(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-04-22
(54)【発明の名称】カメラモジュール及びこれを備えた車両
(51)【国際特許分類】
G02B 7/02 20210101AFI20240415BHJP
G03B 30/00 20210101ALN20240415BHJP
G03B 15/00 20210101ALN20240415BHJP
【FI】
G02B7/02 F
G02B7/02 B
G03B30/00
G03B15/00 V
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023568365
(86)(22)【出願日】2022-05-06
(85)【翻訳文提出日】2023-12-14
(86)【国際出願番号】 KR2022006483
(87)【国際公開番号】W WO2022235108
(87)【国際公開日】2022-11-10
(31)【優先権主張番号】10-2021-0058854
(32)【優先日】2021-05-06
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2021-0111247
(32)【優先日】2021-08-23
(33)【優先権主張国・地域又は機関】KR
(81)【指定国・地域】
(71)【出願人】
【識別番号】517099982
【氏名又は名称】エルジー イノテック カンパニー リミテッド
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100165191
【氏名又は名称】河合 章
(74)【代理人】
【識別番号】100114018
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100159259
【氏名又は名称】竹本 実
(72)【発明者】
【氏名】パク ソン チン
(72)【発明者】
【氏名】キム キ チョル
(72)【発明者】
【氏名】チェ シ ヨン
【テーマコード(参考)】
2H044
【Fターム(参考)】
2H044AB10
2H044AH01
(57)【要約】
発明の実施例に開示されたカメラモジュールは、内部に貫通ホールを有するレンズバレルと、前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、前記第2レンズの材質と前記第1レンズの材質は異なり、前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の長さは、前記フランジ部の厚さの20%~50%であり、前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置することができる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
内部に貫通ホールを有するレンズバレルと、
前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、
前記第2レンズの材質と前記第1レンズの材質は異なり、
前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の長さは、前記フランジ部の厚さの20%~50%であり、
前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、
前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置する、カメラモジュール。
【請求項2】
前記第1接触面の中心は、前記第2レンズの前記フランジ部の中心よりも物体側に近く位置する、請求項1に記載のカメラモジュール。
【請求項3】
前記第3面と前記第4面の曲率半径の差は、1以上である、請求項1に記載のカメラモジュール。
【請求項4】
前記第3面の曲率半径は、前記第4面の曲率半径より大きく、
前記第1接触面の中心は、前記第2レンズのフランジ部の中心よりも物体側に近く位置する、請求項3に記載のカメラモジュール。
【請求項5】
前記第1~第3レンズは、互いに離隔し、赤外線用カメラに適用される、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項6】
前記第1レンズの直径が前記第2レンズの直径より小さい、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項7】
前記カメラモジュールは、ドライバーモニタリングカメラに適用される、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項8】
画角は、50度~70度の範囲である、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項9】
前記第2レンズの前記フランジ部の厚さは、前記第2レンズの前記フランジ部の物体側面と前記第2レンズの前記フランジ部のセンサー側面の間の距離であり、前記距離は、光軸と平行な距離であり、
前記フランジ部の物体側面とセンサー側面は、間隔維持部材または遮光膜に接触する面である、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項10】
内部に貫通ホールを有するレンズバレルと、
前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、
前記第2レンズの材質と前記第1レンズの材質は異なり、
前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第2レンズの前記フランジ部は、前記レンズバレルと接触する第1接触面を含み、
前記第1接触面の長さは、前記フランジ部の厚さの20%~50%であり、
常温対比高温でMTFの変化率は、10%以下である、カメラモジュール。
(常温は20℃~30℃であり、高温は80℃~105℃である。)
【請求項11】
前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、
前記第1接触面の中心は、前記第2レンズのフランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置する、請求項10に記載のカメラモジュール。
【請求項12】
前記第1レンズの直径は、前記第2レンズの直径より小さい、請求項10に記載のカメラモジュール。
【請求項13】
前記第3レンズの材質と前記第1レンズの材質は異なり、
前記第3レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第3レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第3レンズの前記フランジ部は、前記レンズバレルと接触する第2接触面を含み、
前記第2接触面の長さは、前記フランジ部の厚さの20%~50%であり、
前記光軸で前記第3レンズの物体側第5面とセンサー側第6面は、互いに異なる曲率半径を有し、
前記第3レンズの物体側第5面の曲率半径と前記第3レンズのセンサー側第6面の曲率半径が1.0mm以上であり、
前記第2接触面の中心は、前記第3レンズのフランジ部の厚さの中心を基準として前記第3レンズの物体側第5面と前記第3レンズのセンサー側第6面のうち曲率半径が大きい側に近く位置する、請求項1または10に記載のカメラモジュール。
【発明の詳細な説明】
【技術分野】
【0001】
発明の実施例は、カメラモジュール及びこれを備えた車両に関するものである。
【背景技術】
【0002】
ADAS(Advanced Driving Assistance System)とは、ドライバーの運転を補助するための先進運転支援システムとして、前方の状況をセンシングして、センシングされた結果に基づいて状況を判断し、状況判断に基づいて車両の動きを制御するように構成される。例えば、ADASセンサー装置は、前方の車両を感知し、車線を認識する。以後、目標車線や目標速度及び前方のターゲットが判断されると、車両のESC(Electrical Stability Control)、EMS(Engine Management System)、MDPS(Motor Driven Power Steering)等が制御される。代表的に、ADASは、自動駐車システム、低速市内走行補助システム、死角地帯警告システム等として具現される。ADASで前方の状況を感知するためのセンサー装置は、GPSセンサー、レーザースキャナ、前方レーダー、Lidar等であるが、最も代表的なものは車両の前方を撮影するための前方カメラである。
【0003】
近来、ドライバーの安全及び便宜のために車両の周辺を感知する感知システムに対する研究が加速化している。車両感知システムは、車両の周辺の物体を感知してドライバーが認知できなかった物体との衝突を防ぐだけではなく、空いている空間等を感知して自動駐車を行うように多様な用途で使用されており、車両自動制御において最も必須的なデータを提供している。このような感知システムは、レーダー信号を利用する方式と、カメラを利用する方式が通常的に用いられている。車両用カメラモジュールは、自動車で前方及び後方監視カメラとブラックボックス等に内蔵されて使用され、被写体を写真や動画で撮影することになる。車両用カメラモジュールは、外部に露出するので、湿気及び温度によって撮影品質が落ちることがある。特に、カメラモジュールは、周囲温度とレンズの材質によって光学特性が変化する問題がある。
【発明の概要】
【発明が解決しようとする課題】
【0004】
発明の実施例は、新しいレンズ光学系を有するカメラモジュールを提供することができる。
【0005】
発明の実施例は、レンズのうち少なくとも1つの熱補償レンズを有するカメラモジュールを提供することができる。発明の実施例は、レンズのうち少なくとも1つのレンズのフランジ部とレンズバレルの内面の間の接触特性により熱変形を減らすためのカメラモジュールを提供することができる。発明の実施例は、カメラモジュールを有する携帯端末機及び車両のような移動体を提供することができる。
【課題を解決するための手段】
【0006】
発明の実施例に係るカメラモジュールは、内部に貫通ホールを有するレンズバレルと、前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、前記第2レンズの材質と前記第1レンズの材質は異なり、前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の長さは、前記フランジ部の厚さの20%~50%であり、前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置することができる。
【0007】
発明の実施例によれば、前記第1接触面の中心は、前記第2レンズのフランジ部の中心よりも物体側に近く位置することができる。前記第3面と前記第4面の曲率半径の差は、1以上であってもよい。前記第3面の曲率半径は、前記第4面の曲率半径より大きく、前記第1接触面の中心は、前記第2レンズのフランジ部の中心よりも物体側に近く位置することができる。
【0008】
発明の実施例によれば、前記第1~第3レンズは、互いに離隔し、赤外線用カメラに適用することができる。前記第1レンズの直径が前記第2レンズの直径より小さい直径を有することができる。
