IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マジック リープ, インコーポレイテッドの特許一覧

特表2024-514877複合現実用途のための湾曲したアイピーススタックにおけるカバーアーキテクチャ
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-04-03
(54)【発明の名称】複合現実用途のための湾曲したアイピーススタックにおけるカバーアーキテクチャ
(51)【国際特許分類】
   G02B 27/02 20060101AFI20240327BHJP
   G02B 1/118 20150101ALI20240327BHJP
   G02B 1/11 20150101ALI20240327BHJP
   H04N 13/344 20180101ALI20240327BHJP
【FI】
G02B27/02 Z
G02B1/118
G02B1/11
H04N13/344
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023562901
(86)(22)【出願日】2022-04-15
(85)【翻訳文提出日】2023-12-11
(86)【国際出願番号】 US2022071744
(87)【国際公開番号】W WO2022221875
(87)【国際公開日】2022-10-20
(31)【優先権主張番号】63/176,102
(32)【優先日】2021-04-16
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】オング, ライアン ジェイソン
(72)【発明者】
【氏名】リー, リン
(72)【発明者】
【氏名】チャン, チエ
(72)【発明者】
【氏名】バガト, シャラド ディー.
(72)【発明者】
【氏名】ぺロス, クリストフ
(72)【発明者】
【氏名】リウ, ビクター カイ
(72)【発明者】
【氏名】バーガバ, サマース
(72)【発明者】
【氏名】メッリ, マウロ
(72)【発明者】
【氏名】ウエスト, メラニー マプトル
【テーマコード(参考)】
2H199
2K009
【Fターム(参考)】
2H199CA02
2H199CA12
2H199CA24
2H199CA25
2H199CA27
2H199CA32
2H199CA42
2H199CA53
2H199CA66
2H199CA67
2H199CA86
2H199CA92
2H199CA93
2H199CA95
2K009AA01
2K009DD01
(57)【要約】
アイピースおよびアイピースを製造する方法が開示される。いくつかの実施形態では、アイピースは、光を伝搬するための湾曲カバー層および導波路層を備える。いくつかの実施形態では、湾曲カバー層は、反射防止特徴を備える。本開示では、アイピースが提供され、該アイピースは、湾曲カバー層であって、該湾曲カバー層は、反射防止特徴を備える、湾曲カバー層と、プロジェクタによって生成された光を伝搬するように構成された導波路層と、該プロジェクタを該導波路層に光学的に結合するように構成された開口部と、第2のカバー層とを備える。
【特許請求の範囲】
【請求項1】
アイピースであって、
湾曲カバー層であって、前記湾曲カバー層は、反射防止特徴を備える、湾曲カバー層と、
プロジェクタによって生成された光を伝搬するように構成された導波路層と、
前記プロジェクタを前記導波路層に光学的に結合するように構成された開口部と、
第2のカバー層と
を備える、アイピース。
【請求項2】
前記導波路層は、湾曲している、請求項1に記載のアイピース。
【請求項3】
前記第2のカバー層は、湾曲している、請求項1に記載のアイピース。
【請求項4】
前記湾曲カバー層は、第2の反射防止特徴を備える、請求項1に記載のアイピース。
【請求項5】
前記反射防止特徴は、モスアイフィルム、スピンコーティング、浸漬コーティング、およびスプレーコーティングを使用する鋳造のうちの1つ以上によって作製される、請求項1に記載のアイピース。
【請求項6】
前記カバー層は、前記導波路層に向かう方向に湾曲している、請求項1に記載のアイピース。
【請求項7】
前記カバー層は、前記導波路層から離れる方向に湾曲している、請求項1に記載のアイピース。
【請求項8】
前記湾曲カバー層の長さは、前記導波路層の長さよりも短い、請求項1に記載のアイピース。
【請求項9】
前記湾曲カバー層は、前記開口部を備える、請求項1に記載のアイピース。
【請求項10】
アイピースを製造する方法であって、前記方法は、
プロジェクタから受信した光を伝搬するように構成された導波路層を設けることと、
反射防止特徴を備える湾曲カバー層を設けることと、
第2のカバー層を設けることと、
前記導波路層を前記プロジェクタに光学的に結合するように構成された開口部を設けることと
を含む、方法。
【請求項11】
前記導波路層は、湾曲している、請求項10に記載の方法。
【請求項12】
前記第2のカバー層は、湾曲している、請求項10に記載の方法。
【請求項13】
前記反射防止特徴は、モスアイフィルム、スピンコーティング、浸漬コーティング、およびスプレーコーティングを使用する鋳造のうちの1つ以上によって作製される、請求項10に記載の方法。
【請求項14】
前記カバー層は、前記導波路層に向かう方向に湾曲している、請求項10に記載の方法。
【請求項15】
前記カバー層は、前記導波路層から離れる方向に湾曲している、請求項10に記載の方法。
【請求項16】
前記湾曲カバー層の長さは、前記導波路層の長さよりも短い、請求項10に記載の方法。
【請求項17】
前記開口部を設けることは、前記湾曲カバー層に孔を形成することを含む、請求項10に記載の方法。
【請求項18】
ウェアラブルヘッドデバイスであって、
第1のアイピースと、
前記第1のアイピースに光学的に結合されたプロジェクタと
を備え、
前記第1のアイピースは、
湾曲カバー層であって、前記湾曲カバー層は、反射防止特徴を備える、湾曲カバー層と、
プロジェクタによって生成された光を伝搬するように構成された導波路層と、
前記プロジェクタを前記導波路層に光学的に結合するように構成された開口部と、
第2のカバー層と
を備える、ウェアラブルヘッドデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2021年4月16日に出願された米国仮特許出願第63/176,102号の優先権を主張し、その内容は参照によりその全体が本明細書に組み込まれる。
【0002】
分野
本開示は、一般に、アイピーススタックに関し、特に、複合現実(MR)用途のための湾曲したアイピーススタックにおけるカバーアーキテクチャに関する。
【背景技術】
【0003】
背景
MR用途のためのアイピーススタックに湾曲カバー層を使用することが望ましい場合がある。例えば、湾曲カバー層は、光学性能を改善するためにアイピーススタックの湾曲導波路に適応し得る。別の例として、湾曲カバー層は、アイピースの構造特性を改善し得る。しかしながら、湾曲カバー層によって生成された反射は、観察者にゴースト像(例えば、シフトされた反射)を生成することがあり、ゴースト像を低減するための反射防止特徴を生成するために高温(例えば、100C)堆積および/または真空堆積を使用することはコストがかかることがある。したがって、湾曲カバー層の利点をより効率的に得るために、湾曲カバー層のための反射防止特徴を生成するより安価な方法が望ましい場合がある。
【発明の概要】
【課題を解決するための手段】
【0004】
概要
本開示の例は、アイピースおよびアイピースの製造方法を説明する。いくつかの実施形態では、アイピースは、光を伝搬するための湾曲カバー層および導波路層を備える。いくつかの実施形態では、湾曲カバー層は、反射防止特徴を備える。
【0005】
いくつかの実施形態では、導波路層は、湾曲している。
【0006】
いくつかの実施形態では、アイピースは、第2のカバー層をさらに備える。
【0007】
いくつかの実施形態では、第2のカバー層は、湾曲している。
【0008】
いくつかの実施形態では、湾曲カバー層は、第2の反射防止特徴を備える。
【0009】
いくつかの実施形態では、反射防止特徴は、鋳造、モスアイフィルムの使用、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。
【0010】
いくつかの実施形態では、カバー層は、導波路層に向かって湾曲している。
【0011】
いくつかの実施形態では、カバー層は、導波路層から離れるように湾曲している。
【0012】
いくつかの実施形態では、導波路層内を伝搬する光は、プロジェクタから生成される。
【0013】
いくつかの実施形態では、湾曲カバー層の長さは、導波路層の長さよりも短い。
【0014】
いくつかの実施形態では、湾曲カバー層は、孔を備える。
【0015】
いくつかの実施形態では、アイピースを製造するための方法は、光を伝搬するための導波路層を設けることと、湾曲カバー層を設けることと、を含む。
【0016】
いくつかの実施形態では、導波路層は、湾曲している。
【0017】
いくつかの実施形態では、本方法は、第2のカバー層を設けることをさらに含む。
【0018】
いくつかの実施形態では、第2のカバー層は、湾曲している。
【0019】
いくつかの実施形態では、本方法は、湾曲カバー層上に反射防止特徴を作製することをさらに含む。
【0020】
いくつかの実施形態では、反射防止特徴は、鋳造、モスアイフィルムの使用、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。
【0021】
いくつかの実施形態では、カバー層は、導波路層に向かって湾曲している。
【0022】
いくつかの実施形態では、カバー層は、導波路層から離れるように湾曲している。
【0023】
いくつかの実施形態では、本方法は、プロジェクタを導波路層に光学的に結合することをさらに含み、プロジェクタは、導波路層内を伝搬する光を生成する。
【0024】
いくつかの実施形態では、湾曲カバー層の長さは、導波路層の長さよりも短い。
【0025】
いくつかの実施形態では、本方法は、湾曲カバー層に孔を形成することをさらに含む。
【0026】
いくつかの実施形態では、ウェアラブルヘッドデバイスは、上記アイピースのいずれかの第1のアイピースと、上記アイピースのいずれかの第2のアイピースと、を備える。
【図面の簡単な説明】
【0027】
図1A図1A図1Cは、本開示の1つ以上の実施形態にかかる、例示的な環境を示している。
図1B図1A図1Cは、本開示の1つ以上の実施形態にかかる、例示的な環境を示している。
図1C図1A図1Cは、本開示の1つ以上の実施形態にかかる、例示的な環境を示している。
【0028】
図2A図2A図2Dは、本開示の実施形態にかかる、例示的な複合現実システムの構成要素を示している。
図2B図2A図2Dは、本開示の実施形態にかかる、例示的な複合現実システムの構成要素を示している。
図2C図2A図2Dは、本開示の実施形態にかかる、例示的な複合現実システムの構成要素を示している。
図2D図2A図2Dは、本開示の実施形態にかかる、例示的な複合現実システムの構成要素を示している。
【0029】
図3A図3Aは、本開示の実施形態にかかる、例示的な複合現実ハンドヘルドコントローラを示している。
【0030】
図3B図3Bは、本開示の実施形態にかかる、例示的な補助ユニットを示している。
【0031】
図4図4は、本開示の実施形態にかかる、例示的な複合現実システムの例示的な機能ブロック図を示している。
【0032】
図5A図5A図5Bは、本開示の実施形態にかかる、例示的な導波路層を示している。
図5B図5A図5Bは、本開示の実施形態にかかる、例示的な導波路層を示している。
【0033】
図6A図6A図6Cは、本開示の実施形態にかかる、例示的なアイピーススタックを示している。
図6B図6A図6Cは、本開示の実施形態にかかる、例示的なアイピーススタックを示している。
図6C図6A図6Cは、本開示の実施形態にかかる、例示的なアイピーススタックを示している。
【0034】
図7図7は、本開示の実施形態にかかる、例示的なカバー層を示している。
【0035】
図8図8は、本開示の実施形態にかかる、例示的なカバー層を示している。
【0036】
図9図9は、本開示の実施形態にかかる、例示的なカバー層を示している。
【0037】
図10-1】図10A図10Eは、本開示の実施形態にかかる、例示的なアイピース特性を示している。
図10-2】図10A図10Eは、本開示の実施形態にかかる、例示的なアイピース特性を示している。
【0038】
図11図11は、本開示の実施形態にかかる、例示的なアイピーススタックを示している。
【0039】
図12図12は、本開示の実施形態にかかる、アイピースを製造する例示的な方法を示している。
【発明を実施するための形態】
【0040】
詳細な説明
