IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オフィス ナショナル デテュード エ ドゥ ルシェルシュ アエロスパシアルの特許一覧 ▶ ソントゥル ナシオナル デチュドゥ スパシアル セ エヌ ウ エスの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-05-08
(54)【発明の名称】パルス圧縮ライダーシステム
(51)【国際特許分類】
   G01S 17/34 20200101AFI20240426BHJP
   G02F 1/01 20060101ALI20240426BHJP
【FI】
G01S17/34
G02F1/01 B
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023570230
(86)(22)【出願日】2022-04-26
(85)【翻訳文提出日】2024-01-12
(86)【国際出願番号】 FR2022050783
(87)【国際公開番号】W WO2022238634
(87)【国際公開日】2022-11-17
(31)【優先権主張番号】2104964
(32)【優先日】2021-05-11
(33)【優先権主張国・地域又は機関】FR
(81)【指定国・地域】
(71)【出願人】
【識別番号】518023164
【氏名又は名称】オフィス ナショナル デテュード エ ドゥ ルシェルシュ アエロスパシアル
(71)【出願人】
【識別番号】522116029
【氏名又は名称】ソントゥル ナシオナル デチュドゥ スパシアル セ エヌ ウ エス
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】ルメートゥル,フランソワ
(72)【発明者】
【氏名】スザール,ニコラ
(72)【発明者】
【氏名】ウベール,フィリップ-ジャン
【テーマコード(参考)】
2K102
5J084
【Fターム(参考)】
2K102BA01
2K102BA19
2K102BB03
2K102BB04
2K102BC04
2K102BD09
2K102DC08
2K102EA21
2K102EB20
2K102EB22
5J084AA05
5J084AD01
5J084BA03
5J084BA20
5J084BA31
5J084BA51
5J084BB14
5J084BB31
5J084CA03
5J084CA08
5J084CA09
5J084CA27
5J084CA48
5J084DA01
5J084EA01
(57)【要約】
距離測定を実行することを目的とするLIDARシステム(100)は、パルス圧縮効果を達成するように適合される。この目的のために、LIDARシステムの伝送路(10)は、並列に配置された2つの転送経路(13a、13b)を備え、前記転送経路のうちの少なくとも1つはパルス圧縮変調器(14b)を備える。LIDARシステムの検出路(20)は、測定検出信号と基準検出信号との間の相関関数を計算するように構成されたデジタル処理モジュール(27)を備える。ダブルヘテロダイン検出およびコム形パルススペクトルの改善が、任意に使用されてもよい。
【特許請求の範囲】
【請求項1】
伝送路(10)および検出路(20)を備えるLIDARシステム(100)であって、前記伝送路(10)は、レーザ源(11)を備え、前記LIDARシステムの外部にある標的(T)に向けて放射パルス(I)を放出するように適合され、
前記伝送路(10)は2つの転送経路(13a、13b)を備え、前記2つの転送経路は、前記2つの転送経路のそれぞれの入力において、前記レーザ源(11)からの放射のそれぞれの部分を同時に受信するように並列に配置されかつ構成され、出力において、前記2つの転送経路によって送達される各パルス(I)の成分を重ね合わせるように構成され、
前記両方の転送経路(13a、13b)の少なくとも1つは:
-パルス圧縮変調器(14b)と呼ばれる変調器と、
-前記転送経路によって送達される前記パルスの成分を変調するように、前記パルス圧縮変調器(14b)を制御するように接続されるパルス圧縮コントローラ(15b)と、を備え、
したがって、前記LIDARシステム(100)の動作中、各パルス(I)の少なくとも2つの成分が、
前記レーザ源(11)から発する前記放射から同時に生成され、
前記パルスの持続時間に渡って前記パルス(I)内で重ね合わされ、
それぞれ異なるスペクトルを有し、
前記パルス(I)の両方の成分の少なくとも1つは、位相変調または周波数変調され、
前記検出路(20)は、少なくとも1つの光検出器(24a、24b)を備え、
-前記パルスが前記標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射を検出し、測定検出信号を送達するための専用の、測定路(23a);および
-前記伝送路(10)によって放出される前記パルス(I)を表す前記放射を検出し、基準検出信号を送達するための専用の、基準路(23b)の機能を実行するように構成され、
前記検出路(20)は、前記測定検出信号と前記基準検出信号とを受信するように構成され、前記測定検出信号と基準検出信号との間の相関関数を計算するように構成されたデジタル処理モジュール(27)をさらに備え、
したがって、変調され、前記計算された相関関数と組み合わされる、各パルス(I)の少なくとも1つの構成成分は、パルス圧縮効果を生成する、
LIDARシステム(100)。
【請求項2】
各パルス圧縮コントローラ(14b)は、前記LIDARシステムの前記動作中に、前記パルス圧縮コントローラが属する前記転送経路(13b)によって送達される前記パルスの成分について、前記パルス(I)の持続時間に渡る光周波数の漸進的変化を制御するように適合される、請求項1に記載のLIDARシステム(100)。
【請求項3】
各パルス圧縮コントローラ(14b)は、光周波数の前記漸進的変化が前記パルス(I)の前記持続時間に渡って実質的に一定である変化率を有するようにさらに適合される、請求項2に記載のLIDARシステム(100)。
【請求項4】
前記検出路(20)が、第1の検出経路及び第2の検出経路を備え、
前記第1の検出経路は、前記測定路(23a)を形成し、前記パルスが前記標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射を受信するように構成された第1の光検出器(24a)を備え、前記測定検出信号を送達するためのものであり、
前記第2の検出経路は、前記第1の検出経路とは別であり、前記基準路(23b)を形成し、前記伝送路(10)によって放出されるような前記パルス(I)を表す前記放射を受信するように構成された第2の光検出器(24b)を備え、前記基準検出信号を送達するためのものであり、
前記デジタル処理モジュール(27)は、前記測定検出信号および前記基準検出信号を受信するために、前記第1の検出経路および前記第2の検出経路のそれぞれの出力に接続される、
請求項1~3のいずれか一項に記載のLIDARシステム(100)。
【請求項5】
前記検出路(20)が、光検出器とコントローラを備え、
前記光検出器は、測定路(23a)および基準路(23b)の両方の機能によって共有され、別々の時間ウィンドウの間に、前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射と、前記伝送路によって放出されるような前記パルスを表す前記放射とを受信することが意図され、各時間ウィンドウの間に検出信号を送達し、
前記コントローラは、前記時間ウィンドウに応じて、前記共有される光検出器によって送達される前記検出信号を、測定検出信号、または基準検出信号として割り当てる、
請求項1~3のいずれか一項に記載のLIDARシステム(100)。
【請求項6】
前記検出路(20)は、一方では前記パルスが前記標的(T)によって再帰反射または後方散乱された後に前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射と同時に、他方では前記伝送路によって放出された前記パルスを表す前記放射と同時に、前記レーザ源(11)からの前記放射の他の部分を、追加的に受信するように光学的に結合される、請求項1~5のいずれか一項に記載のLIDARシステム(100)。
【請求項7】
前記デジタル処理モジュール(27)は、一方では両方の転送経路(13a、13b)からそれぞれ発生する前記測定検出信号の成分を混合して、前記レーザ源(11)の位相変化がない前記測定路(23a)のための積時間信号を得るように適合され、他方では同じく前記レーザ源の位相変化がない前記基準路(23b)のための積時間信号を別々に得るように、前記両方の転送経路からそれぞれ発生する前記基準検出信号の成分を混合するように適合され、前記デジタル処理モジュールは前記測定路と前記基準路の前記各積時間信号の間の前記相関関数を計算するように適合される、請求項6に記載のLIDARシステム(100)。
【請求項8】
前記伝送路(10)は、:
-両方の転送経路(13a、13b)によって送達される各パルス(I)の前記成分に対して有効であるように構成された第1のコム生成変調器(51)と、
-前記第1のコム生成変調器(51)を制御するように接続され、前記第1のコム生成変調器に、いくつかの第1の等距離スペクトル線から構成される第1の制御信号を印加するように構成される第1のコムコントローラ(52)と、を更に備え、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記検出路(20)は:
第2のコム生成変調器(53)と、第2のコムコントローラ(54)と、を更に備え、
-前記第2のコム生成変調器(53)は、一方では前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射が検出されると同時に、他方では前記伝送路によって放出されるような前記パルスを表す前記放射が検出されると同時に、前記レーザ源(11)からの前記放射のその他の部分に有効であるように構成され、
