(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-04-19
(54)【発明の名称】無線周波数検知に基づいて屋内マップを生成すること
(51)【国際特許分類】
G01S 7/02 20060101AFI20240412BHJP
G01S 13/89 20060101ALI20240412BHJP
【FI】
G01S7/02 216
G01S13/89
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023566835
(86)(22)【出願日】2022-03-25
(85)【翻訳文提出日】2023-10-30
(86)【国際出願番号】 US2022021902
(87)【国際公開番号】W WO2022235347
(87)【国際公開日】2022-11-10
(32)【優先日】2021-05-07
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ジベチアン、ハディ
(72)【発明者】
【氏名】ジャン、シャオシン
(72)【発明者】
【氏名】シヤリ、ペイマン
【テーマコード(参考)】
5J070
【Fターム(参考)】
5J070AC02
5J070AC07
5J070AC11
5J070AD05
5J070AD08
5J070AE20
5J070AF01
5J070AH31
5J070AH35
5J070AK07
(57)【要約】
環境中のアクセスポイント(AP)によって受信されたワイヤレス信号のチャネル状態情報(CSI)を使用して環境のマップ情報を生成するための方法およびシステムが開示される。いくつかの実装形態では、システムが、ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定するために、それぞれのAPによって受信されたワイヤレス信号のCSIを使用し、反射経路信号成分のToFおよびAoAに基づいてそれぞれのAPのエリア中のポイントまたは表面のロケーションを推定する。ポイントまたは表面の推定されたロケーションは、エリアについてのマップ情報を生成するために使用され得る。本システムは、環境全体についてのマップ情報を決定するために、環境の異なるエリアについて生成されたマップ情報をアグリゲートする。ワイヤレス信号は、ワイヤレス局またはユーザ機器から受信され得るか、あるいはそれぞれのAPから受信され得る。
【特許請求の範囲】
【請求項1】
システムによって実施される環境をマッピングする方法であって、前記方法が、
前記環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
前記取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
前記ワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAに基づいて前記エリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションに基づいて前記環境の前記エリアのマップ情報を生成することと
を備える、方法。
【請求項2】
それぞれのワイヤレス信号の前記反射経路信号成分の前記ToFが、前記APと対応するポイントとの間の距離を示し、前記それぞれのワイヤレス信号の前記反射経路信号成分の前記AoAが、前記APに対する前記対応するポイントの方向を示す、請求項1に記載の方法。
【請求項3】
前記ToFおよび前記AoAが、ある値よりも大きい信号対雑音比(SNR)、信号対干渉プラス雑音比(SINR)、受信信号強度インジケータ(RSSI)、基準信号受信電力(RSRP)、または基準信号受信品質(RSRQ)を有する反射経路信号成分についてのみ決定される、請求項1に記載の方法。
【請求項4】
前記ワイヤレス信号が、前記APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信される、請求項1に記載の方法。
【請求項5】
前記取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、ここにおいて、それぞれのワイヤレス信号の前記直接経路信号成分が、最も短いToFを有する、前記それぞれのワイヤレス信号の信号成分である、
前記それぞれのSTAまたはUEから受信された前記ワイヤレス信号の前記直接経路信号成分の前記ToFおよび前記AoAに基づいて前記1つまたは複数のSTAまたはUEのロケーションを推定することと、
前記それぞれのSTAまたはUEの前記推定されたロケーションに基づいて前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションを選択的に調整することと
をさらに備える、請求項4に記載の方法。
【請求項6】
前記ワイヤレス信号が、K個のトーンまたは周波数サブキャリア上で送信され、前記APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の前記直接経路信号成分の前記ToFおよび前記AoAが、前記K個のトーンまたは周波数サブキャリア上で送信され、前記APの前記N個のアンテナ素子によって受信された前記それぞれのワイヤレス信号の前記CSIの2次元(2D)フーリエ変換に基づいて、前記それぞれのワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAと同時に決定され、KとNの両方が、1よりも大きい整数である、請求項5に記載の方法。
【請求項7】
各ワイヤレス信号の、前記直接経路信号成分の前記ToFおよび前記AoAと、前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAとが、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定される、請求項5に記載の方法。
【請求項8】
各ポイントの前記ロケーションを推定することが、
それぞれのSTAまたはUEから受信された前記ワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、前記それぞれのSTAまたはUEのロケーションを推定することと、
前記それぞれのSTAまたはUEの前記推定されたロケーションと、前記それぞれのSTAまたはUEから受信された前記ワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、前記ポイントに関連付けられたイメージソースを決定することと、
前記APと前記イメージソースとの間に延びる第1のラインを決定することと、
前記イメージソースと前記それぞれのSTAまたはUEの前記推定されたロケーションとの間に延びる第2のラインを決定することと、
前記第2のラインの垂直二等分線である第3のラインを決定することと、
前記第1のラインと前記第3のラインとの交点として前記ポイントの前記ロケーションを決定することと
を含む、請求項4に記載の方法。
【請求項9】
前記STAまたはUEのうちの少なくとも1つの移動を決定することと、
前記APから、前記少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することと、
前記それぞれの追加のワイヤレス信号の前記CSIに基づいて、各追加のワイヤレス信号の、前記直接経路信号成分の前記ToFおよび前記AoAと、1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAとを決定することと、
前記それぞれの追加のワイヤレス信号の、前記直接経路信号成分の前記ToFおよび前記AoAと、前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAとに基づいて、前記1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することと
をさらに備える、請求項4に記載の方法。
【請求項10】
前記ワイヤレス信号が、前記APによって送信されるモノスタティック信号を備える、請求項1に記載の方法。
【請求項11】
前記ワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することと、
信号漏れの前記決定された量に基づいて、前記取得されたCSIを調整することと
をさらに備える、請求項10に記載の方法。
【請求項12】
前記マップ情報を生成することが、異なる時間において前記APによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて前記1つまたは複数の表面上の前記ポイントの前記ロケーションを推定することを含む、請求項1に記載の方法。
【請求項13】
前記環境の前記エリアについて生成された前記マップ情報と、前記環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて前記環境についてのマップ情報を決定すること、ここにおいて、前記環境の前記1つまたは複数の他のエリアの各々について生成された前記マップ情報が、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づく、
をさらに備える、請求項1に記載の方法。
【請求項14】
前記環境についての前記マップ情報を決定することが、前記環境の前記エリアの各々に関連付けられた前記APのロケーション、前記環境の前記エリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づく、請求項13に記載の方法。
【請求項15】
前記システムが、前記APによって受信されるワイヤレス信号のCSIの変化、前記APによって受信されるワイヤレス信号のチャネル周波数応答の変化、前記APによって受信されるワイヤレス信号のチャネルインパルス応答の変化、前記エリアに関連付けられたワイヤレス媒体のチャネル状況の変化、またはそれらの任意の組合せに応答して前記APからそれぞれのワイヤレス信号の前記CSIを受信する、請求項1に記載の方法。
【請求項16】
前記環境の前記エリアの前記マップ情報を生成することが、前記環境の前記エリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づく、請求項1に記載の方法。
【請求項17】
メモリと、
前記メモリに通信可能に結合された1つまたは複数のプロセッサと
を備える、システムであって、前記1つまたは複数のプロセッサが、
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
前記取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
前記ワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAに基づいて前記エリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションに基づいて前記環境の前記エリアについてのマップ情報を生成することと
を行うように構成された、システム。
【請求項18】
前記ワイヤレス信号が、前記APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信される、請求項17に記載のシステム。
【請求項19】
前記1つまたは複数のプロセッサは、
前記取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、ここにおいて、それぞれのワイヤレス信号の前記直接経路信号成分が、最も短いToFを有する、前記それぞれのワイヤレス信号の信号成分である、
前記それぞれのSTAまたはUEから受信された前記ワイヤレス信号の前記直接経路信号成分の前記ToFおよび前記AoAに基づいて前記1つまたは複数のSTAまたはUEのロケーションを推定することと、
前記それぞれのSTAまたはUEの前記推定されたロケーションに基づいて前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションを選択的に調整することと
を行うようにさらに構成された、請求項18に記載のシステム。
【請求項20】
前記ワイヤレス信号が、K個のトーンまたは周波数サブキャリア上で送信され、前記APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分の前記ToFおよび前記AoAが、前記K個のトーンまたは周波数サブキャリア上で送信され、前記APの前記N個のアンテナ素子によって受信された前記それぞれのワイヤレス信号の前記CSIの2次元(2D)フーリエ変換に基づいて、前記それぞれのワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAと同時に決定され、KとNの両方が、1よりも大きい整数である、請求項18に記載のシステム。
【請求項21】
前記1つまたは複数のプロセッサが、
それぞれのSTAまたはUEから受信された前記ワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、前記それぞれのSTAまたはUEのロケーションを推定することと、
前記それぞれのSTAまたはUEの前記推定されたロケーションと、前記それぞれのSTAまたはUEから受信された前記ワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、前記ポイントに関連付けられたイメージソースを決定することと、
前記APと前記イメージソースとの間に延びる第1のラインを決定することと、
前記イメージソースと前記それぞれのSTAまたはUEの前記推定されたロケーションとの間に延びる第2のラインを決定することと、
前記第2のラインの垂直二等分線である第3のラインを決定することと、
前記第1のラインと前記第3のラインとの交点として前記ポイントの前記ロケーションを決定することと
を行うようにさらに構成された、請求項18に記載のシステム。
【請求項22】
前記1つまたは複数のプロセッサが、
前記STAまたはUEのうちの少なくとも1つの移動を決定することと、
前記APから、前記少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することと、
前記それぞれの追加のワイヤレス信号の前記CSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分の前記ToFおよび前記AoAと、1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAとを決定することと、
前記それぞれの追加のワイヤレス信号の、前記直接経路信号成分の前記ToFおよび前記AoAと、前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAとに基づいて、前記1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することと
を行うようにさらに構成された、請求項18に記載のシステム。
【請求項23】
前記ワイヤレス信号が、前記APによって送信されるモノスタティック信号である、請求項17に記載のシステム。
【請求項24】
前記1つまたは複数のプロセッサが、
前記ワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することと、
信号漏れの前記決定された量に基づいて、前記取得されたCSIを調整することと
を行うようにさらに構成された、請求項23に記載のシステム。
【請求項25】
前記マップ情報を生成することが、異なる時間において前記APによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて前記1つまたは複数の表面上の前記ポイントの前記ロケーションを推定することを含む、請求項17に記載のシステム。
【請求項26】
前記1つまたは複数のプロセッサは、
前記環境の前記エリアについて生成された前記マップ情報と、前記環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて前記環境についてのマップ情報を決定すること、ここにおいて、前記環境の前記1つまたは複数の他のエリアの各々について生成された前記マップ情報が、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づく、
を行うようにさらに構成された、請求項17に記載のシステム。
【請求項27】
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得するための手段と、
前記取得されたCSIに基づいて前記ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定するための手段と、
前記ワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAに基づいて前記エリア内の1つまたは複数の表面上のポイントのロケーションを推定するための手段と、
前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションに基づいて前記環境の前記エリアについてのマップ情報を生成するための手段と
を備える、システム。
【請求項28】
前記ワイヤレス信号が、前記APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信され、前記システムは、
前記取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定するための手段と、ここにおいて、それぞれのワイヤレス信号の前記直接経路信号成分が、最も短いToFを有する、前記それぞれのワイヤレス信号の信号成分である、
前記それぞれのSTAまたはUEから受信された前記ワイヤレス信号の前記直接経路信号成分の前記ToFおよび前記AoAに基づいて前記1つまたは複数のSTAまたはUEのロケーションを推定するための手段と、
前記それぞれのSTAまたはUEの前記推定されたロケーションに基づいて前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションを選択的に調整するための手段と
をさらに備える、請求項27に記載のシステム。
【請求項29】
前記ワイヤレス信号が、前記APによって送信されるモノスタティック信号であり、前記システムが、
前記ワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定するための手段と、
信号漏れの前記決定された量に基づいて、前記取得されたCSIを調整するための手段と
をさらに備える、請求項27に記載のシステム。
【請求項30】
環境のマップを生成するための命令を記憶する非一時的コンピュータ可読媒体であって、ここにおいて、システムの1つまたは複数のプロセッサによる前記命令の実行が、前記システムに、
前記環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
前記取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
前記ワイヤレス信号の前記1つまたは複数の反射経路信号成分の前記ToFおよび前記AoAに基づいて前記エリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
前記1つまたは複数の表面上の前記ポイントの前記推定されたロケーションに基づいて前記環境の前記エリアについてのマップ情報を生成することと
を備える動作を実施させる、非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本特許出願は、本出願の譲受人に譲渡された、2021年5月7日に出願された「GENERATING INDOOR MAPS BASED ON RADIO FREQUENCY SENSING」と題する米国特許出願第17/315,128号の優先権を主張する。すべての先願の開示は、本特許出願の一部と見なされ、参照により本特許出願に組み込まれる。
【0002】
[0002] 本開示は、一般にワイヤレス通信に関し、より詳細には、ワイヤレス信号(wireless signal)を使用して環境(environment)のマップ情報(map information)を生成することに関する。
【背景技術】
【0003】
[0003] ワイヤレス通信システムは、世界中の人々に様々なタイプの通信、コンテンツ、およびサービスを提供する。ワイヤレス媒体(wireless medium)の時間、周波数、および空間リソースを共有することによって複数のユーザとの通信をサポートすることができる、これらのシステムは、(ロングタームエボリューション(LTE(登録商標))システムまたは第5世代(5G)新無線(NR)システムなどの)符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、および直交周波数分割多元接続(OFDMA)システムを含み得る。これらの多元接続技術は、異なるワイヤレスデバイスが地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。
【0004】
[0004] 1つの例示的なワイヤレス通信規格は5G NRであり、これは、レイテンシ、信頼性、セキュリティ、スケーラビリティに関連付けられた新しい要件、および他の要件を満たすための、第3世代パートナーシッププロジェクト(3GPP(登録商標))によって公表された継続的モバイルブロードバンド発展の一部である。別の例示的なワイヤレス通信規格はワイヤレス通信規格のIEEE802.11ファミリーであり、これは、より一般にWi-Fi(登録商標)ネットワークとして知られている、ワイヤレスローカルエリアネットワーク(WLAN)の動作を支配する。
【0005】
[0005] 無線周波数(RF)検知は、環境中でのRF信号の送信および/または受信に基づいて環境中の物体または移動(movement)を検知するための技法である。たとえば、環境を通って移動する人が環境中で送信されるRF信号に干渉する。その人の移動の速度または方向を決定するために、受信機デバイスが、受信されるRF信号の変化(change)を検出し得る。受信機デバイスはまた、環境中の壁および他の物体のロケーションを決定するために、それらの壁および他の物体によって反射されたRF信号の特性を使用し得る。
【発明の概要】
【0006】