以下の例の説明では、本明細書の一部を形成し、実施されることができる特定の例を例示として示す添付の図面を参照する。開示された例の範囲から逸脱することなく、他の例が使用されることができ、構造的変更が行われることができることを理解されたい。
【0041】
全ての人と同様に、複合現実システムのユーザは、現実環境、すなわち、ユーザによって知覚可能な「現実世界」の3次元部分およびそのコンテンツの全てに存在する。例えば、ユーザは、人間の通常の感覚(視覚、音、触覚、味覚、嗅覚)を使用して現実環境を知覚し、現実環境内で自分の身体を動かすことによって現実環境と相互作用する。現実環境における位置は、座標空間における座標として記述されることができる。例えば、座標は、海面に対する緯度、経度、および高度;基準点からの3つの直交寸法における距離;または他の適切な値を含むことができる。同様に、ベクトルは、座標空間内の方向および大きさを有する量を記述することができる。
【0042】
コンピューティングデバイスは、例えば、デバイスに関連付けられたメモリに、仮想環境の表現を維持することができる。本明細書で使用される場合、仮想環境は、3次元空間の計算表現である。仮想環境は、任意のオブジェクト、アクション、信号、パラメータ、座標、ベクトル、またはその空間に関連付けられた他の特性の表現を含むことができる。いくつかの例では、コンピューティングデバイスの回路(例えば、プロセッサ)は、仮想環境の状態を維持および更新することができる。すなわち、プロセッサは、第1の時間t0において、仮想環境に関連付けられたデータおよび/またはユーザによって提供された入力に基づいて、第2の時間t1における仮想環境の状態を決定することができる。例えば、仮想環境内のオブジェクトが時間t0において第1の座標に位置し、特定のプログラムされた物理的パラメータ(例えば、質量、摩擦係数)を有する場合、ユーザから受信した入力は、方向ベクトルにおいてオブジェクトに力が加えられるべきであることを指示する。プロセッサは、基本力学を使用して時間t1におけるオブジェクトの位置を決定するために運動学の法則を適用することができる。プロセッサは、仮想環境について知られている任意の適切な情報および/または任意の適切な入力を使用して、時間t1における仮想環境の状態を決定することができる。仮想環境の状態を維持および更新する際に、プロセッサは、仮想環境における仮想オブジェクトの作成および削除に関連するソフトウェア;仮想環境における仮想オブジェクトまたはキャラクタの挙動を定義するためのソフトウェア(例えば、スクリプト);仮想環境における信号(例えば、音声信号)の挙動を定義するためのソフトウェア;仮想環境に関連付けパラメータを作成および更新するためのソフトウェア;仮想環境において音声信号を生成するためのソフトウェア;入出力を扱うソフトウェア;ネットワーク動作を実装するためのソフトウェア;アセットデータを適用するソフトウェア(例えば、仮想オブジェクトを経時的に移動させるためのアニメーションデータ);または他の多くの可能性を含む任意の適切なソフトウェアを実行することができる。
【0043】
ディスプレイまたはスピーカなどの出力デバイスは、仮想環境の任意のまたは全ての態様をユーザに提示することができる。例えば、仮想環境は、ユーザに提示されることができる仮想オブジェクト(これは、無生物;人々;動物;ライトなどのオブジェクトの表現を含み得る)を含み得る。プロセッサは、仮想環境のビューを決定することができ(例えば、原点座標、ビュー軸、および錐台を有する「カメラ」に対応する)、ディスプレイに、そのビューに対応する仮想環境の視聴可能なシーンをレンダリングすることができる。この目的のために、任意の適切なレンダリング技術が使用され得る。いくつかの例では、視聴可能なシーンは、仮想環境内のいくつかの仮想オブジェクトを含み、特定の他の仮想オブジェクトを除外し得る。同様に、仮想環境は、1つ以上の音声信号としてユーザに提示され得る音声態様を含み得る。例えば、仮想環境内の仮想オブジェクトは、オブジェクトの位置座標から生じる音を生成し得る(例えば、仮想キャラクタは、発話するか、または効果音を発生させ得る)。あるいは、仮想環境は、特定の位置に関連付けられてもよく、または関連付けられなくてもよい音楽キューまたは周囲音に関連付けられてもよい。プロセッサは、「聴取者」座標に対応する音声信号、例えば、仮想環境内の音の合成に対応し、聴取者座標において聴取者が聞く音声信号をシミュレートするために混合および処理された音声信号を決定し、1つ以上のスピーカを介して音声信号をユーザに提示することができる。
【0044】
仮想環境は、計算構造として存在するため、ユーザは、通常の感覚を使用して仮想環境を直接知覚し得ない。代わりに、ユーザは、例えばディスプレイ、スピーカ、触覚出力デバイスなどによってユーザに提示されるように、仮想環境を間接的に知覚することができる。同様に、ユーザは、仮想環境に直接触れたり、仮想環境を操作したり、仮想環境と直接相互作用したりし得ないが、仮想環境を更新するためにデバイスまたはセンサデータを使用することができるプロセッサに、入力デバイスまたはセンサを介して入力データを提供することができる。例えば、カメラセンサは、ユーザが仮想環境内でオブジェクトを移動させようとしていることを示す光学データを提供することができ、プロセッサは、そのデータを使用して、仮想環境内でオブジェクトにそれに応じて応答させることができる。
【0045】
複合現実システムは、例えば、透過型ディスプレイおよび/または1つ以上のスピーカ(これは、例えば、ウェアラブルヘッドデバイスに組み込まれてもよい)を使用して、現実環境と仮想環境との態様を組み合わせた複合現実環境(MRE)をユーザに提示することができる。いくつかの実施形態では、1つ以上のスピーカは、ウェアラブルヘッドデバイスの外部にあってもよい。本明細書で使用される場合、MREは、現実環境と対応する仮想環境との同時表現である。いくつかの例では、対応する現実環境および仮想環境は、単一の座標空間を共有する。いくつかの例では、実座標空間および対応する仮想座標空間は、変換行列(または他の適切な表現)によって互いに関連付けられる。したがって、単一の座標(いくつかの例では、変換行列とともに)は、現実環境内の第1の位置、および仮想環境内の第2の対応する位置を定義することができ、逆もまた同様である。
【0046】
MREでは、仮想オブジェクト(例えば、MREに関連付けられた仮想環境における)は、現実オブジェクト(例えば、MREに関連する現実環境における)に対応することができる。例えば、MREの現実環境が位置座標に現実のランプポスト(現実オブジェクト)を含む場合、MREの仮想環境は、対応する位置座標に仮想ランプポスト(仮想オブジェクト)を含み得る。本明細書で使用される場合、現実オブジェクトは、対応する仮想オブジェクトと組み合わせて、「複合現実オブジェクト」を構成する。仮想オブジェクトは、対応する現実オブジェクトと完全に一致または位置合わせされる必要はない。いくつかの例では、仮想オブジェクトは、対応する現実オブジェクトの単純化版とすることができる。例えば、現実環境が現実のランプポストを含む場合、対応する仮想オブジェクトは、現実のランプポストとほぼ同じ高さおよび半径の円筒を含み得る(ランプポストがほぼ円筒形の形状であり得ることを反映している)。このように仮想オブジェクトを単純化することは、計算効率を高めることができ、そのような仮想オブジェクトに対して実行される計算を単純化することができる。さらに、MREのいくつかの例では、現実環境内の全ての現実オブジェクトが対応する仮想オブジェクトに関連付けられるとは限らない。同様に、MREのいくつかの例では、仮想環境内の全ての仮想オブジェクトが対応する現実オブジェクトに関連付けられるとは限らない。すなわち、いくつかの仮想オブジェクトは、現実世界の対応物なしで、MREの仮想環境のみであってもよい。
【0047】
いくつかの例では、仮想オブジェクトは、対応する現実オブジェクトの特性とは時々大幅に異なる特性を有し得る。例えば、MRE内の現実環境は、緑色の2本腕のサボテン(とげのある無生物のオブジェクト)を含み得るが、MRE内の対応する仮想オブジェクトは、人間の顔の特徴および無表情を有する緑色の2本腕の仮想キャラクタの特性を有し得る。この例では、仮想オブジェクトは、特定の特性(色、腕の数)においてその対応する現実オブジェクトに似ているが、他の特性(顔の特徴、性格)は、現実オブジェクトとは異なる。このようにして、仮想オブジェクトは、創造的、抽象的、誇張的、または想像的な方法で現実オブジェクトを表す、または、そうでなければ無生物の現実オブジェクトに挙動(例えば、人間の性格)を与える可能性を有する。いくつかの例では、仮想オブジェクトは、現実世界の対応物のない純粋に想像力のある作成物(例えば、場合によっては現実環境内の空きスペースに対応する位置にいる仮想環境内の仮想モンスター)であり得る。
【0048】
いくつかの例では、仮想オブジェクトは、対応する現実オブジェクトに似た特性を有する。例えば、仮想キャラクタは、ユーザに没入型複合現実体験を提供するために、仮想または複合現実環境において生きているような人物として提示され得る。生きているような特徴を有する仮想キャラクタでは、ユーザは、自分が現実の人と相互作用しているように感じることがある。そのような場合、仮想キャラクタの筋肉の動きや視線などの動作は自然に見えることが望ましい。例えば、仮想キャラクタの動きは、対応する現実オブジェクトと同様であるべきである(例えば、仮想人間は、現実の人間のように腕を歩いたり動かしたりすべきである)。別の例として、仮想人間のジェスチャおよび位置決めは自然に見えるべきであり、仮想人間は、ユーザとの最初の相互作用を行うことができる(例えば、仮想人間は、ユーザとの協調的体験を導くことができる)。ここで、生きているような特徴を有する仮想キャラクタの提示についてより詳細に説明する。
【0049】
現実環境を不明瞭にしながらユーザに仮想環境を提示する仮想現実(VR)システムと比較して、MREを提示する複合現実システムは、仮想環境が提示されている間に現実環境が知覚可能なままであるという利点を提供する。したがって、複合現実システムのユーザは、現実環境に関連付けられた視覚的および音声的キューを使用して、対応する仮想環境を体験し、相互作用することができる。例として、本明細書に記載されるように、ユーザは、仮想環境を直接知覚または相互作用し得ないため、VRシステムのユーザは、仮想環境に表示された仮想オブジェクトを知覚または相互作用するのに苦労することがあるが、MRシステムのユーザは、自分自身の現実環境内の対応する現実オブジェクトを見て、聞いて、触れることによって仮想オブジェクトと相互作用することがより直感的且つ自然であると見出し得る。このレベルの相互作用性は、仮想環境との没入感、接続感、および関与感を高め得る。同様に、現実環境と仮想環境とを同時に提示することによって、複合現実システムは、VRシステムに関連付けられた否定的な心理的感情(例えば、認知的不協和)および否定的な身体的感情(例えば、酔い)を低減し得る。複合現実システムは、現実世界の体験を増強または変更し得るアプリケーションの多くの可能性をさらに提供する。
【0050】
図1Aは、ユーザ110が複合現実システム112を使用する例示的な現実環境100を示している。複合現実システム112は、例えば本明細書に記載されるように、ディスプレイ(例えば、透過型ディスプレイ)および1つ以上のスピーカ、ならびに1つ以上のセンサ(例えば、カメラ)を備え得る。図示の現実環境100は、ユーザ110が立っている長方形部屋104Aと、現実オブジェクト122A(ランプ)、現実オブジェクト124A(テーブル)、現実オブジェクト126A(ソファー)、および現実オブジェクト128A(絵画)とを含む。部屋104Aは、位置座標(例えば、座標系108)によって空間的に記述され得る。現実環境100の位置は、位置座標の原点(例えば、点106)に関して記述され得る。図1Aに示すように、その原点106(世界座標)を有する環境/世界座標系108(x軸108X、y軸108Y、およびz軸108Zを含む)は、現実環境100の座標空間を定義することができる。いくつかの実施形態では、環境/世界座標系108の原点106は、複合現実システム112の電源がオンにされた場所に対応し得る。いくつかの実施形態では、環境/世界座標系108の原点106は、動作中にリセットされてもよい。いくつかの例では、ユーザ110は、現実環境100内の現実オブジェクトとみなし得る。同様に、ユーザ110の身体部分(例えば、手、足)は、現実環境100における現実オブジェクトとみなし得る。いくつかの例では、点115(例えば、ユーザ/聴取者/頭部座標)を原点とするユーザ/聴取者/頭部座標系114(x軸114X、y軸114Y、およびz軸114Zを含む)は、複合現実システム112が配置されているユーザ/聴取者/頭部についての座標空間を定義することができる。ユーザ/聴取者/頭部座標系114の原点115は、複合現実システム112の1つ以上の構成要素に対して定義され得る。例えば、ユーザ/聴取者/頭部座標系114の原点115は、複合現実システム112の初期較正中などに、複合現実システム112のディスプレイに対して定義され得る。行列(並進行列および四元数行列または他の回転行列を含み得る)、または他の適切な表現は、ユーザ/聴取者/頭部座標系114空間と環境/世界座標系108空間との間の変換を特徴付けることができる。いくつかの実施形態では、左耳座標116および右耳座標117は、ユーザ/聴取者/頭部座標系114の原点115に対して定義され得る。行列(並進行列および四元数行列または他の回転行列を含み得る)、または他の適切な表現は、左耳座標116および右耳座標117とユーザ/聴取者/頭部座標系114空間との間の変換を特徴付けることができる。ユーザ/聴取者/頭部座標系114は、ユーザの頭部、または例えば環境/世界座標系108に対する頭部装着型デバイスに対する位置の表現を単純化することができる。同時位置推定およびマッピング(SLAM)、ビジュアルオドメトリ、または他の技術を使用して、ユーザ座標系114と環境座標系108との間の変換がリアルタイムで決定および更新されることができる。
