IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ストーク スペース テクノロジーズ インコーポレイテッドの特許一覧

特表2024-513941広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル
<>
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図1
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図2
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図3
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図4
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図5
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図6
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図7
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図8
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図9
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図10
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図11
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図12
  • 特表-広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-27
(54)【発明の名称】広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークル
(51)【国際特許分類】
   B64G 1/00 20060101AFI20240319BHJP
   B64G 1/58 20060101ALI20240319BHJP
【FI】
B64G1/00 C
B64G1/58
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023562196
(86)(22)【出願日】2022-04-13
(85)【翻訳文提出日】2023-12-08
(86)【国際出願番号】 US2022071688
(87)【国際公開番号】W WO2022251763
(87)【国際公開日】2022-12-01
(31)【優先権主張番号】63/236,002
(32)【優先日】2021-08-23
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】63/174,323
(32)【優先日】2021-04-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】522165946
【氏名又は名称】ストーク スペース テクノロジーズ インコーポレイテッド
(74)【代理人】
【識別番号】100108833
【弁理士】
【氏名又は名称】早川 裕司
(74)【代理人】
【識別番号】100162156
【弁理士】
【氏名又は名称】村雨 圭介
(72)【発明者】
【氏名】トーマス ライアン マカルー
(72)【発明者】
【氏名】トーマス フェルドマン
(72)【発明者】
【氏名】アンドリュー ラプサ
(72)【発明者】
【氏名】ザッカリー サンダー
(57)【要約】
【解決手段】
上段ロケット等のビークルのための環状エアロスパイクノズルが開示される。環状エアロスパイクノズルは、センターボディと、センターボディの周りに間隔を置いて配置された複数のスラスト室と、を含む。各スラスト室は、スロートと、スロートの後方に延びるノズル部分と、を含む。ノズル部分はその後端に出口寸法Dexitを有する。各スラスト室は、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MはM≧1を満たす。
【選択図】図13
【特許請求の範囲】
【請求項1】
センターボディと、
前記センターボディの周りに間隔を置いて配置された複数のスラスト室と、を備え、
各スラスト室が、
スロートと、
前記スロートの後方に延びるノズル部分と、を含み、
前記ノズル部分がその後端に出口寸法Dexitを有し、
各スラスト室が、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MがM≧1を満たす、環状エアロスパイクノズル。
【請求項2】
前記センターボディが円形の輪郭を有し、前記複数のスラスト室が前記センターボディの前記円形の輪郭の周囲に間隔を置いて配置される、請求項1に記載の環状エアロスパイクノズル。
【請求項3】
前記間隔距離Dspaceが、隣接するスラスト室間の円弧長として定義される、請求項2に記載の環状エアロスパイクノズル。
【請求項4】
前記間隔距離Dspaceが、隣接するスラスト室間の翼弦長として定義される、請求項2に記載の環状エアロスパイクノズル。
【請求項5】
前記スラスト室が前記センターボディの周りに均一に間隔を置いて配置される、請求項1に記載の環状エアロスパイクノズル。
【請求項6】
各スラスト室のノズル部分の出口寸法Dexitが直径である、請求項1に記載の環状エアロスパイクノズル。
【請求項7】
センターボディと、
前記センターボディの周りに間隔を置いて配置された複数のスラスト室と、を備え、
各スラスト室が、
推力用のガスを発生する高圧室と、
前記高圧室の後方に延び前記高圧室によって発生した前記ガスを排出するノズル部分であって、その後端に出口寸法Dexitを有するノズル部分と、
前記高圧室を前記ノズル部分に接続するスロートと、を含み、