[0006] 本開示のシステム(system)、方法、およびデバイスは、環境の1つまたは複数の対応するエリア中にまたはその近くに位置する1つまたは複数のワイヤレスアクセスポイント(AP:access point)または基地局によって受信されたワイヤレス信号を使用して環境のマップ情報を生成するために使用され得る。様々な実装形態では、本明細書で開示されるシステムが、環境の対応するエリアの壁、障壁、および他の物理的特徴のロケーションを決定するために、環境全体にわたって位置する複数のAPまたは基地局によって受信されたワイヤレス信号のチャネル状態情報(CSI:channel state information)を使用することができる。それぞれのエリアの壁、障壁、および他の物理的特徴の決定されたロケーションは、それぞれのエリアについてのマップ情報を生成するために使用され得る。環境の複数のエリアについて生成されたマップ情報は、環境全体についてのマップ情報を生成するためにアグリゲートされるかまたは組み合わせられ得る。一実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。
【0007】
[0007] いくつかの実装形態では、本システムは、1つまたは複数のトランシーバと、メモリと、1つまたは複数のプロセッサとを含み得る。1つまたは複数のトランシーバは、データ、制御信号、および他の情報を、AP、基地局、および他のデバイスまたはシステムと交換し得る。メモリは、1つまたは複数のプロセッサにおよび1つまたは複数のトランシーバに通信可能に結合され得、1つまたは複数のプロセッサによって実行可能なコンピュータコードを記憶し得る。様々な実装形態では、1つまたは複数のプロセッサは、環境のエリア中のAPから、複数のワイヤレス信号のCSIを取得するように構成され得る。1つまたは複数のプロセッサは、取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分(reflected path signal component)の飛行時間(ToF:time-of-flight)および到着角度(AoA:angle-of-arrival)を決定するように構成され得る。1つまたは複数のプロセッサは、ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面(surface)上のポイント(point)のロケーション(location)を推定するように構成され得る。1つまたは複数のプロセッサは、1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成するように構成され得る。いくつかの実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。一実装形態では、マップ情報を生成することは、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む。
【0008】
[0008] 様々な実装形態では、1つまたは複数のプロセッサは、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーション(aggregation)に基づいて環境全体についてのマップ情報を決定するように構成され得る。いくつかの事例では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。さらに、または代替として、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ(coverage gap)、またはそれらの任意の組合せにさらに基づき得る。
【0009】
[0009] それぞれのワイヤレス信号の反射経路信号成分のToFは、APと対応するポイントとの間の距離(distance)を示し得、それぞれのワイヤレス信号の反射経路信号成分のAoAは、APに対する対応するポイントの方向(direction)を示し得る。様々な実装形態では、ToFおよびAoAは、ある値よりも大きい信号対雑音比(SNR:signal-to-noise ratio)、信号対干渉プラス雑音比(SINR:signal-to-interference-plus-noise ratio)、受信信号強度インジケータ(RSSI:received signal strength indicator)、基準信号受信電力(RSRP:reference signal received power)、または基準信号受信品質(RSRQ:reference signal received quality)を有する反射経路信号成分についてのみ決定される。ワイヤレス信号は、(限定はしないが)測定フレーム、ヌルデータパケット(NDP)、サウンディングフレーム、サウンディング信号、基準信号、プローブ要求、プローブ応答、肯定応答(ACK)フレーム、アクションフレーム、またはそれらの任意の組合せを含み得る。
【0010】
[0010] いくつかの実装形態では、ワイヤレス信号は、APのカバレージエリア(coverage area)内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE:user equipment)から受信され得る。1つまたは複数のプロセッサは、取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分(direct path signal component)のToFおよびAoAを決定することと、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定することとを行うように構成され得る。それぞれのワイヤレス信号の直接経路信号成分は、最も短いToFを有する、それぞれのワイヤレス信号の信号成分(signal component)であり得る。1つまたは複数のプロセッサは、それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整するように構成され得る。いくつかの事例では、ワイヤレス信号は、K個のトーン(tone)または周波数サブキャリア(frequency subcarrier)上で送信され、APのN個のアンテナ素子(antenna element)によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAは、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2次元(2D)フーリエ変換(two-dimensional (2D) Fourier transform)に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数(integer)である。いくつかの他の事例では、ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとは、知られているロケーション(known location)を有する1つまたは複数の送信機デバイス(transmitter device)から受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデル(machine learning model)に基づいて決定され得る。
【0011】
[0011] 様々な実装形態では、各ポイントのロケーションを推定することは、それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソース(image source)を決定することと、APとイメージソースとの間に延びる第1のライン(first line)を決定することと、イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のライン(second line)を決定することと、第2のラインの垂直二等分線(perpendicular bisector)である第3のライン(third line)を決定することと、第1のラインと第3のラインとの交点(intersection)としてポイントのロケーションを決定することとを含み得る。
【0012】
[0012] いくつかの実装形態では、1つまたは複数のプロセッサは、STAまたはUEのうちの少なくとも1つの移動を決定するように構成され得る。1つまたは複数のプロセッサは、APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得するように構成され得る。1つまたは複数のプロセッサは、それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとを決定するように構成され得る。1つまたは複数のプロセッサは、それぞれの追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定するように構成され得る。
【0013】
[0013] いくつかの他の実装形態では、ワイヤレス信号はAPによって送信され得る。いくつかの事例では、ワイヤレス信号はモノスタティック信号(monostatic signal)であり得る。一実装形態では、1つまたは複数のプロセッサは、APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量(an amount of signal leakage)を決定するように構成され得る。1つまたは複数のプロセッサは、信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整するように構成され得る。
【0014】
[0014] 様々な実装形態では、方法が開示される。本方法は、環境全体にわたって位置する複数のAPまたは基地局に結合されたシステムによって実施され得、環境のエリア中のAPから、複数のワイヤレス信号のCSIを取得することを含み得る。本方法は、取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAを決定することを含み得る。本方法は、ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することを含み得る。本方法は、1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することを含み得る。いくつかの実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。一実装形態では、マップ情報を生成することは、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む。
【0015】
[0015] 様々な実装形態では、本方法は、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境全体についてのマップ情報を決定することをも含み得る。いくつかの事例では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。さらに、または代替として、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づき得る。
【0016】
[0016] それぞれのワイヤレス信号の反射経路信号成分のToFは、APと対応するポイントとの間の距離を示し得、それぞれのワイヤレス信号の反射経路信号成分のAoAは、APに対する対応するポイントの方向を示し得る。様々な実装形態では、ToFおよびAoAは、ある値よりも大きいSNR、SINR、RSSI、RSRP、またはRSRQを有する反射経路信号成分についてのみ決定される。いくつかの事例では、ワイヤレス信号は、(限定はしないが)測定フレーム、NDP、サウンディングフレーム、サウンディング信号、基準信号、プローブ要求、プローブ応答、ACKフレーム、アクションフレーム、またはそれらの任意の組合せを含み得る。
【0017】
[0017] いくつかの実装形態では、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。本方法は、取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定することとを含み得る。それぞれのワイヤレス信号の直接経路信号成分は、最も短いToFを有する、それぞれのワイヤレス信号の信号成分であり得る。本方法は、それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整することを含み得る。いくつかの事例では、ワイヤレス信号は、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAは、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2Dフーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数である。いくつかの他の事例では、ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとは、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定され得る。
【0018】
[0018] 様々な実装形態では、各ポイントのロケーションを推定することは、それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソースを決定することと、APとイメージソースとの間に延びる第1のラインを決定することと、イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定することと、第2のラインの垂直二等分線である第3のラインを決定することと、第1のラインと第3のラインとの交点としてポイントのロケーションを決定することとを含み得る。
【0019】
[0019] いくつかの実装形態では、本方法は、STAまたはUEのうちの少なくとも1つの移動を決定することをも含み得る。本方法は、APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することをも含み得る。本方法は、それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとを決定することをも含み得る。本方法は、追加のワイヤレス信号の各々の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することをも含み得る。
【0020】
[0020] いくつかの他の実装形態では、ワイヤレス信号はAPによって送信され得る。いくつかの事例では、ワイヤレス信号はモノスタティック信号であり得る。一実装形態では、本方法は、APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することをも含み得る。本方法は、信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整することをも含み得る。
【0021】
[0021] 様々な実装形態では、システムが開示される。本システムは、環境のエリア中のAPから、複数のワイヤレス信号のCSIを取得するための手段を含み得る。本システムは、取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAを決定するための手段を含み得る。本システムは、ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定するための手段を含み得る。本システムは、1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成するための手段を含み得る。いくつかの実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。一実装形態では、マップ情報を生成することは、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む。
【0022】
[0022] 様々な実装形態では、1つまたは複数のプロセッサは、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境全体についてのマップ情報を決定するように構成され得る。いくつかの事例では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。さらに、または代替として、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づき得る。
【0023】
[0023] それぞれのワイヤレス信号の反射経路信号成分のToFは、APと対応するポイントとの間の距離を示し得、それぞれのワイヤレス信号の反射経路信号成分のAoAは、APに対する対応するポイントの方向を示し得る。様々な実装形態では、ToFおよびAoAは、ある値よりも大きいSNR、SINR、RSSI、RSRP、またはRSRQを有する反射経路信号成分についてのみ決定される。いくつかの事例では、ワイヤレス信号は、(限定はしないが)測定フレーム、NDP、サウンディングフレーム、サウンディング信号、基準信号、プローブ要求、プローブ応答、ACKフレーム、アクションフレーム、またはそれらの任意の組合せを含み得る。
【0024】
[0024] いくつかの実装形態では、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。本システムは、取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定するための手段と、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定するための手段とを含み得る。それぞれのワイヤレス信号の直接経路信号成分は、最も短いToFを有する、それぞれのワイヤレス信号の信号成分であり得る。本システムは、それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整するための手段を含み得る。いくつかの事例では、ワイヤレス信号は、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAは、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2Dフーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数である。いくつかの他の事例では、ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとは、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定され得る。
【0025】
[0025] 様々な実装形態では、各ポイントのロケーションを推定することは、それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソースを決定することと、APとイメージソースとの間に延びる第1のラインを決定することと、イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定することと、第2のラインの垂直二等分線である第3のラインを決定することと、第1のラインと第3のラインとの交点としてポイントのロケーションを決定することとを含み得る。
【0026】
[0026] いくつかの実装形態では、本システムは、STAまたはUEのうちの少なくとも1つの移動を決定するための手段を含み得る。本システムは、APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得するための手段をも含み得る。本システムは、それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとを決定するための手段を含み得る。本システムは、追加のワイヤレス信号の各々の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定するための手段を含み得る。
【0027】
[0027] いくつかの他の実装形態では、ワイヤレス信号はAPによって送信され得る。いくつかの事例では、ワイヤレス信号はモノスタティック信号であり得る。一実装形態では、本システムは、APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定するための手段をも含み得る。本システムは、信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整するための手段をも含み得る。
【0028】
[0028] 様々な実装形態では、非一時的コンピュータ可読媒体(non-transitory computer-readable medium)が開示される。本非一時的コンピュータ可読媒体は、環境のマップ(map)を生成するための命令(instruction)を記憶する。システムの1つまたは複数のプロセッサによる命令の実行が、システムに、環境のエリア中のAPから、複数のワイヤレス信号のCSIを取得することを含む動作を実施させる。動作は、取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAを決定することを含み得る。動作は、ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することを含み得る。動作は、1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することを含み得る。いくつかの実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。一実装形態では、マップ情報を生成することは、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む。
【0029】
[0029] 様々な実装形態では、動作は、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境全体についてのマップ情報を決定することを含み得る。いくつかの事例では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。さらに、または代替として、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づき得る。
【0030】
