(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-04-09
(54)【発明の名称】異なる色のLED素子の製造
(51)【国際特許分類】
H01L 33/32 20100101AFI20240402BHJP
H01L 33/08 20100101ALI20240402BHJP
H01L 33/24 20100101ALI20240402BHJP
H01L 33/48 20100101ALI20240402BHJP
【FI】
H01L33/32
H01L33/08
H01L33/24
H01L33/48
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023564618
(86)(22)【出願日】2022-04-20
(85)【翻訳文提出日】2023-11-29
(86)【国際出願番号】 EP2022060361
(87)【国際公開番号】W WO2022223580
(87)【国際公開日】2022-10-27
(32)【優先日】2021-04-22
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】520404964
【氏名又は名称】エピノバテック、アクチボラグ
【氏名又は名称原語表記】EPINOVATECH AB
(74)【代理人】
【識別番号】100120031
【氏名又は名称】宮嶋 学
(74)【代理人】
【識別番号】100107582
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100118843
【氏名又は名称】赤岡 明
(72)【発明者】
【氏名】マルティン、アンドレアス、オルソン
【テーマコード(参考)】
5F142
5F241
【Fターム(参考)】
5F142CB14
5F142CB23
5F142FA32
5F241AA03
5F241CA05
5F241CA40
5F241CA65
5F241CA74
5F241CA75
5F241CB11
5F241FF01
(57)【要約】
LED素子(11、21、31)を形成するための方法が提供される。本方法は、第1のLED素子(11)の第1のアレイを形成するために、第1のnドープGaN層(111)、第1のpドープGaN層(113)および第1のInxGa(1-x)N層(112)をエピタキシャルに成長させることと、複数の第1のトレンチ(161)を備える第1のエッチングマスク(151)を形成することとを備える。本方法は、複数の第1のトレンチ内に第2のLED素子(21)の第2のアレイをエピタキシャルに成長させることと、第2のアレイを保護し、複数の第2のトレンチ(162)を備える、第2のエッチングマスクを形成することと、複数の第2のトレンチ内に第3のLED素子(31)の第3のアレイをエピタキシャルに成長させることとをさらに備える。
【特許請求の範囲】
【請求項1】
異なる色の発光ダイオード(LED)素子(11、21、31)のマトリックス(100)を形成するための方法であって、
GaN犠牲層(140)上に第1の層(110)をエピタキシャルに成長させることであって、前記第1の層が、第1のnドープGaN層(111)、第1のpドープGaN層(113)、およびそれらの間に配置された第1のIn
xGa
(1-x)N層(112)の積層構造を備え、xが0.10~0.75の範囲内にある、エピタキシャルに成長させることと、
第1の色の光を放射するように配置された第1のLED素子(11)の第1のアレイを形成するために前記第1の層をパターニングすることと、
前記第1のアレイを保護し、前記犠牲層を露出させる複数の第1のトレンチ(161)を備える、第1のエッチングマスク(151)を形成することと、
前記複数の第1のトレンチ内に第2のLED素子(21)の第2のアレイをエピタキシャルに成長させることであって、前記第2のLED素子が、第2の色の光を放射するように配置され、第2のnドープGaN層(121)、第2のpドープGaN層(123)、およびそれらの間に配置された第2のIn
yGa
(1-y)N層(122)の積層構造を備え、yが0.20~0.28の範囲内にある、エピタキシャルに成長させることと、
前記第2のアレイを保護し、前記犠牲層を露出させる複数の第2のトレンチ(162)を備える、第2のエッチングマスクを形成することと、
前記複数の第2のトレンチ内に第3のLED素子(31)の第3のアレイをエピタキシャルに成長させることであって、前記第3のLED素子が、第3の色の光を放射するように配置され、第3のnドープGaN層(131)、第3のpドープGaN層(133)、およびそれらの間に配置された第3のIn
zGa
(1-z)N層(132)の積層構造を備え、zが0.28~0.33の範囲内にある、エピタキシャルに成長させることと
を備え、前記第1のアレイ、前記第2のアレイおよび前記第3のアレイが前記マトリックスを形成する、方法。
【請求項2】
前記第1のIn
xGa
(1-x)N層が0.5~3nmの厚さを有し、前記第2のIn
yGa
(1-y)N層が2~3nmの厚さを有し、前記第3のIn
zGa
(1-z)N層が2.8~3.5nmの厚さを有する、請求項1に記載の方法。
【請求項3】
前記第1のLED素子の各々の最大横幅が、2~5μmまたは5~25μmなど、0.1~25μmの範囲内にあり、前記第2のLED素子の各々の最大横幅が2~3nmの範囲内にあり、および/あるいは前記第3のLED素子の各々の最大横幅が2.8~3.5nmの範囲内にある、請求項1または2に記載の方法。
【請求項4】
前記GaN犠牲層がnドープまたはpドープされている、請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記マトリックスが、ディスプレイデバイスの複数のピクセルを形成するように構成され、各ピクセルが、前記第1のLED素子のうちの少なくとも1つならびに複数の前記第2のLED素子および前記第3のLED素子から形成される、請求項1から4のいずれか一項に記載の方法。
【請求項6】
前記第1の色が青であり、前記第2の色が緑であり、前記第3の色が赤である、請求項1から5のいずれか一項に記載の方法。
【請求項7】
前記第1のIn
xGa
(1-x)N層、前記第2のIn
yGa
(1-y)N層および前記第3のIn
zGa
(1-z)N層のうちの少なくとも1つの両側に当接するAlGaNバリア層(114、124、134)を形成することをさらに備える、請求項1から6のいずれか一項に記載の方法。
【請求項8】
前記AlGaNバリア層のうちの少なくとも1つに当接する非ドープGaN層(115、125、135)を形成することをさらに備える、請求項7に記載の方法。
【請求項9】
前記第1のエッチングマスクおよび前記第2のエッチングマスクがハードマスクである、請求項1から8のいずれか一項に記載の方法。
【請求項10】
前記第2のエッチングマスクが、第2のLED素子の前記第2のアレイをマスク材料で覆うことと、前記第1のエッチングマスクを形成する層内に前記複数の第2のトレンチを形成することとによって形成される、請求項1から9のいずれか一項に記載の方法。
【請求項11】
前記GaN犠牲層が、複数のAlNピラー(141)を備える層を備える基板(170)上に配置され、前記複数のピラーが、前記GaN犠牲層の材料によって埋め込まれる、請求項1から10のいずれか一項に記載の方法。
【請求項12】
前記第1のLED素子、前記第2のLED素子および前記第3のLED素子のうちの少なくともいくつかの間に複数の第3のトレンチ(163)を形成することであって、前記複数の第3のトレンチが、前記複数のピラーを備える前記層まで延在する、形成することと、
前記複数のピラー間の前記GaN犠牲層の前記材料の少なくとも一部を選択的に除去することと
をさらに備える、請求項11に記載の方法。
【請求項13】
前記第1のLED素子、前記第2のLED素子および前記第3のLED素子をキャリア基板(180)に接合することと、それに続く、
