(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-06-06
(54)【発明の名称】金属を継合するための螺旋状レーザ溶接方法
(51)【国際特許分類】
B23K 26/28 20140101AFI20240530BHJP
B23K 26/32 20140101ALI20240530BHJP
B23K 26/073 20060101ALI20240530BHJP
B23K 26/21 20140101ALI20240530BHJP
B23K 26/322 20140101ALI20240530BHJP
B23K 26/00 20140101ALI20240530BHJP
【FI】
B23K26/28
B23K26/32
B23K26/073
B23K26/21 F
B23K26/322
B23K26/00 N
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023574151
(86)(22)【出願日】2022-05-17
(85)【翻訳文提出日】2024-01-17
(86)【国際出願番号】 EP2022063348
(87)【国際公開番号】W WO2022253568
(87)【国際公開日】2022-12-08
(32)【優先日】2021-06-03
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】508175020
【氏名又は名称】コアレイズ オーワイ
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ナルヒ, マッティ
(72)【発明者】
【氏名】パユコスキ, ヘンリ
【テーマコード(参考)】
4E168
【Fターム(参考)】
4E168BA14
4E168BA82
4E168BA87
4E168BA88
4E168DA02
4E168DA36
4E168DA39
4E168DA43
4E168EA17
4E168KA04
(57)【要約】
レーザ溶接方法は、レーザ放射(120)を、随意に、それらの間に1枚またはそれを上回る介入金属シートを伴う、金属部品(114)上に配置される第1の金属シート(112)の上に集束させるステップを含む。レーザ放射(120)は、金属部品(114)をともにスポット溶接するために、少なくとも1つの螺旋状経路をトレースするように操向される。レーザ放射(120)は、安定的なキーホールを維持するために、中心ビーム(122C)と、環状ビーム(122A)とを含む。一方法は、例えば、高いガス含有量および/または異種組成物を伴うアルミニウム部品を溶接するように調整され、レーザ放射(120)は、最初に、外方向螺旋状経路(810)をトレースし、次いで、内方向螺旋状経路(830)をトレースする。
【特許請求の範囲】
【請求項1】
アルミニウムを継合するためのレーザ溶接方法であって、
アルミニウム部品上に配置される第1のアルミニウムシートの上にレーザ放射を集束させるステップであって、前記レーザ放射は、中心ビームと、前記中心ビームを囲繞する環状ビームとを含む、ステップと、
前記集束されたレーザ放射を制御し、前記第1のアルミニウムシートを前記アルミニウム部品に溶接するように、前記第1のアルミニウムシート上の複数の経路をトレースするステップであって、前記制御するステップは、
外方向螺旋状経路をトレースしながら、前記中心ビームおよび環状ビームの個別の第1のパワーを持続するステップであって、前記外方向螺旋状経路は、中央場所から始まり、前記中央場所を中心として、かつそこから離れるように螺旋状になる、ステップと、
前記外方向螺旋状経路をトレースした後、外側経路をトレースしながら、前記中心ビームおよび環状ビームのパワーを前記個別の第1のパワーから個別の第2のパワーまで漸減させるステップであって、前記外側経路は、前記中央場所から視認されると、前記螺旋状経路の周辺に存在する、ステップと、
前記外側経路をトレースした後、前記中央場所に向かって、内方向螺旋状経路をトレースしながら、最初に、(a)前記中心ビームおよび環状ビームのパワーを前記個別の第2のパワーから個別の第3のパワーまで漸増させ、続いて、(b)前記環状ビームの第3のパワーを持続し、その第3のパワーとより低い第4のパワーとの間で、繰り返し前記中心ビームをパルス出力し、最終的に、(c)前記中心ビームおよび環状ビームのパワーを低減させる、ステップと
を含む、ステップと
を含む、方法。
【請求項2】
前記低減させるステップは、前記中心ビームをオフにし、前記環状ビームのパワーを前記第3のパワーから漸減させる、請求項1に記載の方法。
【請求項3】
前記低減させるステップは、前記環状ビームのパワーをゼロまで漸減させる、請求項2に記載の方法。
【請求項4】
前記アルミニウム部品は、第2のアルミニウムシートである、前記請求項のいずれかに記載の方法。
【請求項5】
前記外側経路は、前記中央場所を中心として、少なくとも1つの完全回路を完了する閉ループを含む、前記請求項のいずれかに記載の方法。
【請求項6】
前記外側経路は、前記中央場所を中心として完全回転を完了しない開経路である、前記請求項のいずれかに記載の方法。
【請求項7】
前記制御するステップによって引き起こされるアルミニウム融解が、前記アルミニウム部品の内側部分内にあるある深さにおいて終端する、前記請求項のいずれかに記載の方法。
【請求項8】
前記第1のアルミニウムシートおよび前記アルミニウム部品のうちの少なくとも1つが、鋳造アルミニウムまたは鋳造アルミニウム合金である、前記請求項のいずれかに記載の方法。
【請求項9】
前記第1のアルミニウムシートは、押出成型アルミニウムまたは押出成型アルミニウム合金であり、前記アルミニウム部品は、鋳造アルミニウムまたは鋳造アルミニウム合金である、請求項8に記載の方法。
【請求項10】
1枚またはそれを上回る介入アルミニウムシートが、前記第1のアルミニウムシートと前記アルミニウム部品との間に配置され、
前記制御するステップは、前記第1のアルミニウムシート、前記介入アルミニウムシート、および前記アルミニウム部品をともに溶接する、
前記請求項のいずれかに記載の方法。
【請求項11】
前記制御するステップはさらに、前記中央場所において、前記外方向螺旋状経路をトレースするステップに先立って、前記中心ビームおよび環状ビームのパワーを個別の初期パワーから前記個別の第1のパワーまで漸減させるステップを含む、前記請求項のいずれかに記載の方法。
【請求項12】
前記環状ビームの第1、第2、および第3のパワーはそれぞれ、前記第1、第2、および第3のパワーおよび前記中心ビームの対応するものを超過する、前記請求項のいずれかに記載の方法。
【請求項13】
界面におけるコーティングを含む金属部品のスタックを継合するためのレーザ溶接方法であって、
前記金属部品のスタックの上にレーザ放射を集束させるステップであって、前記金属部品は、(i)第1の金属シートと、(ii)最遠金属部品と、(iii)前記第1の金属シートと前記金属部品との間に、0枚、1枚、またはいくつかの介入金属シートとを含み、前記金属部品のうちの少なくとも1つは、近隣の金属部品との界面におけるコーティングを有し、前記界面は、前記2つの近隣の金属部品間の直接接触を伴って、またはそれらの間の間隙を伴って構成され、前記レーザ放射は、前記第1の金属シート上に入射し、中心ビームと、前記中心ビームを囲繞する環状ビームとを含む、ステップと、
前記集束されたレーザ放射を制御し、前記金属部品のスタックをともに溶接するように、前記第1の金属シート上の少なくとも1つの経路をトレースし、それによって、また、前記界面における前記コーティングを少なくとも部分的に蒸発させるステップであって、前記制御するステップは、
内方向螺旋状経路をトレースするステップと、
前記内方向螺旋状経路をトレースしながら、最初に、(a)前記中心ビームおよび環状ビームの個別の第1のパワーを持続し、続いて、(b)同時に、前記中心ビームのパワーをその第1のパワーからゼロワットまで漸減させ、環状ビームのパワーをその第1のパワーから非ゼロの第2のパワーまで漸減させ、最終的に、(c)前記環状ビームをオフにするステップと
を含む、ステップと、
を含む、方法。
【請求項14】
前記最遠金属部品は、金属シートである、請求項13に記載の方法。
【請求項15】
前記金属部品のそれぞれは、鋼鉄から作製され、前記コーティングは、亜鉛を含む、請求項13または請求項14に記載の方法。
