IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターナショナル・ビジネス・マシーンズ・コーポレーションの特許一覧

特表2024-520996超伝導量子ビットのための駆動が改良されたJ/ZZ動作
<>
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図1
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図2
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図3
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図4
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図5
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図6
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図7
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図8
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図9
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図10
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図11
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図12
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図13
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図14
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図15
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図16
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図17
  • 特表-超伝導量子ビットのための駆動が改良されたJ/ZZ動作 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-05-28
(54)【発明の名称】超伝導量子ビットのための駆動が改良されたJ/ZZ動作
(51)【国際特許分類】
   G06N 10/40 20220101AFI20240521BHJP
   G06N 10/20 20220101ALI20240521BHJP
   G06F 7/38 20060101ALI20240521BHJP
【FI】
G06N10/40
G06N10/20
G06F7/38 510
G06F7/38 610
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023562231
(86)(22)【出願日】2022-05-17
(85)【翻訳文提出日】2023-10-10
(86)【国際出願番号】 EP2022063360
(87)【国際公開番号】W WO2022243338
(87)【国際公開日】2022-11-24
(31)【優先権主張番号】17/324,624
(32)【優先日】2021-05-19
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.FIREWIRE
(71)【出願人】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
【住所又は居所原語表記】New Orchard Road, Armonk, New York 10504, United States of America
(74)【代理人】
【識別番号】100112690
【弁理士】
【氏名又は名称】太佐 種一
(74)【代理人】
【識別番号】100120710
【弁理士】
【氏名又は名称】片岡 忠彦
(72)【発明者】
【氏名】カンダーラ、アブヒナヴ
(72)【発明者】
【氏名】マッカイ、デイヴィッド
(72)【発明者】
【氏名】ラウアー、アイザック
(72)【発明者】
【氏名】マゲサン、イースワー
(57)【要約】
量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする、システム、デバイス、コンピュータ実装方法、またはコンピュータ・プログラム製品、あるいはその組み合わせ。1つの例では、量子デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。
【特許請求の範囲】
【請求項1】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、量子デバイス。
【請求項2】
前記バイアス・コンポーネントが、前記CWトーン間の相対位相差を動的に調整することによって前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子デバイス。
【請求項3】
前記CWトーン間の前記相対位相差を動的に調整することによって、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項2に記載の量子デバイス。
【請求項4】
前記CWトーン間の前記相対位相差が動的に調整されている間に、前記CWトーンの各振幅が一定のままである、請求項2または3のいずれか一項に記載の量子デバイス。
【請求項5】
前記各第1および第2の駆動線を介して加えられる前記CWトーンが共通の周波数を含む、請求項1ないし4のいずれか一項に記載の量子デバイス。
【請求項6】
前記共通の周波数が、前記第1または第2の量子ビットの各遷移から非共鳴である周波数を使用して定義される、請求項5に記載の量子デバイス。
【請求項7】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するように前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1ないし6のいずれか一項に記載の量子デバイス。
【請求項8】
前記正味のZZ相互作用が、前記第1および第2の量子ビット間の交換結合強度に基づく大きさを有する、請求項7に記載の量子デバイス。
【請求項9】
前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1ないし8のいずれか一項に記載の量子デバイス。
【請求項10】
前記少なくとも1つのCWトーンの前記振幅を動的に調整することによって、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項9に記載の量子デバイス。
【請求項11】
前記CWトーンのうちの前記少なくとも1つの前記振幅が動的に調整されている間に、前記CWトーン間の前記相対位相差が一定のままである、請求項9または10のいずれか一項に記載の量子デバイス。
【請求項12】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間のZZ相互作用を相殺するように前記CWトーンを調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1ないし11のいずれか一項に記載の量子デバイス。
【請求項13】
前記バイアス・コンポーネントが、前記ZZ相互作用を相殺するように前記CWトーンが調整されている間に、前記第1および第2の量子ビットの各動作周波数をさらに再較正する、請求項12に記載の量子デバイス。
【請求項14】
プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに結合することと、
前記システムによって、前記バイアス・コンポーネントで、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用を動的に制御することとを含む、コンピュータ実装方法。
【請求項15】
前記システムが、前記バイアス・コンポーネントを使用して、前記CWトーン間の相対位相差を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御し、前記相対位相差を動的に調整することが、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項14に記載のコンピュータ実装方法。
【請求項16】
前記システムが、前記バイアス・コンポーネントを使用して、前記各第1および第2の駆動線のトーンを介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御し、前記少なくとも1つのCWトーンの前記振幅を動的に調整することが、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項14または15のいずれか一項に記載のコンピュータ実装方法。
【請求項17】
前記システムが、前記バイアス・コンポーネントを使用して、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御する、請求項14ないし16のいずれか一項に記載のコンピュータ実装方法。
【請求項18】
前記システムが、前記バイアス・コンポーネントを使用して、前記第1および第2の量子ビット間のZZ相互作用を相殺するように前記CWトーンを調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御する、請求項14ないし17のいずれか一項に記載のコンピュータ実装方法。
【請求項19】
前記システムによって、前記ZZ相互作用を相殺するように前記CWトーンが調整されている間に、前記第1および第2の量子ビットの各動作周波数を再較正することをさらに含む、請求項18に記載のコンピュータ実装方法。
【請求項20】
プログラム命令が具現化されているコンピュータ可読ストレージ媒体を備えているコンピュータ・プログラム製品であって、前記プログラム命令が、プロセッサによって実行可能であり、前記プロセッサに、
前記プロセッサによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することと、
前記プロセッサによって、前記バイアス・コンポーネントで、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることとを実行させる、コンピュータ・プログラム製品。
【請求項21】
前記プロセッサが、前記バイアス・コンポーネントを使用して、前記CWトーン間の相対位相差を動的に調整することによって、または前記CWトーンのうちの少なくとも1つの振幅を調整することによって、または前記各第1もしくは第2の駆動線のトーンを介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項20に記載のコンピュータ・プログラム製品。
【請求項22】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーン間の相対位相差を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にし、前記CWトーンが、前記第1または第2の量子ビットの各遷移から非共鳴である周波数を含む、量子デバイス。
【請求項23】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御をさらに容易にする、請求項22に記載の量子デバイス。
【請求項24】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記第1の駆動線を介して加えられる第1の連続波(CW)トーンの第1の振幅を動的に調整すること、前記第2の駆動線を介して加えられる第2のCWトーンの第2の振幅を動的に調整すること、またはこれらの組み合わせによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、量子デバイス。
【請求項25】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御をさらに容易にする、請求項24に記載の量子デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、量子コンピューティングに関連しており、より詳細には、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にするシステム、デバイス、コンピュータ実装方法、またはコンピュータ・プログラム製品、あるいはその組み合わせに関連している。
【背景技術】
【0002】
