IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ チャンシン メモリー テクノロジーズ インコーポレイテッドの特許一覧

<>
  • 特表-半導体構造及びその製造方法 図1
  • 特表-半導体構造及びその製造方法 図2
  • 特表-半導体構造及びその製造方法 図3
  • 特表-半導体構造及びその製造方法 図4
  • 特表-半導体構造及びその製造方法 図5
  • 特表-半導体構造及びその製造方法 図6
  • 特表-半導体構造及びその製造方法 図7
  • 特表-半導体構造及びその製造方法 図8
  • 特表-半導体構造及びその製造方法 図9
  • 特表-半導体構造及びその製造方法 図10
  • 特表-半導体構造及びその製造方法 図11
  • 特表-半導体構造及びその製造方法 図12
  • 特表-半導体構造及びその製造方法 図13
  • 特表-半導体構造及びその製造方法 図14
  • 特表-半導体構造及びその製造方法 図15
  • 特表-半導体構造及びその製造方法 図16
  • 特表-半導体構造及びその製造方法 図17
  • 特表-半導体構造及びその製造方法 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-06-04
(54)【発明の名称】半導体構造及びその製造方法
(51)【国際特許分類】
   H10B 12/00 20230101AFI20240528BHJP
【FI】
H10B12/00 671A
H10B12/00 681B
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023573459
(86)(22)【出願日】2022-01-26
(85)【翻訳文提出日】2023-11-28
(86)【国際出願番号】 CN2022074019
(87)【国際公開番号】W WO2023070977
(87)【国際公開日】2023-05-04
(31)【優先権主張番号】202111243341.8
(32)【優先日】2021-10-25
(33)【優先権主張国・地域又は機関】CN
(81)【指定国・地域】
(71)【出願人】
【識別番号】522246670
【氏名又は名称】チャンシン メモリー テクノロジーズ インコーポレイテッド
【氏名又は名称原語表記】CHANGXIN MEMORY TECHNOLOGIES,INC.
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100189555
【弁理士】
【氏名又は名称】徳山 英浩
(74)【代理人】
【識別番号】100125922
【弁理士】
【氏名又は名称】三宅 章子
(72)【発明者】
【氏名】張 世明
(72)【発明者】
【氏名】文 浚碩
(72)【発明者】
【氏名】肖 徳元
(72)【発明者】
【氏名】金 若蘭
【テーマコード(参考)】
5F083
【Fターム(参考)】
5F083AD06
5F083GA02
5F083GA10
5F083HA06
5F083JA35
5F083JA37
5F083JA39
5F083JA40
5F083JA56
5F083KA01
5F083KA05
5F083LA12
5F083LA16
5F083NA01
5F083PR06
(57)【要約】
本出願の実施例は、半導体分野に関し、半導体構造及びその製造方法を提供し、半導体構造は、間隔を空けて配列されたビット線と半導体チャネルとを含む基板であって、ビット線は第1方向に沿って延び、半導体チャネルはビット線の上面の一部に位置し、ビット線の上面に垂直な方向において、半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、基板と、隣接するビット線の間に位置し、半導体チャネルの表面に位置する誘電体層と、第2領域の誘電体層を取り囲んで第2方向に沿って延びる第1ゲート層であって、第1方向は第2方向と異なる、第1ゲート層と、第3領域の誘電体層を取り囲む第2ゲート層であって、ビット線の上面に垂直な方向において、第2ゲート層は第1ゲート層と間隔を空けて設けられる、第2ゲート層と、同じビット線上の隣接する半導体チャネルの間に位置し、隣接する誘電体層に位置する第1ゲート層と第2ゲート層とを隔離する絶縁層と、を含む。本出願の実施例は、少なくとも半導体構造の電気的性能を向上させることができる。
【特許請求の範囲】
【請求項1】
半導体構造であって、
間隔を空けて配列されたビット線と半導体チャネルとを含む基板であって、前記ビット線は第1方向に沿って延び、前記半導体チャネルは、前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、基板と、
隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する誘電体層と、
前記第2領域の前記誘電体層を取り囲んで第2方向に沿って延びる第1ゲート層であって、前記第1方向は前記第2方向と異なる、第1ゲート層と、
前記第3領域の前記誘電体層を取り囲む第2ゲート層であって、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、第2ゲート層と、
同じビット線上の隣接する前記半導体チャネルの間に位置し、隣接する前記誘電体層に位置する前記第1ゲート層と前記第2ゲート層とを隔離する絶縁層と、を含む、半導体構造。
【請求項2】
前記半導体チャネルの側壁に垂直な平面において、前記第1ゲート層に取り囲まれた前記半導体チャネルは第1断面を有し、前記第2ゲート層に取り囲まれた前記半導体チャネルは第2断面を有し、前記第1断面の面積は前記第2断面の面積よりも大きい、
請求項1に記載の半導体構造。
【請求項3】
前記ビット線が前記半導体チャネルに指向する方向において、前記第1ゲート層の長さは前記第2ゲート層の長さよりも大きい、
請求項1に記載の半導体構造の製造方法。
【請求項4】
前記半導体チャネルの側壁に垂直な方向において、前記第1ゲート層の厚さは前記第2ゲート層の厚さよりも大きい、
請求項1に記載の半導体構造。
【請求項5】
単一の前記第1ゲート層は前記第2方向に沿って延び、隣接する前記ビット線上の隣接する前記半導体チャネルを取り囲み、単一の前記第2ゲート層は単一の前記半導体チャネルのみを取り囲む、
請求項1に記載の半導体構造。
【請求項6】
前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素が含まれる、
請求項1に記載の半導体構造。
【請求項7】
前記第2ゲート層の前記ビット線から遠く離れた表面に位置し、及び前記第3領域の前記誘電体層の表面の一部に位置する電気接触構造をさらに含む、
請求項1に記載の半導体構造。
【請求項8】
少なくとも前記絶縁層の底面に正対する前記ビット線内に位置する金属半導体化合物構造をさらに含む、
請求項1に記載の半導体構造。
【請求項9】
前記絶縁層の両側に位置する前記半導体チャネルが前記絶縁層に指向する方向に沿って、前記金属半導体化合物構造の深さは徐々に増大する、
請求項8に記載の半導体構造。
【請求項10】
前記半導体チャネルの側壁に垂直な平面において、前記第1領域の前記半導体チャネルの断面積、前記第2領域の前記半導体チャネルの断面積、及び前記第3領域の前記半導体チャネルの断面積は順次減少する、
請求項1に記載の半導体構造。
【請求項11】
前記誘電体層は、
隣接する前記ビット線間に位置し、隣接する前記ビット線上の前記第1領域の前記半導体チャネル間に位置する第1誘電体層と、
前記第1領域の前記半導体チャネルの側壁と前記第1領域の前記第1誘電体層の側壁とに位置する第2誘電体層と、
前記第2領域の前記半導体チャネルの側壁を取り囲む第3誘電体層と、
前記第3領域の前記半導体チャネルの側壁を取り囲んで前記半導体チャネルの上面に位置する第4誘電体層と、を含む、
請求項10に記載の半導体構造。
【請求項12】
前記第1ゲート層は、少なくとも前記第1誘電体層の上面の一部と前記第2誘電体層の上面の一部とに位置し、前記第2ゲート層は、少なくとも前記第3誘電体層の上面の一部に位置する、
請求項11に記載の半導体構造。
【請求項13】
前記絶縁層は、
隣接する前記半導体チャネルの前記誘電体層の間と前記第1ゲート層の間に位置し、前記第2方向に沿って延びる第1絶縁層であって、前記第1絶縁層の上面が前記第3領域の上面よりも低くない、第1絶縁層と、
前記第1ゲート層の上面に位置し、前記第1絶縁層と前記第2ゲート層との間に位置する第2絶縁層と、
前記第2ゲート層の上面に位置し、前記第2絶縁層と前記誘電体層との間に位置する第3絶縁層と、を含む、
請求項1に記載の半導体構造。
【請求項14】
半導体構造の製造方法であって、
基板を提供するステップであって、前記基板は、間隔を空けて配列されたビット線と半導体チャネルを含み、前記ビット線は第1方向に沿って延び、前記半導体チャネルは前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、ステップと、
誘電体層を形成するステップであって、前記誘電体層は隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する、ステップと、
第1ゲート層を形成するステップであって、前記第1ゲート層は前記第2領域の前記誘電体層を取り囲む、ステップと、
第2ゲート層を形成するステップであって、前記第2ゲート層は前記第3領域の前記誘電体層を取り囲み、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、ステップと、
絶縁層を形成するステップであって、前記絶縁層は同じビット線上の隣接する前記半導体チャネルの間に位置する、ステップと、を含む、半導体構造の製造方法。
【請求項15】
基板を提供するステップは、
初期基板を提供するステップであって、前記初期基板内に前記第1方向に沿って延びる初期第1誘電体層を有する、ステップと、
前記初期基板と前記初期第1誘電体層をパターニングし、間隔を空けて配列された前記ビット線と前記半導体チャネル、及び隣接するビット線間に位置する前記初期第1誘電体層を形成するステップであって、前記初期第1誘電体層の上面は前記半導体チャネルの上面よりも低くなく、前記半導体チャネルの側壁、前記初期第1誘電体層の側壁及び前記ビット線の上面の一部によってトレンチを形成し、前記トレンチは第2方向に沿って延びる、ステップと、を含む、
請求項14に記載の半導体構造の製造方法。
【請求項16】
前記誘電体層、前記第1ゲート層、前記第2ゲート層及び前記絶縁層を形成するステップは、