前記複数のピラーを除去することによって、前記第1のLED素子、前記第2のLED素子および前記第3のLED素子を前記基板から解放することと
をさらに備える、請求項12に記載の方法。
【請求項14】
前記第1のLED素子、前記第2のLED素子および前記第3のLED素子のうちの少なくとも1つの下方に第4のLED素子(41)を形成することであって、前記第4のLED素子が、前記第1のIn
xGa
(1-x)N層、前記第2のIn
yGa
(1-y)N層または第3のIn
zGa
(1-z)N層を光学的にポンピング(optically pumping)するための第4のIn
dGa
(1-d)N層(212)を備える、形成すること
をさらに備える、請求項1から13のいずれか一項に記載の方法。
【請求項15】
前記インジウム組成dが0.05未満であり、前記第4のIn
dGa
(1-d)N層が1~6nmの厚さを有する、請求項14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の概念は、一般に、窒化ガリウム(GaN)ベース発光ダイオード(LED)に関し、特に、異なる色のそのようなLEDのマトリックスを形成するための方法に関する。
【背景技術】
【0002】
GaNベースLEDは近年注目されており、少なくとも、ディスプレイデバイスにおけるRGBピクセルを形成する従来のLEDの潜在的な代替品としてではない。GaNベースLEDは、量子閉じ込め領域を提供する窒化インジウムガリウム(InGaN)の活性層を有するGaNから形成された量子ヘテロ構造を含み得る。InGaN層は、GaNと窒化インジウム(InN)との混合物から形成され得、InGaN層によって放射される光の波長は、GaN/InN比を変化させることによって、また、InGaN層の厚さを制御することによって、調節されることが可能である。
【0003】
従来、GaNベースLEDは、エピタキシャル成長、それに続くチップ製造、ウエハダイシングおよびピックアンドプレースロボット操作によって、バルクワイヤボンディングによって相互接続されることが可能である個々にパッケージングされた構成要素に製作され得る。しかしながら、従来のバックエンド処理は、半導体デバイスの小型化およびスケーリングを求める全体的な努力とともに、より困難になる。したがって、LEDが基板上に形成され、エッチングによって互いに分離され、リフトオフ処理においてキャリアウエハに転写される異なる手法が提案された。LEDは、レーザーリフトオフまたはケミカルリフトオフによって基板から分離され、対象の基板上に転写プリントされ得る。
【0004】
しかしながら、この製造方法は、比較的費用のかかる複雑な一連の処理ステップを必要とすることが知られており、したがって、代替のより効率的な製作方法を提供することが望ましい。
【0005】
LEDのサイズを縮小することに関連するいくつかの技術的課題もある。顕微鏡用LEDは、例えば、フルカラー動作、外部量子効率(EQE)の低下、低効率および低収率の物質移動に関係する問題点を抱えている場合がある。さらに、顕微鏡用LEDエピタキシーは、波長および厚さの均一性の改善を必要とし得る。100マイクロメートル未満のチップには、均一な波長および厚さが望ましい。さらに、LEDチップの周りの切断損傷によって引き起こされる不均一性により、電力漏れが発生し得、これは、全体的な発光特性に影響を及ぼし得る。駆動電流は、好ましくは、比較的低くあるべきであり、品質保証の検査および試験は、一般に、チップサイズが小さいほど困難である。特に、LEDチップが非エピタキシャル基板に転写される物質移動製作処理は、主要な技術的課題である。フルカラーRGBチップでは、色変換は、特に20マイクロメートル未満のサイズのチップの場合、不十分な輝度収率の問題に関連し得る。他の問題点は、マイクロLEDの低い外部量子効率(EQE)であり得る。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の概念の目的は、従来技術の欠点のうちの1つまたは複数を全体的または部分的に克服し、上記の技法の改善された代替案を提供することである。この、およびさらなる目的は、以下から理解され得る。
【課題を解決するための手段】
【0007】
本発明の概念の一態様によれば、第1のLED素子の第1のアレイ、第2のLED素子の第2のアレイ、および第3のLED素子の第3のアレイを形成するための方法が提供され、第1、第2および第3のアレイは、異なる色の光を放射することが可能なLED素子のマトリックスを形成する。LED素子の第1、第2および第3のアレイは、GaNを備える犠牲層上にエピタキシャル成長によって形成される。
【0008】
したがって、本方法は、GaN犠牲層上に第1の層をエピタキシャルに成長させることであって、第1の層が、第1のnドープGaN層、第1のpドープGaN層、およびそれらの間に配置された第1のInxGa(1-x)N層の積層構造を備え、xが0.10~0.75の範囲内にある、エピタキシャルに成長させることを備える。次いで、第1の層は、第1の色の光を放射するように配置された第1のLED素子の第1のアレイを形成するためにパターニングされ、その後に、第1のアレイを保護し、犠牲層を露出させる複数の第1のトレンチを有する、第1のエッチングマスクを形成することが続く。第1のエッチングマスクは、第1のアレイおよび犠牲層を覆うマスク材料の層を堆積することと、犠牲層を露出させるトレンチを形成するためにその層をパターニングすることとによって形成され得る。その後、第2のLED素子の第2のアレイは、複数の第1のトレンチ内にエピタキシャルに成長され得る。第2のLED素子は、第2の色の光を放射するように配置され、第2のnドープGaN層、第2のpドープGaN層、およびそれらの間に配置された第2のInyGa(1-y)N層の積層構造を備え、yは0.20~0.28の範囲内にある。さらに、本方法は、第2のアレイを保護し、犠牲層を露出させる複数の第2のトレンチを備える、第2のエッチングマスクを形成することを備える。第2のエッチングマスクは、第2のLED素子の第2のアレイをマスク材料で覆うことと、複数の第2のトレンチを形成するために第1のマスク層をパターニングすることとによって形成され得る。その後、第3のLED素子の第3のアレイは、複数の第2のトレンチ内にエピタキシャルに成長され得る。第3のLED素子は、第3の色の光を放射するように配置され、第3のnドープGaN層、第3のpドープGaN層、およびそれらの間に配置された第3のInzGa(1-z)N層の積層構造を備え、zは0.28~0.33の範囲内にある。
【0009】
本発明の概念は、異なる色のLED素子の統合処理を可能にする。上記の態様に関連して概説されたように、同じGaN犠牲層上に第1、第2および第3のLED素子を備えるマトリックスを形成するための技法が提供される。これは、エピタキシャル成長、パターニングおよびマスキングを伴う順次処理によって達成され得る。より具体的には、第1のLED素子は、第2および第3のLED素子の処理中に第1のエッチングマスクによって保護され得、第2のLED素子は、第3のLED素子の処理中に追加のマスク材料によって保護され得る。さらに、様々なLED素子の寸法およびレイアウトは、第1の層のパターニングならびに第1および第2のトレンチの画定によって決定され得る。LED素子は、個々の素子の比較的小さいサイズを指す、マイクロLEDと呼ばれることもある。したがって、得られたマトリックスは、異なる色のLED素子が同じ基板上に生成され得るモノリシックLEDデバイスであり得る。LED素子は、例えば、RGBカラーモデルにおいて指定された赤色、緑色および青色の光を放射するように構成され得、それにより、マトリックスがディスプレイデバイスのRGBピクセルを形成することを可能にする。同じ基板上で異なる色を合成することは、異なる色のLED素子が別々の処理において別々の基板上に形成され、次いで、バックエンド処理においてピクセルに合成され得る従来技術の技法よりも有利である。
【0010】