【0009】
発明の実施例によれば、前記カメラモジュールは、ドライバーモニタリングカメラに適用される。前記カメラモジュールの画角は、50度~70度の範囲を有することができる。
【0010】
発明の実施例によれば、前記第2レンズの前記フランジ部の厚さは、前記第2レンズの前記フランジ部の物体側面と前記第2レンズの前記フランジ部のセンサー側面の間の距離であり、前記距離は、光軸と平行な距離であり、前記フランジ部の物体側面とセンサー側面は、間隔維持部材または遮光膜に接触する面であってもよい。
【0011】
発明の実施例に係るカメラモジュールは、内部に貫通ホールを有するレンズバレルと、前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、前記第2レンズの材質と前記第1レンズの材質は異なり、前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、前記第2レンズの前記フランジ部は、前記レンズバレルと接触する第1接触面を含み、前記第1接触面の長さは、前記フランジ部の厚さの20%~50%であり、常温対比高温でMTFの変化率は、10%以下であってもよい。
【0012】
発明の実施例によれば、前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、前記第1接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置することができる。前記第1レンズの直径は、前記第2レンズの直径より小さい直径を有することができる。
【0013】
発明の実施例によれば、前記第3レンズの材質と前記第1レンズの材質は異なり、前記第3レンズの屈折率は、前記第1レンズの屈折率より低く、前記第3レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、前記第3レンズの前記フランジ部は、前記レンズバレルと接触する第2接触面を含み、前記第2接触面の長さは、前記第3レンズのフランジ部の厚さの20%~50%であり、前記光軸で前記第3レンズの物体側第5面とセンサー側第6面は、互いに異なる曲率半径を有し、前記第3レンズの物体側第5面の曲率半径と前記第3レンズのセンサー側第6面の曲率半径が1.0mm以上であり、前記第2接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3レンズの物体側第5面と前記第3レンズのセンサー側第6面のうち曲率半径が大きい側に近く位置することができる。
【発明の効果】
【0014】
発明の実施例によれば、カメラモジュール内のレンズの間の材質差による熱変形または温度による形状変化を減らすことができる。
【0015】
発明の実施例によれば、機構的に熱補償が可能な少なくとも1つのレンズを有するカメラモジュールを提供して、カメラモジュールの信頼性を改善することができる。
【0016】
発明の実施例によれば、プラスチック材質のレンズに対して接触位置または/及び接触面積を調節して熱変形が抑制されるようにして、カメラモジュールの信頼性を改善することができる。
【0017】
発明の実施例によれば、レンズのフランジ部とレンズバレルの内面の間の接触特性を考慮して、光軸と直交する方向にレンズの膨張と収縮による光学特性変化を抑制することができる。
【0018】
発明の実施例は、熱変化に光学的に敏感なレンズの形状変化を抑制して、レンズの光軸がずれて光学的性能(MTF)が急激に低下する問題を抑制することができる。
【0019】
発明の実施例によれば、カメラモジュールの光学的信頼性を改善することができる。また、カメラモジュール及びこれを有する車両用カメラ装置の信頼性を改善することができる。
【図面の簡単な説明】
【0020】
【
図1】発明の実施例に係るカメラモジュールの側断面図の例である。
【
図2】
図1のカメラモジュールで物体側に近い2つのレンズとレンズバレルの結合を示した部分側断面図である。
【
図3】
図1のカメラモジュールでセンサー側に近い最後のレンズとレンズバレルの結合を示した部分側断面図である。
【
図5】
図4のカメラモジュールの部分側断面を示した斜視図である。
【
図6a】比較例のカメラモジュールの熱によるストレスを示した図面である。
【
図6b】発明のカメラモジュールの熱によるストレスを示した図面である。
【
図7a】比較例のカメラモジュールの熱による変形率を示した図面である。
【
図7b】発明のカメラモジュールの熱による変形率を示した図面である。
【
図8a】比較例及び発明のカメラモジュールの回折(Diffraction)光学性能の変化率(MTF)を比較したグラフである。
【
図8b】比較例及び発明のカメラモジュールの回折(Diffraction)光学性能の変化率(MTF)を比較したグラフである。
【
図9】(A)~(D)は、発明の実施例に係るカメラモジュールにおいて、レンズのフランジ部とレンズバレルの間の接触比率を比較した図面である。
【
図10】
図9のレンズとレンズバレルに対して物体側面またはセンサー側面から見た部分平面図の例である。
【
図11a】
図9のレンズのフランジ部とレンズバレルの間の接触比率に応じた物体側面とセンサー側面の熱膨張によるストレスを測定したグラフである。
【
図11b】
図9のレンズのフランジ部とレンズバレルの間の接触比率に応じた物体側面とセンサー側面の熱膨張によるストレスを測定したグラフである。
【
図12】(A)~(D)は、発明の実施例に係るカメラモジュールにおいて、レンズの物体側面とセンサー側面の曲率半径の差を比較した図面である。
【
図13】
図12のレンズに対して物体側面またはセンサー側面から見た部分平面図の例である。
【
図14】
図12のレンズの物体側面とセンサー側面の曲率半径の差による物体側面とセンサー側面の位置別の熱膨張によるストレスを測定したグラフである。
【
図15】発明の実施例に係るカメラモジュールを有する車両の例を示した平面図である。
【発明を実施するための形態】
【0021】
以下、添付された図面を参照して本発明の好ましい実施例を詳しく説明する。本発明の技術思想は、説明される一部実施例に限定されるものではなく、多様な形態に具現することができ、本発明の技術思想の範囲内であれば、実施例間の構成要素の1つ以上を選択的に結合又は置き換えて用いることができる。また、本発明の実施例で用いられる用語(技術及び科学的用語を含む)は、明白に特定して記述されない限り、本発明が属する技術分野で通常の知識を有した者に一般的に理解できる意味と解釈され、辞書に定義された用語のように一般的に使用される用語は、かかわる技術の文脈上の意味を考慮してその意味を解釈できるだろう。
【0022】
また、本発明の実施例で用いられる用語は、実施例を説明するためのものであり、本発明を制限しようとするものではない。本明細書において、単数形は、記載上特に限定しない限り複数形も含むことができ、「A及び(と)B、Cのうち少なくとも1つ(又は1つ以上)」と記載される場合、A、B、Cで組合せることのできる全ての組合せのうち1つ以上を含むことができる。また、本発明の実施例の構成要素の説明において、第1、第2、A、B、(A)、(B)等の用語を用いることができる。このような用語は、その構成要素を他の構成要素と区別するためのものであり、その用語によって当該構成要素の本質又は順序等が限定されるものではない。そして、ある構成要素が他の構成要素に「連結」、「結合」又は「接続」されると記載された場合、その構成要素は他の構成要素に直接的に連結又は接続される場合だけではなく、その構成要素と他の構成要素の間にある更なる構成要素により「連結」、「結合」又は「接続」される場合も含むことができる。また、各構成要素の「上又は下」に形成又は配置されると記載される場合、「上又は下」は、2つの構成要素が直接接触する場合だけではなく、1つ以上のさらに他の構成要素が2つの構成要素の間に形成又は配置される場合も含む。また「上又は下」と表現される場合、1つの構成要素を基準として上側方向だけではなく下側方向の意味も含むことができる。また、以下で説明される多数の実施例は、互いに組合わせることができないと特別に言及しない限り、互いに組合わせることができる。また、多数の実施例のうちいずれか1つの実施例に対する説明で抜けている部分は、特別に言及しない限り、別の実施例に対する説明を適用することができる。
【0023】
発明の説明で、最初のレンズは、物体側に一番近いレンズを意味し、最後のレンズは、像側(またはセンサー面)に一番近いレンズを意味する。前記最後のレンズは、イメージセンサーに隣接したレンズを含むことができる。発明の説明で、特別な言及がない限り、レンズの半径、厚さ/距離、TTL等に対する単位は全てmmである。本明細書で、レンズの形状は、レンズの光軸を基準として表したものである。一例として、レンズの物体側面が膨らんでいるまたは凹んでいるという意味は、当該レンズの物体側面で光軸付近が膨らんでいるまたは凹んでいるという意味であり、光軸周辺が膨らんでいるまたは凹んでいるという意味ではない。よって、レンズの物体側面が膨らんでいると説明された場合でも、当該レンズの物体側面で光軸周辺部分は凹状を有することができ、その反対の形状を有することができる。本明細書で、レンズの厚さ及び曲率半径は、当該レンズの光軸を基準として測定されたものであることを明示しておく。即ち、レンズの面が膨らんでいるということは、光軸と対応する領域のレンズの表面が凸状を有することを意味し、レンズの面が凹んでいるということは、光軸と対応する領域のレンズの表面が凹状を有することを意味することができる。また、「物体側面」は、光軸を基準として物体側を向くレンズの面を意味し、「センサー側面」は、光軸を基準としてセンサー側面を向くレンズの面を意味することができる。
【0024】
図1は、発明の実施例に係るカメラモジュールの側断面図の例であり、
図2は、
図1のカメラモジュールで物体側に近い2つのレンズとレンズバレルの結合を示した部分側断面図であり、
図3は、
図1のカメラモジュールでセンサー側に近い最後のレンズとレンズバレルの結合を示した部分側断面図であり、
図4は、
図1のカメラモジュールの斜視図であり、
図5は、
図4のカメラモジュールの部分側断面を示した斜視図であり、
図6aは、比較例のカメラモジュールの熱によるストレスを示した図面であり、
図6bは、発明の実施例に係るカメラモジュールの熱によるストレスを示した図面であり、
図7の(A)、(B)は、比較例及び発明のカメラモジュールの熱による変形率を比較した図面であり、
図8a及び
図8bは、比較例及び発明のカメラモジュールの回折(Diffraction)光学性能予測(MTF)を比較したグラフである。
【0025】
図1~5を参照すると、発明の実施例に係るカメラモジュール1000は、レンズバレル500、複数のレンズ111、113、115を有するレンズ部100、間隔維持部材121、123、124、125、メイン基板190及びイメージセンサー192を含むことができる。前記カメラモジュール1000は、前記レンズ部100の最後のレンズとイメージセンサー192の間に光学カバーガラス194及び光学フィルター196を含むことができる。
【0026】