各スラスト室が、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MがM≧1を満たす、エンジン。
【請求項8】
センターボディと前記センターボディの周りに間隔を置いて配置された複数のスラスト室とを含むエンジンを備え、
各スラスト室が、
推力用のガスを発生する高圧室と、
前記高圧室の後方に延び前記高圧室によって発生した前記ガスを排出するノズル部分であって、後端に出口寸法Dexitを有するノズル部分と、
前記高圧室を前記ノズル部分に接続するスロートと、を含み、
各スラスト室が、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MがM≧1を満たす、ビークル。
【請求項9】
前記ビークルの本体の後端に配置されたスラスタマウントを更に備え、前記スラスタマウントが、これを貫通して前記ビークルの本体の中心線に平行な方向に延びる複数の開口を有し、各開口が前記スラスト室の1つを受け入れるように構成される、請求項8に記載のビークル。
【請求項10】
前記センターボディが前記ビークルの本体の中心線に対して非軸対称である、請求項9に記載のビークル。
【請求項11】
前記センターボディ及び前記スラスタマウントがヒートシールドの少なくとも一部を画定する、請求項9に記載のビークル。
【請求項12】
前記センターボディが円形の輪郭を有し、前記複数のスラスト室が前記センターボディの前記円形の輪郭の周囲に間隔を置いて配置される、請求項8に記載のビークル。
【請求項13】
前記間隔距離Dspaceが、隣接するスラスト室間の円弧長として定義される、請求項12に記載のビークル。
【請求項14】
前記間隔距離Dspaceが、隣接するスラスト室間の翼弦長として定義される、請求項12に記載のビークル。
【請求項15】
前記スラスト室が前記センターボディの周りに均一に間隔を置いて配置される、請求項8に記載のビークル。
【請求項16】
各スラスト室のノズル部分の出口寸法Dexitが直径である、請求項8に記載のビークル。
【請求項17】
前記ビークルが上段ロケットである、請求項8に記載のビークル。
【発明の詳細な説明】
【関連出願への相互参照】
【0001】
本出願は、2021年8月23日に出願された米国仮特許出願第63/236,002号及び2021年4月13日に出願された米国仮特許出願第63/174,323号に基づく優先権を主張し、それらの内容は、参照によりそれらの全体がここに組み込まれる。
【技術分野】
【0002】
本開示は、一般に、排気ノズルを有する推進システムに関する。より具体的には、本開示は、広い間隔の複数のスラスト室を有する環状エアロスパイクノズル、その環状エアロスパイクノズルによって少なくとも部分的に画定される非軸対称ヒートシールド、その環状エアロスパイクノズルを含むエンジン、及びそのエンジンを含むビークルに関する。
【背景技術】
【0003】
ロケットのための航空機同様の再使用可能性は、大きな費用便益が見込めるため、長い間ロケット研究の「至高の目標(holy grail)」であった。多段式ロケットシステムの上段ロケット(例えば、2段式ロケットシステムの第2段ロケット)を回収及び再使用する能力は、当該産業によって未だ解決されていない重要な技術格差のままである。多段式ロケットの上段の再使用は、過酷な再突入環境と、再突入環境に耐えて正確な着陸位置にビークルを誘導するために必要な構造質量の増加に関連する性能ペナルティとにより、難易度が高い。上段ロケットは、典型的には最小の構造及び複雑さで構築され、これは、第2段への質量の追加が、ペイロード容量における1:1減少となるからである。従って、上段ロケットを再使用するには、大幅な追加的機能性だけでなく、質量負荷が最小限であることが要求される。
【0004】
惑星大気内を極超音速以上で移動するロケット及び他のビークル(例えば、宇宙再突入ビークル、航空機、ミサイル等)は、そのような高速で生じる加熱からそれら自身を保護する手段を必要とする。そのような加熱を軽減するための従来の解決策は、以下の1つ以上の使用を含む。(i)融除材料(ablative materials)、これは熱分解を受け、境界層を下流に移動して保護膜層を形成するガスを生じる。(ii)高温材料(例えば、セラミクス、炭素-炭素等)。(iii)複合材料、これはベース材料を断熱し、そこからの熱を放射する。(iv)蒸散冷却、これは半多孔質壁を通過するガスによって提供される薄い保護フィルムの使用を伴う。加熱を軽減するためのこれらの従来の解決策は、再使用可能なビークル等の特定の用途に対して、コスト、運用、及び質量に悪影響を及ぼす。従って、そのようなヒートシールドで保護しなければならないビークルの面積及び関連する質量を最小限に抑えることが有利である。
【0005】
再使用可能な宇宙再突入ビークルの運用コストと所要時間を削減するには、着陸イベント中のビークルへの損傷を制限するように構成された正確な位置(例えば、準備されたコンクリート表面又は着陸ゾーン)に着陸すべくビークルを制御することが有利である。
【0006】
制御された着陸を達成するには、大気圏突入中には操縦し、飛行中には軌道の外乱に対抗する能力が必要である。上段ロケットに従来用いられてきた非常に大きなノズルエンジン(例えばベルノズルエンジン)には、上段ロケットの推進着陸システムとしてのそれらの使用を妨げる制限がある。特に、大型ノズルエンジンは、典型的には真空中でのみ効率が最適化されているので、大気圏での動作中(つまり、再突入や着陸中)の性能は比較的劣っている。また、大型ノズルエンジンは非常に薄く、大気中で激しい流れ分離や横荷重を受けるので、再突入中の保護が困難である。制御された着陸を可能にするために上段ロケットに二次推進システムを追加することは、有害なコストと質量への影響により実現不可能である。
【0007】