第1、第2および第3のLED素子の順次エピタキシャル成長は、活性層の組成、すなわち、InGaN層によって形成された量子閉じ込め領域のIn含有量を、放射光の波長を制御するために第1のLED素子と第2のLED素子と第3のLED素子との間で変化させることを可能にする。放射光の波長にさらに影響を及ぼすように、活性層の厚さも変化され得る。したがって、上述の第1、第2および第3の厚さは、所望の波長範囲、または得られたLED素子から放射される光の色に応じて変化され得る。同じことが、それぞれ、変数x、yおよびzについての第1、第2および第3の範囲に当てはまり、これらも、所望の光出力に従って変化され得る。
【0011】
エピタキシー処理は、放射光の波長に影響を及ぼすように変化および制御され得るが、第1の層のパターニングと第1および第2のトレンチの画定とは、それぞれ、第1、第2および第3のLED素子の横方向寸法を変化させるように制御され得る。LED素子の最大幅、および好ましくは面積など、横方向寸法は、異なるLED素子の輝度を制御し、そのバランスをとるように変化され得る。一例では、第1のLED素子は、量子井戸(quantum wells)を形成する(例えば、青色波長範囲内の光を放射する)マイクロメートルサイズの量子閉じ込め領域を備え得るが、第2および第3のLED素子は、量子ドット(quantum dots)、すなわち、10ナノメートル未満など、数ナノメートルの幅を有する(例えば、それぞれ、赤色および緑色波長範囲内の光を放射する)量子閉じ込め領域から形成され得る。第2および第3のLED素子の量子閉じ込め領域の横方向寸法は、例えばナノインプリントリソグラフィによって第1のマスク層内に形成され得る、第1および第2のトレンチの幅によって決定され得る。
【0012】
一次元または二次元であり得るアレイは、マトリックスの第1、第2および第3のLED素子がディスプレイデバイスのピクセルの個別に制御可能なサブピクセルを形成することを可能にする、様々なレイアウトおよび構成において提供され得る。したがって、赤色、青色または緑色など、単一の色の制御可能なエンティティ(entity)として理解されることがある、サブピクセルは、言い換えれば、第1、第2または第3の色の1つまたはいくつかのLED素子から形成され得る。アレイレイアウトおよびLED素子寸法の例は、図面の詳細な説明に関連してより詳細に説明される。
【0013】
本明細書で使用される「横、横方向(lateral)」という用語は、上述の層の主延在面に平行である方向または平面を示す。マトリックスおよび犠牲層は、処理中に基板によって支持され得、「横」方向または「横」平面という用語は、等価的に、基板の主延在面に平行な方向として理解され得る。
【0014】
本明細書で使用される「垂直」方向または「垂直」面という用語は、水平方向または水平面に直角である方向または平面を示す。すなわち、「垂直」方向または「垂直面」という用語は、マトリックスおよび犠牲層を支持する基板の主延在面に直角である方向または平面を示す。
【0015】
したがって、「上方(above)」および「下方(below)」という用語は、それぞれ、垂直方向に沿った方向および垂直方向とは反対の方向を指す。
【0016】
別の構造または層上に直接隣接して配置された層または構造は、垂直方向において他の構造または層の上方に配置され、下方の構造または層と物理的インターフェース(interface)を共有するものとして理解され得る。そのような物理的インターフェースは、導電性コンタクトを提供するかまたは妨害する、すなわち、インターフェースを横切る電荷キャリアトランスポートを可能にするように構成され得る。導電性コンタクトは、例えば、オーミックコンタクト、ショットキーコンタクト、および/あるいはpn接合またはトンネル接合を横切るコンタクトを指し得る。
【0017】
一実施形態によれば、第1のInxGa(1-x)N層は、平均0.5~3nmである第1の厚さを有し得る。第2のInyGa(1-y)Nは、平均2~3nmである第2の厚さを有し得、第3のInzGa(1-z)N層は、平均2.8~3.5nmである第3の厚さを有し得る。これらの寸法でマトリックスが取得され得、第1のLED素子は青色光を放射することが可能であり得、第2のLED素子は緑色光を放射することが可能であり得、第3のLED素子は赤色光を放射することが可能であり得る。
【0018】
発光効率、または輝度は、第1のLED素子と第2のLED素子と第3のLED素子との間で変化し得る。前述のように、輝度の差は、LED素子の横方向の延在を変化させることによって調整されるか、または少なくとも部分的にバランスをとられ得る。したがって、一実施形態によれば、例えば第1のLED素子の面積または横幅によって特徴付けられる、第1のLED素子の横方向サイズは、第2および第3のLED素子と比較して比較的大きい場合がある。第1のLED素子の各々の最大横幅は、例えば、0.1~1μm、2~5μmまたは5~25μmの範囲内にあり得、第2および第3のLED素子の各々の最大横幅は、10nm以下であり得る。いくつかの例では、最大横幅は、第2のLED素子については2~3nm、および第3のLED素子については2.8~3.5nmの範囲内にあり得る。LED素子のこれらの横方向寸法は、InGaN層が、基板上で変化するインジウム組成についても実質的に単色の光を放射する改善された能力を有する井戸(a well)またはドット(a dot)など、量子閉じ込め領域を形成することを可能にすることが示されている。
【0019】
一実施形態によれば、GaN犠牲層は、nドープまたはpドープされ得る。有利には、GaN犠牲層は、LED素子を形成する積層構造のnドープまたはpドープ層を形成し得る。したがって、LED素子の第1、第2または第3のInGaN層、あるいは、例えばバリア層など、積層構造に含まれる他の層は、nドープまたはpドープGaN層上に直接エピタキシャルに成長され得る。
【0020】
一実施形態によれば、マトリックスは、ディスプレイデバイスのための複数のピクセルを形成するように構成され得る。各ピクセルは、第1のLED素子のうちの少なくとも1つならびに複数の第2および第3のLED素子から形成され得る。言い換えれば、ピクセルは、第1のLED素子のうちの少なくとも1つから形成された第1のサブピクセルと、第2のLED素子のグループから形成された第2のサブピクセルと、第3のLED素子のグループから形成された第3のサブピクセルとを備え得る。一例では、第2および第3のLED素子のグループの各々は、第1のサブピクセルのフットプリントと実質的に同じであるフットプリントを有し得る。第1の色と第2および第3の色との間の輝度の差のバランスをとるように、第2および第3のサブピクセルについては複数のLED素子を使用し、第1のサブピクセルについては1つまたは少数のLED素子のみを使用することが有利であり得る。
【0021】
一実施形態によれば、画像生成技術において一般的に使用されるRGBカラーモデルに従ってピクセルが形成されることを可能にするように、第1の色は青色、第2の色は緑色、第3の色は赤色であり得る。
【0022】
一例によれば、AlGaNバリア層が、第1のInxGa(1-x)N層、第2のInyGa(1-y)N層および第3のInzGa(1-z)N層のうちの少なくとも1つの両側に形成され得る。AlGaNバリアは、InGaN層に直接隣接して配置され、すなわち、InGaN層との接合またはインターフェースを形成し、それにより、活性層内に正(孔)電荷キャリアを閉じ込めるためのバリア構造として働き得る。AlGaNは、InGaN合金よりも広いバンドギャップを有することが知られており、したがって、トンネリング電子が、InGaN層によって形成された量子閉じ込め領域の外側にトンネリングするのを妨害するためのポテンシャル障壁(a potential barrier)として機能し得る。AlGaNバリア層は、第1、第2および第3のLED素子のうちの少なくとも1つのエピタキシャル成長において、例えば、InGaN層を成長させる直前に第1のバリア層をエピタキシャルに成長させ、InGaN層を成長させた直後に第2のバリア層をエピタキシャルに成長させることによって形成され得る。