前記レンズ部100は、3枚またはそれ以上のレンズ111、113、115、117が積層された光学系であってもよい。前記レンズ部100は、5枚以下のレンズが積層された光学系を含むことができる。前記レンズ部100は、3枚以上または5枚以下の固体レンズを含むことができる。前記レンズ部100は、少なくとも1つのプラスチック材質のレンズを含むか、少なくとも1つのガラス材質のレンズとプラスチック材質のレンズを含むことができる。発明の実施例に係るレンズ部100には、プラスチック材質のレンズがガラス材質のレンズより多いか、2枚以上であってもよい。ここで、前記レンズ部100は、プラスチックレンズまたは/及びガラスレンズで積層することができる。ここで、前記プラスチック材質は、ガラス材質の熱膨張係数(CTE)に比べて5倍以上高く、温度の関数による屈折率の変更値(|dN/dT|)は、ガラス材質よりプラスチック材質が10倍以上高くてもよい。ここで、dNはレンズの屈折率の変更値であり、dTは温度の変更値を表わす。
【0027】
説明の便宜を図り、レンズ部100は、物体側からイメージセンサー192に向いて積層された第1レンズ111、第2レンズ113、第3レンズ115が光軸Lzで整列される。
【0028】
前記レンズ部100のレンズ111、113、115は、レンズバレル500内の貫通ホール501に結合され、例えばセンサー側から物体側方向に結合されるか、その反対方向に結合されるか両方向に結合される。前記レンズバレル500の貫通ホール501内のレンズ111、113、115は、センサー側に物体側方向に結合される例で説明することにする。
【0029】
前記レンズ111、113、115のそれぞれは、光が入射する有効径を有する有効領域と、前記有効領域の外側に非有効領域を含むことができる。前記レンズ111、113、115のフランジ部111A、113A、115Aは、非有効領域であってもよい。前記非有効領域は、光が遮光膜121、124によって遮断される領域であってもよい。前記フランジ部111A、113A、115Aは、前記レンズ111、113、115の有効領域から光軸Lzに対して直交する方向または半径方向や円周方向に延長される。
【0030】
前記第1レンズ111と前記第2レンズ113の間の外側周囲には、第1遮光膜121が配置され、前記第2レンズ113と前記第3レンズ115の間の外側周囲には、間隔維持部材123及び第2遮光膜124のうち少なくとも1つが配置される。前記第1、2遮光膜121、124は、非有効領域の光を遮光する部材として機能することができ、いずれか1つは絞りとして用いることができる。前記間隔維持部材123は、第2、3レンズ113、115の間の間隔を維持させることができる。前記間隔維持部材123がない場合、光軸方向に整列された2つのレンズのフランジ部が接触するか、遮光膜によって接触することができる。前記第1遮光膜121、間隔維持部材123、及び第2遮光膜124のうち少なくとも1つまたは両方ともはスペーサーとして機能することができる。前記第1、2遮光膜121、124の厚さは、間隔維持部材123の厚さより薄くてもよい。ここで、絞り(stop)は、前記第1レンズ111の第2面S2の周囲に配置されるか、第2面S2として使用することができる。
【0031】
前記第3レンズ115の下部周囲に支持部材125が配置され、前記支持部材125は、前記第3レンズ115を支持するか光学フィルター196との間隔を維持させることができる。ここで、前記第3レンズ115の外側S30一部は、レンズバレル500の内面511と接着剤で接着される。
【0032】
前記第1レンズ111の直径A1は、前記第2レンズ113の直径A2より小さくてもよく、前記第2レンズ113の直径A2は、前記第3レンズ115の直径A3より小さくてもよい。前記第1、2、3レンズ111、113、115の直径A1、A2、A3は、物体側からセンサー側に行くほど漸増してもよい。前記第1、2、3レンズ111、113、115が積層された外形状は、ピラミッド形状または多角形形状を有することができる。前記第1レンズ111は、被写体に一番近いレンズであり、光が入射する物体側第1面S1と光が出射するセンサー側第2面S2のうち少なくとも1つまたは両方ともが球面や非球面であってもよい。前記第1レンズ111の第1面S1は凸状を有することができ、センサー側第2面S2は凹状を有することができる。前記第1レンズ111はガラス材質であってもよい。
【0033】
前記第1レンズ111は、外側に第1フランジ部111Aを含むことができる。前記第1フランジ部111Aの外側S10一部は、前記レンズバレル500の内面511に接触することができる。前記第1フランジ部111Aの外側のうち前記レンズバレル500の内面511と接触する接触面の長さは、前記第1フランジ部111Aの厚さの70%以上を有することができる。前記接触面の長さ方向は、前記光軸Lzと平行するか所定角度で傾斜した方向であり、または前記第1フランジ部111Aは、前記第1レンズ111の有効径の外側から光軸Lzと直交する方向Xに延長され、前記第1フランジ部111Aの厚さは、前記第1フランジ部111Aの物体側とセンサー側領域のうち光学部材と接触した2つの面の間の間隔であってもよい。前記光学部材は、レンズ、レンズバレル、間隔維持部材、絞り、遮光膜等がレンズバレル内部に配置される物体となることができる。前記レンズバレル500の内面511と接触する長さは、前記第1フランジ部111Aの外面の物体側一端からセンサー側他端までの長さである。
【0034】
前記第1レンズ111はガラス材質であってもよく、前記カメラモジュール1000が車両内側または外側で光に露出される場合、プラスチック材質による変色を防止することができ、熱による変形F1を減らすことができる。前記カメラモジュール1000が車両内に配置される場合、前記第1レンズ111はガラス材質またはプラスチック材質であってもよい。
【0035】
前記第1レンズ111は、屈折率が1.7以上または1.8以上であるか、1.7~2.3の範囲を有することができる。絶対値で表わす場合、前記第1レンズ111の第1面S1の曲率半径は第2面S2の曲率半径より小さくてもよく、例えば3.3mm以下を有することができる。前記第1レンズ111の第1面S1の曲率半径と第2面S2の曲率半径の差は1mm以上を有することができ、例えば1mm~3mmの範囲を有することができる。前記第1レンズ111の中心厚さは、レンズ部100のレンズのうち一番厚くてもよく、例えば1mm以上を有することができる。前記第1レンズ111の有効径の大きさを見ると、第1面S1の有効径の大きさは、第2面S2の有効径の大きさより大きくてもよい。
【0036】
前記第2レンズ113と前記第3レンズ115は、前記第1レンズ111と異なる材質及び屈折率を有することができる。前記第2レンズ113は、プラスチック材質であってもよい。前記第2レンズ113は、第1レンズ111と第3レンズ115の間に配置され、外側に第2フランジ部113Aを有することができる。前記第3レンズ115は、プラスチック材質であってもよい。前記第3レンズ115は、第2レンズ113と光学フィルター196の間に配置され、外側に第3フランジ部115Aを有することができる。前記第2レンズ113と前記第3レンズ115は、プラスチック材質で射出成形されてもよい。
【0037】
図1及び
図2を参照すると、前記第2レンズ113は、物体側第3面S3とセンサー側第4面S4を含み、前記第3面S3と前記第4面S4は非球面であってもよい。前記第3レンズ113の第3面S3と第4面S4は、絶対値で表した曲率半径が互いに異なってもよい。前記第3面S3は凹状を有することができ、センサー側第4面S4は凸状を有することができる。別の例として、第2レンズ113は、絶対値で表した曲率半径が互いに異なる2つの面として、例えば前記第3面S3は凸構造、前記第4面S4は凹構造、前記第3面S3は凸構造、前記第4面S4は凸構造、または前記第3面S3は凹構造、前記第4面S4は凹構造のうちいずれか1つを含むことができる。
【0038】
前記第2レンズ113は外側に第2フランジ部113Aを含むことができる。前記第2フランジ部113Aの外側S20一部は、前記レンズバレル500の内面511と接触することができる。前記第2フランジ部113Aは、前記第2レンズ113の有効径の外側から光軸Lzと直交する方向Xに延長され、その厚さD1は、第2フランジ部113Aの物体側とセンサー側領域のうち光学部材と接触した2つの面の間の間隔であってもよい。前記光学部材は、レンズ、レンズバレル、間隔維持部材、絞り、遮光膜等レンズバレル内部に配置される物体となることができる。前記第2レンズ113の第2フランジ部113Aの厚さD1は、前記第2フランジ部113Aから第1間隔維持部材121と接触する面と前記間隔維持部材123と接触する面の間の距離、例えば前記距離は光軸と平行する方向の距離であってもよい。
【0039】
図2のように、前記第2フランジ部113Aの外側S20は、前記レンズバレル500の内面511と接触する第1接触面S21、前記第1接触面S21と物体側面の間の第1傾斜面S23、前記第1接触面S21とセンサー側面の間の第2傾斜面S24を含むことができる。前記第2フランジ部113Aの外側S20は、前記第1接触面S21から光軸Lzと平行する軸方向に延長され、前記第1接触面S21と前記第2傾斜面S24の間に配置された第1非接触面S22を含むことができる。
【0040】
前記第1接触面S21は、前記第2フランジ部113Aの最外側に配置され、前記レンズバレル500の内面511と接触することができる。前記第1非接触面S22は、前記第1接触面S21の下端から垂直にまたは同じ平面に延長され、前記レンズバレル500の内面511と非接触することができる。前記第1接触面S21の接触長さD2は、前記第2フランジ部113Aの厚さD1より小さくてもよい。前記第1接触面S21の接触長さD2は、前記厚さD1の50%以下であるか20%~50%の範囲を有することができる。前記接触長さD2の方向Lz1は、光軸Lzと平行する軸方向であるか、前記光軸Lzと平行する軸Lz1を基準として所定角度で傾斜することができる。前記第1非接触面S22は、センサー側に行くほど前記内面511との間隔が大きくなることができる。前記第1非接触面S22の垂直な長さD5は、前記第1接触面S21の接触長さD2より小さくてもよい。前記第1非接触面S22の長さD3は、前記第2レンズ113を射出成形する時、前記第1接触面S21の下端からセンサー側にさらに延長されてレンズバレル500の内面511と離隔するので、バリ(Burr)のような構造物が第1非接触面S22に発生しても、前記第1接触面S21の面接触を妨害することなく前記第1接触面S21とレンズバレル500の内面511が互いに密着できる距離である。または、第1非接触面S22は、バリ(Burr)による第2レンズ113の組立不良を防止することができる。前記第1非接触面S22の長さD5は、前記第2フランジ部113Aの厚さD1の1/15以下または1/20以下に形成される。前記第2フランジ部113Aの厚さD1は、0.7mm以上、例えば0.7mm~1.2mmの範囲を有することができる。
【0041】
