IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シーウェア システムズの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-06-21
(54)【発明の名称】光学流体分析器
(51)【国際特許分類】
   G01N 21/3577 20140101AFI20240614BHJP
   G06N 20/00 20190101ALI20240614BHJP
【FI】
G01N21/3577
G06N20/00
【審査請求】未請求
【予備審査請求】有
(21)【出願番号】P 2023576072
(86)(22)【出願日】2022-06-14
(85)【翻訳文提出日】2024-01-31
(86)【国際出願番号】 US2022033435
(87)【国際公開番号】W WO2022266098
(87)【国際公開日】2022-12-22
(31)【優先権主張番号】63/210,450
(32)【優先日】2021-06-14
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/839,102
(32)【優先日】2022-06-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】511248294
【氏名又は名称】シーウェア システムズ
【氏名又は名称原語表記】SI-WARE SYSTEMS
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】アンワー,モメン
(72)【発明者】
【氏名】アル ハロン,モハメド エイチ.
(72)【発明者】
【氏名】サベリー,ヤセル エム.
(72)【発明者】
【氏名】サクル,モハメド
【テーマコード(参考)】
2G059
【Fターム(参考)】
2G059AA01
2G059BB04
2G059DD12
2G059EE01
2G059HH01
2G059JJ01
2G059JJ11
2G059KK08
2G059KK09
(57)【要約】
実施態様は、サンプル流体を受け入れるように構成された流体セルを含む光学流体分析器に関する。この光学流体分析器は、流体セルをその両側で密封するように構成されるとともに、光源からの入力光が流体セルを通って送られ、流体セルからの出力光が分光計に入力されるように構成された光学素子をさらに含む。光学流体分析器は、分光計によって生成されたスペクトルに基づいて流体の少なくとも1のパラメータを定義する結果を生成するように構成された、人工知能(AI)エンジンなどの機械学習(ML)エンジンをさらに含む。
【選択図】図1
【特許請求の範囲】
【請求項1】
光学流体分析器であって、
入力光を生成するように構成された光源と、
流体を受け入れるように構成された流体セルと、
前記流体セルをその第1の側で密封するように構成された第1の光学素子であって、前記流体セル内にその第1の側から入力光を導くようにさらに構成された第1の光学素子と、
前記流体セルを前記第1の側とは反対側のその第2の側で密封するように構成された第2の光学素子であって、前記流体セルからの出力光をその第2の側を介して受け入れるようにさらに構成された第2の光学素子と、
前記第2の光学素子を介して前記出力光を受け入れるとともに、前記出力光に基づいて流体のスペクトルを得るように構成された分光計と、
前記スペクトルを受け取るとともに、流体の少なくとも1のパラメータを定義する結果を生成するように構成された機械学習エンジンとを備えることを特徴とする光学流体分析器。
【請求項2】
請求項1に記載の光学流体分析器において、
前記第2の光学素子が、前記流体セルと前記分光計との間に配置されて、前記流体セルをその第2の側で密封するように構成された平坦な光学窓を備えることを特徴とする光学流体分析器。
【請求項3】
請求項2に記載の光学流体分析器において、
前記第1の光学素子が、前記光源と前記流体セルとの間に配置されて、前記流体セルをその第1の側で密封するように構成された追加の平坦な光学窓を備えることを特徴とする光学流体分析器。
【請求項4】
請求項3に記載の光学流体分析器において、
前記追加の平坦な光学窓と前記流体セルとの間に結合されたボールレンズをさらに備えることを特徴とする光学流体分析器。
【請求項5】
請求項2に記載の光学流体分析器において、
前記第1の光学素子が、前記光源と前記流体セルの第1の側との間に結合されたボールレンズを含むことを特徴とする光学流体分析器。
【請求項6】
請求項5に記載の光学流体分析器において、
前記ボールレンズと前記流体セルの第1の側との間にシーリングを提供するように構成されたボール台座をさらに備えることを特徴とする光学流体分析器。
【請求項7】
請求項5に記載の光学流体分析器において、
前記平坦な光学窓が、前記分光計を含むパッケージのパッケージガラス窓を含み、当該光学流体分析器がさらに、
前記パッケージガラス窓と前記流体セルの第2の側との間にシーリングを提供するように構成されたO-リングを含むことを特徴とする光学流体分析器。
【請求項8】
請求項2に記載の光学流体分析器において、
入力光を前記流体セルにその第1の側から導くように構成されたボールレンズと、
前記ボールレンズと前記平坦な光学窓との間に結合されたゴム製スペーサまたはバネとをさらに備えることを特徴とする光学流体分析器。
【請求項9】
請求項1に記載の光学流体分析器において、
前記第1の光学素子および前記第2の光学素子が、コリメートされた設計を有する光結合素子を含み、この光結合素子が、
入力光を前記流体セル内にその第1の側で結合するように構成された第1のレンズと、
出力光を前記流体セルからその第2の側を介して受け入れ、前記出力光を前記分光計内に結合するように構成された第2のレンズとを含むことを特徴とする光学流体分析器。