【0023】
一例によれば、AlGaNバリア層がInGaN層と非ドープGaN層との間に配置されるように、非ドープGaN層がAlGaNバリア層のうちの少なくとも1つに直接隣接して形成され得る。非ドープGaN層は、InGaN層の変調ドーピングの品質が劣化されるのを妨害するために設けられ得る。
【0024】
一実施形態によれば、第1のエッチングマスクおよび第2のエッチングマスクのうちの少なくとも1つは、ハードマスクであり得る。ハードマスクは、例えば、堆積された酸化物または窒化物材料から、あるいはスピンオン(spin-on)材料によって、形成され得る。好ましくは、ハードマスクは、第1および第2のトレンチの形成と、それに関連するエピタキシャル成長とを伴う複数のパターニング処理に耐えることが可能であり得る。したがって、第2のエッチングマスクは、LED素子の第2のアレイを、上記の酸化物または窒化物材料など、マスク材料で覆うことによって、および第1のエッチングマスクを形成する層内に複数の第2のトレンチをエッチングすることによって、形成され得る。したがって、第1のエッチングマスクおよび第2のエッチングマスクは、エッチングマスク材料の同じ層内に形成され得る。
【0025】
pドープGaN層とnドープGaN層との間に配置されたInGaN層によって形成される量子閉じ込め領域は、必ずしも平面構造に限定されるとは限らない。InGaN層は、例えば、例えば下にあるpドープまたはnドープGaN層上に、またはそれらによって形成され得る、ピラミッド構造の側面など、斜面上に配置され得る。さらに、InGaN層によって形成される量子閉じ込め領域は、平面層以外の形状および構造において提供され得る。量子閉じ込め領域は、例えば、一次元においてキャリアを閉じ込める量子井戸、二次元においてキャリアを閉じ込める量子細線(a quantum wire)、または三次元すべてにおいてキャリアを閉じ込める量子ドットとして形成され得る。構造的には、InGaN層は、いくつかによれば、詳細な説明においてさらに説明されるように、ピラーまたはピラミッドとして提供され得る。
【0026】
さらに、LED素子を形成する積層構造が2つ以上のInGaN層を備え得ることが理解されよう。したがって、LED素子は、複数のInGaN層によって形成された多重量子井戸を備え得る。
【0027】
一実施形態によれば、紫外線(UV)LED素子など、第4のLED素子が、第1、第2または第3のLED素子のうちの少なくとも1つの下に形成され得る。上記のLED素子の光ポンピング(optical pumping)のために使用される第4のLED素子が提供され得る。第4のLED素子は、dに対応するインジウム組成が0.05未満である第4のIndGa(1-d)N層を備え得る。さらに、層厚さは1~6nmの範囲内にあり得る。第4のLED素子は、いくつかの例では、多重量子井戸(MQW)を備え得る。第4のLED素子は、上記で説明された実施形態のいずれかと合成され得、第1、第2および第3のLED素子と同様の処理によって形成され得る。したがって、第4のLED素子は、nドープGaN層およびpドープGaN層と、それらの間の活性な第4のIndGa(1-d)N層とを備える積層構造のエピタキシーによって形成され得る。上記で概説されたように、例えばAlGaNおよび/または非ドープGaNを備える追加のバリア層も、積層構造に設けられ得る。
【0028】
本出願で使用される「LED素子」という用語は、上記で概説されたような、第1(あるいは第2または第3)のLED素子と下にある第4のLED素子との合成構造を指し得ることが理解されよう。したがって、LED素子という用語は、いくつかの実施形態では、第1、第2および第3のLED素子のいずれかの光学的にポンピングされたバージョンを指し得る。
【0029】
一実施形態によれば、GaN犠牲層は、GaN犠牲層の材料によって埋め込まれた複数のピラーを備える層を有する基板上に配置され得る。ピラーは、垂直方向で見られるように、LED素子の下に配置され得る。ピラーは、GaN犠牲層のエッチング後にLED素子を機械的に支持するように適合され得、言い換えれば、GaN犠牲層が少なくとも部分的に除去された後に、LED素子を下にある基板にテザリングまたは固定するように構成され得る。好ましくは、ピラーは、LED素子がGaN犠牲層から解放されることを可能にするように、GaNに対して十分にエッチング選択的である材料から形成され得る。一例では、ピラーはAlNから形成され得、これは、GaNに対する十分に高い選択性でエッチングすることが可能であることを示した。
【0030】
一実施形態によれば、第1、第2および第3のLED素子のうちの少なくともいくつかの間に複数の第3のトレンチが形成され得る。第3のトレンチは、例えば、同じ色の1つまたはいくつかのLED素子を備えるサブピクセルを画定するかまたは区切るように配置され得る。第3のトレンチは、GaN犠牲層の少なくとも一部がピラーに対して選択的に除去されることを可能にするように、複数のピラーを備える層までエッチングされ得る。GaN犠牲層のエッチングの後に、基板は、次に、同じ色の1つまたはいくつかのLED素子を備えるサブピクセルにグループ化され得る複数のLED素子を支持する複数のピラーを備え得る。
【0031】
一実施形態によれば、ピラーによって支持される第1、第2および第3のLED素子は、上方からキャリア基板に取り付けられるか、または接合され得る。後続のステップにおいて、第1、第2および第3のLED素子は、ピラーを除去または破壊することによって基板から解放され得る。ピラーは、例えば、エッチングによって除去され得る。
【0032】
したがって、ピラーは、転写前に、LED素子の第1、第2および第3のアレイによって形成されたマトリックスを基板または原基板にテザリングするために使用され得る。ピラーは、キャリアウエハへの取付け中に、基板に対して格子不整合(lattice-unmatched)であり得るLED素子を支持し、基板とLED素子との間の格子および熱膨張係数不整合によって引き起こされるウエハボウ(wafer bow)のリスクを低減し得る。
【0033】
代替的な実施形態では、ピラーは、LED素子からの光抽出を増加させるために、LED素子の下に保持され得る。その場合、ピラーは、LED素子によって放射された光の散乱を容易にするために使用され得る。
【0034】
さらに、本実施形態は、シリコンCMOS製造によって提供される最先端のCMOSバックプレーン処理のために、LED素子がシリコン上にモノリシックに生成されることを可能にする。好ましくは、キャリアは、6インチのシリコンウエハ、またはそれよりも大きいシリコンウエハであり得る。代替的に、LED素子は、ガラス基板に転写され得る。そのようなガラスディスプレイは、電気自動車のフロントガラスまたはドアガラスとして使用され得る。
【0035】
本発明の一例では、マトリックスは、ガラスLEDディスプレイを形成するためにガラス基板に転写され得る。そのようなガラスLEDディスプレイは、電気自動車など、車両のフロントガラスとして提供され得る。LED素子は、フロントガラスがGPS命令を拡張現実情報として運転者に表示すること、例えば、運転中に道路を200m走行して右折または左折することを視覚的に表示することを可能にし得る。さらに、ガラスLEDディスプレイは、運転中に運転者に様々なインフォテインメントを示し得る。好ましくは、エレクトロルミネセンスは、日光の下で拡張現実情報を提供するために比較的高い場合がある。ガラスLEDディスプレイはまた、歩行者が道路を歩いていること、または自転車が車両と衝突しそうであることを、さらなるアクションがとられない場合なしに示す警告など、運転者への注意喚起として近くの物体を強調表示する際の支援を提供し得る。
【0036】
本発明の別の例では、LEDマトリックスは、GaNバッファ層を有するシリコンウエハから処理された超高解像度(UHD)8Kディスプレイであり得る。ディスプレイは、33177600個のピクセルを有する7680×4320の解像度を有し得る。同様に、UHD 4Kの解像度を有するLEDマトリックスは、8294400のピクセルカウントを有する3840×2160の解像度で処理され得る。