隣接する前記ビット線の間及び隣接する前記ビット線上の前記第1領域の前記半導体チャネルの間に第1誘電体層を形成するステップと、
前記第1領域の前記トレンチの側壁に第2誘電体層を形成するステップと、
第1絶縁層を形成するステップであって、前記第1絶縁層は前記トレンチ内に位置し、隣接する前記第2誘電体層を隔離し、前記第1絶縁層の上面は前記半導体チャネルの上面よりも低くない、ステップと、
前記第2領域の前記トレンチの側壁に第3誘電体層と前記第1ゲート層を形成するステップであって、前記第3誘電体層の上面は前記第1ゲート層の上面よりも高い、ステップと、
第2絶縁層を形成するステップであって、前記第2絶縁層は前記第1絶縁層と前記第3誘電体層との間に位置する、ステップと、
前記第3領域の前記トレンチの側壁に第4誘電体層と前記第2ゲート層を形成するステップであって、前記第4誘電体層の上面は前記第2ゲート層の上面よりも高い、ステップと、
第3絶縁層を形成するステップであって、前記第3絶縁層は前記第2絶縁層と前記第4誘電体層との間に位置し、前記第1誘電体層、前記第2誘電体層、前記第3誘電体層及び前記第4誘電体層は共に前記誘電体層を構成し、前記第1絶縁層、前記第2絶縁層及び前記第3絶縁層は共に前記絶縁層を構成する、ステップと、を含む、
請求項15に記載の半導体構造の製造方法。
【請求項17】
前記第1誘電体層、前記第2誘電体層及び前記第1絶縁層を形成するステップは、
前記トレンチの側壁に初期第2誘電体層を形成するステップであって、隣接する前記初期第2誘電体層間に第1間隔を有する、ステップと、
前記第1間隔に前記第1絶縁層を形成するステップと、
前記第1絶縁層をマスクとして前記初期第1誘電体層及び前記初期第2誘電体層をエッチングし、前記第1誘電体層及び第2誘電体層を形成するステップと、を含む、
請求項16に記載の半導体構造の製造方法。
【請求項18】
前記第1絶縁層を形成する前に、かつ、前記初期第2誘電体層を形成した後、前記初期第2誘電体層によって露出される前記ビット線の上面の一部に対して金属ケイ素化処理を行い、金属半導体化合物構造を形成する、
請求項17に記載の半導体構造の製造方法。
【請求項19】
前記第3誘電体層、前記第1ゲート層及び前記第2絶縁層を形成するステップは、
前記第2領域と前記第3領域の前記半導体チャネルの側壁に初期第3誘電体層を形成するステップであって、前記初期第3誘電体層と前記第1絶縁層との間に第2間隔を有する、ステップと、
前記第2領域の前記第2間隔の一部に前記第1ゲート層を形成するステップと、
残りの前記第2間隔に前記第2絶縁層を形成するステップと、
前記第2絶縁層をマスクとして前記初期第3誘電体層をエッチングし、前記第3誘電体層を形成するステップと、を含む、
請求項16に記載の半導体構造の製造方法。
【請求項20】
前記第4誘電体層、前記第2ゲート層及び前記第3絶縁層を形成するステップは、
前記第3領域の側壁に第4誘電体層を形成するステップであって、前記第4誘電体層と前記第2絶縁層との間に第3間隔を有する、ステップと、
前記第3間隔の一部に前記第2ゲート層を形成するステップと、
残りの前記第3間隔に前記第3絶縁層を形成するステップと、を含む、
請求項16に記載の半導体構造の製造方法。
【請求項21】
前記第2ゲート層を形成した後、前記第3絶縁層を形成する前に、前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープするステップをさらに含む、
請求項20に記載の半導体構造の製造方法。
【請求項22】
電気接触構造を形成するステップをさらに含み、前記電気接触構造を形成するステップは、
前記絶縁層をパターニングして前記第2ゲート層を露出させ、通孔を形成するステップと、
前記通孔に前記電気接触構造を形成するステップと、を含む、
請求項15に記載の半導体構造の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
本出願は、出願番号が202111243341.8であり、出願日が2021年10月25日である中国特許出願に基づいて提出され、該中国特許出願の優先権を主張し、該中国特許出願の全ての内容が参照により本出願に組み込まれる。
【0002】
本出願は、半導体分野に関し、特に半導体構造及びその製造方法に関する。
【背景技術】
【0003】
ダイナミックメモリの集積密度がより高い方向に発展するにつれて、ダイナミックメモリアレイ構造におけるトランジスタの配列方式及びどのようにダイナミックメモリアレイ構造における単一の機能素子のサイズを縮小するかを研究すると同時に、小さいサイズの機能素子が半導体構造全体の電気的性能に与える影響も考慮する必要がある。
【0004】
垂直なゲートオールアラウンド(GAA:Gate-All-Around)トランジスタ構造をダイナミックメモリの選択トランジスタ(access transistor)として利用する場合、その占有面積は4F2(F:所定のプロセス条件下で取得可能な最小パターンサイズ)に達することができ、原則としてより高い密度効率を実現することができるが、隣接する小さいサイズの機能素子間の間隔が小さいため、隣接する機能素子間の相互作用効果は制御しにくく、それによって半導体構造全体の電気的性能に影響を与える。
【発明の概要】
【0005】
本出願の実施例は、半導体構造及びその製造方法を提供し、少なくとも半導体構造の電気的性能を向上させるのに有利である。
【0006】
本出願の実施例の一態様は、半導体構造を提供し、該半導体構造は、間隔を空けて配列されたビット線と半導体チャネルとを含む基板であって、前記ビット線は第1方向に沿って延び、前記半導体チャネルは前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、基板と、隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する誘電体層と、前記第2領域の前記誘電体層を取り囲んで第2方向に沿って延びる第1ゲート層であって、前記第1方向は前記第2方向と異なる、第1ゲート層と、前記第3領域の前記誘電体層を取り囲む第2ゲート層であって、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、第2ゲート層と、同じビット線上の隣接する前記半導体チャネルの間に位置し、隣接する前記誘電体層に位置する前記第1ゲート層と前記第2ゲート層とを隔離する絶縁層と、を含む。
【0007】
いくつかの実施例では、前記半導体チャネルの側壁に垂直な平面において、前記第1ゲート層に取り囲まれた前記半導体チャネルは第1断面を有し、前記第2ゲート層に取り囲まれた前記半導体チャネルは第2断面を有し、前記第1断面の面積は前記第2断面の面積よりも大きい。
【0008】
いくつかの実施例では、前記ビット線が前記半導体チャネルに指向する方向において、前記第1ゲート層の長さは前記第2ゲート層の長さよりも大きい。
【0009】
いくつかの実施例では、前記半導体チャネルの側壁に垂直な方向において、前記第1ゲート層の厚さは前記第2ゲート層の厚さよりも大きい。
【0010】
いくつかの実施例では、単一の前記第1ゲート層は前記第2方向に沿って延び、隣接する前記ビット線上の隣接する前記半導体チャネルを取り囲み、単一の前記第2ゲート層は単一の前記半導体チャネルのみを取り囲む。
【0011】
いくつかの実施例では、前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素が含まれる。
【0012】
いくつかの実施例では、前記半導体構造は、前記第2ゲート層の前記ビット線から遠く離れた表面に位置し、及び前記第3領域の前記誘電体層の表面の一部に位置する電気接触構造をさらに含む。
【0013】
いくつかの実施例では、前記半導体構造は、少なくとも前記絶縁層の底面に正対する前記ビット線内に位置する金属半導体化合物構造をさらに含む。
【0014】
いくつかの実施例では、前記絶縁層の両側に位置する前記半導体チャネルが前記絶縁層に指向する方向に沿って、前記金属半導体化合物構造の深さは徐々に増大する。
【0015】
いくつかの実施例では、前記半導体チャネルの側壁に垂直な平面において、前記第1領域の前記半導体チャネルの断面積、前記第2領域の前記半導体チャネルの断面積、及び前記第3領域の前記半導体チャネルの断面積は順次減少する。
【0016】
いくつかの実施例では、前記誘電体層は、隣接する前記ビット線間に位置し、隣接する前記ビット線上の前記第1領域の前記半導体チャネル間に位置する第1誘電体層と、前記第1領域の前記半導体チャネルの側壁と前記第1領域の前記第1誘電体層の側壁とに位置する第2誘電体層と、前記第2領域の前記半導体チャネルの側壁を取り囲む第3誘電体層と、前記第3領域の前記半導体チャネルの側壁を取り囲んで前記半導体チャネルの上面に位置する第4誘電体層と、を含む。
【0017】
いくつかの実施例では、前記第1ゲート層は、少なくとも前記第1誘電体層の上面の一部と前記第2誘電体層の上面の一部とに位置し、前記第2ゲート層は、少なくとも前記第3誘電体層の上面の一部に位置する。
【0018】
いくつかの実施例では、前記絶縁層は、隣接する前記半導体チャネルの前記誘電体層の間と前記第1ゲート層の間に位置し、前記第2方向に沿って延びる第1絶縁層であって、前記第1絶縁層の上面が前記第3領域の上面よりも低くない、第1絶縁層と、前記第1ゲート層の上面に位置し、前記第1絶縁層と前記第2ゲート層との間に位置する第2絶縁層と、前記第2ゲート層の上面に位置し、前記第2絶縁層と前記誘電体層との間に位置する第3絶縁層と、を含む。
【0019】
本出願のいくつかの実施例によれば、本出願の実施例の別の態様は、半導体構造の製造方法をさらに提供し、該半導体構造の製造方法は、基板を提供するステップであって、前記基板は、間隔を空けて配列されたビット線と半導体チャネルを含み、前記ビット線は第1方向に沿って延び、前記半導体チャネルは前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、ステップと、誘電体層を形成するステップであって、前記誘電体層は隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する、ステップと、第1ゲート層を形成するステップであって、前記第1ゲート層は前記第2領域の前記誘電体層を取り囲む、ステップと、第2ゲート層を形成するステップであって、前記第2ゲート層は前記第3領域の前記誘電体層を取り囲み、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、ステップと、絶縁層を形成するステップであって、前記絶縁層は同じビット線上の隣接する前記半導体チャネルの間に位置する、ステップと、を含む。
