(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-04-05
(54)【発明の名称】ポイントクラウドデータ送信装置、ポイントクラウドデータ送信方法、ポイントクラウドデータ受信装置及びポイントクラウドデータ受信方法
(51)【国際特許分類】
G06T 9/40 20060101AFI20240329BHJP
【FI】
G06T9/40
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023564540
(86)(22)【出願日】2022-01-26
(85)【翻訳文提出日】2023-12-14
(86)【国際出願番号】 KR2022001353
(87)【国際公開番号】W WO2022225145
(87)【国際公開日】2022-10-27
(31)【優先権主張番号】10-2021-0051875
(32)【優先日】2021-04-21
(33)【優先権主張国・地域又は機関】KR
(81)【指定国・地域】
(71)【出願人】
【識別番号】502032105
【氏名又は名称】エルジー エレクトロニクス インコーポレイティド
【氏名又は名称原語表記】LG ELECTRONICS INC.
【住所又は居所原語表記】128, Yeoui-daero, Yeongdeungpo-gu, 07336 Seoul,Republic of Korea
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100165191
【氏名又は名称】河合 章
(74)【代理人】
【識別番号】100114018
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100159259
【氏名又は名称】竹本 実
(72)【発明者】
【氏名】ホ ヘチョン
(57)【要約】
実施例によるポイントクラウドデータ送信方法は、ポイントクラウドデータを符号化する段階と、ポイントクラウドデータを含むビットストリームを送信する段階と、を含む。実施例によるポイントクラウドデータ受信方法は、ポイントクラウドデータを含むビットストリームを受信する段階と、ポイントクラウドデータを復号する段階と、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
ポイントクラウドデータを符号化する段階と、
前記ポイントクラウドデータを含むビットストリームを送信する段階と、を含む、ポイントクラウドデータ送信方法。
【請求項2】
前記ポイントクラウドデータを符号化する段階は、
前記ポイントクラウドデータのジオメトリデータを符号化する段階を含み、
前記ジオメトリデータは前記ポイントクラウドデータに対するレーザーアングルに基づいて符号化される、請求項1に記載のポイントクラウドデータ送信方法。
【請求項3】
前記ポイントクラウドデータのジオメトリデータはレーザーアングルを有し、
前記レーザーアングルが90°であり、最左側座標のポイントを前記ジオメトリデータの原点として選択する、請求項1に記載のポイントクラウドデータ送信方法。
【請求項4】
前記ジオメトリデータは前記レーザーアングルに基づいて整列される、請求項3に記載のポイントクラウドデータ送信方法。
【請求項5】
前記方法は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親とする予測ツリーを生成し、
複数のポイントを含む第2レーザーグループのルートノードを複数のポイントを含む第1レーザーグループのルートノードの親ノードとして設定し、前記第2レーザーグループは前記第1レーザーグループよりもレーザーアングル値が小さい、請求項4に記載のポイントクラウドデータ送信方法。
【請求項6】
前記ポイントクラウドデータを符号化する段階は、
前記ポイントクラウドデータのジオメトリデータを符号化する段階を含み、
前記ジオメトリデータを符号化する段階は、
前記ジオメトリデータの座標系を変換して前記レーザーアングルに基づいて前記原点を設定し、
前記原点に基づいて前記ジオメトリデータを整列し、
前記整列されたジオメトリデータに基づいて予測ツリーを生成し、
前記予測ツリーに基づいて前記ポイントクラウドデータの予測値を生成して、前記予測値から残差値を生成してジオメトリビットストリームを生成する、請求項4に記載のポイントクラウドデータ送信方法。
【請求項7】
ポイントクラウドデータを符号化するエンコーダーと、
前記ポイントクラウドデータを含むビットストリームを送信する送信機と、を含む、ポイントクラウドデータ送信装置。
【請求項8】
前記ポイントクラウドデータを符号化するエンコーダーは、
前記ポイントクラウドデータのジオメトリデータを符号化するジオメトリエンコーダーを含み、
前記ジオメトリデータは前記ポイントクラウドデータに対するレーザーアングルに基づいて符号化される、請求項7に記載のポイントクラウドデータ送信装置。
【請求項9】
前記ポイントクラウドデータのジオメトリデータはレーザーアングルを有し、
前記レーザーアングルが90°であり、最左側座標のポイントを前記ジオメトリデータの原点として選択する、請求項7に記載のポイントクラウドデータ送信装置。
【請求項10】
前記ジオメトリデータは前記レーザーアングルに基づいて整列される、請求項9に記載のポイントクラウドデータ送信装置。
【請求項11】
前記装置は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親とする予測ツリーを生成し、
複数のポイントを含む第2レーザーグループのルートノードを複数のポイントを含む第1レーザーグループのルートノードの親ノードとして設定し、前記第2レーザーグループは前記第1レーザーグループよりもレーザーアングル値が小さい、請求項10に記載のポイントクラウドデータ送信装置。
【請求項12】
前記ポイントクラウドデータを符号化するエンコーダーは、
前記ポイントクラウドデータのジオメトリデータを符号化するジオメトリエンコーダーを含み、
前記ジオメトリエンコーダーは、
前記ジオメトリデータの座標系を変換して前記レーザーアングルに基づいて前記原点を設定し、
前記原点に基づいて前記ジオメトリデータを整列し、
前記整列されたジオメトリデータに基づいて予測ツリーを生成し、
前記予測ツリーに基づいて前記ポイントクラウドデータの予測値を生成して、前記予測値から残差値を生成してジオメトリビットストリームを生成する、請求項10に記載のポイントクラウドデータ送信装置。
【請求項13】
ポイントクラウドデータを含むビットストリームを受信する段階と、
前記ポイントクラウドデータを復号する段階と、を含む、ポイントクラウドデータ受信方法。
【請求項14】
前記ポイントクラウドデータを復号する段階は、
前記ポイントクラウドデータのジオメトリデータを復号する段階を含み、
前記ジオメトリデータは前記ポイントクラウドデータに対するレーザーアングルに基づいて復号される、請求項13に記載のポイントクラウドデータ受信方法。
【請求項15】
前記ポイントクラウドデータのジオメトリデータはレーザーアングルを有し、
前記レーザーアングルが90°であり、最左側座標のポイントを前記ジオメトリデータの原点として選択する、請求項13に記載のポイントクラウドデータ受信方法。
【請求項16】
前記ジオメトリデータは前記レーザーアングルに基づいて整列される、請求項15に記載のポイントクラウドデータ受信方法。
【請求項17】
前記方法は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親とする予測ツリーを生成し、
複数のポイントを含む第2レーザーグループのルートノードを複数のポイントを含む第1レーザーグループのルートノードの親ノードとして設定し、前記第2レーザーグループは前記第1レーザーグループよりもレーザーアングル値が小さい、請求項16に記載のポイントクラウドデータ受信方法。
【請求項18】
前記ポイントクラウドデータを復号する段階は、
前記ポイントクラウドデータのジオメトリデータを復号する段階を含み、
前記ジオメトリデータを復号する段階は、
前記ジオメトリデータの座標系を変換して前記レーザーアングルに基づいて前記原点を設定し、
前記原点に基づいて前記ジオメトリデータを整列し、
前記整列されたジオメトリデータに基づいて予測ツリーを生成し、
前記予測ツリーに基づいて前記ポイントクラウドデータの予測値を生成して、前記予測値及び残差値を併せてジオメトリデータを復元する、請求項16に記載のポイントクラウドデータ受信方法。
【請求項19】
ポイントクラウドデータを含むビットストリームを受信する受信部と、
前記ポイントクラウドデータを復号するデコーダーと、を含む、ポイントクラウドデータ受信装置。
【請求項20】
前記ポイントクラウドデータを復号するデコーダーは、
前記ポイントクラウドデータのジオメトリデータを復号するジオメトリデコーダーを含み、
前記ジオメトリデータは前記ポイントクラウドデータに対するレーザーアングルに基づいて復号される、請求項19に記載のポイントクラウドデータ受信装置。
【発明の詳細な説明】
【技術分野】
【0001】
実施例はポイントクラウドコンテンツ(Point Cloud Content)を処理する方法及び装置に関する。
【背景技術】
【0002】
ポイントクラウドコンテンツは3次元空間を表現する座標系に属する点(ポイント)の集合であるポイントクラウドで表現されるコンテンツである。ポイントクラウドコンテンツは3次元からなるメディアを表現でき、VR(Virtual Reality、仮想現実)、AR(Augmented Reality、拡張現実)、MR(Mixed Reality、複合現実)及び自律走行サービスなどの様々なサービスを提供するために使用される。しかし、ポイントクラウドコンテンツを表現するためには、数万から数十万個のポイントデータが必要である。従って、膨大な量のポイントデータを効率的に処理する方法が求められる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
実施例はポイントクラウドデータを効率的に処理するための装置及び方法を提供する。実施例は遅延(latency)及び符号化/復号複雑度を解決するためのポイントクラウドデータ処理方法及び装置を提供する。
【0004】
但し、上述した技術的課題のみに制限されず、記載する全ての内容に基づいて当業者が導き出される他の技術的課題にも実施例の権利範囲を拡張することができる。
【課題を解決するための手段】
【0005】
実施例によるポイントクラウドデータ送信方法は、ポイントクラウドデータを符号化する段階と、ポイントクラウドデータを含むビットストリームを送信する段階と、を含む。実施例によるポイントクラウドデータ受信方法は、ポイントクラウドデータを含むビットストリームを受信する段階と、ポイントクラウドデータを復号する段階と、を含む。
【発明の効果】
【0006】
実施例による装置及び方法は、高効率でポイントクラウドデータを処理することができる。
【0007】
実施例による装置及び方法は、良質のポイントクラウドサービスを提供することができる。
【0008】
実施例による装置及び方法は、VRサービス、自律走行サービスなどの汎用的なサービスを提供するためのポイントクラウドコンテンツを提供することができる。
【図面の簡単な説明】
【0009】
添付図面は実施例の理解を助けるためのものであり、実施例に関連する説明と共に実施例を示す。後述する様々な実施例に対するより適切な理解のために、添付図面において類似する参照番号に対応する部分を含む次の図面に関連して以下の実施例の説明を必ず参照すべきである。
【0010】
【
図1】実施例によるポイントクラウドコンテンツ提供システムの一例を示す。
【
図2】実施例によるポイントクラウドコンテンツ提供動作を示すブロック図である。
【
図3】実施例によるポイントクラウドビデオキャプチャー過程の一例を示す。
【
図4】実施例によるポイントクラウドエンコーダー(Point Cloud Encoder)の一例を示す。
【
図6】実施例による八分木及び占有コード(occupancy code)の一例を示す。
【
図7】実施例による隣接ノードパターンの一例を示す。
【
図8】実施例によるLODごとのポイント構成の一例を示す。
【
図9】実施例によるLODごとのポイント構成の一例を示す。
【
図10】実施例によるポイントクラウドデコーダー(Point Cloud Decoder)の一例を示す。
【
図11】実施例によるポイントクラウドデコーダー(Point Cloud Decoder)の一例を示す。
【
図12】実施例によるポイントクラウドデータ送信装置の一例を示す。
【
図13】実施例によるポイントクラウドデータ受信装置の一例を示す。
【
図14】実施例によるポイントクラウドデータ送受信方法/装置に連動可能な構造の一例を示す。
【
図15】実施例によるポイントクラウドデータが有する追加属性データを示す。
【
図16】実施例によるポイントクラウドデータに関する原点位置の一例を示す。
【
図18】実施例によるレーザーアングルがない場合、原点位置を設定する一例を示す。
【
図19】実施例によるレーザーアングル基盤の整列の一例を示す。
【
図20】実施例によるレーザーグループと予測ツリー生成の一例を示す。
【
図21】実施例によるポイントクラウドデータ送信装置を示す。
【
図22】実施例によるポイントクラウドデータ受信装置を示す。
【
図23】実施例によるポイントクラウドデータ及びパラメータ情報を含むビットストリームを示す。
【
図24】実施例によるシーケンスパラメータセットを示す。
【
図25】実施例によるジオメトリ パラメータセットを示す。
【
図26】実施例によるタイルパラメータセットを示す。
【
図27】実施例によるジオメトリスライスヘッダーを示す。
【
図28】実施例によるポイントクラウドデータ送信方法を示す。
【
図29】実施例によるポイントクラウドデータ受信方法を示す。
【発明を実施するための形態】
【0011】
添付図面を参照しながら望ましい実施例について具体的に説明する。添付図面を参照した以下の詳細な説明は、実施例によって具現可能な実施例のみを示すというより、望ましい実施例を説明するためのものである。以下の詳細な説明は実施例に関する徹底な理解を提供するために細部事項を含む。しかし、かかる細部事項がなくても実施例を実行できることは当業者にとって明らかである。
【0012】
実施例で使用するほとんどの用語は該当分野において広く使用される一般的なものであるが、一部は出願人によって任意に選択されたものもあり、その意味は必要によって以下に詳しく説明する。よって、実施例は用語の単純な名称や意味ではなく、用語が意図する意味に基づいて理解すべきである。
【0013】
図1は実施例によるポイントクラウドコンテンツ提供システムの一例を示す図である。
【0014】
図1に示したポイントクラウドコンテンツ提供システムは、送信装置(transmission device)10000及び受信装置(reception device)10004を含む。送信装置10000及び受信装置10004はポイントクラウドデータを送受信するために有無線通信が可能である。
【0015】
実施例による送信装置10000は、ポイントクラウドビデオ(又はポイントクラウドコンテンツ)を確保し処理して送信する。実施例において、送信装置10000は固定局(fixed station)、BTS(base transceiver system)、ネットワーク、AI(Ariticial Intelligence)機器及び/又はシステム、ロボット、AR/VR/XR機器及び/又はサーバーなどを含む。また実施例において、送信装置10000は無線接続技術(例、5G NR(New RAT)、LTE(Long Term Evolution))を用いて、基地局及び/又は他の無線機器と通信を行う機器、ロボット、車両、AR/VR/XR機器、携帯機器、家電、IoT(Internet of Thing)機器、AI機器/サーバーなどを含む。
【0016】
実施例による送信装置10000は、ポイントクラウドビデオ獲得部(Point Cloud Video Acquisition)10001、ポイントクラウドビデオエンコーダー(Point Cloud Video Encoder)10002及び/又は送信機(Transmitter(又は通信モジュール)10003を含む。
【0017】
実施例によるポイントクラウドビデオ獲得部10001は、キャプチャー、合成又は生成などの処理過程によりポイントクラウドビデオを獲得する。ポイントクラウドビデオは、3次元空間に位置するポイントの集合であるポイントクラウドで表現されるポイントクラウドコンテンツであって、ポイントクラウドビデオデータなどと呼ばれる。実施例によるポイントクラウドビデオは、一つ又はそれ以上のフレームを含む。一つのフレームは停止映像/ピクチャを示す。よって、ポイントクラウドビデオはポイントクラウド映像/フレーム/ピクチャを含み、ポイントクラウド映像、フレーム及びピクチャのうちのいずれかに呼ばれる。
【0018】
実施例によるポイントクラウドビデオエンコーダー10002は、確保したポイントクラウドビデオデータを符号化する。ポイントクラウドビデオエンコーダー10002はポイントクラウド圧縮(Point Cloud Compression)コーディングに基づいてポイントクラウドビデオデータを符号化する。実施例によるポイントクラウド圧縮コーディングは、G-PCC(Geometry-based Point Cloud Compression)コーディング及び/又はV-PCC(Video based Point Cloud Compression)コーディング又は次世代コーディングを含む。なお、実施例によるポイントクラウド圧縮コーディングは、上述した実施例に限られない。ポイントクラウドビデオエンコーダー10002は、符号化されたポイントクラウドビデオデータを含むビットストリームを出力する。ビットストリームは符号化されたポイントクラウドビデオデータだけではなく、ポイントクラウドビデオデータの符号化に関連するシグナリング情報を含む。
【0019】
実施例による送信機10003は、符号化されたポイントクラウドビデオデータを含むビットストリームを送信する。実施例によるビットストリームはファイル又はセグメント(例えば、ストリーミングセグメント)などにカプセル化されて、放送網及び/又はブロードバンド網などの様々なネットワークにより送信される。図示していないが、送信装置10000はカプセル化動作を行うカプセル化部(又はカプセル化モジュール)を含む。また実施例において、カプセル化部は送信機10003に含まれる。実施例において、ファイル又はセグメントはネットワークにより受信装置10004に送信されるか、又はデジタル格納媒体(例えば、USB、SD、CD、DVD、ブルーレイ、HDD、SSDなど)に格納される。実施例による送信機10003は受信装置10004(又は受信機(Receiver)10005)と4G、5G、6Gなどのネットワークにより有無線通信が可能である。また送信機10003はネットワークシステム(例えば、4G、5G、6Gなどの通信ネットワークシステム)によって必要なデータ処理動作を行う。また送信装置10000はオン・デマンド(On Demand)方式によってカプセル化されたデータを送信することもできる。
【0020】
実施例による受信装置10004は、受信機(Receiver)10005、ポイントクラウドビデオデコーダー(Point Cloud Decoder)10006及び/又はレンダラー(Renderer)10007を含む。実施例において、受信装置10004は無線接続技術(例、5G NR(New RAT)、LTE(Long Term Evolution))を用いて、基地局及び/又は他の無線機器と通信を行う機器、ロボット、車両、AR/VR/XR機器、携帯機器、家電、IoT(Internet of Thing)機器、AI機器/サーバーなどを含む。
【0021】
実施例による受信機10005は、ポイントクラウドビデオデータを含むビットストリーム又はビットストリームがカプセル化されたファイル/セグメントなどをネットワーク又は格納媒体から受信する。受信機10005はネットワークシステム(例えば、4G、5G、6Gなどの通信ネットワークシステム)により必要なデータ処理動作を行う。実施例による受信機10005は、受信したファイル/セグメントをデカプセル化してビットストリームを出力する。また実施例において、受信機10005はデカプセル化の動作を行うためのデカプセル化部(又はデカプセル化モジュール)を含む。またデカプセル化部は受信機10005とは別個のエレメント(又はコンポーネント)で具現される。
【0022】
ポイントクラウドビデオデコーダー10006は、ポイントクラウドビデオデータを含むビットストリームを復号する。ポイントクラウドビデオデコーダー10006はポイントクラウドビデオデータが符号化された方式により復号することができる(例えば、ポイントクラウドビデオエンコーダー10002の動作の逆の過程)。従って、ポイントクラウドビデオデコーダー10006はポイントクラウド圧縮の逆過程であるポイントクラウド復元コーディングを行って、ポイントクラウドビデオデータを復号することができる。ポイントクラウド復元コーディングはG-PCCコーディングを含む。
