIB及びSIBを記憶するように構成されたメモリと、を含む装置である。
【0232】
例2では、例1の主題は、処理回路機構が、追加のBWP内に設定されたPDSCH又はPDCCHを使用してRedCap動作中にランダムアクセス手順を実行するように構成されている主題を含む。
【0233】
例3では、例1~2の主題は、処理回路機構が、CORESETに基づいてDCIのサイズを決定するように構成されている主題を含む。
【0234】
例4では、例1~3の主題は、処理回路機構が、UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がDL BWP内に含まれるときに、追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、ページング監視を実行するように構成されている主題を含む。
【0235】
例5では、例1~4の主題は、処理回路機構が、PDCCHタイプ1 CSSが追加のCORESETにマッピングされるように示されており、UEがRRC_CONNECTEDモードにあり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれるときに、追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ページング監視を実行するように構成されている主題を含む。
【0236】
例6では、例1~5の主題は、追加のCORESETの周波数領域におけるスパンが、追加のDL BWPための周波数領域におけるスパンよりも小さい主題を含む。
【0237】
例7では、例1~6の主題は、UEがRRC_CONNECTED状態にあるときに、DL BWPがセル定義同期信号ブロック(CD-SSB)を設定するか、又は非CD-SSBのための別個の設定を設定する主題を含む。
【0238】
例8では、例1~7の主題は、処理回路機構が、PDCCHの復調参照信号(DMRS)及びそのPDSCH又は1つ以上のPDCCH CSSセットの受信のためのPDSCHのDMRSが、セル定義同期信号ブロック(CD-SSB)とQCL-ed(Quasi-Co-Located)にあると決定するように構成されている主題を含む。
【0239】
例9では、例1~8の主題は、処理回路機構が、CORESETによって定義された上りリンク(UL)BWPを決定し、追加のCORESETによって定義された追加のUL BWPを決定するように構成されており、追加のUL BWPは、RedCap動作に関連付けられる主題を含む。
【0240】
例10では、例9の主題は、追加のDL BWP及び追加のUL BWPが、同じ中心周波数を共有する主題を含む。
【0241】
例11では、例1~10の主題は、処理回路機構に結合されたトランシーバ回路と、トランシーバ回路に結合された1つ以上のアンテナと、を含む。
【0242】
例12は、ソース基地局の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のために基地局を設定し、かつ基地局に動作を実行させ、動作は、RedCapユーザ機器(UE)への送信のためにマスタ情報ブロック(MIB)を符号化することであって、MIBは、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を設定し、CORESETは、下りリンク(DL)帯域幅部分(BWP)を定義する、ことと、RedCap UEへの送信のためにシステム情報ブロック(SIB)を符号化することであって、SIBは、下りリンク制御情報(DCI)に基づいて送信され、DCIは、CORESET及びCSSに基づいて送信され、SIBは、RedCap UEのために追加のCORESETをさらに設定し、追加のCORESETは、追加のDL BWPを定義する、ことと、追加のDL BWP内に設定された物理下りリンク共有チャネル(PDSCH)又は物理下りリンク制御チャネル(PDCCH)を使用して、RedCap UEへの送信のためにRedCap動作に関連付けられたページング情報を符号化することと、を含む。
【0243】
例13では、例12の主題は、追加のCORESETの周波数領域におけるスパンが、追加のDL BWPための周波数領域におけるスパンよりも小さい主題を含む。
【0244】
例14は、ユーザ機器(UE)の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のためにUEを設定し、かつUEに動作を行わせ、動作は、マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することであって、CORESETは、下りリンク(DL)帯域幅部分(BWP)を定義する、ことと、下りリンク制御情報(DCI)を介して設定されたシステム情報ブロック(SIB)を復号することであって、DCIは、CORESET及びCSSに基づいて受信される、ことと、SIBを使用して追加のCORESETを決定することであって、追加のCORESETは、追加のDL BWPを定義する、ことと、追加のDL BWP内に設定された物理下りリンク共有チャネル(PDSCH)又は物理下りリンク制御チャネル(PDCCH)を使用してRedCap動作に関連付けられたページング監視を実行することと、を含む。