【0020】
いくつかの実施例では、基板を提供するステップは、初期基板を提供するステップであって、前記初期基板内に前記第1方向に沿って延びる初期第1誘電体層を有する、ステップと、前記初期基板と前記初期第1誘電体層をパターニングし、間隔を空けて配列された前記ビット線と前記半導体チャネル、及び隣接するビット線間に位置する前記初期第1誘電体層を形成するステップであって、前記初期第1誘電体層の上面は前記半導体チャネルの上面よりも低くなく、前記半導体チャネルの側壁、前記初期第1誘電体層の側壁及び前記ビット線の上面の一部によってトレンチを形成し、前記トレンチは第2方向に沿って延びる、ステップと、を含む。
【0021】
いくつかの実施例では、前記誘電体層、前記第1ゲート層、前記第2ゲート層及び前記絶縁層を形成するステップは、隣接する前記ビット線の間及び隣接する前記ビット線上の前記第1領域の前記半導体チャネルの間に第1誘電体層を形成するステップと、前記第1領域の前記トレンチの側壁に第2誘電体層を形成するステップと、第1絶縁層を形成するステップであって、前記第1絶縁層は前記トレンチ内に位置し、隣接する前記第2誘電体層を隔離し、前記第1絶縁層の上面は前記半導体チャネルの上面よりも低くない、ステップと、前記第2領域の前記トレンチの側壁に第3誘電体層と前記第1ゲート層を形成するステップであって、前記第3誘電体層の上面は前記第1ゲート層の上面よりも高い、ステップと、第2絶縁層を形成するステップであって、前記第2絶縁層は前記第1絶縁層と前記第3誘電体層との間に位置する、ステップと、前記第3領域の前記トレンチの側壁に第4誘電体層と前記第2ゲート層を形成するステップであって、前記第4誘電体層の上面は前記第2ゲート層の上面よりも高い、ステップと、第3絶縁層を形成するステップであって、前記第3絶縁層は前記第2絶縁層と前記第4誘電体層との間に位置し、前記第1誘電体層、前記第2誘電体層、前記第3誘電体層及び前記第4誘電体層は共に前記誘電体層を構成し、前記第1絶縁層、前記第2絶縁層及び前記第3絶縁層は共に前記絶縁層を構成する、ステップと、を含む。
【0022】
いくつかの実施例では、前記第1誘電体層、前記第2誘電体層及び前記第1絶縁層を形成するステップは、前記トレンチの側壁に初期第2誘電体層を形成するステップであって、隣接する前記初期第2誘電体層間に第1間隔を有する、ステップと、前記第1間隔に前記第1絶縁層を形成するステップと、前記第1絶縁層をマスクとして前記初期第1誘電体層及び前記初期第2誘電体層をエッチングし、前記第1誘電体層及び第2誘電体層を形成するステップと、を含む。
【0023】
いくつかの実施例では、前記第1絶縁層を形成する前に、かつ、前記初期第2誘電体層を形成した後、前記初期第2誘電体層によって露出される前記ビット線の上面の一部に対して金属ケイ素化処理を行い、金属半導体化合物構造を形成する。
【0024】
いくつかの実施例では、前記第3誘電体層、前記第1ゲート層及び前記第2絶縁層を形成するステップは、前記第2領域と前記第3領域の前記半導体チャネルの側壁に初期第3誘電体層を形成するステップであって、前記初期第3誘電体層と前記第1絶縁層との間に第2間隔を有する、ステップと、前記第2領域の前記第2間隔の一部に前記第1ゲート層を形成するステップと、残りの前記第2間隔に前記第2絶縁層を形成するステップと、前記第2絶縁層をマスクとして前記初期第3誘電体層をエッチングし、前記第3誘電体層を形成するステップと、を含む。
【0025】
いくつかの実施例では、前記第4誘電体層、前記第2ゲート層及び前記第3絶縁層を形成するステップは、前記第3領域の側壁に第4誘電体層を形成するステップであって、前記第4誘電体層と前記第2絶縁層との間に第3間隔を有する、ステップと、前記第3間隔の一部に前記第2ゲート層を形成するステップと、残りの前記第3間隔に前記第3絶縁層を形成するステップと、を含む。
【0026】
いくつかの実施例では、前記第2ゲート層を形成した後、前記第3絶縁層を形成する前に、前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープするステップをさらに含む。
【0027】
いくつかの実施例では、前記製造方法は、電気接触構造を形成するステップをさらに含み、前記電気接触構造を形成するステップは、前記絶縁層をパターニングして前記第2ゲート層を露出させ、通孔を形成するステップと、前記通孔に前記電気接触構造を形成するステップと、を含む。
【0028】
本出願の実施例によって提供される技術的解決策は少なくとも以下の利点を有する。
【0029】
上記の技術的解決策では、基板内に垂直なGAAトランジスタが形成され、ビット線が基板内に埋め込まれて半導体チャネルの下方に位置するため、3次元積み重ねられた半導体構造を構成することができ、トランジスタは、半導体構造の集積密度を向上させるために4F2の配列方式に達する。また、第1ゲート層と第2ゲート層は、第1ゲート層と第2ゲート層の半導体チャネルに対する制御能力が互いに補い合うように、同じ半導体チャネルをそれぞれ制御するように設計され、一方のゲート層の半導体チャネルに対する制御能力が低いためGIDLが過大になる場合、他方のゲート層の半導体チャネルに対する制御により該不足を補い、第1ゲート層と第2ゲート層全体の半導体チャネルに対する良好な制御能力を保証するのに有利であり、それによって半導体構造におけるGIDLを低減させるのに有利であり、半導体構造全体の電気的性能を向上させる。
【図面の簡単な説明】
【0030】
図1】本出願の実施例による半導体構造に対応する構造的模式図である。
図2】本出願の実施例による半導体構造に対応する構造的模式図である。
図3】本出願の実施例による半導体構造に対応する構造的模式図である。
図4】本出願の実施例による半導体構造に対応する構造的模式図である。
図5】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図6】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図7】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図8】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図9】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図10】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図11】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図12】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図13】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図14】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図15】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図16】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図17】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
図18】本出願の実施例による半導体構造の製造方法における1ステップに対応する断面構造の模式図である。
【発明を実施するための形態】
【0031】
1つ又は複数の実施例は、それに対応する図面における図によって例示的に説明され、これらの例示的な説明は、実施例に対する限定を構成せず、特に断らない限り、図面における図は縮尺の制限を構成しない。
【0032】
背景技術から分かるように、半導体構造の電気的性能を向上させる必要がある。
【0033】
関連技術のGAAトランジスタ構造では、1つの半導体チャネルが1つのゲート層に対応し、ゲート層に電圧を印加することで半導体チャネルのオン又はオフを制御する。しかしながら、より高い集積密度を実現するために、ゲート電極層と半導体層との間の間隔が小さくなり、ゲート電極層自体のサイズも小さくなるため、いずれもゲート誘起ドレインリーク電流(GIDL:gate-induced drain leakage)を増大させ、半導体チャネルのオン/オフ比を低減させる。その結果、ゲート電極層が半導体チャネルのオフを制御しにくくなり、それによって半導体構造の電気的性能を低減させる。
【0034】
以下、図面を参照して本出願の各実施例について詳細に説明する。しかしながら、当業者であれば、本出願の各実施例において、読者が本出願をよりよく理解するために多くの技術的詳細が提案されることを理解することができる。しかし、これらの技術的詳細や、以下の各実施例に基づく様々な変更及び修正がなくても、本出願によって保護が要求される技術的解決策を実現することができる。
【0035】
本出願の実施例は、半導体構造を提供し、以下、図面を参照して本出願の実施例によって提供される半導体構造について詳細に説明する。図1図4は、本出願の実施例による半導体構造に対応する構造的模式図である。ここで、図1は本出願の実施例による半導体構造の上面模式図であり、図2図1に示す半導体構造の第1断面方向AA1に沿った断面模式図であり、図3図1に示す半導体構造の第2断面方向BB1に沿った断面模式図であり、図4は半導体構造における第1ゲート層が半導体チャネルを取り囲む及び第2ゲート層が半導体チャネルを取り囲む断面模式図である。
【0036】
図1図4を参照すると、半導体構造は、間隔を空けて配列されたビット線101と半導体チャネル102とを含む基板100と、誘電体層103と、第1ゲート層104と、第2ゲート層105と、絶縁層106と、を含む。ビット線101は第1方向Xに沿って延びる。半導体チャネル102はビット線101の上面の一部に位置し、ビット線101の上面に垂直な方向Zにおいて、半導体チャネル102は順次配列された第1領域I、第2領域II及び第3領域IIIを含む。誘電体層103は、隣接するビット線101の間に位置し、半導体チャネル102の表面に位置する。第1ゲート層104は、第2領域IIの誘電体層103を取り囲んで第2方向Yに沿って延び、第1方向Xは第2方向Yと異なる。第2ゲート層105は、第3領域IIIの誘電体層103を取り囲み、ビット線101の上面に垂直な方向において、第2ゲート層105は第1ゲート層104と間隔を空けて設けられる。絶縁層106は、同じビット線101上の隣接する半導体チャネル102の間に位置し、隣接する誘電体層103に位置する第1ゲート層104と第2ゲート層105とを隔離する。