【0023】
レンダラー10007は復号されたポイントクラウドビデオデータをレンダリングする。レンダラー10007はポイントクラウドビデオデータだけではなく、オディオデータもレンダリングしてポイントクラウドコンテンツを出力する。実施例において、レンダラー10007はポイントクラウドコンテンツをディスプレイするためのディスプレイを含む。実施例において、ディスプレイはレンダラー10007に含まれず、別のデバイス又はコンポーネントで具現される。
【0024】
図面において、点線で示した矢印は、受信装置10004で得たフィードバック情報(feedback information)の送信経路を示す。フィードバック情報はポイントクラウドコンテンツを消費するユーザとの相互作用を反映するための情報であって、ユーザの情報を含む(例えば、ヘッドオリエンテーション情報)、ビューポート情報など)。特にポイントクラウドコンテンツがユーザとの相互作用が必要なサービス(例えば、自律走行サービスなど)のためのものである場合には、フィードバック情報はコンテンツ送信側(例えば、送信装置10000)及び/又はサービス供給者に伝達されることができる。実施例において、フィードバック情報は送信装置10000だけではなく受信装置10004でも使用されることができ、提供されないこともできる。
【0025】
実施例によるヘッドオリエンテーション情報はユーザの頭の位置、方向、角度、動きなどに関する情報である。実施例による受信装置10004はヘッドオリエンテーション情報に基づいてビューポート情報を計算する。ビューポート情報はユーザが見ているポイントクラウドビデオの領域に関する情報である。視点(viewpoint)はユーザがポイントクラウドビデオを見ている点であり、ビューポート領域の真ん中を意味する。即ち、ビューポートは視点を中心とする領域であり、領域のサイズ、形態などはFOV(Field Of View)により決定される。従って、受信装置10004はヘッドオリエンテーション情報以外に、装置が支援する垂直(vertical)或いは水平(horizontal)FOVなどに基づいてビューポート情報を抽出することができる。また受信装置10004はゲイズ分析(Gaze Analysis)などを行って、ユーザのポイントクラウド消費方式、ユーザが凝視するポイントクラウドビデオ領域、凝視時間などを確認する。実施例において、受信装置10004はゲイズ分析の結果を含むフィードバック情報を送信装置10000に送信する。実施例によるフィードバック情報はレンダリング及び/又はディスプレイ過程で得られる。実施例によるフィードバック情報は受信装置10004に含まれた一つ又はそれ以上のセンサーにより確保される。また実施例において、フィードバック情報はレンダラー10007又は別の外部エレメント(又はデバイス、コンポーネントなど)により確保される。
図1に示された点線はレンダラー10007で確保したフィードバック情報の伝達過程を示す。ポイントクラウドコンテンツ提供システムはフィードバック情報に基づいてポイントクラウドデータを処理(符号化/復号)する。従って、ポイントクラウドビデオデータデコーダー10006はフィードバック情報に基づいて復号の動作を行うことができる。また受信装置10004はフィードバック情報を送信装置10000に送信することができる。送信装置10000(又はポイントクラウドビデオデータエンコーダー10002)はフィードバック情報に基づいて符号化の動作を行う。従って、ポイントクラウドコンテンツ提供システムは全てのポイントクラウドデータを処理(符号化/復号)せず、フィードバック情報に基づいて必要なデータ(例えば、ユーザのヘッド位置に対応するポイントクラウドデータ)を効率的に処理して、ユーザにポイントクラウドコンテンツを提供することができる。
【0026】
実施例において、送信装置10000はエンコーダー、送信デバイス、送信機などと呼ばれ、受信装置10004はデコーダー、受信デバイス、受信機などと呼ばれる。
【0027】
実施例による
図1のポイントクラウドコンテンツ提供システムで処理される(獲得/符号化/送信/復号/レンダリングの一連の過程で処理される)ポイントクラウドデータは、ポイントクラウドコンテンツデータ又はポイントクラウドビデオデータとも呼ばれる。実施例において、ポイントクラウドコンテンツデータはポイントクラウドデータに関連するメタデータ或いはシグナリング情報を含む概念として使用される。
【0028】
図1に示したポイントクラウドコンテンツ提供システムのエレメントは、ハードウェア、ソフトウェア、プロセッサ及び/又はこれらの組み合わせなどで具現される。
【0029】
図2は実施例によるポイントクラウドコンテンツ提供の動作を示すブロック図である。
【0030】
図2は
図1で説明したポイントクラウドコンテンツ提供システムの動作を示すブロック図である。上述したように、ポイントクラウドコンテンツ提供システムは、ポイントクラウド圧縮コーディング(例えば、G-PCC)に基づいてポイントクラウドデータを処理する。
【0031】
実施例によるポイントクラウドコンテンツ提供システム(例えば、ポイントクラウド送信装置10000又はポイントクラウドビデオ獲得部10001)では、ポイントクラウドビデオを獲得する(20000)。ポイントクラウドビデオは3次元空間を表現する座標系に属するポイントクラウドで表現される。実施例によるポイントクラウドビデオはPly(Polygon File format or the Stanford Triangle format)ファイルを含む。ポイントクラウドビデオが一つ又はそれ以上のフレームを有する場合、獲得したポイントクラウドビデオは一つ又はそれ以上のPlyファイルを含む。Plyファイルはポイントのジオメトリ(Geometry)及び/又は特質(Attribute)のようなポイントクラウドデータを含む。ジオメトリはポイントの位置を含む。それぞれのポイントの位置は3次元座標系(例えば、XYZ軸からなる座標系など)を示すパラメータ(例えば、X軸、Y軸、Z軸それぞれの値)で表現される。特質はポイントの特質(例えば、それぞれのポイントのテクスチャ情報、色相(YCbCr又はRGB)、反射率(r)、透明度など)を含む。一つのポイントは一つ又はそれ以上の特質(又は属性)を有する。例えば、一つのポイントは、色相の一つの特質を有するか、或いは色相及び反射率の二つの特質を有することができる。実施例において、ジオメトリは位置、ジオメトリ情報、ジオメトリデータなどとも呼ばれ、特質は特質、特質情報、特質データなどとも呼ばれる。またポイントクラウドコンテンツ提供システム(例えば、ポイントクラウド送信装置10000又はポイントクラウドビデオ獲得部10001)は、ポイントクラウドビデオの獲得過程に関連する情報(例えば、深さ情報、色相情報など)からポイントクラウドデータを確保することができる。
【0032】
実施例によるポイントクラウドコンテンツ提供システム(例えば、送信装置10000又はポイントクラウドビデオエンコーダー10002)は、ポイントクラウドデータを符号化する(20001)。ポイントクラウドコンテンツ提供システムは、ポイントクラウド圧縮コーディングに基づいてポイントクラウドデータを符号化する。上述したように、ポイントクラウドデータはポイントのジオメトリ及び特質を含む。よって、ポイントクラウドコンテンツ提供システムは、ジオメトリを符号化するジオメトリ符号化を行ってジオメトリビットストリームを出力する。ポイントクラウドコンテンツ提供システムは、特質を符号化する特質符号化を行って特質ビットストリームを出力する。実施例において、ポイントクラウドコンテンツ提供システムはジオメトリ符号化に基づいて特質符号化を行う。実施例によるジオメトリビットストリーム及び特質ビットストリームは多重化されて一つのビットストリームで出力される。実施例によるビットストリームはさらにジオメトリ符号化及び特質符号化に関連するシグナリング情報を含む。
【0033】
実施例によるポイントクラウドコンテンツ提供システム(例えば、送信装置10000又は送信機10003)は、符号化されたポイントクラウドデータを送信する(20002)。
図1で説明したように、符号化されたポイントクラウドデータはジオメトリビットストリーム、特質ビットストリームで表現される。また符号化されたポイントクラウドデータはポイントクラウドデータの符号化に関連するシグナリング情報(例えば、ジオメトリ符号化及び特質符号化に関連するシグナリング情報)と共に、ビットストリームの形態で送信される。またポイントクラウドコンテンツ提供システムは符号化されたポイントクラウドデータを送信するビットストリームをカプセル化してファイル又はセグメントの形態で送信する。
【0034】
実施例によるポイントクラウドコンテンツ提供システム(例えば、受信装置10004又は受信機10005)は、符号化されたポイントクラウドデータを含むビットストリームを受信する。またポイントクラウドコンテンツ提供システム(例えば、受信装置10004又は受信機10005)は、ビットストリームを逆多重化する。
【0035】
ポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はポイントクラウドビデオデコーダー10005)は、ビットストリームで送信される符号化されたポイントクラウドデータ(例えば、ジオメトリビットストリーム、特質ビットストリーム)を復号する。ポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はポイントクラウドビデオデコーダー10005)は、ビットストリームに含まれたポイントクラウドビデオデータの符号化に関連するシグナリング情報に基づいてポイントクラウドビデオデータを復号する。ポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はポイントクラウドビデオデコーダー10005)は、ジオメトリビットストリームを復号してポイントの位置(ジオメトリ)を復元する。ポイントクラウドコンテンツ提供システムは、復元したジオメトリに基づいて特質ビットストリームを復号してポイントの特質を復元する。ポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はポイントクラウドビデオデコーダー10005)は、復元されたジオメトリによる位置及び復号された特質に基づいてポイントクラウドビデオを復元する。
【0036】
実施例によるポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はレンダラー10007)は、復号されたポイントクラウドデータをレンダリングする(20004)。ポイントクラウドコンテンツ提供システム(例えば、受信装置10004又はレンダラー10007)は、復号過程で復号されたジオメトリ及び特質を様々なレンダリング方式によってレンダリングする。ポイントクラウドコンテンツのポイントは、一定の厚さを有する定点、該当定点の位置を中央とする所定の最小サイズを有する立方体、又は定点の位置を中央とする円などにレンダリングされる。レンダリングされたポイントクラウドコンテンツの全部又は一部の領域はディスプレイ(例えば、VR/ARディスプレイ、一般ディスプレイなど)によりユーザに提供される。
【0037】
実施例によるポイントクラウドコンテンツ提供システム(例えば、受信装置10004)は、フィードバック情報を確保することができる(20005)。ポイントクラウドコンテンツ提供システムは、フィードバック情報に基づいてポイントクラウドデータを符号化及び/又は復号する。実施例によるフィードバック情報及びポイントクラウドコンテンツ提供システムの動作は、
図1で説明したフィードバック情報及び動作と同一であるので、具体的な説明は省略する。
【0038】
図3は実施例によるポイントクラウドビデオキャプチャー過程の一例を示す図である。
【0039】
図3は
図1及び
図2で説明したポイントクラウドコンテンツ提供システムのポイントクラウドビデオキャプチャー過程の一例を示す。
【0040】
ポイントクラウドコンテンツは、様々な3次元空間(例えば、現実環境を示す3次元空間、仮想環境を示す3次元空間など)に位置するオブジェクト(object)及び/又は環境を示すポイントクラウドビデオ(イメージ及び/又は映像)を含む。従って、実施例によるポイントクラウドコンテンツ提供システムは、ポイントクラウドコンテンツを生成するために一つ又はそれ以上のカメラ(例えば、深さ情報を確保できる赤外線カメラ、深さ情報に対応する色相情報を抽出できるRGBカメラなど)、プロジェクト(例えば、深さ情報を確保するための赤外線パターンプロジェクターなど)、LiDARなどを使用してポイントクラウドビデオをキャプチャーする。実施例によるポイントクラウドコンテンツ提供システムは、深さ情報から3次元空間上のポイントで構成されたジオメトリの形態を抽出し、色相情報からそれぞれのポイントの特質を抽出してポイントクラウドデータを確保する。実施例によるイメージ及び/又は映像は内向き(inward-facing)方式及び外向き(outward-facing)方式のうちのいずれかに基づいてキャプチャーされる。
【0041】
図3の左側には内向き方式が示されている。内向き方式は中心オブジェクトを取り囲んで位置する一つ又はそれ以上のカメラ(又はカメラセンサ)が中心オブジェクトをキャプチャーする方式である。内向き方式は核心核心客体に対する360°イメージをユーザに提供するポイントクラウドコンテンツ(例えば、ユーザに客体(例:キャラクター、選手、品物、俳優などの核心となる客体)の360°イメージを提供するVR/ARコンテンツ)を生成するために使用される。
【0042】
図3の右側には外向き方式が示されている。外向き方式は中心オブジェクトを取り囲んで位置する一つ又はそれ以上のカメラ(又はカメラセンサ)が中心オブジェクトではない中心オブジェクトの環境をキャプチャーする方式である。外向き方式はユーザの視点からの周辺環境を提供するためのポイントクラウドコンテンツ(例えば、自律走行車両のユーザに提供される外部環境を示すコンテンツ)を生成するために使用される。
【0043】
図示したように、ポイントクラウドコンテンツは一つ又はそれ以上のカメラのキャプチャー動作に基づいて生成される。この場合、それぞれのカメラの座標系が異なるので、ポイントクラウドコンテンツ提供システムはキャプチャー動作前にグローバル空間座標系(global coordinate system)を設定するために、一つ又はそれ以上のカメラの較正(calibration)を行う。またポイントクラウドコンテンツ提供システムは、上述したキャプチャー方式でキャプチャーされたイメージ及び/又は映像と任意のイメージ及び/又は映像を合成してポイントクラウドコンテンツを生成する。またポイントクラウドコンテンツ提供システムは、仮想空間を示すポイントクラウドコンテンツを生成する場合、
図3で説明したキャプチャー動作を行わない。実施例によるポイントクラウドコンテンツ提供システムは、キャプチャーしたイメージ及び/又は映像に対して後処理を行うこともできる。即ち、ポイントクラウドコンテンツ提供システムは、望まない領域(例えば、背景)を除去したり、キャプチャーしたイメージ及び/又は映像が連結された空間を認識して空間(spatial hole)がある場合、それを埋める動作を行うことができる。
【0044】
またポイントクラウドコンテンツ提供システムは、それぞれのカメラから確保したポイントクラウドビデオのポイントに対して座標系変換を行って、一つのポイントクラウドコンテンツを生成することができる。ポイントクラウドコンテンツ提供システムは、それぞれのカメラの位置座標を基準としてポイントの座標系変換を行う。これにより、ポイントクラウドコンテンツ提供システムは、一つの広い範囲を示すコンテンツを生成するか、或いはポイントの密度が高いポイントクラウドコンテンツを生成することができる。
【0045】
図4は実施例によるポイントクラウドエンコーダー(Point Cloud Encoder)の一例を示す図である。
【0046】
図4は
図1のポイントクラウドビデオエンコーダー10002の一例を示す。ポイントクラウドエンコーダーは、ネットワーク状況或いはアプリケーションなどによってポイントクラウドコンテンツの質(例えば、無損失-lossless、損失-lossy、損失に近い-near-lossless)を調節するために、ポイントクラウドデータ(例えば、ポイントの位置及び/又は特質)を再構成して符号化動作を行う。ポイントクラウドコンテンツの全体サイズが大きい場合(例えば、30fpsの場合、60Gbpsであるポイントクラウドコンテンツ)、ポイントクラウドコンテンツ提供システムは該当コンテンツをリアルタイムストリーミングすることができない。従って、ポイントクラウドコンテンツ提供システムは、ネットワーク環境などに合わせて提供するために、最大ターゲットビットレートに基づいてポイントクラウドコンテンツを再構成することができる。
【0047】
図1及び
図2に示したように、ポイントクラウドエンコーダーはジオメトリ符号化及び特質符号化を行うことができる。ジオメトリ符号化は特質符号化よりも先に行われる。
【0048】
*
【0049】
実施例によるポイントクラウドエンコーダーは、座標系変換部(Transformation Coordinates)40000、量子化部(Quantize and Remove Points(Voxelize))40001、八分木分析部(Analyze Octree)40002、表面近似分析部(Analyze Surface Approximation)40003、演算エンコーダー(Arithmetic Encode)40004、ジオメトリ再構成部(Reconstruct Geometry)40005、色変換部(Transform Colors)40006、特質変換部(Transfer Attributes)40007、RAHT変換部40008、LOD生成部(Generated LOD)40009、リフト変換部(Lifting)40010、係数量子化部(Quantize Coefficients)40011及び/又は演算エンコーダー(Arithmetic Encode)40012を含む。
【0050】
座標系変換部40000、量子化部40001、八分木分析部40002、表面近似分析部40003、演算エンコーダー40004及びジオメトリ再構成部40005は、ジオメトリ符号化を行う。実施例によるジオメトリ符号化は、八分木ジオメトリコーディング、ダイレクトコーディング(direct coding)、trisoupジオメトリ符号化(trisoup geometry encoding)及びエントロピー符号化を含む。ダイレクトコーディング及びtrisoupジオメトリ符号化は選択的に或いは組み合わせて適用される。なお、ジオメトリ符号化は上記の例示に限られない。
【0051】
図示したように、実施例による座標系変換部40000は、位置を受信して座標系(coordinate)に変換する。例えば、位置は3次元空間(例えば、XYZ座標系で表現される3次元空間など)の位置情報に変換される。実施例による3次元空間の位置情報はジオメトリ情報とも称される。
【0052】
実施例による量子化部40001はジオメトリを量子化する。例えば、量子化部40001は全体ポイントの最小位置値(例えば、X軸、Y軸、Z軸に対して各軸上の最小値)に基づいてポイントを量子化する。量子化部40001は最小の位置値とそれぞれのポイントの位置値との差に所定の量子スケール(quatization scale)値を掛けた後、切り下げ又は切り上げをして最も近い整数値を探す量子化動作を行う。従って、一つ又はそれ以上のポイントは同一の量子化された位置(又は位置値)を有することができる。実施例による量子化部40001は量子化されたポイントを再構成するために、量子化された位置に基づいてボクセル化(voxelization)を行う。2次元イメージ/ビデオ情報を含む最小単位はピクセル(pixel)のように、実施例によるポイントクラウドコンテンツ(又は3次元ポイントクラウドビデオ)のポイントは一つ又はそれ以上のボクセル(voxel)に含まれる。ボクセルはボリューム(Volume)とピクセル(Pixel)を組み合わせた言葉であり、3次元空間を表現する軸(例えば、X軸、Y軸、Z軸)に基づいて3次元空間をユニット(unit=1.0)単位で分けたときに発生する3次元キュービック空間を意味する。量子化部40001は3次元空間のポイントのグループをボクセルでマッチングする。実施例において、一つのボクセルは一つのポイントのみを含む。実施例において、一つのボクセルは一つ又はそれ以上のポイントを含む。また一つのボクセルを一つのポイントで表現するために、一つのボクセルに含まれた一つ又はそれ以上のポイントの位置に基づいて、該当ボクセルの中央点(ceter)の位置を設定することができる。この場合、一つのボクセルに含まれた全ての位置の特質が統合されて(combined)、該当ボクセルに割り当てられる。
【0053】