【0037】
本発明の概念の、上記のならびに追加の目的、特徴および利点は、添付の図面を参照して、以下の例示的および非限定的な詳細な説明によってより良く理解される。図面において、別段に記載されていない限り、同様の要素について同様の参照番号が使用される。
【図面の簡単な説明】
【0038】
【
図1】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図2】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図3】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図4】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図5】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図6】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図7】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図8】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図9】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図10】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図11】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図12】異なる色のLED素子のマトリックスを形成するための方法を概略的に示す断面図である。
【
図13】LED素子のアレイの配置を示す、そのようなマトリックスの上面図である。
【
図14】いくつかの実施形態による、LED素子の断面図である。
【
図15】いくつかの実施形態による、LED素子の断面図である。
【
図16】いくつかの実施形態による、LED素子の断面図である。
【発明を実施するための形態】
【0039】
図示された構造および層は、図示された部分を超えて横方向に延在し得ることに留意されたい。さらに、図面の概略的な性質のために、様々な構造および層の相対的寸法が縮尺通りに描かれていないことに留意されたい。むしろ、寸法は、説明の明確さのために、および以下の説明の理解を容易にするために適合されている。
【0040】
次に、
図13に示されているLED素子11、21、31のマトリックス100を形成するための方法が、
図1~
図12を参照して説明される。理解され得るように、
図13に示されているようなマトリックスを形成するために以下の方法ステップのサブセット(a sub-set)が実行され得る。
【0041】
図1では、GaNの犠牲層140が基板170上に形成されている。基板170は、例えば、シリコン(111)基板であり得る。さらに、複数の垂直ピラー141を備えるピラー層142が、ピラー141がGaN犠牲層140に埋め込まれるように基板170上に設けられ得る。ピラー141は、例えば、基板170上にAlN層142をエピタキシャルに成長させることと、それに続く、AlN層142のリソグラフィパターニング(lithographic patterning)およびAlN層142の表面から突出する複数のマイクロピラー141へのエッチングとによって、形成され得る。ピラーは、例えば、100nm以下の厚さを有し得、隣接するピラー間の400nmのピッチまたは分離距離を有する六角形パターンで配置され得る。
図1は、複数のピラー141がGaN犠牲層140に埋め込まれた、得られた構造の一例を示す。GaN犠牲層140は、エピタキシャル成長によって形成され得る。
【0042】
本発明の概念によれば、
図1に示されているものなど、第1の層110が犠牲層140の上方に形成され得る。第1の層110は、犠牲層140上にエピタキシャルに成長され得、以下の図に示されるように、そこからマトリックスの第1のLED素子が画定されることになる積層構造を備え得る。積層構造は、それらの間にInGaNの活性層が配置された第1および第2のドープGaN層から形成された量子ヘテロ構造を形成し得る。InGaNは、GaN/InN比を変化させることによって、また、InGaN層が特定の波長範囲内の光を放射することを可能にするようにInGaN層の厚さを制御することによって調節されることが可能であるバンドギャップを有する、GaNとInNとの混合物であり得る。
【0043】
そのような積層構造の一例が、
図1の第1の層110の一部を示す
図2に示されている。積層構造は、GaN犠牲層140上に配置された第1のnドープGaN層111と、第1のnドープGaN層111の上方に配置された第1のpドープGaN層113と、第1のnドープGaN層111と第1のpドープGaN層113との間に配置された第1のIn
xGa
(1-x)N層112とを備え得る。GaNは、本質的にドープされるか、またはシランでドープされ得る。pドーピングでは、好ましくは100~250sccmのMg
3N
2の供給が、エピタキシー処理中に使用され得る。
【0044】
nドープGaN層およびpドープGaN層の順序は、いくつかの例では、第1のpドープGaN層113が第1のInxGa(1-x)N層112の下方に配置され、第1のnドープGaN層111がInxGa(1-x)N層112の上方に配置されるように切り替えられ得る。また、AlGaNバリア114および非ドープGaN層115など、追加の層が積層構造に追加され得、これは後でさらに詳細に説明される。
【0045】
好ましくは、積層構造の層は、エピタキシーによって形成され得、したがって、エピタキシャル層またはエピ層と呼ばれ得る。エピタキシー処理は、GaN犠牲層140上で開始され得、したがって、エピタキシャル層は、GaN犠牲層140の方位に関連して決定される結晶方位を有し得る。積層構造は、積層構造の異なる層を提供するように反応物の組成が変化され得る気相ベース(vapour-phase based)エピタキシー処理を使用して成長され得る。
【0046】
一例では、緊密結合シャワーヘッド有機金属化学気相堆積(a close coupled showerhead metalorganic chemical vapour deposition:CCS MOCVD)反応器が使用され得、これは、積層構造の組成および寸法が、6インチウエハまたはより大きいウエハなど、比較的大きい表面にわたって制御されることを可能にし得る。CCS MOCVD反応器は、pドープGaN層およびnドープGaN層のin-situドーピングレベルを制御するためにさらに使用され得る。このタイプの反応器は、反応物の全流量に対して実質的に直線的であるエピタキシャル成長速度を提供することが可能であることが示されている。ガスが基板に拡散し得る境界層δの厚さは、中央よどみ点からの半径方向距離とは無関係であり得る。これは、6インチまたは12インチウエハなど、比較的大きい基板の処理に特に有利であることが示されている。反応物が基板に拡散し始める境界層δは、
【数1】
として定量化され得、ここで、Re
vertは、基板への垂直流のレイノルズ数である。さらに、レイノルズ数は
【数2】
と書かれることが可能であり、ここで、uは流量であり、Dはチャンバ直径であり、Hはチャンバ高さであり、ρはガス密度であり、μはガスの動的粘度である。
【0047】