量子コンピューティング・デバイスは、さまざまな構成の超伝導量子ビットから成ることができる。さまざまな事例では、量子ビットは、固定動作周波数を有することができ(例えば、単一のジョセフソン接合を含むトランズモン量子ビットは固定動作周波数を有することができる)、任意の適切な量子コンピューティング基板上の2次元アレイに配置され得る。さまざまな態様では、そのような2次元アレイ内の任意の量子ビットは、最近隣の量子ビットの一部もしくはすべてまたはその両方に、または次の最近隣の量子ビットの一部もしくはすべてまたはその両方に、あるいはその両方に結合され得る。1つまたは複数の隣接する量子ビットの周波数でマイクロ波トーンまたはマイクロ波信号を使用して量子ビットを駆動することによって、2量子ビット・ゲートを実装または構築するための、さまざまな技術またはシステムあるいはその両方が存在する。そのようなマイクロ波駆動トーンを使用して実装された2量子ビット・ゲートは、高いコヒーレンスまたは交差共鳴からの強いZX相互作用あるいはその両方を示すことができ、量子コンピューティング・デバイスの性能または機能あるいはその両方を改善することができる。
【0003】
交差共鳴を含んでいる、マイクロ波駆動トーンを使用して実装された複数の2量子ビット・ゲートは、結合された量子ビット間の交換結合強度Jに比例し得るもつれ速度を有することができる。そのため、交換結合強度Jを増やすことによって、そのような2量子ビット・ゲートの速度を増やすことができる。しかし、交換結合強度Jを増やすことによって、アイドル・ゲート・エラー(idle gate error)および多量子ビット回路の非忠実度(結合された量子ビット間の常に有効な疑似ZZ相互作用)の既知の発生源も増える可能性がある。したがって、望ましい交換結合強度Jを取得することと、回路性能を低下させる、結合された量子ビット間の常に有効な疑似ZZ相互作用との間に、競合が存在することがある。
【発明の概要】
【0004】
以下に、本発明の1つまたは複数の実施形態の基本的理解を可能にするための概要を示す。この概要は、主要な要素または重要な要素を特定するよう意図されておらず、特定の実施形態の範囲または特許請求の範囲を正確に説明するよう意図されていない。この概要の唯一の目的は、後で提示されるより詳細な説明のための前置きとして、概念を簡略化された形態で提示することである。本明細書に記載された1つまたは複数の実施形態では、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にするシステム、デバイス、コンピュータ実装方法、またはコンピュータ・プログラム製品、あるいはその組み合わせが説明される。
【0005】
実施形態によれば、量子デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、各第1および第2の駆動線を介して加えられた連続波(CW)トーンを使用して、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。そのような量子デバイスの1つの態様は、量子デバイスがZZ相互作用の動的制御を容易にすることができることである。
【0006】
別の実施形態によれば、コンピュータ実装方法は、プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することを含むことができる。コンピュータ実装方法は、システムによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられたCWトーンで、第1および第2の量子ビット間のZZ相互作用を動的に制御することをさらに含むことができる。そのようなコンピュータ実装方法の1つの態様は、コンピュータ実装方法が量子デバイスのZZ相互作用の動的制御を容易にすることができることである。
【0007】
別の実施形態によれば、コンピュータ・プログラム製品は、プログラム命令が具現化されているコンピュータ可読ストレージ媒体を備えることができる。プログラム命令は、プロセッサに動作を実行させるために、プロセッサによって実行可能である。これらの動作は、プロセッサによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することを含むことができる。これらの動作は、プロセッサによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられたCWトーンで、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることをさらに含むことができる。そのようなコンピュータ・プログラム製品の1つの態様は、コンピュータ・プログラム製品が量子デバイスのZZ相互作用の動的制御を容易にすることができることである。
【0008】
別の実施形態によれば、量子デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、各第1および第2の駆動線を介して加えられるCWトーン間の相対位相差を動的に調整することによって、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。そのような量子デバイスの1つの態様は、量子デバイスがZZ相互作用の動的制御を容易にすることができることである。
【0009】
別の実施形態によれば、量子デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、第1の駆動線を介して加えられる第1のCWトーンの第1の振幅を動的に調整すること、第2の駆動線を介して加えられる第2のCWトーンの第2の振幅を動的に調整すること、またはこれらの組み合わせによって、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。そのような量子デバイスの1つの態様は、量子デバイスがZZ相互作用の動的制御を容易にすることができることである。
【図面の簡単な説明】
【0010】
図1】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的デバイスのブロック図を示す図である。
図2】本明細書に記載された1つまたは複数の実施形態に従って、例示的な非限定的量子ビット駆動トーン(または駆動信号)を示す図である。
図3】本明細書に記載された1つまたは複数の実施形態に従って、CWトーン間の相対位相差および第1の量子ビットのCWトーンの駆動強度(または振幅)に対するZZ相互作用強度を描く例示的な非限定的グラフを示す図である。
図4】本明細書に記載された1つまたは複数の実施形態に従って、異なるCWトーンの振幅に関して、交差共鳴駆動強度(cross-resonance drive strength)(または振幅)の関数としてZX速度を描く例示的な非限定的グラフを示す図である。
図5】本明細書に記載された1つまたは複数の実施形態に従って、CWトーン間の相対位相差および第1の量子ビットのCWトーンの振幅に対するZZ相互作用強度を描く別の例示的な非限定的グラフを示す図である。
図6】本明細書に記載された1つまたは複数の実施形態に従って、異なるCWトーンの振幅に関して、交差共鳴駆動強度の関数としてZX速度を描く別の例示的な非限定的グラフを示す図である。
図7】本明細書に記載された1つまたは複数の実施形態に従って、単一量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図8】本明細書に記載された1つまたは複数の実施形態に従って、単一量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図9】本明細書に記載された1つまたは複数の実施形態に従って、単一量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図10】本明細書に記載された1つまたは複数の実施形態に従って、単一量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図11】本明細書に記載された1つまたは複数の実施形態に従って、2量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図12】本明細書に記載された1つまたは複数の実施形態に従って、2量子ビット・ゲートの動作中にCWトーンによって容易にされる静的ZZ相互作用の減少を描く例示的な非限定的グラフを示す図である。
図13】本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度の関数としてZZ相互作用強度を描く例示的な非限定的グラフを示す図である。
図14】本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度の関数としてZX速度を描く例示的な非限定的グラフを示す図である。
図15】本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度の関数としてZZ相互作用強度を描く別の例示的な非限定的グラフを示す図である。
図16】本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度の関数としてZX速度を描く別の例示的な非限定的グラフを示す図である。
図17】本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする例示的な非限定的コンピュータ実装方法のフロー図を示す図である。
図18】本明細書に記載された1つまたは複数の実施形態を容易にすることができる例示的な非限定的動作環境のブロック図を示す図である。
【発明を実施するための形態】
【0011】
以下の詳細な説明は、例にすぎず、実施形態、または実施形態の適用もしくは使用、あるいはその両方を制限するよう意図されていない。さらに、先行する「技術分野」または「発明の概要」のセクション、あるいは「発明を実施するための形態」のセクションで提示された、いずれかの明示されたか、または暗示された情報によって制約されるという意図はない。
【0012】
ここで、図面を参照して1つまたは複数の実施形態が説明され、図面全体を通じて、類似する参照番号が、類似する要素を参照するために使用されている。以下の説明では、説明の目的で、1つまたは複数の実施形態を十分に理解できるように、多数の特定の詳細が示されている。しかし、これらの特定の詳細がなくても、さまざまな事例において、1つまたは複数の実施形態が実践され得るということは明らかである。
【0013】
特に示されない限り、以下の定義が本開示全体を通じて使用される。「CR」は、交差共鳴ゲートを示す。「CW」は、連続波(例えば、常に有効)を示す。「非調和性」(α)は、第2および第1の励起状態のエネルギー・レベル間の差および量子ビットの遷移(例えば、最低の2つのエネルギー・レベル)を示す。「共鳴状態」は、駆動磁場が、量子系における遷移周波数と同じ周波数にある場合を指す。「ハミルトニアン」は、量子演算に関して表された量子系のエネルギーを示す。「シュタルク・シフト」は、非共鳴駆動磁場に起因する量子系のエネルギー・レベルにおけるシフトを示す。「シュタルク駆動」は、ACシュタルク・シフトを引き起こす非共鳴駆動を示す。「ZZ」は、2つの量子ビットが励起されるときの、状態のエネルギーにおけるシフトを示す。「ゲート」は、量子状態を変換する量子系に対する動作を示す。「単一量子ビット・ゲート」は、単一の量子ビットの状態を(例えば、通常はマイクロ波駆動を使用して)変換するゲートを示す。「2量子ビット・ゲート」は、2つの量子ビットの結合状態を変換するゲートを示し、2つの量子ビット間の相互作用の何らかの形態を伴う。
【0014】
古典的コンピュータは、情報を2進状態として格納するか、または表す2進数(またはビット)に対して動作し、計算および情報処理機能を実行する。これに対して、量子コンピューティング・デバイスは、情報を2進状態および2進状態の重ね合わせの両方として格納するか、または表す量子ビット(quantum bits)(または量子ビット(qubits))に対して動作する。そのため、量子コンピューティング・デバイスは、もつれおよび干渉などの量子力学的現象を利用する。
【0015】
量子計算は、古典的な計算ビットの代わりに、量子ビットを基本単位として使用する。量子ビット(例えば、量子2進数)は、古典的ビットの量子力学的類似物である。古典的ビットは、2つのうちの1つのみに基づく状態(例えば、0または1)を使用することができるが、量子ビットは、これらの状態の重ね合わせに基づく状態(例えば、α|0>+β|1>、αおよびβは、|α|+|β|=1となるような複素スカラーである)を使用することができ、理論的には、複数の量子ビットが、同じ数の古典的ビットよりも指数関数的に多い情報を保持することができる。したがって、量子コンピュータ(例えば、古典的ビットのみではなく量子ビットを採用するコンピュータ)は、理論的には、古典的コンピュータにとって極めて困難であることがある問題を素早く解くことができる。古典的コンピュータのビットは、単に0または1のいずれかの値を持つ2進数である。スイッチ、バルブ、磁石、コインなどの、2つの異なる状態を有するほとんどすべてのデバイスは、古典的ビットを表すのに役立つことができる。量子力学の原理に従って動作する量子ビットは、複素スカラーαおよびβを使用して前述したように、0と1の状態の重ね合わせを占めることができる。しかし、量子ビットの状態が測定された場合、結果は0または1のいずれかになるが、計算の過程では、量子ビットは、重ね合わせの状態で発達し、これらの複素係数間に干渉効果が存在することができる。これは、厳密に古典的な確率的計算とは非常に異なっている。一般的な量子プログラムは、計算の量子力学的部分と古典的部分の調整を必要とする。一般的な量子プログラムについて考えるための1つの方法は、量子アルゴリズムを指定し、そのアルゴリズムを実行可能な形態に変換し、実験またはシミュレーションを実行し、結果を分析することに関わるプロセスおよび抽象化を識別することである。量子力学の法則を使用して情報を処理することによって、量子コンピュータは、分子計算、金融リスク計算、最適化などの計算タスクを実行するための新しい方法を提供する。