前記第2フランジ部113Aの第1傾斜面S23は、前記第1接触面S21の物体側一端から前記第1フランジ部113Aの物体側面に向いて第1角度R1で延長される。前記第1角度R1は、光軸と平行する軸Lz1に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第1角度R1が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第2レンズ113の第2フランジ部113Aの固定力が低下したりねじれる問題が発生し得る。前記第2傾斜面S24は、前記第1非接触面S22のセンサー側一端から前記第1フランジ部113Aのセンサー側面に向いて第2角度R2で延長される。前記第2角度R2は、光軸と平行する軸Lz1に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第2角度R2は、前記第1角度R1と同一であるか小さくてもよい。前記第2角度R2が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第2レンズ113の第2フランジ部113Aの固定力が低下したりねじれる問題が発生し得る。
【0042】
前記第2レンズ113の屈折率は、前記第1レンズ111の屈折率より低くてもよく、1.7未満、例えば1.45~1.69の範囲を有することができる。前記第2レンズ113と前記第1レンズ111の屈折率の差は0.3以上を有することができる。絶対値で表わす場合、前記第2レンズ113の凹状の第3面S3の曲率半径は、凸状の第4面S4の曲率半径より大きくてもよく、例えば7mm以上であるか5.1mm~7mmの範囲を有することができる。前記第4面S4の曲率半径は、絶対値で5mm以下、例えば2mm~5mmの範囲を有することができる。前記第2レンズ113の第3面S3の曲率半径と第4面S4の曲率半径の差は1mm以上を有することができ、例えば1mm~5mmの範囲を有することができる。
【0043】
前記第2レンズ113の中心厚さは、レンズ部100のレンズのうち二番目に厚くてもよく、例えば第1レンズ111の中心厚さよりは薄く、第3レンズ113の中心厚さよりは厚くてもよい。前記第2レンズ113と前記第1レンズ111の間の中心間隔は、前記第1レンズ111の厚さより小さくてもよく、前記第2、3レンズ113、115の間の中心間隔より大きくてもよい。前記第2レンズ113の有効径の大きさを見ると、第3面S3の有効径の大きさは、第4面S4の有効径の大きさより小さくてもよい。前記第3面S4の有効径の大きさは、前記第2面S2の有効径の大きさより大きくてもよく、第1面S1の有効径の大きさより小さくてもよい。
【0044】
前記第2レンズ113は、プラスチック材質として、ガラス材質より熱膨張係数が高いので熱による変形F2がより大きく発生する。発明の実施例は、第2レンズ113の第3面S3と第4面S4の曲率半径の差がある場合、2つの面S3、S4の曲率半径の差とプラスチック材質による熱変形F2が最小化されるように第2フランジ部113Aの外側S20に緩和構造を提供することができる。前記緩和構造は、前記第2レンズ113の光軸上における第3、4面S3、S4の曲率半径の差による熱変形F2に基づいて、第2フランジ部113Aの外側S20の第1接触面S21の面積または垂直な長さを最適化することができる。
【0045】
前記第2レンズ113は、光軸Lz上で絶対値で第3面S3の曲率半径が第4面S4の曲率半径より1以上大きい場合、第3面S3と第4面S4の間の光軸中心P1は、前記第2フランジ部113Aの垂直中心P3よりもセンサー側に近く位置することができる。また、前記第1接触面S21の長さD2の中心P2は、前記第2レンズ113の光軸中心P1よりも物体側に近く位置し、前記第2フランジ部113Aの垂直中心P3よりも物体側に近く位置することができる。前記第1接触面S21の中心P2が前記第2フランジ部113Aの垂直中心P3よりも物体側に近く位置することになることで、前記第1接触面S21は、前記第2フランジ部113Aの外側上部を外側下部よりもレンズバレル500の内面511と多く接触することで、前記第2レンズ113の第3、4面S3、S4の曲率半径の差とプラスチック材質による熱変形F2を緩和することができる。例えば、上部とは、物体側を意味し、下部とは、センサー側を意味することができる。例えば、曲率半径が小さいほど温度変化による光学的性能変化がより大きいレンズであり、温度変化により敏感なレンズである。曲率半径が1以上の差がある場合、曲率半径が小さいレンズは温度変化により敏感であり、温度変化による光学的性能変化がより大きいレンズである。前記第1接触面S21の中心P2を曲率半径が小さい面から遠く配置することで、温度変化による光学的性能の低下を緩和することができる。
【0046】
前記第2フランジ部113Aの第1接触面S21の長さD2は、前記第2フランジ部113Aの厚さD1対比20%~50%の範囲で形成される。前記第1接触面S21は、前記第2フランジ部113Aの外側上部で前記レンズバレル500の内面511と面接触することで、前記第2フランジ部113Aの外側下部に伝達される熱変形F2を緩和することができる。このような前記第1接触面S21の長さD2が前記範囲より小さいと、温度が変わることにより前記第2レンズの位置が変形し、前記範囲より大きいと、前記第2レンズ113の熱変形F2の緩和が微小となり、射出成形に困難があり、光軸Lz上で熱によるストレスが増加し、熱変形率が増加する原因となる。前記第2フランジ部113Aの外側S20の垂直な長さ(D2+D5)は、前記第2フランジ部113Aの厚さD1対比20%~50%の範囲で形成される。
【0047】
前記第2フランジ部113Aの外側S20の垂直な長さ(D2+D5)は、前記第2フランジ部113Aの第1傾斜面S23の両端を通る水平な両直線の間の長さD4より大きくてもよく、前記第2フランジ部113Aの第2傾斜面S24の両端を通る水平な両直線の間の長さD3より小さくてもよい。前記第1傾斜面S23の長さD3は、前記第2傾斜面S24の長さD4より小さくてもよく、これにより第1接触面S21が接触面積または接触長さD2を有し、物体側により移動するようにまたは物体側により近く提供することができる。
【0048】
図1及び
図3を参照すると、前記第3レンズ115は、プラスチック材質であり、物体側第5面S5及びセンサー側第6面S6を含み、前記第5面S5及び第6面S6は非球面であってもよい。前記第5面S5は光軸Lz上で凸状を有することができ、前記第6面S6は光軸Lz上で凹状を有することができる。別の例として、第3レンズ115は絶対値で表した曲率半径が互いに異なる2つの面として、例えば前記第5面S5は凸状を有し、前記第6面S6は凹状を有する構造、前記第5面S5は凸状を有し、前記第6面S6は凸状を有する構造、または前記第5面S5は凹状を有し、前記第6面S6は凹状を有する構造のうちいずれか1つを含むことができる。
【0049】
前記第3レンズ115は、外側に第3フランジ部115Aを含むことができる。前記第3フランジ部115Aの外側S30一部は、前記レンズバレル500の内面511と接触することができる。前記第3フランジ部115Aは、前記第3レンズ115の有効径の外側から光軸Lzと直交する方向Xに延長され、その厚さT1は第3フランジ部115Aの物体側とセンサー側領域のうち光学部材と接触した2つの面の間の間隔であってもよい。前記光学部材は、レンズ、レンズバレル、間隔維持部材、絞り、遮光膜等レンズバレル内部に配置される物体となることができる。前記第3レンズ115の第3フランジ部115Aの厚さT1は、前記第3フランジ部115Aで第2遮光膜124と接触する面と前記支持部材125と接触する面の間の距離、例えば前記距離は光軸と平行する方向の距離であってもよい。
【0050】
図3のように、前記第3フランジ部115Aの外側S30は、前記レンズバレル500の内面511と接触する第2接触面S31、前記第2接触面S31と物体側面の間の第3傾斜面S33、前記第1接触面S31とセンサー側面の間の第4傾斜面S34を含むことができる。前記第3フランジ部115Aの外側S30は、前記第2接触面S31から光軸Lzと平行する軸方向に延長され、前記第2接触面S31と前記第4傾斜面S34の間に配置された第2非接触面S32を含むことができる。前記第2接触面S31は、前記第3フランジ部115Aの最外側に配置され、前記レンズバレル500の内面511と接触することができる。前記第2非接触面S32は、前記第2接触面S31の下端から垂直にまたは同じ平面に延長され、前記レンズバレル500の内面511と非接触することができる。前記第2接触面S31の接触長さT2は、前記第3フランジ部115Aの厚さT1より小さくてもよい。前記第2接触面S31の接触長さT2は、前記厚さT1の60%以下であるか、20%~50%の範囲または30%~60%の範囲を有することができる。前記接触長さT2の方向Lz2は、光軸Lzと平行する軸方向であるか、前記光軸Lzと平行する軸Lz2を基準として所定角度で傾斜することができる。前記第2非接触面S32は、センサー側に行くほど前記内面511との間隔が大きくなることができる。前記第2非接触面S32の垂直な長さT5は、前記第2接触面S31の接触長さT2より小さくてもよい。前記第2非接触面S32の長さT3は、前記第3レンズ115を射出成形する時、前記第2接触面S31の下端からセンサー側にさらに延長されてレンズバレル500の内面511と離隔するので、バリ(Burr)のような構造物が第2非接触面S32に発生しても、前記第2接触面S31の面接触を妨害することなく前記第2接触面S31とレンズバレル500の内面511が互いに密着できる距離である。または、第2非接触面S32は、バリ(Burr)による第3レンズ115の組立不良を防止することができる。前記第2非接触面S32の長さT5は、前記第3フランジ部115Aの厚さT1の1/15以下または1/20以下に形成される。前記第3フランジ部115Aの厚さT1は、前記厚さD1より小さく、0.6mm以上、例えば0.6mm~1mmの範囲を有することができる。
【0051】
前記第3フランジ部115Aの第3傾斜面S33は、前記第2接触面S31の物体側一端から前記第2フランジ部115Aの物体側面に向いて第3角度R3で延長される。前記第3角度R3は、光軸と平行する軸Lz2に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第3角度R3が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第3レンズ115の第3フランジ部115Aの固定力が低下したりねじれる問題が発生し得る。前記第4傾斜面S34は、前記第2非接触面S32のセンサー側一端から前記第3フランジ部115Aのセンサー側面に向いて第4角度R4で延長される。前記第4角度R4は、光軸と平行する軸Lz2に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第4角度R4は、前記第3角度R3と同一であるか大きくてもよい。前記第4角度R4が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第3レンズ115の第3フランジ部115Aの固定力が低下したりねじれる問題が発生し得る。
【0052】