【0245】
例15では、例14の主題は、動作が、追加のBWP内に設定されたPDSCH又はPDCCHを使用してRedCap動作中にランダムアクセス手順を実行することをさらに含むことを含む。
【0246】
例16では、例14~15の主題は、動作が、CORESETに基づいてDCIのサイズを決定することをさらに含むことを含む。
【0247】
例17では、例14~16の主題は、動作が、UEがRRC_CONNECTEDモードにあり、追加のCORESETの物理リソースブロック(PRB)がDL BWP内に含まれているときに、追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、ページング監視を実行することをさらに含むことを含む。
【0248】
例18では、例14~17の主題は、PDCCHタイプ1 CSSが追加のCORESETにマッピングされるように示されており、UEがRRC_CONNECTEDモードにあり、追加のCORESETの物理リソースブロック(PRB)がDL BWP内に含まれているときに、追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ページング監視を実行することをさらに含むことを含む。
【0249】
例19では、例14~18の主題は、追加のCORESETの周波数領域におけるスパンが、追加のDL BWPのための周波数領域におけるスパンよりも小さい主題を含む。
【0250】
例20では、例14~19の主題は、UEがRRC_CONNECTED状態にあるときに、DL BWPがセル定義同期信号ブロック(CD-SSB)を設定するか、又は非CD-SSBのための別個の設定を設定する主題を含む。
【0251】
例21は、命令を含む少なくとも1つの機械可読媒体であって、命令は、処理回路機構によって実行されるときに、処理回路機構に例1~20のいずれかを実装するための動作を実行させる少なくとも1つの機械可読媒体である。
【0252】
例22は、例1~20のいずれかを実装するための手段を含む装置である。
【0253】
例23は、例1~20のいずれかを実装するシステムである。
【0254】
例24は、例1~20のいずれかを実装する方法である。
【0255】
例25は、5G NR(Fifth Generation New Radio)ネットワークにおいて動作するように構成されたユーザ機器(UE)のための装置であって、処理回路機構であって、5G NRネットワークにおけるRedCap(Reduced Capability)動作のためにUEを設定するために、マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することと、下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、DCIフォーマットは、CORESET及びCSSに基づいて受信される、ことと、SIBを使用して、別個の初期DL BWP内に追加のCORESETを決定することと、別個の初期DL BWPにおいて、PDCCHタイプ1CSS(Common Search Space)セットにおける物理下りリンク制御チャネル(PDCCH)、又はRA(Random Access)手順に関連付けられたPDSCHの受信を実行することと、を行う処理回路機構と、処理回路機構に結合され、かつMIB及びSIBを記憶するように構成されたメモリと、を含む、装置である。
【0256】
例26では、例25の主題は、処理回路機構が、PDCCHタイプ2 CSSセット内のPDCCH、又はRedCap動作のための別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行するように構成されている主題を含む。
【0257】
例27では、例25~26の主題は、処理回路機構が、提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPのうちの1つとして、UEがRRC_CONNECTED状態に遷移するときの初期DL BWPを決定するように構成されている主題を含む。
【0258】
例28では、例25~27の主題は、処理回路機構が、提供される場合、( initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPか、そうでなければ、MIBによって示されるCORESETによって定義される初期DL BWPのうちの1つとして、UEがRRC_CONNECTED状態に遷移するときの初期DL BWPを決定するように構成されている主題を含む。
【0259】