[0030] それぞれのワイヤレス信号の反射経路信号成分のToFは、APと対応するポイントとの間の距離を示し得、それぞれのワイヤレス信号の反射経路信号成分のAoAは、APに対する対応するポイントの方向を示し得る。様々な実装形態では、ToFおよびAoAは、ある値よりも大きいSNR、SINR、RSSI、RSRP、またはRSRQを有する反射経路信号成分についてのみ決定される。いくつかの事例では、ワイヤレス信号は、(限定はしないが)測定フレーム、NDP、サウンディングフレーム、サウンディング信号、基準信号、プローブ要求、プローブ応答、ACKフレーム、アクションフレーム、またはそれらの任意の組合せを含み得る。
【0031】
[0031] いくつかの実装形態では、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。動作は、取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定することとを含み得る。それぞれのワイヤレス信号の直接経路信号成分は、最も短いToFを有する、それぞれのワイヤレス信号の信号成分であり得る。動作は、それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整することを含み得る。いくつかの事例では、ワイヤレス信号は、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAは、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2Dフーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数である。いくつかの他の事例では、ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとは、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定され得る。
【0032】
[0032] 様々な実装形態では、各ポイントのロケーションを推定することは、それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソースを決定することと、APとイメージソースとの間に延びる第1のラインを決定することと、イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定することと、第2のラインの垂直二等分線である第3のラインを決定することと、第1のラインと第3のラインとの交点としてポイントのロケーションを決定することとを含み得る。
【0033】
[0033] いくつかの実装形態では、動作は、STAまたはUEのうちの少なくとも1つの移動を決定することを含み得る。動作は、APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することを含み得る。動作は、それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとを決定することを含み得る。動作は、追加のワイヤレス信号の各々の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することを含み得る。
【0034】
[0034] いくつかの他の実装形態では、ワイヤレス信号はAPによって送信され得る。いくつかの事例では、ワイヤレス信号はモノスタティック信号であり得る。一実装形態では、動作は、APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することを含み得る。動作は、信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整することをも含み得る。
【0035】
[0035] 本開示で説明される主題の1つまたは複数の実装形態の詳細が、添付の図面および以下の説明に記載されている。他の特徴、態様、および利点は、説明、図面、および特許請求の範囲から明らかになるであろう。以下の図の相対寸法は一定の縮尺で描かれていないことがあることに留意されたい。
【図面の簡単な説明】
【0036】
【
図1】[0036] 例示的なワイヤレス通信ネットワークの絵図。
【
図2A】[0037] アクセスポイント(AP)といくつかのワイヤレス局(STA)との間の通信のために使用可能な例示的なプロトコルデータユニット(PDU)を示す図。
【
図2B】[0038]
図2AのPDUにおける例示的なフィールドを示す図。
【
図3A】[0039] APといくつかのSTAの各々との間の通信のために使用可能な例示的な物理レイヤ(PHY)プリアンブルを示す図。
【
図3B】[0040] APといくつかのSTAの各々との間の通信のために使用可能な別の例示的なPHYプリアンブルを示す図。
【
図4】[0041] 例示的なワイヤレス通信デバイスのブロック図。
【
図5A】[0042] 例示的なAPのブロック図。
【
図5B】[0043] 例示的なSTAのブロック図。
【
図6】[0044] いくつかの実装形態による、環境と、環境のマップ情報を生成するためのシステムとを示す図。
【
図7】[0045] いくつかの実装形態による、環境のエリア中でワイヤレス信号を受信するAPを示す図。
【
図8A】[0046] 他の実装形態による、環境のエリア中でワイヤレス信号を受信するAPを示す図。
【
図8B】[0047] いくつかの他の実装形態による、環境のエリア中でワイヤレス信号を受信するAPを示す図。
【
図9】[0048] いくつかの実装形態による、受信されたワイヤレス信号に基づいて環境中のポイントのロケーションを決定する受信機デバイスを示す図。
【
図10】[0049] いくつかの実装形態による、環境についてのマップ情報を生成するための例示的な動作を示すフローチャート。
【
図11】[0050] いくつかの実装形態による、環境についてのマップ情報を生成するための別の例示的な動作を示すフローチャート。
【
図12】[0051] いくつかの実装形態による、環境中のポイントの推定されたロケーションを調整するための例示的な動作を示すフローチャート。
【
図13】[0052] いくつかの実装形態による、環境中のポイントのロケーションを推定するための例示的な動作を示すフローチャート。
【
図14】[0053] いくつかの実装形態による、環境中の追加のポイントのロケーションを推定するための例示的な動作を示すフローチャート。
【
図15】[0054] いくつかの実装形態による、モノスタティック信号のCSIを調整するための例示的な動作を示すフローチャート。
【発明を実施するための形態】
【0037】
[0055] 様々な図面における同様の参照番号および記号は、同様の要素を示す。
【0038】
[0056] 本開示の態様が、説明のために本明細書で提供される様々な例を対象とする以下の説明および図面において提供される。しかしながら、本明細書の教示が多数の異なる方法で適用され得ることを、当業者は容易に認識されよう。説明される実装形態は、特に、第3世代パートナーシッププロジェクト(3GPP)によって公表されたロングタームエボリューション(LTE)、3G、4Gまたは5G(新無線(NR))規格、米国電気電子技術者協会(IEEE)802.11規格、IEEE802.15規格、あるいはBluetooth(登録商標) Special Interest Group(SIG)によって定義されるBluetooth規格のうちの1つまたは複数に従って、無線周波数(RF)信号を送信および受信することが可能である任意のデバイス、システムまたはネットワークにおいて実装され得る。その上、説明される実装形態は、以下の技術または技法、すなわち、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、直交周波数分割多重化(OFDM)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリアFDMA(SC-FDMA)、シングルユーザ(SU)多入力多出力(MIMO)、およびマルチユーザ(MU)MIMOのうちの1つまたは複数に従って、RF信号を送信および受信することが可能である任意のデバイス、システムまたはネットワークにおいて実装され得る。説明される実装形態はまた、ワイヤレスワイドエリアネットワーク(WWAN)、ワイヤレスパーソナルエリアネットワーク(WPAN)、ワイヤレスローカルエリアネットワーク(WLAN)、またはモノのインターネット(IOT)ネットワークのうちの1つまたは複数において使用するのに好適な他のワイヤレス通信プロトコルまたはRF信号を使用して実装され得る。
【0039】
[0057] WLANは、STAおよびUEなど、複数のワイヤレスデバイスによる使用のための共有ワイヤレス媒体を提供する1つまたは複数のAPによって形成され得る。パブリック通信ネットワークとプライベート通信ネットワークの両方におけるAPの継続的な展開は、特に、アクティブAPの高い集中があるエリア(たとえば、都心、ショッピングセンター、オフィスビル、スポーツベニューなど)において、測位およびナビゲーションシステムが、STAおよびUEのロケーションを決定するためにこれらのAPを使用することを可能にした。たとえば、STAとAPとの間の距離を決定するために、STAとAPとの間で交換された信号のラウンドトリップ時間(RTT)または飛行時間(ToF)が使用され得る。三辺測量技法を使用してSTAの位置を決定するために、STAと知られているロケーションを有する3つのAPとの間の距離が使用され得る。さらに、APに対するSTAの位置を決定するために、交換された信号の角度情報が使用され得る。たとえば、STAから受信されたワイヤレス信号の到着角度(AoA)が、APに対するSTAの方向を決定するために使用され得、STAに送信されたワイヤレス信号の離脱角度(AoD)が、APに対するSTAの方向を決定するために使用され得る。
【0040】
[0058] 説明されるように、RF検知技法は、エリアの壁および他の物理的特徴のロケーションを推定するために、それらの壁および他の物理的特徴から反射されたワイヤレス信号を使用し得る。モノスタティック検知は、概して、同じワイヤレスデバイスが、エリアの壁および他の物理的特徴のロケーションを決定するために使用されるワイヤレス信号を送信および受信する、システムを指す。いくつかの態様では、モノスタティック検知技法は、従来のモノスタティックレーダーと同様である。マルチスタティック検知は、概して、2つまたはそれ以上のワイヤレスデバイスが検知に参加し、1つのワイヤレスデバイスがワイヤレス信号を送信し、別のワイヤレスデバイスがワイヤレス信号を受信する、システムを指す。
【0041】
[0059] 様々な実装形態によれば、環境全体にわたって位置する複数のAPまたは基地局によって受信されたワイヤレス信号を使用して環境のマップ情報を生成することができる方法およびシステムが開示される。詳細には、本明細書で開示されるシステムは、環境の1つまたは複数の対応するエリアの壁、障壁、および他の物理的特徴のロケーションを決定するために、環境の異なるエリアに関連付けられた異なるAPまたは基地局によって受信されたワイヤレス信号のチャネル状態情報(CSI)を使用することができる。それぞれのエリアに関連付けられた1つまたは複数のAPまたは基地局によって受信されたワイヤレス信号のCSIを使用して決定された、壁、障壁、および他の物理的特徴のロケーションは、それぞれのエリアについてのマップ情報を生成するために使用され得る。環境の異なるエリアについて生成されたマップ情報は、環境全体についてのマップ情報を生成するためにアグリゲートされるかまたはさもなければ組み合わせられ得る。いくつかの事例では、マップ情報は、(限定はしないが)フロアプラン、レイアウトマップ、ナビゲーションマップなどを含み得る。
【0042】
[0060] いくつかの実装形態では、それぞれのAPによって受信されたワイヤレス信号は、それぞれのAPに関連付けられたおよび/またはそれぞれのAPのカバレージエリア内に位置する1つまたは複数のSTAまたはUEによって送信され得る。受信されたワイヤレス信号の各々は、直接経路信号成分と1つまたは複数の反射経路信号成分とを含み得る。それぞれのワイヤレス信号の直接経路信号成分は、APと対応するSTAとの間の見通し線(LoS:line-of-sight)経路に沿って進む。直接経路信号成分のToFは、APと対応するSTAとの間の距離を示し得、直接経路信号成分のAoAは、APに対する対応するSTAの方向を示し得る。それぞれのワイヤレス信号の反射経路信号成分の各々は、対応するSTAとAPとの間の対応する非見通し線(NLoS:non-line-of-sight)経路に沿って進む。反射経路信号成分のNLoS経路は、環境のエリアとの1つまたは複数のポイントまたは表面からの反射を含み得る。反射経路信号成分のToFは、APとエリア内の対応するポイントまたは表面との間の距離を示し得、反射経路信号成分のAoAは、APに対する対応するポイントまたは表面の方向を示し得る。
【0043】
[0061] システムは、それぞれのワイヤレス信号について取得されたCSIに基づいて、それぞれのワイヤレス信号の、直接経路信号成分のToFおよびAoAと、各反射経路信号成分のToFおよびAoAとを決定することができる。システムは、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、対応するSTAのロケーションを推定することができる。いくつかの実装形態では、システムは、それぞれのワイヤレス信号の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することができる。いくつかの事例では、システムは、ワイヤレス信号がそこから受信された、STAの推定されたロケーションに応答して、ポイントの推定されたロケーションを更新または調整することができる。他の実装形態では、システムは、それぞれのワイヤレス信号の反射経路信号成分のToFおよびAoA情報と、対応するSTAの推定されたロケーションとに基づいてポイントのロケーションを推定することができる。システムは、エリア内の1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することができる。システムは、環境全体についてのマップ情報を決定するために、環境の複数のエリアについて生成されたマップ情報をアグリゲートするかまたは組み合わせることができる。
【0044】
[0062] いくつかの他の実装形態では、それぞれのAPによって受信されるワイヤレス信号は、それぞれのAPによって送信され得る。すなわち、ワイヤレス信号は、これらの他の実装形態では、モノスタティック信号であり得る。モノスタティック信号の直接経路信号成分は、それぞれのAPの送信アンテナリソースと受信アンテナリソースとの間のLoS経路に沿って進む。モノスタティック信号の各反射経路信号成分は、環境のエリアとの1つまたは複数のポイントまたは表面からの反射を含む対応するNLoS経路に沿って進む。それぞれの反射経路信号成分のToFは、APとエリア内の対応するポイントまたは表面との間の距離を示し得、それぞれの反射経路信号成分のAoAは、APに対する対応するポイントまたは表面の方向を示し得る。
【0045】
[0063] それぞれのモノスタティック信号の反射経路信号成分について決定されるToFおよびAoAは、それぞれのモノスタティック信号の直接経路信号成分に関連付けられた干渉によって影響を及ぼされ得る。詳細には、それぞれのモノスタティック信号の直接経路信号成分は、APのアンテナリソース間の望ましくない漏れとなり得る。したがって、いくつかの実装形態では、システムは、モノスタティック信号の直接経路信号成分に関連付けられた信号漏れの量を決定し、信号漏れの決定された量に基づいて、モノスタティック信号について取得されたCSIを調整することができる。いくつかの事例では、システムは、それぞれのモノスタティック信号の直接経路信号成分に関連付けられた、それぞれのモノスタティック信号について取得されたCSIの部分を削除することができる。システムは、調整されたCSIを使用してモノスタティック信号の反射経路信号成分のToFおよびAoAを決定することができる。
【0046】
[0064] システムは、モノスタティック信号の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することができる。システムは、エリア内の1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することができる。システムは、環境全体についてのマップ情報を決定するために、環境の複数のエリアについて生成されたマップ情報をアグリゲートするかまたは組み合わせることができる。
【0047】
[0065] 環境のマップ情報を生成するための様々な装置および方法に関してワイヤレスネットワークのいくつかの態様が説明される。これらの装置および方法は、以下の発明を実施するための形態において説明され、(「要素」と総称される)様々なブロック、構成要素、回路、プロセス、アルゴリズムなどによって添付の図面に示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるのか、ソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。
【0048】
[0066] 例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」として実装され得る。プロセッサの例は、マイクロプロセッサ、マイクロコントローラ、グラフィックス処理ユニット(GPU)、中央処理ユニット(CPU)、アプリケーションプロセッサ、デジタル信号プロセッサ(DSP)、縮小命令セットコンピューティング(RISC)プロセッサ、システムオンチップ(SoC)、ベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実施するように構成された他の好適なハードウェアを含む。処理システム中の1つまたは複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェア構成要素、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数などを意味と広く解釈されたい。
【0049】
[0067] したがって、1つまたは複数の例示的な実装形態では、説明される機能は、ハードウェア、ソフトウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体上に1つまたは複数の命令またはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、光ディスクストレージ、磁気ディスクストレージ、他の磁気ストレージデバイス、上述のタイプのコンピュータ可読媒体の組合せ、あるいはコンピュータによってアクセスされ得る、命令またはデータ構造の形態のコンピュータ実行可能コードを記憶するために使用され得る任意の他の媒体を含むことができる。
【0050】
[0068]
図1は、例示的なワイヤレス通信ネットワーク100のブロック図を示す。いくつかの実装形態では、ワイヤレス通信ネットワーク100は、Wi-Fiネットワークなどのワイヤレスローカルエリアネットワーク(WLAN)の一例であり得る(および以下でWLAN100と呼ばれる)。たとえば、WLAN100は、(IEEE802.11-2016仕様、または限定はしないが、802.11ah、802.11ad、802.11ay、802.11ax、802.11az、802.11ba、および802.11beを含む、それの改訂によって定義されるものなどの)IEEE802.11規格ファミリーのうちの少なくとも1つを実装するネットワークであり得る。WLAN100は、アクセスポイント(AP)102および複数の局(STA)104など、多数のワイヤレス通信デバイスを含み得る。1つのAP102のみが示されているが、WLANネットワーク100はまた、複数のAP102を含むことができる。
【0051】
[0069] STA104の各々は、可能性の中でも、移動局(MS)、モバイルデバイス、モバイルハンドセット、ワイヤレスハンドセット、アクセス端末(AT)、ユーザ機器(UE)、加入者局(SS)、または加入者ユニットと呼ばれることもある。STA104は、可能性の中でも、モバイルフォン、携帯情報端末(PDA)、他のハンドヘルドデバイス、ネットブック、ノートブックコンピュータ、タブレットコンピュータ、ラップトップ、ディスプレイデバイス(たとえば、特に、TV、コンピュータモニタ、ナビゲーションシステム)、音楽または他のオーディオまたはステレオデバイス、遠隔制御デバイス(「遠隔制御装置」)、プリンタ、キッチンまたは他の家庭用器具、(たとえば、パッシブキーレスエントリアンドスタート(PKES:passive keyless entry and start)システムのための)キーフォブなど、様々なデバイスを表し得る。
【0052】
[0070] 単一のAP102とSTA104の関連付けられたセットとは、それぞれのAP102によって管理される、基本サービスセット(BSS)と呼ばれることがある。
図1は、WLAN100の基本サービスエリア(BSA)を表し得る、AP102の例示的なカバレージエリア108をさらに示す。BSSは、サービスセット識別子(SSID)によってユーザに、ならびに、AP102の媒体アクセス制御(MAC)アドレスであり得る基本サービスセット識別子(BSSID)によって他のデバイスに、識別され得る。AP102は、AP102のワイヤレス範囲内の任意のSTA104が、AP102とのそれぞれの(以下で「Wi-Fiリンク」とも呼ばれる)通信リンク106を確立するために、またはAP102との通信リンク106を維持するために、AP102に「関連付ける」または再び関連付けることを可能にするために、BSSIDを含むビーコンフレーム(「ビーコン」)を周期的にブロードキャストする。たとえば、ビーコンは、それぞれのAP102によって使用される1次チャネルの識別情報、ならびにAP102とのタイミング同期を確立または維持するためのタイミング同期機能を含むことができる。AP102は、それぞれの通信リンク106を介してWLAN中の様々なSTA104に外部ネットワークへのアクセスを提供し得る。
【0053】