-前記第2のコムコントローラ(54)は、前記第2のコム生成変調器(53)を制御するように接続され、前記第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、そのうちの任意の2つの隣接するスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差は、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
そして、前記デジタル処理モジュール(27)は光線の異なるペアに関連する検出信号寄与を加算または平均化するように構成され、光線の各ペアは前記第1のコム生成変調器(51)によって生成される第1の光線と、前記第2のコム生成変調器(53)によって生成される第2の光線とによって形成される、請求項6に記載のLIDARシステム(100)。
【請求項9】
前記伝送路(10)は、更に、
第1のコム生成変調器(51)と、第1のコムコントローラ(52)と、を備え、
前記第1のコム生成変調器(51)は、両方の転送経路(13a、13b)によって送達される各パルス(I)の前記成分に対して有効であるように配置され、
前記第1のコムコントローラ(52)は、前記第1のコム生成変調器(51)を制御するように接続され、前記第1のコム生成変調器に、いくつかの第1の等距離スペクトル線で構成される第1の制御信号を印加するように構成され、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記検出路(20)は、第2のコム生成変調器(53)と第2のコムコントローラ(54)を更に備え、
前記第2のコム生成変調器(53)は、一方では前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射が検出されると同時に、他方では前記伝送路によって放出されるような前記パルスを表す前記放射が検出されると同時に、前記レーザ源(11)からの前記放射のその他の部分に有効であるように配置され、
前記第2のコムコントローラ(54)は、前記第2のコム生成変調器(53)を制御するように接続され、前記第2のコム生成変調器に、複数の第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差が、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
前記デジタル処理モジュール(27)は、前記測定路(23a)と前記基準路(23b)のそれぞれの積時間信号間の相関関数を計算するように構成され、前記測定路の積時間信号は両方の転送経路(13a、13b)からそれぞれ生じ、前記標的(T)によって再帰反射または後方散乱された2つのコムスペクトル成分の混合物であり、前記基準路の前記積時間信号はそれぞれ前記両方の転送経路から生じるが、前記伝送路(10)によって放出されるような前記パルス(I)を表す前記放射の一部である2つのコムスペクトル成分の混合物であり、各混合は前記レーザ源(11)の位相変化の影響を排除するように実行される、請求項6に記載のLIDARシステム(100)。
【請求項10】
前記伝送路(10)はさらに、第1のコム生成変調器(51)、第1のコムコントローラ(52)、第2のコム生成変調器(53)および第2のコムコントローラ(54)を備え、
前記第1のコム生成変調器(51)は、前記転送経路によって送達される前記放射部分に有効であるように両方の転送経路(13a、13b)の一方に配置され、
前記第1のコムコントローラ(52)は、前記第1のコム生成変調器を制御するように接続され、第1の制御信号を前記第1のコム生成変調器にいくつかの第1の等距離スペクトル線から構成される第1の制御信号を印加するように構成され、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記第2のコム生成変調器(53)は、(13a、13b)のうちのもう一方によって送達される前記放射部分に対して有効であるように、前記もう一方の転送経路に配置され、
前記第2のコムコントローラ(54)は、前記第2のコム生成変調器を制御するように接続され、前記第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差は、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
前記デジタル処理モジュール(27)は、光線の異なるペアに関連する検出信号の寄与を加算または平均化するように構成され、各ペアの光線は前記第1のコム生成変調器(51)によって生成される第1の光線と、前記第2のコム生成変調器(53)によって生成される第2の光線とによって形成される、請求項1から5の何れか1項に記載のLIDARシステム(100)。
【請求項11】
前記第1及び第2のコム生成変調器(51、53)は、電気光学変調器タイプである、請求項8~10のいずれか一項に記載のLIDARシステム(100)。
【請求項12】
前記パルス圧縮効果を生成するように変調される各パルス成分のスペクトル幅と、前記パルスの前記持続時間との積が500より大きく、好ましくは5000より大きい、請求項1~11のいずれか一項に記載のLIDARシステム(100)。
【発明の詳細な説明】
【背景技術】
【0001】
LIDARシステムは「Light Detection And Ranging」の頭字語であり、距離を測定するために広く使用されている。測定シーケンスは、標的に向けて放射ビームを放出することと、および、標的によって再帰反射または後方散乱されたこの放射の一部分を収集すること、次いで、これから、標的が位置する場所とLIDARシステムとを隔てる距離の評価を導出することからなる。この評価は、LIDARシステムによる放射線の放出と、この放射線のターゲットによって再帰反射または後方散乱された部分の検出との間の時間の長さを決定することによって実行される。実際には、放射ビームが一連の連続するパルスの形態で放出され、一連のパルスの全てに1対1で対応するターゲットによって再帰反射または後方散乱される放射部分の検出信号は累積的である。このようにして、ターゲットによって再帰反射または後方散乱される放射の強度が低い場合であっても、ターゲットからの距離を測定することが可能である。次いで、累積検出信号の信号対雑音比の十分な値と、測定を実行するために使用されるエネルギーの量との間で妥協が行われる。さらに、パルス放射方向に沿った空間分解能は、大気の後方散乱を使用するLIDARシステムにとって重要な関心事である。この分解能は、既知の厚さを有する大気の識別されたスライスに対応する。分解能(換言すれば、測定された吸収値が関連する大気の各スライスの厚さ)がより細かくなると、各パルスはより短くなる。しかし、動作条件および所望の測定品質によって必要とされるような決定されたパルスエネルギーについては、各パルスはより短くなり、別の言い方をすれば、空間分解能がよりシャープになるほど、各パルスのピーク電力値はより高くなる。
【0002】
さらに、光ファイバ接続技術を使用することによるLIDARシステムの実装はかなりの利点、特に、システムのロバスト性の増大、およびシステムの光学部品を互いに対して位置合わせするための機構の排除を提供する。しかし、光ファイバ内で発生する誘導ブリルアン散乱(SBS)の既知の現象は、各放出パルスが有することができるピーク電力値を制限する。このピーク電力制限のため、ターゲットの再帰反射または後方散乱容量が非常に低い場合、検出信号が信号対雑音比に十分な値を有するように、測定ごとに放出されるパルスの数を増加させる必要がある。しかしながら、測定の持続時間がそれに応じて増加し、軸方向分解能が低下する。
【0003】
米国特許出願公開第2020/049799号公報には、N個の位相変調器を並列に使用して、異なる周波数を有するN個のヘテロダイン検出ビートを生成するマルチヘテロダインタイプのLIDARシステムアーキテクチャが記載されている。
【0004】
米国特許出願公開第2021/055392号公報には、ターゲットによって後方散乱される測定ビームと、ターゲットによって後方散乱されない参照ビームとの間の相関を利用するLIDARシステムが記載されている。言い換えれば、その公報におけるLIDARシステムは、信号相関を適用するためにデュアルプロービングビームを使用しない。
【0005】
米国7,342,651B1公報および米国2019/383940A1公報は、ダブレットパルスまたはコムパルスを使用する他のLIDARシステムを記載している。
【0006】
最後に、米国特許出願公開第2016/377721号公報には、2つの別個のレーザ源を有するLIDARシステムが記載されている。
【0007】
〔技術的課題〕
この状況から、本発明の1つの目的は、これらの欠点を少なくとも部分的に克服する新しいLIDARシステムを提案することである。
【0008】
したがって、本発明の目的の1つは、ターゲットが低いまたは非常に低い再帰反射または後方散乱容量を有する場合であっても、信号対雑音比の値と各測定のために消費されるピーク電力との間の改善された妥協によってターゲットから離れた距離を測定することを可能にすることである。
【0009】
本発明の補助的な目的は、光ファイバを用いて伝送路を実現することができるようなLIDARシステムを提案することである。
【0010】
最後に、本発明の一般的な目的は、各測定サイクルのための等しい時間において、及び、ターゲットの等しい再帰反射または後方散乱量において、特にターゲットが大気中に浮遊する粒子からなる場合に、従来技術のLIDARシステムよりも正確な距離測定を提供することである。
【0011】
〔発明の開示〕