これら及び他の問題を克服するための出願人の最近の努力は、エアロスパイクノズルエンジンの使用に焦点を当てている。エアロスパイクノズルエンジンは、圧力抵抗によるノズル効率の損失を最小限に抑え、これにより大気圏内で低いスロットルレベルでの動作を可能にする一方、大型ノズルエンジンでは流れ分離が発生する結果、非定常推力振動、非定常推力ベクタリング、及びエンジン又はビークルの損傷が生じる。図1を参照すると、従来技術のエアロスパイクエンジン114は、少なくとも1つの高圧室150(例えば、燃焼室)とエアロスパイクノズル112とを含む。図2を参照すると、従来技術のエアロスパイクノズル112は、排出ガスが最初に高圧室150を出る少なくとも1つの初期ノズル部分152と、初期ノズル部分152に対して下流の二次ノズル部分153と、を含む。初期ノズル部分152は、少なくとも1つのスロート154を含み、典型的には収束/発散ノズルの形態である。二次ノズル部分153は、内側拡張面155を画定するセンターボディ140(例えば、エアロスパイク)(図1参照)を含む。従来技術のエアロスパイクエンジン114とその改良については、同一出願人による2019年11月27日出願の米国仮特許出願第62/941,386号、及び2020年8月27日に出願され米国仮特許出願第62/941,386号の優先権を主張する国際特許出願第PCT/US2020/048178号においてより詳細に論じられており、それらの内容は、参照によりそれらの全体がここに組み込まれる。
【0008】
図2を参照すると、従来技術のエアロスパイクエンジン114の図示した実施形態では、スロート154は、対向する収束面170、172を有する上流の収束セクションと、対向する発散面164、166を有する下流の発散セクションと、の間の移行部を画定する。発散面164、166は、それらの間に初期ノズルキャビティ125を画定する。内側発散面164は、二次ノズル部分153のセンターボディ140によって画定される内側拡張面155と連続している(例えば、少なくとも実質的に面一である)。初期ノズル部分152の外側後端168は、外側発散面166を画定している壁の後端によって画定される。図2に示すもののような従来技術の実施形態では、初期ノズル部分152は、しばしば「一次ノズル」と称される。
【0009】
図1~2に示すものを含む従来技術のエアロスパイクエンジン114のいくつかの実施形態では、エンジン114は、いわゆる「プラグクラスタ」構成を有する。これらの構成では、エンジン114は、互いに離間した複数の別個の高圧室150と、互いに離間した複数の別個の初期ノズル部分152と、を含む。各初期ノズル部分152は、対応する高圧室150に対して配置され、それぞれの高圧室150から出るガスを排出するように構成されている。各高圧室150及び初期ノズル部分152の対は、当該技術分野では「スラスト缶48(thrust can)」又は「スラスト室(thrust chamber)」として知られている。各スラスト室の初期ノズル部分152は、初期ノズル部分152の軸174の周りに環状に延びる別個のスロート154を含む。このような従来技術の実施形態では、スロート154の収束面170、172は、軸174の周りに環状に延びる連続面を形成し、スロート154の発散面164、166は、軸174の周りに環状に延びる連続面を形成する。場合によっては、収束面170、172及び/又は発散面164、166は、軸174に対して軸対称である。図1に示すようなトロイダル(例えば、環状)エアロスパイク構成では、スラスト室は、エンジン114が配置されるビークルの中心線116の周りに円周方向に間隔を置いて配置される。
【0010】
「プラグクラスタ」構成に関して、従来技術は、最適な推力性能及び流れ分離を達成し、効率損失を最小限に抑えるために、各スラスト室(すなわち、各別個の高圧室150及びその対応する初期ノズル部分152)を、円周方向に隣接するスラスト室に可能な限り近づけて配置することを教示している。
【0011】
ビークルは、操縦性に加えて、大気圏再突入中に減速して制御された着陸を達成するために、十分な揚力能力も備えていなければならない。正確な着陸を達成した従来技術の再突入ビークルは、典型的には、スペースシャトル等の揚力体であった。これらのビークルは大きな揚抗比と実質的な操縦能力を実現したが、翼のあるビークルの下側に大きなヒートシールド領域及び能動制御されるいくつかの空気力学的表面の費用が伴う。他の従来技術による再突入体は、ビークルの比較的小さなベース領域のみを再突入環境に曝すことによって、ヒートシールドの追加質量を最小限に抑えていた。これらの再突入体は、大気圏再突入中に速度を落とし、ある程度制御された着陸を達成するのに十分な揚抗比を生成したが、推進システムや他の操縦手段が欠如しており、正確な位置に着陸することができなかった。
【0012】
そのような従来技術のビークルの1つは、アポロ宇宙船の再突入ビークル216であり、これは図3及び4に概略的に示されている。この従来技術のビークル216は、その前端220とそれに対向する後端222との間の直線中心線230に沿って延びるカプセルの形態であった。後端222は、大気圏再突入中のビークル216の風上側を画定していた。従来技術のビークル216は、風上側のヒートシールド外面を画定するヒートシールド240と、中心線230に平行な面238,239に対して33度(33°)の角度θ(以下、「側壁角度θ」という)で配置された環状側壁236と、を含んでいた。ヒートシールド表面240及びビークル216は全体として、中心線230に対して少なくとも実質的に軸対称であった。図3を参照すると、従来技術のビークル216は、最初にいわゆるゼロ迎え角で大気圏に再突入し、この場合、ビークル216は、中心線230が進行方向260と平行になるように方位づけられていた。ゼロ迎え角方位では、ビークル216の重心262及び圧力中心264は、進行方向260に対してオフセットされた面266内にあった。
【0013】