【0016】
量子コンピューティング・デバイスにおいて実装される1つの一般的な種類の量子回路は、固定された結合を伴う固定周波数トランズモン量子ビットを備える。トランズモンは、量子コンピューティング・デバイスの拡張性を向上させるために量子ビット(quantum bits)(または量子ビット(qubits))を作成することに向かう最有力候補と見なされ得る。そのような量子回路の各量子ビットは、その量子ビットをバイアス・コンポーネントに動作可能に結合するマイクロ波駆動線を含むことができる。実施形態では、そのような量子回路のハミルトニアンは、方程式1によって定義されたハミルトニアンを使用して近似され得る。
【0017】
【数1】
【0018】
上の方程式1に従って、ωはトランズモンiの量子ビット周波数(例えば、最低の2つのレベル間のエネルギー分裂)を示し、αはトランズモンiの非調和性(例えば、第1および第2のエネルギー・レベル間のエネルギー分裂とωの間の差)を示し、
【数2】

はトランズモンiの個数演算子を示し、Ωd,iはトランズモンiでのマイクロ波駆動の強度を示し、φd,iは量子ビットiでの駆動位相を示し、
【数3】

はトランズモンiの生成演算子を示し、
【数4】

は量子ビットiの消滅演算子を示し、ωd,iはトランズモンiでのマイクロ波駆動周波数を示し、Jは量子ビット間の交換結合を示し、tは時間を示す。実施形態では、方程式1はダフィング振動子近似(duffing oscillator approximation)であることができる。方程式1によって定義されたハミルトニアンは、量子ビット周波数の項、非調和性の項、駆動の項、および量子ビット間を結合することに関連している結合の項を含む。方程式1では、量子ビット周波数の項は
【数5】

に対応し、非調和性の項は
【数6】

に対応し、駆動の項はΩd,icos(ωd,it+φd,i)に対応し、結合の項は
【数7】

に対応する。
【0019】
場合によっては、「共鳴状態」の駆動信号(例えば、ωd,i=ω)の印加が単一量子ビット・ゲートを容易にすることができる。すなわち、「共鳴状態」の駆動信号を加えることによって、特定の量子ビットの状態の操作を容易にすることができる。例えば、特定の量子ビットは、基底状態|0>と励起状態|1>の間で変調することができる。場合によっては、隣接する量子ビットと共鳴する駆動信号を加えることによって、交差共鳴が実行され得る。例えば、ωd,0=ωまたはこの逆の場合に、交差共鳴が実行され得る。そのような交差共鳴を実行することによって、2量子ビット・ゲートを実行するための全マイクロ波の方法を容易にすることができる。
【0020】
方程式1によって定義された固定結合ハミルトニアン(fixed coupling Hamiltonian)の形態の1つの特徴は、「装飾されたフレーム(dressed frame)」(例えば、結合の項を考慮するためにハミルトニアンを対角化した後のフレーム)内に、残余の不要なZZ結合が存在する可能性があるということである。実施形態では、残余の不要なZZ結合は、方程式2によって定義された式を使用して近似され得る。
【0021】
【数8】
【0022】
交差共鳴を含んでいる複数のマイクロ波のみの2量子ビット・ゲートは、量子ビット間の交換結合Jに比例し得るもつれ速度を有することができる。したがって、Jを増やすことによって、2量子ビット・ゲートの速度を増やすことができる。しかし、Jを増やすことによって、アイドル・エラーおよび多量子ビット回路の非忠実度の既知の発生源であるZZを増やすことにつながる可能性もある。2量子ビット・ゲートの速度と疑似クロストークの間のこの競合は、相対的にかなり大きいJ結合強度を維持しながら、ZZの相殺につながることができるエネルギー・シフトを設計するために、複数の結合経路を利用することができる洗練された結合方式によって、改善され得る。しかし、固定周波数アーキテクチャでは、J/ZZ比率における改良は、ストラドリング領域(straddling regime)における量子ビット周波数の配置に敏感であることがある。
【0023】
場合によっては、ZZを相殺するために、側波帯遷移へのCW駆動近共振(CW drive near-resonant)が使用され得る。さらに、駆動は、シュタルク誘起されたZZゲートを駆動するために、結合された量子ビットの対に対して同じ周波数で同時に使用され得る。実施形態では、結合ハミルトニアンにおける逆回転項を除外するトランズモンの3レベル・モデルが、方程式3によって定義された式を使用して、高電力制限内で近似され得る。
【0024】
【数9】
【0025】
上の方程式に従って、
【数10】

は、方程式2によって与えられる静的ZZ相互作用の項を示し、αは、i番目の量子ビットの非調和性を(方程式1として)示し、Ωは、量子ビットiに適用されるシュタルク駆動強度を示し、φiは、量子ビットiに適用される駆動のシュタルク位相(Stark phase)を示し、Δi,dは、非共鳴駆動トーンの周波数と量子ビットiの動作周波数の間の差を示す。
【0026】
方程式3は、シュタルクによるZZの活性化または相殺あるいはその両方が、デチューンに対する駆動電力の比率によって効果的に設定され得るということを示している。方程式3は、シュタルクが駆動トーン間の相対位相の関数であることができ、量子ビット間の交換結合Jに比例することもできるということをさらに示している。方程式3は、方程式4によって定義された関係を満たす広範囲の動作パラメータ(例えば、周波数、駆動振幅、または位相差、あるいはその組み合わせ)に関してZZの相殺が達成され得るということも示している。
【0027】
【数11】
【0028】
ZZを相殺するために側波帯遷移へのCW駆動近共振が使用される場合とは異なり、二重駆動は、広範囲の周波数を容易にすることができ、一般に、側波帯遷移への駆動近共振を伴わない。さらに、二重駆動は、ZZの相殺を容易にするための追加のパラメータ(位相差)を導入することができる。
【0029】
図1は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的量子デバイス100のブロック図を示している。図1に示された実施形態例によって例示されているように、量子デバイス100は、バイアス・コンポーネント110、第1の量子ビット120、および第2の量子ビット130を含む。第1の量子ビット120および第2の量子ビット130は、それぞれ第1の駆動線125および第2の駆動線135を介して、バイアス・コンポーネント110に動作可能に結合されることができる。第1の量子ビット120または第2の量子ビット130あるいはその両方を実装するのに適している量子ビットの例としては、固定周波数量子ビット、調整可能な量子ビット、トランズモン量子ビット、固定周波数トランズモン量子ビット、調整可能なトランズモン量子ビットなどが挙げられるが、これらに限定されない。実施形態では、第1の量子ビット120または第2の量子ビット130あるいはその両方は、固定周波数の調整不可能な量子ビットであることができる。下でさらに詳細に説明されるように、バイアス・コンポーネント110は、各駆動線(例えば、第1の駆動線125または第2の駆動線135あるいはその両方)を介して加えられた連続波(CW)トーンを使用して、量子ビット(例えば、第1の量子ビット120または第2の量子ビット130あるいはその両方)間のZZ相互作用の動的制御を容易にすることができる。そのようなCWトーンの特徴を変更することによって、バイアス・コンポーネント110の実施形態は、第1の量子ビット120と第2の量子ビット130の間の調整可能な結合140を提供することができる。
【0030】
図2は、本明細書に記載された1つまたは複数の実施形態に従って、例示的な非限定的量子ビット駆動トーン(または駆動信号)を示している。特に、図2は、バイアス・コンポーネント110が対応する駆動線を介して第1の量子ビット120および第2の量子ビット130にそれぞれ加えることができる例示的な非限定的駆動トーンを描くグラフ200および250を示している。実施形態では、バイアス・コンポーネント110が加える駆動トーンは、マイクロ波駆動トーンであることができる。図2に描かれている各グラフのY軸(例えば、グラフ200の縦軸)は、駆動振幅(または駆動強度)を表し、図2に描かれている各グラフのX軸(例えば、グラフ200の横軸)は、時間を表す。
【0031】
図2によって示されているように、バイアス・コンポーネント110は、第1の駆動線125および第2の駆動線135をそれぞれ介して、単一量子ビット・パルス・トーン(single-qubit pulse tones)(例えば、単一量子ビット・パルス・トーン204、206、210、254、256、または258、あるいはその組み合わせ)を第1の量子ビット120または第2の量子ビット130あるいはその両方に加えることができる。単一量子ビット・パルス・トーンの印加は、第1の量子ビット120または第2の量子ビット130あるいはその両方に対する単一量子ビット・ゲート動作を引き起こすことができる。図2は、バイアス・コンポーネント110が、対応する駆動線を介して、2量子ビットもつれパルス・トーン(two-qubit entangling pulse tones)(例えば、2量子ビットもつれパルス・トーン208または212あるいはその両方)を第1の量子ビット120および第2の量子ビット130のうちの1つの量子ビットに加えることができるということをさらに示している。第1の量子ビット120および第2の量子ビット130のうちの1つの量子ビットへの2量子ビットもつれパルス・トーンの印加は、第1の量子ビット120と第2の量子ビット130の間の2量子ビット・ゲート動作(例えば、交差共鳴を介するCNOTゲート)を引き起こすことができる。
【0032】
バイアス・コンポーネント110は、対応する駆動線を介してCWトーンを第1の量子ビット120および第2の量子ビット130に加えることもできる。例えば、バイアス・コンポーネント110は、CWトーン202およびCWトーン252を第1の量子ビット120および第2の量子ビット130にそれぞれ加えることができる。CWトーン202は、第1の周波数(例えば、f_stark)、第1の駆動振幅Ω、および第1の駆動位相φを含む。CWトーン252は、第2の周波数(例えば、f_stark)、第2の駆動振幅Ω、および第2の駆動位相φを含む。図2の例では、CWトーン202およびCWトーン252は共通の周波数(例えば、f_stark)を含むことができる。すなわち、CWトーン202の第1の周波数およびCWトーン252の第2の周波数は、実質的に類似することができる。実施形態では、この共通の周波数は、第1の量子ビット120または第2の量子ビット130あるいはその両方の各遷移から非共鳴である周波数を使用して定義され得る。下でさらに詳細に説明されるように、バイアス・コンポーネント110は、CWトーン(例えば、CWトーン202またはCWトーン252あるいはその両方)を利用して、量子ビット間のZZ相互作用の動的制御を容易にすることができる。すなわち、バイアス・コンポーネント110は、そのようなCWトーンを利用して、量子ビット間の調整可能なZZ相互作用を容易にすることができる。
【0033】
実施形態では、バイアス・コンポーネント110は、CWトーン202またはCWトーン252あるいはその両方の間の相対位相差を動的に調整する(または制御する)ことによって、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる。この実施形態では、バイアス・コンポーネント110は、第1の駆動位相φと第2の駆動位相φの間の位相差が変化するように、第1の駆動位相φまたは第2の駆動位相φあるいはその両方を動的に調整することができる。例えば、CWトーン202およびCWトーン252は、π/2ラジアンの位相差を有することができる。この例では、バイアス・コンポーネント110は、CWトーン202とCWトーン252の間の位相差がπ/2ラジアンから別の位相差(例えば、πラジアン)に変化するように、第1の駆動位相φまたは第2の駆動位相φあるいはその両方を動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる。バイアス・コンポーネント110は、CWトーン202とCWトーン252の間の相対位相差を動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺するか、軽減するか、または大幅に減らすことができる。
【0034】