CCS MOCVD反応器を使用することのさらなる利点は、反応器の容積が拡大されると、高温反応器壁付近の高温蒸気循環の影響が減少し得ることであり、これは、ウエハ表面全体にわたって同じエピタキシャル成長条件を達成するのに好都合であることが示されている。したがって、比較的大きいウエハ表面上の所定のロケーションにおいて高い再現性が達成され得る。In、GaおよびNの反応三成分系の濃度勾配は、反応のための1つの反応物質の限定から生じ得る。反応器内の境界層の厚さを低減することによって、得られたLED素子の色品質を微調節するために、InGaNの組成が制御されることが可能である。InGaN層のバンドギャップは、InGaN層によって形成された量子閉じ込め領域の厚さを変化させることによってさらに修正され得る。量子閉じ込め領域の厚さは、第III族前駆体と反応する第V族前駆体の供給によって制御され得る。
【0048】
InGaN層の厚さを変化させることは、赤色LED素子を生成するとき、さらに有利であり得る。InGaN層を形成するInGaN合金中のインジウム比は、InGaN層の成長中に反応器チャンバ内のウエハにわたってわずかに変化し得る。これは、相分離する傾向もある、非常にインジウムに富む組成物の潜在的な問題点であり得る。したがって、非常にインジウムに富む組成物から生じるバンドギャップに関連する赤色LED素子の生成は、実際に制御するのが困難であり得る。InGaN層の厚さを制限することは、色品質を制御するためのさらなる手段を提供し得る。インジウム組成に関する制約を緩和することによって、赤色LED素子のためのInGaNエピ層の好ましい厚さは約3nmであり得、緑色LED素子の場合は約2.5nmであり得、青色LED素子の場合は約2nmであり得る。これらの例では、組成は1~2%まで変化し得、LED素子の色への影響は依然として無視できる。
【0049】
図2に示されている本例では、最初に犠牲層140の表面上にnドープGaN層111を成長させ、次いで第1のnドープGaN層111上に第1のIn
xGa
(1-x)N層112を成長させ、その後に第1のIn
xGa
(1-x)N層112上に第1のpドープGaN層113を成長させることによって、第1の層110が形成され得る。第1のIn
xGa
(1-x)N層112の厚さは0.5~3nmであり得、In比は、xが0.10~0.75の範囲内にあることによって決定され得る。
【0050】
得られたLED素子の性能をさらに改善するように、積層構造に追加の層が設けられ得る。追加の層は、好ましくは、上記で説明されたCCS MOCVD反応器においてなど、積層構造の残りと同じエピタキシー処理によって形成され得る。
【0051】
一例では、InGaN層の両側にAlGaNの層114が設けられ得る。AlGaNは、InGaNよりも広いバンドギャップを有することが知られており、したがって、トンネリング電子が、InGaNの活性層によって形成された量子閉じ込め領域の外側にトンネリングするのを妨害するポテンシャル障壁として機能し得る。したがって、AlGaN層114は、InGaN層112とAlGaNバリア層114との間に接合またはインターフェースが形成されるように、InGaN層112の真下および真上に形成され得る。AlGaNは、2つのバリア層114において設けられ得、そのうちの第1のバリア層は、InGaN層112の形成前にエピタキシーによって形成され得、したがって、AlGaN層114上に成長され得、第2のバリア層は、InGaN層112上に直接エピタキシャルに成長され得る。
【0052】
別の例では、厚さ2~10nmの非ドープGaNの層115が、InGaN層112と非ドープGaN層115との間にAlGaN層114が配置されるように、AlGaN層114の一方または両方に隣接して形成され得る。非ドープGaN層115は、AlGaN層114に当接するように配置され得、InGaN層112の変調ドーピングを改善するように設けられ得、ここにおいて、電荷キャリアが量子閉じ込め領域の底部に移動する。
【0053】
さらに、2つ以上のInGaN層112が設けられる場合もあり、それにより、多重量子井戸を形成することが理解されよう。
【0054】
次いで、第1の層110は、例えば
図3および
図4に示されている処理ステップによって、第1のLED素子11の第1のアレイにパターニングされ得る。
図3では、第1の層110は、ポジマスク153でリソグラフィ的にパターニングされており、これは、第1のLED素子11に形成されることになる第1の層110のエリアを画定する。ポジマスク153は、例えば、a-C、a-Si、スピンオンカーボン(SOC)、SiCNまたはフォトレジストの層から形成され得、リソグラフィパターニングは、例えば、ナノインプリントリソグラフィを含み得る。
【0055】
図4では、ポジマスク153のパターンは、第1のLED素子11を形成する第1の層110のエリアを保護するエッチングマスクとしてポジマスク153を使用しながらエッチングすることによって、第1の層110に転写されている。パターン転写は、例えばプラズマベースエッチング処理であり得る異方性エッチング処理によって実行され得る。ポジマスク153の除去後に得られた構造が
図4に示されており、第1のLED素子11は、犠牲層140上に第1のアレイを形成する。そのような第1のアレイの一例の上面図も
図13に示されており、第1のLED素子11は2Dアレイを形成する。
【0056】
図5では、ハードマスク151など、第1のエッチングマスク151が、犠牲層140および第1のLED素子11上に形成されている。第1のエッチングマスク151は、例えば、物理気相堆積(PVD)または化学気相堆積(CVD)など、任意の好適な堆積方法によって堆積されたハードマスク材料の層であり得る。ハードマスク材料の例は、窒化ケイ素および窒化チタンなどの窒化物と、酸化ケイ素および酸化チタンなどの酸化物とを含み得る。
図5では、ハードマスク151は、犠牲層140を露出させる複数の第1のトレンチ161を含むようにパターニングされている。トレンチは、例えばネガマスクおよびシングルまたはマルチパターニングを使用するリソグラフィパターニングと、それに続くハードマスク151へのパターン転写とによって形成され得る。パターン転写は、例えば、異方性エッチング処理によって達成され得る。エッチング処理は、例えば反応性イオンエッチング(RIE)を含むプラズマベースエッチングであり得る。
【0057】
第1のトレンチ161は、第1のLED素子11のうちの少なくともいくつかの間に配置され得、したがって、第2のLED素子21および第3のLED素子31の後続の処理中にハードマスク151によって覆われ、保護され得る。第1のトレンチ161の配置および寸法は、第2のLED素子21の第2のアレイ、および得られたマトリックスにおけるそれらの位置を画定し得る。
【0058】
図6では、第2のLED素子21の第2のアレイが複数の第1のトレンチ161内に形成されている。第2のLED素子21は、
図1および
図2を参照して上記で説明されたものと同様に構成され得、したがって、第1のLED素子11を形成するために使用されるものと同様のエピタキシー処理によって形成され得る、積層構造を備え得る。したがって、第1のトレンチ161内に配置された、第2のLED素子21の第2のアレイは、第2のnドープGaN層121、第2のpドープGaN層123、およびそれらの間に配置された第2のIn
yGa
(1-y)N層122の積層構造を備え得る。一例では、第2のIn
yGa
(1-y)N層122の厚さは2~3nmであり得る。さらに、第2のIn
yGa
(1-y)N層122は、yが0.20~0.28の範囲内にあることによって決定されるインジウム比を備え得る。第2のLED素子21が、AlGaNバリア層114および/または非ドープGaN層115など、
図2に開示された追加の層のうちの1つまたはいくつかをさらに備え得ることが理解されよう。
【0059】
図7では、第2のLED素子21を備える第1のトレンチ161は、例えば第1のマスク151を形成する材料と同じ材料であり得るマスク材料で充填されている。第1のトレンチ161は、例えば、PVDまたはCVD処理において充填され得る。ハードマスク151は、例えば