実施例による八分木分析部40002は、ボクセルを八分木構造で表すための八分木ジオメトリコーディング(又は八分木コーディング)を行う。八分木構造は八分割構造に基づいてボクセルにマッチングされたポイントを表現する。
【0054】
実施例による表面近似分析部40003は、八分木を分析して近似化する。実施例による八分木分析及び近似化は、八分木及びボクセル化を効率的に提供するために、多数のポイントを含む領域をボクセル化するために分析を行う過程である。
【0055】
実施例による演算エンコーダー40004は、八分木及び/又は近似化された八分木をエントロピー符号化する。例えば、符号化方式は演算(Arithmetic)符号化方法を含む。符号化の結果としてジオメトリビットストリームが生成される。
【0056】
色変換部40006、特質変換部40007、RAHT変換部40008、LOD生成部40009、リフト変換部40010、係数量子化部40011及び/又は演算エンコーダー40012は、特質符号化を行う。上述したように、一つのポイントは一つ又はそれ以上の特質を有する。実施例による特質符号化は、一つのポイントが有する特質に対して等しく適用される。但し、一つの特質(例えば、色相)が一つ又はそれ以上の要素を含む場合は、各要素ごとに独立した特質符号化が適用される。実施例による特質符号化は、色変換コーディング、特質変換コーディング、RAHT(Region Adaptive Hierarchial Transform)コーディング、予測変換(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform)コーディング及びリフト変換(interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step(Lifting Transform))コーディングを含む。ポイントクラウドコンテンツによって、上述したRAHTコーディング、予測変換コーディング及びリフト変換コーディングが選択的に使用されるか、又は一つ又はそれ以上のコーディングの組み合わせが使用される。また実施例による特質符号化は上述した例示に限られない。
【0057】
実施例による色変換部40006は、特質に含まれた色値(又はテクスチャ)を変換する色変換コーディングを行う。例えば、色変換部40006は色相情報のフォーマットを変換(例えば、RGBからYCbCrに変換)する。実施例による色変換部40006の動作は、特質に含まれた色値によって任意に(optional)適用される。
【0058】
実施例によるジオメトリ再構成部40005は、八分木及び/又は近似化した八分木を再構成(復元)する。ジオメトリ再構成部40005はポイントの分布を分析した結果に基づいて八分木/ボクセルを再構成する。再構成された八分木/ボクセルは再構成されたジオメトリ(又は復元されたジオメトリ)とも呼ばれる。
【0059】
実施例による特質変換部40007は、ジオメトリ符号化が行われていない位置及び/又は再構成されたジオメトリに基づいて特質を変換する特質変換を行う。上述したように、特質はジオメトリに従属するので、特質変換部40007は再構成されたジオメトリ情報に基づいて特質を変換することができる。例えば、特質変換部40007は、ボクセルに含まれたポイントの位置値に基づいてその位置のポイントが有する特質を変換する。上述したように、一つのボクセルに含まれた一つ又はそれ以上のポイントの位置に基づいて該当ボクセルの中央点の位置が設定される場合、特質変換部40007は一つ又はそれ以上のポイントの特質を変換する。trisoupジオメトリ符号化が行われた場合、特質変換部40007はtrisoupジオメトリ符号化に基づいて特質を変換する。
【0060】
特質変換部40007は、各ボクセルの中央点の位置(又は位置値)から特定の位置/半径内に隣接しているポイントの特質又は特質値(例えば、各ポイントの色相、又は反射率など)の平均値を計算して特質変換を行う。特質変換部40007は平均値の計算時、中央点から各ポイントまでの距離による加重値を適用する。従って、各ボクセルは位置及び計算された特質(又は特質値)を有する。
【0061】
特質変換部40007はK-Dツリー又はモールトンコード(moulton code)に基づいて各ボクセルの中央点の位置から特定の位置/半径内に存在する隣接ポイントを探索する。K-Dツリーは二分探索木(binary search tree)で迅速に最短隣接点探索(Nearest Neighbor Search-NNS)をできるように、ポイントを位置基盤に管理する資料構造を支援する。モールトンコードは全てのポイントの3次元位置を示す座標値(例えば、(x,y,z))をビット値で示し、ビットを混ぜて生成される。例えば、ポイントの位置を示す座標値が(5,9,1)であると、座標値のビット値は(0101、1001、0001)である。ビット値をz、y、xの順にビットインデックスに合わせて混ぜると、010001000111である。この値を10進数で示すと1095になる。即ち、座標値が(5,9,1)であるポイントのモールトンコード値は1095である。特質変換部40007はモールトンコード値を基準としてポイントを整列し、depth-first traversal過程により最短隣接点探索(NNS)を行う。特質変換動作後、特質コーディングのための他の変換過程でも最短隣接点探索(NNS)が必要であれば、K-Dツリー又はモールトンコードが活用される。
【0062】
図示したように、変換された特質はRAHT変換部40008及び/又はLOD生成部40009に入力される。
【0063】
実施例によるRAHT変換部40008は、再構成されたジオメトリ情報に基づいて特質情報を予測するRAHTコーディングを行う。例えば、RAHT変換部40008は、八分木の下位レベルにあるノードに連関する特質情報に基づいて、八分木の上位レベルにあるノードの特質情報を予測することができる。
【0064】
実施例によるLOD生成部40009は予測変換コーディングを行うために、LOD(Level of Detail)を生成する。実施例によるLODはポイントクラウドコンテンツの詳細を示す程度であり、LOD値が小さいほどポイントクラウドコンテンツの詳細が下がり、LOD値が大きいほどポイントクラウドコンテンツの詳細が高いことを示す。ポイントをLODによって分類できる。
【0065】
実施例によるリフト変換部40010は、ポイントクラウドの特質を加重値に基づいて変換するリフト変換コーディングを行う。上述したように、リフト変換コーディングは選択的に適用される。
【0066】
実施例による係数量子化部40011は、特質コーディングされた特質を係数に基づいて量子化する。
【0067】
実施例による演算エンコーダー40012は、量子化された特質を演算コーディングに基づいて符号化する。
【0068】
図4のポイントクラウドエンコーダーのエレメントは、図示していないが、ポイントクラウド提供装置に含まれた一つ又はそれ以上のメモリと通信可能に設定された一つ又はそれ以上のプロセッサ又は集積回路(integrated circuits)を含むハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせで具現される。一つ又はそれ以上のプロセッサは、上述した
図4のポイントクラウドエンコーダーのエレメントの動作及び/又は機能のうち、いずれか一つを行うことができる。また、一つ又はそれ以上のプロセッサは、
図4のポイントクラウドエンコーダーのエレメントの動作及び/又は機能を行うためのソフトウェアプログラム及び/又は指示(instruction)のセットを動作又は実行することができる。実施例による一つ又はそれ以上のメモリは高速ランダムアクセスメモリを含むか、又は非揮発性メモリ(例えば、一つ又はそれ以上のマグネチックディスク格納デバイス、フラッシュメモリデバイス、又は他の非揮発性固体のメモリデバイス(Solid-state memory devices)など)を含む。
【0069】
【0070】
図5はX軸、Y軸、Z軸の3つの軸で構成された座標系で表現される3次元空間上に位置するボクセルを示す。
図4に示すように、ポイントクラウドエンコーダー(例えば、量子化部40001など)はボクセル化を行う。ボクセルは3次元空間を表現する軸(例えば、X軸、Y軸、Z軸)に基づいて3次元空間をユニット(unit=1.0)単位で分けたときに発生する3次元キュービック空間を意味する。
図5は2つの極点(0,0,0)及び(2
d、2
d、2
d)により定義される境界ボックス(cubical axis-aligned bounding box)を再帰的に分割(reculsive subdividing)する八分木構造により生成されたボクセルの一例を示す。一つのボクセルは少なくとも一つ以上のポイントを含む。ボクセルはボクセル群(voxel group)との位置関係から空間座標を推定することができる。上述したように、ボクセルは2次元イメージ/映像のピクセルと同様に、特質(色相又は反射率など)を有する。ボクセルに対する具体的な説明は
図4で説明した通りであるので省略する。
【0071】
図6は実施例による八分木及び占有コード(occupancy code)の一例を示す図である。
【0072】
図1ないし
図4に示したように、ポイントクラウドコンテンツ提供システム(ポイントクラウドビデオエンコーダー10002)又はポイントクラウドエンコーダー(例えば、八分木分析部40002)は、ボクセルの領域及び/又は位置を効率的に管理するために、八分木構造基盤の八分木ジオメトリコーディング(又は八分木コーディング)を行う。
【0073】
図6の上側は八分木構造を示している。実施例によるポイントクラウドコンテンツの3次元空間は座標系の軸(例えば、X軸、Y軸、Z軸)で表現される。八分木構造は2つの極点(0,0,0)及び(2
d、2
d、2
d)により定義される境界ボックス(cubical axis-aligned bounding box)を再帰的に分割(reculsive subdividing)して生される。2dはポイントクラウドコンテンツ(又はポイントクラウドビデオ)の全体ポイントを取り囲む最小の境界ボックスを構成する値で設定される。dは八分木の深さを示す。d値は以下の式により決定される。以下の式において、(x
int
n、y
int
n、z
int
n)は量子化されたポイントの位置(又は位置値)を示す。
【0074】
【0075】
図6の上側中央に示したように、分割によって全体3次元空間は8つの空間に分かれる。分割されたそれぞれの空間は6つの面を有するキューブで表現される。
図6の右上側に示したように、8つの空間はそれぞれ再び座標系の軸(例えば、X軸、Y軸、Z軸)により分かれる。よって、それぞれの空間は再び8つの小さい空間に分かれる。分割された小さい空間も6つの面を有するキューブで表現される。このような分割方式は八分木のリーフノード(leaf node)がボクセルになるまで適用される。
【0076】
図6の下側は八分木の占有コードを示す。八分木の占有コードは一つの空間が分かれて発生する8つの分割空間がそれぞれ少なくとも一つのポイントを含むか否かを示すために生成される。従って、一つの占有コードは8つの子ノード(child node)で表現される。それぞれの子ノードは分割された空間の占有率(occupancy)を示し、子ノードは1ビットの値を有する。従って、占有コードは8ビットコードで表現される。即ち、子ノードに対応する空間に少なくとも一つのポイントが含まれていると、該当ノードは1値を有する。ノードに対応する空間にポイントが含まれていないと(empty)、該当ノードは0値を有する。
図6に示した占有コードは00100001であるので、8つの子ノードのうち、3番目の子ノード及び8番目の子ノードに対応する空間はそれぞれ少なくとも一つのポイントを含むことを示している。図示したように、3番目の子ノード及び8番目の子ノードはそれぞれ8つの子ノードを有し、それぞれの子ノードは8ビットの占有コードで表現される。図面では、3番目の子ノードの占有コードが10000111であり、8番目の子ノードの占有コードが01001111であることを示す。実施例によるポイントクラウドエンコーダー(例えば、演算エンコーダー40004)は占有コードをエントロピー符号化する。また圧縮効率を高めるために、ポイントクラウドエンコーダーは占有コードをイントラ/インターコーディングする。実施例による受信装置(例えば、受信装置10004又はポイントクラウドビデオデコーダー10006)は占有コードに基づいて八分木を再構成する。
【0077】
実施例によるポイントクラウドエンコーダー(例えば、
図4のポイントクラウドエンコーダー、又は八分木分析部40002)は、ポイントの位置を格納するためにボクセル化及び八分木コーディングを行う。しかし、3次元空間内のポイントがいつも均一に分布していることではないので、ポイントが多く存在しない特定の領域が存在し得る。従って、3次元空間の全体に対してボクセル化を行うことは非効率的である。例えば、特定の領域にポイントがほぼ存在しないと、該当領域までボクセル化を行う必要はない。
【0078】
従って、実施例によるポイントクラウドエンコーダーは、上述した特定の領域(又は八分木のリーフノードを除いたノード)についてはボクセル化を行わず、特定の領域に含まれたポイントの位置を直接コーディングするダイレクトコーディング(Direct coding)を行う。実施例によるダイレクトコーディングポイントの座標は、ダイレクトコーディングモード(Direct Coding Mode、DCM)と呼ばれる。また実施例によるポイントクラウドエンコーダーは、表面モデル(surface model)に基づいて特定の領域(又はノード)内のポイントの位置をボクセルに基づいて再構成するtrisoupジオメトリ符号化(Trisoup geometry encoding)を行うことができる。trisoupジオメトリ符号化はオブジェクトの表現を三角形メッシュ(triangle mesh)のシリーズで表現するジオメトリ符号化である。従って、ポイントクラウドデコーダーはメッシュ表面からポイントクラウドを生成することができる。実施例によるダイレクトコーディング及びtrisoupジオメトリ符号化は選択的に行われる。また実施例によるダイレクトコーディング及びtrisoupジオメトリ符号化は八分木ジオメトリコーディング(又は八分木コーディング)と結合して行うことができる。
【0079】
ダイレクトコーディング(Direct coding)を行うためには、ダイレクトコーディングを適用するための直接モード(direct mode)の使用オプションが活性化されている必要があり、ダイレクトコーディングを適用するノードはリーフノードではなく、特定のノード内に閾値(threshold)以下のポイントが存在する必要がある。またダイレクトコーディングの対象となる全体ポイントの個数は所定の閾値を超えてはいけない。上記条件を満たすと、実施例によるポイントクラウドエンコーダー(又は演算エンコーダー40004)はポイントの位置(又は位置値)をエントロピーコーディングすることができる。
【0080】
実施例によるポイントクラウドエンコーダー(例えば、表面近似分析部40003)は、八分木の特定のレベルを定め(レベルは八分木の深さdよりは小さい場合)、そのレベルからは表面モデルを使用してノード領域内のポイントの位置をボクセルに基づいて再構成するtrisoupジオメトリ符号化を行うことができる(trisoupモード)。実施例によるポイントクラウドエンコーダーは、trisoupジオメトリ符号化を適用するレベルを指定できる。例えば、指定されたレベルが八分木の深さと同一であると、ポイントクラウドエンコーダーはtrisoupモードで動作しない。即ち、実施例によるポイントクラウドエンコーダーは指定されたレベルが八分木の深さ値よりも小さい場合にのみtrisoupモードで動作することができる。実施例による指定されたレベルのノードの3次元立方体領域をブロック(block)と呼ぶ。一つのブロックは一つ又はそれ以上のボクセルを含む。ブロック又はボクセルはブリック(brick)に対応することもできる。それぞれのブロック内においてジオメトリは表面(surface)と表現される。実施例による表面は最大1回、ブロックの各エッジ(edge)と交差することができる。
【0081】
一つのブロックは12つのエッジを有するので、一つのブロック内に少なくとも12つの交差点が存在する。それぞれの交差点はバーテックス(vertex、頂点又は頂上)と呼ばれる。エッジに沿って存在するバーテックスは該当エッジを共有する全てのブロックのうち、そのエッジに隣接する少なくとも一つの占有ボクセル(occupied voxel)がある場合に検知される。実施例による占有ボクセルはポイントを含むボクセルを意味する。エッジに沿って検出されたバーテックスの位置は、該当エッジを共有する全てのブロックのうち、該当エッジに隣接する全てのボクセルのエッジによる平均位置である(the average position along the edge of all voxels)。
【0082】
バーテックスが検出されると、実施例によるポイントクラウドエンコーダーは、エッジの開始点(x、y、z)、エッジの方向ベクトル(Δx、Δy、Δz)、バーテックス位置値(エッジ内の相対的位置値)をエントロピーコーディングする。trisoupジオメトリ符号化が適用された場合、実施例によるポイントクラウドエンコーダー(例えば、ジオメトリ再構成部40005)は、三角形再構成(triangle reconstruction)、アップ-サンプリング(up-sampling)、ボクセル化過程を行って復元されたジオメトリ(再構成されたジオメトリ)を生成する。
【0083】
ブロックのエッジに位置するバーテックスはブロックを通過する表面を決定する。実施例による表面は非平面多角形である。三角形再構成の過程ではエッジの開始点、エッジの方向ベクトルとバーテックスの位置値に基づいて三角形で示される表面を再構成する。三角形再構成の過程は以下の通りである。(1)各バーテックスの中心(centroid)値を計算し、(2)各バーテックスの値から中心値を引いた値に(3)自乗を行っって、その値を全て併せた値を得る。
【0084】
【0085】
加えられた値の最小値を求め、最小値がある軸に沿って投影(Projection)過程を行う。例えば、x要素(element)が最小である場合、各バーテックスをブロックの中心を基準としてx軸に投影し、(y,z)平面に投影させる。(y,z)平面に投影させて得た値が(ai,bi)であれば、atan2(bi、ai)によりθ値を求め、θ値を基準としてバーテックスを整列する。以下の表はバーテックスの個数によって三角形を生成するためのバーテックスの組み合わせを示している。バーテックスは1からnまで順に整列される。以下の表は4つのバーテックスに対して、バーテックスの組み合わせによって2つの三角形が構成されることを示している。1番目の三角形は整列されたバーテックスのうち、1、2、3番目のバーテックスで構成され、2番目の三角形は整列されたバーテックスのうち、3,4,1番目のバーテックスで構成される。
【0086】
表2-1 Triangles formed from vertices ordered 1,…,n
【0087】
n triangles
【0088】
3(1,2,3)
【0089】
4(1,2,3), (3,4,1)
【0090】
5(1,2,3), (3,4,5), (5,1,3)
【0091】
6(1,2,3), (3,4,5), (5,6,1), (1,3,5)
【0092】
7(1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
【0093】
8(1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
【0094】
9(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
【0095】
10(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
【0096】
11(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
【0097】
12(1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
【0098】
アップサンプリング過程は三角形のエッジに沿って中間に点を追加してボクセル化するために行われる。アップサンプリング係数(upsampling factor)とブロックの幅を基準として追加点を生成する。追加点はリファインドバーテックス(refined vertice)と呼ばれる。実施例によるポイントクラウドエンコーダーはリファインドバーテックスをボクセル化することができる。またポイントクラウドエンコーダーはボクセル化された位置(又は位置値)に基づいて特質符号化を行うことができる。
【0099】
図7は実施例による隣接ノードパターンの一例を示す図である。
【0100】