【請求項10】
請求項9に記載の光学流体分析器において、
前記第1のレンズおよび前記第2のレンズの各々が、ボールレンズまたはハーフボールレンズを含むことを特徴とする光学流体分析器。
【請求項11】
請求項9に記載の光学流体分析器において、
前記第1のレンズおよび前記第2のレンズの各々が、平凸レンズを含み、当該光学流体分析器がさらに、
前記光源の後方に結合され、前記入力光の後方光線を集めて、この後方光線を前記第1のレンズに向けて反射するように構成された反射器を含むことを特徴とする光学流体分析器。
【請求項12】
請求項1に記載の光学流体分析器において、
前記光源からの入力光を受け入れて、この入力光を前記流体セル内にその第1の側で反射するように構成された第1の軸外放物面ミラーと、
前記流体セルからの出力光をその第2の側を介して受け入れて、前記出力光を前記分光計内に反射するように構成された第2の軸外放物面ミラーとをさらに備えることを特徴とする光学流体分析器。
【請求項13】
請求項1に記載の光学流体分析器において、
前記光源からの入力光を受け入れて、この入力光を前記流体セル内にその第1の側で反射するように構成された軸外放物面ミラーをさらに含み、前記第2の光学素子が、前記流体セルからの出力光をその第2の側を介して受け入れて、この出力光を前記分光計内に導くように構成されたレンズを含むことを特徴とする光学流体分析器。
【請求項14】
請求項1に記載の光学流体分析器において、
前記第1の光学素子が、前記光源と前記流体セルの第1の側との間に結合されたボールレンズを含み、このボールレンズは、その両端部にフィルタ応答コーティングが施されていることを特徴とする光学流体分析器。
【請求項15】
請求項14に記載の光学流体分析器において、
前記ボールレンズに結合された回転デバイスをさらに備え、この回転デバイスが、入力光が前記フィルタ応答コーティングを通過することなく前記ボールレンズを通過する第1の向きと、入力光が前記ボールレンズのフィルタ応答コーティングを通過する第2の向きとの間で前記ボールレンズを回転させるように構成され、
当該光学流体分析器が、前記ボールレンズが第2の向きにあるときに前記機械学習エンジンを較正する較正モードで動作するように構成されていることを特徴とする光学流体分析器。
【請求項16】
請求項1に記載の光学流体分析器において、
前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方に結合され、前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方の運動を引き起こして、前記流体セルの光路長を変化させるように構成されたアクチュエータをさらに備えることを特徴とする光学流体分析器。
【請求項17】
請求項1に記載の光学流体分析器において、
前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方が、前記流体セルを向く内面に、流体のスティクションを防止するためのコーティングを含むことを特徴とする光学流体分析器。
【請求項18】
請求項1に記載の光学流体分析器において、
前記機械学習エンジンを訓練するように構成された流体データを含むデータベースをさらに備えることを特徴とする光学流体分析器。
【請求項19】
請求項1に記載の光学流体分析器において、
前記流体セル内の流体に関連するセンサデータを生成し、前記機械学習エンジンに前記センサデータを提供するように構成された少なくとも1のセンサをさらに備えることを特徴とする光学流体分析器。
【請求項20】
請求項19に記載の光学流体分析器において、
前記少なくとも1のセンサが、圧力センサ、流量センサ、温度センサまたは湿度センサのうちの少なくとも1つを含むことを特徴とする光学流体分析器。
【請求項21】
請求項1に記載の光学流体分析器において、
前記流体セルが、マイクロ流体セルを含むことを特徴とする光学流体分析器。
【請求項22】
請求項21に記載の光学流体分析器において、
前記第2の光学素子が、前記分光計を含むパッケージのパッケージガラス窓を含み、このパッケージガラス窓が、前記マイクロ流体セルを含むことを特徴とする光学流体分析器。
【請求項23】
請求項1に記載の光学流体分析器において、
流体が患者の呼気サンプルを含み、当該光学流体分析器が、
前記流体セルに結合され、患者の呼気サンプルを受け入れて、患者の呼気サンプルを前記流体セル内に供給するように構成された入力チューブをさらに備えることを特徴とする光学流体分析器。
【請求項24】
請求項1に記載の光学流体分析器において、
前記分光計が、微小電気機械システム(MEMS)ベースのフーリエ変換赤外(FTIR)分光計を含むことを特徴とする光学流体分析器。
【発明の詳細な説明】
【技術分野】
【0001】
以下に説明する技術は、概して光学分光法に関し、特に、分光光学流体分析器の機構に関する。
【0002】
関連出願に対する相互参照
本出願は、2022年6月13日に米国特許商標庁に出願された非仮出願第17/839,102号、および2021年6月14日に米国特許商標庁に出願された仮出願第63/210,450号の優先権および利益を主張するものであり、それら出願の内容全体は、あらゆる適用可能な目的のために、その全体が以下に完全に記載されているかのように、引用により本明細書に援用されるものとする。
【背景技術】
【0003】
流体セルには、液体、ガスまたはプラズマなどの流体を満たすことができる。ガスセル内の流体は、流体セルを通して光を送ることによって検出することができる。光の一部は流体によって吸収され、残りは、例えば分光計によって検出される。流体分析器の小型化は、フーリエ変換赤外(FTIR)分光計などの微小電気機械システム(MEMS)分光計を使用して達成することができる。さらに、流体分析器の小型化により、流体分析器とセンサや他のコンポーネントとの統合が可能になり、流体分析用統合デバイスの大量生産が可能になる可能性がある。