実施形態では、バイアス・コンポーネント110は、2量子ビット・ゲート動作中に第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を較正する(または調整する)ことによって、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる。例えば、バイアス・コンポーネント110は、第1の量子ビット120および第2の量子ビット130のうちの1つの量子ビットへの2量子ビットもつれパルス・トーンの印加中に、CWトーン202とCWトーン252の間の相対位相差を動的に調整する(または制御する)ことができる。この例では、バイアス・コンポーネント110は、追加的または代替的に、2量子ビットもつれパルス・トーンの印加中に、第1の駆動振幅Ωおよび第2の駆動振幅Ωのうちの少なくとも1つの振幅を調整することができる。
【0035】
当業者は、静的ZZ相互作用の項と無関係である対応する2量子ビット・ゲート動作中に、2量子ビットもつれパルス・トーン(例えば、交差共鳴パルス・トーン)がZZ相互作用の項を生成できるということを理解するであろう。2量子ビット・ゲート動作中に生成されるそのようなZZ相互作用の項は、動的ZZ相互作用と呼ばれ得る。バイアス・コンポーネント110は、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用(例えば、静的ZZ相互作用)を動的に較正することによって、2量子ビット・ゲート動作中に正味のZZ相互作用を相殺すること、軽減すること、または大幅に減らすことを、容易にすることができる。実施形態では、正味のZZ相互作用は、2量子ビット・ゲート動作中の第1の量子ビット120と第2の量子ビット130の間の交換結合強度Jに基づく大きさを有することができる。
【0036】
図3~4は、バイアス・コンポーネント110がCWトーン202およびCWトーン252を使用して第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる実施形態を示している。図3~4によって示された実施形態では、第1の量子ビット120および第2の量子ビット130は、約4841メガヘルツ(MHz)および4964MHzの共振周波数をそれぞれ有することができる。CWトーン202およびCWトーン252は、第1の量子ビット120または第2の量子ビット130の各遷移から非共鳴である周波数を使用して定義され得る共通の周波数を有することができる。この実施形態では、CWトーン202およびCWトーン252は、5000MHzの共通の周波数を有することができる。図3~4では、第1の量子ビット120および第2の量子ビット130は、-300MHzの量子ビット非調和性および4.4MHzの交換結合強度Jをそれぞれ有することもできる。
【0037】
グラフ300のY軸(例えば、グラフ300の縦軸)は、CWトーン202とCWトーン252の間の相対位相差を表し、グラフ300のX軸(例えば、グラフ300の横軸)は、バイアス・コンポーネント110が第1の量子ビット120および第2の量子ビット130に加えるCWトーン202の第1の駆動振幅Ωを表す。グラフ300によって示されているように、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用は、方程式3および4と一致するCWトーン202とCWトーン252の間の相対位相差に基づいて変化することができる。例えば、グラフ300は、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が実質的にゼロになることができる低静的ZZ相互作用領域310を含んでいる。グラフ300は、低静的ZZ相互作用領域310が、約πラジアンのCWトーン202とCWトーン252の間の相対位相差に対応する線320をほぼ中心としていることを示している。そのため、バイアス・コンポーネント110は、CWトーン202とCWトーン252の間の相対位相差を約πラジアンに動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺すること、軽減すること、または大幅に減らすことを容易にすることができる。実施形態では、バイアス・コンポーネント110が相対位相差を動的に調整するときに(または調整している間に)、CWトーン202の第1の駆動振幅ΩおよびCWトーン252の第2の駆動振幅Ωは一定のままであることができる。
【0038】
グラフ300は、方程式3および4と一致して、CWトーン202の第1の駆動振幅Ω(またはこの実施形態では、バイアス・コンポーネントがCWトーン202の第1の駆動振幅ΩとCWトーン252の第2の駆動振幅Ωの間の約1.24の一定の比率を維持する限りでは、CWトーン252の第2の駆動振幅Ω)に基づいて第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が変化することもできるということを、さらに示している。例えば、グラフ300の低静的ZZ相互作用領域310は、CWトーン202の第1の駆動振幅Ωのさまざまな値と一致する。そのため、バイアス・コンポーネント110は、CWトーン202の第1の駆動振幅ΩまたはCWトーン252の第2の駆動振幅Ωあるいはその両方を動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺すること、軽減すること、または大幅に減らすことを容易にすることもできる。実施形態では、CWトーン202とCWトーン252の間の相対位相差は、バイアス・コンポーネント110がCWトーン202の第1の駆動振幅ΩまたはCWトーン252の第2の駆動振幅Ωあるいはその両方を動的に調整するときに(または調整している間に)、一定のままであることができる。
【0039】
図4は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数としてZX速度を描く例示的な非限定的グラフ400を示している。グラフ400によって示されているように、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間の静的相互作用におけるそのような相殺または大幅な減少を容易にするため、4.4MHzの交換結合強度Jに加えて、交差共鳴を介した相対的に高速なZX速度が実現され得る。特に、グラフ400は、第1の駆動振幅Ωのさまざまな値に関して、バイアス・コンポーネント110がCWトーン202とCWトーン252の間の相対位相差をπラジアンに動的に調整するときに実現され得るZX速度を示している。例えば、線410は25MHzの第1の駆動振幅Ωに対応し、線420は22MHzの第1の駆動振幅Ωに対応し、線430は19MHzの第1の駆動振幅Ωに対応し、線440は16MHzの第1の駆動振幅Ωに対応し、線450は13MHzの第1の駆動振幅Ωに対応し、線460は10MHzの第1の駆動振幅Ωに対応し、線470は7MHzの第1の駆動振幅Ωに対応し、線480は4MHzの第1の駆動振幅Ωに対応し、線490は1MHzの第1の駆動振幅Ωに対応する。
【0040】
図5~6は、バイアス・コンポーネント110がCWトーン202およびCWトーン252を使用して第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる別の実施形態を示している。図5~6に示された実施形態例では、第1の量子ビット120および第2の量子ビット130の各共振周波数および量子ビット非調和性は、図3~4によって示された実施形態から変化しないままであることができる。さらに、CWトーン202およびCWトーン252の各周波数は5000MHzのままであることができる。図5~6では、第1の量子ビット120および第2の量子ビット130は、8MHzの交換結合強度Jを有することができる。
【0041】
グラフ500のY軸(例えば、グラフ500の縦軸)は、CWトーン202とCWトーン252の間の相対位相差を表し、グラフ500のX軸(例えば、グラフ500の横軸)は、バイアス・コンポーネント110が第1の量子ビット120および第2の量子ビット130に加えるCWトーン202の第1の駆動振幅Ωを表す。グラフ300によって示されているように、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用は、方程式3および4と一致するCWトーン202とCWトーン252の間の相対位相差に基づいて変化することができる。例えば、グラフ500は、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が実質的にゼロになることができる低静的ZZ相互作用領域510を含んでいる。グラフ500は、低静的ZZ相互作用領域510が、約πラジアンのCWトーン202とCWトーン252の間の相対位相差に対応する線520をほぼ中心としていることを示している。そのため、バイアス・コンポーネント110は、CWトーン202とCWトーン252の間の相対位相差を約πラジアンに動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺すること、軽減すること、または大幅に減らすことを容易にすることができる。実施形態では、バイアス・コンポーネント110が相対位相差を動的に調整するときに(または調整している間に)、CWトーン202の第1の駆動振幅ΩおよびCWトーン252の第2の駆動振幅Ωは一定のままであることができる。
【0042】
グラフ500は、方程式3および4と一致して、CWトーン202の第1の駆動振幅Ω(またはこの実施形態では、バイアス・コンポーネントがCWトーン202の第1の駆動振幅ΩとCWトーン252の第2の駆動振幅Ωの間の約3の一定の比率を維持する限りでは、CWトーン252の第2の駆動振幅Ω)に基づいて第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が変化することもできるということを、さらに示している。例えば、グラフ500の低静的ZZ相互作用領域510は、CWトーン202の第1の駆動振幅Ωのさまざまな値と一致する。そのため、バイアス・コンポーネント110は、CWトーン202の第1の駆動振幅ΩまたはCWトーン252の第2の駆動振幅Ωあるいはその両方を動的に調整することによって、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺すること、軽減すること、または大幅に減らすことを容易にすることもできる。実施形態では、CWトーン202とCWトーン252の間の相対位相差は、バイアス・コンポーネント110がCWトーン202の第1の駆動振幅ΩまたはCWトーン252の第2の駆動振幅Ωあるいはその両方を動的に調整するときに(または調整している間に)、一定のままであることができる。グラフ500は、結合ハミルトニアンにおける逆回転項をさらに含んでいる。この例では、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用は、1MHzを超える可能性がある。
【0043】
図6は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数としてZX速度を描く例示的な非限定的グラフ600を示している。グラフ600によって示されているように、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用におけるそのような相殺または大幅な減少を容易にするため、8MHzの交換結合強度Jに加えて、交差共鳴を介した相対的に高速なZX速度が実現され得る。特に、グラフ600は、第1の駆動振幅Ωのさまざまな値に関して、バイアス・コンポーネント110がCWトーン202とCWトーン252の間の相対位相差をπラジアンに動的に調整するときに実現され得るZX速度を示している。例えば、線610は25MHzの第1の駆動振幅Ωに対応し、線620は22MHzの第1の駆動振幅Ωに対応し、線630は19MHzの第1の駆動振幅Ωに対応し、線640は16MHzの第1の駆動振幅Ωに対応し、線650は13MHzの第1の駆動振幅Ωに対応し、線660は10MHzの第1の駆動振幅Ωに対応し、線670は7MHzの第1の駆動振幅Ωに対応し、線680は4MHzの第1の駆動振幅Ωに対応し、線690は1MHzの第1の駆動振幅Ωに対応する。
【0044】
図7~10は、本明細書に記載された1つまたは複数の実施形態に従って、単一量子ビットのランダム化されたベンチマーキング(RB:randomized benchmarking)の実行中にCWトーンによって容易にされる静的ZZ相互作用の減少の例を示している。特に、図7のグラフ700および図9のグラフ900は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にしていない、第1の量子ビット120および第2の量子ビット130に対して実行された同時の単一量子ビットのRBの実行の結果をそれぞれ示している。図8のグラフ800および図10のグラフ1000は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にしている、第1の量子ビット120および第2の量子ビット130に対して実行された同時の単一量子ビットのRBの実行の結果をそれぞれ示している。図7~10に描かれている各グラフのY軸(例えば、グラフ700の縦軸)は、各|1>励起状態占有率を表し、図7~10に描かれている各グラフのX軸(例えば、グラフ700の横軸)は、クリフォード長(Clifford Length)またはクリフォード数を表す。実施形態では、図7~10に描かれている各グラフのY軸は、単位なしの小数に対応することができる。この例では、第1の量子ビット120および第2の量子ビット130は、4963.9MHzおよび4841.3MHzの共振周波数をそれぞれ有することができる。この例では、第1の量子ビット120は、158.1マイクロ秒(μs)の平均T1コヒーレンス時間および144.6μsの平均T2コヒーレンス時間を有することができる。この例では、第2の量子ビット130は、123.9μsの平均T1コヒーレンス時間および126.7μsの平均T2コヒーレンス時間を有することができる。