【請求項16】
前記金属部品のそれぞれは、銅または銅合金から作製され、前記コーティングは、ニッケルを含む、請求項13または請求項14に記載の方法。
【請求項17】
前記制御するステップによって引き起こされる金属融解が、前記最遠金属部品の内側部分内にある前記スタックにおけるある深さにおいて終端する、請求項13-16のいずれかに記載の方法。
【請求項18】
前記環状ビームの第1のパワーは、前記中心ビームの第1のパワーを超過する、請求項13-17のいずれかに記載の方法。
【請求項19】
前記制御するステップはさらに、前記内方向螺旋状経路をトレースするステップに先立って、前記個別の第1のパワーにおいて、前記中心ビームおよび環状ビームを用いて閉ループをトレースするステップを含み、前記閉ループは、前記内方向螺旋状経路の周辺に存在し、前記内方向螺旋状経路の始点において終了する、請求項13-18のいずれかに記載の方法。
【請求項20】
前記間隙は、前記レーザ放射を受光する前記スタックの側面に最近接する前記2つの近隣の金属部品のうちの1つの厚さの60%以下である、請求項13-19のいずれかに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(優先権)
本願は、その開示が、参照することによってその全体として本明細書に組み込まれる、2021年6月3日に出願された、米国出願整理番号第17/338,109号の優先権を主張する。
【0002】
本発明は、概して、金属シート、特に、困難な材料組成物を伴う金属シートのレーザ溶接に関する。
【背景技術】
【0003】
レーザ溶接は、集中型熱源としてレーザビームを使用し、典型的には金属から作製される、2つの部品を局所的に融解および継合する。レーザビームは、比較的小さいスポットに集束され、高いパワー密度および小さい熱影響区域を結果としてもたらし得る。レーザ溶接は、したがって、正確度および高度な制御が、要求されるとき、魅力的な技法である。さらに、レーザ溶接は、自動化にも十分に適している。
【0004】
レーザ溶接では、集束されたレーザビームは、各溶接スポットまたは線を精密に位置決めする一方、付随的な加熱を最小限にする。2つの主要なレーザ溶接体系を区別することは、有用である。伝導溶接は、より低いレーザパワーおよびより低いレーザパワー密度において生じる。吸収されたレーザパワーは、照射された材料を加熱し、それによって、継合されることになる各部品内の材料を融解し、これは、流動し、混合され、次いで、凝固する。キーホール溶接は、照射された材料の一部を気化させるために十分である、より高いレーザパワーおよびより高いレーザパワー密度において生じる。囲繞する融解された材料への気化された材料の圧力は、融解された材料を通してチャネルを開放する。キーホールとして当技術分野において公知の本チャネルは、特性的な狭く深い外形を有し、これは、レーザビームの深い貫通を可能にする。仕上げられたキーホール溶接は、概して、伝導溶接よりも狭く、深く、かつ強い。
【0005】
レーザ溶接は、様々な構成において配列される様々な材料に関与する、幅広い溶接問題に成功裏に適用されている。ある事例では、レーザ溶接が、別の溶接技法に取って代わる。他の事例では、レーザ溶接は、従来の非レーザ溶接技法による溶接にとって好適ではない構造の溶接を有効にする。
【0006】
自動車産業は、レーザ溶接をますます採択している、いくつかの製造業界のうちの1つである。自動車業界では、レーザ溶接が、現在のところ、シャーシ、本体フレーム、ドア、エンジン部品、および(電気およびハイブリッド車両のための)バッテリ等の多くの異なる車両部品を溶接するために使用されている。小さい熱影響区域、および概して良好に制御され、微調整可能なプロセスの利点を伴って、レーザ溶接は、従来の溶接技法を使用するときよりも薄く小さい部品を自動的かつ確実に溶接するために使用され得る。レーザ溶接は、したがって、より軽量かつより効率的な車両に対する需要を満たすために、自動車製造技術を進歩させることに役立っている。例えば、レーザ溶接は、軽量な本体部品の正確な溶接、および電気化学バッテリ内の接続およびそれへの接続(例えば、金属箔スタックとバッテリタブとの間の接続およびバッテリタブと母線との間の接続)を促進する。車体部品の場合では、溶接される材料は、典型的には、鋼鉄、アルミニウム、および/またはアルミニウム合金である。バッテリの場合では、溶接される材料は、多くの場合、銅を含むが、アルミニウムまたはアルミニウム合金も含むことができる。
【0007】
スポット溶接は、重複する部品をレーザ溶接するために使用され得る、多数の溶接型の1つである。2つの重複する部品をともにスポットレーザ溶接するとき、レーザビームは、部品のうちの一方の上に入射し、第2の部品との界面に至るまで、および第2の部品の中への少なくともある程度の距離まで、本部品を通して局所的に融解する。スポットレーザ溶接は、2枚、3枚、またはそれを上回る金属部品のスタックに適用されてもよい。キーホール溶接は、多くのシナリオにおいて、強力なスポット溶接継合部を形成することが示されている。定常レーザビームを用いて達成され得るよりも大きなスポット溶接を形成するために、レーザビームは、操向され、螺旋状パターンをトレースし得る。
【発明の概要】
【課題を解決するための手段】
【0008】
本明細書に開示されるものは、二重ビームレーザ放射を用いて螺旋形状パターンをトレースすることによって、金属部品のスタックをともにスポット溶接するように構成される、螺旋状レーザ溶接方法である。二重ビームレーザ放射は、片側から金属スタック上に入射し、スタックを通して融解し、最遠金属部品に到達する。金属部品は、2枚またはそれを上回る金属シートのスタックであってもよい。代替として、レーザ放射を受光するスタックの側から最遠である、スタックの最遠金属部品は、より厚く、非シート様金属構造であってもよい。
【0009】
本開示の方法は、キーホール溶接を利用し、具体的には、ある特に困難なシナリオにおいて、強力な溶接継合部を達成するように調整される。キーホール溶接は、材料を融解および混合することにおいては有効であるが、結果として生じる溶接継合部の品質が、封入されたガス、冷却率の相違、スパッタに起因する材料損失等の問題点によって損なわれ得る。
【0010】
スパッタは、キーホール溶接における望ましくない影響であり、キーホール内の対流は、金属液滴が溶接プロセスの間に射出されるほど十分に激しい。本液滴の射出は、制御不良な方式において、溶接塊の体積を低減させる。
【0011】
融解プール内のガスは、可能性として、いくつかの問題を課す。融解プール内のガス気泡の存在は、スパッタを引き起こし得る。ガスが、最終的な冷却プロセスの間に捕捉されたままであるとき、封入されたガスの存在によって引き起こされる残留応力は、溶接継合部内の亀裂につながり得る。冷却の前またはその間に解放されない場合、封入されたガスは、結果として生じる溶接塊内に実質的サイズの空所および/またはより小さい孔を形成する。
【0012】
冷却率の相違は、特に、異種材料が、ともに溶接されるとき、生じる可能性が高い。同じまたは類似する材料の部品をレーザ溶接するとき、部品間の真の金属結合が、溶接継合部において形成され得、溶接塊の材料組成は、比較的均一である。異種材料をレーザ溶接するとき、異なる材料間で金属結合を形成することは、不可能であり得る。代わりに、溶接部は、2つの材料の混在物を含有し得る。混合物が、不均一であるとき、2つの材料間のいかなる実質的な冷却率の相違も、融解プールの冷却に応じて、応力誘発性亀裂につながり得る。
【0013】
亀裂、空所、多孔性、および材料損失は、溶接継合部の強度を損なわせ得る。加えて、溶接構造が電流を帯びることが意図されるシナリオでは、例えば、バッテリ用途では、溶接継合部の伝導性は、これらの影響によって悪影響を及ぼされ得る。
【0014】