ポイントクラウドビデオの圧縮効率を増加させるために、実施例によるポイントクラウドエンコーダーはコンテキスト適応演算(context adaptive arithmetic)コーディングに基づいてエントロピーコーディングを行う。
【0101】
図1ないし
図6で説明したように、ポイントクラウドコンテンツ提供システム又はポイントクラウドエンコーダー(例えば、ポイントクラウドビデオエンコーダー10002、
図4のポイントクラウドエンコーダー又は演算エンコーダー40004)は、占有コードをすぐエントロピーコーディングする。またポイントクラウドコンテンツ提供システム又はポイントクラウドエンコーダーは、現在ノードの占有コードと隣接ノードの占有率に基づいてエントロピー符号化(イントラ符号化)を行うか、又は以前フレームの占有コードに基づいてエントロピー符号化(インター符号化)を行う。実施例によるフレームは、同時間に生成されたポイントクラウドビデオの集合を意味する。実施例によるイントラ符号化/インター符号化の圧縮効率は、参照する隣接ノードの個数によって異なる。ビットが大きくなると複雑になるが、一側に傾くようにして圧縮効率を高めることができる。例えば、3-bit contextを有すると、2の3乗である8つの方法でコーディングする。分けてコーディングする部分は具現の複雑度に影響を及ぼす。従って、圧縮効率と複雑度の適正水準を合わせる必要がある。
【0102】
図7は隣接ノードの占有率に基づいて占有パターンを求める過程を示す。実施例によるポイントクラウドエンコーダーは、八分木の各ノードの隣接ノードの占有率(occupancy)を判断して隣接ノードパターン(neighbor pattern)値を得る。隣接ノードパターンは該当ノードの占有パターンを推論するために使用される。
図7の左側はノードに対応するキューブ(真ん中に位置するキューブ)及び該当キューブと少なくとも一面を共有する6つのキューブ(隣接ノード)を示している。図示したノードは同じ深さのノードである。図示した数字は6つのノードとそれぞれ連関する加重値(1、2、4、8、16、32、など)を示す。各加重値は隣接ノードの位置によって順に付与される。
【0103】
図7の右側は隣接ノードパターン値を示す。隣接ノードパターン値は占有された隣接ノード(ポイントを有する隣接ノード)の加重値が掛けられた値の合計である。従って、隣接ノードパターン値は0から63までの値を有する。隣接ノードパターン値が0であることは、該当ノードの隣接ノードのうち、ポイントを有するノード(占有ノード)がないことを意味する。隣接ノードパターン値が63であることは、隣接ノードが全て占有ノードであることを意味する。図示したように、加重値1、2、4、8が付与された隣接ノードは占有ノードであるので、隣接ノードパターン値は1、2、4、8を併せた値である15である。ポイントクラウドエンコーダーは隣接ノードパターン値によってコーディングを行うことができる(例えば、隣接ノードパターン値が63である場合、64つのコーディングを行う)。実施例においてポイントクラウドエンコーダーは隣接ノードパターン値を変更して(例えば、64を10又は6に変更するテーブルに基づく)、コーディングの複雑度を減らすことができる。
【0104】
図8は実施例によるLODごとのポイント構成の一例を示す図である。
【0105】
図1ないし
図7で説明したように、特質符号化が行われる前、符号化されたジオメトリは再構成(復元)される。ダイレクトコーディングが適用された場合、ジオメトリ再構成の動作はダイレクトコーディングされたポイントの配置を変更することを含む(例えば、ダイレクトコーディングされたポイントをポイントクラウドデータの前方に配置)。trisoupジオメトリ符号化が適用された場合、ジオメトリ再構成の過程は三角形再構成、アップサンプリング、ボクセル化の過程を特質はジオメトリに従属するので、特質符号化は再構成されたジオメトリに基づいて行われる。
【0106】
ポイントクラウドエンコーダー(例えば、LOD生成部40009)はポイントをLODごとに分類する(reorganization)。図面はLODに対応するポイントクラウドコンテンツを示す。図において左側はオリジナルポイントクラウドコンテンツを示す。図において左側から2番目は最低LODのポイントの分布を示し、最右側は最高LODのポイントの分布を示す。即ち、最低LODのポイントは粗い(sparse)分布であり、最高LODのポイントは細かい分布である。即ち、図面の下側に示された矢印方向に沿ってLODが増加するほどポイント間の間隔(又は距離)は短くなる。
【0107】
図9は実施例によるLODごとのポイント構成の一例を示す図である。
【0108】
図1ないし
図8で説明したように、ポイントクラウドコンテンツ提供システム又はポイントクラウドエンコーダー(例えば、ポイントクラウドビデオエンコーダー10002、
図4のポイントクラウドエンコーダー又はLOD生成部40009)はLODを生成する。LODはポイントを設定されたLOD距離値(又はユークリッド距離(Euclidean Distance)のセット)によって改良レベル(refinement levels)のセットで再整列して生成される。LOD生成過程はポイントクラウドエンコーダーだけではなく、ポイントクラウドデコーダーでも行われる。
【0109】
図9の上側は3次元空間に分布されたポイントクラウドコンテンツのポイントの一例(P0~P9)を示す。
図9のオリジナルオーダー(Original order)はLOD生成前のポイントP0~P9の順を示す。
図9のLoD基盤のオーダー(LOD based order)はLOD生成によるポイントの順を示す。ポイントはLODごとに再整列される。また高いLODは低いLODに属するポイントを含む。
図9に示すように、LOD0はP0、P5、P4及びP2を含む。LOD1はLOD0のポイントとP1、P6及びP3を含む。LOD2はLOD0のポイント、LOD1のポイント及びP9、P8及びP7を含む。
【0110】
図4で説明したように、実施例によるポイントクラウドエンコーダーは予測変換コーディング、リフト変換コーディング及びRAHT変換コーディングを選択的に又は組み合わせて行うことができる。
【0111】
実施例によるポイントクラウドエンコーダーは、ポイントに対する予測機(predictor)を生成して各ポイントの予測特質(又は予測特質値)を設定するための予測変換コーディングを行う。即ち、N個のポイントに対してN個の予測機が生成される。実施例による予測機は各ポイントのLOD値とLODごとに設定された距離内に存在する隣接ポイントに対するインデックス情報及び隣接ポイントまでの距離値に基づいて加重値(=1/距離)を計算することができる。
【0112】
実施例による予測特質(又は特質値)は、各ポイントの予測機に設定された隣接ポイントの特質(又は特質値、例えば、色相、反射率など)に各隣接ポイントまでの距離に基づいて計算された加重(又は加重値)を掛けた値の平均値で設定される。実施例によるポイントクラウドエンコーダー(例えば、係数量子化部40011)は、各ポイントの特質(特質値)から予測特質(特質値)を引いた残余値(residuals、残余特質、残余特質値、特質予測残余値などとも呼ばれる)を量子化(quatization)及び逆量子化(inverse quantization)することができる。量子化過程は以下の表の通りである。
【0113】
表.Attribute prediction residuals quantization pseudo code
【0114】
int PCCQuantization(inT value, inT quantStep) {
【0115】
if( value >=0) {
【0116】
return floor(value / quantStep + 1.0 / 3.0);
【0117】
} else {
【0118】
return -floor(-value / quantStep + 1.0 / 3.0);
【0119】
}
【0120】
}
【0121】
表.Attribute prediction residuals inverse quantization pseudo Code
【0122】
int PCCInverseQuantization(inT value, inT quantStep) {
【0123】
if( quantStep ==0) {
【0124】
return value;
【0125】
} else {
【0126】
return value*quantStep;
【0127】
}
【0128】
}
【0129】
実施例によるポイントクラウドエンコーダー(例えば、演算エンコーダー40012)は、各ポイントの予測機に隣接するポイントがあれば、上述したように、量子化及び逆量子化された残余値をエントロピーコーディングする。実施例によるポイントクラウドエンコーダー(例えば、演算エンコーダー40012)は、各ポイントの予測機に隣接するポイントがないと、上述した過程を行わず、該当ポイントの特質をエントロピーコーディングする。
【0130】
実施例によるポイントクラウドエンコーダー(例えば、リフト変換部40010)は、各ポイントの予測機を生成し、予測機に計算されたLODを設定及び隣接ポイントを登録し、隣接ポイントまでの距離による加重値を設定してリフト変換コーディングを行う。実施例によるリフト変換コーディングは、上述した測変換コーディングと類似するが、特質値に加重値を累積適用するという点で差がある。実施例による特質値に加重値を累積適用する過程は以下の通りである。
【0131】
1)各ポイントの加重値を貯蔵する配列QW(QuantizationWieght)を生成する。QWの全ての要素の初期値は1.0である。予測機に登録された隣接ノードの予測機インデックスのQW値に現在ポイントの予測機の加重値を掛けた値を加える。
【0132】
2)リフト予測過程:予測された特質値を計算するために、ポイントの特質値に加重値を掛けた値を既存の特質値から引く。
【0133】
3)アップデートウェイト(updateweight)及びアップデートという臨時配列を生成し、臨時配列を0に初期化する。
【0134】
4)全ての予測機に対して計算された加重値に予測機インデックスに該当するQWに貯蔵された加重値をさらに掛けて算出された加重値をアップデートウェイト配列に隣接ノードのインデックスとして累積して合算する。アップデート配列には隣接ノードのインデックスの特質値に算出された加重値を掛けた値を累積して合算する。
【0135】
5)リフトアップデート過程:全ての予測機に対して、アップデート配列の特質値を予測機インデックスのアップデートウェイト配列の加重値で割り、割った値に再び既存の特質値を加える。
【0136】
6)全ての予測機に対して、リフトアップデート過程でアップデートされた特質値にリフト予測過程でアップデートされた(QWに貯蔵された)加重値をさらに掛けて予測特質値を算出する。実施例によるポイントクラウドエンコーダー(例えば、係数量子化部40011)は予測特質値を量子化する。またポイントクラウドエンコーダー(例えば、演算エンコーダー40012)は量子化された特質値をエントロピーコーディングする。
【0137】
実施例によるポイントクラウドエンコーダー(例えば、RAHT変換部40008)は、八分木の下位レベルのノードに連関する特質を使用して上位レベルのノードの特質を予測するRAHT変換コーディングを行う。RAHT変換コーディングは八分木バックワードスキャンによる特質イントラコーディングの一例である。実施例によるポイントクラウドエンコーダーは、ボクセルから全体領域にスキャンし、各ステップもぽてボクセルをもっと大きいブロックに合わせながらルートノード(root node)までの併合過程を繰り返して行う。実施例による併合過程は、占有ノードのみについて行われる。空ノード(empty node)については併合過程が行われず、空ノードの直上位ノードについて併合過程が行われる。
【0138】
以下の式はRAHT変換行列を示す。
はレベルlでのボクセル(voxel)の平均特質値を示す。
の加重値は
である。
【0139】
【0140】
はローパス(low-pass)値であって、次の上位レベルでの併合過程で使用される。
はハイパス係数(high-pass coefficients)であって、各ステップでのハイパス係数は量子化されてエントロピーコーディングされる(例えば、計算エンコーダー400012の符号化)。加重値は
により計算される。ルートノードは最後の
により以下のように生成される。
【0141】
【0142】
図10は実施例によるポイントクラウドデコーダー(Point Cloud Decoder)の一例を示す図である。
【0143】
図10に示したポイントクラウドデコーダーは、
図1に示したポイントクラウドビデオデコーダー10006の一例であり、
図1で説明したイントクラウドビデオデコーダー10006の動作などと同一又は類似する動作を行う。図示したように、ポイントクラウドデコーダーは一つ又はそれ以上のビットストリーム(bitstream)に含まれたジオメトリビットストリーム(geometry bitstream)及び特質ビットストリーム(Attribute bitstream)を受信する。ポイントクラウドデコーダーはジオメトリデコーダー(geometry decoder)及び特質デコーダー(Attribute decoder)を含む。ジオメトリデコーダーはジオメトリビットストリームに対してジオメトリ復号を行って復号されたジオメトリ(decoded geometry)を出力する。特質デコーダーは復号されたジオメトリ及び特質ビットストリームに基づいて特質復号を行って復号された特質(decoded Attributes)を出力する。復号されたジオメトリ及び復号された特質はポイントクラウドコンテンツを復元(decoded point cloud)するために使用される。
【0144】
図11は実施例によるポイントクラウドデコーダー(Point Cloud Decoder)の一例を示す図である。
【0145】
図11に示したポイントクラウドデコーダーは
図10で説明したポイントクラウドデコーダーの一例であり、
図1ないし
図9で説明したポイントクラウドエンコーダーの符号化動作の逆過程である復号動作を行う。
【0146】
図1及び
図10で説明したように、ポイントクラウドデコーダーはジオメトリ復号及び特質復号を行う。ジオメトリ復号は特質復号よりも先に行われる。
【0147】
実施例によるポイントクラウドデコーダーは、演算デコーダー(arithmetic decode)11000、八分木合成部(synthesize octree)11001、表面近似合成部(synthesize surface approximation)11002、ジオメトリ再構成部(reconstruct geometry)11003、座標系逆変換部(inverse transform coordinates)11004、演算デコーダー(arithmetic decode)11005、逆量子化部(inverse quantize)11006、RAHT変換部11007、LOD生成部(generate LOD)11008、逆リフト部(Inverse lifting)11009及び/又は色逆変換部(inverse transform colors)11010を含む。
【0148】
演算デコーダー11000、八分木合成部11001、表面近似合成部11002、ジオメトリ再構成部11003及び座標系逆変換部11004はジオメトリ復号を行う。実施例によるジオメトリ復号はダイレクトコーディング(direct coding)及びtrisoupジオメトリ復号(trisoup geometry decoding)を含む。ダイレクトコーディング及びtrisoupジオメトリ復号は選択的に適用される。またジオメトリ復号は上記の例示に限られず、
図1ないし
図9で説明したジオメトリ符号化の逆過程で行われる。
【0149】
実施例による演算デコーダー11000は、受信したジオメトリビットストリームを演算コーディングに基づいて復号する。演算デコーダー11000の動作は演算エンコーダー40004の逆過程に対応する。
【0150】
実施例による八分木合成部11001は、復号されたジオメトリビットストリームから(又は復号結果、確保されたジオメトリに関する情報)から占有コードを獲得して八分木を生成する。占有コードに関する具体的な説明は
図1ないし
図9に説明した通りである。
【0151】
実施例による表面近似合成部11002は、trisoupジオメトリ符号化が適用された場合、復号されたジオメトリ及び/又は生成された八分木に基づいて表面を合成する。
【0152】
実施例によるジオメトリ再構成部11003は、表面及び/又は復号されたジオメトリに基づいてジオメトリを再生成する。
図1ないし
図9で説明したように、ダイレクトコーディング及びtrisoupジオメトリ符号化は選択的に適用される。従って、ジオメトリ再構成部11003はダイレクトコーディングが適用されたポイントの位置情報を直接持ってきて追加する。また、trisoupジオメトリ符号化が適用される場合、ジオメトリ再構成部11003はジオメトリ再構成部40005の再構成動作、例えば、三角形再構成、アップサンプリング、ボクセル化動作を行ってジオメトリを復元する。具体的な内容は
図6で説明した通りであるので省略する。復元されたジオメトリは特質を含まないポイントクラウドピクチャ又はフレームを含む。
【0153】
実施例による座標系逆変換部11004は復元されたジオメトリに基づいて座標系を変換してポイントの位置を得る。
【0154】
演算デコーダー11005、逆量子化部11006、RAHT変換部11007、LOD生成部11008、逆リフト部11009及び/又は色逆変換部11010は、
図10で説明した特質復号を行う。実施例による特質復号は、RAHT(Region Adaptive Hierarchial Transform)復号、予測変換(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform)復号、及びリフト変換(interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step(Lifting Transform))復号を含む。上記3つの復号は選択的に使用されるか、又は一つ又はそれ以上の復号の組み合わせが使用される。また実施例による特質復号は上述した例示に限られない。
【0155】
実施例による演算デコーダー11005は、特質ビットストリームを演算コーディングに復号する。
【0156】
実施例による逆量子化部11006は、復号された特質ビットストリーム又は復号結果確保した特質に関する情報を逆量子化(inverse quantization)して、逆量子化された特質(又は特質値)を出力する。逆量子化はポイントクラウドエンコーダーの特質符号化に基づいて選択的に適用される。
【0157】
実施例においてRAHT変換部11007、LOD生成部11008及び/又は逆リフト部11009は、再構成されたジオメトリ及び逆量子化された特質を処理する。上述したように、RAHT変換部11007、LOD生成部11008及び/又は逆リフト部11009は、ポイントクラウドエンコーダーの符号化によってそれに対応する復号動作を選択的に行う。
【0158】
実施例による色逆変換部11010は、復号された特質に含まれた色値(又はテクスチャ)を逆変換するための逆変換コーディングを行う。色逆変換部11010の動作はポイントクラウドエンコーダーの色変換部40006の動作に基づいて選択的に行われる。
【0159】
図11のポイントクラウドデコーダーのエレメントは、図示していないが、ポイントクラウド提供装置に含まれた一つ又はそれ以上のメモリと通信可能に設定された一つ又はそれ以上のプロセッサ又は集積回路(integrated circuits)を含むハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせで具現される。一つ又はそれ以上のプロセッサは、上述した
図11のポイントクラウドデコーダーのエレメント動作及び/又は機能のうちのいずれかを行う。また、一つ又はそれ以上のプロセッサは、
図11のポイントクラウドデコーダーのエレメントの動作及び/又は機能を行うためのソフトウェアプログラム及び/又は指示(instruction)のセットを動作又は実行する。
【0160】
【0161】
図12に示した送信装置は、
図1の送信装置10000(又は
図4のポイントクラウドエンコーダー)の一例である。
図12に示した送信装置は、
図1ないし
図9で説明したポイントクラウドエンコーダーの動作及び符号化方法と同一又は類似する動作及び方法のうちのいずれかを行う。実施例による送信装置は、データ入力部12000、量子化処理部12001、ボクセル化処理部12002、八分木占有コード生成部12003、表面モデル処理部12004、イントラ/インターコーディング処理部12005、演算コーダー12006、メタデータ処理部12007、色相変換処理部12008、特質変換処理部(又は属性変換処理部)12009、予測/リフト/RAHT変換処理部12010、演算コーダー12011及び/又は送信処理部12012を含む。
【0162】