【発明の概要】
【0004】
以下に、本開示の1または複数の態様の基本的な理解を提供するため、そのような態様の概要を提示する。この概要は、本開示のすべての検討される特徴の広範な概要ではなく、本開示のすべての態様の肝要なまたは重要な要素を特定すること、または、本開示のいずれかまたはすべての態様の範囲を規定することも意図していない。その唯一の目的は、後に提示されるより詳細な説明への前置きとしての形態で本開示の1または複数の態様のいくつかの概念を提示することである。
【0005】
本開示の様々な態様は、被試験サンプル(例えば、液体、ガスまたはプラズマなどの流体)を受け入れように構成された流体セルを含む光学流体分析器に関する。入力光は流体セルを通して送られ、そこで光の一部は流体によって吸収され、光の残りの部分は分光計によって検出され得る。いくつかの例では、分光計を微小電気機械システム(MEMS)分光計として実現することができる。光学素子は、流体セルの両側を密閉し、光が流体セルに出入りできるようにするために使用される。さらに、光学素子は、光スペクトルを無視できる吸収値で透過させることを可能にする。
【0006】
光学流体分析器は、分光計によって生成されたスペクトルに基づいて流体の少なくとも1のパラメータを定義する結果を生成するように構成された人工知能(AI)エンジンなどの機械学習(ML)エンジンをさらに含む。例えば、AIエンジンは、測定された流体およびその濃度を予測するように構成され得る。他のパラメータ、例えば、流体中のエネルギー含有量、総揮発性有機化合物、流体中の粒子状物質の量および他の適切なパラメータなどが、AIエンジンによって推定され得る。いくつかの例では、AIエンジンが、ケモメトリックス、カルマンフィルタリングなどの補正および予測モデルを使用して、1または複数のパラメータを予測または推定することができる。
【0007】
いくつかの例では、光学流体分析器が、ウイルス感染検出などの生物学的サンプル検出のための分光ラボインアボックスとして実装され得る。光学流体分析器は、例えば、パンデミック状況における集団スクリーニングに適しており、専門外のユーザに対しても超高速かつ低コストの分析を可能にする。光学流体分析器はさらに、拡張可能であり、大量生産が可能である。光学流体分析器の流体セルは、感染制御の目的で流体の密閉が維持されるように設計および実装される。
【0008】
一例として、光学流体分析器が開示されている。光学流体分析器は、入力光を発生するように構成された光源と、流体を受け入れるように構成された流体セルと、流体セルをその第1の側で密封するように構成された第1の光学窓と、流体セルをその第2の側で密封するように構成された第2の光学素子とを含む。第1の光学素子はさらに、入力光をその第1の側で流体セルに導くように構成され、第2の光学素子はさらに、出力光を流体セルからその第2の側を介して受け入れるように構成される。光学流体分析器は、第2の光学素子を介して出力光を受け入れ、出力光に基づいて流体のスペクトルを得るように構成された分光計と、スペクトルを受け取り、流体の少なくとも1のパラメータを定義する結果を生成するように構成された機械学習エンジンとをさらに含む。
【0009】
本発明のこれらおよび他の態様は、以下の詳細な説明を検討することによってより完全に理解される。本発明の他の態様、特徴および実施形態は、添付の図面と併せて本発明の特定の例示的な実施形態についての以下の説明を検討することにより、当業者には明らかとなる。本発明の特徴は、以下の特定の実施形態および図面に対して説明され得るが、本発明のすべての実施形態は、本明細書で説明される有利な特徴のうちの1または複数を含むことができる。言い換えると、1または複数の実施形態が特定の有利な特徴を有するものとして説明され得る一方で、そのような特徴のうちの1または複数が、本明細書で説明される本発明の様々な実施形態に従って使用されてもよい。同様に、例示的な実施形態は、デバイス、システムまたは方法の実施形態として以下に説明され得るが、そのような例示的な実施形態は、様々なデバイス、システムおよび方法で実装可能であることを理解されたい。
【図面の簡単な説明】
【0010】
図1図1は、いくつかの態様に係る光学流体分析器を示す図である。
図2図2は、いくつかの態様に係る光学流体分析器の一例の分解図を示す図である。
図3図3Aおよび図3Bは、いくつかの態様に係るボール台座シーリングシステムを含む光学流体分析器を示す図である。
図4図4A図4Dは、いくつかの態様に係るパッケージガラス窓シーリングシステムを含む光学流体分析器の一例を示す図である。
図5図5Aおよび図5Bは、いくつかの態様に係るボールレンズ構成の例を示す図である。
図6図6Aおよび図6Bは、いくつかの態様に係るコリメート光結合設計の例を示す図である。
図7図7は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。
図8図8は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。
図9図9は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。
図10図10Aおよび図10Bは、いくつかの態様に係る光学流体分析器の較正のための例示的な光結合設計を示す図である。
図11図11Aおよび図11Bは、いくつかの態様に係るコーティングされたボールレンズの例示的な動作モードを示している。
図12図12は、いくつかの態様に係る例示的なモード切替動作を示す図である。
図13図13は、いくつかの態様に係るコーティングされたボールレンズを含む光学流体分析器を較正するための例示的なプロセスを示すフローチャートである。