飛行中、ビークル216に対する空気力学的揚力及び抗力は、重心262の周りにピッチングモーメントを生成し、ビークル216は、それらのモーメントがバランスする方位を自然にとり、これは空気力学的トリムポイントとして知られている。図4に示すこの方位では、ビークル216の重心262及び圧力中心264は、進行方向260と平行な面266内にあることになる。この方位では、ビークル216の両サイドは、進行方向260と平行な面270、271に対してそれぞれ異なる角度φ1、φ2で配置されることになる。従来技術のビークル216の重心262及び圧力中心264は、大気圏再突入中に特定の非ゼロの迎え角を達成するように選択されることになる。これは、迎え角の増加によりビークル216の揚抗比が増加するためである。ビークル216に対して進行方向260と反対の方向に移動している高エンタルピー流268に対する側壁236の壊滅的な曝露の可能性をも回避しながら、十分に高い揚抗比を達成するには、従来技術のビークル216は、比較的急な側壁角度θを有するように設計される必要があった(すなわち、側壁角度θが比較的大きい)。
【0014】
側壁角度θの大きさは、ビークル216の体積に反比例するので、急峻な側壁角度θを伴う設計は、用途によっては望ましくない場合がある。例えば、ビークル216の目的が貨物を配送することである場合、側壁角度θが急であるということは、貨物を保管するための容積が少なくなることを意味する。
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の態様は、これらの及び他の問題に向けられている。
【課題を解決するための手段】
【0016】
本発明の一態様によると、ビークル、例えば上段ロケットのための環状エアロスパイクノズルは、センターボディと、センターボディの周りに間隔を置いて配置された複数のスラスト室と、を含む。各スラスト室は、スロートと、スロートの後方に延びるノズル部分と、を含み、ノズル部分はその後端に出口寸法Dexitを有する。各スラスト室は、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MはM≧1を満たす。
【0017】
本発明の別の態様によると、エンジンは、センターボディと、センターボディの周りに間隔を置いて配置された複数のスラスト室と、を含む。各スラスト室は、推力用のガスを発生する高圧室と、高圧室の後方に延び高圧室によって発生したガスを排出するノズル部分と、高圧室をノズル部分に接続するスロートと、を有する。各スラスト室のノズル部分は、その後端に出口寸法Dexitを有する。各スラスト室は、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MはM≧1を満たす。
【0018】
本発明の別の態様によると、ビークルは、センターボディとセンターボディの周りに間隔を置いて配置された複数のスラスト室とを含むエンジンを含む。各スラスト室は、推力用のガスを発生する高圧室と、高圧室の後方に延び高圧室によって発生したガスを排出するノズル部分と、高圧室をノズル部分に接続するスロートと、を有する。各スラスト室のノズル部分は、その後端に出口寸法Dexitを有する。各スラスト室は、隣接するスラスト室からDspace≧M×Dexitとなる間隔距離Dspaceだけ離間し、MはM≧1を満たす。
【0019】
本発明の別の態様によると、ビークルの風上側を高エンタルピー流から保護するためのヒートシールドは、センターボディ側壁と、センターボディ側壁の後方に延びるセンターボディ基部と、を含む。センターボディ側壁とセンターボディ基部とが非軸対称のヒートシールド外面を画定する。
【0020】
本発明の別の態様によると、エアロスパイクノズルは、スロートと、スロートの後方に延びるセンターボディと、を含む。センターボディは、拡張面を画定するセンターボディ側壁と、センターボディ側壁の後方に延びるセンターボディ基部と、を含む。センターボディ側壁とセンターボディ基部とが非軸対称のヒートシールド外面を画定する。
【0021】
本発明の別の態様によると、エンジンは、高圧室と、高圧室によって生成されたガスを排出するエアロスパイクノズルと、を含む。エアロスパイクノズルは、スロートと、スロートの後方に伸びるセンターボディと、を含む。センターボディは、拡張面を画定するセンターボディ側壁と、センターボディ側壁の後方に延びるセンターボディ基部と、を含む。センターボディ側壁とセンターボディ基部とが非軸対称のヒートシールド外面を画定する。
【0022】
本発明の別の態様によると、ビークルは、高圧室と高圧室によって生成されたガスを排出するエアロスパイクノズルとを含むエンジンを含む。エアロスパイクノズルは、スロートと、スロートの後方に伸びるセンターボディと、を含む。センターボディは、拡張面を画定するセンターボディ側壁と、センターボディ側壁の後方に延びるセンターボディ基部と、を含む。センターボディ側壁とセンターボディ基部とが非軸対称のヒートシールド外面を画定する。
【0023】
本発明の別の態様によると、多段式ロケットシステムの再使用可能な上段ロケットは、再突入ヒートシールド表面を上段ロケットの基部に含む。再突入ヒートシールド表面は、ゼロ迎え角で揚力を生成する非軸対称形状を有する。
【0024】
上述の特徴の1つ以上に加えて、又はその代替として、本発明の更なる態様は、以下の特徴の1つ以上を、個別に又は組み合わせにおいて含むことができる。
・センターボディ側壁とセンターボディ基部とが集合的に鈍頭体(blunt body)を形成する。
・センターボディ側壁が円錐形状の剛性壁を含む。
・センターボディ側壁が切頂斜円錐形状を有する。
・センターボディ基部が、半球形状、円錐台形状、多円錐形状、及び楕円体形状の少なくとも1つを有する。
・センターボディ側壁及びセンターボディ基部のうちの少なくとも一方が能動的に冷却される。
・センターボディが切頂トロイダルエアロスパイクである。
・ビークルが上段ロケットである。
・ビークルが大気圏再突入ビークルである。
・センターボディが切頂トロイダルエアロスパイクであり、センターボディ基部がビークルの後端を部分的に画定する。
・ビークルが、ビークルの前端を画定する本体部分と、ビークルの後端を画定する基部部分と、を含み、本体部分が、本体部分の前端と本体部分の後端との間の方向に延びる本体中心線に対して少なくとも実質的に軸対称である。
・ヒートシールド外面が本体中心線に対して非軸対称である。
・ヒートシールド外面が、大気圏再突入中にセンターボディに作用する正味の空気力学的な力が本体中心線に対してある角度となるように構成される。