【0051】
図1Bは、現実環境100に対応する例示的な仮想環境130を示している。図示の仮想環境130は、現実の長方形部屋104Aに対応する仮想の長方形部屋104Bと、現実オブジェクト122Aに対応する仮想オブジェクト122B;現実オブジェクト124Aに対応する仮想オブジェクト124B;現実オブジェクト126Aに対応する仮想オブジェクト126Bとを含む。仮想オブジェクト122B、124B、126Bに関連付けられたメタデータは、対応する現実オブジェクト122A、124A、126Aから導出された情報を含むことができる。仮想環境130は、現実環境100内のいかなる現実オブジェクトにも対応し得ない仮想キャラクタ132をさらに備える。現実環境100における現実オブジェクト128Aは、仮想環境130におけるいずれの仮想オブジェクトにも対応し得ない。点134をその原点とする持続座標系133(x軸133X、y軸133Y、およびz軸133Zを含む)(持続座標)は、仮想コンテンツの座標空間を定義することができる。持続座標系133の原点134は、現実オブジェクト126Aなどの1つ以上の現実オブジェクトに対して/相対的に定義され得る。行列(並進行列および四元数行列または他の回転行列を含み得る)、または他の適切な表現は、持続座標系133空間と環境/世界座標系108空間との間の変換を特徴付けることができる。いくつかの実施形態では、仮想オブジェクト122B、124B、126B、および132のそれぞれは、持続座標系133の原点134に対して独自の持続座標点を有し得る。いくつかの実施形態では、複数の持続座標系が存在してもよく、仮想オブジェクト122B、124B、126B、および132のそれぞれは、1つ以上の持続座標系に対して独自の持続座標点を有してもよい。
【0052】
持続座標データは、物理的環境に対して持続的な座標データであり得る。持続座標データは、持続的仮想コンテンツを配置するためにMRシステム(例えば、MRシステム112、200)によって使用されてもよく、持続的仮想コンテンツは、仮想オブジェクトが表示されているディスプレイの動きに結び付けられなくてもよい。例えば、2次元スクリーンは、スクリーン上の位置に対する仮想オブジェクトを表示し得る。2次元スクリーンの移動に伴って、仮想コンテンツがスクリーンとともに移動してもよい。いくつかの実施形態では、持続的仮想コンテンツは、部屋の隅に表示され得る。MRユーザは、隅を見て、仮想コンテンツを見て、隅から外を見てもよく(ユーザの頭部の動きにより、仮想コンテンツがユーザの視野内からユーザの視野外の位置に移動した可能性があるため、仮想コンテンツはもはや見えなくなり得る)、後ろを見て隅内の仮想コンテンツを見てもよい(現実オブジェクトが挙動し得る方法と同様)。
【0053】
いくつかの実施形態では、持続座標データ(例えば、持続座標系および/または持続座標フレーム)は、原点および3つの軸を含むことができる。例えば、持続座標系は、MRシステムによって部屋の中心に割り当てられ得る。いくつかの実施形態では、ユーザは、部屋の中を動き回ったり、部屋の外に出たり、部屋に再び入ったりしてもよく、持続座標系は、(例えば、物理的環境に対して持続することから)部屋の中心に留まってもよい。いくつかの実施形態では、仮想オブジェクトは、持続的仮想コンテンツの表示を可能にし得る持続座標データへの変換を使用して表示され得る。いくつかの実施形態では、MRシステムは、持続座標データを生成するために同時位置特定およびマッピングを使用し得る(例えば、MRシステムは、持続座標系を空間内の点に割り当て得る)。いくつかの実施形態では、MRシステムは、一定の間隔で持続座標データを生成することによって環境をマッピングし得る(例えば、MRシステムは、グリッド内に持続座標系を割り当て得て、持続座標系は、別の持続座標系から少なくとも5フィート以内にあり得る)。
【0054】
いくつかの実施形態では、持続座標データは、MRシステムによって生成され、リモートサーバに送信され得る。いくつかの実施形態では、リモートサーバは、持続座標データを受信するように構成され得る。いくつかの実施形態では、リモートサーバは、複数の観測インスタンスからの持続座標データを同期させるように構成され得る。例えば、複数のMRシステムは、同じ部屋を持続座標データによってマッピングし、そのデータをリモートサーバに送信し得る。いくつかの実施形態では、リモートサーバは、この観測データを使用して、1つ以上の観測に基づき得る標準的な持続座標データを生成し得る。いくつかの実施形態では、標準的な持続座標データは、持続座標データの単一の観測よりも正確および/または信頼性が高くてもよい。いくつかの実施形態では、標準的な持続座標データは、1つ以上のMRシステムに送信され得る。例えば、MRシステムは、画像認識および/または位置データを使用して、対応する標準的な持続座標データを有する部屋に位置することを認識し得る(例えば、他のMRシステムが以前に部屋をマッピングしていることから)。いくつかの実施形態では、MRシステムは、その位置に対応する標準的な持続座標データをリモートサーバから受信し得る。
【0055】
図1Aおよび図1Bに関連して、環境/世界座標系108は、現実環境100および仮想環境130の両方についての共有座標空間を定義する。図示の例では、座標空間は、点106にその原点を有する。さらに、座標空間は、同じ3つの直交軸(108X、108Y、108Z)によって定義される。したがって、現実環境100内の第1の位置、および仮想環境130内の第2の対応する位置は、同じ座標空間に関して記述されることができる。これは、同じ座標が使用されて両方の位置を識別することができるため、現実環境および仮想環境における対応する位置の識別および表示を単純化する。しかしながら、いくつかの例では、対応する現実環境および仮想環境は、共有座標空間を使用する必要はない。例えば、いくつかの例(図示せず)では、行列(並進行列および四元数行列または他の回転行列を含み得る)、または他の適切な表現は、現実環境座標空間と仮想環境座標空間との間の変換を特徴付けることができる。
【0056】
図1Cは、現実環境100および仮想環境130の態様を、複合現実システム112を介してユーザ110に同時に提示する例示的なMRE150を示している。図示の例では、MRE150は、現実環境100からの現実オブジェクト122A、124A、126A、および128A(例えば、複合現実システム112のディスプレイの透過部分を介して)、および仮想環境130からの仮想オブジェクト122B、124B、126B、および132(例えば、複合現実システム112のディスプレイのアクティブ表示部分を介して)をユーザ110に同時に提示する。本明細書に記載されるように、原点106は、MRE150に対応する座標空間の原点として機能し、座標系108は、座標空間のx軸、y軸、およびz軸を定義する。
【0057】
図示の例では、複合現実オブジェクトは、座標空間108内の対応する位置を占める現実オブジェクトと仮想オブジェクトの対応するペア(例えば、122A/122B、124A/124B、126A/126B)を含む。いくつかの例では、現実オブジェクトと仮想オブジェクトの両方がユーザ110に同時に見えることがある。これは、例えば、仮想オブジェクトが対応する現実オブジェクトのビューを拡張するように設計された情報を提示する場合(仮想オブジェクトが古い損傷した彫刻の欠落したピースを提示する美術館アプリケーションなど)に望ましいことがある。いくつかの例では、対応する現実オブジェクト(122A、124A、および/または126A)を遮るように、仮想オブジェクト(122B、124B、および/または126B)が表示され得る(例えば、画素化遮蔽シャッタを使用するアクティブ画素化遮蔽を介して)。これは、例えば、仮想オブジェクトが対応する現実オブジェクトの視覚的置換として機能する場合(無生物の現実オブジェクトが「生きている」キャラクタになる相互作用型ストーリーテリングアプリケーションなど)に望ましいことがある。
【0058】
いくつかの例では、現実オブジェクト(例えば、122A、124A、126A)は、必ずしも仮想オブジェクトを構成しなくてもよい仮想コンテンツまたはヘルパーデータに関連付けられてもよい。仮想コンテンツまたはヘルパーデータは、複合現実環境における仮想オブジェクトの処理または取り扱いを容易にすることができる。例えば、そのような仮想コンテンツは、対応する現実オブジェクトの2次元表現;対応する現実オブジェクトに関連付けられたカスタムアセットタイプ;または対応する現実オブジェクトに関連付けられた統計データを含むことができる。この情報は、不必要な計算オーバーヘッドを招くことなく、現実オブジェクトを含む計算を可能または容易にすることができる。
【0059】
いくつかの例では、本明細書に記載される提示はまた、音声態様を組み込んでもよい。例えば、MRE150では、仮想キャラクタ132は、キャラクタがMRE150の周りを歩くときに生成される足音効果などの1つ以上の音声信号に関連付けられることができる。本明細書に記載されるように、複合現実システム112のプロセッサは、MRE150内の全てのそのような音の混合および処理された合成に対応する音声信号を計算し、複合現実システム112に含まれる1つ以上のスピーカおよび/または1つ以上の外部スピーカを介してユーザ110に音声信号を提示することができる。
【0060】
例示的な複合現実システム112は、(ニアアイディスプレイであってもよい左右の透過型ディスプレイと、ディスプレイからの光をユーザの眼に結合するための関連構成要素とを備え得る)ディスプレイ;左右スピーカ(例えば、ユーザの左右の耳にそれぞれ隣接して配置される);(例えば、ヘッドデバイスのテンプルアームに取り付けられる)慣性測定ユニット(IMU);(例えば、左側のテンプル片に取り付けられる)直交コイル型電磁受信機;ユーザから離れる方向に向けられた左右のカメラ(例えば、深度(飛行時間)カメラ);および(例えば、ユーザの眼球運動を検出するための)ユーザに向けられた左右の眼のカメラを備えるウェアラブルヘッドデバイス(例えば、ウェアラブル拡張現実または複合現実ヘッドデバイス)を含むことができる。しかしながら、複合現実システム112は、任意の適切なディスプレイ技術、および任意の適切なセンサ(例えば、光学、赤外線、音響、LIDAR、EOG、GPS、磁気)を組み込むことができる。さらに、複合現実システム112は、MRE150および他の複合現実システム内の要素(例えば、仮想キャラクタ132)の提示に関連するデータ処理および訓練データのためのニューラルネットワーク(例えば、クラウドにおいて)を含む、他のデバイスおよびシステムと通信するためのネットワーキング機能(例えば、Wi-Fi機能、モバイルネットワーク(例えば、4G、5G)機能)を組み込み得る。複合現実システム112は、バッテリ(ユーザの腰の周りに装着されるように設計されたベルトパックなどの補助ユニットに装着され得る)、プロセッサ、およびメモリをさらに含み得る。複合現実システム112のウェアラブルヘッドデバイスは、ユーザの環境に対するウェアラブルヘッドデバイスの座標のセットを出力するように構成された、IMUまたは他の適切なセンサなどの追跡構成要素を含み得る。いくつかの例では、追跡構成要素は、同時位置特定およびマッピング(SLAM)および/またはビジュアルオドメトリアルゴリズムを実行するプロセッサに入力を提供し得る。いくつかの例では、複合現実システム112はまた、本明細書に記載されるように、ウェアラブルベルトパックであってもよいハンドヘルドコントローラ300および/または補助ユニット320を含んでもよい。
【0061】