本方法では、レーザ溶接は、2つのビーム、すなわち、中心ビームと、中心ビームを囲繞する環状ビームとを含む、二重ビームレーザ放射によって実施される。中心および環状ビームの個別のパワーは、相互から独立して制御され、所望の結果を達成する。本二重ビームレーザ放射は、単一のレーザビームよりも安定的であり、良好に制御されたキーホールを維持することができる。本キーホールのより高い安定性は、同時に、(a)スパッタを最小限にし、(b)キーホールが開放している持続期間を最大限にし、それによって、封入されたガスの解放を促進することが可能である。本方法は、螺旋形状パターンに沿って、二重ビームレーザ放射をトレースし、そうでなければガス封入および亀裂を起こす傾向がある材料に関与するシナリオであっても、最小限の封入されたガスおよび最小限の(または無)亀裂を伴って、強力な溶接継合部を確実に生成する。また、亀裂を回避する、または少なくとも最小限にする目的のために、本方法は、螺旋状パターンの中心に向かって移動しながら、制御されたレーザパワーの漸減を伴って完結する。
【0015】
上記で述べられたプロセスの特徴から利益を享受して、本方法は、異種金属、封入されたガスを伴う金属、および溶接プロセスの間に蒸発するコーティングを伴う金属を溶接することが可能である。一方法は、封入されたガスを伴うアルミニウム部品をともに溶接するように調整され、封入されたガスを適切に解放するために、外方向螺旋状および内方向螺旋状の両方を伴う同一領域をトレースし、内方向螺旋状の部分に沿って、中心ビームのパルス出力を伴う。アルミニウム部品は、異種組成物のものであってもよい。別の方法は、内方向螺旋状をトレースし、亜鉛コーティングされた鋼鉄またはニッケルコーティングされた銅等のコーティングされた金属部品を溶接するように調整される。従来のレーザ溶接方法は、特に、部品間に間隙が存在しないとき、そのようなコーティングの存在下で、良好な溶接継合部を確実に生産することに苦戦している。本方法は、ゼロ間隙構成に関してさえも、高品質な溶接継合部を確実に達成する。実際、本方法の溶接継合部の品質は、本質的に、ゼロ間隙から、部品の厚さに応じて、例えば、約0.5ミリメートルまたは可能性としてそれを上回る間隙まで延在する範囲内で、間隙サイズを問わない。
【0016】
一側面では、アルミニウムを継合するためのレーザ溶接方法は、アルミニウム部品上に配置される第1のアルミニウムシートの上にレーザ放射を集束させるステップと、集束されたレーザ放射を制御し、第1のアルミニウムシートをアルミニウム部品に溶接するように、第1のアルミニウムシート上の複数の経路をトレースするステップとを含む。レーザ放射は、中心ビームと、中心ビームを囲繞する環状ビームとを含む。制御するステップは、外方向螺旋状経路をトレースしながら、中心および環状ビームの個別の第1のパワーを持続するステップを含む。外方向螺旋状経路は、中央場所から始まり、中央場所を中心として、かつそこから離れるように螺旋状になる。制御するステップはさらに、外方向螺旋状経路をトレースした後、外側経路をトレースしながら、中心および環状ビームのパワーを個別の第1のパワーから個別の第2のパワーまで漸減させるステップを含む。外側経路は、中央場所から視認されると、螺旋状経路の周辺に存在する。加えて、制御するステップは、外側経路をトレースした後、中央場所に向かって、内方向螺旋状経路をトレースしながら、最初に、(a)中心および環状ビームのパワーを個別の第2のパワーから個別の第3のパワーまで漸増させ、続いて、(b)環状ビームの第3のパワーを持続し、その第3のパワーとより低い第4のパワーとの間で、繰り返し中心ビームをパルス出力し、最終的に、(c)中心ビームをオフにし、環状ビームのパワーをゼロまで漸減させるステップを含む。
【0017】
別の側面では、界面におけるコーティングを有する、金属部品のスタックを継合するためのレーザ溶接方法は、金属部品のスタックの上にレーザ放射を集束させるステップと、集束されたレーザ放射を制御し、金属部品のスタックをともに溶接するように、金属部品のスタックの第1の金属シート上の少なくとも1つの経路をトレースし、それによって、また、界面におけるコーティングを少なくとも部分的に蒸発させるステップとを含む。金属部品は、(i)第1の金属シートと、(ii)最遠金属部品と、(iii)第1の金属シートと金属部品との間の0枚、1枚、またはいくつかの介入金属シートとを含む。金属部品のうちの少なくとも1つは、近隣の金属部品との界面におけるコーティングを有する。界面は、2つの近隣の金属部品間の直接接触を伴って、またはそれらの間に間隙を伴って構成される。レーザ放射は、第1の金属シート上に入射し、中心ビームと、中心ビームを囲繞する環状ビームとを含む。制御するステップは、内方向螺旋状経路をトレースするステップと、内方向螺旋状経路をトレースしながら、最初に、(a)中心および環状ビームの個別の第1のパワーを持続し、続いて、(b)同時に、中心ビームのパワーをその第1のパワーからゼロワットまで漸減させ、環状ビームのパワーをその第1のパワーから非ゼロの第2のパワーまで漸減させ、最終的に、(c)環状ビームをオフにするステップとを含む。
【図面の簡単な説明】
【0018】
本明細書に組み込まれ、その一部を構成する、付随の図面は、本発明の好ましい実施形態を概略的に図示し、上記に与えられる概要および下記に与えられる好ましい実施形態の詳細な説明とともに、本発明の原理を解説する役割を果たす。
【0019】
【
図1】
図1は、ある実施形態による、二重ビームレーザ放射を用いて金属部品を溶接するためのレーザ溶接装置を図示する。
【0020】
【
図2】
図2は、ある実施形態による、標的上に集束される際に
図1の装置によって発生されるレーザ放射の横方向レーザ外形を示す。
【0021】
【
図3】
図3は、ある実施形態による、
図2の二重ビームレーザ放射を用いた螺旋状レーザ溶接を使用して、アルミニウムを継合するための方法に関するフローチャートである。
【0022】
【
図4】
図4は、
図3の方法によってレーザ溶接されるような金属部品の例示的構成を示す。本構成では、金属シートが、金属部品上に配置され、それらの間に他の介入金属シートを伴わず、レーザ溶接によって引き起こされる金属融解は、金属部品の中に、途中までのみ延在する。
【0023】
【
図5】
図5は、
図3の方法によってレーザ溶接されるような金属部品の別の例示的構成を示す。本構成は、金属融解が金属部品全体を通して延在することを除いて、
図4の構成に類似する。
【0024】
【
図6】
図6は、
図3の方法によってレーザ溶接されるような金属部品のまた別の例示的構成を示す。本構成は、介入金属シートを含むことを除いて、
図4の構成に類似する。
【0025】
【
図7】
図7は、ある実施形態による、
図3の方法において利用されるレーザパワースキームを示す。
【0026】
【
図8】
図8A、8B、および8Cは、ある実施形態による、
図3の方法において集束された二重ビームレーザ放射によってトレースされる、3つの経路を示す。
【0027】
【
図9】
図9は、ある実施形態による、それらの間の界面において、その上にコーティングを含む、金属部品を継合するための方法に関するフローチャートである。本方法は、
図2の二重ビームレーザ放射を用いた螺旋状レーザ溶接を使用する。
【0028】
【
図10】
図10は、
図9の方法によって溶接され得る、金属部品の2層スタックの実施例を図示する。
【0029】
【
図11】
図11は、
図9の方法によって溶接され得る、2層を上回る層を伴う金属部品のスタックの実施例を図示する。
【0030】
【
図12】
図12は、ある実施形態による、
図9の方法において利用されるレーザパワースキームを示す。
【0031】
【
図13】
図13は、ある実施形態による、
図9の方法において集束された二重ビームレーザ放射によってトレースされる、経路を示す。
【発明を実施するための形態】
【0032】
発明の詳細な説明
ここで図面を参照すると、同様の構成要素は、同様の番号によって指定され、
図1は、金属部品を溶接するための1つのレーザ溶接装置100を概略的に図示する。装置100は、二重ビームレーザ放射120を標的の上に集束させ、標的上の螺旋状経路130等の1つまたはそれを上回る経路をトレースするように構成される。
【0033】
図1に描写されるシナリオでは、装置100は、2つの重複する金属部品、すなわち、金属シート112および金属部品114をともに溶接する。本明細書では、用語「金属シート」は、10ミリメートル以下の厚さを伴う金属部品を指し、したがって、キロワット範囲内の平均パワーを伴う集束されたレーザ放射が、その厚さを通して融解し得る。本明細書で使用されるように、用語「金属シート」は、100ミクロン未満の厚さを伴う金属箔、および平坦ではない金属部品を含む。用語「金属シート」はまた、本明細書で使用されるように、10ミリメートルよりも厚い、1つまたはそれを上回る他の部分を有する金属部品の局所的なシート様部分も指す。したがって、金属シート112の厚さ112Tは、10ミリメートルまたはそれ未満である。溶接による金属部品112および114の継合が、レーザ放射120が、金属シート112の厚さ112Tを通して融解することを要求する一方、金属部品114の厚さ114Tを通して融解することは、必要とされない。したがって、金属部品114は、金属シートである場合とそうではない場合があり、厚さ114Tは、10ミリメートルを超過する場合とそうではない場合がある。