図14図14A図14Cは、いくつかの態様に係る可変光路長を有する光結合設計を示す図である。
図15図15は、いくつかの態様に係る流体セル設計の一例を示す図である。
図16図16は、いくつかの態様に係る他のセンサと統合された光学流体分析器の一例を示す図である。
図17図17は、いくつかの態様に係る光学流体分析器の別の例を示す図である。
図18図18は、いくつかの態様に係る光学流体分析器の別の例を示す図である。
図19図19は、いくつかの態様に係るウイルス検出用に構成された光学流体分析器の一例を示す図である。
【発明を実施するための形態】
【0011】
添付の図面に関連して以下に記載される詳細な説明は、様々な構成を説明することを意図したものであり、本明細書に記載の概念が実施され得る唯一の構成を示すことを意図したものではない。詳細な説明には、様々な概念の完全な理解を提供するための具体的な詳細が含まれている。しかしながら、それらの概念が具体的な詳細なしで実施できることは当業者には明らかであろう。時には、そのような概念を不明瞭にしないために、周知の構造および構成要素をブロック図の形式で示している。
【0012】
図1は、いくつかの態様に係る光学流体分析器100を示す図である。いくつかの例では、光学流体分析器100は、携帯型のハンドヘルドデバイスであってもよい。光学流体分析器100は、流体セル102を含む。流体108(例えば、気体、液体またはプラズマ)は、1または複数の流体入口104を介して流体セル102に入ることができる。さらに、流体108は、1または複数の流体出口106を介して流体セル102から出ることができる。流体セル102内の流体108は、光源110からの入力光112を、第1の光学素子114を介して流体セル102内に導くことによって検出され得る。第1の光学素子114は、流体セル102をその第1の側115aで密封し、入力光112を流体セル102内にその第1の側115aから導くように構成され得る。
【0013】
入力光112の一部は流体によって吸収され、残りの光は第2の光学素子116を介して出力光118として流体セル102から出力され得る。第2の光学素子116は、流体セル102をその第2の側115bで密封し、流体セル102からの出力光118を分光計120に導くように構成され得る。いくつかの例では、第1のおよび第2の光学素子114、116が、サファイア窓などの平坦な光学窓であってもよい。他の例では、第1の光学素子114および/または第2の光学素子116が、ボールレンズ、ハーフボールレンズまたは平凸レンズなどの1または複数の光結合素子を含むことができる。いくつかの例では、光学流体分析器100が、光学素子114、116に加えて光結合素子を含むことができる。例えば、光学流体分析器100は、1または複数の反射器(例えば、ミラー)、レンズ、または他の適切な光結合素子を含むことができる。
【0014】
いくつかの例では、流体セル102が、流体108による光吸収と吸収信号の飽和とのバランスをとる最適なセル長を有する。例えば、流体セル長を長くすると、流体108による光吸収が増加する可能性がある。光吸収が増加すると、低濃度の流体を検出しやすくなる。しかしながら、流体セルの長さが長すぎると、比較的高濃度の流体108に対して吸収信号が飽和する可能性がある。
【0015】
分光計120は、例えば、分光計120の検出器(例えば、InGaAs光検出器)によって検出され得るインターフェログラムを生成するように構成されたフーリエ変換赤外(FTIR)分光計であってもよい。検出器の出力は、分光計120により処理されて、検出された光のスペクトル122を得ることができる。いくつかの例では、分光計120が、マイケルソン干渉計またはファブリーペロー干渉計を含むことができる。
【0016】
いくつかの例では、分光計120を、例えば、MEMS FTIR分光計などの微小電気機械システム(MEMS)分光計として実現することができる。本明細書において、MEMSという用語は、微細加工技術によって機械的要素、センサ、アクチュエータおよびエレクトロニクスを共通の基板上に統合することを指す。例えば、マイクロエレクトロニクスは通常、集積回路(IC)プロセスを使用して製造され、マイクロメカニカルコンポーネントは、機械的および電気機械的コンポーネントを形成するために、シリコンウェハの一部を選択的にエッチング除去したり、新しい構造層を追加したりする適合性のあるマイクロマシニングプロセスを使用して製造される。MEMS素子の一例として、反射または屈折モードで動作する誘電体または金属化表面を持つマイクロ光学コンポーネントがある。MEMS素子の他の例としては、アクチュエータ、検出器の溝、ファイバの溝などがある。いくつかの例では、MEMS分光計が、MEMSアクチュエータによって移動可能に制御される1または複数のマイクロ光学コンポーネント(例えば、1または複数の反射器またはミラー)を含むことができる。例えば、MEMS分光計は、シリコンオンインシュレータ(SOI)基板に平行に伝播する自由空間光ビームを処理することができるマイクロ光学コンポーネントおよび他のMEMS素子を製造するために、SOI基板上に深堀リアクティブイオンエッチング(DRIE)プロセスを使用して製造することができる。
【0017】
スペクトル122は、AIエンジンなどの機械学習(ML)エンジン124に入力されて、流体108の少なくとも1のパラメータを定義する結果128を生成することができる。例えば、結果128は、流体を識別するか、または流体の濃度、流体中のエネルギー含有量、総揮発性有機化合物、流体中の粒子状物質の量、流体中に浮遊する微粒子、または他の適切なパラメータなど、流体に関連する他のパラメータを得ることができる。いくつかの例では、MLエンジン124が、ケモメトリックス、カルマンフィルタリングなどの補正および予測モデルを使用して、1または複数のパラメータを予測または推定することができる。いくつかの例では、MLエンジン124が、結果128を生成するために、流体データを含む任意のデータベース126にアクセスすることができる。例えば、データベース126に格納された流体データは、MLエンジン124を訓練するために利用することができる。一例では、流体データが、既知の流体および流体濃度のスペクトルパラメータを含むことができる。いくつかの例では、光学流体分析器100が、データベース126が格納されるメモリを含むことができる。