実施例によるデータ入力部12000はポイントクラウドデータを受信又は獲得する。データ入力部12000はポイントクラウドビデオ獲得部10001の動作及び/又は獲得方法(又は
図2に示した獲得過程20000)と同一又は類似する動作及び/又は獲得方法を行う。
【0163】
データ入力部12000、量子化処理部12001、ボクセル化処理部12002、八分木占有コード生成部12003、表面モデル処理部12004、イントラ/インターコーディング処理部12005及び演算コーダー12006はジオメトリ符号化を行う。実施例によるジオメトリ符号化は、
図1ないし
図9で説明したジオメトリ符号化と同一又は類似するので、具体的な説明は省略する。
【0164】
実施例による量子化処理部12001は、ジオメトリ(例えば、ポイントの位置値、又はポジション値)を量子化する。量子化処理部12001の動作及び/又は量子化は、
図4に示した量子化部40001の動作及び/又は量子化と同一又は類似する。具体的な説明は
図1ないし
図9に説明した通りである。
【0165】
実施例によるボクセル化処理部12002は、量子化されたポイントの位置値をボクセル化する。ボクセル化処理部120002は
図4に示した量子化部40001の動作及び/又はボクセル化過程と同一又は類似する動作及び/又は過程を行う。具体的な説明は
図1ないし
図9に説明した通りである。
【0166】
実施例による八分木占有コード生成部12003は、ボクセル化されたポイントの位置を八分木構造に基づいて八分木コーディングを行う。八分木占有コード生成部12003は占有コードを生成する。八分木占有コード生成部12003は
図4及び
図6で説明したポイントクラウドエンコーダー(又は八分木分析部40002)の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。具体的な説明は
図1ないし
図9に説明した通りである。
【0167】
実施例による表面モデル処理部12004は、表面モデル(surface model)に基づいて特定の領域(又はノード)内のポイントの位置をボクセル基盤に再構成するtrisoupジオメトリ符号化を行う。表面モデル処理部12004は
図4に示したポイントクラウドエンコーダー(例えば、表面近似分析部40003)の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。具体的な説明は
図1ないし
図9に説明した通りである。
【0168】
実施例によるイントラ/インターコーディング処理部12005は、ポイントクラウドデータをイントラ/インターコーディングする。イントラ/インターコーディング処理部12005は、
図7で説明したイントラ/インターコーディングと同一又は類似するコーディングを行う。具体的な説明は
図7に説明した通りである。実施例においてイントラ/インターコーディング処理部12005は演算コーダー12006に含まれる。
【0169】
実施例による演算コーダー12006は、ポイントクラウドデータの八分木及び/又は近似化された八分木をエントロピー符号化する。例えば、符号化方式は演算(Arithmetic)符号化方法を含む。演算コーダー12006は演算エンコーダー40004の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。
【0170】
実施例によるメタデータ処理部12007は、ポイントクラウドデータに関するメタデータ、例えば、設定値などを処理してジオメトリ符号化及び/又は特質符号化などの必要な処理過程に提供する。また実施例によるメタデータ処理部12007は、ジオメトリ符号化及び/又は特質符号化に関連するシグナリング情報を生成及び/又は処理する。実施例によるシグナリング情報はジオメトリ符号化及び/又は特質符号化とは別途に符号化処理される。また実施例によるシグナリング情報はインターリービングされることもある。
【0171】
色相変換処理部12008、特質変換処理部12009、予測/リフト/RAHT変換処理部12010及び演算コーダー12011は特質符号化を行う。実施例による特質符号化は、
図1ないし
図9で説明した特質符号化と同一又は類似するので具体的な説明は省略する。
【0172】
実施例による色相変換処理部12008は、特質に含まれた色相値を変換する色相変換コーディングを行う。色相変換処理部12008は再構成されたジオメトリに基づいて色相変換コーディングを行う。再構成されたジオメトリに関する説明は、
図1ないし
図9に説明した通りである。また
図4で説明した色変換部40006の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。具体的な説明は省略する。
【0173】
実施例による特質変換処理部12009は、ジオメトリ符号化が行われていない位置及び/又は再構成されたジオメトリに基づいて特質を変換する特質変換を行う。特質変換処理部12009は
図4に説明した特質変換部40007の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。具体的な説明は省略する。実施例による予測/リフト/RAHT変換処理部12010は変換された特質をRAHTコーディング、予測変換コーディング及びリフト変換コーディングのうちのいずれか一つ又は組み合わせてコーディングする。予測/リフト/RAHT変換処理部12010は
図4に説明したRAHT変換部40008、LOD生成部40009及びリフト変換部40010の動作と同一又は類似する動作のうちのいずれかを行う。また、予測変換コーディング、リフト変換コーディング及びRAHT変換コーディングに関する説明は
図1ないし
図9に説明した通りであるので、具体的な説明は省略する。
【0174】
実施例による演算コーダー12011は、コーディングされた特質を演算コーディングに基づいて符号化する。演算コーダー12011は演算エンコーダー400012の動作及び/又は方法と同一又は類似する動作及び/又は方法を行う。
【0175】
実施例による送信処理部12012は、符号化されたジオメトリ及び/又は符号化された特質、メタデータ情報を含む各ビットストリームを送信するか、又は符号化されたジオメトリ及び/又は符号化された特質、メタデータ情報を一つのビットストリームで構成して送信する。実施例による符号化されたジオメトリ及び/又は符号化された特質、メタデータ情報が一つのビットストリームで構成された場合、ビットストリームは一つ又はそれ以上のサブビットストリームを含む。実施例によるビットストリームはシーケンスレベルのシグナリングのためのSPS(Sequence Parameter Set)、ジオメトリ情報コーディングのシグナリングのためのGPS(Geometry Parameter Set)、特質情報コーディングのシグナリングのためのAPS(Attribute Parameter Set)、タイルレベルのシグナリングのためのTPS(Tile Parameter Set)を含むシグナリング情報及びスライスデータを含む。スライスデータは一つ又はそれ以上のスライスに関する情報を含む。実施例による一つのスライスは一つのジオメトリビットストリーム(Geom00)及び一つ又はそれ以上の特質ビットストリーム(Attr00、Attr10)を含む。
【0176】
スライス(slice)とは、コーディングされたポイントクラウドフレームの全体又は一部を示すシンタックスエレメントのシリーズをいう。
【0177】
実施例によるTPSは一つ又はそれ以上のタイルに対してそれぞれのタイルに関する情報(例えば、bounding boxの座標値情報及び高さ/サイズ情報など)を含む。ジオメトリビットストリームはヘッダとペイロードを含む。実施例によるジオメトリビットストリームのヘッダはGPSに含まれたパラメータセットの識別情報(geom_parameter_set_id)、タイル識別子(geom_tile_id)、スライス識別子(geom_slice_id)及びペイロードに含まれたデータに関する情報などを含む。上述したように、実施例によるメタデータ処理部12007はシグナリング情報を生成及び/又は処理して送信処理部12012に送信することができる。実施例において、ジオメトリ符号化を行うエレメント及び特質符号化を行うエレメントは、点線処理したように、相互データ/情報を共有することができる。実施例による送信処理部12012は送信機10003の動作及び/又は送信方法と同一又は類似する動作及び/又は送信方法を行う。具体的な説明は
図1及び
図2に説明した通りであるので、省略する。
【0178】
【0179】
図13に示した受信装置は、
図1の受信装置10004(又は
図10及び
図11のポイントクラウドデコーダー)の一例である。
図13に示した受信装置は、
図1ないし
図11で説明したポイントクラウドデコーダーの動作及び復号方法と同一又は類似する動作及び方法のうちのいずれかを行う。
【0180】
実施例による受信装置は、受信部13000、受信処理部13001、演算(arithmetic)デコーダー13002、占有コード(Occupancy code)基盤の八分木再構成処理部13003、表面モデル処理部(三角形再構成、アップサンプリング、ボクセル化)13004、逆(inverse)量子化処理部13005、メタデータパーサ13006、演算(arithmetic)デコーダー13007、逆量子化処理部13008、予測/リフト/RAHT逆変換処理部13009、色相逆変換処理部13010及び/又はレンダラー13011を含む。実施例による復号の各構成要素は実施例による符号化の構成要素の逆過程を行う。
【0181】
実施例による受信部13000は、ポイントクラウドデータを受信する。受信部13000は
図1の受信機10005の動作及び/又は受信方法と同一又は類似する動作及び/又は受信方法を行う。具体的な説明は省略する。
【0182】
実施例による受信処理部13001は受信したデータからジオメトリビットストリーム及び/又は特質ビットストリームを得る。受信処理部13001は受信部13000に含まれる。
【0183】
演算デコーダー13002、占有コード基盤の八分木再構成処理部13003、表面モデル処理部13004及び逆量子化処理部13005はジオメトリ復号を行う。実施例によるジオメトリ復号は
図1ないし
図10で説明したジオメトリ復号と同一又は類似するので、具体的な説明は省略する。
【0184】
実施例による演算デコーダー13002はジオメトリビットストリームを演算コーディングに基づいて復号する。演算デコーダー13002は演算デコーダー11000の動作及び/又はコーディングと同一又は類似する動作及び/又はコーディングを行う。
【0185】
実施例による占有コード基盤の八分木再構成処理部13003は、復号されたジオメトリビットストリームから(又は復号結果、確保されたジオメトリに関する情報)から占有コードを獲得して八分木を再構成する。占有コード基盤の八分木再構成処理部13003は、八分木合成部11001の動作及び/又は八分木生成方法と同一又は類似する動作及び/又は方法を行う。実施例による表面モデル処理部13004はtrisoupジオメトリ符号化が適用された場合、表面モデル方式に基づいてtrisoupジオメトリ復号及びそれに関連するジオメトリ再構成(例えば、三角形再構成、アップサンプリング、ボクセル化)を行う。表面モデル処理部13004は表面近似合成部11002及び/又はジオメトリ再構成部11003の動作と同一又は類似する動作を行う。
【0186】
実施例による逆量子化処理部13005は復号されたジオメトリを逆量子化する。
【0187】
実施例によるメタデータパーサ13006は受信したポイントクラウドデータに含まれたメタデータ、例えば、設定値などを分析する。メタデータパーサ13006はメタデータをジオメトリ復号及び/又は特質復号に伝達する。メタデータに関する具体的な説明は
図12で説明した通りであるので省略する。
【0188】
演算デコーダー13007、逆量子化処理部13008、予測/リフト/RAHT逆変換処理部13009及び色相逆変換処理部13010は特質復号を行う。特質復号は
図1なしい
図10で説明した特質復号と同一又は類似するので、具体的な説明は省略する。
【0189】
実施例による演算デコーダー13007は、特質ビットストリームを演算コーディングに復号する。演算デコーダー13007は再構成されたジオメトリに基づいて特質ビットストリームの復号を行う。演算デコーダー13007は演算デコーダー11005の動作及び/又はコーディングと同一又は類似する動作及び/又はコーディングを行う。
【0190】
実施例による逆量子化処理部13008は、復号された特質ビットストリームを逆量子化する。逆量子化処理部13008は逆量子化部11006の動作及び/又は逆量子化方法と同一又は類似する動作及び/又は方法を行う。
【0191】
実施例による予測/リフト/RAHT逆変換処理部13009は、再構成されたジオメトリ及び逆量子化された特質を処理する。予測/リフト/RAHT逆変換処理部13009は、RAHT変換部11007、LOD生成部11008及び/又は逆リフト部11009の動作及び/又は復号と同一又は類似する動作及び/又は復号のうちのいずれかを行う。実施例による色相逆変換処理部13010は、復号された特質に含まれた色値(又はテクスチャ)を逆変換するための逆変換コーディングを行う。色相逆変換処理部13010は色逆変換部11010の動作及び/又は逆変換コーディングと同一又は類似する動作及び/又は逆変換コーディングを行う。実施例によるレンダラー13011はポイントクラウドデータをレンダリングする。
【0192】
図14は実施例によるポイントクラウドデータの送受信方法/装置に連動可能な構造の一例を示す図である。
【0193】
図14の構造はサーバー1460、ロボット1410、自律走行車両1420、XR装置1430、スマートフォン1440、家電1450及び/又はHMD1470のうちのいずれかがクラウドネットワーク1410に連結された構成を示している。ロボット1410、自律走行車両1420、XR装置1430、スマートフォン1440又は家電1450などは装置とも呼ばれる。またXR装置1430は実施例によるポイントクラウドデータ(PCC)装置に対応するか又はPCC装置に連動する。
【0194】
クラウドネットワーク1400はクラウドコンピューティングインフラの一部を構成するか、又はクラウドコンピューティングインフラ内に存在するネットワークを意味する。ここで、クラウドネットワーク1400は3Gネットワーク、4G又はLTEネットワーク又は5Gネットワークなどを用いて構成される。
【0195】
サーバー1460はロボット1410、自律走行車両1420、XR装置1430、スマートフォン1440、家電1450及び/又はHMD1470のいずれかにクラウドネットワーク1400により連結され、連結された装置1410~1470のプロセシングの少なくとも一部を助けることができる。
【0196】
HMD(Head-Mount Display)1470は実施例によるXRデバイス及び/又はPCCデバイスが具現されるタイプのうちのいずれかを示す。実施例によるHMDタイプのデバイスは、コミュニケーションズユニット、コントロールユニット、メモリユニット、I/Oユニット、センサユニット及びパワー供給ユニットなどを含む。
【0197】
以下、上記技術が適用される装置1410~1450の様々な実施例について説明する。ここで、
図14に示した装置1410~1450は上述した実施例によるポイントクラウドデータ送受信装置に連動/結合することができる。
【0198】
<PCC+XR>
【0199】
XR/PCC装置1430はPCC及び/又はXR(AR+VR)技術が適用されて、HMD(Head-Mount Display)、車両に備えられたHUD(Head-Up Display)、TV、携帯電話、スマートフォン、コンピューター、ウェアラブルデバイス、家電機器、デジタル看板、車両、固定型ロボットや移動型ロボットなどに具現されることもできる。
【0200】
XR/PCC装置1430は、様々なセンサーにより又は外部装置から獲得した3次元ポイントクラウドデータ又はイメージデータを分析して3次元ポイントに対する位置データ及び特質データを生成することにより周辺空間又は現実オブジェクトに関する情報を得て、出力するXR客体をレンダリングして出力することができる。例えば、XR/PCC装置1430は認識された物体に関する追加情報を含むXR客体を該当認識された物体に対応して出力することができる。
【0201】
<PCC+XR+モバイルフォン>
【0202】
XR/PCC装置1430はPCC技術が適用されてモバイルフォン1440などで具現される。
【0203】
モバイルフォン1440はPCC技術に基づいてポイントクラウドコンテンツを復号し、ディスプレイする。
【0204】
<PCC+自立走行+XR>
【0205】
自律走行車両1420はPCC技術及びXR技術が適用されて、移動型ロボット、車両、無人飛行体などで具現される。
【0206】
XR/PCC技術が適用された自律走行車両1420は、XR映像を提供する手段を備えた自律走行車両やXR映像内での制御/相互作用の対象となる自律走行車両などを意味する。特に、XR映像内での制御/相互作用の対象となる自律走行車両1420はXR装置1430とは区分されて互いに連動される。
【0207】
XR/PCC映像を提供する手段を備えた自律走行車両1420は、カメラを含むセンサーからセンサー情報を得、得たセンサー情報に基づいて生成されたXR/PCC映像を出力する。例えば、自律走行車両1420はHUDを備えてXR/PCC映像を出力することにより、搭乗者に現実オブジェクト又は画面内のオブジェクトに対応するXR/PCC客体を提供することができる。
【0208】
この時、XR/PCC客体がHUDに出力される場合には、XR/PCC客体の少なくとも一部が搭乗者の視線が向く実際の客体にオーバーラップされるように出力される。反面、XR/PCC客体が自律走行車両内に備えられるディスプレイに出力される場合には、XR/PCC客体の少なくとも一部が画面内の客体にオーバーラップされるように出力される。例えば、自律走行車両1220は車路、他の車両、信号灯、交通表示板、二輪車、歩行者、建物などのような客体に対応するXR/PCC客体を出力することができる。
【0209】
実施例によるVR(Virtual Reality)技術、AR(Augmented Reality)技術、MR(Mixed Reality)技術及び/又はPCC(Point Cloud Compression)技術は、様々なデバイスに適用可能である。
【0210】
即ち、VR技術は現実の客体や背景などをCG映像のみで提供するディスプレイ技術である。反面、AR技術は実際物事の映像上に仮想のCG映像を共に見せる技術である。また、MR技術は現実世界に仮想客体を混ぜて見せるという点では上記AR技術と類似する。しかし、AR技術では現実の客体とCG映像からなる仮想の客体の区別が明らかであり、現実客体を補完する形態で仮想の客体を使用する反面、MR技術では仮想の客体と現実の客体が同様の性格と見なされるという点でAR技術とは区別される。より具体的には、例えば、上記MR技術が適用されたことがホログラムサービスである。
【0211】
但し、最近にはVR、AR、MR技術を明確に区別するよりは、XR(extended Reality)技術とも呼ぶ。よって、本発明の実施例はVR、AR、MR、XR技術のいずれにも適用可能である。かかる技術はPCC、V-PCC、G-PCC技術基盤の符号化/復号が適用される。
【0212】
実施例によるPCC方法/装置は自律走行サービスを提供する車両に適用できる。
【0213】
自律走行サービスを提供する車両はPCCデバイスと有無線通信可能に連結される。
【0214】
実施例によるポイントクラウドデータ送信方法/装置は、
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、及び
図21のエンコーダーなどを称する用語として解釈されている。
【0215】
実施例によるポイントクラウドデータ受信方法/装置は、
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10及び
図11のデコーダー、
図13の受信装置、
図14のデバイス、及び
図22のデコーダーなどを称する用語として解釈されている。
【0216】
また実施例によるポイントクラウドデータ送受信方法/装置は簡単に実施例による方法/装置とも称する。
【0217】
実施例において、ポイントクラウドデータを構成するジオメトリデータ、ジオメトリ情報、位置情報などは同じ意味で解釈される。ポイントクラウドデータを構成する特質データ、特質情報、属性情報なども同じ意味で解釈される。
【0218】
実施例によるポイントクラウドデータ送受信方法/装置は、低遅延の3Dマップポイントクラウドジオメトリ情報圧縮のための予測ツリー構成拡張方案を提供する(A method to build predictive geometry tree for low-latency geometry coding of3D map point cloud)。
【0219】