【0037】
半導体チャネル102、半導体チャネル102の側壁を取り囲む誘電体層103、第1ゲート層104及び第2ゲート層105は垂直なGAAトランジスタを構成し、基板100はベース110を含み、ビット線101はベース110とGAAトランジスタとの間に位置するため、3次元積み重ねられた半導体構造を構成することができ、半導体構造の集積密度の向上に有利である。
【0038】
説明すべきこととして、第1領域I及び第3領域IIIはいずれもGAAトランジスタのソース又はドレインとすることができ、第1ゲート層104及び第2ゲート層105はいずれもGAAトランジスタのオン又はオフを制御するために用いられる。
【0039】
いくつかの実施例では、引き続き図1を参照すると、第1方向Xは第2方向Yに垂直であるため、半導体チャネル102が4F2(F:所定のプロセス条件下で取得可能な最小パターンサイズ)の配列方式を呈することになり、半導体構造の集積密度の向上に有利である。他の実施例では、第1方向は第2方向と交差し、両者の間の角度は90°でなくてもよい。
【0040】
説明すべきこととして、基板100内に間隔を空けて配列された複数のビット線101を有し、各ビット線101は少なくとも1つの第1領域Iと接触することができ、図2では4つの相互に隔離されたビット線101、及び各ビット線101が4つの第1領域Iと接触することを例とし、実際の応用では、電気的需要に応じて、ビット線101の数及び各ビット線101と接触する第1領域Iの数を合理的に設定することができる。
【0041】
以下、図1図4を参照して半導体構造についてより詳細に説明する。
【0042】
いくつかの実施例では、基板100の材料タイプは、元素半導体材料又は結晶状態無機化合物半導体材料であってもよい。元素半導体材料はシリコン又はゲルマニウムであってもよい。結晶状態無機化合物半導体材料は、炭化ケイ素、ゲルマニウム化ケイ素、ヒ化ガリウム又はガリウム化インジウムなどであってもよい。
【0043】
いくつかの実施例では、図2及び図3を参照すると、基板100はビット線101と半導体チャネル102を含み、基板100、ビット線101及び半導体チャネル102は同じ半導体元素を有することができ、そうすると、半導体チャネル102とビット線101は同じ膜層構造によって形成されてもよく、該膜層構造は、半導体チャネル102とビット線101が一体構造となるように、半導体元素で構成され、それによって半導体チャネル102とビット線101との間の界面状態欠陥を改善し、半導体構造の電気的性能を改善する。ここで、半導体元素は、シリコン、炭素、ゲルマニウム、砒素、ガリウム、インジウムのうちの少なくとも1つを含むことができ、後続でビット線101と半導体チャネル102の両方がシリコン元素を含むことについて例示的に説明する。
【0044】
いくつかの実施例では、図2及び図3を参照すると、半導体構造は、少なくとも絶縁層106の底面に正対するビット線101内に位置する金属半導体化合物構造111をさらに含むことができる。
金属半導体化合物構造111は、金属化されない半導体材料に比べて比較的小さな抵抗率を有するため、半導体チャネル102に比べて、金属半導体化合物構造111を含むビット線101の抵抗率がより小さく、それによってビット線101自体の抵抗を低減させ、ビット線101と第1領域Iの半導体チャネル102との間の接触抵抗を低減させるのに有利であり、半導体構造の電気的性能をさらに改善する。また、ビット線101の抵抗率はさらに、ベース110の抵抗率より小さい。
【0045】
説明すべきこととして、いくつかの実施例では、第1領域Iの直下に位置するビット線101の領域の材料は半導体材料であってもよく、第1領域Iによって覆われないビット線101の部分の領域の材料は金属半導体化合物である。理解可能なこととして、素子サイズの継続的な縮小又は製造プロセスパラメータの調整に伴い、第1領域Iの直下に位置するビット線101の部分の領域の材料は半導体材料であり、第1領域Iの直下に位置するビット線101の残りの領域の材料は金属半導体化合物であってもよく、ここでの「残りの領域」の位置は「部分の領域」の周辺に位置する。
【0046】
例えば、図2を参照すると、ビット線101における複数の金属半導体化合物構造111の間が相互に連通してビット線101の一部を形成し、金属半導体化合物構造111はビット線101内に部分的に位置し、第1領域Iの半導体チャネル102内に部分的に位置してもよい。他の実施例では、同じビット線における複数の金属半導体化合物構造の間は相互に隔離されてもよい。
【0047】
図2では楕円形に似た破線枠で限定される基板100の領域を金属半導体化合物構造111とし、実際の応用では、隣接する金属半導体化合物構造111の間の相互に接触する領域の大きさについて制限しない。他の実施例では、全厚さのビット線は金属半導体化合物構造111であってもよい。
【0048】
いくつかの実施例では、引き続き図2を参照すると、単一の金属半導体化合物構造111について、絶縁層106の両側に位置する半導体チャネル102が絶縁層106に指向する方向に沿って、即ちC1及びC2方向に沿って、金属半導体化合物構造111の深さは徐々に増大する。半導体元素がシリコンであることを例として、金属半導体化合物構造111の材料は、ケイ化コバルト、ケイ化ニッケル、ケイ化モリブデン、ケイ化チタン、ケイ化タングステン、ケイ化タンタル、又はケイ化白金のうちの少なくとも1つを含む。
【0049】
いくつかの実施例では、半導体チャネル102内にドープ元素を有することができ、半導体チャネル102の導電性の向上に有利であり、それによって第1領域Iと第3領域IIIとの間の導通電圧を低減させるのに有利であり、即ちGAAトランジスタにおけるソースとドレインとの間の導通電圧を低減させる。ここで、ドープ元素はP型ドープ元素又はN型ドープ元素であり、具体的に、N型ドープ元素は砒素元素、リン元素又はアンチモン元素のうちの少なくとも1つであってもよく、P型ドープ元素は、ホウ素元素、インジウム元素、又はガリウム元素のうちの少なくとも1つであってもよい。
【0050】
いくつかの実施例では、GAAトランジスタは、ジャンクションレストランジスタであってもよく、即ち、第1領域I、第2領域II、及び第3領域IIIにおけるドープ元素のタイプが同じである。ここで、「ジャンクションレス」とは、PNジャンクションがないことを意味し、即ち第1領域I、第2領域II及び第3領域IIIにおけるドープ元素のドープ濃度が同じであり、このような利点は、以下の両方を含む。一方では、第1領域Iと第3領域IIIを追加的にドープする必要はなく、それによって第1領域Iと第3領域IIIのドーピングプロセスを制御しにくい問題を回避し、特にトランジスタのサイズがさらに縮小するにつれて、第1領域Iと第3領域IIIを追加的にドープすると、ドープ濃度はさらに制御しにくい。他方では、素子はジャンクションレストランジスタであるため、超急峻なソースドレイン濃度勾配ドーピングプロセスを用いて、ナノスケールの範囲内で超急峻なPNジャンクションを製造する現象を回避するのに有利であるため、ドーピング突然変異による閾値電圧ドリフト及びリーク電流の増加などの問題を回避することができ、また、短チャネル効果の抑制にも有利であり、したがって、半導体構造の集積密度と電気的性能とのさらなる向上に寄与する。理解可能なこととして、ここでの追加のドーピングとは、第1領域I及び第3領域IIIのドープ元素タイプが第2領域IIのドープ元素タイプと異なるために行われるドーピングを意味する。
【0051】
引き続き図2及び図3を参照すると、半導体チャネル102の側壁に垂直な平面において、第1ゲート層104に取り囲まれた半導体チャネル102は第1断面を有し、第2ゲート層105に取り囲まれた半導体チャネル102は第2断面を有し、第1断面の面積は第2断面の面積よりも大きい。このようにして、第2ゲート層105に取り囲まれた半導体チャネル102の断面積がより小さいため、第2ゲート層105の半導体チャネル102に対する制御能力を向上させるのに有利であり、即ち必要な閾値電圧が小さいほど、GAAトランジスタのオン又はオフを制御しやすくなり、第2ゲート層105の半導体チャネル102に対する制御能力を調整することにより、第1ゲート層104の半導体チャネル102に対する制御能力の不安定性を補うのにも有利であり、それによって全体的に半導体チャネル102に対する良好な制御能力を保証し、半導体構造全体の電気的性能を向上させる。
【0052】
また、第1ゲート層104と第2ゲート層105の半導体チャネル102に対する制御能力は互いに補い合い、一方のゲート層の半導体チャネル102に対するオフ能力の欠如は大きなGIDLをもたらし、例えば、GIDLの場合、他方のゲート層を高めて半導体チャネル102に対するオフを実現することで、第1ゲート層104と第2ゲート層105全体の半導体チャネル102に対する良好な制御能力を保証し、それによって半導体構造におけるGIDLを低減させるのに有利であり、半導体構造全体の電気的性能を向上させる。
【0053】
ここで、第1断面の面積と第2断面の面積との比は1.5~2.5であってもよい。
【0054】
いくつかの実施例では、図2及び図3を参照すると、半導体チャネル102の側壁に垂直な平面において、第1領域Iの半導体チャネル102の断面積、第2領域IIの半導体チャネル102の断面積、及び第3領域IIIの半導体チャネル102の断面積は順次減少してもよい。
引き続き図2及び図3を参照すると、誘電体層103は、隣接するビット線101間に位置し、隣接するビット線101上の第1領域Iの半導体チャネル102間に位置する第1誘電体層113と、第1領域Iの半導体チャネル102の側壁と第1領域Iの第1誘電体層113の側壁とに位置する第2誘電体層123と、第2領域IIの半導体チャネル102の側壁を取り囲む第3誘電体層133と、第3領域IIIの半導体チャネル102の側壁を取り囲んで半導体チャネル102の上面に位置する第4誘電体層143と、を含むことができる。
【0055】