いくつかの実施形態では、アニメーションリグが使用されて、MRE150に仮想キャラクタ132を提示する。アニメーションリグは、仮想キャラクタ132に関して説明されているが、アニメーションリグは、MRE150内の他のキャラクタ(例えば、人間のキャラクタ、動物のキャラクタ、抽象的なキャラクタ)に関連付けられてもよいことが理解される。アニメーションリグの動きは、本明細書においてより詳細に説明される。
【0062】
図2A図2Dは、MRE(MRE150に対応し得る)または他の仮想環境をユーザに提示するために使用され得る例示的な複合現実システム200(複合現実システム112に対応し得る)の構成要素を示している。図2Aは、例示的な複合現実システム200に含まれるウェアラブルヘッドデバイス2102の斜視図を示している。図2Bは、ユーザの頭部2202に装着されたウェアラブルヘッドデバイス2102の平面図を示している。図2Cは、ウェアラブルヘッドデバイス2102の正面図を示している。図2Dは、ウェアラブルヘッドデバイス2102の例示的なアイピース2110の端面図を示している。図2A図2Cに示すように、例示的なウェアラブルヘッドデバイス2102は、例示的な左アイピース(例えば、左透明導波路セットアイピース)2108および例示的な右アイピース(例えば、右透明導波路セットアイピース)2110を含む。アイピース2108および2110は、本明細書に記載されるように、湾曲層を含み得る。アイピース2108および2110は、図6図12に関して開示されたアイピースであってもよい。各アイピース2108および2110は、現実環境が見られることができる透過要素、ならびに現実環境と重複するディスプレイ(例えば、イメージワイズ変調光を介して)を提示するためのディスプレイ要素を含むことができる。いくつかの例では、そのようなディスプレイ要素は、イメージワイズ変調光の流れを制御するための表面回折光学素子を含むことができる。例えば、左アイピース2108は、左内部結合格子セット2112、左直交瞳孔拡張(OPE)格子セット2120、および左射出(出力)瞳孔拡張(EPE)格子セット2122を含むことができる。同様に、右アイピース2110は、右内部結合格子セット2118、右OPE格子セット2114、および右EPE格子セット2116を含むことができる。イメージワイズ変調された光は、内部結合格子2112および2118、OPE2114および2120、ならびにEPE2116および2122を介してユーザの眼に伝達されることができる。各内部結合格子セット2112、2118は、光をその対応するOPE格子セット2120、2114に向けて偏向させるように構成されることができる。各OPE格子セット2120、2114は、光をその関連するEPE2122、2116に向かって徐々に下方に偏向させ、それによって形成される射出瞳を水平に延ばすように設計されることができる。各EPE2122、2116は、その対応するOPE格子セット2120、2114から受光した光の少なくとも一部を、アイピース2108、2110の背後に画定されたユーザのアイボックス位置(図示せず)に徐々に向け直すように構成されることができ、アイボックスに形成された射出瞳を垂直に延長する。あるいは、内部結合格子セット2112および2118、OPE格子セット2114および2120、ならびにEPE格子セット2116および2122の代わりに、アイピース2108および2110は、イメージワイズ変調された光のユーザの眼への結合を制御するための格子ならびに/または屈折および反射機構の他の配置を含むことができる。
【0063】
いくつかの例では、ウェアラブルヘッドデバイス2102は、左テンプルアーム2130および右テンプルアーム2132を含むことができ、左テンプルアーム2130は、左スピーカ2134を含み、右テンプルアーム2132は、右スピーカ2136を含む。直交コイル電磁受信機2138は、左テンプル片内、またはウェアラブルヘッドユニット2102内の別の適切な位置に配置されることができる。慣性測定ユニット(IMU)2140は、右テンプルアーム2132内に、またはウェアラブルヘッドデバイス2102内の別の適切な位置に配置されることができる。ウェアラブルヘッドデバイス2102はまた、左深度(例えば、飛行時間)カメラ2142および右深度カメラ2144を含むことができる。深度カメラ2142、2144は、より広い視野をともにカバーするように、異なる方向に適切に配向されることができる。
【0064】
図2A図2Dに示す例では、イメージワイズ変調光の左供給源2124は、左内部結合格子セット2112を介して左アイピース2108に光学的に結合されることができ、イメージワイズ変調光の右供給源2126は、右内部結合格子セット2118を介して右アイピース2110に光学的に結合されることができる。イメージワイズ変調光の供給源2124、2126は、例えば、光ファイバスキャナ;デジタル光処理(DLP)チップまたは液晶オンシリコン(LCoS)変調器などの電子光変調器を含むプロジェクタ;または、側面ごとに1つ以上のレンズを使用して内部結合格子セット2112、2118に結合されたマイクロ発光ダイオード(μLED)またはマイクロ有機発光ダイオード(μOLED)パネルなどの発光ディスプレイを含むことができる。入力結合格子セット2112、2118は、イメージワイズ変調光の供給源2124、2126からの光を、アイピース2108、2110の全内部反射(TIR)の臨界角を超える角度に偏向させることができる。OPE格子セット2114、2120は、TIRによって伝播する光をEPE格子セット2116、2122に向かって徐々に下方に偏向させる。EPE格子セット2116、2122は、ユーザの眼の瞳孔を含むユーザの顔に向かって光を徐々に結合する。
【0065】
いくつかの例では、図2Dに示すように、左アイピース2108および右アイピース2110のそれぞれは、複数の導波路2402を含む。例えば、各アイピース2108、2110は、それぞれがそれぞれの色チャネル(例えば、赤色、青色および緑色)専用の複数の個々の導波路を含むことができる。いくつかの例では、各アイピース2108、2110は、そのような導波路の複数のセットを含むことができ、各セットは、放射された光に異なる波面曲率を付与するように構成される。波面曲率は、例えば、ユーザの前方にある距離(例えば、波面曲率の逆数に対応する距離だけ)に配置された仮想オブジェクトを提示するために、ユーザの眼に対して凸状であってもよい。いくつかの例では、EPE格子セット2116、2122は、各EPEを横切る出射光のポインティングベクトルを変更することによって凸波面曲率を達成する湾曲格子溝を含むことができる。
【0066】
いくつかの例では、表示されたコンテンツが3次元であるという知覚を作り出すために、立体的に調整された左右の眼の画像が、イメージワイズ光変調器2124、2126およびアイピース2108、2110を通してユーザに提示されることができる。立体的な左右の画像によって示される距離に近い距離に仮想オブジェクトが表示されるように導波路を選択する(したがって、波面曲率に対応する)ことによって、3次元仮想オブジェクトの提示の知覚される臨場感が高められることができる。この技術はまた、立体視左右眼画像によって提供される深度知覚キューと人間の眼の自律神経調節(例えば、オブジェクト距離に依存する焦点)との間の差によって引き起こされ得る、一部のユーザが体験する酔いを低減し得る。
【0067】
図2Dは、例示的なウェアラブルヘッドデバイス2102の右アイピース2110の上からの端面図を示している。図2Dに示すように、複数の導波路2402は、3つの導波路の第1のサブセット2404と、3つの導波路の第2のサブセット2406とを含むことができる。導波路の2つのサブセット2404、2406は、出射光に異なる波面曲率を付与するために異なる格子線曲率を特徴とする異なるEPE格子によって区別されることができる。導波路の各サブセット2404、2406内で、各導波路が使用されて、異なるスペクトルチャネル(例えば、赤色、緑色、および青色のスペクトルチャネルのうちの1つ)をユーザの右眼2206に結合することができる。図2Dには示されていないが、左アイピース2108の構造は、右アイピース2110の構造に対して鏡像反転され得る。
【0068】
図3Aは、複合現実システム200の例示的なハンドヘルドコントローラ構成要素300を示している。いくつかの例では、ハンドヘルドコントローラ300は、グリップ部346と、上面348に沿って配置された1つ以上のボタン350とを含む。いくつかの例では、ボタン350は、カメラまたは他の光学センサ(これは、複合現実システム200のヘッドユニット(例えば、ウェアラブルヘッドデバイス2102)に装着されることができる)とともに、例えば、ハンドヘルドコントローラ300の6自由度(6DOF)動きを追跡するための光学追跡ターゲットとして使用するように構成され得る。いくつかの例では、ハンドヘルドコントローラ300は、ウェアラブルヘッドデバイス2102に対する位置または向きなどの位置または向きを検出するための追跡構成要素(例えば、IMUまたは他の適切なセンサ)を含む。いくつかの例では、そのような追跡構成要素は、ハンドヘルドコントローラ300のハンドル内に配置されてもよく、および/またはハンドヘルドコントローラに機械的に結合されてもよい。ハンドヘルドコントローラ300は、ボタンの押下状態;またはハンドヘルドコントローラ300の位置、向き、および/または動き(例えば、IMUを介して)のうちの1つ以上に対応する1つ以上の出力信号を提供するように構成されることができる。そのような出力信号は、複合現実システム200のプロセッサへの入力として使用され得る。そのような入力は、ハンドヘルドコントローラの位置、向き、および/または動き(および、延長により、コントローラを保持するユーザの手の位置、向き、および/または動きに)に対応し得る。そのような入力は、ユーザがボタン350を押すことにも対応し得る。
【0069】
図3Bは、複合現実システム200の例示的な補助ユニット320を示している。補助ユニット320は、システム200を動作させるためのエネルギーを供給するためのバッテリを含むことができ、システム200を動作させるためのプログラムを実行するためのプロセッサを含むことができる。図示のように、例示的な補助ユニット320は、補助ユニット320をユーザのベルトに取り付けるなどのためのクリップ2128を含む。ユニットをユーザのベルトに取り付けることを伴わないフォームファクタを含む、他のフォームファクタが補助ユニット320に適しており、明らかであろう。いくつかの例では、補助ユニット320は、例えば、電線および光ファイバを含むことができる多導管ケーブルを介してウェアラブルヘッドデバイス2102に結合される。補助ユニット320とウェアラブルヘッドデバイス2102との間の無線接続も使用されることができる。
【0070】
いくつかの例では、複合現実システム200は、音を検出し、対応する信号を複合現実システムに提供するための1つ以上のマイクロフォンを含むことができる。いくつかの例では、マイクロフォンは、ウェアラブルヘッドデバイス2102に取り付けられるか、または一体化されてもよく、ユーザの音声を検出するように構成されてもよい。いくつかの例では、マイクロフォンは、ハンドヘルドコントローラ300および/または補助ユニット320に取り付けられるか、または一体化されてもよい。そのようなマイクロフォンは、環境音、周囲の雑音、ユーザもしくは第三者の音声、または他の音を検出するように構成されてもよい。
【0071】
図4は、本明細書に記載される複合現実システム200(これは、図1に関する複合現実システム112に対応し得る)などの例示的な複合現実システムに対応し得る例示的な機能ブロック図を示している。ウェアラブルシステム400の要素は、本開示に記載される方法、動作、および特徴を実装するために使用され得る。図4に示すように、例示的なハンドヘルドコントローラ400B(ハンドヘルドコントローラ300(「トーテム」)に対応し得る)は、トーテム・ツー・ウェアラブルヘッドデバイス6自由度(6DOF)トーテムサブシステム404Aを含み、例示的なウェアラブルヘッドデバイス400A(ウェアラブルヘッドデバイス2102に対応し得る)は、トーテム・ツー・ウェアラブルヘッドデバイス6DOFサブシステム404Bを含む。この例では、6DOFトーテムサブシステム404Aおよび6DOFサブシステム404Bは、協働して、ウェアラブルヘッドデバイス400Aに対するハンドヘルドコントローラ400Bの6つの座標(例えば、3つの並進方向のオフセットおよび3つの軸に沿った回転)を決定する。6自由度は、ウェアラブルヘッドデバイス400Aの座標系を基準として表され得る。3つの並進オフセットは、そのような座標系におけるX、Y、およびZオフセットとして、並進行列として、または他の何らかの表現として表され得る。回転自由度は、ヨー、ピッチ、およびロール回転のシーケンスとして、回転行列として、四元数として、または他の何らかの表現として表され得る。いくつかの例では、ウェアラブルヘッドデバイス400A;ウェアラブルヘッドデバイス400Aに含まれる1つ以上の深度カメラ444(および/または1つ以上の非深度カメラ);および/または1つ以上の光学ターゲット(例えば、本明細書に記載されるハンドヘルドコントローラ400Bのボタン350、またはハンドヘルドコントローラ400Bに含まれる専用の光学ターゲット)が6DOF追跡に使用されることができる。いくつかの例では、ハンドヘルドコントローラ400Bは、本明細書に記載されるように、カメラを含むことができ、ウェアラブルヘッドデバイス400Aは、カメラと連動して光学追跡のための光学ターゲットを含むことができる。いくつかの例では、ウェアラブルヘッドデバイス400Aおよびハンドヘルドコントローラ400Bは、それぞれ、3つの識別可能な信号を無線で送受信するために使用される3つの直交して配向されたソレノイドのセットを含む。受信に使用されるコイルのそれぞれにおいて受信された3つの識別可能な信号の相対的な大きさを測定することにより、ハンドヘルドコントローラ400Bに対するウェアラブルヘッドデバイス400Aの6DOFが決定され得る。さらに、6DOFトーテムサブシステム404Aは、ハンドヘルドコントローラ400Bの迅速な動きに関する改善された精度および/またはよりタイムリーな情報を提供するのに有用な慣性測定ユニット(IMU)を含むことができる。