実施例によるポイントクラウドデータ送受信方法/装置は、ライダー(LiDAR)装備でキャプチャーされたポイントクラウドフレームを1つのポイントクラウドコンテンツに統合したとき、G-PCC(Geometry-based Point Cloud Compression)の効率的なジオメトリ圧縮のために予測ツリー(predictive tree)を構成する方法を支援する。例えば、原点(origin)選択方法及びシグナリング方法、予測ツリー生成のためのレーザーアングル(laser angle)基盤の整列方法及び/又は迅速な予測ツリー構成方法などを含む。
【0220】
実施例は3次元ポイントクラウドデータ圧縮のためのG-PCCの圧縮効率を上げるための方案に関する。以下、エンコーダー、符号化器は符号化器と称し、デコーダー、復号器は復号器と称する。
【0221】
ポイントクラウドはポイントの集合からなり、各ポイントはジオメトリ情報と特質情報を有する。ジオメトリ情報は3次元位置(XYZ)情報であり、特質情報は色相(RGB,YUVなど)及び/又は反射値(Reflectance)である。
【0222】
G-PCC符号化過程ではポイントクラウドを領域によってタイルに分割し、並列処理のために各タイルをスライスに分割する。各スライス単位にジオメトリを圧縮し、圧縮により変更された位置情報で再構成されたジオメトリ(reconstructed geometry=復号されたジオメトリ)に基づいて属性情報を圧縮する過程で構成される。
【0223】
G-PCC復号過程では符号化されたスライス単位のジオメトリビットストリームと属性ビットストリームが送信されてジオメトリを復号し、復号過程で再構成されたジオメトリに基づいて属性情報を復号する過程で構成される。
【0224】
ジオメトリ情報圧縮のために八分木(octree)基盤、予測ツリー(predictive tree)基盤、又はtrisoup基盤の圧縮技法が使用される。
【0225】
実施例によるポイントクラウドデータ送受信方法/装置は、ライダー装備でキャプチャーされた3Dマップコンテンツのジオメトリ圧縮効率を上げるための予測ツリー基盤のジオメトリ圧縮技法を行う。
【0226】
ポイントクラウドコンテンツのキャプチャーのために、レーザーパルスを照射して反射されてくる時間を測定して反射体の位置座標を測定する。かかるレーザシステムを用いるライダー装備により深さ情報を得ることができる。ライダー装備により生成されたポイントクラウドコンテンツは複数のフレームからなってもよく、複数のフレームを1つのコンテンツに統合してもよい。
【0227】
3Dマップポイントクラウドコンテンツはライダー装備で複数のフレームをキャプチャーし、1つのコンテンツに統合して生成されたデータを意味する。この場合、ライダー装備の中心位置が異なる位置でキャプチャーされたそれぞれのフレームのデータが混ぜられているので、ライダー装備でキャプチャーされたデータが示す角度上の特性、即ち、角度
に変更したときのポイント間の規則が隠され、これにより角度モードの適用が直交座標系基盤の圧縮より効率的ではない。
【0228】
したがって、3Dマップポイントクラウドコンテンツに適用する予測ツリー基盤のジオメトリ圧縮方法は角度モードを使用して圧縮効率を上げることができず、コンテンツ内のポイントの規則性から圧縮効率を上げる方案が必要である。
【0229】
予測ツリーは親ノードのベクトルにより現在ポイントの位置を予測する方法で行われるので、規則性を有する親ノードがよく選択されたか否かによって予測されたポイントと現在ポイントとの残差値が小さくなり、ビットストリームのサイズを減らすことができる。
【0230】
実施例においては、ライダー装備でキャプチャーされ、1つのコンテンツに統合された3Dマップデータの予測ツリー基盤の効率的なジオメトリ圧縮を支援するための予測ツリー構成方法を支援する。
【0231】
実施例による予測ツリー構成はPCC符号化器のジオメトリ符号化器で行われ、PCC復号器のジオメトリ復号過程により復元される。
【0232】
図15は実施例によるポイントクラウドデータが有する追加属性データを示す。
【0233】
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、
図21のエンコーダー、
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10及び
図11のデコーダー、
図13の受信装置、
図14のデバイス及び
図22のデコーダーなどが圧縮して復元するポイントクラウドデータは
図15のような属性を有する。
【0234】
実施例によるレーザーアングル(laser angle)値がある場合、原点位置の選択方法:
【0235】
図15を参照すると、ライダー(LiDAR)装備でキャプチャーされ、1つのコンテンツに統合された3Dマップデータは位置(x,y,z)、属性(red,green,blue,reflectance)値以外に、時間、レーザーアングル、ノーマルポジション(normal position)(nx,ny,nz)などの追加属性データを有する。
【0236】
図16は実施例によるポイントクラウドデータに対する原点位置の一例を示す。
【0237】
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、
図21のエンコーダー、
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10及び
図11のデコーダー、
図13の受信装置、
図14のデバイス、及び
図22のデコーダーなどは、ポイントクラウドデータ、3Dマップ形態で構成されるポイントクラウドデータの原点を設定して圧縮/復元を行う。
【0238】
3Dマップポイントクラウドに対して予測ツリー基盤のジオメトリ圧縮を行うとき、スライスのバウンディングボックスの左(left)、底(bottom)、前(front)の位置を原点(origin)16000の位置として設定する。原点の位置は予測ツリーを生成するためのポイント整列過程で影響を与え、整列された形態は予測ツリーの構成に影響を与え、予測ツリーは予測値に影響を与えるので、予測値との残差値に影響を与えてビットストリームのサイズに影響を与える。
【0239】
即ち、実施例によるエンコーダー及び/又はデコーダーがスライス0を処理するとき、スライス0に該当するバウンディングボックスの1点を原点として処理する。スライス1に対応するバウンディングボックスの原点はバウンディングボックスの左/底/前の位置になる。
【0240】
【0241】
ポイントクラウドコンテンツがポイントごとにレーザーアングル値を有する場合、実施例による方法/装置は以下の過程によりスライス内の原点位置を計算することができる。
【0242】
-原点に該当する候補角度値(origin_laser_angle)が入力される。例えば、90°が候補角度値である。
【0243】
-原点に該当するポイントの位置(origin_direction)が入力される。例えば、左(left)がポイントの位置である。
【0244】
スライスに属する全てのポイントに対して以下の過程が行われる。
【0245】
1.ポイントpのレーザーアングル値と設定されたorigin_laser_angle(=90)とが同一である場合、
【0246】
A.原点の位置値が存在しないと、pを原点位置値として設定する。
【0247】
B.原点の位置値が存在すると、pの位置値と原点の位置値を比較してorigin_directionによって原点位置値として設定する。
【0248】
例えば、origin_directionが左(left)である場合、origin.x>p.xであると、pを原点位置値として設定する。pが原点よりも左側に位置するためである。
【0249】
即ち、実施例による方法/装置においては、原点の位置を設定するためにポイントに対する座標を変換することができる。原点を基準として直交座標系から球形(spherical)座標系に変更する。
【0250】
座標系変換は、1)予測ジオメトリコーディング(predictive geom coding)の角度モード(angular mode)を適用するときに使用され、2)予測ジオメトリ(predictive geom)の一般モード及び/又は角度モード(angular mode)においてポイント整列のために座標値を変換して整列する。
【0251】
図17を参照すると、新しく設定された原点を基準として、(x,y,z)直交座標をアジマス(azimuth)、半径(radius)、エレベーション(elevation(laser ID))に変更するが、原点が道路上に移動するので、適合したアジマス、半径を探すことができる。
【0252】
図17はorigin_laser_angle=90°、origin_direction=leftの例を示す。それぞれのスライスごとに原点を90°及び左側に設定すると、17000で表示された点が各スライスの原点位置になる。
【0253】
バウンディングボックスの左/底/前を原点16000,17001として設定する場合と比較すると、追加属性データを基準として設定した原点の位置が変わることがわかる。
【0254】
ポイントクラウドデータの属性を参照すると、ポイントクラウドデータが道路、建物、人などを示す場合、ポイントの集合が始まる位置17002が道路領域に対応する。
【0255】
即ち、バウンディングボックスの左/底/前の原点16000,17001がポイント配置の基準となる道路領域17002から離れていることがわかる。逆に、追加属性データを基準として設定した原点の位置が道路開始点17002として設定されることがわかる。
【0256】
図18は実施例によるレーザーアングルがない場合、原点位置を設定する一例を示す。
【0257】
図18は
図17においてポイントクラウドコンテンツがポイントごとにレーザーアングル値が存在しない場合に以下の過程によりスライス内の原点位置を計算する。
【0258】
原点に該当するポイントのバウンディングボックスの位置を決定するために、基準軸が入力される。例えば、x軸が基準軸になる。
【0259】
原点に該当するポイントのバウンディングボックスの位置を決定するために、2番目の基準軸が入力される。例えば、y軸になる。
【0260】
原点に該当するポイントのバウンディングボックスの位置を決定するために、ベクトル範囲が入力される。例えば、-0.2~-1の範囲が設定される。
【0261】
原点に該当するポイントのバウンディングボックスの位置を決定するために、ベクトル範囲に属するときの原点の位置を設定する。例えば、左/上/前(left/top/front)に原点を設定する。
【0262】
原点に該当するポイントのバウンディングボックスの位置を決定するために、ベクトル範囲に属しないときの原点の位置が入力される。例えば、左/底/前(left/bottom/front)に原点を設定する。
【0263】
スライスに属する全てのポイントに対して以下の過程が行われる。
【0264】
ポイントpの基準軸を基準として最小値に存在するpoint Lと、最大値に存在するpoint Rを探す。
【0265】
R-L値を正規化した値であるdiffにおいて、2番目の基準軸を基準としてベクトル範囲に該当するか否かをチェックする。範囲に属すると、指定された位置を原点として設定する。
【0266】
例えば、基準軸がx軸、2番目の基準軸がy軸であれば、ベクトル範囲に属すると、左/上/前を原点として設定する。属しないと、左/底/前を原点として設定する。
【0267】
例えば、スライス18000,18003,18006で原点を設定するために、ポイント18001,18004,18007で基準軸及びベクトル範囲に沿って一定の方向18002,18005,18008にポイントを探索しながら適合した原点を設定する。
【0268】
実施例によるレーザーアングル基盤の整列方法:
【0269】
実施例による方法/装置は、予測ツリーを生成する前にポイント(Points[*])をモートンコード(Morton code)、半径(radius)、アジマス(azimuth)、エレベーション(elevation)、センサーID基準、又はキャプチャーされた時間順などに整列する。
【0270】
実施例による整列方法はコンテンツの特性によって設定される。例えば、LiDAR装備でキャプチャーされたスピニングデータ(spinning data)の形態を有するコンテンツの場合、アジマスに基づいて整列したときにより効率的に予測ツリーを生成することができる。
【0271】
ポイントをモートンコードで整列する。又はアジマス整列の方がより効率的である。バウンディングボックスの左/底/前が原点である場合、ポイント間のアジマスの角度差が多くてエラーが大きくなる問題があり得る。
【0272】
整列されたポイントを基準として予測ツリーの生成が順に進行されるので、整列されたポイント順は予測ツリーの構成に影響を与え、予測ツリーは予測値に影響を与えるので、予測値との残差値に影響を与えてビットストリームのサイズに影響を与える。
【0273】
図19は実施例によるレーザーアングル基盤の整列の一例を示す。
【0274】
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、
図21のエンコーダー、
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10-11のデコーダー、
図13の受信装置、
図14のデバイス、
図22のデコーダーなどは、
図15の属性を用いて
図16及び
図18のように原点を設定し、ポイントを
図19のように整列する。
【0275】
ポイントクラウドコンテンツのポイントごとにレーザーアングル値が存在する場合、レーザーアングルに基づいてポイントを整列し、レーザーアングルをグルーピングして整列してもよい。例えば、0~5°のレーザーアングルを同一のレーザーアングルとみなしてポイントの順を整列してもよい。レーザーアングルが同一であるか又はレーザーアングルグループが同一である場合は、半径を基準として整列し、半径が同一であるか又は半径グループが同一である場合には、エレベーションを基準として整列する。
【0276】
ポイントクラウドコンテンツが道路の形態であり、ポイントクラウドデータのポイントが
図19のようである。
【0277】
実施例による方法/装置は、レーザーアングルが90°であり、座標が軸の左側であるポイントを原点19001として設定する。原点から始まり、レーザーアングルを基準としてポイントを整列する19002。レーザーアングル基盤の整列過程においてレーザーアングル値(又はレーザーアングル基準範囲)が同一である場合は、半径を基準としてポイントを整列する19003。
【0278】
実施例による方法/装置は、スライスのバウンディングボックスの左/底/前19004を原点として設定する代わりに、レーザーアングルが90°であり、軸の左側であるポイント19005を新しい原点として設定してもよい。またレーザーアングルに基づいてポイントを整列してもよい。原点の位置が道路の開始点19005に設定されたので、道路に沿いながら道路上のオブジェクトに対するポイントをレーザーアングル順に整列することができる。ポイント間のレーザーアングル値が同一であると、半径を基準としてポイントを整列することができる。
【0279】
道路上のオブジェクトというポイントクラウドコンテンツの特性上、レーザーアングルに基づいてポイントを整列すると、整列されたポイントの順が道路に沿って整列された形態を有するので、ポイントを符号化/復号する過程におけるエラーを効果的に減らすことができる。
【0280】
実施例による迅速な予測ツリーの構成方法:
【0281】
実施例による方法/装置においては、KD-Tree生成/検索過程により最も近い予測ポイントを親ノードとして選択しながら予測ツリーを生成する。この過程には相当な実行時間がかかる。低遅延のジオメトリ圧縮を目標とするシナリオにおいて、KD-Tree基盤の予測ツリー生成技法は実行時間のイッシュがある。
【0282】
ポイントクラウドコンテンツがポイントごとにレーザーアングル値を有する場合、原点位置をレーザーアングルに基づいて選択し、レーザーアングルに基づいて整列すると、KD-Treeを使用せず、迅速に予測ツリーを構成する方法を適用することができる。
【0283】
実施例による予測ツリー生成過程は以下の通りである。
【0284】
1.1番目のポイントをルートノードとして設定する。現在ポイントを現在のレーザーアングルの最新ポイントとして設定する。現在ポイントを現在のレーザーアングルの1番目のポイントとして設定する。
【0285】
2.スライス上の全てのポイントに対して以下の過程を行う。
【0286】
1)ポイントpのレーザーアングルの最新ポイントが存在すると、最新ポイントを現在ポイントの予測ツリー上で親ノードとして設定する。再度、現在ポイントを現在のレーザーアングルの最新値として設定する。
【0287】
2)ポイントpのレーザーアングルの最新ポイントが存在しないと、現在ポイントを現在のレーザーアングルの最新ポイントとして設定する。現在ポイントを現在のレーザーアングルの1番目のポイントとして設定する。
【0288】
3.全てのレーザーアングルに対して以下の過程を行う。
【0289】
1)現在レーザーアングルの1番目のポイントの親ノードとして以前レーザーアングルの1番目のポイントを設定する。
【0290】
図20は実施例によるレーザーグループと予測ツリー生成の一例を示す。
【0291】
第1レーザーアングルグループ20000及び第2レーザーグループ20001があれば、第2レーザーグループ20001が現在レイヤアングルグループであり、第1レーザーアングルグループ20000は第2レーザーアングルグループ20001よりも以前に処理されたレーザーグループである。
【0292】
例えば、現在のレーザーアングルグループ20001の場合、1番目のポイント20002がルートノードとして設定される。現在ポイント20002を現在のレーザーアングルの最新ポイントとして設定する。現在ポイント20002を現在のレーザーアングルの1番目のポイントとして設定する。
【0293】
ポイントp20003のレーザーアングルの最新ポイント20002が存在すると、最新ポイント20002を現在ポイント20003の予測ツリー上で親ノードとして設定する。再度、現在ポイント20003を現在のレーザーアングルの最新値として設定する。
【0294】
次のポイント20004のレーザーアングルの最新ポイントはポイント20003であるので、ポイント20003がポイント20004の親になる。
【0295】
現在のレーザーアングル20001の1番目のポイント20002の親ノードとして以前のレーザーアングル20000の1番目のポイント20005を設定する。
【0296】
図20に示すように、実施例による方法/装置は、レーザーアングルを基準として整列されたポイントを用いて迅速な予測ツリーを生成することができる。
【0297】
実施例において、最新ポイントとは、該当グループに含まれて整列されたポイントのうち、1番目に位置するポイントを意味する。例えば、上述したように、符号化のために、ポイントはレーザーアングル(アジマス値又はアジマス範囲によるグループ)に基づいて整列される。
【0298】
また、ライダー(LiDAR)によりポイントがキャプチャーされ、キャプチャーされたポイントは半径及び/又はアジマス値に基づく規則性が強い。
【0299】
図20に示すようなレーザーアングルグループ内の最新ポイントは1番目のポイントになる。具体的には、レーザーアングル(アジマス)によるグループ20001の範囲が0~5°であり、ポイント20002を含み、ポイント20002が整列された順序において1番目のポイントであるので、ルートノード(ポイント)になる。レーザーアングル0~5°に該当するグループ20000において、整列されたポイントのうち、ポイント20005が1番目のポイントであるので、ルートになる。したがって、このように特定のレーザーアングルによってグループ及びポイントがあれば、グループ内のポイント間の親/子の関係を設定し、グループ間の親/子の関係を設定することができる。
【0300】
例えば、実施例による獲得部(ライダー)が回転(rotation)してポイントをキャプチャーする場合、時間的にアジマスアングル(azimuth angle)ごとに差があるが、フラッシュ(flash)タイプでキャプチャーする場合は、特定の領域で多いセンサーにより一度にキャプチャーされるので、時間差がない。実施例による以前のレーザーアングルグループの意味では、アングル0~5、5~10にグルーピングした場合、5~10°グループの基準で0~5°グループは以前のレーザーアングルグループである。また実施例による装置が回転してキャプチャーする場合は(spinning LiDAR、一般的な場合である)、時間差を有する。
【0301】
図21は実施例によるポイントクラウドデータ送信装置を示す。
【0302】
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、
図21のエンコーダーなどが互いに対応する実施例によるポイントクラウドデータ送信装置である。各構成要素はハードウェア、ソフトウェア、プロセッサ及び/又はこれらの結合に対応する。