【0034】
図2は、標的上に集束される際、例えば、
図1に描写されるような金属シート112上に集束される際のレーザ放射120の横方向外形200を示す。レーザ放射120は、中心ビーム122Cと、中心ビーム122Cを囲繞する環状ビーム122Aとを含む。環状ビーム122Aのパワーの少なくとも大部分は、中心ビーム122Cの直径の外側にある。
図2に描写される実施形態では、中心ビーム122Cおよび環状ビーム122Aは、円形である。以下の議論は、円形ビームを仮定するが、楕円形ビームに容易に拡張される。中心ビーム122Cは、1/e
2の直径210Cを有する。環状ビーム122Aは、外側の1/e
2の直径212Aと、内側の1/e
2の直径214Aとを有する。環状ビーム122Aの内径214Aは、中心ビーム122Cの直径210Cを超過する。中心ビーム122Cおよび環状ビーム122Aの組み合わせられたパワーは、中心ビーム122Cの外径210Cと環状ビーム122Aの内径214Aとの間にある、円220に沿って最小値を獲得する。一実施例では、直径210Cは、50~500ミクロンの範囲内にあり、外径212Aは、直径210Cの2~3倍の範囲内にある。別の実施例では、直径210Cは、15~50ミクロンの範囲内にあり、外径212Aは、直径210Cの4~10倍の範囲内にある。レーザ放射120は、例えば、900~1,200ナノメートルの範囲内の波長を伴う、近赤外線であってもよい。
【0035】
再度、
図1を参照すると、装置100は、レーザ源170と、中心パワーコントローラ172と、環状パワーコントローラ174と、光ファイバ178と、ビーム送達モジュール180とを含む。レーザ源170は、レーザ放射を発生させる。レーザ源170は、中心ビーム122Cを形成するために、発生されたレーザ放射の1つの部分を光ファイバ178の中心コアの中に、かつ環状ビーム122Aを形成するために、発生されたレーザ放射の別の部分を光ファイバ178の環状コアの中に結合する。レーザ源170から光ファイバ178の中にレーザ放射を結合する目的のために、装置100は、米国特許第10,807,190号および米国特許出願公開第2019/0118299号(その両方が、参照することによってそれらの全体として本明細書に組み込まれる)において議論されるものに類似する、ファイバ結合技法を実装し得る。
【0036】
中心パワーコントローラ172は、必要に応じて、中心ビーム122Cのパワーを調節する。環状パワーコントローラ174は、必要に応じて、環状ビーム122Aのパワーを調節する。一実装では、レーザ源170は、中心パワーコントローラ172によって制御され、中心ビーム122Cを発生させるために特化される少なくとも1つのレーザと、環状パワーコントローラ174によって制御され、環状ビーム122Aを発生させるために特化される少なくとも1つの他のレーザとを含む。
【0037】
ビーム送達モジュール180は、光ファイバ178からレーザ放射120を受光する。ビーム送達モジュール180は、レーザ放射120を標的の上に集束させ、必要に応じて、レーザ放射120を操向し、例えば、螺旋状経路130をトレースする。ビーム送達モジュール180は、中心ビーム122Cおよび環状ビーム122Aを全体としてともに操向し、中心ビーム122Cおよび環状ビーム122Aを相互から独立して、空間的に操作することが可能である必要はない。ビーム送達モジュール180は、集束レンズまたは対物レンズと、当技術分野において公知であるようなビーム操向光学系とを含んでもよい。
【0038】
装置100はさらに、中心パワーコントローラ172、環状パワーコントローラ174、およびビーム送達モジュール180の動作を管理する、マスタコントローラ190を含んでもよい。マスタコントローラは、例えば、中心パワーコントローラ172、環状パワーコントローラ174、およびビーム送達モジュール180によって実施されることになる動作を規定する、機械可読命令を含有するコンピュータである。
【0039】
図1に描写されるシナリオでは、ビーム送達モジュール180は、レーザ放射120を金属シート112の表面112Sの上に集束させる。表面112Sは、金属部品114から金属シート112の反対側にある。ビーム送達モジュール180は、レーザ放射120を用いて、螺旋状経路130を含む、1つまたはそれを上回る経路をトレースする。ビーム送達モジュール180が、中心ビーム122Cおよび環状ビーム122Aをともに集束させ、操向する一方、中心パワーコントローラ172および環状パワーコントローラ174は、金属シート112および金属部品114をともに溶接するために、必要に応じて、中心ビーム122Cおよび環状ビーム122Aの個別のパワーを相互から独立して調節する。例えば、中心ビーム122Cのパワーは、環状ビーム122Aのパワーとは異なる率において、漸増または漸減され得る、または環状ビーム122Aが、連続的にオンである一方、中心ビーム122Cが、パルス出力する、またはオフにされ得る。
【0040】
図3は、二重ビームレーザ放射120を用いた螺旋状レーザ溶接を使用して、アルミニウムを継合するための一方法300に関するフローチャートである。方法300は、装置100によって実施され得、アルミニウムシートを1つまたはそれを上回る他のアルミニウムシートに、および/または別のアルミニウム部品に溶接するために使用され得る。各アルミニウムシート/部品は、実質的に、アルミニウムまたはアルミニウム合金から作製される。本明細書の範囲から逸脱することなく、表面は、溶接するステップに先立って、ある程度の酸化および/または汚染を呈し得る。
【0041】
アルミニウムは、融解されるとき、比較的粘性である。アルミニウムが、概して、ある程度の捕捉されたガスを含有し、高い粘度が、そのようなガスの解放を妨げるため、アルミニウムの従来のレーザ溶接は、特に、著しい多孔性および実質的サイズの空所を伴う溶接塊を生産する傾向があり、スパッタもまた起こす傾向がある。鋳造アルミニウム等のある形態のアルミニウムは、比較的大量のガスを含有する傾向がある。方法300は、捕捉されたガスの解放を最適化するように調整される。少なくとも本理由のために、方法300は、部品のうちの1つまたはそれを上回るものが、鋳造アルミニウム部品であるとき等、部品のうちの1つまたはそれを上回るものが、高いガス含有量を有するときであっても、アルミニウム部品間の高品質かつ低多孔性の溶接継合部を形成することが可能である。例えば、方法300は、1つまたはそれを上回る押出成型されたアルミニウムシートを鋳造アルミニウム部品に溶接するために使用されてもよい。一般に、方法300は、封入されたガスの制御された解放を促進し、応力を最小限にし、それによって、スパッタおよび多孔性、および冷却の間に形成する亀裂のリスクを最小限にする。
【0042】
方法300は、ステップ310と、320とを含む。ステップ310は、レーザ放射120を、随意に、それらの間に配置される1つまたはそれを上回る他の介入アルミニウムシートを伴う、別のアルミニウム部品上に配置される第1のアルミニウムシートの上に集束させる。ステップ320は、レーザ放射120を制御し、集束されると、第1のアルミニウムシート上の複数の経路をトレースし、それによって、第1のアルミニウムシートをアルミニウム部品(および存在する場合、介入アルミニウムシート)に溶接する。
【0043】
ステップ310および320の詳細を議論するステップに進む前に、方法300によって溶接され得るアルミニウム部品の異なる構成について述べる。
図4、5、および6は、それに対して方法300が適用され得る、金属部品の例示的構成、および方法300によって形成される例示的溶接塊を図示する。方法300の文脈内では、
図4、5、および6に示される金属部品はそれぞれ、アルミニウム部品である。
【0044】