[0071] AP102との通信リンク106を確立するために、STA104の各々は、1つまたは複数の周波数帯域(たとえば、2.4GHz、5.0GHz、6.0GHz、または60GHz帯域)における周波数チャネル上でパッシブまたはアクティブスキャニング動作(「スキャン」)を実施するように構成される。パッシブスキャニングを実施するために、STA104はビーコンを聴取し、ビーコンは、(1つの時間単位(TU)が1024マイクロ秒(μs)に等しくなり得るTUで測定される)ターゲットビーコン送信時間(TBTT)と呼ばれる周期的時間間隔において、それぞれのAP102によって送信される。アクティブスキャニングを実施するために、STA104は、プローブ要求を生成し、スキャンされるべき各チャネル上で連続的に送信し、AP102からのプローブ応答を聴取する。各STA104は、パッシブまたはアクティブスキャンを通して取得されたスキャン情報に基づいて、関連付けるべきAP102を識別または選択し、選択されたAP102との通信リンク108を確立するために認証および関連付け動作を実施するように構成され得る。AP102は、関連付け動作の最盛時に関連付け識別子(AID)をSTA104に割り当て、AP102はSTA104を追跡するためにAIDを使用する。
【0054】
[0072] ワイヤレスネットワークの遍在性が高まった結果として、STA104は、STAの範囲内の多くのBSSのうちの1つを選択するか、または複数の接続されたBSSを含む拡張サービスセット(ESS)を一緒に形成する複数のAP102の中から選択するための機会を有し得る。WLAN100に関連付けられた拡張ネットワーク局は、複数のAP102がそのようなESS中で接続されることを可能にし得るワイヤードまたはワイヤレス配信システムに接続され得る。したがって、STA104は2つ以上のAP102によってカバーされ得、異なる送信のために異なる時間において異なるAP102に関連付けることができる。さらに、AP102との関連付けの後に、STA104はまた、関連付けるべきより好適なAP102を見つけるために、それの周囲を周期的にスキャンするように構成され得る。たとえば、それの関連付けられたAP102に対して移動しているSTA104は、より大きい受信信号強度インジケータ(RSSI)または低減されたトラフィック負荷など、より望ましいネットワーク特性を有する別のAP102を見つけるために、「ローミング」スキャンを実施し得る。
【0055】
[0073] いくつかの場合には、STA104は、AP102またはSTA104自体以外の他の機器なしにネットワークを形成し得る。そのようなネットワークの一例は、アドホックネットワーク(またはワイヤレスアドホックネットワーク)である。アドホックネットワークは、代替として、メッシュネットワークまたはピアツーピア(P2P)ネットワークと呼ばれることがある。いくつかの場合には、アドホックネットワークは、WLAN100など、より大きいワイヤレスネットワーク内に実装され得る。そのような実装形態では、STA104は、通信リンク106を使用してAP102を通して互いに通信することが可能であり得るが、STA104はまた、直接ワイヤレスリンク110を介して互いに直接通信することができる。さらに、2つのSTA104は、両方のSTA104が同じAP102に関連付けられ、それによってサービスされるかどうかにかかわらず、直接通信リンク110を介して通信し得る。そのようなアドホックシステムでは、STA104のうちの1つまたは複数は、BSS中でAP102によってこなされた役割を想定し得る。そのようなSTA104は、グループ所有者(GO)と呼ばれることがあり、アドホックネットワーク内の送信を調整し得る。直接ワイヤレスリンク110の例は、Wi-Fi Direct(登録商標)接続、Wi-Fiトンネルドダイレクトリンクセットアップ(TDLS)リンクを使用することによって確立された接続、および他のP2Pグループ接続を含む。
【0056】
[0074] AP102およびSTA104は、(IEEE802.11-2016仕様、または限定はしないが、802.11ah、802.11ad、802.11ay、802.11ax、802.11az、802.11ba、および802.11beを含む、それの改訂によって定義されるものなどの)IEEE802.11規格ファミリーに従って、機能し、(それぞれの通信リンク106を介して)通信し得る。これらの規格は、PHYレイヤおよび媒体アクセス制御(MAC)レイヤのためのWLAN無線およびベースバンドプロトコルを定義する。AP102およびSTA104は、物理レイヤコンバージェンスプロトコル(PLCP)プロトコルデータユニット(PPDU)の形態で、互いとの間で(以下「Wi-Fi通信」とも呼ばれる)ワイヤレス通信を送信および受信する。WLAN100中のAP102およびSTA104は、無認可スペクトル上でPPDUを送信し得、無認可スペクトルは、2.4GHz帯域、5.0GHz帯域、60GHz帯域、3.6GHz帯域、および900MHz帯域など、Wi-Fi技術によって従来使用される周波数帯域を含むスペクトルの一部分であり得る。本明細書で説明されるAP102およびSTA104のいくつかの実装形態はまた、認可通信と無認可通信の両方をサポートし得る、6.0GHz帯域など、他の周波数帯域において通信し得る。AP102およびSTA104はまた、共有認可周波数帯域など、他の周波数帯域上で通信するように構成され得、ここで、複数の事業者が同じまたは重複する1つまたは複数の周波数帯域において動作するための認可を有し得る。
【0057】
[0075] 周波数帯域の各々は、複数のサブバンドまたは周波数チャネルを含み得る。たとえば、IEEE802.11n、802.11ac、および802.11ax規格改訂に準拠するPPDUは、各々が複数の20MHzチャネルに分割される2.4GHz帯域および5.0GHz帯域上で送信され得る。したがって、これらのPPDUは、20MHzの最小帯域幅を有する物理チャネル上で送信されるが、より大きいチャネルがチャネルボンディングを通して形成され得る。たとえば、PPDUは、複数の20MHzチャネルを一緒にボンディングすることによって、40MHz、80MHz、160MHz、または320MHzの帯域幅を有する物理チャネル上で送信され得る。
【0058】
[0076] 各PPDUは、PHYプリアンブルと、PLCPサービスデータユニット(PSDU)の形態のペイロードとを含む複合構造である。プリアンブル中で提供される情報は、PSDU中の後続のデータを復号するために受信デバイスによって使用され得る。ボンディングされたチャネル上でPPDUが送信される事例では、プリアンブルフィールドは複製され、複数のコンポーネントチャネルの各々において送信され得る。PHYプリアンブルは、レガシー部分(または「レガシープリアンブル」)と非レガシー部分(または「非レガシープリアンブル」)の両方を含み得る。レガシープリアンブルは、用途の中でも、パケット検出、自動利得制御およびチャネル推定のために使用され得る。レガシープリアンブルはまた、概して、レガシーデバイスとの互換性を維持するために使用され得る。プリアンブルのフォーマット、コーディング、および非レガシー部分中で提供される情報は、ペイロードを送信するために使用されるべき特定のIEEE802.11プロトコルに基づく。
【0059】
[0077]
図2Aは、APといくつかのSTAとの間の通信のために使用可能な例示的なプロトコルデータユニット(PDU)200を示す。たとえば、PDU200は、PPDUとして構成され得る。示されているように、PDU200は、PHYプリアンブル202と、たとえば、データフィールド214を含むPSDUの形態の、プリアンブルの後のPHYペイロード204とを含む。たとえば、PHYプリアンブル202は、それ自体がレガシーショートトレーニングフィールド(L-STF)206と、レガシーロングトレーニングフィールド(L-LTF)208と、レガシーシグナリングフィールド(L-SIG)210とを含むレガシー部分を含み得る。PHYプリアンブル202は、1つまたは複数の非レガシーフィールド212を含む非レガシー部分をも含み得る。L-STF206は、概して、受信デバイスが、自動利得制御(AGC)と粗いタイミングおよび周波数推定とを実施することを可能にする。L-LTF208は、概して、受信デバイスが、細かいタイミングおよび周波数推定を実施すること、また、ワイヤレスチャネルを推定することを可能にする。L-SIG210は、概して、受信デバイスが、PDUの持続時間を決定し、PDUの上で送信することを回避するために、決定された持続時間を使用することを可能にする。たとえば、L-STF206、L-LTF208、およびL-SIG210は、2位相シフトキーイング(BPSK)変調方式に従って変調され得る。ペイロード204は、BPSK変調方式、直交BPSK(Q-BPSK)変調方式、直交振幅変調(QAM)変調方式、または別の適切な変調方式に従って変調され得る。ペイロード204は、概して、たとえば、媒体アクセス制御(MAC)プロトコルデータユニット(MPDU)またはアグリゲートMPDU(A-MPDU)の形態で、上位レイヤデータを搬送し得る。
【0060】
[0078]
図2Bは、
図2AのPDUにおける例示的なL-SIGフィールド220を示す。L-SIG220は、データレートフィールド222と、予約済みビット224と、長さフィールド226と、パリティビット228と、テールフィールド230とを含む。データレートフィールド222はデータレートを示す(データレートフィールド222中で示されるデータレートは、ペイロード204中で搬送されるデータの実際のデータレートでないことがあることに留意されたい)。長さフィールド226は、たとえば、バイト単位でパケットの長さを示す。パリティビット228は、ビット誤りを検出するために使用される。テールフィールド230は、デコーダ(たとえば、ビタビデコーダ)の動作を終了するために受信デバイスによって使用されるテールビットを含む。受信デバイスは、たとえば、マイクロ秒(μs)単位でパケットの持続時間を決定するために、データレートフィールド222および長さフィールド226中で示されたデータレートおよび長さを利用する。
【0061】
[0079]
図3Aは、APと1つまたは複数のSTAとの間のワイヤレス通信のために使用可能な例示的なPHYプリアンブル300を示す。PHYプリアンブル300は、SU送信、OFDMA送信またはMU-MIMO送信のために使用され得る。PHYプリアンブル300は、IEEE802.11ワイヤレス通信プロトコル規格に対するIEEE802.11ax改訂に従って、高効率(HE)WLAN PHYプリアンブルとしてフォーマットされ得る。PHYプリアンブル300は、レガシー部分302と非レガシー部分304とを含む。PHYプリアンブル300は、その後に、たとえば、データフィールド324を含むPSDUの形態の、PHYペイロード306が続き得る。
【0062】
[0080] PHYプリアンブル300のレガシー部分302は、L-STF308と、L-LTF310と、L-SIG312とを含む。非レガシー部分304は、L-SIG(RL-SIG)314、第1のHE信号フィールド(HE-SIG-A)316、HEショートトレーニングフィールド(HE-STF)320、および1つまたは複数のHEロングトレーニングフィールド(またはシンボル)(HE-LTF)322の繰り返しを含む。OFDMA通信またはMU-MIMO通信の場合、第2の部分304は、HE-SIG-A316とは別個に符号化された第2のHE信号フィールド(HE-SIG-B)318をさらに含む。L-STF308、L-LTF310、およびL-SIG312のように、RL-SIG314およびHE-SIG-A316中の情報は複製され、ボンディングされたチャネルの使用を伴う事例中のコンポーネント20MHzチャネルの各々において送信され得る。対照的に、HE-SIG-B318中のコンテンツは、各20MHzチャネルに固有であり、特定のSTA104をターゲットにし得る。
【0063】
[0081] RL-SIG314は、PHYプリアンブル300を搬送するPDUがHE PPDUであることをHE適合STA104に示し得る。AP102は、複数のSTA104を識別し、APがそれらのためにULまたはDLリソースをスケジュールしたことを複数のSTA104に通知するために、HE-SIG-A316を使用し得る。たとえば、HE-SIG-A316は、識別されたSTA104のためのリソース割振りを示すリソース割振りサブフィールドを含み得る。HE-SIG-A316は、AP102によってサービスされる各HE適合STA104によって復号され得る。MU送信の場合、HE-SIG-A316は、関連付けられたHE-SIG-B318を復号するために各々の識別されたSTA104によって使用可能な情報をさらに含む。たとえば、HE-SIG-A316は、例の中でも、HE-SIG-B318のロケーションおよび長さと、利用可能なチャネル帯域幅と、変調およびコーディング方式(MCS)とを含むフレームフォーマットを示し得る。HE-SIG-A316はまた、識別されたSTA104以外のSTA104によって使用可能なHE WLANシグナリング情報を含み得る。
【0064】
[0082] HE-SIG-B318は、たとえば、STA固有(または「ユーザ固有」)MCS値およびSTA固有RU割振り情報など、STA固有スケジューリング情報を搬送し得る。DL MU-OFDMAのコンテキストでは、そのような情報は、それぞれのSTA104が、関連付けられたデータフィールド324中の対応するリソースユニット(RU)を識別および復号することを可能にする。各HE-SIG-B318は、共通フィールドと、少なくとも1つのSTA固有フィールドとを含む。共通フィールドは、例の中でも、周波数ドメイン中のRU割当てを含む複数のSTA104に対するRU割振りを示し、どのRUがMU-MIMO送信のために割り振られるかと、どのRUがMU-OFDMA送信に対応するかと、割振りの中のユーザの数とを示すことができる。共通フィールドは、共通ビット、CRCビット、およびテールビットで符号化され得る。ユーザ固有フィールドは特定のSTA104に割り当てられ、固有のRUをスケジュールし、他のWLANデバイスにスケジューリングを示すために使用され得る。各ユーザ固有フィールドは、複数のユーザブロックフィールドを含み得る。各ユーザブロックフィールドは、データフィールド324中のそれらのそれぞれのRUペイロードを復号するために、2つのそれぞれのSTAについての情報を含んでいる2つのユーザフィールドを含み得る。
【0065】
[0083]
図3Bは、APと1つまたは複数のSTAとの間のワイヤレス通信のために使用可能な別の例示的なPHYプリアンブル350を示す。PHYプリアンブル350は、SU送信、OFDMA送信、またはMU-MIMO送信のために使用され得る。PHYプリアンブル350は、IEEE802.11ワイヤレス通信プロトコル規格に対するIEEE802.11be改訂に従って、極高スループット(EHT)WLAN PHYプリアンブルとしてフォーマットされ得るか、あるいは将来のIEEE802.11ワイヤレス通信プロトコル規格または他のワイヤレス通信規格に準拠する新しいワイヤレス通信プロトコルの任意の後の(ポストEHT)バージョンに準拠するPHYプリアンブルとしてフォーマットされ得る。PHYプリアンブル350は、レガシー部分352と非レガシー部分354とを含む。PHYプリアンブル350は、その後に、たとえば、データフィールド374を含むPSDUの形態の、PHYペイロード356が続き得る。
【0066】
[0084] PHYプリアンブル350のレガシー部分352は、L-STF358と、L-LTF360と、L-SIG362とを含む。プリアンブルの非レガシー部分354は、RL-SIG364と、RL-SIG364の後の複数のワイヤレス通信プロトコルバージョン依存信号フィールドとを含む。たとえば、非レガシー部分354は、(本明細書では「U-SIG366」と呼ばれる)ユニバーサル信号フィールド366と、(本明細書では「EHT-SIG368」と呼ばれる)EHT信号フィールド368とを含み得る。U-SIG366およびEHT-SIG368の一方または両方は、EHT以外の他のワイヤレス通信プロトコルバージョンとして構造化され、それらについてのバージョン依存情報を搬送し得る。非レガシー部分354は、追加のショートトレーニングフィールド370(本明細書では「EHT-STF370」と呼ばれるが、それはEHT以外の他のワイヤレス通信プロトコルバージョンとして構造化され、それらについてのバージョン依存情報を搬送し得る)と、1つまたは複数の追加のロングトレーニングフィールド372(本明細書では「EHT-LTF372」と呼ばれるが、それらはEHT以外の他のワイヤレス通信プロトコルバージョンとして構造化され、それらについてのバージョン依存情報を搬送し得る)とをさらに含む。L-STF358、L-LTF360、およびL-SIG362のように、U-SIG366およびEHT-SIG368中の情報は複製され、ボンディングされたチャネルの使用を伴う事例中のコンポーネント20MHzチャネルの各々において送信され得る。いくつかの実装形態では、EHT-SIG368は、追加または代替として、一次20MHzチャネル中で搬送される情報とは異なる1つまたは複数の非一次20MHzチャネル中で情報を搬送し得る。
【0067】
[0085] EHT-SIG368は、1つまたは複数のジョイント符号化されたシンボルを含み得、U-SIG366が符号化されるブロックとは異なるブロック中で符号化され得る。EHT-SIG368は、複数のSTA104を識別し、APがそれらのためにULまたはDLリソースをスケジュールしたことを複数のSTA104に通知するためにAPによって使用され得る。EHT-SIG368は、AP102によってサービスされる各適合STA104によって復号され得る。EHT-SIG368は、概して、データフィールド374中のビットを解釈するために受信デバイスによって使用され得る。たとえば、EHT-SIG368は、例の中でも、RU割振り情報と、空間ストリーム構成情報と、MCSなどのユーザごとのシグナリング情報とを含み得る。EHT-SIG368は、バイナリ畳み込みコード(BCC)のために使用され得る、巡回冗長検査(CRC)(たとえば、4ビット)と、テール(たとえば、6ビット)とをさらに含み得る。いくつかの実装形態では、EHT-SIG368は、各々がCRCとテールとを含む1つまたは複数のコードブロックを含み得る。いくつかの態様では、コードブロックの各々は別個に符号化され得る。
【0068】
[0086] EHT-SIG368は、たとえば、ユーザ固有MCS値およびユーザ固有RU割振り情報など、STA固有スケジューリング情報を搬送し得る。EHT-SIG368は、概して、データフィールド374中のビットを解釈するために受信デバイスによって使用され得る。DL MU-OFDMAのコンテキストでは、そのような情報は、それぞれのSTA104が、関連付けられたデータフィールド376中の対応するRUを識別および復号することを可能にする。各EHT-SIG368は、共通フィールドと、少なくとも1つのユーザ固有フィールドとを含み得る。共通フィールドは、例の中でも、複数のSTA104に対するRU分布を示し、周波数ドメイン中のRU割当てを示し、どのRUがMU-MIMO送信のために割り振られるかと、どのRUがMU-OFDMA送信に対応するかと、割振りの中のユーザの数とを示すことができる。共通フィールドは、共通ビット、CRCビット、およびテールビットで符号化され得る。ユーザ固有フィールドは特定のSTA104に割り当てられ、固有のRUをスケジュールし、他のWLANデバイスにスケジューリングを示すために使用され得る。各ユーザ固有フィールドは、複数のユーザブロックフィールドを含み得る。各ユーザブロックフィールドは、たとえば、それらのそれぞれのRUペイロードを復号するために、2つのそれぞれのSTAについての情報を含んでいる2つのユーザフィールドを含み得る。
【0069】
[0087] RL-SIG364およびU-SIG366の存在は、PHYプリアンブル350を搬送するPDUが、EHT PPDU、または将来のIEEE802.11ワイヤレス通信プロトコル規格に準拠する新しいワイヤレス通信プロトコルの任意の後の(ポストEHT)バージョンに準拠するPPDUであることを、EHTまたは後のバージョンに準拠するSTA104に示し得る。たとえば、U-SIG366は、EHT-SIG368またはデータフィールド374のうちの1つまたは複数中のビットを解釈するために、受信デバイスによって使用され得る。
【0070】
[0088] 上記で説明されたように、AP102およびSTA104は、マルチユーザ(MU)通信、すなわち、1つのデバイスから複数のデバイスの各々への同時送信(たとえば、AP102から対応するSTA104への複数の同時ダウンリンク(DL)通信)、または複数のデバイスから単一のデバイスへの同時送信(たとえば、対応するSTA104からAP102への複数の同時アップリンク(UL)送信)をサポートすることができる。MU送信をサポートするために、AP102およびSTA104は、マルチユーザ多入力多出力(MU-MIMO)技法と、マルチユーザ直交周波数分割多元接続(MU-OFDMA)技法とを利用し得る。
【0071】
[0089] MU-OFDMA方式では、ワイヤレスチャネルの利用可能な周波数スペクトルは、各々がいくつかの異なる周波数サブキャリア(「トーン」)を含む複数のリソースユニット(RU)に分割され得る。異なるRUは、特定の時間において異なるSTA104にAP102によって割り振られるか、または割り当てられ得る。RUのサイズおよび分布は、RU割振りと呼ばれることがある。いくつかの実装形態では、RUは2MHz間隔で割り振られ得、したがって、最小のRUは、24個のデータトーンと2個のパイロットトーンとからなる26個のトーンを含み得る。結果として、20MHzチャネルでは、(いくつかのトーンは他の目的のために予約されるので)(2MHz、26トーンRUなどの)最大9つのRUが割り振られ得る。同様に、160MHzチャネルでは、最大74個のRUが割り振られ得る。より大きい52トーン、106トーン、242トーン、484トーンおよび996トーンRUも割り振られ得る。隣接するRUは、たとえば、隣接するRU間の干渉を低減するために、受信機DCオフセットを低減するために、および送信中心周波数漏洩を回避するために、(DCサブキャリアなどの)ヌルサブキャリアによって分離され得る。
【0072】
[0090] UL MU送信の場合、AP102は、複数のSTA104からAP102へのUL MU-OFDMA送信またはUL MU-MIMO送信を始動し、同期させるために、トリガフレームを送信することができる。したがって、そのようなトリガフレームは、複数のSTA104が時間的に同時にAP102にULトラフィックを送ることを可能にし得る。トリガフレームは、それぞれの関連付け識別子(AID)を通して1つまたは複数のSTA104をアドレス指定し得、AP102にULトラフィックを送るために使用され得る1つまたは複数のRUを各AID(およびしたがって各STA104)に割り当て得る。APはまた、スケジュールされていないSTA104が競合し得る1つまたは複数のランダムアクセス(RA)RUを指定し得る。
【0073】
[0091]