【0303】
符号化器の入力によりPCCデータが入り、符号化されてジオメトリ情報ビットストリームと属性情報ビットストリームが出力される。
【0304】
データ入力部はジオメトリデータ、特質データを受信する。データ入力部は符号化に関連するパラメータ設定値を受信する。
【0305】
座標系変換部はジオメトリデータのポイントの位置に連関する座標系を符号化に適合したシステムとして設定する。
【0306】
ジオメトリ情報変換量子化処理部はジオメトリデータを変換して量子化する。
【0307】
空間分割部はポイントクラウドデータを符号化に適合する空間構造に分割する。
【0308】
オメトリ情報符号化部はジオメトリコーディングタイプが予測基盤のコーディングである場合、予測ツリー生成部で予測ツリーを生成し、予測決定部で生成された予測ツリーに基づいてRDO(Rate Distortion Optimization)過程を行って最適の予測モードを選択する。最適の予測モードによるジオメトリ予測値を生成することができる。
【0309】
ジオメトリ情報符号化部は八分木生成部で八分木基盤のジオメトリコーディングを行うか、又はtrisoup生成部でtrisoup基盤のジオメトリコーディングを行う。
【0310】
ジオメトリ位置再構成部は符号化されたジオメトリデータを復元して特質コーディングのために提供する。
【0311】
ジオメトリ情報エントロピー符号化部で予測された値との残差値をエントロピーコーディングしてジオメトリ情報ビットストリームを構成する。
【0312】
予測ツリー生成部の詳しい動作は以下の通りである。
【0313】
予測ツリー生成部はポイントがレーザーアングルを有している場合、originの原点に該当する候補角度値(origin_laser_angle)と原点に該当するポイントの方向(origin_direction)を受信する。受信した値からorigin_laser_angleとorigin_directionにしたがってスライス内で原点として使用するポイントを選択する。原点値はデコーダーにシグナル情報により伝達される。
【0314】
予測ツリー生成部はポイント整列方法を受信し、整列方法にしたがってポイントを整列する。ポイント整列方法はモートンコード、半径、アジマス、エレベーション、センサーID基準、レーザーアングル又はキャプチャーされた時間順などを含む。レーザーアングルの場合、選択されたoriginを基準としてポイントの順を決定する。レーザーアングルで整列し、同一のレーザーアングル又は同一のレーザーアングルグループに属する場合、半径又は同一の半径を基準としてポイント順を決定し、半径値が同一である場合は、エレベーションを基準としてポイント順を決定する。適用された整列方法はデコーダーにシグナル情報により伝達される。
【0315】
予測ツリー生成部には予測ツリーの生成方法が入力され、入力された方法にしたがって予測ツリーを生成する。ツリーの生成方法には整列された順序基盤のFast予測ツリー生成方案、距離基準の予測ツリー生成方案、角度(angular)基盤の予測ツリー生成方案などがある。コンテンツ特性、サービスタイプによって選択できる。適用された予測ツリーの生成方法はデコーダーにシグナル情報により伝達される。
【0316】
予測ツリー生成部には最大距離値が入力される。予測ポイントリストを使用する場合、親ノード選択のための隣予測ポイントを検索して、検索されたポイントとの距離が最大距離値よりも小さい場合にのみ子ノードとして登録することができる。最大距離値は入力されるか、又はコンテンツ分析により自動的に設定される。
【0317】
ジオメトリエンコーダーは、例えば、予測ツリー生成部を介して
図15の追加属性データを用い、
図17及び
図19などのように原点位置を選択し、ポイントをレーザーアングルに基づいて整列し、ポイントから速い予測ツリーをレーザーアングルグループに基づいて生成する。速い予測ツリーから親-子の関係を迅速に設定して予測コーディングを行う。現在ジオメトリデータを符号化するために、現在ジオメトリデータに対する予測ジオメトリデータを速い予測ツリーにより算出する。現在ジオメトリデータ(原本)及び予測ジオメトリデータ間の残差データを生成して、残差データを含むジオメトリビットストリームを生成する。
【0318】
属性情報符号化部は特質データを復元されたジオメトリデータを用いて符号化する。属性情報符号化に関連する情報をシグナリング情報としてデコーダーに伝達することができる。
【0319】
図21は実施例による送信方法/装置(ポイントクラウドデータ送信方法/装置)、及びポイントクラウドデータエンコーダーの構成(符号化プロセス)を示す。
【0320】
図21の予測ジオメトリコーディングは八分木基盤方式の代案になる。実施例による予測コーディング技法は低遅延を支援し、低複雑度の復号を提供する。
【0321】
予測構造は、例えば、カテゴリー3に該当するコンテンツに対して適用される。ポイントクラウドデータに対する予測構造を生成して予測ツリーを生成する。ポイントクラウドデータのポイントはツリーのバーテックスに対応する。各バーテックスはツリー内の上位(親)から予測できる。実施例による予測ジオメトリコーディングはツリー構造を用いて予測ジオメトリ符号化を行う。ポイント間の親/子を有するツリー構造を生成する。予測モードはNo prediction、Delta prediction(i.e.,p0)、Linear prediction(i.e.,2p0-p1)、Parallelogram predictor(i.e.,2p+p1-p2)などを含む。ここで、p0,p1,p2は現在ポイントの親、祖父母及び祖父母のポイントを意味する。RDO方式に基づいて予測モードを選択する。予測モードによる残差(residual)が最も小さい場合に対応するモードを選択し、使用された予測モード(予測機)をシグナリング情報により伝達する。
【0322】
図22は実施例によるポイントクラウドデータ受信装置を示す。
【0323】
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10及び
図11のデコーダー、
図13の受信装置、
図14のデバイス、
図22のデコーダーなどは実施例によるポイントクラウドデータ受信装置である。各構成要素はハードウェア、ソフトウェア、プロセッサ及び/又はそれらの結合に対応する。
【0324】
図22の受信動作は
図21の送信動作に対応するか、又は送信動作の逆過程を行う。
【0325】
幾何情報エントロピー復号部はジオメトリデータをエントロピー復号する。
【0326】
八分木再構成部は八分木基盤のコーディングがジオメトリデータに適用された場合に八分木に基づいてジオメトリデータを再構成する。
【0327】
予測ツリー再構成部の詳しい動作は以下の通りである。
【0328】
予測ツリー再構成部は予測ツリーの生成方法、原点位置値とポイント整列方法が伝達されて復元し、それによって予測ツリーを再構成してジオメトリの予測値の復号に使用する。
【0329】
ジオメトリデコーダーは予測ツリー再構成部により原点の位置を把握し、ポイント整列方法を把握して、速い予測ツリー生成が適用された場合は、迅速な予測ツリーによりジオメトリデータを予測し、受信した残差ジオメトリデータと併せてジオメトリデータを復元する。
【0330】
ジオメトリ位置再構成部はジオメトリデータの位置を再構成して特質デコーダーに適用する。
【0331】
幾何情報予測部はジオメトリデータの予測データを生成する。
【0332】
幾何情報変換逆量子化処理部は送信側で量子化された場合、量子化パラメータに基づいて逆に量子化をジオメトリデータに適用する。
【0333】
座標系逆変換部は送信側でジオメトリデータに関する座標系が変換された場合、逆に座標系を変換する。
【0334】
属性情報復号部は属性残差情報エントロピー復号部を介して特質データを含むビットストリームから特質データの残差データをエントロピー復号する。
【0335】
属性復号方式に基づいて属性情報復号部は特質データを復号する。
【0336】
残差属性情報逆量子化処理部は送信側で量子化された場合、量子化パラメータに基づいて逆に残差属性情報を量子化する。送信側の符号化方式にしたがってデコーダーは特質データを復元する。
【0337】
また実施例によるポイントクラウドデータ受信方法/装置は、符号化器で生成されたツリー順にビットストリームを受信し、送信側のポイント整列(座標変換)過程を行わない。受信方法/装置は受信順にビットストリームにより予測ツリーを復元する。予測ツリーを復元する過程で原点情報を使用し、最終的に復元された位置は座標変換過程を経てxyz座標に変換することができる。
【0338】
図23は実施例によるポイントクラウドデータ及びパラメータ情報を含むビットストリームを示す。
【0339】
図21などの実施例によるポイントクラウドデータ送信装置は
図23のようなビットストリームを生成し、
図22などの実施例によるポイントクラウドデータ受信装置は
図23のようなビットストリームを受信して、パラメータ情報に基づいてポイントクラウドデータを復号する。
【0340】
実施例を追加する/行うために、関連情報をシグナリングすることができる。実施例によるシグナリング情報は送信端又は受信端などで使用される。実施例によるシグナリング情報は実施例による送受信装置、例えば、送信装置のメタデータ処理部(メタデータ発生器などとも称される)で生成されて送信され、受信装置のメタデータパーサで受信されて獲得される。実施例による受信装置の各動作はシグナリング情報に基づいて各動作を行う。符号化されたポイントクラウドの構成は
図23の通りである。
【0341】
各略語の意味は以下の通りである。各略語は同じ意味範囲内で他の用語に称されてもよい。SPS:Sequence Parameter Set,GPS:Geometry Parameter Set,APS:Attribute Parameter Set,TPS:Tile Parameter Set,Geom:Geometry bitstream=geometry slice header+geometry slice data,Attr:Attribute bitstream=attribute blick header+attribute brick data.
【0342】
予測ツリー生成関連オプション情報はSPS又はGPSに追加されてシグナリングすることができる。
【0343】
予測ツリー生成関連オプション情報はTPS又は各スライスごとのジオメトリヘッダに追加されてシグナリングすることができる。
【0344】
ポイントクラウドを領域ごとに分けて処理できるように、タイル又はスライスを提供する。
【0345】
領域ごとに分けるとき、それぞれの領域ごとに異なる隣ポイント集合生成オプションを設定して、複雑度(complexity)は低いが結果の信頼度が多少落ちる方案を提供するか、逆に複雑度は高いが信頼度が高い選択方案を提供することができる。この設定は受信機の処理能力(capacity)によって異なる。
【0346】
したがって、ポイントクラウドはタイルに分けられるとき、各タイルごとに異なるオプションを適用することができる。ポイントクラウドはスライスに分けられるとき、各スライスごとに異なるオプションを適用することができる。
【0347】
図24は実施例によるシーケンスパラメータセットを示す。
【0348】
図24は
図23のビットストリームに含まれたシーケンスパラメータセットである。
【0349】
実施例による方法/装置は実施例による予測ツリー生成に関連する情報をシーケンスパラメータセットに含ませて効率的なシグナリングを提供する。
【0350】
予測ジオメトリツリーソートタイプ(pred_geom_tree_sorting_type):該当シーケンスで予測ジオメトリツリーを生成するときに適用する整列方法を示す。例えば、各整数値による整列方法を示す:0=整列せず、1=モートンコード順に整列、2=半径順に整列、3=アジマス順に整列、4=エレベーション順に整列、5=センサーID順に整列、6=キャプチャーされた時間順に整列、7=レーザーアングル順に整列
【0351】
予測ジオメトリツリーの生成方法(pred_geom_tree_build_method):該当シーケンスで予測ジオメトリツリーの生成方法を示す。例えば、0=Fast予測ツリー生成方案、1=距離基盤の予測ツリー生成方案、2=角度基盤の予測ツリー生成方案
【0352】
プロファイル(profile_idc)は、ビットストリームが付録Aで指定されたとおりに従うプロファイルを示す。ビットストリームは実施例による値ではないprofile_idc値を含まない。profile_idcの他の値はISO/IECで今後の使用のために予約される。
【0353】
プロファイル互換性フラグ(profile_compatibility_flags):1と同じprofile_compatibility_flagsはビットストリームがjと同一のprofile_idcにより表示されたプロファイルに従うことを示す。
【0354】
SPS特質セット数(sps_num_attribute_sets)はビットストリームでコーディングされた属性の数を示す。sps_num_attribute_setsの値は0から63までの範囲である。
【0355】
特質ディメンション(attribute_dimension[i])はi番目の属性の構成要素の数を示す。
【0356】
特質インスタンス識別子(attribute_instance_id[i])はi番目の属性に対するインスタンスIDを示す。
【0357】
図25は実施例によるジオメトリパラメータセットを示す。
【0358】
図25は
図23のビットストリームに含まれたジオメトリパラメータセットである。
【0359】
実施例による方法/装置は実施例による予測ツリー生成に関連する情報をジオメトリパラメータセットに含ませて効率的なシグナリングを提供する。
【0360】
予測ジオメトリツリーソートタイプ(pred_geom_tree_sorting_type):該当シーケンスで予測ジオメトリツリーを生成するときに適用する整列方法を示す。例えば、0=整列せず、1=モートンコード順に整列、2=半径順に整列、3=アジマス順に整列、4=エレベーション順に整列、5=センサーID順に整列、6=キャプチャーされた時間順に整列、7=レーザーアングル順に整列
【0361】
予測ジオメトリツリーの生成方法(pred_geom_tree_build_method):該当シーケンスで予測ジオメトリツリーの生成方法を示す。例えば、0=Fast予測ツリー生成方案、1=距離基盤の予測ツリー生成方案、2=角度基盤の予測ツリー生成方案
【0362】
GPSジオメトリパラメータセットID(gps_geom_parameter_set_id):他の構文要素で参照できるように、GPSに対する識別子を提供する。gps_seq_parameter_set_idの値は0から15までの範囲である。
【0363】
GPSシーケンスパラメータセットID(gps_seq_parameter_set_id):活性SPSに対するsps_seq_parameter_set_id値を示す。gps_seq_parameter_set_idの値は0から15までの範囲である。
【0364】
図26は実施例によるタイルパラメータセットを示す。
【0365】
図26は
図23のビットストリームに含まれたタイルパラメータセットである。
【0366】
実施例による方法/装置は実施例による予測ツリー生成に関する情報をタイルパラメータセットに含ませて効率的なシグナリングを提供する。
【0367】
予測ジオメトリツリーソートタイプ(pred_geom_tree_sorting_type):該当タイルで予測ジオメトリツリー生成時に適用する整列方法を示す。例えば、0=整列せず、1=モートンコード順に整列、2=半径順に整列、3=アジマス順に整列、4=エレベーション順に整列、5=センサーID順に整列、6=キャプチャーされた時間順に整列、7=レーザーアングル順に整列。
【0368】
予測ジオメトリツリーの生成方法(pred_geom_tree_build_method):該当タイルで予測ジオメトリツリーの生成方法を示す。例えば、0=Fast予測ツリー生成方案、1=距離基盤の予測ツリー生成方案、2=角度基盤の予測ツリー生成方案。
【0369】
GPSジオメトリパラメータセットID(gps_geom_parameter_set_id):他の構文要素で参照できるようにGPSに対する識別子を提供する。gps_seq_parameter_set_idの値は0から15までの範囲である。
【0370】
GPSシーケンスパラメータセットID(gps_seq_parameter_set_id):活性SPSに対するsps_seq_parameter_set_idの値を示す。gps_seq_parameter_set_idの値は0から15までの範囲である。
【0371】
タイル数(num_tiles)はビットストリームに対して信号されたタイル数を示す。存在しない場合、num_tilesは0と類推される。
【0372】
タイルバウンディングボックスオフセットX(tile_bounding_box_offset_x[i])は直交座標においてi番目のタイルのxオフセットを示す。存在しない場合、tile_bounding_box_offset_x[0]の値はsps_bounding_box_offset_xと類推される。
【0373】
タイルバウンディングボックスオフセットY(tile_bounding_box_offset_y[i])は直交座標においてi番目のタイルのyオフセットを示す。存在しない場合、tile_bounding_box_offset_y[0]の値はsps_bounding_box_offset_yと類推される。
【0374】
タイルバウンディングボックスオフセットZ(tile_bounding_box_offset_z[i])は直交座標においてi番目のタイルのzオフセットを示す。存在しない場合、tile_bounding_box_offset_z[0]の値はSPS_bounding_box_offset_zと類推される。
【0375】
図27は実施例によるジオメトリスライスヘッダーを示す。
【0376】
図27は
図23のビットストリームに含まれたジオメトリスライスヘッダーである。
【0377】
実施例による方法/装置は実施例による予測ツリー生成に関する情報をジオメトリスライスヘッダーに含ませて効率的なシグナリングを提供する。
【0378】
予測原点(pred_origin[i]):該当スライスで適用された原点(origin)の位置値を示す。
【0379】
予測ジオメトリツリーソートタイプ(pred_geom_tree_sorting_type):該当スライスで予測ジオメトリツリーを生成するときに適用する整列方法を示す。例えば、0=整列せず、1=モールトンコード順に整列、2=半径順に整列、3=アジマス順に整列、4=エレベーション順に整列、5=センサーIDの順に整列、6=キャプチャーした時間順に整列、7=レーザーアングル順に整列
【0380】
予測ジオメトリツリーの生成方法(pred_geom_tree_build_method):該当スライスにおいて予測ジオメトリツリーの生成方法を示す。例えば、0=Fast予測ツリー生成方案、1=距離基盤の予測ツリー生成方案、2=角度基盤の予測ツリー生成方案
【0381】
GSHジオメトリパラメータセットID(gsh_geometry_parameter_set_id)はアクティブGPSのgps_geom_parameter_set_id値を示す。
【0382】
GSHタイル識別子(gsh_tile_id)はGSHが参照するタイルIDの値を示す。gsh_tile_idの値は0からXXまでの範囲である。
【0383】
GSHスライスID(gsh_slice_id)は他の構文要素で参照するスライスヘッダーを識別する。gsh_slice_idの値は0からXXまでの範囲である。
【0384】
図28は実施例によるポイントクラウドデータ送信方法を示す。
【0385】
図1の送信装置10000、ポイントクラウドビデオエンコーダー10002、送信機10003、
図2の獲得-符号化-送信20000-20001-20002、
図4のエンコーダー、
図12の送信装置、
図14のデバイス、及び
図21のエンコーダーなどのポイントクラウドデータ送信装置は、以下のような段階でポイントクラウドデータを符号化して送信する。
【0386】
S2800 ポイントクラウドデータを符号化する段階
【0387】
実施例によるポイントクラウドデータ送信方法はポイントクラウドデータを符号化する段階を含む。実施例による符号化段階は、
図1送信装置10000、ポイントクラウドビデオ獲得10001、ポイントクラウドビデオエンコーダー10002、
図2の獲得-符号化20000-20001、
図4のエンコーダー、
図12の送信装置、
図14のXRデバイス1430、
図15及び
図20による原点位置選択、ポイント整列、予測ツリー生成、
図21のエンコーダー、
図23及び
図27のビットストリーム及びパラメータ生成などの動作を含む。
【0388】
S2810 ポイントクラウドデータを含むビットストリームを送信する段階