【0018】
図2は、いくつかの態様に係る光学流体分析器200の一例の分解図を示す図である。光学流体分析器200は、流体セル202(ガスセル)と、分光計210と、光源218と、光源218を定位置に保持するように構成された光源ホルダ220とを含む。ガスセル202は、上部204、中間部206および底部208の3つの主要部を含む。上部204は、光源218と流体セル202との間の光学的アライメントを保持する役割を担い、第1の光学窓(ガラス窓)212を受け入れるように構成された開口部を含む。中間部206は、流体を受け入れるように構成された流体セル202の主要部である。例えば、中間部206は、流体を受け入れるための流体入口と、流体を流体セル202の外に通すための流体出口とに結合され得る。流体セルI/O(流体入口/出口と流体セルの間)については、流体の流れを密封し、エアチューブの取り付けを容易にするために、密封クイックコネクタを使用することができる。中間部206はさらに、光源218からの入力光を流体セル内に導くように構成された1または複数の光結合素子216に結合することができる。図2に示す例では、1または複数の光結合要素に、第1の光学窓212と流体セル202との間に結合されたボールレンズ216が含まれる。
【0019】
流体セル202の底部208は、分光計210と残りの部分との間の光学的アライメントを保持する役割を担う。底部208は、分光計210を取り囲む壁を含み、分光計210と流体セル202の残りの部分とを物理的に位置合わせする。底部208は、第2の光学窓(ガラス窓)214を受け入れるように構成された開口部をさらに含む。第1のおよび第2の光学窓212、214はさらに、流体セル202を上側および下側から密閉するように構成されている。いくつかの例では、第1のおよび第2の光学窓212、214が、サファイアガラス窓などの平坦な光学窓であってもよい。平坦な光学窓212、214は、赤外線スペクトルを非常に小さい吸収値で透過させるように構成されている。いくつかの例では、流体セル部分204、206、208が、一部の流体による腐食を防止するためにニッケルメッキされ得る。
【0020】
図2に示すように、密閉された光学セットアップでボールレンズを使用する場合、ボールレンズ216は2つの平坦な光学窓212、214の間に挿入される。2つの平坦な光学窓212、214は、O-リング(図2には特に示されていない)を使用して流体セル202を密閉することができる。O-リング設計ガイドによれば、ボールレンズ216が平坦な表面(例えば、平坦な光学窓212、214)と接触する例では、表面接触領域にわたって均質な圧力を維持するために、O-リングをボールレンズ216とともに直接使用することはできない。このため、いくつかの例では、流体セル202を密封するためにO-リングの代わりにボール台座を使用することができる。ボール台座は、O-リングだけでなく、平坦な光学窓212を含むシーリングシステム全体を置き換えることもできる。
【0021】
図3Aおよび図3Bは、いくつかの態様に係るボール台座シーリングシステムを含む光学流体分析器300を示す図である。光学流体分析器300は、ボール台座304、306によって取り囲まれたボールレンズ302を含む。ボール台座304、306の内面曲率は、ボールレンズ302のレンズ表面曲率に一致するように構成され、それにより表面接触を増加させて、シーリング効率を高めるようになっている。いくつかの例では、ボール台座304、306をゴムで形成することができる。
【0022】
光学流体分析器300は、流体セル(ガスセル)308、光学窓310、分光計312、流体入口316、流体出口318および光源320をさらに含む。O-リング314は、分光計312を密閉するように構成されている。流体入口316および流体出口318は、流体(液体、気体、プラズマなど)が流体セル308に出入りできるように構成されている。ボールレンズ302およびボールレンズ台座304、306は、流体セル308をその第1の側で密封するように構成された光学素子を形成する。さらに、ボールレンズ302は、光源320からの入力光を流体セル308に導くように構成されている。光学窓310は、流体セル308をその第1の側とは反対側の第2の側で密閉し、流体セルからの出力光を分光計312内に導くように構成されている。流体セル308および分光計312は、基板322(例えば、プリント回路基板(PCB))上に組み立てることができる。いくつかの例では、簡略化のために図示していないが、MLエンジンおよび関連データベース(例えば、メモリ)を、基板322上にさらに組み立てることができる。さらに、圧力センサ、温度センサ、流体流量センサおよび他の適切なセンサなどの様々なセンサを、基板322上に統合することもできる。
【0023】
図3Bに示す例では、流体セル308が、分光計312とは別個のユニットであり、各システム(光学、電気、機械)が互いに分離されている。これにより、全体的なサイズと使用されるコンポーネントの数が増加する可能性がある。さらに、分光計312と流体セル308との間にシーリングを施すことなく分離することで、寄生流体が光路に浸入して、不正確な読み取りを引き起こす可能性がある。そのため、いくつかの例では、流体セル光学窓310の代わりにパッケージガラス窓を使用して、流体と分光計パッケージの両方に直接接触させることができる。
【0024】