例29では、例26~28の主題は、処理回路機構が、UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、ページング監視を実行するように構成されている主題を含む。
【0260】
例30では、例25~29の主題は、処理回路機構が、PDCCHタイプ1 CSSが追加のCORESETにマッピングされるように示されており、UEがRRC_CONNECTEDモードにあり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれ、アクティブDL BWPと別個の初期DL BWPは同じSCSを有するときに、追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ランダムアクセス関連DL受信を実行するように構成されている主題を含む。
【0261】
例31では、例25~30の主題は、CSS設定を含む。
【0262】
例32では、例25~31の主題は、処理回路機構が、PDCCHの復調参照信号(DMRS)及び別個の初期DL BWPにおけるPDSCHのDMRSが、セル定義同期信号ブロック(CD-SSB)とQCL-ed(Quasi-Co-Located)にあると決定するように構成されている主題を含む。
【0263】
例33では、例25~32の主題は、処理回路機構が、SIB1(System Information Block Type 1)信号の受信に基づいて、Msg1(Message 1)、Msg3(Message 3)、MsgA(Message A)又はMsg4(Message 4)若しくはMsgB(Message B)に応答したPUCCHのうちの1つ以上を含むRA(Random Access)手順の一部としてのUL送信に対して、初期上りリンク(UL)BWP又はRedCap動作に関連付けられた別個の初期UL BWPを決定するように構成されている主題を含む。
【0264】
例34では、例33の主題は、不対スペクトルにおける動作に対して、別個の初期DL BWP及び初期UL BWP、又はRA手順に関連するUL送信に対して設定される別個の初期UL BWPが、同じ中心周波数を共有することを含む。
【0265】
例35では、例25~34の主題は、処理回路機構に結合されたトランシーバ回路と、トランシーバ回路に結合された1つ以上のアンテナと、を含む。
【0266】
例36は、ソース基地局の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のために基地局を設定し、かつ基地局に動作を実行させ、動作は、RedCapユーザ機器(UE)への送信のためにマスタ情報ブロック(MIB)を符号化することであって、MIBは、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を設定する、ことと、RedCap UEへの送信のためにシステム情報ブロック(SIB)を符号化することであって、SIBは、下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)において送信され、DCIフォーマットは、CORESET及びCSSに基づいて送信され、SIBは、RedCap UEのために別個の初期DL BWP内に追加のCORESETをさらに設定する、ことと、別個の初期DL BWP内に設定されたPDCCHタイプ1 CSSセットにおける物理下りリンク制御チャネル(PDCCH)又は物理下りリンク共有チャネル(PDSCH)を使用してDLにおけるRedCap UEへの送信のためにRA手順に関連付けられた情報を符号化することと、を含む、コンピュータ可読記憶媒体である。
【0267】
例37では、例36の主題は、追加のCORESETの周波数領域におけるスパンが、別個の初期DL BWPための周波数領域におけるスパン以下である主題を含む。
【0268】
例38は、ユーザ機器(UE)の1つ以上のプロセッサによる実行のための命令を記憶するコンピュータ可読記憶媒体であって、命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のためにUEを設定し、かつUEに動作を実行させ、動作は、マスタ情報ブロック(MIB)を復号して、制御リソースセット(CORESET)及び共通サーチスペース(CSS)を決定することと、下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、DCIフォーマットは、CORESET及びCSSに基づいて受信される、ことと、SIBを使用して、別個の初期DL BWP内に追加のCORESETを決定することと、別個の初期DL BWPにおいて、PDCCHタイプ1CSS(Common Search Space)セットにおける物理下りリンク制御チャネル(PDCCH)、又はRA(Random Access)手順に関連付けられたPDSCHの受信を実行することと、を含む、コンピュータ可読記憶媒体である。
【0269】