【0389】
実施例によるポイントクラウドデータ送信方法は、さらにポイントクラウドデータを含むビットストリームを送信する段階を含む。実施例による送信動作は、
図1送信装置10000、送信機10003、
図2の送信20002、
図4、
図12、
図14のジオメトリビットストリーム及び特質ビットストリーム送信、
図15及び
図20により符号化されたポイントクラウドデータを含むビットストリーム(
図23及び
図27)の送信などの動作を含む。
【0390】
図29は実施例によるポイントクラウドデータ受信方法を示す。
【0391】
図1の受信装置10004、受信機10005、ポイントクラウドビデオデコーダー10006、
図2の送信-復号-レンダリング20002-20003-20004、
図10及び
図11のデコーダー、
図13の受信装置、
図14のデバイス、及び
図22のデコーダーなどのポイントクラウドデータ受信装置は、以下のような段階でポイントクラウドデータを受信して復号する。受信側過程は送信側過程の逆過程である。
【0392】
S2900 ポイントクラウドデータを含むビットストリームを受信する段階
【0393】
実施例によるポイントクラウドデータ受信方法は、ポイントクラウドデータを含むビットストリームを受信する段階を含む。実施例による受信する段階は、
図1受信装置10004、受信機10005、
図2の送信20002による受信、
図10及び
図11ジオメトリビットストリーム及び特質ビットストリーム受信、
図13受信装置、
図14のXRデバイス1430、
図15及び
図20などにより符号化されたポイントクラウドデータ受信、
図22のデコーダー、
図23及び
図27のビットストリーム受信などの動作を含む。
【0394】
S2910 ポイントクラウドデータを復号する段階
【0395】
実施例によるポイントクラウドデータ受信方法は、さらにポイントクラウドデータを復号する段階を含む。実施例による復号動作は、
図1のポイントクラウドビデオデコーダー10006、レンダラー10007、
図2の復号-レンダラー-フィードバック20003-20005、
図10及び
図11の復号、
図13の受信/復号、
図15及び
図20などにより符号化されたポイントクラウドデータの復元、
図22デコーダー、
図23及び
図37のパラメータ基盤のビットストリームに含まれたジオメトリデータ及び特質データの復元などの動作を含む。
【0396】
図17及び
図18を参照すると、実施例による方法/装置はジオメトリ予測ツリーコーディングのためにジオメトリデータ(ポイント位置)を再-オーダリングする。
【0397】
実施例による方法/装置は、レーザーセンサーでポイントをキャプチャーする過程においてレーザーセンサーが一定のアングルで回転するので、レーザーアングル属性をポイントが有する(
図15を参照)。かかるレーザーアングルを使用するための方法はポイント再整列のための原点の決定に適用される。
【0398】
実施例による原点決定(Origin determination):
【0399】
ポイントがレーザーアングルを有し、原点を決定するために、レーザーアングルが用いられる。原点は以下の設定にしたがって実施例による方法/装置が選択して決定する。
【0400】
図17及び
図18のように、センターレーザーアングルは90°であってもよい。最左側のポイントであってもよい。
【0401】
図17及び
図18は各スライスごとに選択された原点18001,08004,18007を示す。
【0402】
レーザーアングルに基づく再-オーダリング方法(re-ordering method based on laser angle):
【0403】
図19を参照すると、レーザーアングルが計算されたアジマスの代わりにポイントを再整列するために使用される。レーザーアングル値(レーザーアングル範囲)に応じてポイントが整列される。ポイントの属性であるカラーを基準として配列されてもよい。例えば、ポイントをレーザーアングルで再整列すると、黄色のポイント、青色のポイント、オレンジ色のポイント、緑色のポイントのような例示の順にポイントが整列される結果が得られる。
【0404】
図1を参照すると、ポイントクラウドデータを符号化する段階と、ポイントクラウドデータを含むビットストリームを送信する段階と、を含む。
【0405】
図15を参照すると、レーザーアングルに関連して、ポイントクラウドデータを符号化する段階は、ポイントクラウドデータのジオメトリデータを符号化する段階を含み、ジオメトリデータはポイントクラウドデータに対するレーザーアングルに基づいて符号化される。
【0406】
図17及び
図18を参照すると、原点位置及びポイント整列に関連して、実施例による方法/装置は、ポイントクラウドデータのジオメトリデータがレーザーアングルを有し、レーザーアングルが90°であり、最左側座標のポイントをジオメトリデータの原点として選択する。
【0407】
図19を参照すると、レーザーアングル基盤の整列に関連して、ジオメトリデータはレーザーアングルに基づいて整列される。
【0408】
図20を参照すると、予測ツリー生成に関連して実施例による方法においては、レーザーアングルに基づいて最新レーザーアングルを有するポイントを親とする予測ツリーを生成し、複数のポイントを含む第2レーザーグループのルートノードを複数のポイントを含む第1レーザーグループのルートノードの親ノードとして設定し、第2レーザーグループは第1レーザーグループよりもレーザーアングル値が小さい。最新とは、整列された状態で最初の位置にあるポイント、又は小さいレーザーアングル値を有するポイントを称する。
【0409】
図21を参照すると、ジオメトリ符号化に関連してポイントクラウドデータを符号化する段階は、ポイントクラウドデータのジオメトリデータを符号化する段階を含み、ジオメトリデータを符号化する段階は、ジオメトリデータの座標系を変換してレーザーアングルに基づいて原点を設定し、原点に基づいてジオメトリデータを整列し、整列されたジオメトリデータに基づいて予測ツリーを生成し、予測ツリーに基づいてポイントクラウドデータの予測値を生成し、予測値から残差値を生成してジオメトリビットストリームを生成する。
【0410】
実施例のPCC符号化方法、PCC復号方法、シグナリング方法によれば、以下の効果が得られる。
【0411】
ライダー装備で1フレームずつキャプチャーして格納する場合のシナリオでは角度モードを適用できるが、3Dマップデータ生成のためにライダー装備で複数のフレームをキャプチャーして1つのコンテンツに統合した場合、ライダー装備の中心位置が異なるデータが混ぜられているので、ライダー装備でキャプチャーされたデータが示す角度上の特性、即ち、角度(r,Φ,i)に変更したときのポイント間の規則が隠され、これにより角度モードの適用方が直交座標系基盤の圧縮より効率的ではない。
【0412】
【0413】
【0414】
【0415】
したがって、ライダー(LiDAR)装備でキャプチャーされた特性を用いて圧縮効率を上げるために、3Dマップデータにもコンテンツ内のポイントの規則性から圧縮効率を上げる方案が必要である。
【0416】
この実施例はライダー装備でキャプチャーされ、1つのコンテンツに統合された3Dマップデータの予測ツリー基盤の効率的なジオメトリ圧縮を支援するための予測ツリー構成のための原点選択方法、整列方法、迅速に予測ツリーを構成する方法を支援する。
【0417】
これにより、実施例は3次元ポイントクラウドデータ圧縮のためのG-PCC(Geometry-based Point Cloud Compression)のエンコーダー(符号化器)/デコーダー(復号器)のジオメトリ圧縮効率を上げてポイントクラウドコンテンツストリームを提供することができる。
【0418】
実施例によるPCC符号化器及び/又はPCC復号器は効率的な予測ツリー生成方案を提供し、予測ポイント間の影響度を考慮することにより、ジオメトリ圧縮コーディング/復号効率性を増加させる効果を提供する。
【0419】
したがって、実施例による送信方法/装置は、ポイントクラウドデータを効率的に圧縮してデータを送信し、そのためのシグナリング情報を伝達することにより、実施例による受信方法/装置もポイントクラウドデータを効率的に復号/復元することができる。
【0420】
実施例は方法及び/又は装置の観点で説明しており、方法の説明及び装置の説明は互いに補完して適用できる。
【0421】
説明の便宜のために各図を区分して説明したが、各図に述べている実施例を併合して新しい実施例を具現するように設計することも可能である。また通常の技術者の必要によって、以前に説明した実施例を実行するためのプログラムが記録されているコンピューターで読み取り可能な記録媒体を設計することも実施例の権利範囲に属する。実施例による装置及び方法は、上述したように、説明された実施例の構成と方法が限定して適用されることではなく、実施例は様々に変形可能に各実施例の全部又は一部が選択的に組み合わせられて構成されることもできる。実施例の好ましい実施例について示して説明したが、実施例は上述した特定の実施例に限定されず、請求の範囲で請求する実施例の要旨から離脱せず、当該発明が属する技術分野において通常の知識を有する者により様々な変形実施が可能であり、かかる変形実施は実施例の技術的思想や見込みから個々に理解されてはいけない。
【0422】
実施例による装置の様々な構成要素は、ハードウェア、ソフトウェア、ファームウェア又はそれらの組み合わせにより構成される。実施例の様々な構成要素は一つのチップ、例えば、一つのハードウェア回路で具現される。実施例において、実施例による構成要素はそれぞれ個々のチップで具現される。実施例において、実施例による装置の構成要素のいずれかは一つ又はそれ以上のプログラムを実行できる一つ又はそれ以上のプロセッサで構成され、一つ又はそれ以上のプログラムは実施例による動作/方法のうちのいずれか一つ又はそれ以上の動作/方法を行わせるか、実行させるための指示を含む。実施例による装置の方法/動作を行うための実行可能な指示は、一つ又はそれ以上のプロセッサにより実行されるために構成された一時的ではないCRM又は他のコンピュータープログラム製品に格納されるか、又は一つ又はそれ以上のプロセッサにより実行されるために構成された一時的なCRM又は他のコンピュータープログラム製品に格納されることができる。また実施例によるメモリは、揮発性メモリ(例えば、RAMなど)だけではなく、非揮発性メモリ、フラッシュメモリ、PROMなどを全部含む概念として使用される。また、インターネットによる送信などのような搬送波の形態で具現されることも含む。またプロセッサが読み取られる記録媒体は、ネットワークで連結されたコンピューターシステムに分散されて、分散方式によりプロセッサが読み取られるコードが格納されて実行されることができる。
【0423】
この明細書において、“/”と“,”は“及び/又は”に解釈される。例えば、“A/B”は“A及び/又はB”に解釈され、“A、B”は“A及び/又はB”に解釈される。さらに、“A/B/C”は“A、B及び/又はCのうちのいずれか”を意味する。また、“A、B、C”も“A、B及び/又はCのうちのいずれか”を意味する。さらに、この文書において、“又は”は“及び/又は”に解釈される。例えば、“A又はB”は、1)“A”のみを意味するか、2)“B”のみを意味するか、又は3)“A及びB”を意味する。言い換えれば、この明細書において“又は”は“さらに(additionally)又は代わりに(alternatively)”を意味する。
【0424】
第1、第2などの用語は実施例の様々な構成要素を説明するために使用される。しかし、実施例による様々な構成要素は上記用語により解釈が制限されてはいけない。かかる用語は一つの構成要素を他の構成要素と区別するために使用されることに過ぎない。例えば、第1ユーザ入力信号は第2ユーザ入力信号と称することができる。同様に、第2ユーザ入力信号は第1ユーザ入力信号と称することができる。かかる用語の使用は様々な実施例の範囲から離脱していない。第1ユーザ入力信号及び第2ユーザ入力信号はいずれもユーザ入力信号であるが、文脈上、明確に示していない限り、同一のユーザ入力信号を意味してはいない。
【0425】
実施例を説明のために使用された用語は、特定の実施例を説明するために使用されており、実施例を制限されるものではない。実施例の説明及び請求範囲で使用したように、文脈上明確に称していない限り、単数は複数を含む。「及び/又は」表現は用語間の全ての可能な結合を含む意味で使用される。「含む」は特徴、数、段階、要素及び/又はコンポーネントが存在することを説明し、さらなる特徴、数、段階、要素及び/又はコンポーネントを含まないことを意味しない。実施例を説明するために使用される、「~である場合」、「~のとき」などの条件表現は選択的な場合にのみ制限して解釈されない。特定の条件を満たすとき、特定の条件に対応して関連動作を行うか、又は関連定義が解釈されるように意図されている。
【0426】
また、この明細で説明する実施例による動作は、実施例によってメモリ及び/又はプロセッサを含む送受信装置により行われる。メモリは実施例による動作を処理/制御するためのプログラムを格納し、プロセッサはこの明細で説明した様々な動作を制御する。プロセッサはコントローラなどとも称される。実施例の動作はファームウェア、ソフトウェア及び/又はこれらの組み合わせにより行われ、ファームウェア、ソフトウェア及び/又はこれらの組み合わせはプロセッサに格納されるか又はメモリに格納される。
【0427】
一方、上述した実施例による動作は、実施例による送信装置及び/又は受信装置により行われる。送受信装置はメディアデータを送受信する送受信部、実施例によるプロセスに対する指示(プログラムコード、アルゴリズム、フローチャート及び/又はデータ)を格納するメモリ、及び送受信装置の動作を制御するプロセッサを含む。
【0428】
プロセッサはコントローラなどとも称され、例えば、ハードウェア、ソフトウェア及び/又はそれらの組み合わせに対応する。上述した実施例による動作はプロセッサにより行われる。またプロセッサは上述した実施例の動作のためのエンコーダー/デコーダーなどで具現される。
【0429】
上述したように、実施例を実施するための最善の形態について関連内容を説明する。
【産業上の利用可能性】
【0430】
上述したように、実施例はポイントクラウドデータ送受信装置及びシステムに全体又は部分的に適用することができる。
【0431】
当業者であれば、実施例の範囲内で実施例を様々に変更及び変形することができる。
【0432】
実施例は変更/変形を含み、変更/変形は請求項及びそれと同一のものの範囲内である。
【手続補正書】
【提出日】2023-12-14
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ポイントクラウドデータを符号化する段階と、
前記ポイントクラウドデータを含むビットストリームを送信する段階と、を含む、ポイントクラウドデータ
を送信
するための方法。
【請求項2】
前記ポイントクラウドデータを符号化する
前記段階は、前記ポイントクラウドデータのジオメトリデータを
ジオメトリ符号化する段階を含み、
前記ジオメトリデータは
、前記ポイントクラウドデータに対するレーザーアングルに基づいて符号化される、請求項1に記載
の方法。
【請求項3】
前記ポイントクラウドデータのジオメトリデータは
、レーザーアングルを
含み、
90°の前記レーザーアングル
及び最
も左
の位置を有するポイント
が原点として選択
される、請求項1に記載
の方法。
【請求項4】
前記ジオメトリデータは
、前記レーザーアングルに基づいて整列される、請求項3に記載
の方法。
【請求項5】
前記方法は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親と
して含む予測ツリーを生成
する段階と、
ポイントを含む第2レーザーグループのルートノードを
、ポイントを含む第1レーザーグループのルートノードの親ノードとして設定
する段階と、をさらに含み、
前記第2レーザーグループ
の前記レーザーアングルは
、前記第1レーザーグループ
の前記レーザーアングルよ
り小さい、請求項4に記載
の方法。
【請求項6】
前記ポイントクラウドデータを符号化する
前記段階は、前記ポイントクラウドデータのジオメトリデータを符号化する段階を含み、
前記ジオメトリデータを符号化する
前記段階は、
前記ジオメトリデータの座標系を変換し
てレーザーアングルに基づい
て原点を設定
する段階と、
前記原点に基づいて前記ジオメトリデータを整列
する段階と、
前記整列されたジオメトリデータに基づいて予測ツリーを生成
する段階と、
前記予測ツリーに基づい
て予測値を生成し
、予測値から残
差を生成し
、ジオメトリビットストリームを生成する
段階と、を含み、
前記ビットストリームは、前記選択された原点を示すための情報を含む、請求項4に記載
の方法。
【請求項7】
ポイントクラウドデータを符号化する
ように設定されるエンコーダーと、
前記ポイントクラウドデータを含むビットストリームを送信する
ように設定される送信機と、を含む、ポイントクラウドデータ
を送信
するための装置。
【請求項8】
前記エンコーダーは、前記ポイントクラウドデータのジオメトリデータを符号化する
ように設定されるジオメトリエンコーダーを含み、
前記ジオメトリデータは
、前記ポイントクラウドデータに対するレーザーアングルに基づいて符号化され
、
前記ポイントクラウドデータのジオメトリデータは、レーザーアングルを含み、
90°の前記レーザーアングル及び最も左の位置を有するポイントが原点として選択され、
前記ジオメトリデータは、前記レーザーアングルに基づいて整列され、
前記装置は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親として含む予測ツリーを生成し、
ポイントを含む第2レーザーグループのルートノードを、ポイントを含む第1レーザーグループのルートノードの親ノードとして設定する、ようにさらに設定され、
前記第2レーザーグループの前記レーザーアングルは、前記第1レーザーグループの前記レーザーアングルより小さい、請求項7に記載
の装置。
【請求項9】
前記エンコーダーは、前記ポイントクラウドデータのジオメトリデータを符号化する
ように設定されるジオメトリエンコーダーを含み、
前記ジオメトリエンコーダーは、
前記ジオメトリデータの座標系を変換し
てレーザーアングルに基づい
て原点を設定し、
前記原点に基づいて前記ジオメトリデータを整列し、
前記整列されたジオメトリデータに基づいて予測ツリーを生成し、
前記予測ツリーに基づい
て予測値を生成し
、予測値から残
差を生成し
、ジオメトリビットストリームを生成する
、ように設定され、
前記ビットストリームは、前記選択された原点を示すための情報を含む、請求項
8に記載
の装置。
【請求項10】
ポイントクラウドデータを含むビットストリームを受信する段階と、
前記ポイントクラウドデータを復号する段階と、を含む、ポイントクラウドデータ
を受信
するための方法。
【請求項11】
前記ポイントクラウドデータのジオメトリデータは
、レーザーアングルを
含み、
90°の前記レーザーアングル
及び最
も左
の位置を有するポイント
が原点として選択
され、
前記ビットストリームは、前記選択された原点を示すための情報を含む、請求項
10に記載
の方法。
【請求項12】
前記ジオメトリデータは前記レーザーアングルに基づいて整列され
、
前記方法は、
前記レーザーアングルに基づいて最新レーザーアングルを有するポイントを親として含む予測ツリーを生成する段階と、
ポイントを含む第2レーザーグループのルートノードを、ポイントを含む第1レーザーグループのルートノードの親ノードとして設定する段階と、をさらに含み、
前記第2レーザーグループの前記レーザーアングルは、前記第1レーザーグループの前記レーザーアングルより小さい、請求項
11に記載
の方法。
【請求項13】
前記ポイントクラウドデータを復号する
前記段階は、前記ポイントクラウドデータのジオメトリデータを復号する段階を含み、
前記ジオメトリデータを復号する
前記段階は、
前記ジオメトリデータの座標系を変換し
てレーザーアングルに基づい
て原点を設定
する段階と、
前記原点に基づいて前記ジオメトリデータを整列
する段階と、
前記整列されたジオメトリデータに基づいて予測ツリーを生成
する段階と、
前記予測ツリーに基づい
て予測値を生成
し、前記予測値
と残差
とを加え、ジオメトリデータを復元する
段階と、を含む、請求項
12に記載
の方法。
【請求項14】
ポイントクラウドデータを含むビットストリームを受信する
ように設定される受信部と、
前記ポイントクラウドデータを復号する
ように設定されるデコーダーと、を含む、ポイントクラウドデータ
を受信
するための装置。
【請求項15】
前記デコーダーは、前記ポイントクラウドデータのジオメトリデータを復号する
ように設定されるジオメトリデコーダーを含み、
前記ジオメトリデータは、前記ポイントクラウドデータに対するレーザーアングルに基づいて復号され
、
前記ビットストリームは、原点を示すための情報を含む、請求項
14に記載
の装置。
【国際調査報告】