【0045】
第1の量子ビット120および第2の量子ビット130に対して同時の単一量子ビットのRBを実行するために、バイアス・コンポーネント110は、第1の駆動線125および第2の駆動線135をそれぞれ介して、単一量子ビット・パルス・トーンを同時に加えることができる。単一量子ビット・パルス・トーンのこの同時の印加は、第1の量子ビット120および第2の量子ビット130に対する72ナノ秒(ns)の単一量子ビット・ゲート動作を引き起こすことができる。この例では、第1の量子ビット120および第2の量子ビット130は、約4.4MHzの交換結合強度Jを有することができる。バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にしなければ、約312キロヘルツ(kHz)の第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が、約4.4MHzのこの交換結合強度Jに伴って生じる可能性がある。約312kHzのこの静的ZZ相互作用は、回路性能を低下させることがある。例えば、グラフ700および900は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にしなければ、第1の量子ビット120および第2の量子ビット130が約0.08%の平均エラー率またはクリフォード当たりのエラー(EPC:Error per Clifford)をそれぞれ有するということを示している。
【0046】
バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にすれば、第1の量子ビット120と第2の量子ビット130の間で、約4.4MHzの交換結合強度Jが維持され得る。しかし、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にすると、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用が、約312kHzから約8kHzに減らされ得る。第1の量子ビット120と第2の量子ビット130の間の静的相互作用におけるそのような減少は、回路性能における改善を容易にすることができる。例えば、グラフ800および1000は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にすると、第1の量子ビット120および第2の量子ビット130の平均エラー率またはEPCが約0.08%から約0.03%にそれぞれ改善することを示している。この例では、バイアス・コンポーネント110は、第1の量子ビット120および第2の量子ビット130に対して同時の単一量子ビットのRBを実行しながら、第1の駆動線125および第2の駆動線135を介して、5000MHzの周波数をそれぞれ有するCWトーンを加えることができる。
【0047】
図11~12は、本明細書に記載された1つまたは複数の実施形態に従って、2量子ビットのRBの実行中にCWトーンによって容易にされる静的ZZ相互作用の減少の例を示している。特に、図11のグラフ1100および図12のグラフ1200は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にしている、第1の量子ビット120および第2の量子ビット130に対して実行された2量子ビットのRBの実行の結果をそれぞれ示している。図11~12に描かれている各グラフのY軸(例えば、グラフ1100の縦軸)は、各|1>励起状態占有率を表し、図11~12に描かれている各グラフのX軸(例えば、グラフ1100の横軸)は、クリフォード長またはクリフォード数を表す。実施形態では、図7~10に描かれている各グラフのY軸は、単位なしの小数に対応することができる。この例では、第1の量子ビット120および第2の量子ビット130は、4963.9メガヘルツ(MHz)および4841.3MHzの共振周波数をそれぞれ有することができる。この例では、第1の量子ビット120は、158.1マイクロ秒(μs)の平均T1コヒーレンス時間および144.6μsの平均T2コヒーレンス時間を有することができる。この例では、第2の量子ビット130は、123.9μsの平均T1コヒーレンス時間および126.7μsの平均T2コヒーレンス時間を有することができる。
【0048】
第1の量子ビット120および第2の量子ビット130に対して同時の2量子ビットのRBを実行するために、バイアス・コンポーネント110は、第1の駆動線125を介して、2量子ビットもつれパルス・トーンを第1の量子ビット120に加えることができる。2量子ビットもつれパルス・トーンのこの印加は、第1の量子ビット120と第2の量子ビット130の間の2量子ビット・ゲート動作(例えば、交差共鳴を介するCNOTゲート)を引き起こすことができる。この例では、バイアス・コンポーネント110は、第1の量子ビット120および第2の量子ビット130に対して2量子ビットのRBを実行しながら、第1の駆動線125および第2の駆動線135を介して、5000MHzの周波数をそれぞれ有するCWトーンを加えることもできる。この例では、2量子ビットのRBの実行中に、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用は、約8kHzになることができる。グラフ1100および1200は、バイアス・コンポーネント110がCWトーンを使用して静的ZZ相互作用の制御を容易にすれば、第1の量子ビット120および第2の量子ビット130が約0.8%のゲート当たりの平均エラー率(EPC/1.5)をそれぞれ有することができるということを示している。
【0049】
図13は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数として第1の量子ビット120と第2の量子ビット130の間のZZ相互作用強度を描く例示的な非限定的グラフ1300を示している。グラフ1300では、線1310が、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用に対応し、線1320が、CWシュタルク駆動トーン(CW Stark drive tone)の後の第1の量子ビット120と第2の量子ビット130の間のZZ相互作用に対応し、線1330が、追加の交差共鳴駆動トーンの後の第1の量子ビット120と第2の量子ビット130の間のZZ相互作用に対応する。図14は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数としてZX相互作用強度を描く例示的な非限定的グラフ1400を示している。図13~14は、バイアス・コンポーネント110がCWトーン202およびCWトーン252を使用して第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる別の実施形態を示している。
【0050】
図13~14によって示された実施形態では、第1の量子ビット120および第2の量子ビット130は、約4963.9MHzおよび4841.2MHzの共振周波数をそれぞれ有することができる。図13~14では、第1の量子ビット120および第2の量子ビット130は、-300MHzの量子ビット非調和性および4.4MHzの交換結合強度Jをそれぞれ有することもできる。CWトーン202およびCWトーン252は、第1の量子ビット120または第2の量子ビット130の各遷移から非共鳴である周波数を使用して定義され得る共通の周波数(例えば、5000MHz)を有することができる。バイアス・コンポーネント110は、約πラジアンでのCWトーン202とCWトーン252の間の相対位相差を設定することができる。図13~14では、バイアス・コンポーネント110は、2量子ビット・ゲート動作中に正味のZZ相互作用を相殺するように、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を較正することができる。そのため、バイアス・コンポーネント110は、CWトーン202の第1の駆動振幅ΩおよびCWトーン252の第2の駆動振幅Ωを16.09MHzおよび17.35MHzにそれぞれ調整することができる。その際に、図13および14に示されているように、約30MHzの交差共鳴トーンの振幅でのZX動作の場合に、2量子ビット・ゲート動作中の正味のZZ相互作用は、実質的にゼロになることができる。
【0051】
図15は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数として第1の量子ビット120と第2の量子ビット130の間のZZ相互作用強度を描く例示的な非限定的グラフ1500を示している。グラフ1500では、線1510が、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用に対応し、線1520が、CWシュタルク駆動トーンの後の第1の量子ビット120と第2の量子ビット130の間のZZ相互作用に対応し、線1530が、追加の交差共鳴駆動トーンの後の第1の量子ビット120と第2の量子ビット130の間のZZ相互作用に対応する。図16は、本明細書に記載された1つまたは複数の実施形態に従って、交差共鳴駆動強度(または振幅)の関数としてZX相互作用強度を描く例示的な非限定的グラフ1600を示している。図15~16は、バイアス・コンポーネント110がCWトーン202およびCWトーン252を使用して第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる別の実施形態を示している。
【0052】
図15~16に示された実施形態では、第1の量子ビット120および第2の量子ビット130の各共振周波数および量子ビット非調和性は、図13~14によって示された実施形態から変化しないままであることができる。さらに、CWトーン202およびCWトーン252の各周波数は5000MHzのままであることができる。図15~16では、第1の量子ビット120および第2の量子ビット130は、4.4MHzの交換結合強度Jを有することもできる。バイアス・コンポーネント110は、約πラジアンでのCWトーン202とCWトーン252の間の相対位相差を設定することができる。図15~16では、バイアス・コンポーネント110は、2量子ビット・ゲート動作中に、第1の量子ビット120と第2の量子ビット130の間の静的ZZ相互作用を相殺するようにCWトーン202およびCWトーン252を調整することができる。そのため、バイアス・コンポーネント110は、CWトーン202の第1の駆動振幅ΩおよびCWトーン252の第2の駆動振幅Ωを17MHzおよび21.8MHzにそれぞれ調整することができる。その際に、図15および16に示されているように、2量子ビット・ゲート動作中の静的ZZ相互作用は、実質的にゼロになることができる。
【0053】
図17は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする例示的な非限定的コンピュータ実装方法1700のフロー図を示している。本明細書に記載された他の実施形態で採用されている類似する要素の説明の繰り返しは、簡潔にするために省略されている。1710で、コンピュータ実装方法1700は、プロセッサに結合されたシステムによって、各第1および第2の駆動線(例えば、第1の駆動線125および第2の駆動線135)を介して、バイアス・コンポーネント(例えば、図1のバイアス・コンポーネント110)を第1および第2の量子ビット(例えば、第1の量子ビット120および第2の量子ビット130)に動作可能に結合することを含むことができる。
【0054】
1720で、コンピュータ実装方法1700は、システムによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられるCWトーンで、第1および第2の量子ビット間のZZ相互作用を動的に制御することを含むことができる。実施形態では、システムは、バイアス・コンポーネントを使用して、CWトーン間の相対位相差を動的に調整することによって、第1および第2の量子ビット間のZZ相互作用を動的に制御することができ、相対位相差を動的に調整することが、第1および第2の量子ビット間の静的ZZ相互作用を相殺する。実施形態では、システムは、バイアス・コンポーネントを使用して、各第1および第2の駆動線のトーンを介して加えられるCWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、第1および第2の量子ビット間のZZ相互作用を動的に制御することができる。実施形態では、少なくとも1つのCWトーンの振幅を動的に調整することによって、第1および第2の量子ビット間の静的ZZ相互作用を相殺することができる。実施形態では、システムは、バイアス・コンポーネントを使用して、第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、第1および第2の量子ビット間のZZ相互作用を較正することによって、第1および第2の量子ビット間のZZ相互作用を動的に制御することができる。実施形態では、システムは、バイアス・コンポーネントを使用して、第1および第2の量子ビット間のZZ相互作用を相殺するようにCWトーンを調整することによって、第1および第2の量子ビット間のZZ相互作用を動的に制御することができる。