・ヒートシールド外面が、ゼロ迎え角での大気圏再突入中にセンターボディに作用する正味の空気力学的な力が揚力を生成するように構成される。
・エンジン及びエアロスパイクノズルが、エアロスパイクノズルが高圧室によって生成されたガスをビークルの後端に向かう方向に排出するように構成される。
・センターボディ側壁とセンターボディ基部がヒートシールドの構成要素である。
・センターボディが円形の輪郭を有し、複数のスラスト室がセンターボディの円形の輪郭の周囲に間隔を置いて配置される。
・間隔距離Dspaceが、隣接するスラスト室間の円弧長として定義される。
・間隔距離Dspaceが、隣接するスラスト室間の翼弦長(chord length)として定義される。
・複数のスラスト室がセンターボディの周りに均一に間隔を置いて配置される。
・各スラスト室のノズル部分の出口寸法Dexitが直径である。
・ビークルの本体の後端にスラスタマウントが配置され、スラスタマウントが、これを貫通してビークルの本体の中心線に平行な方向に延びる複数の開口を有し、各開口がスラスト室の1つを受け入れるように構成される。
・センターボディがビークルの本体の中心線に対して非軸対称である。
・センターボディ及びスラスタマウントがヒートシールドの少なくとも一部を画定する。
・センターボディが円形の輪郭を有し、複数のスラスト室がセンターボディの円形の輪郭の周囲に間隔を置いて配置される。
・間隔距離Dspaceが、隣接するスラスト室間の円弧長として定義される。
・間隔距離Dspaceが、隣接するスラスト室間の翼弦長として定義される。
・複数のスラスト室がセンターボディの周りに均一に間隔を置いて配置される。
・各スラスト室のノズル部分の出口寸法Dexitが直径である。
【0025】
本発明のこれらの及び他の態様は、以下に提供される図面及び詳細な説明に照らして明らかになるはずである。
【図面の簡単な説明】
【0026】
図1図1は従来技術のエアロスパイクエンジン及びノズルを概略的に示している。
【0027】
図2図2図1の従来技術のエアロスパイクエンジン及びノズルの一部を概略的に示している。
【0028】
図3図3はゼロ迎え角方位にある軸対称ヒートシールドを有する従来技術のビークル(すなわち、アポロ宇宙船の再突入ビークル)を概略的に示している。
【0029】
図4図4は非ゼロ迎え角方位にある図3の従来技術のビークルを概略的に示している。
【0030】
図5図5は本発明の非軸対称ヒートシールドを有する上段ロケットを含む2段式ロケットシステムの正面図である。
【0031】
図6図6図5の2段式ロケットシステムの分解正面図である。
【0032】
図7図7図5の上段ロケットの斜視図である。
【0033】
図8図8はゼロ迎え角方位にある図5の上段ロケットの正面図である。
【0034】
図9図9は非ゼロ迎え角方位にある図5の上段ロケットの正面図である。
【0035】
図10図10図5の上段ロケットの後端の正面図である。
【0036】
図11図11図5の上段ロケットの環状エアロスパイクエンジン及びノズルの一部を概略的に示している。
【0037】
図12図12図5の上段ロケットの後端の平面図である。
【0038】
図13図13図12の平面図の拡大部分である。
【発明を実施するための形態】
【0039】
図6~9を参照すると、本開示は、非軸対称ヒートシールド10、ヒートシールド10の少なくとも一部によって画定されるノズル12、ノズル12を含むエンジン14、及びエンジン14を含むビークル16について説明する。
【0040】
ビークル16は、ロケット(例えば、多段式ロケット、単段式宇宙輸送機(single-stage-to-orbit)(SSTO)ロケット、上段ロケット、ブースターロケット等)、ミサイル、宇宙船、航空機、あるいは大気中、準軌道、軌道、地球外、及び/又は惑星間空間環境における少なくとも超音速(例えば、超音速、極超音速、再突入速度等)までの移動(例えば、飛行)用に設計された他のビークルである。図5を参照すると、図示した実施形態では、ビークル16は、2段式ロケットシステム18の再使用可能な第2段ロケットである。図6及び7を参照すると、ビークル16は、前端20とそれに対向する後端22との間に延在する。ビークル16は、前端20に近接したペイロードハウジング24と、後端22に近接したエンジン14と、を含む。後端22は、例えば大気圏再突入中にビークル16の風上側を画定する。
【0041】
図8及び9を参照すると、ビークル16は、ビークル16の前端20を画定する本体部分26と、ビークル16の後端22を画定する基部部分28と、を含む。本体部分26は、その外面が、本体部分26の前端(すなわち、ビークル16の前端20)と本体部分26の後端との間の方向に延びる本体中心線30(例えば、本体部分26の最前点の接線に垂直な直線中心線)に対して少なくとも実質的に軸対称になるような形状である。基部部分28は、ヒートシールド外面を画定するヒートシールド10を含み、ヒートシールド10は、例えば、大気圏再突入中にビークル16の風上側にある。ヒートシールド10は、ヒートシールド外面が本体中心線30に対して非軸対称になるように構成され、ヒートシールド10の前端とヒートシールド10の後端(例えば、ビークル16の後端22)との間の方向に延びるヒートシールド中心線32(例えば、ヒートシールド10の最後部の接線に垂直な直線中心線)に対して非軸対称である。従って、ビークル16の本体部分26及びヒートシールド10は、ヒートシールド中心線32が本体中心線30に対して角度βだけオフセットされるように構成される。角度βは、典型的には1°~10°の範囲内である。図示した実施形態では、角度βは4°である。他の実施形態では、角度βは、例えば約1°、2°、3°、5°、6°、7°、8°、9°、又は10°である。図示した実施形態を含むいくつかの実施形態では、より詳細に以下に説明するように、ヒートシールド外面の少なくとも一部は、ヒートシールド中心線32に対して少なくとも実質的に軸対称である。
【0042】