例39では、例38の主題は、PDCCHタイプ26 CSSセット内のPDCCH、又はRedCap動作のための別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行することをさらに含む動作を含む。
【0270】
例40では、例38~40の主題は、提供される場合、(initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPのうちの1つとして、UEがRRC_CONNECTED状態に遷移するときの初期DL BWPを決定することをさらに含む動作を含む。
【0271】
例41では、例38~40の主題は、提供される場合、( initialDownlinkBWPを介して示されるものとは別個で)RedCap UEに対して設定される別個の初期DL BWPか、そうでなければ、非RedCap UEに対する初期DL BWPの帯域幅(BW)が最大RedCap UE BWを超えない場合、(initialDownlinkBWP介して示される)非RedCap UEに対して設定される初期DL BWPか、そうでなければ、MIVによって示されるCORESETによって定義される初期DL BWPのうちの1つとして、UEがRRC_CONNECTED状態に遷移するときの初期DL BWPを決定することをさらに含む動作を含む。
【0272】
例42では、例39~41の主題は、UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、ページング監視を実行することをさらに含む動作を含む。
【0273】
例43では、例38~42の主題は、PDCCHタイプ1 CSSが追加のCORESETにマッピングされるように示されており、UEがRRC_CONNECTEDモードにあり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれ、アクティブDL BWPと別個の初期DL BWPは同じSCSを有するときに、追加のCORESETにおいてPDCCHタイプ1 CSSを監視することに基づいて、ランダムアクセス関連DL受信を実行することをさらに含む動作を含む。
【0274】
例44では、例38~43の主題は、CSS設定を含む。
【0275】
例45は、命令を含む少なくとも1つの機械可読媒体であって、命令は、処理回路機構によって実行されるときに、処理回路機構に例25~44のいずれかを実装するための動作を行わせる。
【0276】
例46は、例25~44のいずれかを実装するための手段を含む装置である。
【0277】
例47は、例25~44のいずれかを実装するためのシステムである。
【0278】
例48は、例25~44のいずれかを実装するための方法である。
【0279】
特定の例示的な態様を参照してある態様が記載されたが、本開示のより広い範囲から逸脱することなく、様々な修正及び変更がこれらの態様に行われてもよいことが明らかであろう。したがって、明細書及び図面は、限定的な意味ではなく例示的であるものと見なされるべきである。したがって、この詳細な説明は、限定的な意味で解釈されるべきではなく、様々な態様の範囲は、添付の特許請求の範囲と題されたものの均等物の全範囲と共に、添付の特許請求の範囲によってのみ定義される。
【手続補正書】
【提出日】2024-02-05
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
5G NR(Fifth Generation New Radio)ネットワークにおいて動作するように構成されたRedCap(reduced capabilities)ユーザ機器(UE)のための装置であって、
処理回路機構であって、前記5G NRネットワークにおけるランダムアクセス手順のために前記RedCap UEを設定するために、
第1の設定シグナリングを復号して、初期下りリンク帯域幅部分(DL BWP)を取得することであって、前記初期DL BWPは、共通サーチスペース(CSS)の下りリンクリソースを含み、前記RedCap UEに対して、前記第1の設定シグナリングは、非RedCap UEによる使用のための前記第1の設定シグナリングでシグナリングされる初期DL BWPとは異なる、前記RedCap UEによる使用のための前記初期DL BWPを示す、ことと、
第2の設定シグナリングを復号して、前記RedCap UEの初期上りリンク帯域幅部分(UL BWP)を取得することであって、前記RedCap UEの前記初期UL BWPは、上りリンクリソースを含み、前記RedCap UEに対して、第2の設定シグナリングは、前記非RedCap UEによる使用のための第2の設定シグナリングでシグナリングされる初期UL BWPとは異なる、前記RedCap UEによる使用のための前記初期UL BWPを示す、ことと、
前記CSSの前記下りリンクリソースを使用して受信された第1のランダムアクセス通信を復号し、前記上りリンクリソースを使用した送信のために第2のランダムアクセス通信を符号化することに基づいて、前記ランダムアクセス手順を実行することと、を行う、処理回路機構と、