図7に示されているリソグラフィマスク154によって、複数の第2のトレンチ162を画定するようにさらにパターニングされ得る。第2のトレンチ162の画定は、上記で説明された第1のトレンチ161の画定と同様であり得、得られたエッチングマスクは、第2のエッチングマスクと呼ばれ得る。
【0060】
図8では、リソグラフィマスク154内のパターンは、第1のトレンチ161の場合と同様の処理によってハードマスク151に転写されている。第2のトレンチ162は、第1のLED素子11および第2のLED素子21のうちの少なくともいくつかの間に配置され得、したがって、第3のLED素子31の後続の処理中にハードマスク151によって覆われ、保護され得る。第1のトレンチ161と同様に、第2のトレンチ162の配置および寸法は、第3のLED素子31の第3のアレイ、および得られたマトリックスにおけるそれらの位置を画定し得る。
【0061】
図9では、第3のLED素子31の第3のアレイが、複数の第2のトレンチ162および剥離されたリソグラフィマスク154内に形成されている。第3のLED素子31は、
図1、
図2および
図6を参照して上記で説明されたものと同様に構成され得、したがって、第1のLED素子11および第2のLED素子21を形成するために使用されるものと同様のエピタキシー処理によって形成され得る、積層構造を備え得る。したがって、第3のLED素子31は、第3のnドープGaN層131、第3のpドープGaN層133、およびそれらの間に配置された第3のIn
zGa
(1-z)N層132の積層構造を備え得る。一例では、第3のIn
zGa
(1-z)N層133の厚さは2.8~3.5nmであり得る。さらに、第3のIn
zGa
(1-z)N層133は、zが0.28~0.33の範囲内にあることによって決定されるインジウム比を備え得る。第3のLED素子31が、AlGaNバリア層114および/または非ドープGaN層115など、
図2に開示された追加の層のうちの1つまたはいくつかをさらに備え得ることが理解されよう。
【0062】
図10では、第1のLED素子11、第2のLED素子21および第3のLED素子31のうちの少なくともいくつかの間に複数の第3のトレンチ163が形成されている。第3のトレンチ163は、第1のマスク151における第1のトレンチ161および第2のトレンチ162の形成と同様の処理において形成され得る。したがって、第3のトレンチ163は、リソグラフィと第1のマスク151へのパターン転写とを含む処理において形成され得る。いくつかの例では、第1のマスク151は、第3のトレンチ163のためのパターンを、LED素子11、21、31のうちの少なくともいくつかの間のGaN犠牲層140に転写するとき、エッチングマスクとして使用され得る。
図10では、AlNピラー141の下にある層を露出させるために第3のトレンチ163がエッチングされている。犠牲層140のGaNは、AlNピラー141が露出されることを可能にするように、ピラー141に対する選択性でさらにエッチングされ得る。したがって、ピラー141を埋め込むGaNは、LED素子11、21、31が最終的に基板170から解放されることを可能にするように、少なくとも部分的に除去され得る。GaNは、例えば、AlNに対して選択的であることが示されている、O
2/Cl
2/Arを合成した、プラズマベースエッチング処理においてエッチングされ得る。
【0063】
ここでGaN犠牲層140から切り出されたGaNの部分または島によって支持されているLED素子11、21、31のアレイは、
図11に示されているように、キャリア基板180に取り付けられるかまたは接合され得る。キャリア基板180は、例えば、ガラスウエハ180であり得、対象の基板(図示せず)へのLED素子11、21、31の転写を容易にするスタンプとも呼ばれ得る。ピラー141は、キャリア基板180の取付け中にLED素子11、21、31の機械的支持を提供し得、したがって、下にある基板170に対して格子不整合であり得るLED素子11、21、31を支持する垂直テザーと見なされ得る。垂直テザー141を使用することは、有利には、基板170からのLED素子11、21、31の犠牲解放処理の複雑さを低減し得る。機械的張力を低減することは、物質移動のための基板170のウエハボウのリスクを低減し得る。ウエハボウは、すべてのLED素子をキャリア基板180に効率的に取り付けることを困難にし得、したがって、LED素子11、21、31をキャリア基板180に転写する処理の収率を高めるようにウエハボウを低減することが望ましい。
【0064】
GaNバッファ中間層140(およびナノピラー間)は、LED素子11、21、31を基板170から解放するように(
図10に示されているように)除去することが、比較的容易であり得る。そのような処理の結果は
図12に示されており、GaN中間層140は、エッチング処理においてエッチングによって除去されている。エッチング処理は、例えば、AlNピラーに対する高い選択性でGaNをエッチングするように構成されたプラズマベース処理であり得る。上記のことは、参照として本明細書に組み込まれる、Journal of Vacuum Science&Technology A18,879(2000)に記載されているように、例えば、48:1の選択性で、10mTorrの圧力、-150Vの直流バイアス、および500Wの出力において、誘導結合プラズマ反応器を用いて、Cl
2-Arプラズマに酸素を少量添加することによって、達成され得る。
【0065】
図12に示されているように、異なる色のLED素子11、21、31のマトリックス100全体が、ここでキャリア基板180に転写されており、ディスプレイデバイスの製造において採用される後続の処理ステップを受ける場合があり、LED素子11、21、31は、ディスプレイデバイスに表示されるべき画像を再現するピクセルの一部を形成し得る。代替的に、ピラー141は、LED素子11、21、31の下に保持され得る。好ましくは、ピラー141は、LED素子11、21、31からの光の散乱を増加させるように寸法決定され得る。
【0066】
図13を参照すると、
図1~
図12に関連して上記で概説されたものと同様の方法において取得され得るマトリックス100の概略上面図が示されている。本例では、マトリックス100は、同じ基板170上に生成された赤色LED素子31、緑色LED素子21および青色LED素子11など、異なる色の複数のLED素子のモノリシック構造を備え得る。色の各々は、上記で説明された第1、第2および第3のアレイなど、それぞれのアレイにおいて配置され、ディスプレイデバイスにおいて使用されるべきいくつかのRGBピクセルを形成し得る。したがって、各ピクセルは、1つまたはいくつかの赤色、緑色および青色LED素子11、21、31を備え得、同じ色のLED素子はサブピクセル10、20、30を形成し得る。サブピクセル10、20、30は、単一の色の制御可能なエンティティとして理解され得、言い換えれば、第1、第2または第3の色の1つまたはいくつかのLED素子から形成され得る。
図13では、例示的および非限定的な例として、5×5個の赤色LED素子31が赤色サブピクセル30にグループ化され得、5×5個の緑色LED素子21が緑色サブピクセル20にグループ化され得、単一の青色LED素子11が青色サブピクセルを形成する。マトリックス100内のサブピクセル10、20、30の合成は、色間の輝度の差およびピクセルから放射された合成光の所望の色に応じて選択または変化され得る。本例では、マトリックス100の各行中のサブピクセルの半分は赤色であり得、緑色および青色サブピクセルは各行中のサブピクセルの1/4を占め得る。
【0067】
典型的には、青色LED素子11のエレクトロルミネセンスまたは輝度は、緑色LED素子21および赤色LED素子31のエレクトロルミネセンスまたは輝度よりも高い場合がある。したがって、緑色LED素子21および赤色LED素子31は、エピタキシー中のStranski-Krastanov成長モードによって、あるいは、直径または最大幅が4nm未満の個々の開口部またはトレンチ内の選択的エリア成長によって、量子ドットとして構成され得る。InGaN層を横方向に閉じ込めることは、エレクトロルミネセンスについての状態密度を改善し得、したがって、そのような閉じ込めは、