図4は、例示的なワイヤレス通信デバイス400のブロック図を示す。いくつかの実装形態では、ワイヤレス通信デバイス400は、
図1を参照しながら上記で説明されたSTA104のうちの1つなど、STAにおいて使用するためのデバイスの一例であり得る。いくつかの他の実装形態では、ワイヤレス通信デバイス400は、
図1を参照しながら上記で説明されたAP102など、APにおいて使用するためのデバイスの一例であり得る。いくつかの他の実装形態では、ワイヤレス通信デバイス400は、説明される機能を実施するように構成された処理システムとインターフェースとを含むことができる。
【0074】
[0092] ワイヤレス通信デバイス400は、(たとえば、ワイヤレスパケットの形態で)ワイヤレス通信を送信すること(または送信のために出力すること)および受信することが可能である。たとえば、ワイヤレス通信デバイスは、IEEE802.11-2016仕様、または限定はしないが、802.11ah、802.11ad、802.11ay、802.11ax、802.11az、802.11ba、および802.11beを含む、それの改訂によって定義されるものなど、IEEE802.11規格に準拠する、物理レイヤコンバージェンスプロトコル(PLCP)プロトコルデータユニット(PPDU)および媒体アクセス制御(MAC)プロトコルデータユニット(MPDU)の形態でパケットを送信および受信するように構成され得る。
【0075】
[0093] ワイヤレス通信デバイス400は、1つまたは複数のモデム402、たとえば、Wi-Fi(IEEE802.11準拠)モデムを含む、チップ、システムオンチップ(SoC)、チップセット、パッケージ、またはデバイスであり得るか、またはそれらを含むことができる。いくつかの実装形態では、1つまたは複数のモデム402(まとめて「モデム402」)はさらに、WWANモデム(たとえば、3GPP 4G LTEまたは5G準拠モデム)を含む。いくつかの実装形態では、ワイヤレス通信デバイス400は、1つまたは複数の無線機404(まとめて「無線機404」)をも含む。いくつかの実装形態では、ワイヤレス通信デバイス400は、1つまたは複数のプロセッサ、処理ブロックまたは処理要素406(まとめて「プロセッサ406」)と1つまたは複数のメモリブロックまたは要素408(まとめて「メモリ408」)とをさらに含む。
【0076】
[0094] モデム402は、たとえば、可能性の中でも、特定用途向け集積回路(ASIC)など、インテリジェントハードウェアブロックまたはデバイスを含むことができる。モデム402は、概して、PHYレイヤを実装するように構成される。たとえば、モデム402は、ワイヤレス媒体上での送信のために、パケットを変調し、変調されたパケットを無線機404に出力するように構成される。モデム402は同様に、無線機404によって受信された変調されたパケットを取得し、復調されたパケットを提供するためにパケットを復調するように構成される。変調器および復調器に加えて、モデム402は、デジタル信号処理(DSP)回路と、自動利得制御(AGC)と、コーダと、デコーダと、マルチプレクサと、デマルチプレクサとをさらに含み得る。たとえば、送信モードにある間、プロセッサ406から取得されたデータはコーダに提供され、コーダは、符号化されたビットを提供するためにデータを符号化する。符号化されたビットは、変調されたシンボルを提供するために、(選択されたMCSを使用して)変調コンステレーション中のポイントにマッピングされる。変調されたシンボルは、数NSSの空間ストリームまたは数NSTSの時空間ストリームにマッピングされ得る。それぞれの空間ストリームまたは時空間ストリーム中の変調されたシンボルは、多重化され、逆高速フーリエ変換(IFFT)ブロックを介して変換され、その後、Txウィンドウ処理およびフィルタ処理のためにDSP回路に提供され得る。デジタル信号は、デジタルアナログコンバータ(DAC)に提供され得る。得られたアナログ信号は、周波数アップコンバータに、最終的に無線機404に提供され得る。ビームフォーミングを伴う実装形態では、それぞれの空間ストリーム中の変調されたシンボルは、IFFTブロックへのそれらの提供より前に、ステアリング行列を介してプリコーディングされる。
【0077】
[0095] 受信モードにある間、無線機404から受信されたデジタル信号は、DSP回路に提供され、DSP回路は、たとえば、信号の存在を検出し、初期タイミングおよび周波数オフセットを推定することによって、受信された信号を収集するように構成される。DSP回路は、さらに、たとえば、チャネル(狭帯域)フィルタ処理、(I/Q不均衡を補正することなどの)アナログ障害調整(analog impairment conditioning)を使用して、および狭帯域信号を最終的に取得するためにデジタル利得を適用して、デジタル信号をデジタル的に調整するように構成される。DSP回路の出力はAGCに供給され得、AGCは、適切な利得を決定するために、たとえば、1つまたは複数の受信されたトレーニングフィールド中の、デジタル信号から抽出された情報を使用するように構成される。DSP回路の出力はまた、復調器と結合され、復調器は、信号から、変調されたシンボルを抽出し、たとえば、各空間ストリーム中の各サブキャリアの各ビット位置について対数尤度比(LLR)を算出するように構成される。復調器はデコーダと結合され、デコーダは、復号されたビットを提供するためにLLRを処理するように構成され得る。空間ストリームのすべてからの復号されたビットは、逆多重化のためにデマルチプレクサに供給される。逆多重化されたビットは、デスクランブルされ、処理、評価、または解釈のためにMACレイヤ(プロセッサ406)に提供され得る。
【0078】
[0096] 無線機404は、概して、1つまたは複数のトランシーバに組み合わせられ得る、少なくとも1つの無線周波数(RF)送信機(または「送信機チェーン」)と少なくとも1つのRF受信機(または「受信機チェーン」)とを含む。たとえば、RF送信機および受信機は、それぞれ、少なくとも1つの電力増幅器(PA)と少なくとも1つの低雑音増幅器(LNA)とを含む様々なDSP回路を含み得る。RF送信機および受信機は、次に1つまたは複数のアンテナに結合され得る。たとえば、いくつかの実装形態では、ワイヤレス通信デバイス400は、(各々が対応する送信チェーンを伴う)複数の送信アンテナおよび(各々が対応する受信チェーンを伴う)複数の受信アンテナを含むか、またはそれらと結合され得る。モデム402から出力されたシンボルは無線機404に提供され、無線機404は結合されたアンテナを介してシンボルを送信する。同様に、アンテナを介して受信されたシンボルは無線機404によって取得され、無線機404はモデム402にシンボルを提供する。
【0079】
[0097] プロセッサ406は、たとえば、処理コア、処理ブロック、中央処理ユニット(CPU)、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)などのプログラマブル論理デバイス(PLD)、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明される機能を実施するように設計されたそれらの任意の組合せなど、インテリジェントハードウェアブロックまたはデバイスを含むことができる。プロセッサ406は、無線機404およびモデム402を通して受信される情報を処理し、ワイヤレス媒体を通した送信のためにモデム402および無線機404を通して出力されるように情報を処理する。たとえば、プロセッサ406は、MPDU、フレーム、またはパケットの生成および送信に関係する様々な動作を実施するように構成された制御プレーンとMACレイヤとを実装し得る。MACレイヤは、動作または技法の中でも、フレームのコーディングおよび復号と、空間多重化と、時空間ブロックコーディング(STBC)と、ビームフォーミングと、OFDMAリソース割振りとを実施するか、またはそれらを容易にするように構成される。いくつかの実装形態では、プロセッサ406は、概して、上記で説明された様々な動作をモデムに実施させるようにモデム402を制御し得る。
【0080】
[0098] メモリ408は、ランダムアクセスメモリ(RAM)または読取り専用メモリ(ROM)、またはそれらの組合せなど、有形記憶媒体を含むことができる。メモリ408はまた、プロセッサ406によって実行されたとき、プロセッサ406に、MPDU、フレームまたはパケットの生成、送信、受信および解釈を含む、ワイヤレス通信のための本明細書で説明される様々な動作を実施させる命令を含んでいる、非一時的プロセッサまたはコンピュータ実行可能ソフトウェア(SW)コードを記憶することができる。たとえば、本明細書で開示される構成要素の様々な機能、あるいは本明細書で開示される方法、動作、プロセス、またはアルゴリズムの様々なブロックまたはステップは、1つまたは複数のコンピュータプログラムの1つまたは複数のモジュールとして実装され得る。
【0081】
[0099]
図5Aは、例示的なAP502のブロック図を示す。たとえば、AP502は、
図1を参照しながら説明されたAP102の例示的な一実装形態であり得る。AP502は、ワイヤレス通信デバイス(WCD)510を含む。たとえば、ワイヤレス通信デバイス510は、
図4を参照しながら説明されたワイヤレス通信デバイス400の例示的な一実装形態であり得る。AP502は、ワイヤレス通信を送信および受信するために、ワイヤレス通信デバイス510と結合された複数のアンテナ520をも含む。いくつかの実装形態では、AP502は、ワイヤレス通信デバイス510と結合されたアプリケーションプロセッサ530と、アプリケーションプロセッサ530と結合されたメモリ540とをさらに含む。AP502は、インターネットを含む外部ネットワークへのアクセスを獲得するためにAP502がコアネットワークまたはバックホールネットワークと通信することを可能にする、少なくとも1つの外部ネットワークインターフェース550をさらに含む。たとえば、外部ネットワークインターフェース550は、ワイヤード(たとえば、イーサネット(登録商標))ネットワークインターフェースと(WWANインターフェースなどの)ワイヤレスネットワークインターフェースの一方または両方を含み得る。上述の構成要素のいずれかは、少なくとも1つのバス上で、直接または間接的に他の構成要素と通信することができる。AP502は、ワイヤレス通信デバイス510と、アプリケーションプロセッサ530と、メモリ540と、アンテナ520の少なくとも部分と、外部ネットワークインターフェース550とを包含するハウジングをさらに含む。
【0082】
[0100]
図5Bは、例示的なSTA504のブロック図を示す。たとえば、STA504は、
図1を参照しながら説明されたSTA104の例示的な一実装形態であり得る。STA504は、ワイヤレス通信デバイス515を含む。たとえば、ワイヤレス通信デバイス515は、
図4を参照しながら説明されたワイヤレス通信デバイス400の例示的な一実装形態であり得る。STA504は、ワイヤレス通信を送信および受信するために、ワイヤレス通信デバイス515と結合された1つまたは複数のアンテナ525をも含む。STA504は、ワイヤレス通信デバイス515と結合されたアプリケーションプロセッサ535と、アプリケーションプロセッサ535と結合されたメモリ545とをさらに含む。いくつかの実装形態では、STA504は、(タッチスクリーンまたはキーパッドなどの)ユーザインターフェース(UI)555と、タッチスクリーンディスプレイを形成するようにUI555と統合され得るディスプレイ565とをさらに含む。いくつかの実装形態では、STA504は、たとえば、1つまたは複数の慣性センサー、加速度計、温度センサー、圧力センサー、または高度センサーなど、1つまたは複数のセンサー575をさらに含み得る。上述の構成要素のうちの構成要素は、少なくとも1つのバス上で、直接または間接的に構成要素のうちの他の構成要素と通信することができる。STA504は、ワイヤレス通信デバイス515と、アプリケーションプロセッサ535と、メモリ545と、アンテナ525の少なくとも部分と、UI555と、ディスプレイ565とを包含するハウジングをさらに含む。いくつかの他の実装形態では、STA504は、説明される機能を実施するように構成された処理システムとインターフェースとを含み得る。
【0083】
[0101] 説明されるように、本明細書で開示される方法およびシステムは、環境のそれぞれのエリアの壁、障壁、および他の物理的特徴のロケーションを決定するために、環境の複数の異なるエリアの各々に関連付けられた1つまたは複数のAPまたは基地局によって受信されたワイヤレス信号のCSIを使用することができる。それぞれのエリアについて決定された、壁、障壁、および他の物理的特徴のロケーションは、それぞれのエリアについてのマップ情報を生成するために使用され得る。システムは、環境全体についてのマップ情報を決定するために、環境の異なるエリアについて生成されたマップ情報をアグリゲートするかまたは組み合わせることができる。
【0084】
[0102]
図6は、いくつかの実装形態による、環境610と、環境610のマップ情報を生成するためのシステム620とを示す
図600を示す。環境610は、マップ情報が所望される任意の好適な場所、構造物、ベニュー、宛先、領域、またはロケーションであり得る。いくつかの事例では、環境610は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境610は、(限定はしないが)見本市会場(fairground)、遊園地、スタジアムなど、屋外環境であり得る。
【0085】
[0103] 様々な実装形態では、(限定はしないが)環境610全体にわたって配置されるAP601~604など、複数のワイヤレス通信デバイスが、環境610の様々なポイント、表面、壁、境界、廊下、ホール、構造物、および他の物理的特徴のロケーションを決定するために使用され得る。AP601~604は、通信リンク110を介して互いと通信し得、それぞれの通信リンク631~634を介してシステム620と通信し得る。AP601~604の各々は、BSSに関連付けられ得、BSSに関連付けられた1つまたは複数のSTA504にワイヤレス接続性を提供し得る。AP601~604は、通信リンク106を介してSTA504と通信し得る。いくつかの事例では、APのグループがESSを形成し得る。他の事例では、APのグループが、APマルチリンクデバイス(MLD)など、MLDに属し得る。いくつかの他の事例では、APのグループが複数のBSSIDセットを形成し得る。
【0086】
[0104] いくつかの実装形態では、AP601~604の各々は、環境610の対応するエリアに関連付けられ得る。たとえば、第1のAP601は第1のエリア611に関連付けられ得、第2のAP602は第2のエリア612に関連付けられ得、第3のAP603は第3のエリア613に関連付けられ得、第4のAP604は第4のエリア614に関連付けられ得る。いくつかの実装形態では、環境610の異なるエリア611~614は、それぞれのAP601~604によって提供されるワイヤレスカバレージエリアに対応し得る。たとえば、第1のエリア611は、第1のAP601のワイヤレスカバレージエリアに対応し得、第2のエリア612は、第2のAP602のワイヤレスカバレージエリアに対応し得、第3のエリア613は、第3のAP603のワイヤレスカバレージエリアに対応し得、第4のエリア614は、第4のAP604のワイヤレスカバレージエリアに対応し得る。簡単のために4つのAP601~604のみが
図1に示されているが、環境610は、他の数のAPまたは基地局を含み得るか、またはそれらに関連付けられ得る。
【0087】
[0105] (
図6の環境610などの)環境のエリアのうちのいくつかは、互いに重複し得、環境の他のエリアは、互いと重複しないことがある。いくつかの実装形態では、環境は、環境の異なるエリアに共通のまたはそれらによって共有される1つまたは複数の領域を含み得、および/あるいは環境の異なるエリアのいずれの内にもないかまたはいずれとも重複しない1つまたは複数の他の領域を含み得る。
図6の例の場合、第3のエリア613と第4のエリア614とは、互いに重複し、環境の第3のエリア613と第4のエリア614とに共通である重複領域640を定義し得る。重複領域640中に位置するそれぞれのSTA504はまた、第3のエリア613と第4のエリア614の両方中に同時に位置し得る。いくつかの事例では、それぞれのSTA504は、環境610の第3のエリア613および第4のエリア614の各々におけるワイヤレス接続性を有し得、第3のAP603と第4のAP604の両方は、それぞれのSTA504からワイヤレス送信を受信することが可能であり得る。したがって、それぞれのSTA504によって送信されたワイヤレス信号は、第3のAP603または第4のAPの一方または両方によって、それらのそれぞれのエリア603および604中のポイント、表面、壁、および/または他の物理的特徴のロケーションを決定するために使用され得る。
【0088】
[0106]
図6の例に示されているように、第1のエリア611も第2のエリア612も、環境610の他のエリアと重複しない。その上、環境610の異なるエリア611~614間にカバレージギャップ650が存在し得る。いくつかの事例では、カバレージギャップ650は、AP601~604のワイヤレスカバレージエリア中にないエリアまたは領域を定義し得る。これらのエリアまたは領域中に位置するそれぞれのSTA504は、AP601~604からワイヤレス信号を受信することが可能でないことがあり、これは、それぞれのSTA504がAP601~604との測距動作に参加するのを、またはAP601~604からロケーション情報を受信するのを妨げ得る。同様に、AP601~604は、これらのエリアまたは領域中に位置するそれぞれのSTA504からワイヤレス信号を受信することが可能でないことがある。したがって、環境610の異なるエリア中に位置するAPの1つまたは複数のグループによって受信されたワイヤレス信号を使用してこれらのエリアまたは領域についてのマップ情報を取得することが困難であり得る。
【0089】
[0107] AP601~604は、それらのそれぞれのエリア601~604中で受信されるワイヤレス信号のCSIを決定または取得することができる。ワイヤレス信号のCSIは、ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、ワイヤレス信号の各反射経路信号成分のToFおよびAoAを決定することとを行うために使用され得る。ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAと(ToFおよびAoA情報と総称される)は、任意の好適な技法を使用して決定され得る。
【0090】
[0108] ワイヤレス信号の反射経路信号成分のToFおよびAoAは、環境610の対応するエリア中のポイントまたは表面のロケーションを推定するために使用され得、ワイヤレス信号の直接経路信号成分のToFおよびAoAは、ワイヤレス信号を送信したSTA504のロケーションを推定するために使用され得る。いくつかの実装形態では、AP601~604は、ワイヤレス信号の直接経路信号成分と反射経路信号成分とを区別するために、ワイヤレス信号のチャネル周波数応答(channel frequency response)を取得し、ワイヤレス信号のチャネルインパルス応答(channel impulse response)を決定し、チャネルインパルス応答を使用し得る。たとえば、それぞれのAPは、ワイヤレス信号のチャネル周波数応答の逆離散フーリエ変換(DFT)機能または部分的逆DFT機能に基づいてワイヤレス信号のチャネルインパルス応答を決定し得る。チャネル周波数応答は、ワイヤレス信号の周波数ドメイン表現を提供し、チャネルインパルス応答は、ワイヤレス信号の時間ドメイン表現を提供する。ワイヤレス信号が直接経路信号成分(たとえば、見通し線(LOS)信号成分)といくつかの反射経路信号成分(たとえば、非LOS(NLOS)信号成分)とを含むとき、チャネルインパルス応答は、LOS信号成分およびNLOS信号成分に対応する複数のパルスの重ね合わせであり得る。複数のパルスの各々は、対応する時間値におけるチャネルインパルス応答中の対応するピークまたは「タップ」に関連付けられ得る。直接経路信号成分は、通常、反射経路信号成分のいずれかの前に受信機デバイスに到着する(および、したがって、最も短いToFを有する)ので、チャネルインパルス応答は、たとえば、受信機における第1の到着時間に対応するタップを識別することによって、ワイヤレス信号の直接経路信号成分を識別するために使用され得る。いくつかの事例では、チャネルインパルス応答は、異なる到着時間に対応するチャネルインパルス応答のタップを識別することによってワイヤレス信号の反射経路信号成分の各々を識別するためにも使用され得る。たとえば、チャネルインパルス応答の第1のタップは、(最も短いToFを有する)直接経路信号成分に対応し得、チャネルインパルス応答の第2のタップは、最も短い(ただし、直接経路信号成分のToFよりも長い)ToFを有する反射経路信号成分に対応し得、チャネルインパルス応答の第3のタップは、2番目に最も短いToFを有する反射経路信号成分に対応し得、以下同様である。
【0091】
[0109] AP601~604は、それらのそれぞれのエリア611~614中で受信されたワイヤレス信号の反射経路信号成分のToFおよびAoA情報に基づいてそれらのそれぞれのエリア611~614内のポイント、表面、壁、または他の物理的特徴のロケーションを推定し得る。いくつかの事例では、AP601~604は、システム620にそれらのそれぞれのエリア611~614のポイント、表面、壁、および/または他の物理的特徴のロケーションを提供し得、システム620は、異なるエリア611~614についてのマップ情報を生成し得る。いくつかの他の事例では、AP601~604は、推定されたロケーションに基づいてそれらのそれぞれのエリア611~614についてのマップ情報を生成し得る。様々な実装形態では、マップ情報は、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループに基づく推定されたポイントロケーションを使用して反復的に構築され得る。たとえば、いくつかの事例では、APは、第1の時間において複数の第1のワイヤレス信号を受信し、第1のワイヤレス信号のCSIに基づいてToFおよびAoA情報を決定し、第1のワイヤレス信号のToFおよびAoA情報に基づいてエリア内のポイントまたは壁のロケーションを推定し得る。次いで、APは、第1の時間よりも後の第2の時間において複数の第2のワイヤレス信号を受信し、第2のワイヤレス信号のCSIに基づいてToFおよびAoA情報を決定し、第2のワイヤレス信号のToFおよびAoA情報に基づいてエリア内のポイントまたは壁のロケーションを推定し得る。APは、エリア内のしきい値数のポイントまたは表面のロケーションが決定または推定されるまで、このプロセスを続け得る。いくつかの事例では、ポイントまたは表面のしきい値数は、エリアについて生成されるマップ情報の許容できるグラニュラリティに対応し得る。ある時間期間にわたってAPによって受信された複数のワイヤレス信号に基づいてマップ情報を生成することは、エリア内のより多数の特有のポイントまたは表面のロケーションが推定されることを可能にし得、これは、(たとえば、時間の特定のインスタンスにおいてAPによって受信されたワイヤレス信号に基づくマップ情報と比較して)エリアについて生成されるマップ情報のグラニュラリティおよび精度を増加させ得る。