前記処理回路機構に結合され、かつ前記第1の設定シグナリング及び前記第2の設定シグナリングを記憶するように構成されているメモリと、を含む、装置。
【請求項2】
前記RedCap UEの前記初期DL BWPの中心周波数は、前記RedCap UEの前記初期UL BWPの中心周波数と同じである、請求項1に記載の装置。
【請求項3】
前記処理回路機構は、
RRC_CONNECTED状態の間に、第3の設定シグナリングを復号することを行い、前記第3の設定シグナリングは、前記RedCap UEのためのアクティブDL BWPを設定し、前記アクティブDL BWPは、同期信号ブロック(SSB)を含む、請求項1に記載の装置。
【請求項4】
前記SSBが、非セル定義SSBである、請求項3に記載の装置。
【請求項5】
前記処理回路機構は、
下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、前記DCIフォーマットは、前記CSSに基づいて受信される、ことと、
前記SIBを使用して、別個の初期DL BWP内に追加の制御リソースセット(CORESET)を決定することと、
前記別個の初期DL BWPにおいて、PDCCHタイプ1CSSセットにおける物理下りリンク制御チャネル(PDCCH)、又は第2のランダムアクセス手順に関連付けられたPDSCHの受信を実行することと、を行うように構成されている、請求項1に記載の装置。
【請求項6】
前記処理回路機構は、
PDCCHタイプ2 CSSセット内のPDCCH、又はRedCap動作のための前記別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行するように構成されている、請求項5に記載の装置。
【請求項7】
前記処理回路機構は、
前記UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、前記追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、前記ページング監視を実行するように構成されている、請求項
6に記載の装置。
【請求項8】
前記処理回路機構は、
前記追加のCORESET内のPDCCHタイプ1 CSSを監視することに基づいて、ランダムアクセス関連DL受信を実行することであって、前記PDCCHタイプ1 CSSが、前記追加のCORESETにマッピングされるように示されるときに、前記UEは、RRC_CONNECTEDモードにあり、前記追加のCORESETの物理リソースブロック(PRB)は、アクティブDL BWP内に含まれ、前記アクティブDL BWPと前記別個の初期DL BWPは、同じSCSを有する、ことを行うように構成されている、請求項
5に記載の装置。
【請求項9】
前記UEがRRC_CONNECTED状態にあるときに、前記UEが同期信号ブロック(SSB)なしでDL BWPにおいて動作する能力を示さない場合、前記UEは、アクティブRRC設定DL BWPがセル定義同期信号ブロック(CD-SSB)を含むか、又は前記アクティブDL BWP内の非CD-SSBのための別個の設定が提供されることを期待し、前記非CD-SSBは、PCID(Primary Cell IDentity)を決定するためにもSIB1スケジューリング情報(PDCCHタイプ0 CSS設定)を取得するためにも使用されないSSBである、請求項
5に記載の装置。
【請求項10】
前記処理回路機構に結合されたトランシーバ回路機構と、
前記トランシーバ回路機構に結合された1つ以上のアンテナと、をさらに含む、請求項1に記載の装置。
【請求項11】
ソースの基地局の1つ以上のプロセッサによる実行のための命令を記憶する非一時的なコンピュータ可読記憶媒体であって、前記命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap(Reduced Capability)動作のために前記基地局を設定し、かつ前記基地局に動作を実行させ、前記動作は、
RedCapユーザ装置(UE)への送信のための第1の設定シグナリングを符号化することであって、前記第1の設定シグナリングは、初期下りリンク帯域幅部分(DL BWP)に関連付けられ、前記初期DL BWPは、共通サーチスペース(CSS)の下りリンクリソースを含み、前記RedCap UEに対して、前記第1の設定シグナリングは、非RedCap UEによる使用のための前記第1の設定シグナリングにおいてシグナリングされる初期DL BWPとは異なる、前記RedCap UEによる使用のための前記初期DL BWPを示す、ことと、
前記RedCap UEへの送信のための第2の設定シグナリングを符号化することであって、前記第2の設定シグナリングは、前記RedCap UEの初期上りリンク帯域幅部分(UL BWP)に関連付けられ、前記RedCap UEの前記初期UL BWPは、上りリンクリソースを含み、前記RedCap UEに対して、前記第2の設定シグナリングは、前記非RedCap UEによる使用のための前記第2の設定シグナリングでシグナリングされる初期UL BWPとは異なる、前記RedCap UEによる使用のための前記初期UL BWPを示す、ことと、