図1~
図12に関連して前に概説されたように、例えばナノインプリントリソグラフィまたはプラズマ強化化学気相堆積と組み合わせられたUVリソグラフィなど、いくつかの組み合わせられた堆積およびリソグラフィ技法を使用して量子ドットを形成することによって達成され得る。
【0068】
したがって、緑色サブピクセル20および赤色サブピクセル30は、4nm未満など、10nm未満の最大横幅を有する、複数の比較的小さい第2のLED素子21および第3のLED素子31によって形成され得る。一例では、第2のLED素子21、すなわち本図の緑色LED素子21は、2~3nmの最大横幅と、約0.24であるyに対応するインジウム組成と、約2.5nmの厚さとを有し得る。第3のLED素子31、すなわち図の赤色LED素子31は、2.8~3.5nmの最大横幅と、約0.30であるzに対応するインジウム組成と、約3.1nmの厚さとを有し得る。
【0069】
LED素子間の輝度の差のバランスをとるために、青色サブピクセル10は、本例に示されているように、単一の第1のLED素子11など、少数の第1のLED素子11のみによって形成され得る。単一の第1のLED素子11は、赤色または緑色サブピクセルの幅に対応する最大横幅を有し得、いくつかの例では、5~25μm内にあり得る。特定の例では、第1のLED素子11、すなわち、青色LED素子11は、15μmの最大横幅と、約0.42であるxに対応するインジウム組成と、約1.75nmの厚さとを有し得る。
【0070】
第1、第2および第3のアレイの各々は、それぞれの第1のLED素子11、第2のLED素子21および第3のLED素子31が規則的なまたは不規則な間隔で配置され得る2Dアレイであり得る。当業者に容易に理解されるように、また、
図13の例に示されているように、各アレイは、順序付けられるが必ずしも等距離でない場合がある、一連のLED素子、またはLED素子の配置を画定し得る。好ましくは、アレイは、
図13に示されている例に従って非重複サブピクセルを備えるマトリックスを生じ得るように、互いに嵌合するか、またはインターリーブ(interleave)するように構成され得る。
【0071】
図14~
図16は、前の
図1~
図13のいずれかに示されている実施形態と同様に構成され得る、いくつかの実施形態によるマトリックスを示す。しかしながら、
図14~
図16に示されているように、第1のLED素子11、第2のLED素子21および第3のLED素子31のうちの少なくとも1つは、複数の斜面を備える多面体などの非平面構造上に形成され得る。
図14~
図16では、底辺と頂点との間に延在する3つまたは4つの三角形側面を有するピラミッド構造の例が示されている。ピラミッド構造は、GaN犠牲層140から突出するnドープGaN121によって形成され得る。
図2に関連して概説されたように、LED素子を形成する積層構造は、ピラミッド構造の表面上に配置され得る。好ましくは、積層構造のnドープGaN121層は、ピラミッド構造の底辺を形成し得る。
【0072】
図14では、InGaN層122は、nドープGaN層121のピラミッド構造の表面上に設けられ、pドープGaN層123によって覆われている。したがって、量子井戸は、ピラミッド構造の表面上に配置され得る。
図15では、InGaN層132は、ピラミッド構造の頂点において形成され、pドープGaN層133によって覆われている。したがって、
図13に示されているサブピクセルは、nドープGaN層121、131、InGaN層122、132およびpドープGaN層123、133のピラミッドから形成され得、ピラミッドの各々は、その側壁またはその頂点のいずれかにおいて量子壁を設け得る。
【0073】
図16は、前の図を参照して概説されたLED素子と同様に構成され得るLED素子11、21、31の3つの例を示す。しかしながら、いくつかの差異および変形が以下で説明される。
【0074】
第1に、ピラミッド構造の頂点は、均一性を高めるために、例えばin situエッチングによって頂部を切り取られ得る。結果は、
図16の第1のLED素子11および第3のLED素子31に示されており、それぞれのInGaN層111、131は、ピラミッド構造の外側に沿って延在するが、頂点において交わらない。
【0075】
第2に、本図に示されているように、上述の実施形態および例のいずれかによる、LED素子11、21、31に接触するための電気コンタクト構造191、192が設けられ得る。電気コンタクトは、LED素子11、21、31に上方から接触するための上部コンタクト191と、LED素子11、21、31に下方から接触するための下部コンタクト192とを備え、それにより、InGaN層によって形成された量子閉じ込め領域上に電位を提供し得る。上部コンタクト191は、例えば、LED素子11、21、31の積層構造の上方に配置された、酸化インジウムスズなど、透明導電酸化物(TCO)126の中または上に形成され得、下部コンタクト192は、積層構造に下方から接触するように配置された埋込み相互接続構造として設けられ得る。第1のコンタクト191および第2のコンタクト192は、例えば、Ti、Al、Cu、Ni、およびAuのうちの1つまたはいくつかを含む金属材料から形成され得る。
【0076】
第3に、第1のLED素子11、第2のLED素子21および第3のLED素子31のうちの少なくとも1つの下方に第4のLED素子41が配置され得る。
図16に示されている例では、第4のLED素子は、第1のLED素子11、第2のLED素子21および第3のLED素子31の各々の下方に配置され、上記のLED素子のための光ポンプとして構成され得る。第4のLED素子41は、先行する実施形態のいずれかを参照して説明されたLED素子11、21、31と同様に構成および処理され得、光ポンピングのための第1のLED素子11、第2のLED素子21および第3のLED素子31と、それぞれの下にある第4のLED素子41との合成構造は、
図10を参照して説明されたように、第3のトレンチ163のセットによって互いに分離され得る。
【0077】
したがって、第4のLED素子41は、nドープGaN層211およびpドープGaN層214、ならびにそれらの間の活性な第4のInGaN層212の積層構造を備え得る。nドープGaN層211は、例えば、約20nmの厚さであり得る。積層構造は、第4のInGaN層212に直接隣接して配置された非ドープGaN層215などのバリア層をさらに備え得る。非ドープGaN層215は、例えば、約3nmの厚さであり得る。本例では、第4のLED素子41の積層構造は、pドープAlGaN層214などのAlGaNバリアを備え得、その上に、それぞれの第1のLED素子11、第2のLED素子21および第3のLED素子31の積層構造のnドープGaN層111、121、131は、上記で概説されたように形成され得る。AlGaNバリア層214は、例えば、約20nmの厚さであり得る。第1のLED素子11、第2のLED素子21および第3のLED素子31のnドープGaN層111、121、131のエピタキシャル成長のために、AlGaNバリア層214がGaN犠牲層140を置き換え得ることが理解されよう。
【0078】
第1のLED素子11、第2のLED素子21および第3のLED素子31のInGaN層と同様に、第4のIndGa(1-d)N層212のインジウム組成および層厚さは、放射光の特定の波長を達成するように変化され得る。好ましくは、第4のLED素子41は、UV範囲内の光を放射するように構成され得、いくつかの例では、0.05未満であるdに対応するインジウム組成を備え得る。さらに、いくつかの例では、層厚さは1~6nmの範囲内であり得る。
【0079】
上記では、本発明の概念は、限られた数の例を参照して主に説明された。しかしながら、当業者によって容易に理解されるように、添付の特許請求の範囲によって定義されるように、上記で開示されたもの以外の他の例が、本発明の概念の範囲内で等しく可能である。
【国際調査報告】