図8及び9を更に参照すると、ビークル16の本体部分26は、ノーズ34と、ノーズ34の後方に延びる側壁36と、を含む。図示した実施形態では、ノーズ34は丸い円錐形の剛性壁を含み、側壁36は円錐台形状の剛性壁を含む。側壁36は、ビークル16による輸送中にペイロード(例えば、貨物、軍需物資等)が保管されるペイロードハウジング24を少なくとも部分的に画定する。側壁36は更に、エンジン14の1つ以上の構成要素及び/又はヒートシールド10を能動的に冷却するためのシステムの1つ以上の構成要素(例えば、タンク、ポンプ、タービン等)などのビークル16の1つ以上の内部構成要素を取り囲む。側壁36は、本体中心線30に平行な面38、39に対して角度θ(以下、「側壁角度θ」という)で配置されている。図示した実施形態では、ビークル16は、図3及び4の従来技術のビークル216と比較して比較的浅い側壁角度θで設計されている(すなわち、側壁角度θは低い大きさを有する)。側壁角度θは0°~90°の範囲内である。いくつかの実施形態では、側壁角度θは5°~15°の範囲内である。例えば、図示した実施形態では、側壁角度θは7°である。側壁角度θの大きさはビークル16の体積に反比例するので、側壁角度θが浅いことにより、ビークル16、特にペイロードハウジング24の体積を従来技術のビークル216のものよりも大きくすることができるという利点がある。
【0043】
図8~10を参照すると、ビークル16の基部部分28は、ヒートシールド10及びその外面(すなわち、ヒートシールド外面)を画定する1つ以上の構成要素を含む。図示した実施形態では、基部部分28はセンターボディ40及びスラスタマウント42を含み、これらは各々ヒートシールド10及びヒートシールド外面の一部を画定する。センターボディ40は、切頂トロイダルエアロスパイクの形状である。センターボディ40は、集合的に鈍頭体を形成するセンターボディ側壁44及びセンターボディ基部46を含む。センターボディ側壁44は、切頂斜円錐形状を有する剛性壁を含む。センターボディ基部46は、半球形状の剛性壁を含む。他の実施形態では、センターボディ基部46は、追加的又は代替的に、円錐台形、多円錐形(例えば、双円錐形、三重円錐形等)、楕円形、及び/又は別の鈍頭形状を有する1つ以上の剛性壁を含む。図10及び11を参照すると、スラスタマウント42は、本体中心線30の周りに環状に延び且つビークル16の本体部分26の後端に近接して位置する剛性壁を含む。スラスタマウント42は、これを貫通して円周方向に間隔を置いて本体中心線30と平行な方向に延びる複数の開口43を含む。スラスタマウント42の各開口34は、エンジン14のスラスト室48を受け入れるように構成されており、これについては以下でより詳細に説明する。
【0044】
センターボディ側壁44、センターボディ基部46、及びスラスタマウント42のそれぞれの外面によって画定されるヒートシールドの外面は、本体中心線30に対して非軸対称である。いくつかの実施形態では、ヒートシールド外面の少なくとも一部は、ヒートシールド中心線32に対して少なくとも実質的に軸対称である。図示した実施形態では、例えば、センターボディ基部46によって画定される外面は、半球状の形状を有し、ヒートシールド中心線32に対して軸対称である。
【0045】
いくつかの実施形態では、センターボディ側壁44、センターボディ基部46、及び/又はスラスタマウント42を含むヒートシールド10の1つ以上の構成要素は、同一出願人による2019年12月3日出願の米国仮特許出願第62/942,886号、及び米国仮特許出願第62/942,886号の優先権を主張する2020年8月27日出願の国際特許出願第PCT/US2020/48226号に開示されているヒートシールドシステムを用いて能動的に冷却され、それらの内容は、参照によりそれらの全体がここに組み込まれる。いくつかの実施形態では、ビークル16の本体部分26の側壁36の少なくとも一部が、同一又は同様の方法で能動的に冷却される。
【0046】
図10及び11を参照すると、エンジン14は、少なくとも1つの高圧室50(例えば、燃焼室)及びノズル12を含む。
【0047】
高圧室50は、ノズル12を通して排出されるガスを生成する。高圧室50は、環状リング、セグメント化リング、個別のスラスト室、又はノズル12に超音速流を提供する任意の他の構成の形態である。
【0048】
ノズル12は、排出ガスが最初に少なくとも1つの高圧室50から出る少なくとも1つの初期ノズル部分52と、初期ノズル部分52に対して下流の二次ノズル部分53(図11)と、を有するエアロスパイクノズルである。初期ノズル部分52は少なくとも1つのスロート54を含み、典型的には収束/発散ノズルの形態である。
【0049】
図10及び11を更に参照すると、ノズル12は、ヒートシールド10の少なくとも一部によって画定される。図示した実施形態では、ノズル12の二次ノズル部分53(図11)は、センターボディ40によって画定される。センターボディ側壁44は、それがヒートシールド10の一部として機能することに加えて、ノズル12の拡張面55としても機能する。センターボディ側壁44はヒートシールド中心線32に対して非軸対称であり、従ってノズル12はヒートシールド中心線32に対して非軸対称である。図10に示すように、初期ノズル部分52とセンターボディ基部46は、ビークル16の両サイドでそれぞれ第1及び第2の距離d、dだけ離れている。第1及び第2の距離d、dは、ノズル12の非軸対称の形状により互いに異なる。これは、図1に示す従来技術のエアロスパイクノズル112とは対照的であり、図1では、初期ノズル部分52とセンターボディ基部46がビークル16の両サイドで同じ距離dだけ離れている。
【0050】
エンジン14及びノズル12は、種々の異なる方法で構成することができる。図示した実施形態では、エンジン14は、いわゆる「プラグクラスタ」構成を有する。すなわち、エンジン14は、互いに離間した複数の別個の高圧室50と、互いに離間した複数の別個の初期ノズル部分52と、を含む。
【0051】
図10及び図11を参照すると、図示した実施形態の「プラグクラスタ」構成では、各初期ノズル部分52は、対応する高圧室50に対して配置され、それぞれの高圧室50から出るガスを排出するように構成されている。以下、各高圧室50及び初期ノズル部分52の対を「スラスト室48」と称する。二次ノズル部分53は、スラスト室48に対して下流にある。