【0072】
いくつかの実施形態では、ウェアラブルシステム400は、ヘッドギアデバイス400A上に配置された1つ以上のマイクロフォンを含むことができるマイクロフォンアレイ407を含むことができる。いくつかの実施形態では、マイクロフォンアレイ407は、4つのマイクロフォンを含むことができる。ヘッドギア400Aの前面に2つのマイクロフォンが配置されることができ、ヘッドヘッドギア400Aの背面に2つのマイクロフォンが配置されることができる(例えば、左後方に1つ、右後方に1つ)。いくつかの実施形態では、マイクロフォンアレイ407によって受信された信号は、DSP408に送信されることができる。DSP408は、マイクロフォンアレイ407から受信された信号に対して信号処理を実行するように構成されることができる。例えば、DSP408は、マイクロフォンアレイ407から受信した信号に対してノイズ低減、音響エコー除去、および/またはビームフォーミングを実行するように構成されることができる。DSP408は、信号をプロセッサ416に送信するように構成されることができる。
【0073】
いくつかの例では、例えば、座標系108に対する(例えば、MRシステム112の)ウェアラブルヘッドデバイス400Aの動きを補償するために、座標をローカル座標空間(例えば、ウェアラブルヘッドデバイス400Aに対して固定された座標空間)から慣性座標空間(例えば、現実環境に対して固定された座標空間)に変換することが必要になることがある。例えば、そのような変換は、現実環境に仮想オブジェクト(例えば、現実の椅子に座っており、ウェアラブルヘッドデバイスの位置および向きに関係なく、前方を向いている仮想人物)が存在するという錯覚を維持するために、ウェアラブルヘッドデバイス400Aのディスプレイが、ディスプレイ上の固定された位置および向きではなく、現実環境に対して予想される位置(例えば、ディスプレイの右下隅の同じ位置)および向きで仮想オブジェクトを提示するために必要であり得る(そして、例えば、ウェアラブルヘッドデバイス400Aが移動および回転するときに現実環境に不自然に配置されているようには見えない)。いくつかの例では、座標空間間の補償変換は、座標系108に対するウェアラブルヘッドデバイス400Aの変換を決定するために、SLAMおよび/またはビジュアルオドメトリ手順を使用して深度カメラ444からの画像を処理することによって決定されることができる。図4に示す例では、深度カメラ444は、SLAM/ビジュアルオドメトリブロック406に結合され、画像をブロック406に提供することができる。SLAM/ビジュアルオドメトリブロック406の実装は、この画像を処理し、ユーザの頭部の位置および向きを決定するように構成されたプロセッサを含むことができ、頭部座標空間と別の座標空間(例えば、慣性座標空間)との間の変換を識別するために使用されることができる。同様に、いくつかの例では、ユーザの頭部姿勢および位置に関する追加の情報源は、IMU409から取得される。IMU409からの情報は、SLAM/ビジュアルオドメトリブロック406からの情報と統合されて、ユーザの頭部姿勢および位置の迅速な調整に関する改善された精度および/またはよりタイムリーな情報を提供することができる。
【0074】
いくつかの例では、深度カメラ444は、ウェアラブルヘッドデバイス400Aのプロセッサに実装され得るハンドジェスチャトラッカ411に3D画像を供給することができる。ハンドジェスチャトラッカ411は、例えば、深度カメラ444から受信した3D画像をハンドジェスチャを表す記憶されたパターンと照合することによって、ユーザのハンドジェスチャを識別することができる。ユーザのハンドジェスチャを識別する他の適切な技術が明らかであろう。
【0075】
いくつかの例では、1つ以上のプロセッサ416は、ウェアラブルヘッドデバイスの6DOFヘッドギアサブシステム404B、IMU409、SLAM/ビジュアルオドメトリブロック406、深度カメラ444、および/またはハンドジェスチャトラッカ411からデータを受信するように構成され得る。プロセッサ416はまた、6DOFトーテムシステム404Aから制御信号を送受信することもできる。プロセッサ416は、ハンドヘルドコントローラ400Bが接続されていない例のように、6DOFトーテムシステム404Aに無線で結合されてもよい。プロセッサ416は、さらに、視聴覚コンテンツメモリ418、グラフィカル処理ユニット(GPU)420、および/またはデジタル信号プロセッサ(DSP)音声スペーシャライザ422などの追加の構成要素と通信してもよい。DSP音声スペーシャライザ422は、頭部伝達関数(HRTF)メモリ425に結合されてもよい。GPU420は、(例えば、左アイピース428にコンテンツを表示するための)イメージワイズ変調光の左供給源424に結合された左チャネル出力と、(例えば、右アイピース430にコンテンツを表示するための)イメージワイズ変調光の右供給源426に結合された右チャネル出力とを含むことができる。アイピース428および430は、本明細書に記載されるように、湾曲層を含み得る。アイピース428および430は、図6図12に関して開示されたアイピースであってもよい。GPU420は、例えば、図2A図2Dを参照して本明細書に記載されるように、立体画像データをイメージワイズ変調光の供給源424、426に出力することができる。いくつかの例では、GPU420が使用されて、ウェアラブルシステム400のディスプレイ上に提示されるMRE内の仮想要素をレンダリングし得る。DSP音声スペーシャライザ422は、左スピーカ412および/または右スピーカ414に音声を出力することができる。DSP音声スペーシャライザ422は、ユーザから仮想音源(これは、例えば、ハンドヘルドコントローラ320を介して、ユーザによって移動され得る)への方向ベクトルを示す入力をプロセッサ419から受信することができる。方向ベクトルに基づいて、DSP音声スペーシャライザ422は、(例えば、HRTFにアクセスすることによって、または複数のHRTFを補間することによって)対応するHRTFを決定することができる。次いで、DSP音声スペーシャライザ422は、決定されたHRTFを、仮想オブジェクトによって生成された仮想音に対応する音声信号などの音声信号に適用することができる。これは、複合現実環境における仮想音に対するユーザの相対的な位置および向きを組み込むことによって、すなわち、仮想音が現実環境の現実音である場合にその仮想音がどのように聞こえるかというユーザの期待に一致する仮想音を提示することによって、仮想音の真実味および臨場感を高めることができる。
【0076】
図4に示すようないくつかの例では、プロセッサ416、GPU420、DSP音声スペーシャライザ422、HRTFメモリ425、および視聴覚コンテンツメモリ418の1つ以上は、補助ユニット400C(本明細書に記載される補助ユニット320に対応し得る)に含まれ得る。補助ユニット400Cは、その構成要素に電力を供給するため、および/またはウェアラブルヘッドデバイス400Aまたはハンドヘルドコントローラ400Bに電力を供給するためのバッテリ427を含み得る。ユーザの腰に装着されることができる補助ユニットにこのような構成要素を含めることは、ウェアラブルヘッドデバイス400Aのサイズおよび重量を制限することができ、ひいてはユーザの頭と首の疲労を軽減することができる。
【0077】
図4は、例示的なウェアラブルシステム400の様々な構成要素に対応する要素を示しているが、これらの構成要素の様々な他の適切な配置が当業者には明らかになるであろう。例えば、示されるヘッドギアデバイス400Aは、プロセッサおよび/またはバッテリ(図示せず)を含み得る。含まれるプロセッサおよび/またはバッテリは、補助ユニット400Cのプロセッサおよび/またはバッテリとともに動作するか、または補助ユニット400Cのプロセッサおよび/またはバッテリの代わりに動作し得る。一般に、別の例として、補助ユニット400Cに関連するものとして図4に関して説明した要素または機能は、代わりにヘッドギアデバイス400Aまたはハンドヘルドコントローラ400Bに関連付けられることができる。さらにまた、いくつかのウェアラブルシステムは、ハンドヘルドコントローラ400Bまたは補助ユニット400Cを完全に取り止めてもよい。そのような変形および変更は、開示された例の範囲内に含まれると理解されるべきである。
【0078】
図5A図5Bは、本開示の実施形態にかかる、例示的な導波路層を示している。図5Aは、いくつかの実施形態にかかる、導波路層が所定の曲率によって特徴付けられる場合の、アイピースの導波路層および導波路層から投射された光の簡略断面図である。導波路層504は、図6A図6Cに関して説明した導波路層であり得る。プロジェクタ(例えば、図6A図6Cに関して説明したプロジェクタ、またはイメージワイズ変調光の供給源2124、2126、424、もしくは426)などの光源からの入射光ビーム502は、(例えば、内部結合要素(図示せず)からの回折によって)入射面506を通って導波路層504に入り、出射面508を通ってユーザの眼510に向かって出ることができる。図5Aに示すように、表面プロファイルは、導波路層504を特徴付ける。いくつかの実施形態では、表面プロファイルは、球面曲率の曲率半径によって定義されることができる曲線を形成する。いくつかの実施形態では、表面プロファイルは、非球面であるが、球面形状によって近似されることができる。導波路層504の構造のために、入射面506は、導波路層504の全長にわたって出射面508と実質的に平行とすることができる。
【0079】
導波路層504を全内部反射(TIR)によって光が伝搬すると、出射光は、出射光線によって示されるように、導波路層504の外へ回折される。低レベルの曲率の場合、入射面506および出射面508は、導波路層を横切る位置において互いに実質的に平行である。したがって、光がTIRによって導波路層を通って伝搬するとき、導波路表面の平行性は、TIR中の反射角を保存し、その結果、出射光線と出射面との間の角度は、導波路層にわたって保存される。表面法線は、湾曲導波路層の出射面にわたって僅かに変化するため、出射光線も僅かに変化し、図5Aに示す発散を生成する。
【0080】
出射面508の曲率から生じる出射光線の発散は、光が導波路層504の背後の特定の距離に配置された点源から発するように見えるように、入射光ビーム502をレンダリングする効果を有することができる。したがって、導波路層504の表面プロファイルまたは曲率は、ユーザまたは観察者の眼510に向かう光の発散を生成し、光を眼に対して導波路層の背後に位置する深度面から生じるものとして効果的にレンダリングする。
【0081】
入射光ビームが発生しているように見える導波路層からの距離は、導波路層504の曲率半径と関連付けられることができる。より高い曲率半径を有する導波路は、より低い曲率半径を有する導波路よりも導波路層からより大きな距離で発するものとして光源をレンダリングすることができる。例えば、図5Aに示すように、導波路層504は、0.5mの曲率半径を有することができ、これは、例えば、40mmの横方向寸法(例えば、長さまたは幅)を有するEPEを横切る0.4mmの導波路層504の弓形状によって達成されることができる。導波路層504のこの例示的な曲率を考えると、入射光ビーム502は、導波路層504から0.5mの距離で発生するように見える。別の例として、別の導波路層は、0.2mの曲率半径を有するように動作されることができ、ユーザには導波路層から0.2mの距離を起点として見える光源をレンダリングする。したがって、導波路層材料と互換性のある、長さ/深さが数十ミリメートルの導波路層を横切る曲率、すなわち1ミリメートルの弓形状の部分を利用することによって、2次元導波路とも呼ばれる2次元膨張導波路に対して深度面機能が実装されることができる。本発明の実施形態にしたがって利用される曲率は、数ミリメートル(例えば、1~5mm)の弓形状を有することができるサングラス、車両フロントガラスなどを含む様々な市販製品に使用されることができる。したがって、本発明の様々な実施形態において利用される少量の曲率は、アイピースの光学性能を低下させない。例えば、例は、0.5mの曲率半径を有するアイピースの中心視野において0.1分未満のぼけ、および視野全体で2分未満のぼけを導入することができる。