前記第3レンズ115の屈折率は、前記第1レンズ111の屈折率より低くてもよく、1.7未満、例えば1.45~1.69の範囲を有することができる。前記第2、3レンズ113、115の材質は同一であってもよく、同じ屈折率を有することができる。前記第3レンズ115と前記第1レンズ111の屈折率の差は0.3以上を有することができる。絶対値で表わす場合、前記第3レンズ115の凸状の第5面S5の曲率半径は、凹状の第6面S6の曲率半径より大きくてもよく、例えば3mm以上であるか3mm~6.5mmの範囲を有することができる。前記第6面S6の曲率半径は、絶対値で4mm以下、例えば1.5mm~4mmの範囲を有することができる。前記第3レンズ115の第5面S5の曲率半径と第6面S6の曲率半径の差は1mm以上を有することができ、例えば1mm~5mmの範囲または2mm~5mmの範囲を有することができる。
【0053】
前記第3レンズ115の中心厚さは、前記第1レンズ111の中心厚さよりは薄く、第2レンズ113の中心厚さより薄くてもよい。前記第3レンズ115と前記第2レンズ113の間の中心間隔は、前記第1、2レンズ111、113の間の中心間隔より大きくてもよい。前記第3レンズ115と前記光学フィルター196の間の中心間隔は、前記第2、3レンズ113、115の間の中心間隔より小さくてもよい。前記第3レンズ115の有効径の大きさを見ると、第5面S5の有効径の大きさは、第6面S6の有効径の大きさより小さくてもよい。前記第6面S6の有効径の大きさは、前記第3面S3の有効径の大きさより大きくてもよく、第1面S1の有効径の大きさより大きくてもよい。
【0054】
前記第3レンズ115は、プラスチック材質として、ガラス材質より熱膨張係数が高いので熱による変形F3がより大きく発生する。発明の実施例は、第3レンズ115の第5面S5と第6面S6の曲率半径の差がある場合、2つの面S5、S6の曲率半径の差とプラスチック材質による熱変形F3が最小化されるように第3フランジ部115Aの外側S30に緩和構造を提供することができる。前記緩和構造は、前記第3レンズ115の光軸上における第5、6面S5、S6の曲率半径の差による熱変形F3に基づいて、第3フランジ部115Aの外側S30の第2接触面S31の面積または垂直な長さを最適化することができる。前記第3レンズ115は、光軸Lz上で絶対値で第5面S5の曲率半径が第6面S6の曲率半径より1以上大きい場合、第5面S5と第6面S4の間の光軸中心P5は、前記第3フランジ部115Aの垂直中心P6よりもセンサー側に近く位置することができる。また、前記第2接触面S31の長さT2の中心P6は、前記第3レンズ115の光軸中心P5よりも物体側に近く位置し、前記第3フランジ部115Aの垂直中心P7よりも物体側に近く位置することができる。
【0055】
前記第2接触面S31の中心P6が前記第3フランジ部115Aの垂直中心P7よりも物体側に近く位置することになることで、前記第2接触面S31は、前記第3フランジ部115Aの外側上部を外側下部よりもレンズバレル500の内面511と多く接触することで、前記第3レンズ115の第5、6面S5、S6の曲率半径の差とプラスチック材質による熱変形F3を緩和することができる。例えば、上部とは、物体側を意味し、下部とは、センサー側を意味することができる。例えば、曲率半径が小さいほど温度変化による光学的性能変化がより大きいレンズである。曲率半径が1以上の差がある場合、曲率半径が小さいレンズは温度変化により敏感であり、温度変化による光学的性能変化がより大きいレンズである。前記第2接触面S31の中心P6を曲率半径が小さい面から遠く配置することで、温度変化による光学的性能の低下を緩和することができる。
【0056】
前記第3フランジ部115Aの第2接触面S31の長さT2は、前記第3フランジ部115Aの厚さT1対比60%以下として、20%~50%または30%~60%の範囲で形成される。前記第2接触面S31は、前記第3フランジ部115Aの外側上部で前記レンズバレル500の内面511と面接触することで、前記第3フランジ部115Aの外側上部に伝達される熱変形F3を緩和することができる。このような前記第2接触面S31の長さT2が前記範囲より小さいと、前記第3レンズ115の熱変形F3の緩和が微小となり、前記範囲より大きいと射出成形に困難があり、光軸Lz上で熱によるストレスが増加し、熱変形率が増加する原因となる。前記第3フランジ部115Aの外側S30の垂直な長さ(T2+T5)は、前記第3フランジ部115Aの厚さT1対比60%以下として、20%~50%または30%~60%の範囲で形成される。
【0057】
前記第3フランジ部115Aの外側S30の垂直な長さ(T2+T5)は、前記第3フランジ部113Aの第3傾斜面S33の両端を通る水平な両直線の間の長さT4より大きくてもよく、前記第3フランジ部113Aの第4傾斜面S34の両端を通る水平な両直線の間の長さT3より小さくてもよい。前記長さ T3、T4は同一であってもよい、別の例として、前記第2、第3レンズ113、115は、光軸Lz上で絶対値で第3、4面S3、S4の曲率半径の差、または第5、6面S5、S6の曲率半径の差が1未満である場合、前記第1、2接触面S21、S31の中心P2、P6はフランジ部111A、113A、115Aの中心P3、P7により近く位置される。
【0058】
図4及び
図5のように、前記レンズバレル500は、上部バレル部550及び下部バレル部510を含むことができる。前記上部バレル部550と前記下部バレル部510は一体形成されてもよい。前記上部バレル部550の外径または最大直径は、下部バレル部510の外径または最大直径より大きくてもよい。前記上部バレル部550は、内部に前記開口部101の直径より大きいオープン領域551を備え、前記オープン領域551は上部が開放され、多数のリブ555が光軸中心から外周面方向に延長される。前記オープン領域551の直径は、前記開口部101の直径より大きくてもよい。前記上部バレル部550は底部553及び側壁部554を備え、前記リブ555は、前記底部553及び側壁部554に連結される。前記下部バレル部510は、前記底部553を介して開口部101の外周面に沿って延長される。前記レンズバレル550の下部バレル部510を外径が異なる構造または形状で提供して、内部のレンズ111、113、115によって熱変形が発生しても、効果的に抑制することができる。
【0059】
前記多数のリブ555は、3つ以上が互いに離隔し、前記上部バレル部550を支持することができる。前記多数のリブ555は、光軸から放射方向に配列される。前記多数のリブ555のそれぞれは、前記オープン領域551の底部553から光軸方向に突出し、互いに同じ高さ及び厚さを有することができる。前記リブ555の厚さは、円周方向の幅であってもよい。前記各リブ555は、光軸から外側方向に延長された長さが互いに異なってもよい。例えば、各リブ555の上部長さは、下部長さより大きくてもよい。前記下部長さは、前記開口部101の上端外側から前記オープン領域551の外側カバーである上部バレル550の側壁部555まで延長され、上部長さは、前記上部バレル550の上面と同じ平面に配置され、光軸方向に延長される。前記開口部101の周り面は傾斜するように配置され、前記上部バレル部550の外面は垂直するように延長される。
【0060】
前記上部バレル部550は、他の移送装置に結合することができ、前記リブ555によって剛性低下が防止される。前記上部バレル部550の一面はフラット面559が提供され、位置固定されるか底面として使用することができる。下部バレル部510は、内部に上記に開示された少なくとも2枚または3枚の以上のレンズを有し、例えば第1~第3レンズ111、113、115を含むことができる。下部バレル部510は、第1レンズ111の外側に第1外径を有し、前記第2レンズ113の外側に第2外径を有し、前記第3レンズ115の外側に第3外径を有する支持本体を有することができる。前記外径のサイズは、第1外径<第2外径<第3外径の関係を有することができる。前記下部バレル部510は、各レンズ111、113、115の外側で一定の厚さを有することができ、前記厚さは、各レンズ111、113、115の接触側内面から外面までの直線距離である。ここで、前記下部バレル部510の内径は、各レンズ111、113、115と接触する内面の直径が第1外径の内側第1内径、第2外径の内側第2内径、第3外径の内側第3内径に区分する時、第1内径<第2内径<第3内径の関係を満足することができる。
【0061】
発明の実施例に係る第1レンズ111~第3レンズ115のレンズデータは表1のようである。
【0062】
【0063】
表1で、光軸で第1レンズ111と第2レンズ113の間の間隔は、第2レンズ113と第3レンズ115の間の間隔より大きくてもよい。前記第3レンズ115は、物体側第5面S5とセンサー側第6面S6のうち少なくとも1つまたは両方ともは、変曲点を有することができる。例えば、第6面S6の変曲点位置は、光軸を基準として前記第5面S5の変曲点位置より遠い位置に配置され、光軸から有効径の終端までの距離の50%~80%の範囲に配置される。前記第7面は光学フィルターで物体側面であり、第8面はセンサー側面であり、第9面はカバーガラスの物体側面であり、第10面はセンサー側面であってもよい。前記イメージセンサーのサイズは、横または縦方向の長さとして、対角線方向の長さは4.7mm程度を有することができる。発明の実施例は、第2、3レンズ113、115の熱変形緩和のために、前記レンズバレル500の材質は放熱材質であるか金属材質であってもよい。前記レンズバレル500は、トップビュー形状が円柱形状または多角柱形状を含むことができる。前記レンズバレル500は、樹脂またはプラスチックまたは金属材質の材質からなることができる。前記レンズバレル500の表面には、親水性材質がコーティングされるか塗布されてもよい。ここで、前記レンズバレル500は、金属材質、例えばAl、Ag、またはCu材質から選択することができ、AlまたはAl合金であってもよい。前記レンズバレル500に金属を使用する場合、前記レンズ111、113、115の側方向に伝達される熱を放熱することができ、前記レンズ111、113、115の熱変形を抑制することができる。
【0064】
前記第1、2遮光膜121、124、前記間隔維持部材123、または前記支持部材125は内部に開口部を備えることができ、接着剤でフランジ部111A、113A、115A及びレンズバレル500の内面511と接着されてもよい。前記第1、2遮光膜121、124及び前記間隔維持部材123、支持部材125は、PEフィルム(Poly Ethylene film)またはポリエステル(PET)系フィルムを含むことができる。別の例として、前記第1、2遮光膜121、124、前記間隔維持部材123、または支持部材125は、金属または合金とその表面に酸化皮膜が形成されてもよい。前記金属または合金に含まれた材質は、In、Ga、Zn、Sn、Al、Ca、Sr、Ba、W、U、Ni、Cu、Hg、Pb、Bi、Si、Ta、H、Fe、Co、Cr、Mn、Be、B、Mg、Nb、Mo、Cd、Sn、Zr、Sc、Ti、V、Eu、Gd、Er、Lu、Yb、Ru、Y及びLaのうち少なくとも1つを含むことができる。前記酸化皮膜は、銅を利用した黒色酸化物(black oxide)または茶色酸化物(brown oxide)処理された酸化材質であってもよい。
【0065】
前記イメージセンサー192は、メイン基板190の上に配置される。前記メイン基板190は、光軸Lzと交差する平面にイメージセンサー192が装着、安着、接触、固定、仮固定、支持または結合されてもよい。または、別の実施例によれば、メイン基板190にイメージセンサー192を収容できる溝またはホール(不図示)が形成されてもよく、実施例はイメージセンサー192がメイン基板180に配置される特定の形態に限定されない。前記メイン基板190はリジッドPCBまたはFPCBであってもよい。