ここで、隣接するビット線101間に位置する第1誘電体層113は、隣接するビット線101間の電気的絶縁を実現するために用いられ、隣接するビット線101上の第1領域Iの半導体チャネル102間に位置する第1誘電体層113、第2誘電体層123及び絶縁層106は、第1方向Xに沿って間隔をあけて配置された及び/又は第2方向Yに沿って間隔をあけて配置された第1領域Iの半導体チャネル102間の電気的絶縁を実現するために共に機能し、第2領域IIの半導体チャネル102の側壁を取り囲む第3誘電体層133は、第1ゲート層104と第2領域IIの半導体チャネル102を隔離するために用いられてもよく、第3領域IIIの半導体チャネル102の表面を取り囲む第4誘電体層143と絶縁層106は、第1方向Xに沿って間隔をあけて配置された及び/又は第2方向Yに沿って間隔をあけて配置された第3領域IIIの半導体チャネル102間の電気的絶縁を実現するために共に機能する。
【0056】
いくつかの実施例では、図2に示す第3誘電体層133はさらに、第2誘電体層123の側壁の一部に位置してもよいため、第1ゲート層104と半導体チャネル112との間の絶縁をさらに保証するのに有利である。第4誘電体層143はさらに、第3誘電体層133の側壁の一部に位置してもよいため、第2ゲート層105と半導体チャネル112との間の絶縁をさらに保証するのに有利である。
【0057】
いくつかの実施例では、図2及び図3に示す第1誘電体層113の材料、第2誘電体層123の材料、第3誘電体層133の材料、及び第4誘電体層143の材料は同じであってもよく、例えば、すべて酸化ケイ素である。他の実施例では、第1誘電体層の材料、第2誘電体層の材料、第3誘電体層の材料、及び第4誘電体層の材料は異なってもよく、4つがいずれも絶縁効果の良い材料であることを満たすだけでよい。
【0058】
いくつかの実施例では、図2及び図3を参照すると、第1領域I、第2領域II及び第3領域IIIの半導体チャネル102の断面積は順次減少するため、第4誘電体層143のベース110への正投影外周が第3誘電体層133のベース110への正投影外周に位置し、第3誘電体層133のベース110への正投影外周が第2誘電体層123と第1誘電体層113のベース110への組み合わせられた正投影外周に位置する。ここで、第1ゲート層104は、少なくとも第1誘電体層113の上面の一部と第2誘電体層123の上面の一部とに位置し、第2ゲート層105は、少なくとも第3誘電体層133の上面の一部に位置する。このようにして、第1ゲート層104と第2ゲート層105が方向Zにおいて正対することを回避するのに有利であり、即ち第1ゲート層104のベース110への正投影が第2ゲート層105のベース110への正投影内に位置することを回避し、第1ゲート層104と第2ゲート層105との間の相互干渉を低減させるのに有利である。
【0059】
いくつかの実施例では、図2図3及び図4を参照すると、単一の第1ゲート層104は第2方向Yに沿って延び、隣接するビット線101上の隣接する半導体チャネル102を取り囲み、単一の第2ゲート層105は単一の半導体チャネル102のみを取り囲み、ここで、第3誘電体層133のベース110への正投影外周は、第2ゲート層105のベース110への正投影外周と重なることができ、隣接する第2ゲート層105間は絶縁層106によって隔離される。ここで、第1ゲート層104の材料と第2ゲート層105の材料とは、いずれも多結晶シリコン、窒化チタン、窒化タンタル、銅、又はタングステンのうちの少なくとも1つを含むことができる。
【0060】
いくつかの実施例では、図2及び図3を参照すると、第1ゲート層104のビット線101から離れる上面と第2ゲート層105のビット線101に近い底面との間の垂直距離は20nm~60nmであってもよい。このようにして、第1ゲート層104と第2ゲート層105との間に大きな寄生容量が発生することを回避し、第1ゲート層104と第2ゲート層105との間の相互干渉を低減させるのに有利であり、それによって第1ゲート層104と第2ゲート層105の半導体チャネル102に対する良好な制御能力を保証するのに有利である。
【0061】
いくつかの実施例では、図2図3及び図4を参照すると、ビット線101が半導体チャネル102に指向する方向において、第1ゲート層104の長さは第2ゲート層105の長さよりも大きい。このようにして、第1ゲート層104の半導体チャネル102に対する大きな取り囲み面積を保証するのに有利であり、第1ゲート層104の半導体チャネル102に対する制御能力を向上させるのに有利である。ここで、第1ゲート層104の長さと第2ゲート層105の長さとの比は1.5~4である。
【0062】
いくつかの実施例では、図4を参照すると、半導体チャネル102の側壁に垂直な方向において、第1ゲート層104の厚さは第2ゲート層105の厚さよりも大きい。このようにして、第1ゲート層104自体の体積を増大させるのに有利であり、それによって第1ゲート層104自体の小さな抵抗を保証するのに有利であり、第1ゲート層104の半導体チャネル102に対する制御能力を向上させる。ここで、第1ゲート層104の厚さと第2ゲート層105の厚さとの比は1.2~2である。
【0063】
いくつかの実施例では、図2図3及び図4に示す第2ゲート層105内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素が含まれる。このようにして、第2ゲート層105自体の電気的性能を向上させるのに有利であり、それによって第2ゲート層105の半導体チャネル102に対する制御能力を向上させる。また、第2ゲート層105のサイズが第1ゲート層104のサイズよりも小さい場合、第2ゲート層105内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープして第2ゲート層105の導電性を向上させることで、サイズの差異による第1ゲート層104と第2ゲート層105との導電性の差異を補い、第1ゲート層104と第2ゲート層105の半導体チャネル102に対する制御能力の差異を低減させ、それによって半導体構造全体の安定性を向上させる。
【0064】
いくつかの実施例では、図2を参照すると、絶縁層106は、隣接する半導体チャネル102の誘電体層103の間と第1ゲート層104の間に位置し、第2方向Yに沿って延びる第1絶縁層116であって、第1絶縁層116の上面が第3領域IIIの上面よりも低くない第1絶縁層116と、第1ゲート層104の上面に位置し、第1絶縁層116と第2ゲート層105との間に位置する第2絶縁層126と、第2ゲート層105の上面に位置し、第2絶縁層126と誘電体層103との間に位置する第3絶縁層136と、を含む。
【0065】
ここで、第1絶縁層116、第2絶縁層126及び第3絶縁層136は、隣接する半導体チャネル102間の電気的絶縁、隣接する第1ゲート層104間の電気的絶縁、及び隣接する第2ゲート層105間の電気的絶縁を実現するために共に機能する。また、第1ゲート層104の上面に位置する第2絶縁層126は、第1ゲート層104と他の導電構造との間の電気的絶縁を実現することができ、第2ゲート層105の上面に位置する第3絶縁層136は、第2ゲート層105と他の導電構造との間の電気的絶縁を実現することができる。
【0066】
いくつかの実施例では、図2に示す第1絶縁層116の材料、第2絶縁層126の材料、及び第3絶縁層136の材料は、同じであってもよく、例えば、すべて窒化ケイ素である。他の実施例では、第1絶縁層の材料、第2絶縁層の材料、及び第3絶縁層の材料は異なってもよく、3つがいずれも絶縁効果の良好な材料であることを満たすだけでよく、また、同じエッチングプロセスについて、絶縁層の材料と誘電体層の材料との間に高いエッチング選択比を有する。
【0067】
いくつかの実施例では、図1及び図2を参照すると、半導体構造は、第2ゲート層105のビット線101から離れる一部の表面に位置し、及び一部の第3領域IIIの誘電体層103の表面に位置する電気接触構造107をさらに含むことができる。例えば、電気接触構造107は、第2ゲート層105の上面の一部と、該上面の一部に沿って下向きの第2ゲート層105の側壁の一部とに位置してもよく、さらに、第4誘電体層143の上面の一部と、該上面の一部に沿って下向きの第4誘電体層143の側壁の一部とに位置する。
【0068】
ここで、電気接触構造107は第2ゲート層105の電位を制御するために用いられ、いくつかの実施例では、電気接触構造107を直接介して第2ゲート層105に電圧を印加することができ、そうすると、各第2ゲート層105は単独で制御される。他の実施例では、パターニングされた導電層(図示せず)を形成し、導電層により異なる電気接触構造を接続することで、同じ電圧により異なる第2ゲート層を制御することもでき、実際の応用では、電気需要を高め、同じ導電層に接続される電気接続構造の数を制御することができる。
【0069】
いくつかの実施例では、図1及び図2を参照すると、半導体構造は、電気接触構造107の側壁を取り囲むバリア層108と、隣接するバリア層108の間に位置し、露出された誘電体層103の上面と絶縁層106の上面を覆うマスク層118と、をさらに含むことができる。ここで、バリア層108の材料は酸化ケイ素であってもよく、マスク層118の材料はフォトレジストであってもよい。
【0070】
以上に記述するように、同じ半導体チャネル102の側壁に第1ゲート層104と第2ゲート層105が取り囲まれ、第1ゲート層104と第2ゲート層105は同じ半導体チャネル102に対応し、該半導体チャネル102をそれぞれ制御し、このようにして、第1ゲート層104と第2ゲート層105の半導体チャネル102に対する制御能力は互いに補い合い、例えば、第1ゲート層104の半導体チャネル102に対する制御能力が低いためGIDLが過大になる場合、第2ゲート層105の半導体チャネル102に対する制御により該不足を補うことで、第1ゲート層104と第2ゲート層105全体の半導体チャネル102に対する良好な制御能力を保証し、さらに、半導体構造におけるGIDLの低減に有利であり、第1ゲート層104及び第2ゲート層105に印加される電圧を調節することで、半導体チャネル102のオン/オフ比を高め、半導体チャネル102のオン/オフを制御する感度を全体的に高め、半導体構造全体の電気的性能を向上させるのに有利である。
【0071】
本出願の実施例は、上記の半導体構造を形成するための半導体構造の製造方法をさらに提供する。
【0072】
図5図18は、本出願の実施例に提供される半導体構造の製造方法における各ステップに対応する断面構造の模式図であり、以下、図面を参照して本出願の実施例に提供される半導体構造の製造方法について詳細に説明し、上記の実施例と同様又は対応する部分については、以下では詳細な説明を省略する。
【0073】