【0092】
[0110] いくつかの実装形態では、AP601~604は、APが、同じ送信機デバイスから受信されるワイヤレス信号のCSIの変化、APによって受信されるワイヤレス信号のチャネル周波数応答の変化、APによって受信されるワイヤレス信号のチャネルインパルス応答の変化、ワイヤレス媒体のチャネル状況(channel condition)の変化、またはそれらの任意の組合せに応答してそれぞれのワイヤレス信号のCSIを提供し得る。いくつかの事例では、AP601~604は、示された変化のうちの1つまたは複数が、対応するしきい値を超えるときのみ、システム620にそれぞれのワイヤレス信号のCSIを提供する。それぞれのAPによって検出された変化は、移動するまたは位置を変えることが予想される人々、STA、および/または他の物体の移動、または更新されたロケーションを示し得る。さらに、または代替として、それぞれのAPによって検出された変化は、対応するエリアの1つまたは複数の静止物体、表面、または特徴の移動をも示し得る。たとえば、いくつかの態様では、CSIの変化および/またはチャネル状況の変化は、対応するエリア中の壁あるいは他の固定された物体、表面、または特徴の移動、再配置、または再配向を示し得る。
【0093】
[0111] いくつかの実装形態では、AP601~604は、マッピング情報中に含まれるべきである、環境の固定された特徴(たとえば、ポイント、表面、壁、および他の物理的特徴)と、マッピング情報中に含まれるべきでない、環境の過渡的特徴(たとえば、人々、ペット、ショッピングカートなど)とを区別し得る。いくつかの事例では、AP601~604は、AP601~604によって取得された履歴CSIに基づいて環境の固定された特徴と環境の過渡的特徴とを区別し得る。たとえば、環境中のそれぞれの表面に関連付けられたCSIまたは信号反射が、ある時間期間にわたって一貫して検出または決定される場合、AP601~604は、それぞれの表面が、固定されたまたは静止のものであり、マッピング情報中に含まれるべきであると決定し得る。逆に、環境中のそれぞれの表面に関連付けられたCSIまたは信号反射が、新しいか、または時間期間中に、ある量超だけ変化した場合、AP601~604は、それぞれの表面が、過渡的であり、マッピング情報中に含まれるべきでないと決定し得る。
【0094】
[0112] 様々な実装形態では、CSIは、あるしきい値よりも大きい信号対雑音比(SNR)、信号対干渉プラス雑音比(SINR)、受信信号強度インジケータ(RSSI)、基準信号受信電力(RSRP)、または基準信号受信品質(RSRQ)を有する反射経路信号成分についてのみ取得される。いくつかの事例では、システム620は、AP601~604にしきい値を示し得る。いくつかの実装形態では、システム620は、ワイヤレス信号のCSIを決定または取得するとき、しきい値を下回る強度または品質を有する反射経路信号成分を無視するようにAP601~604のうちの1つまたは複数に命令し得る。ワイヤレス信号のCSIからワイヤレス信号の比較的弱い反射経路信号成分を除外または無視することによって、本明細書で開示される主題の実装形態は、ワイヤレス信号の比較的強い反射経路信号成分のToFおよびAoAが決定され得る精度を改善し得る。反射経路信号成分のToFおよびAoA情報の精度を増加させることは、所与のエリア内の様々なポイント、表面、壁、および他の物理的特徴が推定または決定され得る精度を増加させ得る。
【0095】
[0113] システム620は、1つまたは複数のトランシーバ622と、1つまたは複数のプロセッサ624と、メモリ625と、ロケーションエンジン626と、マッピングエンジン627と、機械学習モデル628とを含み得る。簡単のために示されていないが、トランシーバ622、プロセッサ624、メモリ625、ロケーションエンジン626、マッピングエンジン627、および機械学習モデル628は、システムバス、専用信号線、プログラマブル相互接続システム、またはそれらの任意の組合せを介して互いに結合され得る。
【0096】
[0114] トランシーバ622は、それぞれの信号線631~634を介してAP601~604と情報を交換するために使用され得る。トランシーバ622は、他のデバイス、システム、ネットワーク、および/またはデータベースと情報を交換するためにも使用され得る。たとえば、いくつかの事例では、トランシーバ622は、ロケーション情報またはマッピング情報がそこから取得され得る、外部マッピングサービス、マッピングデータベース、ロケーションサーバ、ロケーションデータベース、および/または他の好適なリソースとの接続を確立し得る。簡単のために
図6には示されていないが、トランシーバ622は、信号を処理し、他のワイヤレスデバイスに送信するための任意の数の送信チェーンを含むことができ、1つまたは複数のアンテナを介して他のワイヤレスデバイスから受信された信号を処理するための任意の数の受信チェーンを含むことができる。トランシーバ622は、(限定はしないが)第3世代パートナーシッププロジェクト(3GPP)の1つまたは複数のリリースによって、ワイヤレス通信規格のIEEE802.11ファミリーに対する1つまたは複数の改訂、Bluetooth Interest Group、または他の好適な通信技術によって指定されている、ワイヤレス通信プロトコルなど、1つまたは複数の好適なワイヤレス通信プロトコルに従って動作するように構成され得る。たとえば、いくつかの事例では、システム620は、5G RANの車両対あらゆるモノ(V2X)チャネル、5G RANの車両対インフラストラクチャ(V2I)チャネル、5G RANのサイドリンクチャネル、無認可周波数帯域、ピアツーピア(P2P)接続、または専用短距離通信(DSRC)チャネルを使用して、AP601~604、ならびに/または、(限定はしないが)基地局、STA、UE、車両、歩行者、およびセンサーユニットなど、他のデバイスと通信し得る。さらに、または代替として、トランシーバ622は、(限定はしないが)イーサネット、同軸、または光通信を含む、1つまたは複数の好適なワイヤード通信プロトコルのために構成され得る。
【0097】
[0115] プロセッサ624は、(メモリ625などの)関連付けられたメモリに記憶された1つまたは複数のソフトウェアプログラムのスクリプトまたは命令を実行することが可能な、任意の数のマイクロプロセッサまたは中央処理ユニット(CPU)であり得るか、またはそれらを含み得る。さらに、または代替として、プロセッサ624は、任意の数の特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、グラフィックス処理ユニット(GPU)、デジタル信号プロセッサ(DSP)、データ処理ユニット(DPU)、マイクロコントローラ、(1つまたは複数の)ハードウェアアクセラレータ、またはそれらの任意の組合せであり得るか、またはそれらを含み得る。
【0098】
[0116] メモリ625は、命令を記憶する(EPROM、EEPROM、フラッシュメモリ、ハードドライブなど、1つまたは複数の不揮発性メモリ要素などの)非一時的コンピュータ可読媒体を含み得、命令は、1つまたは複数のプロセッサ624によって実行されたとき、システム620に、
図10~
図15を参照しながら説明される任意の数の動作を実施させる。命令は、プロセッサ624によって、直接実行される(機械コードなど)か、または間接的に実行される(スクリプトなど)べき、命令の任意のセットであり得る。たとえば、命令は、コンピューティングデバイス可読媒体上にコンピューティングデバイスコードとして記憶され得る。したがって、「命令」および「プログラム」という用語は、本明細書では互換的に使用され得る。命令は、プロセッサによる直接処理のためにオブジェクトコードフォーマットで記憶されるか、あるいは、独立したソースコードモジュールのスクリプトまたは集合を含む任意の他のコンピューティングデバイス言語で記憶され得る。
【0099】
[0117] ロケーションエンジン626は、それぞれの通信リンク631~634または他の好適な手段を介してAP601~604からワイヤレス信号のCSIを受信または取得し得る。ロケーションエンジン626は、ワイヤレス信号のToFおよびAoA情報を決定するために、ワイヤレス信号について取得されたCSIを使用し得る。詳細には、ロケーションエンジン626は、ワイヤレス信号の(しきい値よりも大きい強度または品質を有する反射経路信号成分などの)1つまたは複数の反射経路信号成分のToFおよびAoAを決定するためにCSIを使用し得る。それぞれの反射経路信号成分のToFおよびAoAは、ワイヤレス信号がそこから反射された、対応するポイントまたは表面のロケーションを推定するために使用され得る。
【0100】
[0118] いくつかの実装形態では、ロケーションエンジン626は、ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定するためにもCSIを使用し得る。直接経路信号成分のToFおよびAoAは、環境610中の対応するSTA504のロケーションを推定するために使用され得る。いくつかの態様では、ワイヤレス信号を送信したSTA504のロケーションは、対応するポイントまたは表面のロケーションを推定するために使用され得る。他の態様では、ワイヤレス信号を送信したSTA504のロケーションは、対応するポイントまたは表面の前に推定されたロケーションを調整するために使用され得る。
【0101】
[0119] 一実装形態では、ロケーションエンジン626は、ワイヤレス信号のCSIの2Dフーリエ変換を使用して、それぞれのワイヤレス信号の、直接経路信号成分のToFおよびAoAと、反射経路信号成分のToFおよびAoAとを同時に決定し得る。たとえば、AP601~604が、数Kのトーンまたは周波数サブキャリア上で送信されたワイヤレス信号を受信するための数Nのアンテナ素子を含む線形アンテナアレイを有するとき、K個のトーンおよびN個のアンテナ素子上の2Dフーリエ変換は、式
【0102】
【0103】
を使用して、ワイヤレス信号の反射経路信号成分のToFおよびAoAを推定することと同時にワイヤレス信号の直接経路信号成分のToFおよびAoAを推定するために使用され得、
ここで、l=APのN個のアンテナ素子間の間隔であり、F(θ,d)は、ワイヤレス信号のToFおよびAoAプロファイルを示す。いくつかの事例では、ワイヤレス信号のプロファイルF(θ,d)は、ワイヤレス信号の直接経路信号成分のToFと、ワイヤレス信号の直接経路信号成分のAoAと、ワイヤレス信号の各反射経路信号成分のToFと、ワイヤレス信号の各反射経路信号成分のAoAとを含み得る。他の実装形態では、ロケーションエンジン626は、機械学習モデル628とともにワイヤレス信号のToFおよびAoA情報を決定し得る。いくつかの実装形態では、ロケーションエンジン626は、最尤推定技法、多重信号分類(MUSIC:Multiple Signal Classification)技法、回転不変性技法を使用する信号パラメータの推定(ESPRIT:Estimation of Signal Parameters using Rotational Invariance Technique)技法、行列ペンシル技法、またはそれらの任意の組合せを使用してワイヤレス信号のAoA情報を推定し得る。
【0104】
[0120] 様々な実装形態では、ロケーションエンジン626は、環境610のそれぞれのエリアに関連付けられた1つまたは複数のAPによって受信されたワイヤレス信号の反射経路信号成分のToFおよびAoA情報に基づいてそれぞれのエリア内のポイントまたは表面のロケーションを推定し得る。たとえば、ワイヤレス信号の各反射経路信号成分のToFは、対応するポイントまたは表面とAPとの間の距離を示し得、ワイヤレス信号の各反射経路信号成分のAoAは、APに対する対応するポイントまたは表面の方向を示し得る。いくつかの実装形態では、ロケーションエンジン626は、それぞれのエリアに関連付けられた送信STAの推定されたロケーションに基づいてそれぞれのエリア内の様々なポイントまたは表面の推定されたロケーションを選択的に調整し得る。説明されるように、それぞれのSTA504のロケーションは、それぞれのSTA504から受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAを使用して推定され得る。
【0105】
[0121] マッピングエンジン627は、環境610についてのマップ情報を生成し得る。マップ情報は、環境610のレイアウト、次元、サイズ、および属性を示し得、(限定はしないが)壁、部屋、戸口、ホールウェイ、廊下、天井、テーブル、椅子、人々、カートなど、環境610内の物理的特徴のロケーションを示し得る。いくつかの実装形態では、マッピングエンジン627は、環境610のそれぞれのエリア中のポイントまたは表面の推定されたロケーションに基づいてそれぞれのエリアのマップ情報を生成し得る。他の実装形態では、マッピングエンジン627は、それぞれのエリア中のポイントまたは表面の推定されたロケーションと、それぞれのエリア中の他のワイヤレスデバイスの推定されたロケーションとを使用して、それぞれのエリアのマップ情報を生成し得る。いくつかの他の実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。さらに、または代替として、それぞれのAPは、それぞれのAPによって受信されるワイヤレス信号のCSIの変化、それぞれのAPによって受信されるワイヤレス信号のチャネル周波数応答の変化、それぞれのAPによって受信されるワイヤレス信号のチャネルインパルス応答の変化、エリアに関連付けられたワイヤレス媒体のチャネル状況の変化、またはそれらの任意の組合せに応答してワイヤレス信号のCSIを提供する。
【0106】
[0122] 一実装形態では、マッピングエンジン627は、外部ソースから環境610の1つまたは複数のエリアについてのレイアウトおよび/または構造的情報を取得し、取得されたレイアウトおよび/または構造的情報を使用して、それらのエリアのポイント、表面、および他の物理的特徴の推定されたロケーションを調整または検証し得る。たとえば、マッピングエンジン627は、環境610のエリアのアーキテクチャ青写真、都市計画、または他のマッピング情報を取得し、取得された青写真または都市計画を使用して、そのエリアの壁、天井、ホールウェイ、および他の物理的特徴の推定されたロケーションを検証し得る。
【0107】
[0123] マッピングエンジン627は、環境610全体についてのマップ情報を決定するために、環境の異なるエリアについてのマップ情報をアグリゲートし得る。たとえば、異なるエリア611~614の各々について生成されたマップ情報は、環境610全体についての複合マップ情報を生成するために互いと融合されるか、スティッチされるか、またはさもなければ組み合わせられ得る。いくつかの実装形態では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。いくつかの事例では、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づき得る。いくつかの実装形態では、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境についてのマップ情報を決定すること。
【0108】
[0124] いくつかの他の実装形態では、機械学習モデル628は、AP601~604によって受信されたワイヤレス信号のToFおよびAoA情報を決定するために使用され得る。様々な実装形態では、機械学習モデル628は、たとえば、ワイヤレス信号のCSIとワイヤレス信号のToFおよびAoA情報との間の関係を学習および/または予測するように、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされ得る。機械学習モデル628がトレーニングされると、AP601~604によって受信されたワイヤレス信号のCSIは入力データとして機械学習モデル628に提供され得る。トレーニングされた機械学習モデル628は、たとえば、ニューラルネットワークを使用して、ワイヤレス信号の直接および反射経路信号成分のToFおよびAoA情報を決定し得る。
【0109】
[0125]
図7は、いくつかの実装形態による、ワイヤレス信号を受信するAPを示す
図700を示す。示されているように、APは、壁701~704によって定義または画定されたエリア705中の2つのワイヤレス局STA1~STA2からワイヤレス信号を受信する。壁701~704は、AP、STA1、およびSTA2のうちの1つまたは複数から送信されたワイヤレス信号を反射することができる任意の壁、障壁、表面、または他の物理的特徴を表し得る。
図7の例では2つのSTAのみが示されているが、他の事例では、APは、より多数のSTAまたはUEからワイヤレス信号を受信し得る。同様に、
図7の例では1つのAPのみが示されているが、他の事例では、2つまたはそれ以上のAPまたは基地局が、エリア705中でワイヤレス信号を受信するために、および/または受信されたワイヤレス信号のCSIを決定するために使用され得る。
【0110】
[0126]
図7の例では、STA1は、直接経路信号成分710といくつかの反射経路信号成分(簡単のために2つの反射経路信号成分711~712のみが示されている)とを含むワイヤレス信号を送信する。直接経路信号成分710は、STA1からAPへの見通し線(LoS)経路に沿って進み、反射経路信号成分711~712の各々は、STA1からAPへの対応する非見通し線(NLoS)経路に沿って進む。詳細には、第1の反射経路信号成分711は、第1の壁701上の第1のポイントまたは表面731によって反射され、APによって受信され、第2の反射経路信号成分712は、第2の壁702上の第2のポイントまたは表面732によって反射され、APによって受信される。直接経路信号成分710、第1の反射経路信号成分711、および第2の反射信号経路成分712は、STA1とAPとの間の異なる経路に沿った異なる距離を進むので、直接経路信号成分710と、第1の反射経路信号成分711と、第2の反射信号経路成分712とは、異なる時間においておよび/または異なる角度でAPに到着し得る。いくつかの事例では、信号成分710~712の異なる到着時間は、直接経路信号成分710を反射経路信号成分711~712の各々と区別するために使用され得る。たとえば、いくつかの態様では、直接経路信号成分は、第1の到着経路(FAP)に対応するチャネルインパルス応答タップに基づいて識別され得、反射経路信号成分の各々は、次の到着経路に対応するチャネルインパルス応答タップに基づいて識別され得る。
【0111】
[0127] 直接経路信号成分710は、STA1とAPとの間のLoS経路に沿って進み、したがって、直接経路信号成分710のToFおよびAoAは、APに対するSTA1のロケーションを推定するために使用され得る。第1の反射経路信号成分711は、第1のNLoS経路に沿って進み、第1のポイントまたは表面731によって反射され、したがって、第1の反射経路信号成分711のToFおよびAoAは、第1のポイントまたは表面731のロケーションを推定するために使用され得る。第2の反射経路信号成分712は、第2のNLoS経路に沿って進み、第2のポイントまたは表面732によって反射され、したがって、第2の反射経路信号成分712のToFおよびAoAは、第2のポイントまたは表面732のロケーションを推定するために使用され得る。いくつかの実装形態では、STA1のロケーションは、それぞれ、第1のポイントまたは表面731および第2のポイントまたは表面732のロケーションを推定するために、反射経路信号成分711~712のToFおよびAoA情報とともに使用され得る。他の実装形態では、STA1のロケーションは、第1のポイントまたは表面731および第2のポイントまたは表面732の推定されたロケーションを選択的に調整するために使用され得る。
【0112】
[0128]
図7の例では、STA2は、直接経路信号成分720といくつかの反射経路信号成分(簡単のために2つの反射経路信号成分721~722のみが示されている)とを含むワイヤレス信号を送信する。直接経路信号成分720は、STA2からAPへのLoS経路に沿って進み、反射経路信号成分721~722の各々は、STA2からAPへの対応するNLoS経路に沿って進む。詳細には、第1の反射経路信号成分721は、第1の壁701上の第3のポイントまたは表面741によって反射され、APによって受信され、第2の反射経路信号成分722は、第2の壁702上の第4のポイントまたは表面742によって反射され、APによって受信される。直接経路信号成分720と、第1の反射経路信号成分721と、第2の反射信号経路成分722とは、異なる時間においておよび/または異なる到着角度でAPに到着し得る。いくつかの事例では、信号成分720~722の異なる到着時間は、直接経路信号成分720を反射経路信号成分721~722の各々と区別するために使用され得る。たとえば、いくつかの態様では、直接経路信号成分は、FAPに対応するチャネルインパルス応答タップに基づいて識別され得、反射経路信号成分の各々は、次の到着経路に対応するチャネルインパルス応答タップに基づいて識別され得る。
【0113】
[0129] 直接経路信号成分720は、STA2とAPとの間のLoS経路に沿って進み、したがって、直接経路信号成分720のToFおよびAoAは、APに対するSTA2のロケーションを推定するために使用され得る。第1の反射経路信号成分721は、第1のNLoS経路に沿って進み、第3のポイントまたは表面741によって反射され、したがって、第1の反射経路信号成分721のToFおよびAoAは、第3のポイントまたは表面741のロケーションを推定するために使用され得る。第2の反射経路信号成分722は、第2のNLoS経路に沿って進み、第4のポイントまたは表面742によって反射され、したがって、第2の反射経路信号成分722のToFおよびAoAは、第4のポイントまたは表面742のロケーションを推定するために使用され得る。いくつかの実装形態では、STA2のロケーションは、それぞれ、第3のポイントまたは表面741および第4のポイントまたは表面742のロケーションを推定するために、反射経路信号成分721~722のToFおよびAoA情報とともに使用され得る。他の実装形態では、STA2のロケーションは、第3のポイントまたは表面741および第4のポイントまたは表面742の推定されたロケーションを選択的に調整するために使用され得る。