これらまたは他の目的の少なくとも1つを達成するために、本発明の第1の態様は、伝送路と検出路とを備えるLIDARシステムを提案し、伝送路は、レーザ源を備え、LIDARシステムの外部にある標的に向けて放射パルスを放出するように適合される。本発明では、伝送路が2つの転送経路を備え、転送経路は並列に配置され、これらの転送経路のそれぞれの入力において、レーザ源からの放射のそれぞれの部分を同時に受け取るように配置される。加えて、2つの転送経路は、出力において、これら2つの転送経路によって送達される各パルスの成分を重ね合わせるように配置される。両方の転送経路のうちの少なくとも1つは:
-音響光学変調器タイプであってもよい、パルス圧縮変調器と呼ばれる変調器と、
-パルス圧縮変調器を、その転送経路によって送達されるパルス成分を変調するように制御するように接続されるパルス圧縮コントローラと、を備え、
したがって、LIDARシステムの動作中、各パルスの少なくとも2つの成分は、
レーザ源から発する放射から同時に生成され、
このパルスの持続時間に渡ってパルス内で重ね合わされ、
それぞれ異なるスペクトルを有し、
パルスの両方の成分のうちの少なくとも1つは、位相変調または周波数変調される。
【0012】
既知の方法では、任意の放射線、特にパルス放射線は、周期的である時間フィールドの変化を有し、この放射線の周波数または位相変調は、この周期的なフィールド変化に対応するものに補足的である、その周波数に変化を適用すること、またはその位相に変化を適用することからなる。
【0013】
本発明のLIDARシステムの検出路は、少なくとも1つの光検出器を備え、以下の機能を果たすように配置される:
-これらのパルスがターゲットによって再帰反射または後方散乱された後に、伝送路によって放出されるパルスに1対1で対応する放射を検出し、測定検出信号を送達する測定路と、
-伝送路によって放射されるパルスを表す放射を検出し、基準検出信号を送達する基準路。
【0014】
したがって、測定路および基準路の各々は、LIDARシステムからのターゲットの距離を決定するために使用されるビートを検出する。ヘテロダイン検出がない場合、これらのビートは2つの転送経路のうちの1つに由来するパルス成分と、他の転送経路に由来するパルス成分との間の干渉に起因し、これらのパルス成分はすべて、標的によって再帰反射または後方散乱された後に測定経路によって検出され、基準路のためにLIDARシステムによって放出される。ヘテロダイン検出が使用されるとき、2つの転送経路の関連によって引き起こされるこれらのビートは、基準ビームとの追加の干渉から生じるビートによって、測定路のためのターゲット上でのそれらの再帰反射または後方散乱の後に受信されるパルス成分、および基準路のためにLIDARシステムによって放出されるようなパルス成分のために、置き換えられる。
【0015】
検出路は、測定検出信号および基準検出信号を受信するように構成され、これらの信号間の相関関数を計算するように構成されたデジタル処理モジュールをさらに備える。このようにして、各パルスの変調された成分は、計算された相関関数と組み合わされて、パルス圧縮効果を生成する。
【0016】
このパルス圧縮効果のおかげで、相関関数の結果に影響を及ぼす信号対雑音比の値は、パルス圧縮効果なしで得られる検出信号を累積することからの結果と比較して、測定を実行するために消費される等しい平均電力においては改善される。パルス圧縮効果によって提供されるこの改善は連続するパルスに対してインコヒーレントに蓄積される検出信号とは対照的に、コヒーレント積分によって可能になる。したがって、各距離測定の精度および分解能が改善される。言い換えると、信号対雑音比についての等しい値で、本発明のLIDARシステムは、各測定を実行するのに必要な時間を低減することを可能にする。したがって、測定持続時間を短縮することができ、および/または各放出パルスのピーク電力値を低減することができる。この最後の可能性のために、本発明のLIDARシステムは、LIDARシステムの転送経路が光ファイバ技術を使用して実行されても、弱いまたは非常に弱い再帰反射または後方散乱容量を有するターゲットに使用することができる。
【0017】
信号対雑音比の増加、または距離測定のための空間分解能に関する利得は、パルス圧縮効果を生成するために変調される各パルス成分のスペクトル幅と、このパルスの持続時間との積に実質的に等しいファクターである。この積は、500より大きく、好ましくは5000より大きくてもよい。
【0018】
並列に配置された2つの転送経路を有するその伝送路のために、本発明のLIDARシステムは、ダブルプローブビーム、すなわちDPBと呼ばれる。
【0019】
この転送経路内では、転送経路のうちの1つのみが、関連するパルス圧縮コントローラを備えたパルス圧縮変調器を備えてもよく、または両方の転送経路がそれぞれのパルス圧縮変調器を備えてもよく、パルス圧縮コントローラがこれらの変調器と1対1で関連付けられてもよい。後者の場合、2つの転送経路は、これらの転送経路によって送達される2つのパルス成分のそれぞれの光周波数について、好ましくは反対方向の変化を有する時間的変化を生成することができる。
【0020】
各パルス圧縮コントローラはLIDARシステムの動作中に、このパルス圧縮コントローラが属する転送経路によって送達されるパルス成分について、パルスの持続時間にわたる光周波数の緩やかな変化を制御するように適合されることが可能である。加えて、光周波数のこの漸進的変化は、パルスの持続時間にわたって実質的に一定である変化率を有し得る。
【0021】
検出路内では、測定路および基準路は分離されていてもよく、デジタル処理モジュールの別個の入力に並列に接続されてもよい。この場合、検出路は第1の検出経路および第2の検出経路を備える:
第1の検出経路は、測定路を形成するためのものであって、これらのパルスがターゲットによって再帰反射または後方散乱された後に、伝送路によって放出されるパルスに1対1で対応する放射を受信するように構成された第1の光検出器を備え、この第1の検出経路が測定検出信号を送達する。
【0022】
第2の検出経路は、第1の検出経路とは分離されており、基準路を形成するためのものであり、伝送路によって放出されるようなパルスを表す放射を受信するように構成された第2の光検出器を備え、この第2の検出経路は基準検出信号を送達する。
【0023】
次いで、デジタル処理モジュールは、測定検出信号および基準検出信号を受信するために、第1および第2の検出経路のそれぞれの出力に接続される。
【0024】
あるいは、LIDARシステムが、LIDARシステムと標的との間のパルスの往復伝搬遅延のために、測定検出信号が基準検出信号から時間的に分離されるのに十分に大きい距離を測定するための専用であるとき、測定路および基準路の2つの機能は検出路内の同じ共通の検出経路によって満たされ得る。次いで、測定検出信号は、時間ゲートによって基準検出信号の信号から分離される。検出路のそのような実施形態は、使用される構成要素に関して経済的である。加えて、それは、測定路と基準路との2つが分離されているときに存在し得る処理の差を排除する。換言すれば、この場合、検出路は、光検出器とコントローラを備える。:
-光検出器は、測定路および基準路の両方の機能によって共有され、分離された時間ウィンドウの間に、これらのパルスがターゲットによって再帰反射または後方散乱された後に、伝送路によって放出されたパルスに1対1で対応する放射と、伝送路によって放出されるようなパルスを表す放射とを受信することが意図され、各時間ウィンドウの間に検出信号を送達する。
【0025】
-コントローラは、時間ウィンドウに応じて、共有光検出器によって送達される検出信号を、測定検出信号として、または基準検出信号として割り当てる。
【0026】
本発明によるLIDARシステムの第1の可能な改善によれば、システムは、ダブルヘテロダイン検出、すなわちDHDを備えることができる。このダブルヘテロダイン検出の改善は、測定路と基準路の間のそれぞれの信号対雑音比値を増加させることを可能にする。この目的のために、検出路は、一方ではこれらのパルスがターゲットによって再帰反射または後方散乱された後に、伝送路によって放出されたパルスに1対1で対応する放射と同時に、他方では伝送路によって放出されるようなパルスを表す放射と同時に、レーザ源からの放射の他の部分を追加的に受け取るように、光学的に結合され得る。そのような第1の改良は、特にターゲットが再帰反射または後方散乱について非常に弱い容量を有する用途のために、LIDARシステムにより高い感度を提供する。
【0027】
この場合、デジタル処理モジュールはレーザ源の位相変化がない測定路について積時間信号を得るために、両方の転送経路からそれぞれ発生する測定検出信号の成分を混合するように適合されてもよい。同様に、それはまた、基準路のための積時間信号を別々に得るために、両方の転送経路からそれぞれ発生する基準検出信号の成分を混合するように適合されてもよく、それはまた、レーザ源の位相変化がない。次いで、デジタル処理モジュールは、測定路と基準路のそれぞれの積時間信号の間の相関関数を計算することができる。したがって、相関関数は、レーザ源からの位相雑音の影響を受けず、増加した信号対雑音比を有する。この相関関数に基づいて得られる測定結果はより正確である。
【0028】
本発明によるLIDARシステムに対しても可能である第2の改良によれば、システムは、各パルスがいくつかの別個のスペクトル成分から構成されるスペクトルを有するように適合されてもよい。言い換えれば、各パルスはコム形スペクトルを有してもよい。そのようなコムを形成する任意の数の分離されたスペクトル成分が存在し得る。このような第2の改善は、コムの各スペクトル成分についての誘導ブリルアン散乱のための所定の閾値に達することなく、検出信号のエネルギーをさらに増加させることを可能にする。したがって、LIDARシステムは、ターゲットが再帰反射または後方散乱の能力が非常に弱い場合、または特性がスペクトル成分に応じて変化する場合の使用にさらに適切している。
【0029】
ダブルヘテロダイン検出の使用に関する第1の改良は、第2の改良なしに、即ち、各パルスのスペクトルがコム形状でなく、適用することができる。
【0030】
両方の改良を組み合わせた実施形態について、伝送路は、更に:
-両方の転送経路によって送達される各パルスの成分に対して有効であるように配置された第1のコム生成変調器;と
-第1のコム生成変調器を制御するように接続され、この第1のコム生成変調器に、いくつかの第1の等距離スペクトル線から構成される第1の制御信号を適用するように構成された第1のコムコントローラを備える。これらの第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離されている。
【0031】
同時に、検出路は、更に:
-一方では、これらのパルスがターゲットによって再帰反射または後方散乱された後に、伝送路によって放出されるパルスに1対1で対応する放射が検出されるのと同時に、他方では伝送路によって放出されるようなパルスを表す放射が検出されると同時に、レーザ源からの放射のいわゆる他の部分に有効であるように配置された第2のコム生成変調器と、
-第2のコム生成変調器を制御するように接続され、この第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を適用するように構成された第2のコムコントローラを備え、これらの第2のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離されている。
【0032】
第1の増分と第2の増分との間の差は、パルス圧縮効果を得るために使用されるスペクトル幅よりも大きい。さらに、デジタル処理モジュールは異なるペアの光線に関連する検出信号寄与を加算または平均化するように構成され、各ペアの光線は第1のコム生成変調器によって生成された第1の光線と、第2のコム生成変調器によって生成された第2の光線とによって形成される。
【0033】
この場合も、両方の改善が組み合わされると、レーザ源からの位相雑音の影響を受けないように、測定路と基準路のそれぞれの積時間信号の間で相関関数を再度計算することができる。この場合、測定路の積時間信号は両方の転送経路からそれぞれ発生し、ターゲットによって再帰反射または後方散乱された2つのコム形スペクトル成分を混合することによって得られてもよく、基準路の積時間信号は両方の転送経路からそれぞれ発生するが、伝送路によって放出されるパルスを表す放射の一部である2つのコム形スペクトル成分を混合することによって得られてもよい。この目的のために、各混合は、レーザ源の位相変化の影響を排除するように実行される。
【0034】
さらに、各パルスのスペクトルがコム形状である第2の改善は、第1の改善なしに、つまりダブルヘテロダイン検出を使用せずに適用することもできる。この場合、前記伝送路はさらに以下のものを備える:
-この転送経路によって送達される放射部分に有効であるように両方の転送経路の一方に配置された第1のコム生成変調器;
-第1のコム生成変調器を制御するように接続され、この第1のコム生成変調器に、いくつかの第1の等距離スペクトル線から構成される第1の制御信号を適用するように構成された第1のコムコントローラであって、これらの第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離されている、第1のコムコントローラ;
-この他の転送経路によって送達される放射部分に対して有効であるように、両方の転送経路のうちの他方に配置された第2のコム生成変調器;および
-第2のコム生成変調器を制御するように接続され、この第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を適用するように構成された第2のコムコントローラであって、これらの第2のスペクトル線は、スその内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離されている、第2のコムコントローラ。
【0035】
上記のように、第1の増分と第2の増分との間の差は依然として、パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、デジタル処理モジュールは異なるペアの光線に関係する検出信号の寄与を加算または平均化するように構成され、各ペアの光線は第1のコム生成変調器によって生成される第1の光線と、第2のコム生成変調器によって生成される第2の光線とによって形成される。
【0036】
第2の改良が第1の改良の有無にかかわらず使用されるとき、第1および第2のコム生成変調器は、電気光学変調器タイプのものであってもよい。
【0037】
[図面の簡単な説明]
本発明の特徴および利点は、添付の図面を参照して、いくつかの非限定的な例示的な実施形態の以下の詳細な説明からより明確になるのであろう:
図1a]図1aは、本発明による、ダブルヘテロダイン検出またはコム形パルススペクトルの任意の光学的改良がない第1のLIDARシステムのブロック図である;
図1b]図1bは、図1aの第1のLIDARシステムの検出路によって入力として受信される放射部分のスペクトル図である;
図2a]図2aは、本発明による第2のLIDARシステムについての、図1aに対応する図であり、これはダブルヘテロダイン検出の改善を実施するが、コム形パルススペクトルの改善を伴わないLIDARシステムの図である;
図2b]図2bは、図2aの第2のLIDARシステムを示す、図1bに対応する図である;
図2c]図2cは、図2aの第2のLIDARシステムで使用できるデジタル処理モジュールの詳細を示す;
図3a]図3aは、本発明による第3のLIDARシステムの図1aに対応する図であり、これは、ダブルヘテロダイン検出およびコム形パルススペクトルの両方を改善する;
図3b]図3bは、図3aの第3のLIDARシステムの図2bに対応する図である;
図3c]図3cは、図3aの第3のLIDARシステムの検出信号に関するスペクトル図である;
図3d]図3dは、図3aの第3のLIDARシステムの図2cに対応する図である;
図4a]図4aは、本発明による第4のLIDARシステムの図1aに対応する図であり、これはコム形パルススペクトルを改善するが、ダブルヘテロダイン検出の改善を伴わない。
【0038】
図4b]図4bは、図4aの第4のLIDARシステムの図1bに対応する図である。
【発明の詳細な説明】
【0039】
これらの図において、全ての要素は、象徴的にのみ表されている。加えて、異なる図に示される同一の参照符号は、同一であるか、または同一の機能を有する要素を示す。
【0040】
以下に記載される本発明の全ての実施形態について、参照符号100は、本発明によるLIDARシステムを示し、参照符号10および20は、それぞれ、その伝送路およびその検出路を示す。伝送路10は、以下の構成要素を備える。すなわち、レーザ源11、第1の結合器12、第1の転送経路13a、第2の転送経路13b、第2の結合器16、光増幅器17、振幅分割ビームスプリッタ18、光サーキュレータ21、およびOPTと表示される発光学系22を備える。伝送路10のこれらの構成要素はすべて、光ファイバ技術を使用して実装され得る。そのような場合、レーザ源11は約1560nm(ナノメートル)の放射を生成するように設計され得、結合器12および16は「Y」エバネッセント場結合器であってもよく、光増幅器17はEDFAタイプ(「エルビウムドープファイバ増幅器」)であってもよい。ビームスプリッタ18は、例えば、95%―5%の出力強度比を有してもよく、95%強度でのその出力は光サーキュレータ21を介して発光学系22に向かう伝送路10に専用であり、5%強度でのその出力は、伝送路10によって生成された放射の一部を検出路20の基準路23bに伝送するための専用である。
【0041】
伝送路10はダブルプローブビーム、すなわちDPBであり、LIDARシステム100の外部にある標的Tに向かって、それぞれ異なる光周波数値の少なくとも2つのスペクトル成分を有する放射のパルスIを放出するように適合される。この目的のために、第1の転送経路13aは、第1の変調器14aおよび第1の電気信号生成器15aを備えてもよい。同様に、第2の転送経路13bは、第2の変調器14bおよび第2の電気信号生成器15bを備えてもよい。変調器14aおよび14bの両方は、それぞれ音響光学タイプの変調器であってもよく、このため、それぞれMAO1およびMAO2と表記する。なお、電気信号生成器15a,15bは、いずれも任意の波形生成器型であってもよく、このため、AWG1,AWG2と表記する。生成器15a(15b)の電気出力は、変調器14a(14b)の変調入力に接続され、レーザ源11から発して転送経路13a(13b)によって送達される放射の一部が、生成器15a(15b)によって生成される電気信号に従って変調器14a(14b)によって変調される。両転送経路13aおよび13bは結合器12および16の間に並列に配置され、これらの結合器は、各転送経路がレーザ源11によって生成された放射のエネルギーの約半分を送達するように選択される。
【0042】
電気信号生成器15aおよび15bは、レーザ源11から発生する放射を連続パルスに分割するようにプログラムされてもよく、その結果、光増幅器17を出る各パルスIは、一方が転送経路13aによって送達され、他方が転送経路13bによって送達される同期パルスの2つの成分から構成される。
【0043】
生成器15aは、パルスIに対応する各時間ウィンドウの間に、例えば、転送経路13aによって送達される成分パルスに対して、100MHz(メガヘルツ)の光周波数増加を引き起こす第1の正弦波電気信号を送達するようにさらにプログラムされてもよい。
【0044】
同時に、生成器15bは、転送経路13bによって送達されるパルス成分に対して光周波数変調を引き起こす第2の電気信号を送達するようにさらにプログラムされてもよい。特に、この第2の電気信号は、パルスIに対応する各時間ウィンドウの間に、パルスの開始時の105MHzからパルスの終了時の125MHzまで連続的に増加する周波数を有する正弦波であってもよい。したがって、転送経路13bによって送達されるパルス成分の光周波数は、転送経路13bによって入力として受け取られる放射に対して、各パルスIの間に105MHzから125MHzまで徐々に変化する増分に従って増加する。経時的なこの光周波数の変化速度は、各パルスIの持続時間にわたって実質的に一定であってもよい。