図4A図4Dは、いくつかの態様に係るパッケージガラス窓シーリングシステムを含む光学流体分析器400の一例を示す図である。光学流体分析器400は、基板408(例えば、PCB)上に組み立てられたパッケージ404内に一体化された分光計402を含む。パッケージ404は、パッケージガラス窓406を受け入れるように構成された開口部を含む。
【0025】
光学流体分析器400は、ボールレンズ410と、ボールレンズ410を取り囲むボールレンズ台座412、414と、流体セル416とをさらに含む。ボールレンズ410およびボールレンズ台座412、414は、流体セル416をその第1の側で密封するように構成された光学素子を形成する。さらに、ボールレンズ410は、光源(図示せず)からの入力光を流体セル416内に導くように構成されている。パッケージガラス窓404は、流体セル416をその第1の側とは反対側の第2の側で密封し、流体セル416からの出力光を分光計402内に導くように構成されている。特に、パッケージガラス窓404は、流体セル416と分光計402との間を直接密封するように構成されている。O-リング418を使用して、パッケージガラス窓404と流体セル416との間のシーリングを維持することにより、流体の寄生漏れを防止することができる。
【0026】
入力光を流体セルに結合するための光結合素子として(例えば、図2図3A図3Bまたは図4Bのいずれかに示すように)ボールレンズが使用される例では、レンズの僅かなずれが、測定される光信号および全体的なスペクトルの不一致を引き起こす可能性がある。例えば、ボールレンズとハウジングとの間の隙間が狭い状態で、ボールレンズを含むハウジングが製造される場合、ばらつきがあると、ハウジングの上部とハウジングの下部を組み合わせることができない可能性がある。それにより、流体が漏れる可能性がある。このため、いくつかの例では、ボールレンズの位置を固定するために、ゴム製のスペーサまたはバネを追加することができる。
【0027】
図5Aおよび図5Bは、いくつかの態様に係るボールレンズの構成例を示す図である。図5Aおよび図5Bでは、ボールレンズ502がハウジング504内に配置され、流体セル512をその第1の側で密封するように構成されている。光学窓506(例えば、平坦なサファイア窓)はさらに、流体セル512をその第1の側とは反対側の第2の側で密封するように構成されている。図5Aでは、ボールレンズ502と平坦な光学窓506との間に結合されたゴム製のスペーサ508が示されている。図5Bでは、ボールレンズ502と平坦な光学窓506との間に結合されたバネ510が示されている。ゴム製のスペーサ508もバネ510も流体セル512を通る流体の流れを妨げることはない。さらに、ゴム製のスペーサ508およびバネ510の各々はボールレンズ502に圧力を発生させ、それにより、ボールレンズ502を定位置に固定して、ハウジング504の運動または振動による、その位置の変化を防止している。
【0028】
図3A図5Bに示す例では、光結合素子が、光源と、光をMEMS分光計内に集光するボールレンズとを含むことができる。この設計では、ボールレンズが唯一の光学コンポーネントであり、このボールレンズがシーリングに使用されるため、簡素化される。この設計は、例えば、屈折率が空気と間に差のないガスに使用することができ、ガスの流れが設計の集光および光結合に影響を与えることがない。しかしながら、屈折率が大きく変化する液体または他の流体を測定する場合は、光結合に影響を与える可能性がある。このため、いくつかの例では、流体のタイプが光結合に影響を与えないようなコリメートされた設計によって光結合を行うことができる。
【0029】
図6Aおよび図6Bは、いくつかの態様に係るコリメート光結合設計の例を示す図である。図6Aおよび図6Bに示す例では、流体サンプルのタイプが光結合に影響を与えないコリメートセットアップを使用して、光結合が実行される。図6Aは、2つのボールレンズ602、604を使用するコリメート光結合設計を示し、図6Bは、2つのハーフボールレンズ612、614を使用するコリメート光結合設計を示している。各設計において、2つのボールレンズ602、604または2つのハーフボールレンズ612、614は、光源608からの入力光を流体セル610にその第1の側で結合し、流体セルからの出力光をその第2の側を介して受け入れて分光計610に結合する。ボールレンズ602、604またはハーフボールレンズ612、614は、光結合だけでなく、流体セル610のシーリング(例えば、上述したように、ボールレンズ台座またはO-リングを使用)も提供することができる。図6Aの2つのボールレンズ602、604の設計は、感度が低く、赤外線源608とレンズ602、604との間の距離の点でよりコンパクトであり、一方で、2つのハーフボールレンズ612、614の設計は、流体セル610のシーリングの点で容易である(例えば、ボールレンズ台座の代わりにO-リングを密封に使用することができる)。
【0030】
図7は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。図7に示す例では、ボールレンズまたはハーフボールレンズを平凸レンズ702、704で置き換えることができる。さらに、コリメートセットアップでは、光源708の後ろに挿入された反射器710を使用して、光源の後方光線を集め、その後方光線を平凸レンズ704に向けて反射させて、流体セル706に結合させることにより光学パワーをほぼ2倍にする。いくつかの例では、平凸レンズ702、704が、50mmの流路長714に対応するために18mmの焦点距離716、718を有するフッ化カルシウムレンズであってもよい。焦点距離716、718および流路長714は可変であり、本明細書で提供される例に限定されるものではないことを理解されたい。いくつかの例では、平凸レンズ702、704が、流体セル706の密封を提供することができる。他の例では、流体セル706を密封するために追加の平坦な光学窓を使用することもできる。