【0055】
実施形態では、コンピュータ実装方法1700は、システムによって、ZZ相互作用を相殺するようにCWトーンが調整されている間に、第1および第2の量子ビットの各動作周波数を再較正することをさらに含むことができる。実施形態では、システムは、ラムジー・パルス・シーケンス(Ramsey pulse sequences)を使用して、第1および第2の量子ビットの各動作周波数を再較正することができる。
【0056】
開示される主題のさまざまな態様の背景を提供するために、図18および以下の説明は、開示される主題のさまざまな態様が実装され得る適切な環境の概要を示すよう意図されている。本開示のさまざまな態様を実装することはコンピュータ1812を含むこともできるので、図18は適切な動作環境1800を示す。コンピュータ1812は、処理ユニット1814、システム・メモリ1816、およびシステム・バス1818を含むこともできる。システム・バス1818は、システム・メモリ1816を含むが、これに限定されないシステム・コンポーネントを、処理ユニット1814に結合する。処理ユニット1814は、さまざまな使用可能なプロセッサのいずれかであることができる。デュアル・マイクロプロセッサおよび他のマルチプロセッサ・アーキテクチャが、処理ユニット1814として採用されることも可能である。システム・バス1818は、ISA(Industry Standard Architecture)、MCA(Micro Channel Architecture)、EISA(Enhanced ISA)、IDE(Intelligent Drive Electronics)、VESAローカル・バス(VLB:VESA Local Bus)、PCI(Peripheral Component Interconnects)、カードバス、ユニバーサル・シリアル・バス(USB:Universal Serial Bus)、AGP(Advanced Graphics Port)、Firewire(IEEE 1094)、および小型コンピュータ・システム・インターフェイス(SCSI:Small Computer Systems Interface)を含むが、これらに限定されない、任意のさまざまな使用可能なバス・アーキテクチャを使用する、メモリ・バスもしくはメモリ・コントローラ、ペリフェラル・バスもしくは外部バス、またはローカル・バス、あるいはその組み合わせを含む、複数の種類のバス構造のいずれかであることができる。システム・メモリ1816は、揮発性メモリ1820および不揮発性メモリ1822を含むこともできる。起動中などにコンピュータ1812内の要素間で情報を転送するための基本ルーチンを含んでいる基本入出力システム(BIOS:basic input/output system)が、不揮発性メモリ1822に格納される。不揮発性メモリ1822の例としては、読み取り専用メモリ(ROM:read only memory)、プログラマブルROM(PROM:programmableROM)、電気的プログラマブルROM(EPROM:electrically programmable ROM)、電気的消去可能プログラマブルROM(EEPROM:electrically erasable programmable ROM)、フラッシュ・メモリ、または不揮発性ランダム・アクセス・メモリ(RAM:random access memory)(例えば、強誘電体RAM(FeRAM:ferroelectric RAM))が挙げられるが、これらに限定されない。揮発性メモリ1820は、外部キャッシュ・メモリとして機能するランダム・アクセス・メモリ(RAM)を含むこともできる。例えばRAMは、スタティックRAM(SRAM:static RAM)、ダイナミックRAM(DRAM:dynamic RAM)、シンクロナスDRAM(SDRAM:synchronous DRAM)、ダブル・データ・レートSDRAM(DDR SDRAM:double data rate SDRAM)、拡張SDRAM(ESDRAM:enhanced SDRAM)、シンクリンクDRAM(SLDRAM:Synchlink DRAM)、ダイレクト・ラムバスRAM(DRRAM:direct Rambus RAM)、ダイレクト・ラムバス・ダイナミックRAM(DRDRAM:direct Rambus dynamic RAM)、およびラムバス・ダイナミックRAMなどの、ただしこれらに限定されない、多くの形態で利用可能である。
【0057】
コンピュータ1812は、取り外し可能/取り外し不可能な揮発性/不揮発性のコンピュータ・ストレージ媒体を含むこともできる。例えば図18は、ディスク・ストレージ1824を示している。ディスク・ストレージ1824は、磁気ディスク・ドライブ、フロッピー(R)・ディスク・ドライブ、テープ・ドライブ、Jazドライブ、Zipドライブ、LS-100ドライブ、フラッシュ・メモリ・カード、またはメモリ・スティックなどの、ただしこれらに限定されない、デバイスを含むこともできる。ディスク・ストレージ1824は、コンパクト・ディスクROM(CD-ROM:compact disk ROM)デバイス、記録可能CD(CD-R:CD recordable)ドライブ、再書き込み可能CD(CD-RW:CD rewritable)ドライブ、またはデジタル・バーサタイル・ディスクROM(DVD-ROM:digital versatile disk ROM)ドライブなどの光ディスク・ドライブを含むが、これらに限定されないストレージ媒体を、別々に、または他のストレージ媒体と組み合わせて、含むこともできる。システム・バス1818へのディスク・ストレージ1824の接続を容易にするために、インターフェイス1826などの、取り外し可能または取り外し不可能なインターフェイスが通常は使用される。図18は、ユーザと、適切な動作環境1800において説明された基本的なコンピュータ・リソースとの間の仲介として機能するソフトウェアも示している。そのようなソフトウェアは、例えば、オペレーティング・システム1828を含むこともできる。ディスク・ストレージ1824に格納できるオペレーティング・システム1828は、コンピュータ1812のリソースを制御し、割り当てるように動作する。システムのアプリケーション1830は、例えばシステム・メモリ1816またはディスク・ストレージ1824のいずれかに格納されたプログラム・モジュール1832およびプログラム・データ1834を介して、オペレーティング・システム1828によるリソースの管理を利用する。さまざまなオペレーティング・システムまたはオペレーティング・システムの組み合わせを使用して本開示が実装され得るということが、理解されるべきである。ユーザは、入力デバイス1836を介して、コマンドまたは情報をコンピュータ1812に入力する。入力デバイス1836は、マウス、トラックボール、スタイラス、タッチ・パッド、キーボード、マイクロホン、ジョイスティック、ゲーム・パッド、衛星放送受信アンテナ、スキャナ、TVチューナー・カード、デジタル・カメラ、デジタル・ビデオ・カメラ、Webカメラなどのポインティング・デバイスを含むが、これらに限定されない。これらおよび他の入力デバイスは、インターフェイス・ポート1838を介してシステム・バス1818を通り、処理ユニット1814に接続する。インターフェイス・ポート1838は、例えば、シリアル・ポート、パラレル・ポート、ゲーム・ポート、およびユニバーサル・シリアル・バス(USB)を含む。出力デバイス1840は、入力デバイス1836と同じ種類のポートの一部を使用する。このようにして、例えば、USBポートを使用して、入力をコンピュータ1812に提供し、コンピュータ1812から出力デバイス1840に情報を出力できる。出力アダプタ1842は、特殊なアダプタを必要とする出力デバイス1840の中でも特に、モニタ、スピーカ、およびプリンタのような何らかの出力デバイス1840が存在することを示すために提供される。出力アダプタ1842の例としては、出力デバイス1840とシステム・バス1818の間の接続の手段を提供するビデオ・カードおよびサウンド・カードが挙げられるが、これらに限定されない。リモート・コンピュータ1844などの、その他のデバイスまたはデバイスのシステムあるいはその両方が、入力機能および出力機能の両方を提供すると言うことができる。
【0058】
コンピュータ1812は、リモート・コンピュータ1844などの1つまたは複数のリモート・コンピュータへの論理接続を使用して、ネットワーク環境内で動作できる。リモート・コンピュータ1844は、コンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースの機器、ピア・デバイス、またはその他の一般的なネットワーク・ノードなどであることができ、通常は、コンピュータ1812に関連して説明された要素の多くを含むこともできる。簡潔にするために、メモリ・ストレージ・デバイス1846のみが、リモート・コンピュータ1844と共に示されている。リモート・コンピュータ1844は、ネットワーク・インターフェイス1848を介してコンピュータ1812に論理的に接続されてから、通信接続1850を介して物理的に接続される。ネットワーク・インターフェイス1848は、ローカル・エリア・ネットワーク(LAN:local-area networks)、広域ネットワーク(WAN:wide-area networks)、セルラー・ネットワークなどの、有線通信ネットワークまたはワイヤレス通信ネットワークあるいはその両方を包含する。LAN技術は、光ファイバ分散データ・インターフェイス(FDDI:Fiber Distributed Data Interface)、銅線分散データ・インターフェイス(CDDI:Copper Distributed Data Interface)、イーサネット(R)、トークン・リングなどを含む。WAN技術は、ポイントツーポイント・リンク、総合デジタル通信網(ISDN:Integrated Services Digital Networks)およびその変形などの回路交換網、パケット交換網、およびデジタル加入者回線(DSL:Digital Subscriber Lines)を含むが、これらに限定されない。通信接続1850は、ネットワーク・インターフェイス1848をシステム・バス1818に接続するために採用されたハードウェア/ソフトウェアのことを指す。通信接続1850は、説明を明確にするために、コンピュータ1812内に示されているが、コンピュータ1812の外部に存在することもできる。ネットワーク・インターフェイス1848に接続するためのハードウェア/ソフトウェアは、単に例示の目的で、通常の電話の等級のモデム、ケーブル・モデム、およびDSLモデムを含むモデム、ISDNアダプタ、ならびにイーサネット(R)・カードなどの、内部および外部の技術を含むこともできる。
【0059】
本発明は、任意の可能な統合の技術的詳細レベルで、システム、方法、装置、またはコンピュータ・プログラム製品、あるいはその組み合わせであってよい。コンピュータ・プログラム製品は、プロセッサに本発明の態様を実行させるためのコンピュータ可読プログラム命令を含んでいるコンピュータ可読ストレージ媒体を含むことができる。コンピュータ可読ストレージ媒体は、命令実行デバイスによって使用するための命令を保持および格納できる有形のデバイスであることができる。コンピュータ可読ストレージ媒体は、例えば、電子ストレージ・デバイス、磁気ストレージ・デバイス、光ストレージ・デバイス、電磁ストレージ・デバイス、半導体ストレージ・デバイス、またはこれらの任意の適切な組み合わせであることができるが、これらに限定されない。コンピュータ可読ストレージ媒体のさらに具体的な例の非網羅的リストは、ポータブル・コンピュータ・ディスケット、ハード・ディスク、ランダム・アクセス・メモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read-only memory)、消去可能プログラマブル読み取り専用メモリ(EPROM:erasable programmable read-only memoryまたはフラッシュ・メモリ)、スタティック・ランダム・アクセス・メモリ(SRAM:static random access memory)、ポータブル・コンパクト・ディスク読み取り専用メモリ(CD-ROM:compact disc read-only memory)、デジタル・バーサタイル・ディスク(DVD:digital versatile disk)、メモリ・スティック、フロッピー(R)・ディスク、パンチカードまたは命令が記録されている溝の中の隆起構造などの機械的にエンコードされるデバイス、およびこれらの任意の適切な組み合わせを含むこともできる。本明細書において使用されるとき、コンピュータ可読ストレージ媒体は、それ自体が、電波または他の自由に伝搬する電磁波、導波管または他の送信媒体を伝搬する電磁波(例えば、光ファイバ・ケーブルを通過する光パルス)、あるいはワイヤを介して送信される電気信号などの一過性の信号であると解釈されるべきではない。