説明すべきこととして、半導体構造の製造方法のステップを説明しやすくて明確に示すために、図5図18はいずれも半導体構造の局所構造模式図である。ここで、図6図5に示す構造の第1断面方向AA1に沿った断面模式図であり、図7図5に示す構造の第2断面方向BB1に沿った断面模式図である。説明すべきこととして、後続で記述の必要に応じて、第1断面方向AA1に沿った断面模式図、第2断面方向BB1に沿った断面模式図のうちの1つ又は2つを設定する。
【0074】
図5図7を参照すると、半導体構造の製造方法は、基板100を提供するステップであって、基板100は、間隔を空けて配列されたビット線101と半導体チャネル102を含み、ビット線101は第1方向Xに沿って延び、半導体チャネル102はビット線101の上面の一部に位置し、ビット線101の上面に垂直な方向Zにおいて、半導体チャネル102は順次配列された第1領域I、第2領域II及び第3領域IIIを含む、ステップと、誘電体層103を形成するステップであって、誘電体層103は隣接するビット線101の間に位置し、半導体チャネル102の表面に位置する、ステップと、を含む。
【0075】
説明すべきこととして、第1領域I及び第3領域IIIはいずれも後続で形成される半導体チャネル102を有するGAAトランジスタのソース又はドレインとすることができ、第2領域IIの一部は後続で形成されるGAAトランジスタの第1ゲート層104に対応し、第3領域IIIの一部は後続で形成されるGAAトランジスタの第2ゲート層105に対応する。
【0076】
いくつかの実施例では、基板100を提供するステップは、以下のステップを含むことができる。
【0077】
初期基板(図示せず)を提供し、初期基板内に第1方向Xに沿って延びる初期第1誘電体層(図示せず)を有する。図5図7を参照すると、初期基板と初期第1誘電体層をパターニングし、間隔を空けて配列されたビット線101と半導体チャネル102、及び隣接するビット線101間に位置する初期第1誘電体層を形成し、初期第1誘電体層の上面は半導体チャネル102の上面よりも低くなく、半導体チャネル102の側壁、初期第1誘電体層の側壁及びビット線101の上面の一部によってトレンチ109を形成し、トレンチ109は第2方向Yに沿って延びる。
【0078】
ここで、初期基板の材料タイプは、元素半導体材料又は結晶状態無機化合物半導体材料であってもよい。元素半導体材料はシリコン又はゲルマニウムであってもよい。結晶状態無機化合物半導体材料は、炭化ケイ素、ゲルマニウム化ケイ素、ヒ化ガリウム又はガリウム化インジウムなどであってもよい。初期基板は、ビット線101及び半導体チャネル102を形成する基礎であり、初期基板と初期第1誘電体層をパターニングしてビット線101と半導体チャネル102を形成すると同時に、ベース110をさらに形成する。
【0079】
ここで、初期基板及び初期第1誘電体層をパターニングする方法は、自己整列多重露光技術(SAQP:Self-Aligned Quadruple Patterning)又は自己整列二重イメージング技術(SADP:Self-aligned Double Patterning)を含む。
【0080】
いくつかの実施例では、初期基板に対してドーピング処理及びアニーリング処理をさらに行うことができ、初期基板内にN型ドープ元素又はP型ドープ元素がドープされるようにし、初期基板を基として形成される半導体チャネル102の導電性を向上させるのに有利であり、それによって第1領域Iと第3領域IIIとの間の導通電圧を低減させるのに有利であり、即ち後続で形成されるGAAトランジスタにおけるソースとドレインとの間の導通電圧を低減させる。また、初期基板内にN型ドープ元素又はP型ドープ元素がドープされるようにすることで、初期基板を基として形成されるビット線101の導電性を向上させるのに有利であり、それによって第1領域Iとビット線101との間の接触抵抗を低減させ、半導体構造の電気的性能を向上させる。
【0081】
ここで、ドープ元素はP型ドープ元素又はN型ドープ元素であり、具体的に、N型ドープ元素は砒素元素、リン元素又はアンチモン元素のうちの少なくとも1つであってもよく、P型ドープ元素は、ホウ素元素、インジウム元素、又はガリウム元素のうちの少なくとも1つであってもよい。
【0082】
図8図18を参照すると、半導体構造の製造方法は、第1ゲート層104を形成するステップであって、第1ゲート層104は第2領域IIの誘電体層103を取り囲むステップと、第2ゲート層105を形成するステップであって、第2ゲート層105は第3領域IIIの誘電体層103を取り囲み、ビット線101の上面に垂直な方向Zにおいて、第2ゲート層105が第1ゲート層104と間隔を空けて設けられるステップと、絶縁層106を形成するステップであって、絶縁層106は同じビット線101上の隣接する半導体チャネル102の間に位置するステップと、をさらに含む。
【0083】
いくつかの実施例では、図5を参照すると、半導体チャネル102の側壁、初期第1誘電体層の側壁及びビット線101の上面の一部によってトレンチ109を形成する場合、誘電体層、第1ゲート層、第2ゲート層及び絶縁層を形成するステップは、以下のステップを含むことができる。
【0084】
図8図10を参照すると、隣接するビット線101の間及び隣接するビット線101上の第1領域Iの半導体チャネル102の間に図3に示す第1誘電体層113を形成し、第1領域Iのトレンチ109の側壁に図2に示す第2誘電体層123を形成し、第1絶縁層116を形成し、第1絶縁層116はトレンチ109内に位置し、隣接する第2誘電体層123を隔離し、第1絶縁層116の上面は半導体チャネル102の上面よりも低くない。
【0085】
ここで、第1絶縁層116の上面は半導体チャネル102の上面よりも低くないため、後続で第1絶縁層116と第2領域II及び第3領域IIIの半導体チャネル102との間に第2間隔を形成するのに有利であり、後続で自己整列の方式により第2間隔にサイズが正確な第1ゲート層と第2ゲート層を形成することができ、エッチングプロセスが必要なくサイズ精度の高い第1ゲート層と第2ゲート層を形成することができ、第1ゲート層と第2ゲート層の形成工程(ステップ)を簡略化するのに有利であり、また、第2間隔のサイズを調整することで、小さいサイズの第1ゲート層と第2ゲート層を取得することができる。
【0086】
いくつかの実施例では、図2及び図3に示す第1誘電体層113、第2誘電体層123及び第1絶縁層116を形成するステップは、以下のステップを含むことができる。
【0087】
図8を参照すると、図5に示すトレンチ109の側壁に初期第2誘電体層163を形成し、隣接する初期第2誘電体層163間に第1間隔を有する。いくつかの実施例では、以下のプロセスステップによって初期第2誘電体層163を形成することができる。堆積プロセスを行い、半導体チャネル102の上面と露出されたすべての側壁を覆う表面を形成し、さらに初期第1誘電体層の露出された上面と側壁に形成される。ここで、初期第2誘電体層163の材料は酸化ケイ素を含む。
【0088】
引き続き図8を参照すると、第1間隔に第1絶縁層116を形成する。いくつかの実施例では、以下のプロセスステップによって第1絶縁層116を形成することができる。初期第2誘電体層163の上面を覆い、第1間隔を満杯に充填する第1絶縁膜を形成し、第1絶縁膜に対して初期第2誘電体層163が露出するまで化学機械平坦化処理を行い、残りの第1絶縁膜を第1絶縁層116とする。ここで、第1絶縁層116の材料は窒化ケイ素を含む。ここで、初期第1誘電体層の材料は初期第2誘電体層163の材料と同じであり、後続で同じ除去ステップによって初期第1誘電体層の一部と初期第2誘電体層163の一部を除去し、第2間隔を形成するのに有利である。
【0089】
いくつかの実施例では、引き続き図8を参照すると、第1絶縁層116を形成する前に、初期第2誘電体層163を形成した後、初期第2誘電体層163によって露出されるビット線101の上面の一部に対して金属ケイ素化処理を行い、金属半導体化合物構造111を形成する。ここで、金属半導体化合物構造111は金属化されない半導体材料に比べて、比較的小さな抵抗率を有するため、半導体チャネル102に比べて、金属半導体化合物構造111を含むビット線101の抵抗率がより小さく、それによってビット線101自体の抵抗を低減させ、ビット線101と第1領域Iの半導体チャネル102との間の接触抵抗を低減させるのに有利であり、半導体構造の電気的性能をさらに改善する。
【0090】
いくつかの実施例では、図8を参照すると、初期第2誘電体層163によって露出されるビット線101の上面の一部に対して金属ケイ素化処理を行うステップは、ビット線101の露出する上面に金属層(図示せず)を形成するステップであって、金属層は金属半導体化合物構造111に金属元素を提供するステップを含むことができる。ここで、金属層の材料は、コバルト、ニッケル、モリブデン、チタン、タングステン、タンタル、又は白金のうちの少なくとも1つを含む。他の実施例では、ビット線の露出する上面に対して金属ケイ素化処理を行わず、ビット線の露出する上面に直接第1絶縁層を形成してもよい。
【0091】
図8及び図9図10を参照すると、半導体構造の製造方法は、第1絶縁層116をマスクとして初期第1誘電体層及び初期第2誘電体層163をエッチングし、第1誘電体層113及び第2誘電体層123を形成するステップをさらに含む。
【0092】
図11図18を参照すると、半導体構造の製造方法は、第2領域IIの図5に示すトレンチ109の側壁に第3誘電体層133と第1ゲート層104を形成するステップであって、第3誘電体層133の上面は第1ゲート層104の上面よりも高いステップと、第2絶縁層126を形成するステップであって、第2絶縁層126は第1絶縁層116と第3誘電体層133との間に位置するステップと、第3領域IIIのトレンチ109の側壁に第4誘電体層143と第2ゲート層105を形成するステップであって、第4誘電体層143の上面は第2ゲート層105の上面よりも高いステップと、第3絶縁層136を形成するステップであって、第3絶縁層136は第2絶縁層126と第4誘電体層143との間に位置し、第1誘電体層113、第2誘電体層123、第3誘電体層133及び第4誘電体層143は共に誘電体層103を構成し、第1絶縁層116、第2絶縁層126及び第3絶縁層136は共に絶縁層106を構成するステップと、をさらに含む。
【0093】
いくつかの実施例では、図2及び図3に示す第3誘電体層133、第1ゲート層104及び第2絶縁層126を形成するステップは、以下のステップを含むことができる。
【0094】