【0045】
検出路20は、発光学系22、光サーキュレータ21、およびビームスプリッタ18を伝送路10と共有する。それは、2つの検出経路23aおよび23bと、NUMと表記されるデジタル処理モジュール27とをさらに備える。検出経路23aは、測定路を形成することを意図しており、その光入力は、検出路20専用のサーキュレータ21の出力に接続される。それは、DETECTと表記される光検出器24a、AMPL.1と表記される増幅器25a、FILT.1と表記されるフィルタ26aを順番に備える。したがって、測定路23aは、標的Tによって再帰反射または後方散乱されたパルスIの部分RIを入力として受け取り、これらのパルス部分RIは、光検出器24aによって検出される。次いで、光検出器24aは、増幅され、フィルタリングされ、次いでデジタル処理モジュール27の第1の入力に送信される測定検出信号を生成する。並行して、検出経路23bは基準路を形成することが意図され、その光入力は検出路20専用のビームスプリッタ18の出力に接続される。それは、DETECT.2と表記される光検出器24b、AMPL.2と表記される増幅器25b、および、FILT.2と表記されるフィルタ26bを順番に備える。したがって、基準路23bは、LIDARシステム100によって標的Tに向かって放出されるパルスIの部分を、入力として受け取り、パルスIのこれらの部分は、光検出器24bによって検出される。後者は、次いで、基準検出信号を生成する。基準検出信号は、増幅され、フィルタリングされ、次いで、デジタル処理モジュール27の別の入力に送信される。本明細書で引用される数値に関して、アナログローパスフィルタであるフィルタ26aおよび26bは、エイリアシングを除去するために、約150MHz~200MHzのカットオフ周波数を有することができる。
【0046】
図1a]のLIDARシステム100は、二重プローブビーム(DPB)を有し、ダブルヘテロダイン検出を使用せず、直接検出を有すると言われる。測定路23aおよび基準路23bによって別々に送信される信号は、それぞれ、レーザ源11からの放射に対して同じ伝搬遅延を有するパルス部分RIの2つの成分の重ね合わせからなる。したがって、測定路23aおよび基準路23bのそれぞれにおけるこれらの2つの構成要素の重ね合わせは、レーザ源11の位相変化に敏感ではない。パルス部分RIの各成分に存在するレーザ源11のこのような位相変化は、その後、光検出器におけるそれらのビート時に自動的に消失し、後者は、その瞬間位相が両方のスペクトル成分の位相差に等しい信号を生成する。
【0047】
LIDARシステム100の動作中、デジタル処理モジュール27は、測定路23aを介して出力される測定検出信号と、基準路23bを介して出力される基準検出信号との間の相関関数を算出する。実際には、そのような相関信号が、連続的に放出されるいくつかのパルスIについて計算され、次いで、それらの二乗係数を意味するすべての相関信号の電力が累算される。標的Tからの距離の測定結果は、累積相関電力関数の最大値に対応する時間シフトの半分に等しい。実際、この最大値の時間シフトは、LIDARシステム100と標的Tとの間の放射線の往復時間に等しい。
【0048】
直前に説明した動作において、変調器14bおよびデジタル処理モジュール27は、一緒にパルス圧縮効果を生成する。このため、変調器14bおよび生成器15bは、本明細書の一般的な部分ではそれぞれパルス圧縮変調器およびパルス圧縮コントローラと呼ばれてきた。このパルス圧縮効果により、モジュール27によって供給される相関関数の結果は、距離測定を実行するために使用されるパルスIの累積エネルギーの等しい値に対して、増加した信号対雑音比を示す。この信号対雑音比の増大は、パルス圧縮なしのLIDARシステムと比較して因子B・Tに現れ、ここで、Bは生成器15bによって制御される変調のスペクトル幅であり、TはそれぞれのパルスIの持続時間である。説明される実施例では、Bは125MHz―105MHz=20MHzに等しく、Tは1ms(ミリ秒)に等しく、20,000に等しいパルス圧縮因子を生成することができる。結果として、LIDARシステム100が提供する距離分解能が改善され、これは、約80ns(ナノ秒)の個々の持続時間を有する超短パルスの使用と同等である。別の観点によれば、パルス圧縮効果は、同じ値の信号対雑音比に対して、距離測定を実行するために放出されるパルスIの総エネルギーを低減することを可能にする。そのような低減は、各パルスIのピーク電力が伝送路10に対する誘導ブリルアン散乱閾値未満のままであることを可能にし、かつ/または距離測定を実行するために必要なパルスIの数を低減することを可能にする。後者の代替例の場合、パルス圧縮効果は、距離測定を実行するのに必要な時間の長さを低減することを可能にする。
【0049】
図1a]のLIDARシステム100は、直前に記載した構成を有し、ダブルヘテロダイン検出およびコム形パルススペクトルの改善を欠いている。[図1b]は、測定路23aおよび基準路23bによって入力として受信される放射部分のスペクトルを示す。これらの2つの放射部分は、同じスペクトル、または実質的に同じスペクトルを有する。なぜならば、標的TがLIDARシステム100に対して静止している場合、測定路23aによって受信されたものが、基準路23bによって受信されたものと、発光学系22と標的Tとの間の放射伝搬遅延によってのみ区別可能であるが、他方では余分に大気中を移動するために、測定路によって受信されたものが、基準路によって受信されたものよりもはるかに弱く、2つの放射部分間の振幅の差によって区別可能であるからである。これらの放射部分の各々は、CIaと表記され、考慮される実施例においてレーザ源11からの放射に対して100MHzだけスペクトルシフトされた、転送経路13aによって送達されるパルス成分と、CIbと表記され、レーザ源11の放射に対して105MHzから125MHzだけシフトされたスペクトルバンドを占める、転送経路13bによって送達されるパルス成分との重ね合わせから構成される。[図1b]の図において、横軸は光周波数の値を示し、fと表記され、縦軸はスペクトル強度値を示し、I(f)と表記される。参照符号11は、光源11からのレーザ放射のスペクトル位置を特定する。測定路23aおよび基準路23bのそれぞれについて、デジタル処理モジュール27に送達される検出信号は、パルス成分CIaとCIbとの間の干渉に対応する。
【0050】
図2a]のLIDARシステム100は、[図1a]のものに対応するが、ダブルヘテロダイン検出(DHD)を実行するために補足される。ダブルヘテロダイン検出は測定路23aおよび基準路23bのそれぞれにおける信号対雑音比の値を増加させる効果を有するが、標的Tからの距離がレーザ源11のコヒーレンス長の半分以上になると、これら2つの経路間の信号の混合はレーザ源11の位相変化によって劣化する可能性がある。この目的のために、レーザ源11によって生成された放射の一部は、ビームスプリッタ40によってその出力で収集され、放射の小部分の収集は十分である。この収集された放射部分は、通常、当業者の専門用語では局部発振器信号と呼ばれ、測定路23aおよび基準路23bの光入力と並列に送信するために2つに分割される。例えば、ビームスプリッタ40は、エバネッセント場によって結合することができる。参照符号41で示される50%―50%の比率で強度を分割するビームスプリッタが、レーザ源11から収集された放射部分を2つのサブビームに分割するために使用される。ビーム合成機能を実行するために使用される別のビームスプリッタ42aは、これらのパルス部分RIが標的Tによって再帰反射または後方散乱された後に、サーキュレータ21から来るパルス部分RIを有するビームスプリッタ11から来る2つのサブビームのうちの1つを重ね合わせるように配置される。さらに、ビーム合成機能を実行するために使用される別のビームスプリッタ42bは、ビームスプリッタ41から来る2つのサブビームの他方を、ビームスプリッタ18から来て、標的Tに向けてLIDARシステム100によって放射されるパルスIを代表する放射線部分と重ね合わせるように配置される。このような配置では、光検出器24aがパルス部分RIのヘテロダイン検出を実行し、光検出器24bは放出されたパルスIのヘテロダイン検出を独立して実行する。
【0051】
図2bは、図2aのLIDARシステム100について、測定路23aおよび基準路23bによって入力として受信された放射線部分のスペクトルを示す。これらの2つの放射部分は、上記と同じ理由で、同じスペクトル、または実質的に同じスペクトルを依然として有する。しかしながら、このスペクトルは、パルス成分CIa及びCIbの重ね合わせからなり、加えて、レーザ源11からの放射に対応し、再びスペクトル図において参照符号11によって示される単色成分を有する。3つの成分11、CIa、およびCIbの相対位置が示されており、図1bにすでに存在する指数に対応する。
【0052】