【0066】
前記イメージセンサー192は、レンズ部100を通過した光をイメージデータに変換する機能をすることができる。前記ハウジング500の下部にセンサーホルダーが配置されてイメージセンサー192を取り囲み、前記イメージセンサー192を外部の異物または衝撃から保護することができる。前記イメージセンサー192は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal-Oxide Semiconductor)、CPD、CIDのうちいずれか1つであってもよい。前記イメージセンサー192が複数である場合、いずれか1つはカラー(RGB)センサーであり、他の1つはモノクロセンサーであってもよい。
【0067】
前記光学フィルター196は、前記レンズ部100とイメージセンサー192の間に配置される。前記光学フィルター196は、レンズ111、113、115、117を通過した光に対して特定波長範囲に該当する光をフィルタリングすることができる。前記光学フィルター196は、赤外線を遮断する赤外線(IR)遮断フィルターまたは紫外線を遮断する紫外線(UV)遮断フィルターであってもよいが、実施例はこれに限定されるものではない。前記光学フィルター196は、イメージセンサー192の上に配置される。カバーガラス194は、前記光学フィルター196とイメージセンサー192の間に配置され、前記イメージセンサー192の上部を保護し、イメージセンサー192の信頼性低下を防止することができる。
【0068】
発明の実施例に係るカメラモジュール1000は、駆動部材(不図示)を含むことができ、前記駆動部材は、レンズのうち少なくとも1つを有するバレルを光軸方向または/及び光軸方向と直交する方向に移動させるか、チルトさせることができる。前記カメラモジュールは、AF(Auto Focus)機能または/及びOIS(Optical Image Stabilizer)機能を含むことができる。
【0069】
発明の実施例に係るカメラモジュール1000は、赤外線用カメラまたはドライバーモニタリングカメラに適用することができる。また、カメラモジュール1000の画角は50度以上、例えば50度~70度の範囲で提供される。ここで、前記レンズ部100は、プラスチックレンズと少なくとも1つのガラスレンズを混合して積層した場合、前記プラスチック材質のレンズによる熱変形を最小化することができる。例えば、前記第2、3レンズ113、115の第1、2接触面S21、S31の長さD2、T2を熱変形F2、F3に応じて補償されるように配置することで、常温(例えば、20度~30度)対比高温(例えば、80度~105度)で回折(Diffraction)光学性能のMTF変化率は10%以下を有することができる。前記高温は車両内の温度を含むことができる。
【0070】
図6a及び
図6bは、比較例と発明のカメラモジュールにおける熱ストレス(単位、Mpa)の分布を比較した図面である。
図6aの比較例は、第1、2、3レンズのフランジ部の外側面が垂直な面として、レンズバレルの内面と接触する構造である。
図6bは、
図1~
図5の第1、2、3レンズのフランジ部111A、113A、115Aとレンズバレル500の内面511の接触例である。
【0071】
図6aで、光軸で第2レンズの物体側第3面のストレス値は3.403であり、第2レンズのセンサー側第4面は、1.063と表れるが、
図6bのように、第2レンズの物体側第3面のストレス値は3未満、例えば2.643であり、第2レンズのセンサー側第4面は、1未満、例えば0.979と表れることをわかる。これは、第2レンズを基準として比較例より発明のストレスが低いことがわかる。同様に、比較例は、第3レンズの物体側第5面のストレス値は5.538であり、発明の第3レンズの物体側第5面のストレス値は5未満、例えば4.436と表れることをわかる。
【0072】
図7a及び
図7bは、比較例と発明のカメラモジュールにおける変形率(単位、μm/μm)の分布を比較した図面である。
図7aで、光軸で第2レンズの物体側第3面の変形率(Strain)の値は1.036×10
-3であり、第3レンズの物体側第5面で各ポイント別の変形率の値は2.507×10
-3、1.587×10
-3、2.507×10
-3とそれぞれ表れることをわかる。反面、
図7bで、第2レンズの物体側第3面の変形率の値はより低く、例えば9.262×10
-4であり、第3レンズの物体側第5面の各ポイントで変形率の値は1.822×10
-3、1.291×10
-3、1.822×10
-3とそれぞれ低く表れることをわかる。前記第3レンズの物体側第5面の各ポイントは、光軸、光軸の両側で変曲点位置を基準として測定した値である。
【0073】
発明の実施例に係る光学系で、画角(対角線)は70度以下、例えば50度~70度の範囲を有することができる。光学系で、イメージセンサー190と第1レンズ111の頂点の間の距離TTLは、11mm以下を有することができ、使用される光線の波長は870nm~1000nmの範囲を有することができる。
図6は、比較例の光学系と発明の光学系で高温における回折(Diffraction)MTF(Modulation transfer function)を示したグラフとして、比較例より変化が少なく、高温の範囲でMTFの低下が10%以下であることがわかる。
【0074】
下記説明に記述される「熱によるストレス」は、常温(例えば、20度~30度)から高温(例えば、80度~105度)に行くほど熱によるレンズの膨張で発生する物体側面とセンサー側面に加えられるストレスを意味する。また、下記説明に記述される「温度変化」は、常温(例えば、20度~30度)から高温(例えば、80度~105度)までの変化を意味する。
【0075】
図9~
図11は、発明の実施例に係るカメラモジュールにおいて、レンズバレルLBと接触する任意のレンズL1の接触面積に応じて熱ストレスの影響をテストした例である。前記レンズL1は、前記第1~第3レンズのうち第2レンズまたは第3レンズであってもよい。前記レンズL1は、レンズのうちプラスチックレンズまたは非球面レンズであってもよい。
【0076】
図9の(A)~(D)は、発明の実施例に係るカメラモジュールにおいて、レンズのフランジ部とレンズバレルの間の接触比率を比較した図面であり、
図10は、
図9のレンズC1とレンズバレルLBに対して物体側面C1またはセンサー側面C2から見た部分平面図の例であり、
図11の(A)、(B)は、
図9のレンズのフランジ部とレンズバレルの間の接触比率に応じた物体側面とセンサー側面の熱ストレスを測定したグラフである。ここで、前記レンズL1は、光軸で物体側面C1が凸状を有し、センサー側面C2が凹状を有することができる。別の例として、前記レンズL1は、光軸で物体側面が凸状を有し、センサー側面が凸状を有することができる。別の例として、前記レンズL1は、光軸で物体側面が凹状を有し、センサー側面が凹状を有することができる。別の例として、前記レンズL1は、光軸で物体側面が凹状を有し、センサー側面が凸状を有することができる。前記カメラモジュール内に前記接触比率または接触長さを有するレンズは2枚以下であるか、カメラモジュール内のレンズの枚数対比20%~75%の範囲を有することができる。
【0077】
図9~
図11を参照すると、前記レンズL1は、レンズバレルLBと接触するフランジ部LF1を含む。前記フランジ部LF1の厚さLF1_Tは、レンズの物体側面のうち光学部材と接触した面とレンズのセンサー側面のうち光学部材と接触した面の間の間隔であってもよい。または、前記フランジ部LF1の厚さLF1_Tは、レンズの有効領域を外れた領域でフラットな物体側面とフラットなセンサー側面の間の間隔として、0.6mm~1.2mmの範囲または0.6mm~1mmの範囲を有することができ、前記フランジ部LF1が外側面のうちレンズバレルLBと接触する接触長さLF1_CTは、前記フランジ部LF1の厚さLF1_Tより小さくてもよい。この時、前記接触長さLF1_CTは、前記フランジ部LF1の厚さLF1_T対比70%、60%、50%、40%、30%、20%、10%でテストしており、
図9の(A)~(D)でフランジ部LF1の接触長さLF1_CTは、フランジ部LF1の厚さLF1_Tの70%、50%、30%、及び20%の例で図示した。
【0078】
図10及び
図11のように、前記接触長さLF1_CTの比率に応じてレンズL1の物体側面C1は、光軸またはレンズ中心OFと周辺位置、例えば0.4F位置における熱によるストレス、即ち、常温から高温に行くほど熱による膨張で発生するストレスを測定し、センサー側面C2は、光軸またはレンズ中心と周辺位置、例えば0.4F位置における熱によるストレスをそれぞれ測定した。ここで、レンズの中心(または光軸)がOFであり、レンズ中心から光軸と直交する対角線終端までの長さが1Fである場合、0.4Fと1F位置が設定される。ここで、前記1Fは、前記イメージセンサーの対角線終端位置であり、例えば4.7mm±0.2mmを有することができ、0.4Fは、例えば1.88mm±0.1mmの範囲を有することができる。ここで、OFは、光軸または各レンズの中心であり、1Fは、各レンズの有効領域の終端を表わす。
【0079】
図11aは、
図9のレンズL1の物体側面C1で接触長さLF1_CTがフランジ部LF1の厚さLF1_T対比10%~70%である場合、0F位置及び0.4Fにおける熱によるストレス値とその値を通る線形グラフを示した図面として、接触長さがフランジ部の厚さ対比20%~50%の範囲でストレス値の変化はほとんどなく、0Fと0.4Fの間のストレスの差は20%~50%の範囲で60%または70%におけるストレスの差より小さいことがわかる。前記20%~50%の範囲の接触長さLF1_CTは0.8mmである場合、0.24mm~0.40mmの範囲を有することができる。
【0080】
図11bは、
図9のレンズL1のセンサー側面C2で接触長さLF1_CTがフランジ部LF1の厚さLF1_T対比10%~70%である場合、0F位置及び1Fにおける熱ストレス値とその値を通る線形グラフを示した図面として、ここで、接触長さがフランジ部の厚さ対比20%~50%の範囲で熱ストレス値の変化が一定に増加し、0Fと1Fの間の熱ストレスの和は20%~50%の範囲で値が60%または70%における熱ストレスの和より小さいことがわかる。センサー側面では0F位置よりは1F位置で熱ストレスがより高い値を有することができる。ここで、前記1Fは、前記イメージセンサーの対角線終端位置であり、例えば4.7mm±0.2mmを有することができ、0.4Fは、例えば1.88mm±0.1mmの範囲を有することができる。
【0081】
図11a及び
図11bのように、レンズのフランジ部の接触長さが物体側面とセンサー側面を見る時、20%~50%の範囲で安定的に熱ストレスを管理することができることをわかる。また、接触長さが減るほど熱ストレスが減少するが、接触長さがフランジ部の厚さ対比20%未満である場合、レンズの製造または加工の側面で多い困難がある。
【0082】
下記表2は、レンズの物体側面C1とセンサー側面C2におけるフランジ部の接触長さに応じた0F及び0.4F、または0F及び1F値をそれぞれ測定した熱ストレス(Mpa)の値である。
【0083】
【0084】