【0031】
図8は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。図8に示す例では、コリメート設計が、2つの軸外放物面ミラー802、804を含む。軸外放物面ミラー802は、光源808からの入力光を受け取り、入力光を流体セル806にその第1の側で反射(方向変換)するように構成されている。さらに、軸外放物面ミラー804は、流体セル806からの出力光をその第2の側で受け取り、その出力光を分光計810に反射(方向変換)するように構成されている。流体セル806は、上述したように、平坦な光学窓(図示せず)を用いて密閉することができる。
【0032】
軸外放物面ミラー802、804は、金属反射の広いスペクトル範囲を提供し、図6A図6Bおよび図7に示すレンズ設計のフレネル光学損失を回避する。さらに、ミラー802、804は、低コストで大量生産を可能にするプラスチック成形によって製造することができる。いくつかの例では、ミラー802、804の両方を含む単一のプラスチック成形型を使用して、図8に示す設計における位置合わせの任意の感度に対応することができる。
【0033】
いくつかの例では、軸外放物面ミラー802が15mmの焦点距離を有し、軸外放物面ミラー804が25mmの焦点距離を有する。この例では、光源808と軸外放物面ミラー802との間の距離812が8.65mmであり、軸外放物面ミラー802、804がそれぞれ、12.3mmの幅814を有し、流体セル長816が100mmである。焦点距離、距離812、ミラー802、804の幅814、および流体セル長816は可変であり、本明細書で提供する例に限定されるものではないことを理解されたい。
【0034】
図9は、いくつかの態様に係るコリメート光結合設計の別の例を示す図である。図9に示す例では、コリメート設計が、軸外放物面ミラー902およびレンズ904とを含む。軸外放物面ミラー902は、光源908からの入力光を受け取り、その入力光を流体セル906にその第1の側で反射(方向変換)するように構成されている。さらに、レンズ904は、流体セル906からの出力光をその第2の側で受け取り、その出力光を分光計910に反射(方向変換)するように構成されている。いくつかの例では、レンズ904がフッ化カルシウムレンズであってもよい。流体セル906は、平坦な光学窓(図示せず)を使用して、または軸外放物面ミラー902に隣接する平坦な光学窓とレンズ904との組合せを使用して密封することができる。いくつかの例では、光学流体分析器の較正を容易にするために、レンズ904にコーティングを施すことができる。
【0035】
いくつかの例では、軸外放物面ミラー902が15mmの焦点距離を有し、レンズ904が18mmの焦点距離を有する。この例では、光源908と軸外放物面ミラー902との間の距離912が8.65mmであり、軸外放物面ミラー902が、12.3mmの幅914を有し、流体セル長916が100mmである。ミラー902、904の焦点距離、距離912、幅914、および流体セル長916は可変であり、本明細書で提供する例に限定されるものではないことを理解されたい。
【0036】
図10Aおよび図10Bは、いくつかの態様に係る光学流体分析器の較正のための例示的な光結合設計を示す図である。図10に示す光結合設計は、その両端部にフィルタ応答コーティング1004を有するボールレンズ1002を含む。ボールレンズ1002の中央領域には、フィルタ応答コーティング1004が施されていない。コーティング1004は、較正で使用される基準波長λを除くすべての波長を吸収する。コーティング1004の応答を図10Bに示す。
【0037】
図11Aおよび図11Bは、いくつかの態様に係るコーティングされたボールレンズ1102の例示的な動作モードを示している。第1のモードでは、図11Aに示すように、ボールレンズ1102のフィルタ応答コーティング1104が、光源(図示せず)からの入力光の光路1106から外れている。このため、入力光の吸収が生じることはなく、スペクトルは流体セル(図示せず)内の流体の吸収を反映する。第2のモードでは、図11Bに示すように、入力光の光路1106がボールレンズ1102のフィルタ応答コーティング1104を通過し、その結果、吸収が生じ、図10Bに示すスペクトルが生成される。このため、第2のモードは較正モードと呼ばれることがある。例えば、較正モードでは、例えばデジタル信号処理を使用して、波長λの値を基準設計値と比較することができる。その後、比較に基づいて較正およびドリフト補正を実行することができる。例えば、光学流体分析器は、較正モード中に機械学習エンジンを較正するように構成され得る。
【0038】
図12は、いくつかの態様に係る例示的なモード切替動作を示す図である。図12に示す例では、ボールレンズ1202が、図10A図11Aおよび図11と同様に、その両端部にフィルタ応答コーティング1204を含む。回転デバイス1206は、ボールレンズ1202に結合されており、入力光がフィルタ応答コーティング1204を通過せずにボールレンズ1202を通過する第1の向き(例えば、図11Aに示す第1のモード)と、入力光がボールレンズ1202のフィルタ応答コーティング1204を通過する第2の向き(例えば、図11Bに示す第2のモード)との間でボールレンズ1202を回転させるように構成されている。例えば、回転デバイス1206は、2つの動作モード間でボールレンズ1202の90度の回転を生じさせるように光学流体分析器によって制御されるバネおよびフィンガを含むことができる。
【0039】