図2c]は、デジタル処理モジュール27で実行される主な信号処理ステップを記号的に示している。参照符号270は、モジュール27の入力において実行される、測定路23aおよび基準路23bによって別々に送達される信号のデジタル化を示す。次いで、参照符号271によって示されTFと表記されるフーリエ変換が、測定路23aから来る測定検出信号と、基準路23bから来る基準検出信号とに、独立して実行される。参照符号272は、デジタルスペクトルフィルタを示す。FILT.a-aおよびFILT.a-bと表記される2つのフィルタ272はバンドパスフィルタであり、これらの2つの成分が[図2b]に現れるように、成分CIaおよび成分CIbの正の周波数をそれぞれ選択する。例えば、フィルタFILT.a-aのスペクトルウィンドウは97MHz~103MHzであり、フィルタFILT.a-bのスペクトルウィンドウは103MHz~128MHzである。参照符号273は逆フーリエ変換を示し、逆フーリエ変換はTF-1と表記され、フィルタ272によって送達される信号に対して並行して実行される。測定検出信号について、MIX.aと表記されるミキサ274は、フィルタリングされた成分CIaとフィルタリングされた成分CIbの複素共役との積を、測定検出信号の各瞬間について計算する。このようにして測定路23aについて得られる積時間信号は、レーザ源11の位相変化を欠いている。基準検出信号は、同様に並行して処理される。フィルタFILT.b-aおよびFILT.b-bは、それぞれフィルタFILT.a-aおよびFILTa-bと同じスペクトルウィンドウを有し、MIX.bと表記されるミキサ274は、このとき、基準検出信号の各瞬間について、フィルタリングされた成分Claとフィルタリングされた成分CIbの複素共役との積を計算する。このようにして基準路23bについて得られる積時間信号は、同様に、レーザ源11の位相変化を欠いている。次いで、CORRと表記されるモジュール275は、それぞれ測定路23aおよび基準路23bからの2つの積時間信号間の相関関数を計算する。本明細書に記載の技術は、非リアルタイム処理に適しているが、当業者に知られている他のデジタルフィルタリング技術によって、例えば、FIRフィルタ(有限インパルス応答)またはIIRフィルタ(「無限インパルス応答」)を使用することによって、同等の動作をリアルタイムで実行することが可能である。
【0053】
図3a]のLIDARシステム100は、[図2a]の1つに対応するが、パルスIに対するコム形スペクトルの改善を利用するためにさらに補足される。この目的のために、2つの追加の変調器、すなわち、ビームスプリッタ40と12との間の放射路上の第1の追加の変調器51と、ビームスプリッタ40と41との間の放射路上の第2の追加の変調器53とがLIDARシステム100に追加される。換言すれば、第2の追加の変調器53は、局部発振器信号に有効であるように挿入される。2つの追加の変調器51および53は、電気光学タイプであってもよく、それぞれMEO1およびMEO2と表記される。変調器51および53の各々は電気信号生成器に関連付けられ、その電気出力は変調器の変調入力に接続され、生成器52(54)の電気出力は変調器51(53)の変調入力に接続される。2つの生成器52および54は、AWGタイプであってもよく、このため、それぞれAWG1’およびAWG2’と表記される。それらは、各々がいくつかの正弦波成分の和から構成される電気信号を生成するようにプログラムされる。したがって、変調器51はレーザ源11から2つの転送経路13aおよび13bに送達された放射を、いくつかの単色または準単色スペクトル成分の重ね合わせに変換し、その結果、この放射のスペクトルはコム形状を有する。このため、本明細書の大部分では、変調器51を第1のコム生成変調器と呼び、生成器52を第1のコムコントローラと呼ぶ。例えば、生成器52によって変調器51に印加される電気信号は、2つの転送経路13aおよび13bに送達される放射が光周波数に関して2.00GHz(ギガヘルツ)だけ離れた5つの単色スペクトル成分から構成されるようにすることができる。当業者は、そのようなスペクトル組成を周波数ミニコムと呼ぶ。
【0054】
転送経路13a内で、変調器14aは、変調器51によって生成される各パルスIのミニコム全体に、+100MHzのシフトを適用する。
【0055】
同時に、転送経路13b内で、変調器14bは、変調器51によって生成される各パルスIのミニコム全体に、+105MHzから+125MHzまで変化する光周波数増分に従って変調を適用する。
【0056】
図3a]のLIDARシステム100によって放出され、基準路23bによって検出されるパルスIのスペクトル組成は、括弧で囲み、文字Iと記載して[図3b]に示されている。[図2b]のものとそれぞれ同一であり、隣接するパターン間で2000MHzだけ離れている5つのスペクトルパターンから構成されている。この図に示されているすべての周波数偏差値は、メガヘルツ単位で表されている。このスペクトル組成は、標的Tによって再帰反射または後方散乱され、測定路23aによって検出されるパルス部分RIのスペクトル組成と依然として実質的に同一である。
【0057】
変調器53は、レーザ源11から測定路23aおよび基準路23bに送信された放射部分を、いくつかの単色または準単色スペクトル成分の2つの同一の重ね合わせに変換し、これらの放射部分のスペクトルが再びコム形状を有するようにする。変調器53は、本明細書の大部分では、変調器53は第2のコム生成変調器、生成器54は第2のコムコントローラと呼んでいる。[図3a]の例示的な実施形態では、生成器54によって変調器53に印加される電気信号が、測定路23aおよび基準路23bの2つに送達される放射部分のコムが、光周波数に関して、1.97GHzだけ離間された5つの単色スペクトル成分から構成されるようにすることができる。
【0058】
これらの条件下で、測定路23aおよび基準路23bによって入力として受信される放射部分のスペクトルに対して、ミニコムの使用と組み合わされたダブルヘテロダイン検出は、[図3b]の図において文字Rによって示される5つの成分を加える。
【0059】
測定路23aまたは基準路23bで実行されるヘテロダイン検出ごとに、各単色成分Rは、変調器51および14aから生じ、それに最も近い単色成分CIaと干渉し、40MHz、70MHz、100MHz、130MHz、および160MHz、すなわち100MHz+k30MHzで検出信号成分を生成する。ここで、kはコム形成分を識別するために値-2、-1、0、+1、および+2を取る指標である。同時に、それぞれの単色成分Rは、変調器51および14bから生じ、またそれに最も近い変調成分CIbにさらに干渉し、105MHz+k30MHzおよび125MHz+k30MHzとの間にそれぞれ広がる5つの追加の検出信号成分を生成する。ここで、kは、前述と同じ指数である。MSと表記される[図3c]のスペクトル図の下側のグラフは、測定路23aによってデジタル処理モジュール27に送達される測定検出信号に対応し、REFと表記される[図3c]の同じ図の上側のグラフは、基準路23bによってモジュール27に同時に送達される基準検出信号を示す。この図において、横軸は、fheterodyneと表記され、メガヘルツで表されたヘテロダイン検出信号の周波数値を示し、縦軸は、I(fheterodyne)と表記され、デシベルで表された対応するスペクトル強度を示す。発光学系22と標的Tとの間のそれらの伝播中にパルスIから受ける散乱のために、測定検出信号(下側のグラフ)は基準検出信号(上側のグラフ)のそれよりも低いコヒーレンスを有する。すなわち、より雑音レベルが高く、およびそれほどシャープでないピークを有する。説明した例では、指数kに関して異なる値に関連するコム歯間の干渉から生じる測定検出信号(基準検出信号)の他のスペクトル成分が、フィルタ26a(26b)によって除去される。本発明者らは、さらに、[図3c]のスペクトルが実験的に得られたことを明示する。これが、本発明の使用から直接生じないいくつかの寄生線を含む理由である。
【0060】
デジタル処理モジュール27は、連続して放出される一連のパルスI、例えば100個の連続するパルスIについて、互いに独立して、測定および基準検出信号を記憶する。[図3a]のLIDARシステムに関連する[図3d]のモジュール27によって実行される処理ステップは、[図2a]のLIDARシステムに関連する[図2c]に示されるものと同じタイプのものである。モジュール27は、最初に、時間に対してフーリエ変換を適用することによって、測定検出信号のスペクトルを算出し(参照符号271)、次いで、このスペクトル内で、100MHz+k30MHzを中心とする成分をフィルタリングし(参照符号272)(フィルタFILT.a-a-1~フィルタFILT.a-a-M)、ならびに105MHz+k30MHzおよび125MHz+k30MHz内に含まれる成分をフィルタリングする(フィルタFILT.a-b-1~フィルタFILT.a-b-M)。ここで、kは、Mが5に等しい場合、-2、-1、0、+1、および+2である上記で導入された指数である。次いで、逆フーリエ変換が、各フィルタリングされた成分に適用され(参照符号273)、次いで、kの各値について別個に、フィルタリングされた成分CIaの時間信号に、フィルタリングされた成分CIbの時間信号の複素共役が乗算される(参照符号274)。このようにして、M個の積時間信号が測定路23aについて得られ、ここで、Mは再び、各パルスIのミニコムにおける単色スペクトル成分の数である。M個の積時間信号は、フィルタFILT.b-a-1~FILT.b-a-MおよびFILT.b-b-1~FILT.b-b-Mを使用して、基準路23bについて、同じ方法で、独立して、並列に得られる。次いで、モジュール275は、相互相関の正方マトリックスM×Mを計算する。このマトリックスの行kおよび列k’に位置する相関関数は、ミニコムの成分kについての測定路23aの積時間信号およびミニコムの成分k’についての基準路23bの積時間信号に対して相対的である。このようにして、全ての相関関数のそれぞれの最大値だけ標的Tから離れた距離についてM評価が得られ、これらのM距離評価の重み付け平均は、雑音が低減された測定結果を提供する。特に、重み付けは、Mの利用可能な評価の信号対雑音比の変化を考慮に入れることができる。
【0061】
代替動作では、フィルタFILT.a-a-1からフィルタFILT.a-a-Mに由来する成分が、k30MHzのシフトをデジタル的に除去することによってスペクトル的に重ね合わせることができ、次いで、フィルタFILT.a-b-1からフィルタFILT.a-b-Mに由来する成分と同様に、加算または平均化することができる。同じ処理が基準検出信号について独立して実行される:フィルタFILT.b-a-1からFILT.b-a-Mに由来する成分は、一方では、k30MHzのシフトをデジタル的に除去することによってスペクトル的に重ね合わされ、次いで、加算または平均化され、他方ではフィルタFILT.b-b-1からFILT.b-b-Mまでに由来する成分が重ね合わされ、次いで、同じ方法で加算または平均化される。[図2c]における動作と同じ動作を、その開始点から実行することができる。この動作は、レーザ源11の位相変化を除去するために、2つのミキサ274MIX.aおよびMIX.bを使用することを含む。相関関数の結果は非常に狭いピークを示し、その減少した幅は、パルス圧縮の効果とミニコムスペクトル成分のコヒーレント重ね合わせの効果から生じる。上記のように、このピークの時間的位置は、発光学系22と標的Tとの間のパルスIの往復伝搬時間に等しい。このような相関関数計算は、特に専用の電子モジュールを使用することによって、特に経済的な方法で実行することができる。