図11図13を参照すると、第2領域II及び第3領域IIIの半導体チャネル102の側壁に初期第3誘電体層173を形成し、初期第3誘電体層173と第1絶縁層116との間に第2間隔129を有する。いくつかの実施例では、以下のプロセスステップによって初期第3誘電体層173を形成することができる。露出された第2領域II及び第3領域IIIの半導体チャネル102の表面に対して熱酸化処理を行い、初期第3誘電体層173を形成する。ここで、初期第3誘電体層173の材料は酸化ケイ素である。他の実施例では、堆積プロセスにより第2領域及び第3領域の半導体チャネルの表面を覆う初期第3誘電体層を形成することもできる。
【0095】
図12及び図13を参照すると、第2領域IIの第2間隔129に第1ゲート層104を形成する。ここで、第1ゲート層104を形成するステップは、図11及び図12を参照すると、初期第1ゲート層114を形成するステップであって、初期第1ゲート層114は第2間隔129を満杯に充填し、初期第3誘電体層173の上面に位置するステップと、第3領域IIIの半導体チャネル102の側壁を取り囲み、第2領域IIの半導体チャネル102の側壁を部分的に取り囲み及び初期第3誘電体層173の上面に位置する初期第1ゲート層114をエッチングして除去し、残りの初期第1ゲート層114を第1ゲート層104とするステップであって、第1ゲート層104は第2領域IIの半導体チャネル102の側壁の一部のみを取り囲むステップと、を含むことができる。
【0096】
図12及び図14を参照すると、残りの第2間隔129に第2絶縁層126を形成する。いくつかの実施例では、以下のプロセスステップによって第2絶縁層126を形成することができる。堆積プロセスを行い、残りの第2間隔129(図12参照)を満杯に充填し、初期第3誘電体層173の上面を覆う第2絶縁膜を形成し、第2絶縁膜及び第1絶縁層116に対して化学機械研磨を初期第3誘電体層173が露出するまで行い、残りの第2絶縁膜を第2絶縁層126とする。ここで、第2絶縁膜の材料は窒化ケイ素を含む。
【0097】
図14及び図15を参照すると、第2絶縁層126をマスクとして初期第3誘電体層173をエッチングし、第3誘電体層133を形成する。ここで、第3誘電体層133を形成するステップでは、半導体チャネル102の上面だけでなく、第3領域IIIの半導体チャネル102の側壁も露出し、第4誘電体層と第2ゲート層の後続の形成のために準備する。いくつかの実施例では、方向Zにおいて、初期第3誘電体層173をエッチングする深さは10nm~30nmであってもよい。
【0098】
いくつかの実施例では、図2及び図3に示す第4誘電体層143、第2ゲート層105及び第3絶縁層136を形成するステップは、以下のステップを含むことができる。
【0099】
引き続き図15を参照すると、第3領域IIIの側壁に第4誘電体層143を形成し、第4誘電体層143と第2絶縁層126との間に第3間隔139を有し、第3間隔139の一部に第2ゲート層105を形成する。いくつかの例では、第4誘電体層143はさらに、第3領域IIIの上面に形成され、以下のプロセスステップによって第4誘電体層143を形成することができる。第3領域IIIの半導体チャネル102表面に対して熱酸化処理を行い、第4誘電体層143を形成する。ここで、第4誘電体層143の材料は酸化ケイ素である。他の実施例では、堆積プロセスにより第3領域の半導体チャネルの表面を覆う第4誘電体層を形成することもできる。
【0100】
ここで、第2ゲート層105を形成するステップは、初期第2ゲート層(図示せず)を形成するステップであって、初期第2ゲート層は第3間隔139を充填し、第4誘電体層143の上面に位置するステップと、第3領域IIIの半導体チャネル102の側壁を取り囲んで第4誘電体層143の上面に位置する初期第2ゲート層の一部をエッチングし、残りの初期第2ゲート層を第2ゲート層105とするステップと、を含むことができ、第2ゲート層105は、第3領域IIIの半導体チャネル102の側壁の一部のみを取り囲む。
【0101】
図17を参照すると、残りの第3間隔139(図15参照)に第3絶縁層136を形成する。いくつかの実施例では、以下のプロセスステップによって第3絶縁層136を形成することができる。堆積プロセスを行い、残りの第3間隔139を満杯に充填し、第4誘電体層143の上面を覆う第3絶縁膜を形成し、第3絶縁膜及び第1絶縁層116に対して化学機械研磨を第4誘電体層143が露出するまで行い、残りの第3絶縁膜を第3絶縁層136とする。ここで、第3絶縁層136の材料は窒化ケイ素であってもよい。
【0102】
いくつかの実施例では、図2及び図3を参照すると、第2ゲート層105を形成した後、第3絶縁層136を形成する前に、製造方法は、第2ゲート層105内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープすることをさらに含むことができる。このようにして、第2ゲート層105自体の電気的性能を向上させるのに有利であり、それによって第2ゲート層105の半導体チャネル102に対する制御能力を向上させる。また、第2ゲート層105のサイズが第1ゲート層104のサイズより小さい場合、第2ゲート層105内にランタン元素及び/又はジルコニウム元素をドープすることで第2ゲート層105の導電性を向上させ、それによってサイズの差異による第1ゲート層104と第2ゲート層105との導電性の差異を補い、第1ゲート層104と第2ゲート層105の半導体チャネル102に対する制御能力の差異を低減させ、それによって半導体構造全体の安定性を向上させる。
【0103】
ここで、以下のプロセスステップによって第2ゲート層105内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープすることができる。図16を参照すると、残りの第3間隔139(図15参照)に拡散層149を形成し、次に、知られる半導体構造が位置する環境の温度を高め、拡散層149における金属元素の熱拡散作用を利用して金属元素を第2ゲート層105内にドープする。説明すべきこととして、第2ゲート層105における金属元素のドープ深さは、半導体構造が位置する環境の温度の上昇に伴って増大する。ここで、拡散層149の材料は、酸化ランタン、酸化スカンジウム又は酸化セリウム等のランタン系酸化物又は酸化ジルコニウムのうちの少なくとも1つであってもよい。
【0104】
第2ゲート層105内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープするプロセスが終了した後、残りの拡散層149を除去し、第2ゲート層105を露出し、後続で第2ゲート層105の上面に第3絶縁層136を形成するために準備する。
【0105】
いくつかの実施例では、図18及び図1図4を参照すると、第3絶縁層136を形成した後、製造方法は、絶縁層106をパターニングして第2ゲート層105を露出し、通孔159を形成するステップと、通孔159に電気接触構造108を形成するステップと、をさらに含むことができる。
【0106】
いくつかの実施例では、電気接触構造108を形成するステップは、以下のステップを含むことができる。図2図3及び図18を参照すると、絶縁層106と第4誘電体層143とによって共通して構成される上面に開口を有するマスク層118を形成し、方向Zにおいて、開口の一部が第2ゲート層105の一部と正対するため、マスク層118をマスクとして絶縁層106をエッチングするとき、第2ゲート層105の一部を露出し、通孔159を形成する。説明すべきこととして、図2を参照すると、通孔159を形成した後、電気接触構造108を形成する前に、通孔159の側壁にバリア層108をさらに形成してもよい。ここで、バリア層108の材料は酸化ケイ素であってもよく、マスク層118の材料はフォトレジストであってもよい。
【0107】
以上に記述するように、第1絶縁層116と第2領域II及び第3領域IIIの半導体チャネル102との間に第2間隔129を形成することで、自己整列の方式により第2間隔にサイズが正確な第1ゲート層104と第2ゲート層105を形成するのに有利であり、エッチングプロセスが必要なくサイズ精度の高い第1ゲート層104と第2ゲート層105を形成することができ、また、第2間隔のサイズを調整することで、小さいサイズの第1ゲート層104と第2ゲート層105を取得することができる。また、同じ半導体チャネル102の側壁の異なる領域に第1ゲート層104と第2ゲート層105をそれぞれ形成するため、第1ゲート層104と第2ゲート層105の半導体チャネル102に対する制御能力が互いに補い合うようにし、それによって第1ゲート層104と第2ゲート層105全体の半導体チャネル102に対する良好な制御能力を保証し、それによって半導体構造におけるGIDLを低減させるのに有利であり、半導体構造全体の電気的性能を向上させる。
【0108】
当業者であれば、上述の各実施例が本出願を実現する具体的な実施例であるが、実際の応用では、本出願の精神及び範囲から逸脱することなく形式的に及び細部にわたってそれに対して様々の変更を行うことができることを理解することができる。いかなる当業者は、本出願の精神及び範囲から逸脱することなく、それぞれ変更及び修正を行うことができるため、本出願の保護範囲は特許請求の範囲に限定される範囲に準拠すべきである。
【産業上の利用可能性】
【0109】
本出願の実施例は、半導体構造及びその製造方法を提供し、半導体構造は、間隔を空けて配列されたビット線と半導体チャネルとを含む基板と、誘電体層と、第1ゲート層と、第2ゲート層と、絶縁層と、を含み、ビット線は第1方向に沿って延び、半導体チャネルはビット線の上面の一部に位置し、ビット線の上面に垂直な方向において、半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む。誘電体層は、隣接するビット線の間に位置し、半導体チャネルの表面に位置する。第1ゲート層は、第2領域の誘電体層を取り囲んで第2方向に沿って延び、第1方向は第2方向と異なる。第2ゲート層は、第3領域の誘電体層を取り囲み、ビット線の上面に垂直な方向において、第2ゲート層は第1ゲート層と間隔を空けて設けられる。絶縁層は、同じビット線上の隣接する半導体チャネルの間に位置し、隣接する誘電体層に位置する第1ゲート層と第2ゲート層とを隔離する。
【0110】