【0060】
本明細書に記載されたコンピュータ可読プログラム命令は、コンピュータ可読ストレージ媒体から各コンピューティング・デバイス/処理デバイスへ、またはネットワーク(例えば、インターネット、ローカル・エリア・ネットワーク、広域ネットワーク、または無線ネットワーク、あるいはその組み合わせ)を介して外部コンピュータまたは外部ストレージ・デバイスへダウンロードされ得る。このネットワークは、銅伝送ケーブル、光伝送ファイバ、ワイヤレス送信、ルータ、ファイアウォール、スイッチ、ゲートウェイ・コンピュータ、またはエッジ・サーバ、あるいはその組み合わせを備えることができる。各コンピューティング・デバイス/処理デバイス内のネットワーク・アダプタ・カードまたはネットワーク・インターフェイスは、コンピュータ可読プログラム命令をネットワークから受信し、それらのコンピュータ可読プログラム命令を各コンピューティング・デバイス/処理デバイス内のコンピュータ可読ストレージ媒体に格納するために転送する。本発明の動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セット・アーキテクチャ(ISA:instruction-set-architecture)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、集積回路のための構成データ、あるいはSmalltalk(R)、C++などのオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語などの手続き型プログラミング言語を含む1つまたは複数のプログラミング言語の任意の組み合わせで記述されたソース・コードまたはオブジェクト・コードであることができる。コンピュータ可読プログラム命令は、ユーザのコンピュータ上で全体的に実行すること、ユーザのコンピュータ上でスタンドアロン・ソフトウェア・パッケージとして部分的に実行すること、ユーザのコンピュータ上およびリモート・コンピュータ上でそれぞれ部分的に実行すること、あるいはリモート・コンピュータ上またはサーバ上で全体的に実行することができる。後者のシナリオでは、リモート・コンピュータは、ローカル・エリア・ネットワーク(LAN)または広域ネットワーク(WAN)を含む任意の種類のネットワークを介してユーザのコンピュータに接続することができ、または接続は、(例えば、インターネット・サービス・プロバイダを使用してインターネットを介して)外部コンピュータに対して行われ得る。一部の実施形態では、本発明の態様を実行するために、例えばプログラマブル論理回路、フィールドプログラマブル・ゲート・アレイ(FPGA:field-programmable gate arrays)、またはプログラマブル・ロジック・アレイ(PLA:programmable logic arrays)を含む電子回路は、コンピュータ可読プログラム命令の状態情報を利用することによって、電子回路をカスタマイズするためのコンピュータ可読プログラム命令を実行することができる。
【0061】
本発明の態様は、本明細書において、本発明の実施形態に従って、方法、装置(システム)、およびコンピュータ・プログラム製品のフローチャート図またはブロック図あるいはその両方を参照して説明される。フローチャート図またはブロック図あるいはその両方の各ブロック、ならびにフローチャート図またはブロック図あるいはその両方に含まれるブロックの組み合わせが、コンピュータ可読プログラム命令によって実装され得るということが理解されるであろう。これらのコンピュータ可読プログラム命令は、コンピュータまたは他のプログラム可能なデータ処理装置のプロセッサを介して実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施する手段を作り出すべく、汎用コンピュータ、専用コンピュータ、または他のプログラム可能なデータ処理装置のプロセッサに提供されてマシンを作り出すものであることができる。これらのコンピュータ可読プログラム命令は、命令が格納されたコンピュータ可読ストレージ媒体がフローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作の態様を実施する命令を含んでいる製品を備えるように、コンピュータ可読ストレージ媒体に格納され、コンピュータ、プログラム可能なデータ処理装置、または他のデバイス、あるいはその組み合わせに特定の方式で機能するように指示できるものであることもできる。コンピュータ可読プログラム命令は、コンピュータ上、他のプログラム可能な装置上、または他のデバイス上で実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施するように、コンピュータ実装プロセスを生成すべく、コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイスに読み込まれ、一連の操作可能な動作を、コンピュータ上、他のプログラム可能な装置上、または他のデバイス上で実行させるものであることもできる。
【0062】
図内のフローチャートおよびブロック図は、本発明のさまざまな実施形態に従って、システム、方法、およびコンピュータ・プログラム製品の可能な実装のアーキテクチャ、機能、および動作を示す。これに関連して、フローチャートまたはブロック図内の各ブロックは、規定された論理機能を実装するための1つまたは複数の実行可能な命令を含んでいる、命令のモジュール、セグメント、または部分を表すことができる。一部の代替の実装では、ブロックに示された機能は、図に示された順序とは異なる順序で発生することができる。例えば、連続して示された2つのブロックは、実際には、含まれている機能に応じて、実質的に同時に実行されるか、または場合によっては逆の順序で実行され得る。ブロック図またはフローチャート図あるいはその両方の各ブロック、ならびにブロック図またはフローチャート図あるいはその両方に含まれるブロックの組み合わせは、規定された機能または動作を実行するか、または専用ハードウェアとコンピュータ命令の組み合わせを実行する専用ハードウェアベースのシステムによって実装されることができるということにも注意する。
【0063】
上記では、1つのコンピュータまたは複数のコンピュータあるいはその両方で実行されるコンピュータ・プログラム製品のコンピュータ実行可能命令との一般的な関連において、本主題が説明されたが、当業者は、本開示が他のプログラム・モジュールと組み合わせられるか、または他のプログラム・モジュールと組み合わせて実装され得るということを認識するであろう。通常、プログラム・モジュールは、特定のタスクを実行するか、または特定の抽象データ型を実装するか、あるいはその両方を行うルーチン、プログラム、コンポーネント、データ構造などを含む。さらに、当業者は、本発明のコンピュータ実装方法が、シングルプロセッサ・コンピュータ・システムまたはマルチプロセッサ・コンピュータ・システム、ミニコンピューティング・デバイス、メインフレーム・コンピュータ、コンピュータ、ハンドヘルド・コンピューティング・デバイス(例えば、PDA、電話)、マイクロプロセッサベースまたはプログラム可能な家庭用電化製品または産業用電子機器などを含む、他のコンピュータ・システム構成を使用して実践され得るということを理解するであろう。示された態様は、通信ネットワークを介してリンクされたリモート処理デバイスによってタスクが実行される、分散コンピューティング環境内で実践されることも可能である。ただし、本開示の態様の全部ではないとしても一部は、スタンドアロン・コンピュータ上で実践され得る。分散コンピューティング環境において、プログラム・モジュールは、ローカルおよびリモートの両方のメモリ・ストレージ・デバイスに配置され得る。例えば、1つまたは複数の実施形態では、コンピュータ実行可能コンポーネントは、1つまたは複数の分散されたメモリ・ユニットを含むことができるか、または1つまたは複数の分散されたメモリ・ユニットから成ることができる、メモリから実行され得る。本明細書において使用されるとき、「メモリ」および「メモリ・ユニット」は交換可能である。さらに、本明細書に記載された1つまたは複数の実施形態は、コンピュータ実行可能コンポーネントのコードを、分散された方法で、例えば、1つまたは複数の分散されたメモリ・ユニットからのコードを実行するように結合しているか、または協調して動作している複数のプロセッサで、実行することができる。本明細書において使用されるとき、「メモリ」という用語は、1つの位置での単一のメモリまたはメモリ・ユニット、あるいは1つまたは複数の位置での複数のメモリまたはメモリ・ユニットを包含することができる。
【0064】
本出願において使用されるとき、「コンポーネント」、「システム」、「プラットフォーム」、「インターフェイス」などの用語は、1つまたは複数の特定の機能を含むコンピュータ関連の実体または操作可能なマシンに関連する実体を指すことができるか、またはそれらの実体を含むことができるか、あるいはその両方が可能である。本明細書で開示された実体は、ハードウェア、ハードウェアとソフトウェアの組み合わせ、ソフトウェア、または実行中のソフトウェアのいずれかであることができる。例えば、コンポーネントは、プロセッサ上で実行されるプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラム、またはコンピュータ、あるいはその組み合わせであることができるが、これらに限定されない。例として、サーバ上で実行されるアプリケーションおよびサーバの両方が、コンポーネントであることができる。1つまたは複数のコンポーネントが、プロセス内または実行のスレッド内あるいはその両方に存在することができ、コンポーネントは、1つのコンピュータ上に局在するか、または2つ以上のコンピュータ間で分散されるか、あるいはその両方が可能である。別の例では、各コンポーネントは、さまざまなデータ構造が格納されているさまざまなコンピュータ可読媒体から実行できる。コンポーネントは、1つまたは複数のデータ・パケット(例えば、ローカル・システム内または分散システム内の別のコンポーネントと情報をやりとりするか、またはインターネットなどのネットワークを経由して、信号を介して他のシステムと情報をやりとりするか、あるいはその両方によって情報をやりとりする、1つのコンポーネントからのデータ)を含んでいる信号などに従って、ローカルまたはリモートあるいはその両方のプロセスを介して通信できる。別の例として、コンポーネントは、電気または電子回路によって操作される機械的部品によって提供される特定の機能を有する装置であることができ、プロセッサによって実行されるソフトウェア・アプリケーションまたはファームウェア・アプリケーションによって操作される。そのような場合、プロセッサは、装置の内部または外部に存在することができ、ソフトウェア・アプリケーションまたはファームウェア・アプリケーションの少なくとも一部を実行できる。さらに別の例として、コンポーネントは、機械的部品を含まない電子コンポーネントを介して特定の機能を提供する装置であることができ、それらの電子コンポーネントは、電子コンポーネントの機能の少なくとも一部を与えるソフトウェアまたはファームウェアを実行するためのプロセッサまたは他の手段を含むことができる。1つの態様では、コンポーネントは、例えばクラウド・コンピューティング・システム内で、仮想マシンを介して電子コンポーネントをエミュレートすることができる。
【0065】
加えて、「または」という用語は、排他的論理和ではなく、包含的論理和を意味するよう意図されている。すなわち、特に指定されない限り、または文脈から明らかでない限り、「XがAまたはBを採用する」は、自然な包含的順列のいずれかを意味するよう意図されている。すなわち、XがAを採用するか、XがBを採用するか、またはXがAおよびBの両方を採用する場合、「XがAまたはBを採用する」が、前述の事例のいずれかにおいて満たされる。さらに、本明細書および添付の図面において使用される冠詞「a」および「an」は、単数形を対象にすることが特に指定されない限り、または文脈から明らかでない限り、「1つまたは複数」を意味すると一般に解釈されるべきである。本明細書において使用されるとき、「例」または「例示的」あるいはその両方の用語は、例、事例、または実例となることを意味するために使用される。誤解を避けるために、本明細書で開示された主題は、そのような例によって制限されない。加えて、「例」または「例示的」あるいはその両方として本明細書に記載された任意の態様または設計は、他の態様または設計よりも好ましいか、または有利であると必ずしも解釈されず、当業者に知られている同等の例示的な構造および技術を除外するよう意図されていない。
【0066】