【0114】
[0130]
図8Aは、他の実装形態による、ワイヤレス信号を受信するAPを示す
図800を示す。
図800は、壁801~804によって定義または画定されたエリア805を含み、単一のAPを含むことが示されている。壁801~804は、ワイヤレス信号を反射することができる、環境の任意の壁、表面、または他の物理的特徴を表し得る。他の実装形態では、エリア805は、受信されたワイヤレス信号のCSIがそこから取得され得る、2つまたはそれ以上のAPを含み得る。
【0115】
[0131] 示されているように、APは、直接経路信号成分810といくつかの反射経路信号成分(簡単のために2つの反射経路信号成分811~812のみが示されている)とを含むワイヤレス信号を送信し得る。直接経路信号成分810は、APの送信アンテナからAPの受信アンテナへのLoS経路に沿って進む。反射経路信号成分811~812は、エリア805を定義する壁801~804のうちの1つまたは複数上のポイントまたは表面から反射する対応するNLoS経路に沿って進む。
【0116】
[0132] 詳細には、第1の反射経路信号成分811は、壁802上の第1のポイントまたは表面821によって反射され、壁803上の第2のポイントまたは表面822によって反射され、壁801上の第3のポイントまたは表面823によって反射され、次いで、APによって受信される。第2の反射経路信号成分812は、壁802上の第2のポイントまたは表面831によって反射され、壁803上の第2のポイントまたは表面832によって反射され、壁801上の第2のポイントまたは表面833によって反射され、次いで、APによって受信される。反射経路信号成分811~812の各々は、異なる時間においておよび/または異なる角度でAPに到着し得る。第1の反射経路信号成分811は、対応するポイントまたは表面821~823のロケーションを推定するために使用され得、第2の反射経路信号成分812は、対応するポイントまたは表面831~833のロケーションを推定するために使用され得る。
【0117】
[0133] 直接経路信号成分810は、APの送信アンテナからAPの受信アンテナに直接進む。したがって、直接経路信号成分810は、APの送信アンテナリソースと受信アンテナリソースとの間の漏れの量に関連付けられたモノスタティック信号と見なされ得る。直接経路信号成分810に関連付けられた信号漏れはワイヤレス信号の反射経路信号成分811~812に干渉し得、これは、ポイントまたは表面821~823および831~833のロケーションが推定または決定され得る精度を減少させ得る。
【0118】
[0134] いくつかの実装形態では、直接経路信号成分810に関連付けられた信号漏れは、直接経路信号成分810に関連付けられた取得されたCSIの部分を削除または消去するために使用され得る。いくつかの事例では、ロケーションエンジン626は、ワイヤレス信号の直接経路信号成分に関連付けられたCSIを削除するようにワイヤレス信号のCSIを処理し得る。他の事例では、機械学習モデル628は、ワイヤレス信号の直接経路信号成分のCSIに基づいて、ワイヤレス信号の反射経路信号成分について決定されたToFおよびAoA情報を調整または修正するようにトレーニングされ得る。このようにして、それぞれのワイヤレス信号の比較的強い直接経路信号成分810は、それぞれのワイヤレス信号の比較的弱い反射経路信号成分811~812のCSIをひずませるおよび/または変更するのを妨げられ得る。これは、比較的弱い反射経路信号成分811~812のToFおよびAoA情報が推定または決定され得る精度を増加させ得る。
【0119】
[0135] いくつかの他の実装形態では、直接経路信号成分810に関連付けられた取得されたCSIの部分を削除または消去するために、反復漏れ消去が使用され得る。たとえば、ロケーションエンジン626は、直接経路信号成分810に関連付けられた漏れを推定し、取得されたCSIから、推定された漏れを削除し、次いで、残存または残余漏れがしきい値量よりも大きいかどうかを決定し得る。残存または残余漏れがしきい値量よりも大きくない場合、ロケーションエンジン626は、残存または残余漏れが無視できる(または少なくとも許容できる)と決定し得る。逆に、残存または残余漏れがしきい値量よりも大きい場合、ロケーションエンジン626は、取得されたCSIから残存または残余漏れを削除し、残存または残余漏れがしきい値量よりも大きいかどうかを決定し得る。このプロセスは、残存または残余漏れがしきい値量よりも小さくなるまで続き得る。説明されたように、しきい値量は、残余漏れの無視できるまたは許容できる量に対応し得る。
【0120】
[0136] 一実装形態では、直接経路信号成分810に起因する漏れの量は、反射経路信号成分811~812のうちの1つまたは複数のToFを推定するために使用され得る。いくつかの事例では、ロケーションエンジン626は、直接経路信号成分810のToFとそれぞれの反射経路信号成分のToFとの間の差を決定し、次いで、直接経路信号成分810のToFに基づいてそれぞれの反射経路信号成分のToFを推定することができる。
【0121】
[0137]
図8Bは、いくつかの他の実装形態による、ワイヤレス信号を受信するAPを示す
図850を示す。
図850は、
図8Aを参照しながら説明されたエリア805を含み、直接経路信号成分810といくつかの反射経路信号成分851~856とを含むワイヤレス信号を送信する単一のAPを含むことが示されている。説明されたように、直接経路信号成分810は、APの送信アンテナからAPの受信アンテナへの経路に沿って進む。反射経路信号成分851~856は、壁801~804上の対応するポイントまたは表面から反射する経路に沿ってAPに進む。いくつかの事例では、壁801~804の表面は平坦でなく、したがって、壁801~804の不規則な表面角度が、信号成分851~856を(たとえば、エリア805内の他の表面または壁から反射することなしに)APに直接反射することができる。詳細には、第1の反射経路信号成分851は、壁802上のポイントまたは表面831によってAPに反射され、第2の反射経路信号成分852は、壁802上のポイントまたは表面821によってAPに反射され、第3の反射経路信号成分853は、壁803上のポイントまたは表面822によってAPに反射され、第4の反射経路信号成分854は、壁803上のポイントまたは表面832によってAPに反射され、第5の反射経路信号成分855は、壁801上のポイントまたは表面833によってAPに反射され、第6の反射経路信号成分856は、壁801上のポイントまたは表面823によってAPに反射される。
【0122】
[0138] 反射経路信号成分851~856の各々は、異なる時間においておよび/または異なる角度でAPに到着し得る。したがって、第1の反射経路信号成分851のToFおよびAoA情報は、対応するポイントまたは表面831のロケーションを推定するために使用され得、第2の反射経路信号成分852のToFおよびAoA情報は、対応するポイントまたは表面821のロケーションを推定するために使用され得、第3の反射経路信号成分853のToFおよびAoA情報は、対応するポイントまたは表面822のロケーションを推定するために使用され得、第4の反射経路信号成分854のToFおよびAoA情報は、対応するポイントまたは表面832のロケーションを推定するために使用され得、第5の反射経路信号成分855のToFおよびAoA情報は、対応するポイントまたは表面833のロケーションを推定するために使用され得、第6の反射経路信号成分856のToFおよびAoA情報は、対応するポイントまたは表面823のロケーションを推定するために使用され得る。
【0123】
[0139]
図9は、いくつかの実装形態による、受信されたワイヤレス信号に基づいて環境のエリア905中のポイントのロケーションを決定する受信機デバイスを示す
図900を示す。エリア905は、送信機デバイス910と、受信機デバイス920と、壁930とを含むことが示されている。様々な実装形態では、エリア905は、
図7のエリア705、
図8A~
図8Bのエリア805、APまたは基地局のカバレージエリア、あるいは環境の任意の他の好適なエリアであり得るか、またはそれらに対応し得る。いくつかの事例では、壁930は、
図7の壁701~704または
図8A~
図8Bの壁801~804のうちの1つまたは複数であり得るか、またはそれらに対応し得る。送信機デバイス910は、(限定はしないが)
図1のSTA104、
図5BのSTA504、または
図6、
図7、
図8A、および
図8BのSTAなど、任意の好適なワイヤレス通信デバイスであり得る。受信機デバイス920は、(限定はしないが)
図1のAP102、
図5AのAP502、または
図6、
図7、
図8A、および8BのAPなど、任意の好適なワイヤレス通信デバイスであり得る。
【0124】
[0140] 送信機デバイス910は、受信機デバイス920によって受信される1つまたは複数のワイヤレス信号915を送信し得る。示されているように、送信機デバイス910によって送信されたワイヤレス信号915の反射経路信号成分が、壁930上の表面ポイント932によって反射され、受信機デバイス920によって受信される。受信機デバイス920は、送信機デバイス910のロケーションとワイヤレス信号915の反射経路信号成分のToFおよびAoAとを使用して表面ポイント932のロケーションを決定し得る。受信機デバイス920が数Nの受信アンテナ素子を含み、ワイヤレス信号915が数Kのトーンまたは周波数サブキャリア上で送信される、いくつかの事例では、受信機デバイス920は、式
【0125】
【0126】
を使用してワイヤレス信号915のCSI行列を決定または取得し得、
ここで、iは、1から、受信アンテナ素子の数Nの間の整数であり、kは、1から、ワイヤレス信号915が送信されるサブキャリアの数Kの間の整数である。
【0127】
[0141] 上記で説明されたように、受信機デバイス920が、N個の受信アンテナ素子を含む線形アンテナアレイを有し、ワイヤレス信号915がK個のトーンまたは周波数サブキャリア上で送信されるとき、式
【0128】
【0129】
を使用してワイヤレス信号915の直接経路信号成分のToFおよびAoAとワイヤレス信号915の1つまたは複数の反射経路信号成分のToFおよびAoAとを同時に推定するために、2Dフーリエ変換が使用され得、
ここで、l=受信機デバイス920のアンテナ素子間の間隔であり、iは、1からNの間の整数であり、kは、1からKの間の整数であり、F(θ,d)は、ワイヤレス信号915のToFおよびAoAプロファイルを示す。いくつかの事例では、ワイヤレス信号915のプロファイルF(θ,d)は、ワイヤレス信号915の直接経路信号成分のToFと、直接経路信号成分のAoAと、ワイヤレス信号915の各反射経路信号成分のToFと、各反射経路信号成分のAoAとを含む。たとえば、受信機デバイス920は、LoS経路のAoA(θ1)と、LoS経路に沿った、送信機デバイス910と受信機デバイス920との間の距離(d1)と、NLoS経路のAoA(θ2)と、受信機デバイス920と表面ポイント932に対応するイメージソース940との間の距離(d2)とを推定し得る。
【0130】
[0142] 様々な実装形態では、イメージソース940は、LoS経路が、送信機デバイス910から送信され、壁930上のポイント932によって反射され、受信機デバイス920によって受信される反射経路信号成分のNLoS経路と同じAoAおよびToF値を有することになる、ポイントとして定義され得る。ワイヤレス信号915について決定されたθ1、d1、θ2、およびd2の値は、送信機デバイス910およびイメージソース940のロケーション(たとえば、デカルト座標)を決定するために使用され得る。送信機デバイス910およびイメージソース940の推定されたロケーションは、壁930の境界(たとえば、長さおよび/または配向)を推定するために使用され得る。
【0131】
[0143] いくつかの事例では、壁930上の表面ポイント932のロケーションは、送信機デバイス910とイメージソース940との間に延びるラインの垂直二等分線によって決定され得る。詳細には、受信機デバイス920は、受信機デバイス920とイメージソース940との間に延びる第1のライン941を決定し得、イメージソース940と送信機デバイス910の推定されたロケーションとの間に延びる第2のライン942を決定し得る。受信機デバイス920は、第2のライン942の垂直二等分線である第3のライン943を決定し得る。受信機デバイス920は、第1のライン941と第3のライン943との交点945として表面ポイント932のロケーションを推定または決定し得る。受信機デバイス920は、ワイヤレス信号915の他の反射経路信号成分に基づいて、エリア905内のまたはその近くの他の位置から送信機デバイス910によって送信された他のワイヤレス信号の反射経路信号成分に基づいて、エリア905中のまたはその近くの他の送信機デバイスによって送信されたワイヤレス信号の反射経路信号成分に基づいて、あるいはそれらの任意の組合せで、壁930上の追加のポイントのロケーションを推定または決定し得る。
【0132】
[0144]
図10は、いくつかの実装形態による、環境についてのマップ情報を生成するための例示的な動作1000を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1000は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。
【0133】
[0145] たとえば、ブロック1002において、システムは、環境のエリア中のAPから複数のワイヤレス信号のチャネル状態情報(CSI)を取得する。ブロック1004において、システムは、取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定する。ブロック1006において、システムは、ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定する。ブロック1008において、システムは、1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成する。いくつかの実装形態では、環境のエリアのマップ情報を生成することは、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づき得る。一実装形態では、マップ情報を生成することは、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む。
【0134】
[0146] いくつかの実装形態では、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信される。それぞれのワイヤレス信号の反射経路信号成分のToFは、APと対応するポイントとの間の距離を示し得、それぞれのワイヤレス信号の反射経路信号成分のAoAは、APに対する対応するポイントの方向を示し得る。様々な実装形態では、ToFおよびAoAは、ある値よりも大きい信号対雑音比(SNR)、信号対干渉プラス雑音比(SINR)、受信信号強度インジケータ(RSSI)、基準信号受信電力(RSRP)、または基準信号受信品質(RSRQ)を有する反射経路信号成分についてのみ決定される。いくつかの事例では、ワイヤレス信号は、測定フレーム、ヌルデータパケット(NDP)、サウンディングフレーム、サウンディング信号、基準信号、プローブ要求、プローブ応答、肯定応答(ACK)フレーム、アクションフレーム、またはそれらの任意の組合せを含む。
【0135】
[0147] いくつかの実装形態では、APは、APが、同じ送信機デバイスから受信されるワイヤレス信号のCSIの変化、APによって受信されるワイヤレス信号のチャネル周波数応答の変化、APによって受信されるワイヤレス信号のチャネルインパルス応答の変化、ワイヤレス媒体のチャネル状況の変化、またはそれらの任意の組合せに応答してシステムにワイヤレス媒体上で受信されたそれぞれのワイヤレス信号のCSIを提供し得る。
【0136】
[0148]
図11は、いくつかの実装形態による、環境についてのマップ情報を生成するための別の例示的な動作1100を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1100は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。
【0137】
[0149] いくつかの実装形態では、動作1100は、
図10のブロック1008において環境のエリアについてのマップ情報を生成した後に実施され得る。たとえば、ブロック1102において、システムは、環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境についてのマップ情報を決定する。いくつかの事例では、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報は、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づき得る。さらに、または代替として、環境についてのマップ情報を決定することは、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づき得る。
【0138】
[0150]
図12は、いくつかの実装形態による、環境中のポイントの推定されたロケーションを調整するための例示的な動作1200を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1200は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。動作1200の場合、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。
【0139】
[0151] いくつかの実装形態では、動作1200は、
図10のブロック1006においてポイントのロケーションを推定することとともに実施され得る。たとえば、ブロック1202において、システムは、取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分についてのToFおよびAoAを決定する。ブロック1204において、システムは、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定する。ブロック1206において、システムは、それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整する。それぞれのワイヤレス信号の直接経路信号成分は、最も短いToFを有する、それぞれのワイヤレス信号の信号成分である。
【0140】
[0152] いくつかの実装形態では、ワイヤレス信号は、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAは、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2次元(2D)フーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され得、ここで、KとNの両方が、1よりも大きい整数である。いくつかの他の実装形態では、ワイヤレス信号の直接経路信号成分と、1つまたは複数の反射経路信号成分とについてのToFおよびAoAは、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定され得る。
【0141】
[0153]
図13は、いくつかの実装形態による、環境中のポイントのロケーションを推定するための例示的な動作1300を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1300は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。動作1300の場合、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。
【0142】
[0154] いくつかの実装形態では、動作1300は、
図10のブロック1006においてポイントのロケーションを推定することの一例であり得る。たとえば、ブロック1302において、システムは、それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、それぞれのSTAまたはUEのロケーションを推定する。ブロック1304において、システムは、それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、それぞれのポイントに関連付けられたイメージソースを決定する。ブロック1306において、システムは、APとイメージソースとの間に延びる第1のラインを決定する。ブロック1308において、システムは、イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定する。ブロック1310において、システムは、第2のラインの垂直二等分線である第3のラインを決定する。ブロック1312において、システムは、第1のラインと第3のラインとの交点としてそれぞれのポイントのロケーションを決定する。
【0143】
[0155]
図14は、いくつかの実装形態による、環境中の追加のポイントのロケーションを推定するための例示的な動作1400を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1400は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。動作1400の場合、ワイヤレス信号は、APのカバレージエリア内の1つまたは複数のSTAまたはUEから受信され得る。
【0144】
[0156] いくつかの実装形態では、動作1400は、