表2で、前記0Fはレンズの中心または光軸であり、1Fは前記イメージセンサーの対角線終端位置であり、例えば4.7±0.2mmを有することができ、0.4Fは、例えば1.88±0.1mmの範囲を有することができる。
図12~
図14は、発明の実施例に係るカメラモジュールにおいて、レンズバレルLBと接触する任意のレンズL2の物体側面C1とセンサー側面C2の曲率差に応じた熱ストレスの影響をテストした例である。前記レンズL2は、前記第1~第3レンズのうち第2レンズまたは第3レンズであるか、または前記レンズのうちプラスチックレンズまたは非球面レンズであってもよい。
【0085】
図12の(A)~(D)は、発明の実施例に係るカメラモジュールにおいて、レンズL2の2つの面C1、C2の曲率半径の差(C1-C2)を比較した図面であり、
図13は、
図16のレンズL2の物体側面C1またはセンサー側面C2から見た部分平面図の例であり、
図14は、
図12のレンズの物体側面C1とセンサー側面C2の曲率半径の差(C1-C2)に応じた各位置別の熱ストレスを測定したグラフである。ここで、前記レンズL2は、光軸で物体側面が凸状を有し、センサー側面が凹状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凸状を有し、センサー側面が凸状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凹状を有し、センサー側面が凹状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凹状を有し、センサー側面が凸状を有することができる。前記カメラモジュール内に前記物体側面とセンサー側面を有するレンズは、1枚、2枚であるか、カメラモジュール内のレンズの枚数対比20%~75%の範囲を有することができる。
【0086】
図12~
図14を参照すると、レンズL2は、レンズバレルLBと接触するフランジ部LF2を含む。前記フランジ部LF2の厚さLF2_Tは0.6mm~1.2mmの範囲または0.6mm~1mmの範囲を有することができ、前記フランジ部LF2が外側面のうちレンズバレルLBと接触する接触長さは、フランジ部LF2の厚さLF2_T対比100%の例としたが、30%~50%の範囲に変更することができる。前記物体側面C1とセンサー側面C2の曲率半径の差は、0mm、0.5mm、1mm、1.5mm、2mm、2.5mmでそれぞれテストした。ここで、物体側面C1の曲率半径は一定であり、センサー側面C2の曲率半径を段々に小さくしてテストする例で図示したが、物体側面C1の曲率半径が段々小さくなるか、2つの面C1、C2の曲率半径が段々小さくなるか、2つの面の曲率半径が段々大きくなってもよい。前記曲率半径は、絶対値で表わすことができる。
【0087】
図12の(A)~(D)で、レンズL2の2つの面C1、C2の曲率半径の差が0mm、1mm、2mm、3mmである例で図示し、
図14では、レンズL2の2つの面C1、C2の曲率半径の差が0mm、0.5mm、1mm、1.5mm、2mm、2.5mm及び3mmでそれぞれテストした値が求められる。
図12及び
図14のように、曲率半径の差に応じてレンズL2の物体側面C1またはセンサー側面C2でのイメージセンサーの外郭と対応する1F位置における熱ストレスを測定し、ここで、0Fはレンズの中心または光軸であり、1Fは、前記イメージセンサーの対角線終端位置であり、例えば4.7mm±0.2mmを有することができる。
【0088】
図14は、
図12のレンズL2の光軸で物体側面C1とセンサー側面C2の曲率半径の差が0mmから3mmまで0.5mm単位で変化する時、高温(105℃)で物体側面C1とセンサー側面C2の1F位置で熱によるストレス値とその値を通る線形グラフを示したグラフであり、曲率半径の差が0mm~2mmの範囲、0mm~1mm、または0mm~0.5mmの範囲で熱によるストレス数値が一定値以下であることがわかる。即ち、物体側面C1とセンサー側面C2で熱によるストレスは、イメージセンサーの最外郭位置1Fで0mmから2mmまで曲率半径の差に対して安定的であり、熱によるストレスが2.5MPa以下に抑制することができる。物体側面C1とセンサー側面C2のイメージセンサーの最外郭位置1Fで0mmから1mmまで曲率半径の差に対して熱によるストレスが2.45MPa以下に抑制することができる。物体側面C1とセンサー側面C2のイメージセンサーの最外郭位置1Fで0mmから0.5mmまで曲率半径の差に対して熱によるストレスが2.35MPa以下に抑制することができる。
【0089】
イメージセンサーの最外郭位置1Fで熱によるストレスが2.35MPa以上、詳しくは2.45MPa以上、より詳しくは2.5MPa以上であると、高温(105℃)で撮像されるイメージの光学的性能であるMTF性能が低下する。
【0090】
図14を参照すると、曲率半径が0.5mm単位で小さくなるセンサー側面C2の熱ストレスが不安定的であることをわかる。これは、相対的に曲率半径が小さい面が大きい面に比べて熱によるストレスに弱いことを意味する。よって、本発明は、フランジ部がバレルの内面と接触する面の中心を曲率半径が大きい面に近く位置するように設計することで、温度が常温(20℃-30℃)から高温(105℃)に変化することにより曲率半径が小さい面が受ける熱によるストレスを減らそうとした。曲率半径が小さい面に近く位置したフランジ部がバレルの内面と接触する面を減らすことで、温度が常温(20℃-30℃)から高温(105℃)に変化することにより曲率半径が小さい面が受ける熱によるストレスを減らすことができる。
【0091】
下記表3は、レンズL2の物体側面C1とセンサー側面C2における曲率半径の差による1F位置でそれぞれ測定した熱によるストレス(Mpa)を示した表である。
【0092】
【0093】
表3で、物体側面C1は、光軸で凸状または凹状を有することができ、センサー側面C2は、光軸で凸状または凹状を有することができる。前記0Fはレンズの中心または光軸であり、1Fは前記イメージセンサーの対角線終端位置であり、例えば4.7mm±0.2mmの範囲を有することができる。
図14及び表3によれば、物体側面とセンサー側面の曲率半径の差が大きくなるほど物体側面とセンサー側面に加えられる熱によるストレスが大きく表れる。発明の実施例は、レンズの物体側面とセンサー側面の曲率半径の差を見る時、2mm以上の範囲で、詳しくは、1mm以上の範囲で、よりに詳しくは0.5mm以上の範囲で熱によるストレスは抑制されなければならない。本発明では、当該レンズのフランジ部とレンズバレル内面の接触長さによりレンズが受ける熱ストレスをより効果的に抑制することができる。このようなレンズの曲率半径の差が大きくなるほどストレスと変形率が大きくなるが、前記レンズのフランジ部の接触長さをフランジ部の厚さ対比30%~50%の範囲に調節して光学的性能に影響を与える部分を抑制することができる。また、フランジ部がバレルの内面と接触する面の中心を曲率半径が大きい面に近く位置するように設計することで、温度が変化することにより曲率半径が小さい面が受ける熱ストレスを減らそうとした。曲率半径が小さい面に近く位置したフランジ部がバレルの内面と接触する面を減らすことで、温度が変化することにより曲率半径が小さい面が受ける熱によるストレスを減らすことができる。
【0094】
図15は、発明の実施例に係るカメラモジュールが適用された車両の平面図の例である。
【0095】
図15を参照すると、発明の実施例に係る車両用カメラシステムは、映像生成部11、第1情報生成部12、第2情報生成部21、22、23、24及び制御部14を含む。前記映像生成部11は、自車に配置される少なくとも1つのカメラモジュール20を含むことができ、自車の前方または/及びドライバーを撮影して自車の前方映像や車両内部映像を生成することができる。また、映像生成部11は、カメラモジュール20を利用して自車の前方だけでなく1つ以上の方向に対する自車の周辺またはドライバーを撮影した映像を生成することができる。
【0096】
ここで、前方映像及び周辺映像はデジタル映像であってもよく、カラー映像、白黒映像及び赤外線映像等を含むことができる。また、前方映像及び周辺映像は、静止映像及び動画を含むことができる。映像生成部11は、ドライバー映像、前方映像及び周辺映像を制御部14に提供する。続いて、第1情報生成部12は、自車に配置される少なくとも1つのレーダーまたは/及びカメラを含むことができ、自車の前方を感知して第1感知情報を生成する。具体的に、第1情報生成部12は自車に配置され、自車の前方に位置した車両の位置及び速度、歩行者の有無及び位置等を感知して第1感知情報を生成する。第1情報生成部12で生成した第1感知情報を利用して自車と前の車との距離を一定に維持するように制御することができ、ドライバーが自車の走行車線を変更しようとする場合や後進駐車時のように予め設定された特定の場合に車両運行の安定性を高めることができる。第1情報生成部12は、第1感知情報を制御部14に提供する。第2情報生成部21、22、23、24は、映像生成部11で生成した前方映像と第1情報生成部12で生成した第1感知情報に基づいて、自車の各側面を感知して第2感知情報を生成する。具体的に、第2情報生成部21、22、23、24は、自車に配置される少なくとも1つのレーダーまたは/及びカメラを含むことができ、自車の側面に位置した車両の位置及び速度を感知したり映像を撮影することができる。続いて、第2情報生成部21、22、23、24は、自車の前方及び後方の両側にそれぞれ配置されてもよい。
【0097】
このような車両用カメラシステムは、下記のカメラモジュールを備えることができ、自車の前方、後方、各側面または角領域を介して獲得された情報を利用してユーザに提供したり処理して自動運転または周辺安全から車両と物体を保護することができる。発明の実施例に係るカメラモジュールの光学系は、安全規制、自律走行機能の強化及び便宜性増加のために車両内に複数搭載されてもよい。また、カメラモジュールの光学系は、車線維持システム(LKAS:Lane keeping assistance system)、車線離脱警報システム(LDWS)、ドライバー監視システム(DMS:Driver monitoring system)のような制御のための部品として、車両内に適用されている。このような車両用カメラモジュールは、周囲の温度変化にも安定した光学性能を具現することができ、価格競争力があるモジュールを提供して、車両用部品の信頼性を確保することができる。
【0098】
発明の実施例は、車両のカメラモジュールで-20度以下の低温から70度以上の高温までの温度変化、例えば-40度~85度、或いは-40度~105度の範囲の変化に対して少なくとも1つのレンズの外側にバッファー構造を有するスペーサーを適用することにおいて、熱膨張係数が高いレンズに対して長さ方向に緩和させることで、プラスチックまたはガラス材質のレンズの膨張に対して収縮または膨張する弾性を提供し、レンズの有効径領域の光軸方向の変化量を抑制することができる。これにより、プラスチックまたはガラス材質のレンズを採用したカメラモジュールの光学特性の変化を減らすことができる。また、レンズの外側フランジ部にバッファー構造をさらに含むことができ、レンズ自体の弾性変形を抑制することができる。
【0099】