【0052】
図11を参照すると、図示した実施形態では、各スラスト室48の初期ノズル部分52は、収束/発散ノズル及び/又は一次ノズルの形態である。特に、各スラスト室48の初期ノズル部分52は、対向する収束面70、72を有する上流の収束セクションと、対向する発散面64、66を有する下流の発散セクションと、の間の移行部を画定するスロート54を含む。各スラスト室48のスロート54は、初期ノズル部分52の軸74の周りに環状に延びる。発散面64、66は、それらの間に初期ノズルキャビティ25を画定する。初期ノズル部分52の外側後端68は、外側発散面66を画定している壁の後端によって画定される。スラスタマウント42の半径方向内側部分は、初期ノズル部分52の内側後端69と二次ノズル部分53のセンターボディ側壁44との間に延びている。他の実施形態では、初期ノズル部分52の内側後端69は拡張面55に接し、それらの間に変曲点が画定される。
【0053】
図11を参照すると、図示した実施形態では、各スラスト室48は、初期ノズル部分52の軸74が本体中心線30(図10参照)に平行になるように構成される。これは、図1及び図2における従来技術のエアロスパイクノズル112とは対照的であり、従来技術では、例えば、軸174はノズル112が配置されるビークルの中心線116に対して角度をなしている(すなわち、平行ではない)。本発明のエンジン14及びノズル12の他の実施形態では、各スラスト室48は、初期ノズル部分52の軸57が本体中心線30に対して角度をなすように構成される(すなわち、平行ではない)。
【0054】
図11を更に参照すると、各スラスト室48は出口寸法Dexitを有する。出口寸法Dexitは、軸74に垂直な方向における初期ノズルキャビティ25の最大寸法である。図示した実施形態では、初期ノズル部分52の発散面64、66は、軸74に垂直な面内で円形の断面形状を画定し、従って出口寸法Dexitは、初期ノズルキャビティ25のその外側後端68における直径に対応する。図示した実施形態では、複数のスラスト室48は互いに同一であるので、各スラスト室48の出口寸法Dexitは、他の全てのスラスト室48と同じ大きさを有する。
【0055】
図12及び13を参照すると、図示した実施形態では、複数のスラスト室48は、各別個のスラスト室48が、周方向に隣接するスラスト室48から間隔距離Dspaceだけ離間するように、本体中心線30に対して周方向に間隔を置いて配置され、間隔距離Dspaceは、スラスト室48の出口寸法Dexitと1以上の大きさを有する乗算係数Mとの積に等しいかそれよりも大きい。
【0056】
図示した実施形態では、間隔距離Dspaceは、第1のスラスト室48の初期ノズル部分52の軸74と、周方向に隣接するスラスト室48の初期ノズル部分52の軸74と、の間に延びる円弧長である。他の実施形態では、間隔距離Dは、第1のスラスト室48の初期ノズル部分52の軸74と、周方向に隣接するスラスト室48の初期ノズル部分52の軸74と、の間の翼弦長である。
【0057】
図12及び13を更に参照すると、図示した実施形態では、乗算係数Mは約3であり、複数のスラスト室48は、周方向に隣接する一対のスラスト室48の間の間隔距離Dspaceが、周方向に隣接する全ての対のスラスト室48の間のそれぞれの間隔距離Dspaceと同じになるように、センターボディ40の周りに均一に間隔を置いて配置されている。他の実施形態では、スラスト室48は、周方向に隣接する一対のスラスト間の間隔距離Dspaceが、周方向に隣接する少なくとも一対のスラスト室48の間の間隔距離Dspaceとは異なる大きさを有するように、センターボディ40の周りに不均一に間隔を置いて配置される。他の実施形態では、乗算係数Mは、2、3、4、5、6、7、8、9、10等以上の大きさを有する。いくつかの実施形態では、乗算係数Mは、少なくとも、1~2、2~3、3~4、4~5、5~6、6~7、7~8、8~9、9~10等の範囲内の大きさを有する。いくつかの実施形態では、乗算係数Mは整数である。他の実施形態では、乗算係数Mは非整数である。例えば、そのような実施形態では、乗算係数Mは、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1等以上の大きさを有する。
【0058】
乗算係数Mの大きさは、例えば、エンジン14、ノズル12、ビークル16、及び/又はその構成部品の寸法及び/又は形状(例えば、ビークル16の直径、スラスト室48の出口寸法Dexit、所望のノズル拡張率等)、エンジン14に含まれるスラスト室48の総数、エンジン14、ノズル12、ビークル16、及び/又はその構成部品の質量、及び/又は所望の性能特性(例えば、推力対重量比、推力係数C、比推力Isp、特性速度c等)を含む1つ以上のコスト及び/又は性能要因に基づいて変化し得る。
【0059】
従来技術は、Dspace=M×Dexitとなるように、複数のスラスト室を周方向に隣接するスラスト室にできるだけ近づけて配置することを教示しており、ここでMは1未満である。従来の考えでは、スラスト室を互いに非常に近づけて配置すると(例えばM<<1)、非クラスタエアロスパイク構成及び/又は従来のベルノズルの流れ場をより適切に近似できるであろうから、それにより、最適な推力性能と流れ分離を達成し、効率損失を最小限に抑えられるはずであった。しかし、出願人は、Dspace≧M×Dexit(Mは1以上)となるように互いに広い間隔でスラスト室48を配置した場合に、予期せぬ結果(例えば、推力性能の向上、効率損失の最小化等)を達成した。例えば、出願人は、Dspace≧M×Dexit(Mは1以上)となるように互いに広い間隔でスラスト室48が配置される図示の実施形態に関して、予期せぬ結果を達成した。出願人は、スラスト室48の数、スラスト室48間の間隔距離Dspace、及びスラスト室48の出口寸法Dexitが設計変数として選択される場合、Dspace≧M×Dexit(Mは1以上)となるように互いに広い間隔でスラスト室48を配置することによって、推力係数Cが最適化され得ることを発見した。ロケットエンジン14の推力Tは、次のように定義され得る。