上記の技術的解決策では、基板内に垂直なGAAトランジスタが形成され、ビット線が基板内に埋め込まれて半導体チャネルの下方に位置するため、3次元積み重ねられた半導体構造を構成することができ、トランジスタは、半導体構造の集積密度を向上させるために4F2の配列方式に達する。また、第1ゲート層と第2ゲート層は、第1ゲート層と第2ゲート層の半導体チャネルに対する制御能力が互いに補い合うように、同じ半導体チャネルをそれぞれ制御するように設計され、一方のゲート層の半導体チャネルに対する制御能力が低いためGIDLが過大になる場合、他方のゲート層の半導体チャネルに対する制御により該不足を補い、第1ゲート層と第2ゲート層全体の半導体チャネルに対する良好な制御能力を保証するのに有利であり、それによって半導体構造におけるGIDLを低減させるのに有利であり、半導体構造全体の電気的性能を向上させる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
【手続補正書】
【提出日】2023-11-28
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
半導体構造であって、
間隔を空けて配列されたビット線と半導体チャネルとを含む基板であって、前記ビット線は第1方向に沿って延び、前記半導体チャネルは、前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、基板と、
隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する誘電体層と、
前記第2領域の前記誘電体層を取り囲んで第2方向に沿って延びる第1ゲート層であって、前記第1方向は前記第2方向と異なる、第1ゲート層と、
前記第3領域の前記誘電体層を取り囲む第2ゲート層であって、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、第2ゲート層と、
同じビット線上の隣接する前記半導体チャネルの間に位置し、隣接する前記誘電体層に位置する前記第1ゲート層と前記第2ゲート層とを隔離する絶縁層と、を含む、半導体構造。
【請求項2】
前記半導体チャネルの側壁に垂直な平面において、前記第1ゲート層に取り囲まれた前記半導体チャネルは第1断面を有し、前記第2ゲート層に取り囲まれた前記半導体チャネルは第2断面を有し、前記第1断面の面積は前記第2断面の面積よりも大きく、
前記ビット線が前記半導体チャネルに指向する方向において、前記第1ゲート層の長さは前記第2ゲート層の長さよりも大きく、
及び/又は
前記半導体チャネルの側壁に垂直な方向において、前記第1ゲート層の厚さは前記第2ゲート層の厚さよりも大きい
請求項1に記載の半導体構造。
【請求項3】
単一の前記第1ゲート層は前記第2方向に沿って延び、隣接する前記ビット線上の隣接する前記半導体チャネルを取り囲み、単一の前記第2ゲート層は単一の前記半導体チャネルのみを取り囲む、
請求項1に記載の半導体構造。
【請求項4】
前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素が含まれる、
請求項1に記載の半導体構造。
【請求項5】
前記第2ゲート層の前記ビット線から遠く離れた表面に位置し、及び前記第3領域の前記誘電体層の表面の一部に位置する電気接触構造をさらに含み、及び/又は、
少なくとも前記絶縁層の底面に正対する前記ビット線内に位置する金属半導体化合物構造をさらに含み、好ましくは、前記絶縁層の両側に位置する前記半導体チャネルが前記絶縁層に指向する方向に沿って、前記金属半導体化合物構造の深さは徐々に増大する
請求項1に記載の半導体構造。
【請求項6】
前記半導体チャネルの側壁に垂直な平面において、前記第1領域の前記半導体チャネルの断面積、前記第2領域の前記半導体チャネルの断面積、及び前記第3領域の前記半導体チャネルの断面積は順次減少する、
請求項1に記載の半導体構造。
【請求項7】
前記誘電体層は、
隣接する前記ビット線間に位置し、隣接する前記ビット線上の前記第1領域の前記半導体チャネル間に位置する第1誘電体層と、
前記第1領域の前記半導体チャネルの側壁と前記第1領域の前記第1誘電体層の側壁とに位置する第2誘電体層と、
前記第2領域の前記半導体チャネルの側壁を取り囲む第3誘電体層と、
前記第3領域の前記半導体チャネルの側壁を取り囲んで前記半導体チャネルの上面に位置する第4誘電体層と、を含み、
好ましくは、前記第1ゲート層は、少なくとも前記第1誘電体層の上面の一部と前記第2誘電体層の上面の一部とに位置し、前記第2ゲート層は、少なくとも前記第3誘電体層の上面の一部に位置する
請求項に記載の半導体構造。
【請求項8】
前記絶縁層は、
隣接する前記半導体チャネルの前記誘電体層の間と前記第1ゲート層の間に位置し、前記第2方向に沿って延びる第1絶縁層であって、前記第1絶縁層の上面が前記第3領域の上面よりも低くない、第1絶縁層と、
前記第1ゲート層の上面に位置し、前記第1絶縁層と前記第2ゲート層との間に位置する第2絶縁層と、
前記第2ゲート層の上面に位置し、前記第2絶縁層と前記誘電体層との間に位置する第3絶縁層と、を含む、
請求項1に記載の半導体構造。
【請求項9】
半導体構造の製造方法であって、
基板を提供するステップであって、前記基板は、間隔を空けて配列されたビット線と半導体チャネルを含み、前記ビット線は第1方向に沿って延び、前記半導体チャネルは前記ビット線の上面の一部に位置し、前記ビット線の上面に垂直な方向において、前記半導体チャネルは順次配列された第1領域、第2領域及び第3領域を含む、ステップと、
誘電体層を形成するステップであって、前記誘電体層は隣接する前記ビット線の間に位置し、前記半導体チャネルの表面に位置する、ステップと、
第1ゲート層を形成するステップであって、前記第1ゲート層は前記第2領域の前記誘電体層を取り囲む、ステップと、
第2ゲート層を形成するステップであって、前記第2ゲート層は前記第3領域の前記誘電体層を取り囲み、前記ビット線の上面に垂直な方向において、前記第2ゲート層は前記第1ゲート層と間隔を空けて設けられる、ステップと、
絶縁層を形成するステップであって、前記絶縁層は同じビット線上の隣接する前記半導体チャネルの間に位置する、ステップと、を含む、半導体構造の製造方法。
【請求項10】
基板を提供するステップは、
初期基板を提供するステップであって、前記初期基板内に前記第1方向に沿って延びる初期第1誘電体層を有する、ステップと、
前記初期基板と前記初期第1誘電体層をパターニングし、間隔を空けて配列された前記ビット線と前記半導体チャネル、及び隣接するビット線間に位置する前記初期第1誘電体層を形成するステップであって、前記初期第1誘電体層の上面は前記半導体チャネルの上面よりも低くなく、前記半導体チャネルの側壁、前記初期第1誘電体層の側壁及び前記ビット線の上面の一部によってトレンチを形成し、前記トレンチは第2方向に沿って延びる、ステップと、を含む、
請求項に記載の半導体構造の製造方法。
【請求項11】
前記誘電体層、前記第1ゲート層、前記第2ゲート層及び前記絶縁層を形成するステップは、
隣接する前記ビット線の間及び隣接する前記ビット線上の前記第1領域の前記半導体チャネルの間に第1誘電体層を形成するステップと、
前記第1領域の前記トレンチの側壁に第2誘電体層を形成するステップと、
第1絶縁層を形成するステップであって、前記第1絶縁層は前記トレンチ内に位置し、隣接する前記第2誘電体層を隔離し、前記第1絶縁層の上面は前記半導体チャネルの上面よりも低くない、ステップと、
前記第2領域の前記トレンチの側壁に第3誘電体層と前記第1ゲート層を形成するステップであって、前記第3誘電体層の上面は前記第1ゲート層の上面よりも高い、ステップと、
第2絶縁層を形成するステップであって、前記第2絶縁層は前記第1絶縁層と前記第3誘電体層との間に位置する、ステップと、
前記第3領域の前記トレンチの側壁に第4誘電体層と前記第2ゲート層を形成するステップであって、前記第4誘電体層の上面は前記第2ゲート層の上面よりも高い、ステップと、
第3絶縁層を形成するステップであって、前記第3絶縁層は前記第2絶縁層と前記第4誘電体層との間に位置し、前記第1誘電体層、前記第2誘電体層、前記第3誘電体層及び前記第4誘電体層は共に前記誘電体層を構成し、前記第1絶縁層、前記第2絶縁層及び前記第3絶縁層は共に前記絶縁層を構成する、ステップと、を含む、
請求項10に記載の半導体構造の製造方法。
【請求項12】
前記第1誘電体層、前記第2誘電体層及び前記第1絶縁層を形成するステップは、
前記トレンチの側壁に初期第2誘電体層を形成するステップであって、隣接する前記初期第2誘電体層間に第1間隔を有する、ステップと、
前記第1間隔に前記第1絶縁層を形成するステップと、
前記第1絶縁層をマスクとして前記初期第1誘電体層及び前記初期第2誘電体層をエッチングし、前記第1誘電体層及び第2誘電体層を形成するステップと、を含み、
好ましくは、前記第1絶縁層を形成する前に、かつ、前記初期第2誘電体層を形成した後、前記初期第2誘電体層によって露出される前記ビット線の上面の一部に対して金属ケイ素化処理を行い、金属半導体化合物構造を形成する
請求項11に記載の半導体構造の製造方法。
【請求項13】
前記第3誘電体層、前記第1ゲート層及び前記第2絶縁層を形成するステップは、
前記第2領域と前記第3領域の前記半導体チャネルの側壁に初期第3誘電体層を形成するステップであって、前記初期第3誘電体層と前記第1絶縁層との間に第2間隔を有する、ステップと、
前記第2領域の前記第2間隔の一部に前記第1ゲート層を形成するステップと、
残りの前記第2間隔に前記第2絶縁層を形成するステップと、
前記第2絶縁層をマスクとして前記初期第3誘電体層をエッチングし、前記第3誘電体層を形成するステップと、を含む、
請求項11に記載の半導体構造の製造方法。
【請求項14】
前記第4誘電体層、前記第2ゲート層及び前記第3絶縁層を形成するステップは、
前記第3領域の側壁に第4誘電体層を形成するステップであって、前記第4誘電体層と前記第2絶縁層との間に第3間隔を有する、ステップと、
前記第3間隔の一部に前記第2ゲート層を形成するステップと、
残りの前記第3間隔に前記第3絶縁層を形成するステップと、を含み、
好ましくは、前記第2ゲート層を形成した後、前記第3絶縁層を形成する前に、前記第2ゲート層内にランタン系元素のうちの少なくとも1つ及び/又はジルコニウム元素をドープするステップをさらに含む
請求項11に記載の半導体構造の製造方法。
【請求項15】
電気接触構造を形成するステップをさらに含み、前記電気接触構造を形成するステップは、
前記絶縁層をパターニングして前記第2ゲート層を露出させ、通孔を形成するステップと、
前記通孔に前記電気接触構造を形成するステップと、を含む、
請求項10に記載の半導体構造の製造方法。
【国際調査報告】