本明細書において使用されるとき、「プロセッサ」という用語は、シングルコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるシングルプロセッサと、マルチコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるマルチコア・プロセッサと、ハードウェアのマルチスレッド技術を備えるマルチコア・プロセッサと、並列プラットフォームと、分散共有メモリを備える並列プラットフォームとを含むが、これらに限定されない、実質的に任意の計算処理ユニットまたはデバイスを指すことができる。さらに、プロセッサは、集積回路、特定用途向け集積回路(ASIC:application specific integrated circuit)、デジタル信号プロセッサ(DSP:digital signal processor)、フィールド・プログラマブル・ゲート・アレイ(FPGA:field programmable gate array)、プログラマブル・ロジック・コントローラ(PLC:programmable logic controller)、複合プログラム可能論理デバイス(CPLD:complex programmable logic device)、個別のゲートまたはトランジスタ論理、個別のハードウェア・コンポーネント、あるいは本明細書に記載された機能を実行するように設計されたこれらの任意の組み合わせを指すことができる。さらに、プロセッサは、空間利用を最適化し、ユーザ機器の性能を向上するために、分子および量子ドットベースのトランジスタ、スイッチ、およびゲートなどの、ただしこれらに限定されない、ナノスケール・アーキテクチャを利用することができる。プロセッサは、計算処理ユニットの組み合わせとして実装されてもよい。本開示では、コンポーネントの動作および機能に関連する「ストア」、「ストレージ」、「データ・ストア」、「データ・ストレージ」、「データベース」、および実質的に任意の他の情報格納コンポーネントなどの用語は、「メモリ・コンポーネント」、「メモリ」内に具現化された実体、またはメモリを備えているコンポーネントを指すために使用される。本明細書に記載されたメモリまたはメモリ・コンポーネントあるいはその両方が、揮発性メモリまたは不揮発性メモリのいずれかであることができ、あるいは揮発性メモリおよび不揮発性メモリの両方を含むことができるということが、理解されるべきである。不揮発性メモリの例としては、読み取り専用メモリ(ROM:read only memory)、プログラマブルROM(PROM:programmable ROM)、電気的プログラマブルROM(EPROM:electrically programmable ROM)、電気的消去可能ROM(EEPROM:electrically erasable ROM)、フラッシュ・メモリ、または不揮発性ランダム・アクセス・メモリ(RAM:random access memory)(例えば、強誘電体RAM(FeRAM:ferroelectric RAM))が挙げられるが、これらに限定されない。揮発性メモリは、例えば外部キャッシュ・メモリとして機能できる、RAMを含むことができる。例えばRAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM:dynamic RAM)、シンクロナスDRAM(SDRAM:synchronous DRAM)、ダブル・データ・レートSDRAM(DDR SDRAM:double data rate SDRAM)、拡張SDRAM(ESDRAM:enhanced SDRAM)、シンクリンクDRAM(SLDRAM:SynchlinkDRAM)、ダイレクト・ラムバスRAM(DRRAM:direct Rambus RAM)、ダイレクト・ラムバス・ダイナミックRAM(DRDRAM:direct Rambus dynamic RAM)、およびラムバス・ダイナミックRAM(RDRAM:Rambus dynamic RAM)などの、ただしこれらに限定されない、多くの形態で利用可能である。さらに、本明細書において開示されたシステムまたはコンピュータ実装方法のメモリ・コンポーネントは、これらおよび任意の他の適切な種類のメモリを含むが、これらに限定されない、メモリを含むよう意図されている。
【0067】
前述した内容は、システムおよびコンピュータ実装方法の単なる例を含んでいる。当然ながら、本開示を説明する目的で、コンポーネントまたはコンピュータ実装方法の考えられるすべての組み合わせについて説明することは不可能であるが、当業者は、本開示の多くのその他の組み合わせおよび並べ替えが可能であるということを認識できる。さらに、「含む」、「有する」、「所有する」などの用語が、発明を実施するための形態、特許請求の範囲、付録、および図面において使用される範囲では、それらの用語は、「備えている」が特許請求における暫定的な用語として使用されるときに解釈されるような、用語「備えている」と同様の方法で、包含的であるよう意図されている。
【0068】
さまざまな実施形態の説明は、例示の目的で提示されているが、網羅的であることは意図されておらず、開示された実施形態に制限されない。説明された実施形態の範囲および思想から逸脱しない多くの変更および変形が、当業者にとって明らかであろう。本明細書で使用された用語は、実施形態の原理、実際の適用、または市場で見られる技術を超える技術的改良を最も適切に説明するため、または他の当業者が本明細書で開示された実施形態を理解できるようにするために選択されている。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
【手続補正書】
【提出日】2024-03-26
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、量子デバイス。
【請求項2】
前記バイアス・コンポーネントが、前記CWトーン間の相対位相差を動的に調整することによって前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子デバイス。
【請求項3】
前記CWトーン間の前記相対位相差を動的に調整することによって、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項2に記載の量子デバイス。
【請求項4】
前記CWトーン間の前記相対位相差が動的に調整されている間に、前記CWトーンの各振幅が一定のままである、請求項2または3のいずれか一項に記載の量子デバイス。
【請求項5】
前記各第1および第2の駆動線を介して加えられる前記CWトーンが共通の周波数を含む、請求項1に記載の量子デバイス。
【請求項6】
前記共通の周波数が、前記第1または第2の量子ビットの各遷移から非共鳴である周波数を使用して定義される、請求項5に記載の量子デバイス。
【請求項7】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するように前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子デバイス。
【請求項8】
前記正味のZZ相互作用が、前記第1および第2の量子ビット間の交換結合強度に基づく大きさを有する、請求項7に記載の量子デバイス。
【請求項9】
前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子デバイス。
【請求項10】
前記少なくとも1つのCWトーンの前記振幅を動的に調整することによって、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項9に記載の量子デバイス。
【請求項11】
前記CWトーンのうちの前記少なくとも1つの前記振幅が動的に調整されている間に、前記CWトーン間の相対位相差が一定のままである、請求項9または10のいずれか一項に記載の量子デバイス。
【請求項12】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間のZZ相互作用を相殺するように前記CWトーンを調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子デバイス。
【請求項13】
前記バイアス・コンポーネントが、前記ZZ相互作用を相殺するように前記CWトーンが調整されている間に、前記第1および第2の量子ビットの各動作周波数をさらに再較正する、請求項12に記載の量子デバイス。
【請求項14】
プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに結合することと、
前記システムによって、前記バイアス・コンポーネントで、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用を動的に制御することとを含む、コンピュータ実装方法。
【請求項15】
前記システムが、前記バイアス・コンポーネントを使用して、前記CWトーン間の相対位相差を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御し、前記相対位相差を動的に調整することが、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項14に記載のコンピュータ実装方法。
【請求項16】
前記システムが、前記バイアス・コンポーネントを使用して、前記各第1および第2の駆動線のトーンを介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御し、前記少なくとも1つのCWトーンの前記振幅を動的に調整することが、前記第1および第2の量子ビット間の静的ZZ相互作用を相殺する、請求項14または15のいずれか一項に記載のコンピュータ実装方法。
【請求項17】
前記システムが、前記バイアス・コンポーネントを使用して、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御する、請求項14に記載のコンピュータ実装方法。
【請求項18】
前記システムが、前記バイアス・コンポーネントを使用して、前記第1および第2の量子ビット間のZZ相互作用を相殺するように前記CWトーンを調整することによって、前記第1および第2の量子ビット間のZZ相互作用を動的に制御する、請求項14に記載のコンピュータ実装方法。
【請求項19】
前記システムによって、前記ZZ相互作用を相殺するように前記CWトーンが調整されている間に、前記第1および第2の量子ビットの各動作周波数を再較正することをさらに含む、請求項18に記載のコンピュータ実装方法。
【請求項20】
コンピュータに、
第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することと、
記バイアス・コンポーネントで、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーンを使用して、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることとを実行させる、コンピュータ・プログラム。
【請求項21】
記バイアス・コンポーネントを使用して、前記CWトーン間の相対位相差を動的に調整することによって、または前記CWトーンのうちの少なくとも1つの振幅を調整することによって、または前記各第1もしくは第2の駆動線のトーンを介して加えられる前記CWトーンのうちの少なくとも1つのCWトーンの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項20に記載のコンピュータ・プログラム。
【請求項22】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられる連続波(CW)トーン間の相対位相差を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にし、前記CWトーンが、前記第1または第2の量子ビットの各遷移から非共鳴である周波数を含む、量子デバイス。
【請求項23】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御をさらに容易にする、請求項22に記載の量子デバイス。
【請求項24】
各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子デバイスであって、前記バイアス・コンポーネントが、前記第1の駆動線を介して加えられる第1の連続波(CW)トーンの第1の振幅を動的に調整すること、前記第2の駆動線を介して加えられる第2のCWトーンの第2の振幅を動的に調整すること、またはこれらの組み合わせによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、量子デバイス。
【請求項25】
前記バイアス・コンポーネントが、前記第1および第2の量子ビット間の2量子ビット・ゲート動作中の正味のZZ相互作用を相殺するために、前記第1および第2の量子ビット間のZZ相互作用を較正することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御をさらに容易にする、請求項24に記載の量子デバイス。
【国際調査報告】