図10のブロック1006においてポイントのロケーションを推定することとともに実施され得る。たとえば、ブロック1402において、システムは、STAまたはUEのうちの少なくとも1つの移動を決定する。ブロック1404において、システムは、APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得する。ブロック1406において、システムは、それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとを決定する。ブロック1408において、システムは、それぞれの追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定する。
【0145】
[0157]
図15は、いくつかの実装形態による、受信されたワイヤレス信号のCSIを調整するための例示的な動作1500を示すフローチャートを示す。環境は、マップ情報が所望される任意の好適な環境、宛先、領域、ロケーション、またはベニューであり得る。いくつかの事例では、環境は、(限定はしないが)空港、ショッピングモール、オフィスビル、アリーナ、ミュージアムなど、屋内環境であり得る。他の事例では、環境は、(限定はしないが)見本市会場、遊園地、スタジアムなど、屋外環境であり得る。様々な実装形態では、動作1500は、環境の1つまたは複数の対応するエリアに関連付けられた1つまたは複数のAPに結合されたシステムによって実施され得る。いくつかの実装形態では、APは、
図1のAP102、
図5AのAP502、
図6のAP601~604、または
図7および
図8のAPの例であり得る。他の実装形態では、APは、(限定はしないが)基地局、STA、またはUEを含む、他の好適なワイヤレス通信デバイスであり得る。動作1500の場合、ワイヤレス信号はAPから送信され得る。
【0146】
[0158] いくつかの実装形態では、動作1500は、
図10のブロック1002において、受信されたワイヤレス信号のCSIを取得することとともに実施され得る。たとえば、ブロック1502において、システムは、APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定する。ブロック1504において、システムは、信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整する。
【0147】
[0159] いくつかの事例では、APから送信される、およびAPによって受信されるワイヤレス信号は、モノスタティック信号であり得る。それぞれのモノスタティック信号の反射経路信号成分は、APから離れて進み、エリア中の1つまたは複数の表面またはポイントから反射し、APに到着し得る。したがって、それぞれのモノスタティック信号の反射経路信号成分は、モノスタティック信号の反射経路信号成分がそこから反射された、エリア中の1つまたは複数の表面またはポイントのロケーションを推定または決定するために使用され得る。詳細には、それぞれのモノスタティック信号の各反射経路信号成分のToFおよびAoAは、たとえば、
図8および
図9を参照しながら上記で説明された様式で、環境中の対応する表面またはポイントのロケーションを推定または決定するために使用され得る。
【0148】
[0160] それぞれのモノスタティック信号の直接経路信号成分は、APの送信アンテナリソースからAPの受信アンテナリソースに直接進む。APの送信アンテナリソースと受信アンテナリソースとの間の生じたモノスタティック信号漏れは、それぞれのモノスタティック信号の反射経路信号成分に干渉し得、および/またはチャネル状況をひずませ得、これは、エリア中の1つまたは複数の表面またはポイントのロケーションが反射経路信号成分のCSIを使用して推定または決定され得る精度を減少させ得る。いくつかの実装形態では、APの送信アンテナリソースと受信アンテナリソースとの間の漏れは、それぞれのモノスタティック信号の直接経路信号成分に関連付けられたCSIの成分を削除または消去するために使用され得る。すなわち、モノスタティック信号の直接経路信号成分に関連付けられたCSIの部分を削除することによって、モノスタティック信号の比較的強い直接経路信号成分が、モノスタティック信号の比較的弱い反射経路信号成分について推定または決定されるToFおよびAoAに影響を及ぼさないことがある(またはそれに対する許容できる影響を有することがある)。このようにして、システムが、モノスタティック信号の比較的弱い反射経路信号成分のToFおよびAoAを使用してエリア中のポイントまたは表面のロケーションを推定または決定することができる精度は、(たとえば、従来のWi-Fi検知技法と比較して)増加され得る。
【0149】
[0161] 実装例が以下の番号付けされた条項において説明される。
【0150】
1. システムによって実施される環境をマッピングする方法であって、方法が、
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
取得されたCSIに基づいて各ワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することと
を含む、方法。
【0151】
2. それぞれのワイヤレス信号の反射経路信号成分のToFが、APと対応するポイントとの間の距離を示し、それぞれのワイヤレス信号の反射経路信号成分のAoAが、APに対する対応するポイントの方向を示す、条項1に記載の方法。
【0152】
3. ToFおよびAoAが、ある値よりも大きい信号対雑音比(SNR)、信号対干渉プラス雑音比(SINR)、受信信号強度インジケータ(RSSI)、基準信号受信電力(RSRP)、または基準信号受信品質(RSRQ)を有する反射経路信号成分についてのみ決定される、条項1から2のいずれか1つまたは複数に記載の方法。
【0153】
4. ワイヤレス信号が、APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信される、条項1から3のいずれか1つまたは複数に記載の方法。
【0154】
5.
取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、ここで、それぞれのワイヤレス信号の直接経路信号成分が、最も短いToFを有する、それぞれのワイヤレス信号の信号成分である、
それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定することと、
それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整することと
をさらに含む、条項4に記載の方法。
【0155】
6. ワイヤレス信号が、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAが、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2次元(2D)フーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数である、条項5に記載の方法。
【0156】
7. 各ワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとが、知られているロケーションを有する1つまたは複数の送信機デバイスから受信されたワイヤレス信号のCSIを用いてトレーニングされた機械学習モデルに基づいて決定される、条項5から6のいずれか1つまたは複数に記載の方法。
【0157】
8. 各ポイントのロケーションを推定することが、
それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、それぞれのSTAまたはUEのロケーションを推定することと、
それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソースを決定することと、
APとイメージソースとの間に延びる第1のラインを決定することと、
イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定することと、
第2のラインの垂直二等分線である第3のラインを決定することと、
第1のラインと第3のラインとの交点としてポイントのロケーションを決定することと
を含む、条項5から7のいずれか1つまたは複数に記載の方法。
【0158】
9.
STAまたはUEのうちの少なくとも1つの移動を決定することと、
APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することと、
それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとを決定することと、
それぞれの追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することと
をさらに含む、条項4に記載の方法。
【0159】
10. ワイヤレス信号が、APによって送信されるモノスタティック信号である、条項1に記載の方法。
【0160】
11.
APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することと、
信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整することと
をさらに含む、条項10に記載の方法。
【0161】
12. マップ情報を生成することが、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む、条項1から11のいずれか1つまたは複数に記載の方法。
【0162】
13.
環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境についてのマップ情報を決定すること、ここで、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報が、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づく、
をさらに含む、条項1から12のいずれか1つまたは複数に記載の方法。
【0163】
14. 環境についてのマップ情報を決定することが、環境のエリアの各々に関連付けられたAPのロケーション、環境のエリア間の1つまたは複数のカバレージギャップ、またはそれらの任意の組合せにさらに基づく、条項13に記載の方法。
【0164】
15. システムが、APによって受信されるワイヤレス信号のCSIの変化、APによって受信されるワイヤレス信号のチャネル周波数応答の変化、APによって受信されるワイヤレス信号のチャネルインパルス応答の変化、エリアに関連付けられたワイヤレス媒体のチャネル状況の変化、またはそれらの任意の組合せに応答してAPからそれぞれのワイヤレス信号のCSIを受信する、条項1から14のいずれか1つまたは複数に記載の方法。
【0165】
16. 環境のエリアのマップ情報を生成することが、環境のエリアに関連付けられた別のAPによって受信された1つまたは複数のワイヤレス信号のCSIにさらに基づく、条項1から15のいずれか1つまたは複数に記載の方法。
【0166】
17.
1つまたは複数のワイヤレス通信デバイスと信号を交換するように構成された1つまたは複数のトランシーバと、
メモリと、
メモリにおよび1つまたは複数のトランシーバに通信可能に結合された1つまたは複数のプロセッサと
を含む、システムであって、1つまたは複数のプロセッサが、
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
取得されたCSIに基づいてワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
ワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することと
を行うように構成された、システム。
【0167】
18. ワイヤレス信号が、APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信される、条項17に記載のシステム。
【0168】
19. 1つまたは複数のプロセッサは、
取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定することと、ここで、それぞれのワイヤレス信号の直接経路信号成分が、最も短いToFを有する、それぞれのワイヤレス信号の信号成分である、
それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定することと、
それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整することと
を行うようにさらに構成された、条項18に記載のシステム。
【0169】
20. ワイヤレス信号が、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信され、それぞれのワイヤレス信号の直接経路信号成分のToFおよびAoAが、K個のトーンまたは周波数サブキャリア上で送信され、APのN個のアンテナ素子によって受信されたそれぞれのワイヤレス信号のCSIの2次元(2D)フーリエ変換に基づいて、それぞれのワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAと同時に決定され、KとNの両方が、1よりも大きい整数である、条項18に記載のシステム。
【0170】
21. 1つまたは複数のプロセッサが、
それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて、それぞれのSTAまたはUEのロケーションを推定することと、
それぞれのSTAまたはUEの推定されたロケーションと、それぞれのSTAまたはUEから受信されたワイヤレス信号の対応する反射経路信号成分のToFおよびAoAとに基づいて、ポイントに関連付けられたイメージソースを決定することと、
APとイメージソースとの間に延びる第1のラインを決定することと、
イメージソースとそれぞれのSTAまたはUEの推定されたロケーションとの間に延びる第2のラインを決定することと、
第2のラインの垂直二等分線である第3のラインを決定することと、
第1のラインと第3のラインとの交点としてそれぞれのポイントのロケーションを決定することと
を行うようにさらに構成された、条項18から20のいずれか1つまたは複数に記載のシステム。
【0171】
22. 1つまたは複数のプロセッサが、
STAまたはUEのうちの少なくとも1つの移動を決定することと、
APから、少なくとも1つのSTAまたはUEから受信される1つまたは複数の追加のワイヤレス信号のCSIを取得することと、
それぞれの追加のワイヤレス信号のCSIに基づいて、各追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとを決定することと、
それぞれの追加のワイヤレス信号の、直接経路信号成分のToFおよびAoAと、1つまたは複数の反射経路信号成分のToFおよびAoAとに基づいて、1つまたは複数の表面上の1つまたは複数の追加のポイントのロケーションを推定することと
を行うようにさらに構成された、条項17に記載のシステム。
【0172】
23. ワイヤレス信号が、APによって送信されるモノスタティック信号である、条項17に記載のシステム。
【0173】
24. 1つまたは複数のプロセッサが、
APによって送信されたワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定することと、
信号漏れの決定された量に基づいて、APによって送信されたワイヤレス信号について取得されたCSIを調整することと
を行うようにさらに構成された、条項23に記載のシステム。
【0174】
25. マップ情報を生成することが、異なる時間においてAPによって受信されたワイヤレス信号の異なるグループのToFおよびAoAに基づいて1つまたは複数の表面上のポイントのロケーションを推定することを含む、条項17から24のいずれか1つまたは複数に記載の方法。
【0175】
26. 1つまたは複数のプロセッサは、
環境のエリアについて生成されたマップ情報と、環境の1つまたは複数の他のエリアについて生成されたマップ情報とのアグリゲーションに基づいて環境についてのマップ情報を決定すること、ここで、環境の1つまたは複数の他のエリアの各々について生成されたマップ情報が、1つまたは複数の他のそれぞれのAPによって受信されたワイヤレス信号のCSIに基づく、
を行うようにさらに構成された、条項17から25のいずれか1つまたは複数に記載のシステム。
【0176】
27.
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得するための手段と、
取得されたCSIに基づいてワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定するための手段と、
受信されたワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定するための手段と、
1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成するための手段と
を含む、システム。
【0177】
28. ワイヤレス信号が、APのカバレージエリア内の1つまたは複数のワイヤレス局(STA)またはユーザ機器(UE)から受信され、システムは、
取得されたCSIに基づいて各ワイヤレス信号の直接経路信号成分のToFおよびAoAを決定するための手段と、ここで、それぞれのワイヤレス信号の直接経路信号成分が、最も短いToFを有する、それぞれのワイヤレス信号の信号成分である、
それぞれのSTAまたはUEから受信されたワイヤレス信号の直接経路信号成分のToFおよびAoAに基づいて1つまたは複数のSTAまたはUEのロケーションを推定するための手段と、
それぞれのSTAまたはUEの推定されたロケーションに基づいて1つまたは複数の表面上のポイントの推定されたロケーションを選択的に調整するための手段と
をさらに含む、条項27に記載のシステム。
【0178】
29. ワイヤレス信号がAPによって送信され、システムが、
ワイヤレス信号の直接経路信号成分に関連付けられた信号漏れの量を決定するための手段と、
信号漏れの決定された量に基づいて、取得されたCSIを調整するための手段と
をさらに含む、条項27に記載のシステム。
【0179】
30. 環境のマップを生成するための命令を記憶する非一時的コンピュータ可読媒体であって、ここで、システムの1つまたは複数のプロセッサによる命令の実行が、システムに、
環境のエリア中のアクセスポイント(AP)から、複数のワイヤレス信号のチャネル状態情報(CSI)を取得することと、
取得されたCSIに基づいて各受信されたワイヤレス信号の1つまたは複数の反射経路信号成分の飛行時間(ToF)および到着角度(AoA)を決定することと、
受信されたワイヤレス信号の1つまたは複数の反射経路信号成分のToFおよびAoAに基づいてエリア内の1つまたは複数の表面上のポイントのロケーションを推定することと、
1つまたは複数の表面上のポイントの推定されたロケーションに基づいて環境のエリアについてのマップ情報を生成することと
を含む動作を実施させる、非一時的コンピュータ可読媒体。
【0180】
[0162] 本明細書で使用される、項目のリスト「のうちの少なくとも1つ」または「のうちの1つまたは複数」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。たとえば、「a、b、またはcのうちの少なくとも1つ」は、aのみ、bのみ、cのみ、aとbとの組合せ、aとcとの組合せ、bとcとの組合せ、およびaとbとcとの組合せの可能性を包含するものとする。
【0181】
[0163] 本明細書で開示される実装形態に関して説明された様々な例示的な構成要素、論理、論理ブロック、モジュール、回路、動作、およびアルゴリズムプロセスは、本明細書で開示される構造とそれらの構造的等価物とを含む、電子ハードウェア、ファームウェア、ソフトウェア、あるいはハードウェア、ファームウェア、またはソフトウェアの組合せとして実装され得る。ハードウェアとファームウェアとソフトウェアとの互換性が、概して機能に関して説明され、上記で説明された様々な例示的な構成要素、ブロック、モジュール、回路およびプロセスにおいて示された。そのような機能がハードウェアで実装されるのか、ファームウェアで実装されるのか、ソフトウェアで実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。
【0182】
[0164] 本開示で説明された実装形態への様々な修正は当業者には容易に明らかであり得、本明細書で定義された一般原理は、本開示の趣旨または範囲から逸脱することなく他の実装形態に適用され得る。したがって、特許請求の範囲は、本明細書で示された実装形態に限定されるものではなく、本開示と、本明細書で開示される原理および新規の特徴とに一致する、最も広い範囲を与えられるべきである。
【0183】
[0165] さらに、また、別個の実装形態のコンテキストで、本明細書で説明された様々な特徴は、単一の実装形態において組み合わせて実装され得る。また、逆に、単一の実装形態のコンテキストで説明された様々な特徴は、別個に、または任意の好適な部分組合せで、複数の実装形態において実装され得る。したがって、特徴は、特定の組合せで働くものとして上記で説明され、初めにそのように請求されることさえあるが、請求される組合せからの1つまたは複数の特徴は、場合によってはその組合せから削除され得、請求される組合せは、部分組合せ、または部分組合せの変形形態を対象とし得る。
[0166] 同様に、動作は特定の順序で図面に図示されているが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序でまたは順番に実施されることを、あるいはすべての図示の動作が実施されることを必要とするものとして理解されるべきではない。さらに、図面は、フローチャートまたは流れ図の形態でもう1つの例示的なプロセスを概略的に図示し得る。ただし、図示されていない他の動作が、概略的に示される例示的なプロセスに組み込まれ得る。たとえば、1つまたは複数の追加の動作が、図示の動作のうちのいずれかの前に、後に、同時に、またはそれらの間に、実施され得る。いくつかの状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記で説明された実装形態における様々なシステム構成要素の分離は、すべての実装形態においてそのような分離を必要とするものとして理解されるべきでなく、説明されたプログラム構成要素およびシステムは、概して、単一のソフトウェア製品において互いに一体化されるか、または複数のソフトウェア製品にパッケージングされ得ることを理解されたい。
【国際調査報告】