ここで、mは推進剤の質量流量、cは高圧室50内の燃焼ガスの特性速度であり、燃焼によって生成されるエネルギーの尺度、Cはノズル推力係数である。推力係数は、ノズル12内のガス膨張による推力の増幅を決定し、次の式を用いてノズルパラメータに関して定義され得る。


ここで、ηCFは推力係数効率、γは燃焼ガスの比熱比、Pは高圧室50内の全よどみ圧力、Pはノズル出口の静圧、Pは周囲環境の環境静圧、A/Aはノズル出口とスロートの面積比である。互いに広い間隔でスラスト室48を配置することによって、効率ηCFの低下と引き換えに面積比A/Aのより大幅な増加を得ることができ、その結果、全体としてより最適な解決策となる。
【0060】
動作中、ビークル16は、マッハ30に近づき得る自由流マッハ数で環境(例えば、大気圏、宇宙)中を移動する。真空条件での動作中、エンジン14の種々のスラスト室48からの排気プルームが合流して、ヒートシールド10のセンターボディ基部46に沿って正圧を捕捉する空気力学的スパイクを形成する。これにより追加の推力が生じ、エンジン14及びビークル16の全体的な効率が向上する。図10を参照すると、大気圏飛行中、バウショック(bow shock)56がビークル16の上流に形成され、バウショック56のビークル側の温度は数千ケルビンに達する可能性がある。バウショック56は、ビークル16の速度を低下させる大きな抗力を発生させ、またヒートシールド10上に大きな空気力学的加熱58を発生させ、それにより、再使用のためには、上述した能動的冷却システム等の冷却及び/又は他の熱保護が必要になる。
【0061】
再び図8を参照すると、ビークル16は、最初に、いわゆるゼロ迎え角(すなわち、α=0°)で大気圏に再突入してよく、この場合、ビークル16は、本体中心線30が進行方向60と平行になるように方位づけられる。この方位において、ヒートシールド中心線32は、本体中心線30に対してヒートシールド中心線32がオフセットされている角度βに等しい角度δだけ、進行方向60に対してオフセットされている。ゼロ迎え角方位において、ビークル16の重心62及び圧力中心64は、進行方向60に対してオフセットされた面66内にある。ヒートシールド10のセンターボディ基部46が、本体中心線30に対して角度βでオフセットされているヒートシールド中心線32に対して軸対称であるという事実は、有利なことに、ゼロ迎え角においても進行方向60に対してビークル16に正味の揚力を生じさせる。
【0062】
ゼロ迎え角でのビークル16の動作中(図8)、ビークル16に対する空気力学的な揚力及び抗力は、重心62の周りにピッチングモーメントを生成し、ビークル16は自然に、それらのモーメントがバランスする方位(つまり、空気力学的トリムポイント)をとることになる。図9に示すこの方位では、センターボディ基部46と、ビークル16に対して進行方向60と反対の方向に移動している高エンタルピー流68と、の間の角度αが増加する。従って、非ゼロ迎え角方位(図9)は、ゼロ迎え角方位(図8)に比べて追加的な揚力を生じさせる。非ゼロ迎え角方位(図9)では、重心62及び圧力中心64の面66は、進行方向60に対して平行となり、ビークル16の両サイドは、進行方向60と平行な面70、71に対してそれぞれ異なる角度φ1、φ2となる。ヒートシールド中心線32は、(i)センターボディ基部46と高エンタルピー流68の間の角度αと(ii)ヒートシールド中心線32が本体中心線30に対してオフセットされる角度βとの和に等しい角度δだけ進行方向60に対してオフセットされる。迎え角αは、側壁角度θを超えるべきではない。従って、図示した実施形態では、ビークル16は7°を超える迎え角αで飛行すべきではない。迎え角αをこの閾値未満に維持することにより、高エンタルピー流68がビークル16の側壁36に衝突することが防止され、側壁36の表面上に追加のヒートシールド(及び付随する追加の質量)の必要性がなくなる。ビークル16の重力62及び圧力中心64は、大気圏再突入中に特定の非ゼロ迎え角を達成するように選択することができる。
【0063】
ヒートシールド10の非軸対称の性質(例えば、本体中心線30に対するセンターボディ基部46の斜角β)により、ビークル16は特定の迎え角の制約内でより高い揚抗比を達成することができる。すなわち、ビークル16は、迎え角αのより低い範囲で特定の目標揚抗比を達成することができる。これにより、極超音速流68がビークル16の側壁36に衝突するのを防止しつつ、より浅い側壁角度θが可能になる。従って、他のシステム用途(例えば、推進剤、ペイロード等)に利用可能な容積の増加が可能になる。
【0064】
ヒートシールド10の追加質量及び空気力学的制御を最小限に抑えるために、ビークル16は、ビークル16の比較的小さなヒートシールド10のみを高エンタルピー流68に曝露し、同時に正確な操縦と着陸のために十分な揚抗比を生成する。本体中心線30に対するセンターボディ基部46の角度βと重心62の位置の両方を調整することによって、ビークル16の設計を調整して、同じトリム迎え角αを維持しつつ異なる量の揚力を生成することができる。これにより、従来の軸対称ビークル形状では得られなかった設計空間の自由度が高まる。ヒートシールド10とノズル12の結合表面は、再使用可能な上段用途においてヒートシールド10の質量ペナルティがより低くなるという点で有利である。
【0065】
いくつかの実施形態が開示されてきたが、本発明の態様が更に多くの実施形態を含むことは当業者には明らかなはずである。従って、本発明の態様は、添付の特許請求の範囲及びそれらの均等なものを考慮する場合を除いて、制限されるべきではない。本開示の真の範囲から逸脱することなく変更及び修正がなされ得ることも当業者には明らかなはずである。例えば、場合によっては、一実施形態に関連して開示された1つ以上の特徴は、単独で又は1つ以上の他の実施形態の1つ以上の特徴との組み合わせにおいて用いられ得る。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
【国際調査報告】