図4は、構成400を示し、金属シート112は、それらの間に他の介入金属シートを伴わずに、金属部品114上に配置され、方法300の実施によって引き起こされる金属融解は、金属部品114の中に、途中までのみ延在する。金属シート112は、それらの間の界面414Fに沿って、金属部品114と直接接触していてもよい。本明細書の範囲から逸脱することなく、小さい間隙が、例えば、位置付け許容誤差または表面の非平坦性に起因して、界面414Fに沿って定位置に存在し得る。金属部品114は、界面414Fと反対側の金属部品114の側面上に、表面414Sを有する。金属シート112および金属部品114は、構成400において配列されるように、表面112Sと414Sとの間に組み合わせられた厚さ410Tを有する。金属シート112および/または金属部品114が非平面であるシナリオでは、厚さ410Tは、レーザ放射120が溶接の間に金属シート112上に入射する領域内で測定される、局所的な厚さである。
【0045】
方法300を構成400に適用するとき、方法300は、レーザ放射120を金属シート112の表面112Sの上に指向し、金属シート112を通して、界面414Fを横断して、かつ金属部品114の中に融解するが、金属部品114全体を通して、表面414Sまで融解しない。方法300は、それによって、表面112Sから始まり、金属部品114の内側部分内で終端する、溶接塊450を形成し、したがって、溶接塊450の深さ450Dは、厚さ410Tよりも浅い。溶接塊450は、深さ450Dを超過し得る、幅450Wを有する。例えば、幅450Wは、深さ450Dの1~5倍の範囲内であってもよい。方法300が、構成400では、金属部品114全体を通して、表面414Sまで融解しようとしないため、金属部品114によって提供される、対応するヒートシンクが、レーザ放射120が、界面414Fを横断して融解しないように防止しない限り、金属部品114の厚さ414Tは、事実上、金属シート112の厚さ112Tを超過し得る。構成400の一実施例では、厚さ112Tは、1~5ミリメートルの範囲内にあり、厚さ114Tは、2~30ミリメートルの範囲内にあり、幅450Wは、3~15ミリメートルであり、深さ450Dは、少なくとも1ミリメートルだけ金属部品114の中に延在する。代替として、深さ450Dは、例えば、金属部品114が、比較的薄く、表面414Sが溶接プロセスの徴候を示さないことが好ましいとき、1ミリメートル未満だけ金属部品114の中に延在してもよい。溶接塊450は、典型的には、表面112Sにおいて、またはその近傍で最幅広であり、したがって、幅450Wは、それを中心として獲得され、界面414Fにおける溶接塊450の幅は、幾分、より小さい。
【0046】
図5は、構成500を示し、これは、方法300の実施によって発生される、金属融解、および関連付けられる溶接塊550が、金属部品114全体を通して、表面414Sまで延在することを除いて、構成400に類似する。構成500では、金属部品114は、厚さ112Tに類似する、厚さ114Tを伴う金属シートであり得る。溶接塊550の幅550Wは、厚さ410Tを超過し得る。しかしながら、溶接塊550の外周のみが、レーザ溶接の間、金属シート112および金属部品114の中実部分によって支持されるため、幅550Wを厚さ410Tの約3倍未満に限定することが、好ましくあり得る。幅550Wが、本限界を超過することが可能にされる場合、レーザ放射120は、実質的量の融解された金属を吹き飛ばし得る。そのような吹き飛ばしは、溶接塊550のサイズおよび強度を損なわせ得、最悪の場合では、金属シート112および金属部品114を通して延在する開口を形成することさえある。構成500の一実施例では、厚さ112Tおよび114Tはそれぞれ、1~3ミリメートルの範囲内にあり、幅550Wは、厚さ410Tの結果として生じる値の3倍未満である。
【0047】
図6は、構成600を示し、これは、金属シート112と金属部品114との間に介入金属シート616を含むことを除いて、構成400に類似する。金属シート616は、厚さ112Tに類似する、厚さ616Tを有する。金属シート112および616は、界面616Fにおいて衝合し、金属シート616および金属部品114は、界面614Fにおいて衝合する。界面616Fおよび614Fはそれぞれ、界面414Fに類似する性質を有する。方法300が、構成600に適用されるとき、レーザ放射120は、金属シート112を通して、界面616Fを横断して、金属シート616を通して、界面614Fを横断して、金属部品114の中に融解するが、表面414Sに至るまで融解しない。結果として生じる溶接塊650は、金属部品114の内側部分内で終端し、表面112Sと414Sとの間の金属シート112および616および金属部品114の組み合わせられた厚さ610T未満である、深さ650Dを有する。構成600の一実施例では、厚さ112Tおよび616Tはそれぞれ、1~3ミリメートルの範囲内にあり、厚さ414Tは、2~30ミリメートルの範囲内にあり、幅650Wは、3~15ミリメートルである。金属部品114の中への深さ650Dの広がりは、構成400では、金属部品114の中への溶接塊450の広がりに類似し得る。
【0048】
構成600は、方法300による金属融解に対して修正され得、これは、構成500に到達するために、構成400の修正に類似する様式において、金属部品114全体を通して、表面414Sまで延在する。加えて、構成600は、金属シート112と金属部品114との間に、1枚を上回る介入金属シート616を含むように拡張されてもよい。
【0049】
再度、
図3を参照すると、ステップ310の一実施例では、レーザ源170は、レーザ放射120を発生させ、ビーム送達モジュール180は、
図4、5、および6を参照して上記に議論される構成のうちのいずれか1つにおいて配列されるように、中心ビーム122Cと、環状ビーム122Aとを含む、レーザ放射120を金属シート112の表面112Sの上に集束させる。ステップ320の関連する実施例では、ビーム送達モジュール180は、レーザ放射120を操向し、中心ビーム122Cおよび環状ビーム122Aを用いて、表面112S上の複数の経路をトレースする。
【0050】
ステップ320は、ステップ324と、326と、328とを含み、列挙される順序において実施される。ステップ320の実施は、中心ビーム122Cおよび環状ビーム122Aのパワーを操作しながら、複数の経路をトレースするステップに関与する。
図7は、ステップ320において利用されるレーザパワースキームを示し、
図8A、8B、および8Cは、それぞれ、ステップ324、326、および328において、集束されたレーザ放射120によってトレースされる、3つの経路を示す。中心ビーム122Cおよび環状ビーム122Aは、連続波ビームであってもよい。中心ビーム122Cおよび環状ビーム122Aのパワーは、要求に応じて、それぞれ、中心パワーコントローラ172および環状パワーコントローラ174によって調節され得る。
【0051】
ステップ324は、
図8Aに示される、外方向螺旋状経路810をトレースする。外方向螺旋状経路810は、時間t1において、中央場所L
Cから始まり、時間t2において、中央場所L
Cを中心として、かつそこから離れるように螺旋状になり、外側場所L
Oに到達する。
図8Aに描写される実施例では、螺旋状経路810は、アルキメデス螺旋に類似し、したがって、中央場所L
Cを中心とした連続回転が、ほぼ等距離にあり、分離距離812によって特徴付けられる。分離距離812は、環状ビーム122Aの直径212Aによって決定され、例えば、少なくとも直径212Aと同程度に大きいが、直径212Aの2倍以下であり得る。本明細書の範囲から逸脱することなく、螺旋状経路810は、アルキメデス螺旋状とは異なる形状をとり得る。
【0052】
外方向螺旋状経路810をトレースしながら、ステップ324は、中心ビーム122CのパワーP
C1および環状ビーム122AのパワーP
A1を持続する(
図7参照)。P
A1は、P
C1よりも高くあり得る。中心ビーム122Cおよび環状ビーム122Aのこれらのパワーは、その上にレーザ放射120が入射する、アルミニウムシートの表面(例えば、金属シート112の表面112S)から、存在する場合、任意の介入アルミニウムシート(例えば、金属シート616)を通して、かつその上にレーザ放射120が入射する、アルミニウムシート(例えば、金属部品114)から最遠のアルミニウム部品の中に、またはそれを通して延在する、キーホールを伴う局所的な融解プールを維持するために十分であるように設定される。キーホールおよび囲繞する融解プールは、ステップ324の間、外方向螺旋状経路810に沿って、レーザ放射120とともに移動する。キーホールは、レーザ放射120が入射する領域に対して位置決めされる。融解プールは、概して、レーザ放射120の後方に尾部を有するであろう。