【0062】
任意選択的に、測定検出信号、それぞれ基準検出信号について得られるスペクトルはゼロ周波数に対して中心になるように、その全体が周波数シフトされ得る。したがって、ゼロ周波数を中心とする各再構成された検出信号、測定信号、および基準信号は、その瞬間的な変化周波数が相殺される瞬間を有する。再構成された測定検出信号について得られた周波数キャンセル瞬間と、再構成された基準検出信号について得られた周波数キャンセル瞬間との間の差は、発光学系22と標的Tとの間のパルスIの往復伝搬時間に対応する。
【0063】
図4a]のLIDARシステム100は、パルスIのコム形スペクトルの改善を組み込んでいるが、ダブルヘテロダイン検出のスペクトルは組み込んでいない。したがって、それは直接検出システムであり、[図1a]の実施形態から変調器14aおよび生成器15aを除去し、転送経路13a内のそれらの場所にコム生成変調器53およびコム制御生成器54を組み込むことによって得られる。ここで、コム生成変調器51はパルス圧縮変調器14bと直列に、転送経路13bに挿入される。2つのコム生成変調器51および53は、それぞれのコムコントローラに関連付けられる:例えば2.00GHzの増分を有するコム形スペクトルを生成するために、変調器51は生成器52に関連付けられ、有する変調器51と、例えば1.97GHzに等しい異なる増分を有する別のコム形スペクトルを生成するために、変調器53は生成器54に関連付けられる。パルス圧縮変調器14bは、105MHzから125MHzまで変化する光周波数増分に従って変調を制御するためのコントローラ15bを有する、先の実施形態におけるものと同一であってもよい。
【0064】
図1a]のLIDARシステムと同様に、[図4a]のLIDARシステムの相関関数の結果は、レーザ源11の位相変化に敏感ではない。
【0065】
図4b]は、[図4a]の実施形態の[図3b]に対応する。ダブルヘテロダイン検出の排除に従って、全てのスペクトル成分はパルスIに対応する。成分CIaは転送経路13aにおいて生成されるミニコムに対応し、光周波数増分は1.97GHzに等しく、成分CIbは、転送経路13bにおいて生成されるものである。後者は、変調器14bによって生成されたパルス圧縮変調を用いて2.00GHzに等しい光周波数増分を有するミニコムの畳み込みから生じる。フィルタ26a(26b)によって送達される測定(基準)検出信号は、各単色成分CIbと、それにスペクトル的に最も近い変調成分CIaとの干渉のコヒーレントな重ね合わせである。
【0066】
デジタル処理モジュール27の動作は、[図3a]の実施形態に対応する最も複雑なケースについて説明されているが、当業者は、発明的な活動を実証することなく、他の実施形態にそれを適合させることができる。特に、距離評価を平均化する最終ステップ、または、異なる指数kの値に対応するスペクトル成分を加算または平均化するステップは、各パルスIのコム形スペクトルの改善が実行されないときに消える。
【0067】
本発明は、引用された利点の少なくともいくつかを保持しながら、上記で詳細に説明された実施形態の第2の態様を修正しながら再現され得ることが理解される。特に、以下のような変形例を適用することができる:
-Alexandre Mottet et al(Photline Technologies、ZI Les Tilleroyes-Trepillot、16 rue Auguste Jouchoux、25000 Besancon、France)による論文「Tunable Frequency Shifter Based onLiNbOI/Qmodulators」に記載されているようなDPMZ(Dual Parallel Mach-Zehnder)型成分を、電気光学変調器51および53のうちの少なくとも1つの代わりに、使用し;
-パルススペクトルのためのダブルヘテロダイン検出およびコム形の両方の改善が使用されるとき、検出信号はターゲットによって再帰反射または後方散乱された後のパルスに対応する放射のコムからの第1の線と、パルスのコムからのターゲットに向かって放出される第2の線の混合を選択するためにフィルタリングされることができ、これらの第1および第2の線は、異なる値の指数kに関連付けられ;
-2つの転送経路13aおよび13bによって伝達されるパルス成分の両方に別々にパルスごとに印加される2つの同時変調を使用し、変調の一方は転送経路13aで実行され、他方は転送経路13bで実行される。例えば、転送経路13aにおいて実行される変調は各パルスの間に90MHzから100MHzに徐々に増加する増分に従って放射の光周波数を修正することができ、同時に実行されるが、転送経路13bにおいて実行される他の変調は、各パルスの間に120MHzから110MHzに徐々に減少する別の増分に従って光周波数を修正することができ;
-光周波数変調の代わりに位相変調を含む、光周波数の線形変化以外の変調の形態を使用し;
-検出信号をデジタル処理モジュール27に供給するために検出路20の内の単一の検出経路のみを使用し、この単一の検出経路は測定検出信号の開始が基準検出信号の終わりと重ならないようにターゲットが十分に離れているときに、最初に基準路の機能に、次いで測定路の機能に、放出されたパルスごとに割り当てられる。
【0068】
最後に、引用された全ての数値は説明の目的のためだけに提供されており、変更することができる。
【図面の簡単な説明】
【0069】
本発明の特徴および利点は、添付の図面を参照して、いくつかの非限定的な例示的な実施形態の以下の詳細な説明からより明確になるのであろう:
図1a図1aは、本発明による、ダブルヘテロダイン検出またはコム形パルススペクトルの任意の光学的改良がない第1のLIDARシステムのブロック図である;
図1b図1bは、図1aの第1のLIDARシステムの検出路によって入力として受け取られる放射部分のスペクトル図である;
図2a図2aは、本発明による第2のLIDARシステムの図1aに対応し、これはダブルヘテロダイン検出の改善を実施するが、コム形パルススペクトルの改善を伴わないLIDARシステムの図である;
図2b図2bは、図2aの第2のLIDARシステムを示す図1bに対応する;
図2c図2cは、図2aの第2のLIDARシステムで使用できるデジタル処理モジュールの詳細を示す;
図3a図3aは、本発明による第3のLIDARシステムの図1aに対応し、これは、ダブルヘテロダイン検出およびコム形パルススペクトルの両方を改善する;
図3b図3bは、図3aの第3のLIDARシステムの図2bに対応する;
図3c図3cは、図3aの第3のLIDARシステムの検出信号に関するスペクトル図である;
図3d図3dは、図3aの第3のLIDARシステムの図2cに対応する;
図4a図4aは、本発明による第4のLIDARシステムの図1aに対応し、これはコム形パルススペクトルを改善するが、ダブルヘテロダイン検出の改善を伴わない。
図4b図4bは、図4aの第4のLIDARシステムの図1bに対応する。
図1a
図1b
図2a
図2b
図2c
図3a
図3b
図3c
図3d
図4a
図4b
【手続補正書】
【提出日】2024-01-16
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
伝送路(10)および検出路(20)を備えるLIDARシステム(100)であって、前記伝送路(10)は、レーザ源(11)を備え、前記LIDARシステムの外部にある標的(T)に向けて放射パルス(I)を放出するように適合され、
前記伝送路(10)は2つの転送経路(13a、13b)を備え、前記2つの転送経路は、前記2つの転送経路のそれぞれの入力において、前記レーザ源(11)からの放射のそれぞれの部分を同時に受信するように並列に配置されかつ構成され、出力において、前記2つの転送経路によって送達される各パルス(I)の成分を重ね合わせるように構成され、
前記両方の転送経路(13a、13b)の少なくとも1つは:
-パルス圧縮変調器(14b)と呼ばれる変調器と、
-前記転送経路によって送達される前記パルスの成分を変調するように、前記パルス圧縮変調器(14b)を制御するように接続されるパルス圧縮コントローラ(15b)と、を備え、
したがって、前記LIDARシステム(100)の動作中、各パルス(I)の少なくとも2つの成分が、
前記レーザ源(11)から発する前記放射から同時に生成され、
前記パルスの持続時間に渡って前記パルス(I)内で重ね合わされ、
それぞれ異なるスペクトルを有し、
前記パルス(I)の両方の成分の少なくとも1つは、位相変調または周波数変調され、
前記検出路(20)は、少なくとも1つの光検出器(24a、24b)を備え、
-前記パルスが前記標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射を検出し、測定検出信号を送達するための専用の、測定路(23a);および
-前記伝送路(10)によって放出される前記パルス(I)を表す前記放射を検出し、基準検出信号を送達するための専用の、基準路(23b)の機能を実行するように構成され、
前記検出路(20)は、前記測定検出信号と前記基準検出信号とを受信するように構成され、前記測定検出信号と基準検出信号との間の相関関数を計算するように構成されたデジタル処理モジュール(27)をさらに備え、