【0082】
図5Aは、アイピースの要素である導波路層504の1次元断面図のみを示している。しかしながら、導波路層に課される表面プロファイルはまた、図の平面に直交する方向に課されることができ、結果として導波路層の2次元湾曲をもたらすことが理解されよう。したがって、本発明の実施形態は、アイピースの構造、特にアイピースの導波路層に深度面機能を提供する。本明細書に記載されるように、深度面機能は、特定の実装に応じてバイモーダルまたは連続的とすることができる。
【0083】
図5Bは、いくつかの実施形態にかかる、導波路層が所定の曲率によって特徴付けられる場合の、アイピースの導波路層および導波路層を通過する光の簡略断面図である。図5Aに関して説明したように、導波路層504から投射された光は、光源を3次元空間内のユーザの眼に見えるようにすることができる。現実世界の光512、または仮想現実(VR)、拡張現実(AR)、もしくは複合現実(MR)の目的のために導波路層504を通って投射されない光は、導波路層504の入射面506および出射面508を通過してユーザの眼510に向かうことができる。厚さの変動が小さい導波路(例えば、1.0μm未満)は、無視できる光パワーを有し、実世界の光512がほとんどまたは全く外乱なしに導波路層504の曲面を通過することを可能にすることができる。いくつかの実施形態では、現実世界の光の補正は必要とされず、導波路層504の表面プロファイルによって引き起こされる現実世界の光の軸外劣化は低減されるか、または存在しない。したがって、導波路層に表面プロファイルまたは曲率を課すことは、現実世界の光の完全性を維持しながら、アイピースから離れた位置からの仮想コンテンツの投射を可能にし、それにより、現実世界の光をユーザが見ること、および同時に、仮想コンテンツを3次元空間においてリアルタイムでユーザのためにレンダリングすることの両方を可能にする。
【0084】
いくつかの実施形態では、ポリマー導波路層とすることができる導波路層の曲率半径は、第1の距離(例えば、0.1m)と無限大との間で動的に変化することができ、これにより、アイピースの深度面(すなわち、投射された光源がレンダリングされているように見える距離)が第1の距離と無限大との間で動的に変化されることができる。したがって、本発明の実施形態は、拡張または複合現実用途において通常利用される深度面を含む、第1の距離(例えば、0.1m)と無限との間の深度面の変化を可能にする。導波路層、例えば可撓性ポリマー導波路層の表面プロファイルは、本明細書においてより詳細に説明するように、様々な方法論および機構を使用して調整されることができる。
【0085】
いくつかの実施形態では、動的アイピースが提供され、アイピースの深度面は、異なる深度面で仮想コンテンツを表示するように変化されることができ、例えば、時間の関数としての時間的変化が提供される。したがって、仮想コンテンツの後続のフレームは、異なる深度面に由来するように表示されることができる。しかしながら、静的実装もまた、本発明の範囲内に含まれる。これらの静的実装では、固定された所定の表面プロファイルまたは曲率がアイピースの導波路層を特徴付け、それによって固定された深度面に仮想コンテンツを提示する。外部レンズ、回折レンズ、または他の光学素子を利用するいくつかのシステムとは対照的に、静的実装を利用する実施形態は、導波路層の曲率を通る深度面を実装し、システムの複雑さを低減し、光学的品質を改善することができる。さらに、いくつかの実施形態は、アイピースのセットを実装することができ、各アイピースは、2つの静的深度面を提供するための湾曲導波路層のスタックを含む。例として、3つの湾曲導波路層の第1のスタックは、1mに位置する深度面において3色シーンを実装するために導波路スタックの幅/長さにわたって0.2mmの弓形状を利用することができ、3つの湾曲導波路層の第2のスタックは、0.5mに位置する深度面において第2の3色シーンを実装するために導波路スタックの幅/長さにわたって0.4mmの弓形状を利用することができる。他の適切な寸法は、本発明の範囲内である。さらに、両眼システムならびに単眼システムが企図される。
【0086】
いくつかの実施形態では、開示されたアイピースの導波路は、米国特許出願公開第2021/0011305号に記載されている通りであり、その開示全体は、参照により本明細書に組み込まれる。開示された導波路は、費用効果の高い方法で光学特性を改善することによって、ユーザへの画像(例えば、複合現実(MR)コンテンツ)の提示を向上させ得る。
【0087】
MR用途のためのアイピーススタックに湾曲カバー層を使用することが望ましい場合がある。例えば、湾曲カバー層は、上述したように、光学性能を改善するために湾曲導波路に適応し得る。別の例として、湾曲カバー層は、アイピースの構造特性を改善し得る(例えば、改善された幾何学的剛性、熱機械的負荷に対する改善された応答)。
【0088】
図6A図6Cは、本開示の実施形態にかかる、例示的なアイピーススタックを示している。図6A図6Cは、アイピーススタックの断面図を示し得る。図中、上が世界側(例えば、アイピースを備えるウェアラブルヘッドデバイスの観察者からより遠位のアイピースの側)を表し、下が観察者側(例えば、アイピースを備えるウェアラブルヘッドデバイスの観察者に対してより近位のアイピースの側)を表す。第1のカバー層は、世界側に関連付けられ得て、第2のカバー層は、観察者側に関連付けられ得る。
【0089】
開示されたアイピースは、説明された要素を含むものとして示されているが、本開示の範囲から逸脱することなく、要素の異なる組み合わせ、追加の要素、またはより少ない要素がアイピースに含まれてもよいことが理解される。例えば、アイピースは、追加のまたはより少ない導波路層を含み得る。別の例として、一方または両方のカバー層は湾曲されてもよい。さらに別の例として、一方または両方のカバー層は、導波路層に向かって、または導波路層から離れて湾曲してもよい。さらに別の例として、一方または両方のカバー層は、(以下により詳細に説明するように)切り取られてもよい。さらに別の例として、一方または両方のカバー層は、(以下により詳細に説明するように)孔を備えてもよい。さらに別の例として、アイピースは、図6A図6Cに関して説明したようなカバー層および/または導波路層の特徴の組み合わせを含んでもよい。
【0090】
図6Aは、例示的なアイピーススタック600を示している。いくつかの実施形態では、図示のように、アイピーススタック600は、第1のカバー層602、第1の導波路層604、第2の導波路層606、第3の導波路層608、および第2のカバー層610を含む。図示のように、第1のカバー層602は、湾曲カバー層であり得て、第2のカバー層610は、非湾曲(例えば、平坦)カバー層であり得る。第1のカバー層602は、図示のように、導波路層から離れるように湾曲され得る。例えば、4cmの長さにわたって、湾曲カバー層の山と谷との間の差は、約1mmであり得る。いくつかの実施形態では、湾曲カバー層の曲率半径は、0.1m~1mである。いくつかの実施形態では、湾曲カバー層の曲率半径は、MR用途に必要な深度面をカバーするために1mよりも大きい(例えば、最大無限大)。曲率半径は、湾曲層を通して光を投射し、投射の焦点距離(例えば、焦点距離=曲率半径/2)を測定することによって測定され得る。同様に、特定のMR用途のための深度面は、アイピーススタックの曲率を対応する焦点距離に調整することによって満たされ得る。いくつかの実施形態では、第1のカバー層の曲率は、第1のカバー層と隣接する湾曲導波路層との間のギャップを減少させ、非湾曲の第1のカバー層と比較して、2つの層が接触する(例えば、導波路層内を伝搬する光と干渉する)確率を減少させ、および/またはアイピース構造不安定性(例えば、ウォブリング)の確率を減少させる。
【0091】
いくつかの実施形態では、第1のカバー層602および/または第2のカバー層610は、反射防止特徴を備える。反射防止特徴は、幾何学的特徴またはカバー層の材料であってもよく、幾何学的特徴または材料は、幾何学的特徴を有しないカバー層と比較して、特定の波長を有する入射放射の反射を低減するように構成される。幾何学的特徴または材料は、図7図9に関して説明したように形成され得る。反射防止特徴は、本明細書に記載された(例えば、図7図12に関して記載された)反射防止特徴であってもよい。例示的な利点として、開示された反射防止特徴は、湾曲導波路に適応し、および/またはアイピースの構造強度(例えば、改善された幾何学的剛性、熱機械的負荷に対する改善された応答)を高めるために、湾曲カバー層をより効率的に実装することを可能にし得る。例えば、開示された反射防止特徴は、ゴースト像を低減し得て(例えば、より弱い反射防止特性を有する湾曲カバー層と比較して、230:1(例えば、反射防止特徴を有しないポリマーカバー層の場合(例えば、屈折率=1.75))から13.5:1までのゴースト比)、高温堆積または真空堆積を使用せずに作製され得て、(例えば、高価な製造ステップを減らすことによって)アイピースの製造コストおよび/または複雑さを低減し得る。
【0092】
いくつかの実施形態では、導波路層604、606、608は、湾曲導波路層である。第1の導波路層604は、青色光用の導波路であり得る。第2の導波路層606は、緑色光用の導波路であり得る。第3の導波路層608は、赤色光用の導波路であり得る。導波路層は、説明したものとは異なるように配置されてもよいことが理解される。例えば、アイピースは、より多くのまたはより少ない導波路層を含み得る。別の例として、第1、第2、および/または第3の導波路層は、上述した以外の適切な色波長の導波路であり得る。
【0093】
いくつかの実施形態では、導波路層内を伝搬する光は、プロジェクタ612によって提供される。プロジェクタ612は、上述したように、MRコンテンツをウェアラブルヘッドデバイスのユーザに提示するためのプロジェクタであり得る。例えば、プロジェクタ612は、空間光変調器である。プロジェクタ612は、イメージワイズ変調光の供給源2124、2126、424、または426であり得る。
【0094】
図6Bは、例示的なアイピーススタック620を示している。いくつかの実施形態では、図示のように、アイピーススタック620は、第1のカバー層622、第1の導波路層624、第2の導波路層626、第3の導波路層628、および第2のカバー層630を含む。図示のように、第1のカバー層622および第2のカバー層630は、湾曲カバー層であり得る。図示のように、第1のカバー層622は、導波路層から離れるように湾曲されてもよく、第2のカバー層630は、導波路層に向かって湾曲されてもよい。例えば、4cmの長さにわたって、湾曲カバー層の山と谷との差は、1mmであり得る。いくつかの実施形態では、第1のカバー層および第2のカバー層の曲率は、非湾曲の(例えば、平坦な)第1および第2のカバー層を備えるアイピーススタックと比較して、アイピーススタックの幾何学的剛性を改善することを可能にする。
【0095】
いくつかの実施形態では、第1のカバー層622および/または第2のカバー層630は、反射防止特徴を備える。反射防止特徴は、本明細書に記載された(例えば、図7図12に関して記載された)反射防止特徴であってもよい。例示的な利点として、開示された反射防止特徴は、湾曲導波路に適応し、および/またはアイピースの構造強度(例えば、改善された幾何学的剛性、熱機械的負荷に対する改善された応答)を高めるために、湾曲カバー層をより効率的に実装することを可能にし得る。例えば、開示された反射防止特徴は、(例えば、より弱い反射防止特性を有する湾曲カバー層と比較して)ゴースト像を低減し得て、高温堆積または真空堆積を使用せずに作製され得て、(例えば、高価な製造ステップを減らすことによって)アイピースの製造コストおよび/または複雑さを低減し得る。
【0096】
いくつかの実施形態では、導波路層624、626、628は、非湾曲(例えば、平坦)導波路層である。第1の導波路層624は、青色光用の導波路であり得る。第2の導波路層626は、緑色光用の導波路であり得る。第3の導波路層628は、赤色光用の導波路であり得る。導波路層は、説明したものとは異なるように配置されてもよいことが理解される。例えば、アイピースは、より多くのまたはより少ない導波路層を含み得る。別の例として、第1、第2、および/または第3の導波路層は、上述した以外の適切な色波長の導波路であり得る。