前記CSSの前記下りリンクリソースを使用して、前記RedCap UEへの送信のためのランダムアクセス通信を符号化することと、を含む、コンピュータ可読記憶媒体。
【請求項12】
前記RedCap UEの前記初期DL BWPの中心周波数は、前記RedCap UEの前記初期UL BWPの中心周波数と同じである、請求項11に記載のコンピュータ可読記憶媒体。
【請求項13】
前記動作は、
前記RedCap UEへの送信のための第3の設定シグナリングを符号化することであって、前記RedCap UEは、RRC_CONNECTED状態にあり、前記第3の設定シグナリングは、RedCap UEのためのアクティブDL BWPを設定し、前記アクティブDL BWPは、同期信号ブロック(SSB)を含む、請求項11に記載のコンピュータ可読記憶媒体。
【請求項14】
RedCap(Reduced Capability)ユーザ機器(UE)の1つ以上のプロセッサによる実行のための命令を記憶する非一時的なコンピュータ可読記憶媒体であって、前記命令は、5G NR(Fifth Generation New Radio)ネットワークにおけるRedCap動作のために前記RedCap UEを設定し、かつ前記RedCap UEに動作を実行させ、前記動作は、
第1の設定シグナリングを復号して、初期下りリンク帯域幅部分(DL BWP)を取得することであって、前記初期DL BWPは、共通サーチスペース(CSS)の下りリンクリソースを含み、前記RedCap UEに対して、前記第1の設定シグナリングは、非RedCap UEによる使用のために前記第1の設定シグナリングでシグナリングされる初期DL BWPとは異なる、前記RedCap UEによる使用のための前記初期DL BWPを示す、ことと、
第2の設定シグナリングを復号して、前記RedCap UEの初期上りリンク帯域幅部分(UL BWP)を取得することであって、前記RedCap UEの前記初期UL BWPは、上りリンクリソースを含み、前記RedCap UEに対して、第2の設定シグナリングは、前記非RedCap UEによる使用のための第2の設定シグナリングでシグナリングされる初期UL BWPとは異なる、前記RedCap UEによる使用のための前記初期UL BWPを示す、ことと、
前記CSSの前記下りリンクリソースを使用して受信された第1のランダムアクセス通信を復号し、前記上りリンクリソースを使用した送信のために第2のランダムアクセス通信を符号化することに基づいて、ランダムアクセス手順を実行することと、を含む、コンピュータ可読記憶媒体。
【請求項15】
前記RedCap UEの前記初期DL BWPの中心周波数は、前記RedCap UEの前記初期UL BWPの中心周波数と同じである、請求項14に記載のコンピュータ可読記憶媒体。
【請求項16】
前記動作は、
RRC_CONNECTED状態の間に、第3の設定シグナリングを復号することを含み、前記第3の設定シグナリングは、前記RedCap UEのためのアクティブDL BWPを設定し、前記アクティブDL BWPは、同期信号ブロック(SSB)を含む、請求項14に記載のコンピュータ可読記憶媒体。
【請求項17】
前記SSBが、非セル定義SSBである、請求項16に記載のコンピュータ可読記憶媒体。
【請求項18】
前記動作は、
下りリンク制御情報(DCI)フォーマットによってスケジューリングされた物理下りリンク共有チャネル(PDSCH)におけるシステム情報ブロック(SIB)を復号することであって、前記DCIフォーマットは、前記CSSに基づいて受信される、ことと、
前記SIBを使用して、別個の初期DL BWP内に追加の制御リソースセット(CORESET)を決定することと、
前記別個の初期DL BWPにおいて、PDCCHタイプ1CSSセットにおける物理下りリンク制御チャネル(PDCCH)、又は第2のランダムアクセス手順に関連付けられたPDSCHの受信を実行することと、をさらに含む、請求項14に記載のコンピュータ可読記憶媒体。
【請求項19】
前記動作は、
PDCCHタイプ2 CSSセット内のPDCCH、又はRedCap動作のための前記別個の初期DL BWP内のページング監視のためのPDSCHの受信を実行することをさらに含む、請求項18に記載のコンピュータ可読記憶媒体。
【請求項20】
前記動作は、
前記UEがRRC_CONNECTEDモードであり、追加のCORESETの物理リソースブロック(PRB)がアクティブDL BWP内に含まれており、アクティブDL BWP及び別個の初期DL BWPが同じサブキャリア間隔(SCS)を有するときに、前記追加のCORESETにおいてPDCCHタイプ2 CSSを監視することに基づいて、前記ページング監視を実行することをさらに含む、請求項19に記載のコンピュータ可読記憶媒体。
【国際調査報告】