【0053】
従来、キーホール溶接は、典型的には、略正規分布またはフラットトップ横方向強度分布を伴う、単一のレーザビームによって実施される。本単一のレーザビームのパワー密度は、キーホールを形成するために十分に高く設定される。しかしながら、キーホールの対流機構は、多くの場合、非常に激しいため、著しいスパッタは、不可避であり、キーホールは、予測不能に開放および閉鎖する。他方、方法300は、環状ビームの存在から利益を享受し、(a)金属内に課される温度勾配を制御し、(b)中心ビームに対するパワー密度要件を低減させる。レーザ放射120を用いて、外方向螺旋状経路810をトレースするとき、環状ビーム122Aの部分824Lは、中心ビーム122Cを先導し、環状ビーム122Aの別の部分824Tは、中心ビーム122Cを後追する。先導部分824Lは、材料を予熱し、したがって、キーホールは、相対的に容易に、確立および維持される。後追部分824Tによって提供される加熱は、キーホールの後方の材料の温度をより緩やかに低下させ、キーホールを後追する温度勾配を低減させ、冷却された材料内の応力を最小限にする役割を果たす。方法300は、それによって、スパッタを通して殆どまたは全く材料損失を伴わずに、かつ最小限の応力を伴って、安定的なキーホールを達成する。方法300によって達成される改良されたキーホールの安定性は、キーホールが、開放されるときにのみ、封入されたガスが、キーホールを介して逃散し得るため、アルミニウム内に封入されるガスを解放することに役立つ。
【0054】
ステップ324単独では、1つまたはそれを上回る部品が、実質的量の捕捉されたガスを含有するとき、アルミニウム部品間の満足な溶接継合部を達成するために不十分であることを見出している。ステップ324が、付加的な溶接を付随しない場合、ガスは、融解された材料内に封入されたままであり、典型的には、最終的な溶接塊が、実質的サイズの空所および関連する応力誘発性亀裂を有するという結果をもたらす。同様に、ステップ324単独では、異種組成物のアルミニウム部品をともに溶接するために不十分であることも見出している。ここで、外方向螺旋状経路810に沿った単一の経路は、十分な混合を提供せず、溶接塊は、したがって、冷却に応じて、亀裂する傾向がある。したがって、方法300はさらに、ステップ328を含む。ステップ328は、
図8Cに示される内方向螺旋状経路830を中央場所L
Cに向かって戻るようにトレースする。しかしながら、ステップ324において、外方向螺旋状経路810のトレースが、材料を高温のままに残すため、ステップ328が、ステップ324を完結することに応じて、同一のパワーレベルを伴って、即座に始動される場合、材料は、非常に熱くなるであろう。スパッタは、不可避である可能性が高いであろう。そのような過熱を防止するために、ステップ328は、(a)低減されたパワーレベルから開始し、(b)ステップ324および328の螺旋状経路の周辺に存在する面積を照射するステップ326によって、ステップ324から分離される。
【0055】
ステップ326は、時間t
2とt
3との間の、
図8Bに示される外側経路820をトレースする。外側経路820は、時間t
2において、外側場所L
Oから開始する。外側経路820は、中央場所L
Cから半径方向に視認されると、外方向螺旋状経路810の周辺に存在する(
図8Bは、半径方向890の実施例を示す)。外側経路820をトレースしながら、ステップ326は、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、パワーP
C1およびP
A1から、それぞれ、パワーP
C2およびP
A2まで漸減させる(
図7参照)。P
C2およびP
A2は両方とも、P
C1よりも低い。P
C2およびP
A2は、ゼロであってもよい。
【0056】
一実装では、外側経路820は、閉経路、例えば、
図8Bに示されるような円を含む。本実装では、ステップ326はさらに、方法300によって形成される溶接塊が、所望の形状の良好に画定された外周を有することを確実にする役割を果たし得る。ステップ326は、本閉ループを1回トレースし得、本場合では、外側経路820は、外側場所L
Oから開始し、終了する。代替として、ステップ326は、閉ループに沿って、中央場所L
Cを中心として、1つを上回る回路を実施し、本場合では、外側経路820は、外側場所L
Oまたは閉ループ上の別の終端点L
Tのいずれかにおいて終了する。十分であるとき、閉ループに沿った単一の回路は、本実装における全体的な処理時間を最小限にする。
【0057】
別の実装では、外側経路820は、中央場所LCを中心とした完全回路を完了させる前に、終端点LTにおいて終了する、開経路である。本実装では、終端点LTの場所は、それが、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、PC2およびPA2まで傾斜させるために要する時間によって定義され得る。完全回路を完了させる前の外側経路820の終端は、より小さい溶接塊を結果としてもたらし、これは、いくつかのシナリオでは、好ましくあり得る。
【0058】
本明細書の範囲から逸脱することなく、外側経路820は、外方向螺旋状経路810の連続部であり、外方向螺旋状経路810の拡張されたバージョンの外側端部においてレーザパワーを漸減させる、ステップ326に対応し得る。
【0059】
ステップ328は、
図8Cに示されるように、時間t3において始動され、内方向螺旋状経路830を中央場所L
Cまで戻るようにトレースする。内方向螺旋状経路830の幾何学的性質は、外方向螺旋状経路810のものに類似し得る。内方向螺旋状経路830は、外側経路820が終了する場所から開始する。したがって、内方向螺旋状経路830は、(
図8Cに描写されるように)外側場所L
Oまたは終端点L
Tのいずれかから開始する。内方向螺旋状経路830をトレースするプロセスは、3つの区画、すなわち、(1)時間t
3における外側場所L
O(または終端点L
T)から時間t
4における場所L
Pまでの第1の区画、(2)時間t
4における場所L
Pから時間t
5における場所L
Rまでの第2の区画、および(3)時間t
5における場所L
Rから時間t
6における中央場所L
Cまでの第3の区画において行われる。第1の区画をトレースしながら、ステップ328は、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、P
C2およびP
A2から、それぞれ、パワーP
C3およびP
A3まで漸増させる(
図7参照)。
図7に描写される実施例では、P
C3は、P
C2を超過し、P
A3は、P
A2およびP
C3の両方を超過する。しかしながら、他の関係が、いくつかのシナリオでは、有利であり得る。次に、第2の区画をトレースしながら、ステップ328は、(a)環状ビーム122AのパワーP
A3を持続し、(b)P
C3とより低いパワーP
C4との間で中心ビーム122Cを繰り返しパルス出力する(
図7参照)。P
C4は、オフパワー、すなわち、ゼロワットであってもよい。中心ビーム122Cのパルス出力率は、0.5~5キロヘルツの範囲内であり得る。最終的に、第3の区画をトレースしながら、ステップ328は、中心ビーム122Cおよび環状ビーム122Aのパワーを低減させる。本パワー低減の一実施形態では、ステップ328は、中心ビーム122Cをオフにし、環状ビーム122Aをゼロワットまで漸減させる(
図7参照)。P
C4が非ゼロであるとき、ステップ328は、(a)例えば、第3の区画を始動するステップに応じて、そのパワーをゼロワットに切り替える、または(b)第3の区画のトレースの間、そのパワーをゼロワットまで漸減させることによって、中心ビーム122Cをオフにし得る。本明細書の範囲から逸脱することなく、ステップ328は、環状ビーム122Aにおける非ゼロパワー、例えば、20%またはそれ未満のP
A3を用いて完結し得る。
【0060】