【0097】
いくつかの実施形態では、導波路層内を伝搬する光は、プロジェクタ632によって提供される。プロジェクタ632は、上述したように、MRコンテンツをウェアラブルヘッドデバイスのユーザに提示するためのプロジェクタであり得る。例えば、プロジェクタ632は、空間光変調器を備え得る。プロジェクタ632は、イメージワイズ変調光の供給源2124、2126、424、または426であり得る。
【0098】
図6Cは、例示的なアイピーススタック640を示している。いくつかの実施形態では、図示のように、アイピーススタック640は、第1のカバー層642、第1の導波路層644、第2の導波路層646、第3の導波路層648、および第2のカバー層650を含む。図示のように、第1のカバー層642および第2のカバー層650は、湾曲カバー層であり得る。第1のカバー層642および第2のカバー層650は、図示のように、導波路層から離れるように湾曲され得る。例えば、4cmの長さにわたって、湾曲カバー層の山と谷との差は、1mmであり得る。いくつかの実施形態では、第1のカバー層および第2のカバー層の曲率は、非湾曲の(例えば、平坦な)第1および第2のカバー層を備えるアイピーススタックと比較して、アイピーススタックの幾何学的剛性を改善することを可能にする。
【0099】
いくつかの実施形態では、第1のカバー層642および/または第2のカバー層650は、反射防止特徴を備える。反射防止特徴は、本明細書に記載された(例えば、図7図12に関して記載された)反射防止特徴であってもよい。例示的な利点として、開示された反射防止特徴は、湾曲導波路に適応し、および/またはアイピースの構造強度(例えば、改善された幾何学的剛性、熱機械的負荷に対する改善された応答)を高めるために、湾曲カバー層をより効率的に実装することを可能にし得る。例えば、開示された反射防止特徴は、(例えば、より弱い反射防止特性を有する湾曲カバー層と比較して)ゴースト像を低減し得て、高温堆積または真空堆積を使用せずに作製され得て、(例えば、高価な製造ステップを減らすことによって)アイピースの製造コストおよび/または複雑さを低減し得る。
【0100】
いくつかの実施形態では、導波路層644、646、648は、非湾曲(例えば、平坦)導波路層である。第1の導波路層644は、青色光用の導波路であり得る。第2の導波路層646は、緑色光用の導波路であり得る。第3の導波路層648は、赤色光用の導波路であり得る。導波路層は、説明したものとは異なるように配置されてもよいことが理解される。例えば、アイピースは、より多くのまたはより少ない導波路層を含み得る。別の例として、第1、第2、および/または第3の導波路層は、上述した以外の適切な色波長の導波路であり得る。
【0101】
いくつかの実施形態では、導波路層内を伝搬する光は、プロジェクタ652によって提供される。プロジェクタ652は、上述したように、MRコンテンツをウェアラブルヘッドデバイスのユーザに提示するためのプロジェクタであり得る。例えば、プロジェクタ652は、空間光変調器を備え得る。プロジェクタ652は、イメージワイズ変調光の供給源2124、2126、424、または426であり得る。
【0102】
いくつかの実施形態では、カバー層の長さ(例えば、カバー層の2つの端部間の距離)は、導波路層の長さ(例えば、導波路層の2つの端部間の距離)よりも短い。すなわち、湾曲カバー層は、導波路層に対して切り取られている。切り取りは、切断または鋳造によって作製され得る。例えば、図示のように、湾曲カバー層642の長さ(例えば、湾曲カバー層の2つの端部間の距離)は、導波路層644、646または648の長さ(例えば、導波路層の2つの端部間の距離)よりも短い。いくつかの実施形態では、カバー層は、孔を備える。例えば、図示のように、第2のカバー層650は、孔654を備える。いくつかの実施形態では、カバー層は、2つ以上の孔を備える。
【0103】
いくつかの実施形態では、切り取られたカバー層および/または孔は、プロジェクタを導波路層のより近くに配置されることを可能にし、プロジェクタの必要なサイズおよび/または電力要件を低減し、光路長を短縮し得る。例えば、カバー層を切り取るおよび/または孔を形成することによって、より多くの空間が導波路層の近くで解放され、プロジェクタの少なくとも一部が導波路層の近くに配置されることを可能にする(例えば、プロジェクタの一部は、切り取られた部分または孔に配置される)。プロジェクタを導波路層の近くに配置することを可能にすることにより、プロジェクタの必要なサイズ、コスト、重量、および/またはシステム(例えば、MRシステム、ウェアラブルヘッドデバイス)の電力消費が低減され得る。
【0104】
湾曲カバー層によって生成された反射は、観察者にゴースト像(例えば、シフト反射)を生成することがあり、ゴースト像を低減するための反射防止特徴を作製するために高温堆積および/または真空堆積を使用することは、費用がかかることがある。したがって、湾曲カバー層の利点をより効率的に得るために、湾曲カバー層のための反射防止特徴を生成するより安価な方法が望ましい場合がある。
【0105】
図7は、本開示の実施形態にかかる、例示的なカバー層(例えば、非湾曲カバー層700A、湾曲カバー層700B)を示している。いくつかの実施形態では、カバー層は、図6A図6Cに関して説明したカバー層である。いくつかの実施形態では、カバー層は、ポリマー(例えば、導波路層中のポリマーとは異なるポリマー、導波路層中のポリマーと同じポリマー)を含む。いくつかの実施形態では、カバー層は、反射防止特徴702を含む。反射防止特徴702は、カバー層の片面または両面に作製され得る。簡潔にするために、他の図に関して説明した反射防止特徴のいくつかの利点は、ここでは繰り返さない。
【0106】
いくつかの実施形態では、反射防止特徴702は、鋳造によって作製される。例えば、反射防止特徴702は、(例えば、型を使用して)反射防止格子の鋳造プロセスを使用して作製され得る。例として、表面レリーフ格子を導波路用の高屈折率ポリマーに鋳造するプロセスと同様のプロセスが使用されて、格子構造を作製し得る。鋳造プロセスは、カバー層の表面にパターン(例えば、格子)を作製し、パターンは、対応する表面からの光反射を低減するように構成される。
【0107】
例えば、85nmの高さおよびその高さにおける周期の50%を有するバイナリ反射防止格子(例えば、断面視で方形波に似た周期構造)は、青色波長について2.9%、緑色波長について1.7%、および赤色波長について2.5%の表面反射率値をもたらすことができる。バイナリ反射防止格子の高さは、入射光波長の4分の1であり得る。別の例として、100nmの高さおよびその高さにおける周期の35%を有するバイナリ反射防止格子は、青色波長について2.7%、緑色波長について0.7%、および赤色波長について1.4%の表面反射率値をもたらすことができる。さらに別の例として、各波長(青は80nm、緑は100nm、赤は120nm)およびそれぞれの高さにおける周期の35%についてバイナリ格子の高さをカスタマイズすることは、青色、緑色、および赤色の波長について0.7%の反射率をもたらすことができる。いくつかの実施形態では、鋳造されるバルクポリマー(例えば、反射防止特徴を有しないカバー層材料)の屈折率は1.4から1.9の範囲であり、バイナリ格子の高さおよびその高さにおける周期の割合は、所望の反射防止特性を生成するように調整され得る。
【0108】
鋳造によって反射防止特徴を作製することにより、高温堆積および/または真空堆積などのより高価なおよび/または複雑な反射防止特徴形成プロセスが必要とされないことがあり、(例えば、追加のステップを必要としないことによって、高価なステップを減らすことによって)アイピースの製造コストおよび/または複雑さを低減する。さらに、鋳造によって反射防止特徴を作製し、高温堆積を取り止めることによって、高温堆積プロセスがそのようなカバー層を損傷することがある(例えば、高温堆積プロセスは、ポリマーカバー層を損傷することがある)ため、(例えば、ゴースト像を低減するために)所望の反射防止特性を有するより安価なカバー層(例えば、非湾曲ポリマーカバー層、湾曲ポリマーカバー層)がアイピースのために作製され得る。さらに、反射防止特徴702は、所望の反射防止特性を達成するためにカバー層にわたって制御され得る。
【0109】
図8は、本開示の実施形態にかかる、例示的なカバー層800を示している。いくつかの実施形態では、カバー層800は、図6A図6Cに関して説明したようなカバー層である。カバー層800は湾曲していないものとして示されているが、図8に関して説明した反射防止特徴は、湾曲カバー層(例えば、図6A図6Cに関して説明したカバー層)に対して作製され得ることが理解される。
【0110】
いくつかの実施形態では、図示のように、カバー層800は、反射防止特徴802、保護フィルム804、およびフィルム層806を含む。反射防止特徴802は、カバー層の片面または両面に作製され得る。簡潔にするために、他の図に関して説明した反射防止特徴のいくつかの利点は、ここでは説明しない。いくつかの実施形態では、カバー層800は、ガラスを備える。いくつかの実施形態では、反射防止特徴802は、モスアイ構造を備える。いくつかの実施形態では、フィルム層806は、反射防止特徴802(例えば、モスアイ構造)をカバー層に接着または積層するためのキャリアフィルムまたは光学的に透明な接着剤(OCA)フィルムである。例えば、モスアイ構造は、空気と媒体(例えば、カバー層基材)との間に有効な屈折率勾配を生成することによって反射を低減するサブ波長バンプのパターンを備える。カバー層800は、反射およびゴースト像を低減するために、最も効果的なナノ構造の1つであるモスアイ構造を有利に活用する。モスアイ構造の幾何学的形状は、反射防止特徴の高さにわたって空間的に平均化されて、緩やかなインデックス変化を達成することができる。
【0111】
いくつかの実施形態では、モスアイ構造は、フィルム(例えば、ベースフィルム)上に製造される。ベースフィルムは、フィルム層806(例えば、キャリアフィルム、OCAフィルム)およびカバー層800の基材に接着または積層する。モスアイ構造がフィルム層806に接着または積層される場合、ベースフィルムは、除去(例えば、剥離)されて、カバー層基材上にモスアイ構造を残してもよい。いくつかの実施形態では、ベースフィルムは、保護フィルム804(例えば、(例えば、出荷用、保管用の)カバー層800のための追加の保護層を可能にする)であり、カバー層基材上にモスアイ構造が形成された後に除去されない(例えば、出荷後または保管後に剥離され得る)。いくつかの実施形態では、保護フィルム804は、有利には疎水性を有し、カバー層800を備えるアイピースを疎水性にすることができる。
【0112】
接着または積層によって(例えば、モスアイ構造を接着または積層することによって)反射防止特徴を作製することにより、高温堆積および/または真空堆積などのより高価なおよび/または複雑な反射防止特徴作製プロセスは必要とされないことがあり、(例えば、高価なステップを減らすことによって)アイピース製造コストおよび/または複雑さを低減する。さらに、モスアイ構造材料は、カバー基材とは異なる材料であってもよく、反射防止特徴が鉛筆硬度などの特性を含むことを可能にする。
【0113】
図9は、本開示の実施形態にかかる、例示的なカバー層900を示している。いくつかの実施形態では、カバー層900は、図6A図6Cに関して説明したカバー層である。カバー層900は、湾曲していないものとして示されているが、図9に関して説明した反射防止特徴は、湾曲カバー層(例えば、図6A図6Cに関して説明したカバー層)に対して作製され得ることが理解される。
【0114】
いくつかの実施形態では、図示のように、カバー層900は、反射防止特徴902を含む。反射防止特徴902は、カバー層の片面または両面に作製され得る。簡潔にするために、他の図に関して説明した反射防止特徴のいくつかの利点は、ここでは繰り返さない。反射防止特徴902は、コーティングされてもよい(例えば、低屈折率コーティングを使用すること、反射防止特徴の高さにわたって低屈折率から高屈折率への緩やかな屈折率の移行を可能にするコーティングを使用すること)。例えば、反射防止特徴902は、スピンコーティング、浸漬コーティング、スプレーコーティングなどによって作製され得る。液体前駆体が塗布されて、大気圧で単一の低屈折率膜を形成してもよい。液体前駆体は、高分子カバー層(例えば、湾曲カバー層、非湾曲カバー層)の片面または両面に、スピンコーティング、浸漬コーティング、スプレーコーティングなどによって塗布される。液体は、UVおよび/または熱硬化されて低屈折率コーティングを生成し得る。
【0115】