以上の実施例で説明された特徴、構造、効果等は、本発明の少なくとも一つの実施例に含まれ、必ず一つの実施例に限定されるものではない。また、各実施例に例示された特徴、構造、効果等は、実施例が属する分野で通常の知識を有する者によって、別の実施例に対して組合せ又は変形して実施可能である。よって、そのような組合せと変形に係る内容は、本発明の範囲に含まれると解釈されるべきである。また、以上では実施例を中心に説明したが、これは単なる例示であり、本発明を限定するものではなく、本発明が属する分野で通常の知識を有した者であれば、本実施例の本質的な特性を逸脱しない範囲内で、以上で例示されていない多様な変形と応用が可能である。例えば、実施例に具体的に提示された各構成要素は、変形して実施することができる。そして、そのような変形と応用に係る差異点は、添付される請求の範囲で規定する本発明の範囲に含まれると解釈されるべきである。
【手続補正書】
【提出日】2024-01-10
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0041
【補正方法】変更
【補正の内容】
【0041】
前記第2フランジ部113Aの第1傾斜面S23は、前記第1接触面S21の物体側一端から前記第1フランジ部113Aの物体側面に向いて第1角度R1で延長される。前記第1角度R1は、光軸と平行する軸Lz1に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第1角度R1が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第2レンズ113の第2フランジ部113Aの固定力が低下したりねじれる問題が発生し得る。前記第2傾斜面S24は、前記第1非接触面S22のセンサー側一端から前記第2フランジ部113Aのセンサー側面に向いて第2角度R2で延長される。前記第2角度R2は、光軸と平行する軸Lz1に対して40度以下、例えば10度~40度の範囲または15度~35度の範囲を有することができる。前記第2角度R2は、前記第1角度R1と同一であるか小さくてもよい。前記第2角度R2が前記範囲より小さい場合、射出成形に困難があり、前記範囲より大きい場合、前記第2レンズ113の第2フランジ部113Aの固定力が低下したりねじれる問題が発生し得る。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0055
【補正方法】変更
【補正の内容】
【0055】
前記第2接触面S31の中心P6が前記第3フランジ部115Aの垂直中心P7よりも物体側に近く位置することになることで、前記第2接触面S31は、前記第3フランジ部115Aの外側上部で外側下部よりもレンズバレル500の内面511と多く接触することで、前記第3レンズ115の第5、6面S5、S6の曲率半径の差とプラスチック材質による熱変形F3を緩和することができる。例えば、上部とは、物体側を意味し、下部とは、センサー側を意味することができる。例えば、曲率半径が小さいほど温度変化による光学的性能変化がより大きいレンズである。曲率半径が1以上の差がある場合、曲率半径が小さいレンズは温度変化により敏感であり、温度変化による光学的性能変化がより大きいレンズである。前記第2接触面S31の中心P6を曲率半径が小さい面から遠く配置することで、温度変化による光学的性能の低下を緩和することができる。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0071
【補正方法】変更
【補正の内容】
【0071】
図6aで、光軸で第2レンズの物体側第3面のストレス値は3.403であり、第2レンズのセンサー側第4面
のストレス値は、1.063と表れるが、
図6bのように、第2レンズの物体側第3面のストレス値は3未満、例えば2.643であり、第2レンズのセンサー側第4面
のストレス値は、1未満、例えば0.979と表れることをわかる。これは、第2レンズを基準として比較例より発明のストレスが低いことがわかる。同様に、比較例は、第3レンズの物体側第5面のストレス値は5.538であり、発明の第3レンズの物体側第5面のストレス値は5未満、例えば4.436と表れることをわかる。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0085
【補正方法】変更
【補正の内容】
【0085】
図12の(A)~(D)は、発明の実施例に係るカメラモジュールにおいて、レンズL2の2つの面C1、C2の曲率半径の差(C1-C2)を比較した図面であり、
図13は、図
12のレンズL2の物体側面C1またはセンサー側面C2から見た部分平面図の例であり、
図14は、
図12のレンズの物体側面C1とセンサー側面C2の曲率半径の差(C1-C2)に応じた各位置別の熱ストレスを測定したグラフである。ここで、前記レンズL2は、光軸で物体側面が凸状を有し、センサー側面が凹状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凸状を有し、センサー側面が凸状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凹状を有し、センサー側面が凹状を有することができる。別の例として、前記レンズL2は、光軸で物体側面が凹状を有し、センサー側面が凸状を有することができる。前記カメラモジュール内に前記物体側面とセンサー側面を有するレンズは、1枚、2枚であるか、カメラモジュール内のレンズの枚数対比20%~75%の範囲を有することができる。
【手続補正5】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
内部に貫通ホールを有するレンズバレルと、
前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、
前記第1~第3レンズは、少なくとも1つのガラス材質のレンズと少なくとも1つのプラスチック材質のレンズを含み、
前記第2レンズの材質
は、前記第1レンズの材質
と異なり、
前記第1レンズの材質の熱膨張係数より高い熱膨張係数を有し、
前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第2レンズの前記フランジ部
は、前記レンズバレルの内面と接触する第1接触面
を含み、
前記第1接触面の光軸と平行な方向の長さは、前記フランジ部の厚さの20%~50%であり、
前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、
前記第2レンズの前記フランジ部が前記レンズバレルの内面と接触する第1接触面の中心は、前記フランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置
し、
前記第3、4面の曲率半径は、絶対値を表わす、カメラモジュール。
【請求項2】
前記第1接触面の中心は、前記第2レンズの前記フランジ部の中心よりも
前記フランジ部の物体側に近く位置する、請求項1に記載のカメラモジュール。
【請求項3】
前記第3面と前記第4面の曲率半径の差は、1
mm以上である、請求項1に記載のカメラモジュール。
【請求項4】
前記第3面の曲率半径は、前記第4面の曲率半径より大きく、
前記第1接触面の中心は、前記第2レンズのフランジ部の中心よりも
前記第2レンズのフランジ部の物体側に近く位置する、請求項3に記載のカメラモジュール。
【請求項5】
前記第1~第3レンズは、互いに離隔し、赤外線用カメラに適用される、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項6】
前記第1レンズの直径が前記第2レンズの直径より小さ
く、
前記第1レンズの第1フランジ部の外側のうち前記レンズバレルの内面と接触される接触面の長さは、前記第1フランジ部の厚さの70%以上である、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項7】
前記カメラモジュールは、ドライバーモニタリングカメラに適用される、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項8】
画角は、50度~70度の範囲である、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項9】
前記第2レンズの前記フランジ部の厚さは、前記第2レンズの前記フランジ部の物体側面と前記第2レンズの前記フランジ部のセンサー側面の間の距離であり、前記距離は、光軸と平行な距離であり、
前記フランジ部の物体側面とセンサー側面は、間隔維持部材または遮光膜に接触する面である、請求項1から4のいずれか一項に記載のカメラモジュール。
【請求項10】
内部に貫通ホールを有するレンズバレルと、
前記レンズバレルの貫通ホールに結合され、物体側からセンサー側に向いて光軸が整列された第1レンズ、第2レンズ及び第3レンズを含み、
前記第1~第3レンズは、少なくとも1つのガラス材質のレンズと少なくとも1つのプラスチック材質のレンズを含み、
前記第2レンズの材質
は、前記第1レンズの材質
と異なり、
前記第1レンズの材質の熱膨張係数より高い熱膨張係数を有し、
前記第2レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第2レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第2レンズの前記フランジ部は、前記レンズバレルと接触する第1接触面を含み、
前記第1接触面の
前記光軸と平行な方向の長さは、前記フランジ部の厚さの20%~50%であり、
常温対比高温でMTF
(Modulation transfer function)の変化率は、10%以下である、カメラモジュール。
(常温は20℃~30℃であり、高温は80℃~105℃である。)
【請求項11】
前記光軸で前記第2レンズの物体側第3面とセンサー側第4面は、互いに異なる曲率半径を有し、
前記第1接触面の中心は、前記第2レンズのフランジ部の厚さの中心を基準として前記第3面と前記第4面のうち曲率半径が大きい側に近く位置
し、
前記第3、4面の曲率半径は、絶対値を表わす、請求項10に記載のカメラモジュール。
【請求項12】
前記第1レンズの直径は、前記第2レンズの直径より小さ
く、
前記第1レンズの第1フランジ部の外側のうち前記レンズバレルの内面と接触される接触面の長さは、前記第1フランジ部の厚さの70%以上である、請求項10に記載のカメラモジュール。
【請求項13】
前記第3レンズの材質と前記第1レンズの材質は異なり、
前記第3レンズの屈折率は、前記第1レンズの屈折率より低く、
前記第3レンズは、前記光軸から前記レンズバレルの内面に向いて延長されるフランジ部を含み、
前記第3レンズの前記フランジ部は、前記レンズバレルと接触する第2接触面を含み、
前記第2接触面の長さは、前記
第3レンズのフランジ部の厚さの20%~50%であり、
前記光軸で前記第3レンズの物体側第5面とセンサー側第6面は、互いに異なる曲率半径を有し、
前記第3レンズの物体側第5面の曲率半径と前記第3レンズのセンサー側第6面の曲率半径が1.0mm以上であり、
前記第2接触面の中心は、前記第3レンズのフランジ部の厚さの中心を基準として前記第3レンズの物体側第5面と前記第3レンズのセンサー側第6面のうち曲率半径が大きい側に近く位置する、請求項1または10に記載のカメラモジュール。
【国際調査報告】