したがって、変調され、前記計算された相関関数と組み合わされる、各パルス(I)の少なくとも1つの構成成分は、パルス圧縮効果を生成する、
LIDARシステム(100)。
【請求項2】
各パルス圧縮コントローラ(14b)は、前記LIDARシステムの前記動作中に、前記パルス圧縮コントローラが属する前記転送経路(13b)によって送達される前記パルスの成分について、前記パルス(I)の持続時間に渡る光周波数の漸進的変化を制御するように適合される、請求項1に記載のLIDARシステム(100)。
【請求項3】
各パルス圧縮コントローラ(14b)は、光周波数の前記漸進的変化が前記パルス(I)の前記持続時間に渡って実質的に一定である変化率を有するようにさらに適合される、請求項2に記載のLIDARシステム(100)。
【請求項4】
前記検出路(20)が、第1の検出経路及び第2の検出経路を備え、
前記第1の検出経路は、前記測定路(23a)を形成し、前記パルスが前記標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射を受信するように構成された第1の光検出器(24a)を備え、前記測定検出信号を送達するためのものであり、
前記第2の検出経路は、前記第1の検出経路とは別であり、前記基準路(23b)を形成し、前記伝送路(10)によって放出されるような前記パルス(I)を表す前記放射を受信するように構成された第2の光検出器(24b)を備え、前記基準検出信号を送達するためのものであり、
前記デジタル処理モジュール(27)は、前記測定検出信号および前記基準検出信号を受信するために、前記第1の検出経路および前記第2の検出経路のそれぞれの出力に接続される、
請求項に記載のLIDARシステム(100)。
【請求項5】
前記検出路(20)が、光検出器とコントローラを備え、
前記光検出器は、測定路(23a)および基準路(23b)の両方の機能によって共有され、別々の時間ウィンドウの間に、前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射と、前記伝送路によって放出されるような前記パルスを表す前記放射とを受信することが意図され、各時間ウィンドウの間に検出信号を送達し、
前記コントローラは、前記時間ウィンドウに応じて、前記共有される光検出器によって送達される前記検出信号を、測定検出信号、または基準検出信号として割り当てる、
請求項に記載のLIDARシステム(100)。
【請求項6】
前記検出路(20)は、一方では前記パルスが前記標的(T)によって再帰反射または後方散乱された後に前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射と同時に、他方では前記伝送路によって放出された前記パルスを表す前記放射と同時に、前記レーザ源(11)からの前記放射の他の部分を、追加的に受信するように光学的に結合される、請求項に記載のLIDARシステム(100)。
【請求項7】
前記デジタル処理モジュール(27)は、一方では両方の転送経路(13a、13b)からそれぞれ発生する前記測定検出信号の成分を混合して、前記レーザ源(11)の位相変化がない前記測定路(23a)のための積時間信号を得るように適合され、他方では同じく前記レーザ源の位相変化がない前記基準路(23b)のための積時間信号を別々に得るように、前記両方の転送経路からそれぞれ発生する前記基準検出信号の成分を混合するように適合され、前記デジタル処理モジュールは前記測定路と前記基準路の前記各積時間信号の間の前記相関関数を計算するように適合される、請求項6に記載のLIDARシステム(100)。
【請求項8】
前記伝送路(10)は、:
-両方の転送経路(13a、13b)によって送達される各パルス(I)の前記成分に対して有効であるように構成された第1のコム生成変調器(51)と、
-前記第1のコム生成変調器(51)を制御するように接続され、前記第1のコム生成変調器に、いくつかの第1の等距離スペクトル線から構成される第1の制御信号を印加するように構成される第1のコムコントローラ(52)と、を更に備え、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記検出路(20)は:
第2のコム生成変調器(53)と、第2のコムコントローラ(54)と、を更に備え、
-前記第2のコム生成変調器(53)は、一方では前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射が検出されると同時に、他方では前記伝送路によって放出されるような前記パルスを表す前記放射が検出されると同時に、前記レーザ源(11)からの前記放射のその他の部分に有効であるように構成され、
-前記第2のコムコントローラ(54)は、前記第2のコム生成変調器(53)を制御するように接続され、前記第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、そのうちの任意の2つの隣接するスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差は、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
そして、前記デジタル処理モジュール(27)は光線の異なるペアに関連する検出信号寄与を加算または平均化するように構成され、光線の各ペアは前記第1のコム生成変調器(51)によって生成される第1の光線と、前記第2のコム生成変調器(53)によって生成される第2の光線とによって形成される、請求項6に記載のLIDARシステム(100)。
【請求項9】
前記伝送路(10)は、更に、
第1のコム生成変調器(51)と、第1のコムコントローラ(52)と、を備え、
前記第1のコム生成変調器(51)は、両方の転送経路(13a、13b)によって送達される各パルス(I)の前記成分に対して有効であるように配置され、
前記第1のコムコントローラ(52)は、前記第1のコム生成変調器(51)を制御するように接続され、前記第1のコム生成変調器に、いくつかの第1の等距離スペクトル線で構成される第1の制御信号を印加するように構成され、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記検出路(20)は、第2のコム生成変調器(53)と第2のコムコントローラ(54)を更に備え、
前記第2のコム生成変調器(53)は、一方では前記パルスが標的(T)によって再帰反射または後方散乱された後に、前記伝送路(10)によって放出された前記パルス(I)に1対1で対応する前記放射が検出されると同時に、他方では前記伝送路によって放出されるような前記パルスを表す前記放射が検出されると同時に、前記レーザ源(11)からの前記放射のその他の部分に有効であるように配置され、
前記第2のコムコントローラ(54)は、前記第2のコム生成変調器(53)を制御するように接続され、前記第2のコム生成変調器に、複数の第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差が、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
前記デジタル処理モジュール(27)は、前記測定路(23a)と前記基準路(23b)のそれぞれの積時間信号間の相関関数を計算するように構成され、前記測定路の積時間信号は両方の転送経路(13a、13b)からそれぞれ生じ、前記標的(T)によって再帰反射または後方散乱された2つのコムスペクトル成分の混合物であり、前記基準路の前記積時間信号はそれぞれ前記両方の転送経路から生じるが、前記伝送路(10)によって放出されるような前記パルス(I)を表す前記放射の一部である2つのコムスペクトル成分の混合物であり、各混合は前記レーザ源(11)の位相変化の影響を排除するように実行される、請求項6に記載のLIDARシステム(100)。
【請求項10】
前記伝送路(10)はさらに、第1のコム生成変調器(51)、第1のコムコントローラ(52)、第2のコム生成変調器(53)および第2のコムコントローラ(54)を備え、
前記第1のコム生成変調器(51)は、前記転送経路によって送達される前記放射部分に有効であるように両方の転送経路(13a、13b)の一方に配置され、
前記第1のコムコントローラ(52)は、前記第1のコム生成変調器を制御するように接続され、第1の制御信号を前記第1のコム生成変調器にいくつかの第1の等距離スペクトル線から構成される第1の制御信号を印加するように構成され、前記第1のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第1の増分だけ分離され、
前記第2のコム生成変調器(53)は、(13a、13b)のうちのもう一方によって送達される前記放射部分に対して有効であるように、前記もう一方の転送経路に配置され、
前記第2のコムコントローラ(54)は、前記第2のコム生成変調器を制御するように接続され、前記第2のコム生成変調器に、いくつかの第2の等距離スペクトル線から構成される第2の制御信号を印加するように構成され、前記第2のスペクトル線は、その内の任意の隣接する2つのスペクトルの間で第2の増分だけ分離され、
前記第1の増分と第2の増分との差は、前記パルス圧縮効果を得るために使用されるスペクトル幅よりも大きく、
前記デジタル処理モジュール(27)は、光線の異なるペアに関連する検出信号の寄与を加算または平均化するように構成され、各ペアの光線は前記第1のコム生成変調器(51)によって生成される第1の光線と、前記第2のコム生成変調器(53)によって生成される第2の光線とによって形成される、請求項に記載のLIDARシステム(100)。
【請求項11】
前記第1及び第2のコム生成変調器(51、53)は、電気光学変調器タイプである、請求項8~10の何れか一項に記載のLIDARシステム(100)。
【請求項12】
前記パルス圧縮効果を生成するように変調される各パルス成分のスペクトル幅と、前記パルスの前記持続時間との積が500より大きい請求項に記載のLIDARシステム(100)。
【国際調査報告】