内方向螺旋状経路830の第2の区画の間の中心ビーム122Cのパルス出力は、ステップ324における外方向螺旋状経路810のトレース後、融解された材料内に捕捉されたガスを解放するために有効であることが証明されている。環状ビーム122Aの漸減は、急激なオフとは対照的に、材料の冷却を減速させ、応力を解放し、溶接塊の亀裂を防止する役割を果たす。レーザ放射120が定常である間にパワーを漸減させることは、溶接塊内に孔または窪みを生産する傾向があることを見出している。したがって、ステップ328は、レーザ放射120の最終的な漸減を実施しながら、内方向螺旋状経路830に沿って移動する。
【0061】
ステップ320はさらに、ステップ324に先行する、ステップ322を含んでもよい。時間t0において、ステップ322は、中央場所LCにおいて、中心ビーム122Cおよび環状ビーム122Aの初期パワーPC0およびPA0において、それぞれ、レーザ放射120をオンにする。PA0は、PC0を超過してもよい。時間t0から時間t1まで、レーザ放射120を中央場所LCに指向し続けながら、ステップ322は、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、PC1およびPA1まで漸減させる。ステップ322において、レーザ放射120によって堆積されるエネルギーは、融解プールを形成し、キーホールを確立することに役立つ。ステップ322を省略する実施形態は、最初に、ステップ324において、中心ビーム122Cおよび環状ビーム122AのパワーPC1およびPA1を用いて、それぞれ、レーザ放射120をオンにする。
【0062】
一実施形態では、ステップ324の持続時間は、150~300ミリ秒であり、ステップ326の持続時間は、25~100ミリ秒であり、ステップ328の持続時間は、150~300ミリ秒であり、(含まれる場合)ステップ322の持続時間は、25~100ミリ秒である。方法300は、1秒未満以内に完了され得る。ある実装では、PC0、PA0、PC1、PA1、PC3、およびPA3はそれぞれ、平均パワーのキロワットを超過する。例えば、PC0、PA0、PC1、PA1、およびPA3は、2~4キロワットの範囲であり得、PC3は、0.5~2.5キロワットの範囲内であり得、PC2、PC4、およびPA2は、0~0.2キロワットの範囲内であり得る。パワーレベルは、関与されるアルミニウム部品の厚さに従って、結果として生じる溶接塊が、最遠アルミニウム部品を貫通する、またはむしろ、その内側場所において終端するべきかどうかに基づいて調整され得る。
【0063】
方法300は、シールドガスを溶接区域に提供するステップを含み、溶接塊の上部層(例えば、最近傍表面112S)内の細孔を防止し、プラズマ形成を防止し、周囲酸素への暴露を最小限にすることにさらに役立ち得る。シールドガスは、例えば、アルゴンまたは窒素である。
【0064】
経路810、820、および830は、単一の連続的経路を形成するために接続する。ステップ320は、時計回りまたは反時計回り方向において、経路810、820、および830のそれぞれをトレースし得る。本方向は、経路毎に同一である必要はない。例えば、内方向螺旋状経路830は、外方向螺旋状経路810と同じであるが、外方向よりもむしろ、逆行して、かつ内方向においてトレースされ得る。経路810、820、および830の組み合わせによってトレースされる面積は、3~15ミリメートルの範囲内において、一般的な広がり、例えば、
図8Cに示されるような直径870Dを有し得る。
【0065】
図9は、それらの間の界面におけるコーティングを含む、金属部品を継合するための一方法900に関するフローチャートである。方法900は、装置100によって実施され得る。方法900は、亜鉛コーティングされた鋼鉄またはニッケルコーティングされた銅を溶接するために使用されてもよい。
【0066】
溶接されることになる金属部品間の界面におけるコーティングの存在は、コーティングが、金属部品自体を融解するために要求される温度よりも低い温度において蒸発するとき、課題を提示する。例えば、鋼鉄の融解温度は、典型的には、摂氏約1,370度であるのに対し、亜鉛の蒸発温度は、摂氏907度にすぎない。効率的なガス逃散ルートの不在下では、コーティングの蒸発によって生産されるガスは、キーホール溶接の間に、著しいスパッタを引き起こす。そのようなコーティングされた金属部品の従来のキーホールレーザ溶接では、金属部品は、ガスのための代替逃散ルートを提供するために十分に大きい間隙によって相互から分離される。方法900は、そのような間隙を要求しない。その代わりに、方法900は、コーティングの蒸発によって生産されるガスが、最小限の(または無)スパッタを伴って、キーホールを経由して効率的に逃散することを可能にするように調整される。方法900は、したがって、金属部品が、相互と直接接触しているとき、スパッタを最小限にすることが可能であり、したがって、高品質な溶接継合部を達成する。方法900がまた、部品が、ある程度の量の間隙によって相互から分離されるとき、スパッタを最小限にし、高品質な溶接継合部を達成することを見出している。亜鉛コーティングされた鋼鉄の場合では、間隙が比較的小さくある限り、溶接継合部の品質が、間隙の存在を問わないことを見出している。間隙サイズに従って、任意のプロセスパラメータを修正することさえなく、同一の溶接継合部の品質が、小さい間隙および無間隙に関して達成される。キーホールが、(入射するレーザ放射により近接する)上部シートから下方のシートまたは部品の上に融解された金属を押進する傾向があるため、上部シートの厚さは、それに対して溶接継合部の品質を問わない、最大間隙サイズを定義する一次因子である。あるシナリオでは、溶接継合部の品質は、間隙が、上部シートの厚さの0(間隙がない)~約60%の範囲内にある限り、間隙サイズを問わない。
【0067】
方法900は、ステップ910と、920とを含む。ステップ910は、レーザ放射120を金属部品のスタックの上に集束させる。金属部品のスタックは、随意に、それらの間に配置される1枚またはそれを上回る介入金属シートを伴う、金属部品上に配置される第1の金属シートから成る。金属部品は、金属シートである場合とそうではない場合がある。ステップ920は、レーザ放射120を制御し、集束されると、第1の金属シートを金属部品(および存在する場合、介入金属シート)に溶接するように、第1の金属シート上の少なくとも1つの経路をトレースする。本溶接は、金属部品間の界面におけるコーティングを含む、レーザ放射120の経路内に配置されるコーティングの蒸発を引き起こす。
【0068】
図10および11は、方法900によって溶接され得る、金属シート/部品の例示的構成を図示する。方法900の文脈内では、各金属シート/部品は、随意に、亜鉛または亜鉛合金によってコーティングされる鋼鉄から作製される、または各金属シート/部品は、随意に、ニッケルまたはニッケル合金によってコーティングされる銅または銅合金から作製される。本明細書の範囲から逸脱することなく、表面は、溶接するステップに先立って、ある程度の酸化および/または汚染を呈し得る。
【0069】
図10は、2層スタックを伴う構成1000を図示する。構成1000は、(a)金属シート112および金属部品114のうちの少なくとも1つが、界面414Fにおいて、その上にコーティングを有し、(b)間隙1010Gが、界面414Fにおいて存在し得ることを除いて、構成400および500に類似する。金属シート112は、界面414Fに面する金属シート112の表面におけるコーティング1012Cを有する、および/または金属部品114は、界面414Fに面する金属部分114の表面におけるコーティング1014Cを有する。金属シート112および金属部品114の他の表面も、同様にコーティングされてもよい。典型的なシナリオでは、金属シート112および金属部品114のうちの少なくとも1つの全ての表面が、コーティングされる。間隙1010Gは、0(無間隙)~1ミリメートル、または金属シート112の厚さの0~60%の範囲内であり得る。
【0070】
方法900によって形成される溶接塊は、方法300によって形成されるものに類似する寸法を有し得る。溶接塊(
図10には示されない)は、
図5の溶接塊550に類似する様式において、金属部品114を貫通する、または
図4の溶接塊450に類似する様式において、金属部品114の内側部分内で終端し得る。
【0071】