例えば、図示のように、(例えば、所望の反射防止特徴を達成するための対応する位置の速度で)液体前駆体液滴904をカバー層上に堆積させ、(例えば、矢印906によって示すように、所望の反射防止特徴を達成するための回転速度で)カバー層を回転させて反射防止特徴902を作製し得る。スピンコーティングのための例示的な材料は、Inkron IOC-501であり、これは、1.25~1.30の範囲の反射率を有する。
【0116】
コーティングによって(例えば、スピンコーティングによって)反射防止特徴を作製することにより、高温堆積および/または真空堆積などのより高価なおよび/または複雑な反射防止特徴作成プロセスが必要とされないことがあり、(例えば、高価なステップを減らすことによって)アイピース製造コストおよび/または複雑さを低減する。
【0117】
図10A図10Eは、本開示の実施形態にかかる、例示的なアイピース特性を示している。図10Aは、カバー層1000の例示的な特性を示している。いくつかの実施形態では、カバー層1000は、本明細書に記載された(例えば、図6図9および図12に関して)カバー層である。カバー層1000は、深さを有する反射防止特徴1002と、屈折率nを有する材料1004(例えば、基材)とを備え得る。
【0118】
図10B図10Eは、異なる入射光波長1006および異なる反射防止特徴屈折率についての(例えば、反射防止特徴1002の)反射率対深さを示している。目的の反射防止要件および波長に応じて、深さおよび反射防止特徴屈折率がそれに応じて決定される。決定された深さおよび屈折率を有する反射防止特徴は、本明細書に開示される方法(例えば、図7図9および図12に関して説明した)を使用して製造され得る。
【0119】
図10Bは、1.25の屈折率を有する例示的な反射防止特徴について、青色(例えば、455nm)、緑色(例えば、525nm)、および赤色(例えば、625nm)の入射光1006の反射率対反射防止特徴1002の深さを示している。図示のように、約0.09μmの深さは、青色光について0.005未満の最小反射率をもたらすことができ、約0.105μmの深さは、緑色光について0.005未満の最小反射率をもたらすことができ、約0.125μmの深さは、赤色光について0.005未満の最小反射率をもたらすことができる。
【0120】
図10Cは、1.32の屈折率を有する例示的な反射防止特徴について、青色(例えば、455nm)、緑色(例えば、525nm)、および赤色(例えば、625nm)の入射光1006の反射率対反射防止特徴1002の深さを示している。図示のように、約0.085μmの深さは、青色光に対して0に近い最小反射率をもたらすことができ、約0.1μmの深さは、緑色光に対して0に近い最小反射率をもたらすことができ、約0.12μmの深さは、赤色光に対して0に近い最小反射率をもたらすことができる。
【0121】
図10Dは、1.38の屈折率を有する例示的な反射防止特徴について、青色(例えば、455nm)、緑色(例えば、525nm)、および赤色(例えば、625nm)の入射光1006の反射率対反射防止特徴1002の深さを示している。図示のように、約0.08μmの深さは、青色光について約0.002の最小反射率をもたらすことができ、約0.095μmの深さは、緑色光について約0.002の最小反射率をもたらすことができ、約0.11μmの深さは、赤色光について約0.002の最小反射率をもたらすことができる。
【0122】
図10Eは、1.45の屈折率を有する例示的な反射防止特徴について、青色(例えば、455nm)、緑色(例えば、525nm)、および赤色(例えば、625nm)の入射光1006の反射率対反射防止特徴1002の深さを示している。図示のように、約0.08μmの深さは、青色光について0.01未満の最小反射率をもたらすことができ、約0.09μmの深さは、緑色光について0.01未満の最小反射率をもたらすことができ、約0.11μmの深さは、赤色光について0.01未満の最小反射率をもたらすことができる。
【0123】
図11は、本開示の実施形態にかかる、例示的なアイピーススタックを示している。いくつかの実施形態では、図示のように、アイピーススタック1100(例えば、MRシステムのアイピーススタック、ウェアラブルヘッドデバイスのアイピーススタック)は、反射防止特徴1102、1104、および1106の1つ以上を備える。いくつかの実施形態では、アイピース1100は、異なる反射防止特徴を備える。例えば、第1の反射防止特徴(例えば、1102、1104、または1106のうちの1つ)と第2の反射防止特徴とは異なっていてもよい(例えば、アイピース1102、1104、または1106の別のもの)。例えば、第1の反射防止特徴は、第1の波長の光に対する第2の反射防止特徴よりも反射防止(例えば、より低い反射率を有する)であってもよい。別の例として、第2の反射防止特徴は、第2の波長の光に対する第1の反射防止特徴よりも反射防止(例えば、より低い反射率を有する)であってもよい。それぞれの反射防止特徴は、特定のアイピースに対応する目的の波長に基づいて決定されてもよく、決定された反射防止特徴は、本明細書に記載の方法(例えば、図7図9および図12に関して説明したように)を使用して作製されてもよい。
【0124】
図12は、本開示の実施形態にかかる、アイピースを製造する例示的な方法1200を示している。方法1200は、記載したステップを含むものとして示されているが、本開示の範囲から逸脱することなく、異なる順序のステップ、追加のステップ、またはより少ないステップが含まれてもよいことが理解される。例えば、ステップ1204は、ステップ1202の前または後に実行されてもよく、またはステップ1202および1204は、同時に実行されてもよい。簡潔にするために、図5図11に関して記載したいくつかの利点および特徴は、ここでは繰り返さない。
【0125】
いくつかの実施形態では、方法1200は、光を伝搬するための導波路層を設けることを含む(ステップ1202)。例えば、図5および図6A図6Cに関して説明したように、導波路層(例えば、導波路層504、604、606、608、624、626、628、644、646、または648)が提供される。いくつかの実施形態では、導波路層は、湾曲している。例えば、図5および図6A図6Cに関して説明したように、導波路層(例えば、導波路層504、604、606、または608)は湾曲している。
【0126】
いくつかの実施形態では、方法1200は、プロジェクタを導波路層に光学的に結合することを含む。プロジェクタは、導波路層を伝搬する光を生成する。例えば、図6A図6Cに関して説明したように、プロジェクタ(例えば、プロジェクタ612、632、または652)は、導波路層(例えば、導波路層604、606、608、624、626、628、644、646、または648)に光学的に結合される。
【0127】
いくつかの実施形態では、方法1200は、湾曲カバー層を設けることを含む(ステップ1204)。例えば、図6図9に関して説明したように、湾曲カバー層(例えば、カバー層602、622、630、642、650、700B、800、または900)が設けられる。
【0128】
いくつかの実施形態では、方法1200は、湾曲カバー層上に反射防止特徴を作製することを含む。例えば、図6図10に関して説明したように、反射防止特徴(例えば、反射防止特徴702、802、902または1002)がカバー層上に形成される。いくつかの実施形態では、反射防止特徴は、鋳造、モスアイフィルムの使用、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。例えば、図7に関して説明したように、反射防止特徴702は、鋳造によって作製される。別の例として、図8に関して説明したように、反射防止特徴802は、モスアイフィルムを使用して作製される。さらに別の例として、図9に関して説明したように、反射防止特徴902は、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。
【0129】
いくつかの実施形態では、カバー層は、導波路層に向かって湾曲している。例えば、図6Bに関して説明したように、カバー層630は、導波路層に向かって湾曲している。いくつかの実施形態では、カバー層は、導波路層から離れるように湾曲している。例えば、図6A図6Cに関して説明したように、カバー層(例えば、カバー層602、622、642、または650)は、導波路層から離れるように湾曲している。
【0130】
いくつかの実施形態では、湾曲カバー層の長さは、導波路層の長さよりも短い。例えば、図6Cに関して説明したように、カバー層642の長さは、(例えば、切り取られた)導波路層の長さよりも短い。いくつかの実施形態では、方法1200は、湾曲カバー層に孔を形成することを含む。例えば、図6Cに関して説明したように、カバー層650に孔654が形成される。
【0131】
いくつかの実施形態では、方法1200は、第2のカバー層を設けることを含む。例えば、図6図9に関して説明したように、第2のカバー層(例えば、カバー層610、620、630、640、650、700A、700B、800、または900)が設けられる。いくつかの実施形態では、第2のカバー層は、湾曲している。例えば、図6図9に関して説明したように、第2のカバー層(例えば、カバー層602、622、630、642、650、700B、800、または900)は湾曲している。
【0132】
いくつかの実施形態によれば、アイピースは、光を伝搬するための湾曲カバー層および導波路層を備える。
【0133】
いくつかの実施形態によれば、導波路層は、湾曲している。
【0134】
いくつかの実施形態によれば、アイピースは、第2のカバー層をさらに備える。
【0135】
いくつかの実施形態によれば、第2のカバー層は、湾曲している。
【0136】
いくつかの実施形態によれば、湾曲カバー層は、反射防止特徴を備える。
【0137】
いくつかの実施形態によれば、湾曲カバー層は、第2の反射防止特徴を備える。
【0138】
いくつかの実施形態によれば、反射防止特徴は、鋳造、モスアイフィルムの使用、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。
【0139】
いくつかの実施形態によれば、カバー層は、導波路層に向かって湾曲している。
【0140】
いくつかの実施形態によれば、カバー層は、導波路層から離れるように湾曲している。
【0141】
いくつかの実施形態によれば、導波路層内を伝搬する光は、プロジェクタから生成される。
【0142】
いくつかの実施形態によれば、湾曲カバー層の長さは、導波路層の長さよりも短い。
【0143】
いくつかの実施形態によれば、湾曲カバー層は、孔を備える。
【0144】
いくつかの実施形態によれば、アイピースを製造するための方法は、光を伝搬するための導波路層を設けることと、湾曲カバー層を設けることと、を含む。
【0145】
いくつかの実施形態によれば、導波路層は、湾曲している。
【0146】
いくつかの実施形態によれば、本方法は、第2のカバー層を設けることをさらに含む。
【0147】
いくつかの実施形態によれば、第2のカバー層は、湾曲している。
【0148】
いくつかの実施形態によれば、本方法は、湾曲カバー層上に反射防止特徴を作製することをさらに含む。
【0149】
いくつかの実施形態によれば、反射防止特徴は、鋳造、モスアイフィルムの使用、スピンコーティング、浸漬コーティング、またはスプレーコーティングによって作製される。
【0150】
いくつかの実施形態によれば、カバー層は、導波路層に向かって湾曲している。
【0151】
いくつかの実施形態によれば、カバー層は、導波路層から離れるように湾曲している。
【0152】
いくつかの実施形態によれば、本方法は、プロジェクタを導波路層に光学的に結合することをさらに含み、プロジェクタは、導波路層内を伝搬する光を生成する。
【0153】
いくつかの実施形態によれば、湾曲カバー層の長さは、導波路層の長さよりも短い。
【0154】
いくつかの実施形態によれば、本方法は、湾曲カバー層に孔を形成することをさらに含む。
【0155】
いくつかの実施形態によれば、ウェアラブルヘッドデバイスは、上記アイピースのいずれかの第1のアイピースと、上記アイピースのいずれかの第2のアイピースと、を備える。
【0156】
開示された例は、添付の図面を参照して十分に説明されているが、様々な変形および変更が当業者には明らかになることに留意されたい。例えば、1つ以上の実装の要素が組み合わせられ、削除され、変更され、または補足されて、さらなる実装を形成してもよい。そのような変形および変更は、添付の特許請求の範囲によって定義される開示された例の範囲内に含まれると理解されるべきである。
図1A
図1B
図1C
図2A
図2B
図2C
図2D
図3A
図3B
図4
図5A
図5B
図6A
図6B
図6C
図7
図8
図9
図10-1】
図10-2】
図11
図12
【国際調査報告】