図11は、金属シート112と金属部品114との間の介入金属シート616を含む、構成1100を図示する。構成1100は、(a)金属シート112、金属シート616、および金属部品114のうちの少なくとも1つが、対応する界面におけるコーティングを有すること、(b)間隙が、界面616Fおよび614Fのうちの1つまたはそれを上回るものにおいて存在し得ることを除いて、構成600に類似する。コーティングに対して、金属シート112は、界面616Fにおけるコーティング1012Cを有し得、金属シート616は、界面616Fにおけるコーティング1116C(1)および界面614Fにおけるコーティング1116C(2)のうちの一方または両方を有し得、金属部品114は、界面614Fにおけるコーティング1014Cを有し得る。界面616Fおよび614Fはそれぞれ、
図10の間隙1010Gに類似する間隙を伴って構成され得る。構成1100は、1枚を上回る介入金属シート616を含むために、容易に拡張される。
【0072】
構成1100(
図11には示されない)において、方法900によって形成される溶接塊は、
図5の溶接塊550に類似する様式において、金属部品114を貫通する、または
図6に描写される溶接塊650に類似する様式において、金属部品114の内側部分内で終端し得る。
【0073】
再度、
図9を参照すると、ステップ910の一実施例では、レーザ源170は、レーザ放射120を発生させ、ビーム送達モジュール180は、
図10および11を参照して上記に議論される構成のいずれか1つにおいて配列されるように、中心ビーム122Cと、環状ビーム122Aとを含む、レーザ放射120を金属シート112の表面112Sの上に集束させる。ステップ920の実施例では、ビーム送達モジュール180は、レーザ放射120を操向し、中心ビーム122Cおよび環状ビーム122Aを用いて、表面112S上の少なくとも1つの経路をトレースする。ステップ920の実施は、中心ビーム122Cおよび環状ビーム122Aのパワーを操作しながら、少なくとも1つの経路をトレースするステップに関与する。中心ビーム122Cおよび環状ビーム122Aのパワーは、要求に応じて、それぞれ、中心パワーコントローラ172および環状パワーコントローラ174によって調節され得る。中心ビーム122Cおよび環状ビーム122Aは、連続波ビームであってもよい。
【0074】
ステップ920は、内方向螺旋状経路をトレースする、ステップ924を含む。ステップ920はさらに、ステップ922に先行し、レーザ放射120を用いて閉ループをトレースする、ステップ922を含み得る。閉ループは、内方向螺旋状経路を囲繞し、内方向螺旋状経路に関する始点において終了する。したがって、ステップ920が、ステップ922を含むとき、閉ループおよび内方向螺旋状経路は、1つの連続的経路を形成する。
【0075】
図12は、ステップ922を含む、ステップ920の実施形態において利用される、レーザパワースキームを示す。
図13は、ステップ922および924において、集束されたレーザ放射120によってトレースされる、経路を示す。
【0076】
ステップ924は、内方向螺旋状経路1320をトレースする。内方向螺旋状経路1320は、
図8Cの内方向螺旋状経路830に類似する。内方向螺旋状経路1320は、時間t
1において、外側場所LOから始まり、中央場所L
Cを中心として、かつそれに向かって螺旋状になり、時間t
3において、中央場所L
Cに到達する。内方向螺旋状経路1320をトレースするプロセスは、2つの区画、すなわち、(1)時間t
1における外側場所L
Oから時間t
2における場所L
Rまでの第1の区画、および(2)時間t
2における場所L
Rから時間t
3における中央場所L
Cまでの第2の区画において行われる。第1の区画をトレースしながら、ステップ924は、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、パワーP
C0およびP
A0において持続する。P
A0は、
図12に描写されるように、P
C0よりも大きくあり得る。次に、第2の区画をトレースしながら、ステップ924は、中心ビーム122Cおよび環状ビーム122Aのパワーを、それぞれ、0および非ゼロパワーP
A1まで漸減させる。最終的に、時間t
3において、中央場所L
Cに到達するとき、ステップ924は、環状ビーム122Aをオフにする。
【0077】
中心ビーム122Cおよび環状ビーム122AのパワーPC0およびPA0は、それぞれ、存在する場合、任意の介入金属シート(例えば、金属シート616)を通して、かつ最遠金属部品(例えば、金属部品114)の中に、またはそれを通して、第1の金属シートの表面(例えば、金属シート112の表面112S)から延在するキーホールを伴う局所的な融解プールを維持するように設定される。方法300のステップ324を参照して上記に議論されるように、キーホールおよび囲繞する融解プールは、ステップ924の間、内方向螺旋状経路1320に沿って、レーザ放射120とともに移動する。中心ビーム122Cおよび環状ビーム122Aの両方を含むことによって、方法900は、方法300を参照して上記に議論されるように、スパッタを通して殆どまたは全く材料損失を伴わずに、安定的なキーホールを達成する。方法900によって達成される、改良されたキーホールの安定性は、金属内に封入されたガスを解放することに役立ち、金属スタックにおける界面において、任意のコーティングの蒸発によって発生されるガスのための効率的な逃散ルートを提供する。方法900が、銅または銅合金に適用されるとき、環状ビーム122Aの存在は、付加的な利益を有し、すなわち、環状ビーム122Aの先導部分824Lによって提供される予熱が、銅/銅合金内の位相遷移を、レーザ放射120のより高いレベルの吸収によって特徴付けられる状態に誘発し得る。環状ビーム122Aは、それによって、中心ビーム122Cに対するパワー要件をさらに低減させる。内方向螺旋状経路1320の第2の区画をトレースする間のレーザパワーの緩やかな漸減は、材料の冷却を減速させ、応力を解放し、溶接塊の亀裂を防止する役割を果たす。本パワーの漸減は、方法300のステップ328を参照して上記に議論されるように、溶接塊内に孔または窪みを形成しないように防止するために、定常であることとは対照的に、レーザ放射120が、内方向螺旋状経路1320に沿って移動する間に実施される。
【0078】
含まれる場合、ステップ922は、時間t
0と時間t
1との間の、閉ループ1310をトレースする。閉ループ1310は、内方向螺旋状経路1320の周辺に存在する。閉ループ1310は、外側場所L
Oにおいて終了し、円であってもよい。ステップ922は、閉ループ1310の少なくとも1つの完全回路を完了する。閉ループ1310は、(
図13に示されるように)内方向螺旋状経路1320と同一の方向において、または反対方向において、中央場所L
Cの周囲を回転し得る。ステップ922は、主に、方法900によって形成される溶接塊の良好に画定される外周を確実にする役割を果たす。そのような外周が、要求されないとき、ステップ922を省略し、例えば、空間的制約の影響を被るときに、より小さい溶接塊を達成する、または全体的な処理時間を最小限にすることは、有利であり得る。
【0079】
方法900によって印加されるパワーP
C0およびP
A0は、1.5~5キロワットの範囲内にあり得る一方、P
A1は、0.05~1.0キロワットの範囲内にあり得る。内方向螺旋状経路1320および閉ループ1310(含まれる場合)によってトレースされる面積は、3~15ミリメートルの範囲内で、一般的な広がり、例えば、
図13に示されるような直径1370Dを有し得る。方法900は、500ミリ秒未満以内に完了され、ステップ924のパワー漸減部分の持続時間は、30~100ミリ秒の範囲内にあり得る。(時間t
1とt
2との間の)安定したレーザパワーを用いて実施される部分ステップ924は、パワー漸減に先行する、処理時間の60~100パーセントを占め得る。
【0080】
方法900は、シールドガスを溶接区域に提供するステップを含んでもよく、溶接塊の上部層内の細孔を防止することにさらに役立つ。シールドガスは、窒素であってもよい。
【0081】
本発明が、好ましい実施形態および他の実施形態の観点において、上記に説明される。しかしながら、本発明は、本明細書に説明され、描写される実施形態に限定されない。むしろ、本発明は、本明細書に添付される請求項によってのみ限定される。
【国際調査報告】