図13は、いくつかの態様に係る、コーティングされたボールレンズを含む光学流体分析器を較正するための例示的なプロセスを示すフローチャートである。ブロック1302では、光学流体分析器が、デバイスの較正モードに入ることができる。ブロック1304では、ボールレンズのフィルタ応答コーティングが光源からの入力光の光路内にあるように、光学流体分析器が、コーティングされたボールレンズを(例えば、図12に示す回転デバイスを使用して)図11Bに示す第2の向きに機械的に90度回転させることができる。ブロック1306では、光学流体分析器が、コーティングされたボールレンズが第2の向きにあるときのスペクトルを得ることができる。ブロック1308では、光学流体分析器が、そのスペクトルを基準波長と比較することができる。ブロック1310では、光学流体分析器が、その比較結果に基づいて補正係数および較正パラメータを取得することができる。その後、それら補正係数および較正パラメータは、機械学習エンジンを訓練するために使用することができる。ブロック1312では、ボールレンズのフィルタ応答コーティングが光源からの入力光の光路の外側にあるように、光学流体分析器が、コーティングされたボールレンズを(例えば、図12に示す回転デバイスを使用して)図11Aに示す第1の向きに機械的に90度回転させることができ、それにより、光学流体分析器が、被試験流体サンプルのスペクトルを得ることが可能になる。
【0040】
図14A図14Cは、いくつかの態様に係る可変光路長を有する光結合設計の一例を示す図である。この光結合設計は、入力光を流体セル1406にその第1の側で結合し、流体セル1406からの出力光をその第2の側を介して結合するための2つの光学素子1402、1404を含む。光学素子1402、1404は、例えば、平坦な光学窓、ボールレンズ、ハーフボールレンズ、平凸レンズ、または他の適切な光学結合素子を含むことができる。光の多重反射および流体セル内のマイクロスケールの経路長1410(例えば、20pm~100pm)による流体セル1406内の寄生干渉作用の課題を克服するために、光学素子の少なくとも一方(例えば、光学素子1402)がアクチュエータ1408(例えば、マイクロ/作動機構)に結合され、そのアクチュエータが、図14Aに示すように、光学素子1402の運動を引き起こして、流体セル1406の公称値d周囲の運動d(t)で光路長を連続的に変化させるように構成されている。光学素子1402の連続的な動きは、図14B(振動運動なし)と図14C(振動運動あり)の比較によって示されるように、d(t)の平均値がゼロになるように、光路長のディザリングをもたらす。他の例では、光路長のディザリングを、光学素子1402に適用される電気光学効果および/または熱光学効果によって達成することもできる。例えば、光学素子1402全体に電界を印加することができ、あるいはマイクロヒータを光学素子1402と一体化することができる。
【0041】
図15は、いくつかの態様に係る流体セル設計の一例を示す図である。この流体セル設計は、流体セル1506をその両側で密封するように構成された2つの光学素子1502、1504を含む。流体セル1506内の流体、例えば油サンプルのスティクションを克服するために、光学素子1502、1504の少なくとも一方の内面(流体セル1506を向く面)にコーティング1508を施して、流体をはじく(例えば、流体のスティクションを防止する)ことができる。いくつかの例では、コーティング1508が、疎水性またはオムニフォビックであり得る。その結果、消耗品の洗浄液を必要とすることなく、流体を容易にパージすることができる。いくつかの例では、コーティング1508を流体セル1506の内壁1510にも施すことができる。
【0042】
図16は、いくつかの態様に係る、他のセンサと統合された光学流体分析器1600の一例を示す図である。光学流体分析器1600は、MEMSベースのFTIR流体分析器1602(例えば、光源、光学素子、流体セルおよび分光計(干渉計/検出器)を含む)、人工知能(AI)エンジン1604(例えば、MLエンジン)、およびデータベース1606を含み、それらが1または複数の他のセンサと統合されている。センサの例としては、圧力センサ1608、流量(流体の流れ)センサ1610、温度センサ1612および湿度センサ1614が挙げられるが、これらに限定されるものではない。それらセンサ1608~1614は、MEMSベースのFTIR流体分析器1602が流体のスペクトルを取得するのと同時に流体を検知するために、統合エレクトロニクスおよび同期信号回路1616を介して互いに同期化されて制御され得る。各センサ1608~1614の出力(例えば、流体セル内の流体に関連するセンサデータ)は、流体のスペクトルとともにAIエンジン1604に入力されて、AIエンジン1604が流体の特性および仕様を予測するのを助けることができる。AIエンジンは、流体に関連する結果1618を生成するために、データベース1606内の流体データでさらに訓練され得る。
【0043】
図17は、いくつかの態様に係る光学流体分析器1700の別の例を示す図である。光学流体分析器1700は、光源1702と、光結合素子1704と、被試験流体を受け入れるように構成されたマイクロ流体セル1706と、分光計1708とを含む。図17に示す例では、マイクロ流体セル1706が分光計1708の上に配置されている。このため、マイクロ流体セル1706は、マイクロ流体セル1706を密封し、かつマイクロ流体セルに光を通すように構成された光学窓を含む透過セルとして機能することができる。さらに、コンパクトなフォームファクタを有する光源1702を、マイクロ流体セル1706の上に統合することができる。
【0044】
図18は、いくつかの態様に係る光学流体分析器1800の別の例を示す図である。光学流体分析器は、光源1802、光結合素子1804、マイクロ流体セル1806および分光計1808を含む。分光計1808は、光学パッケージ1810に統合することができる。マイクロ流体セル1806は、マイクロ流体セル1806を密封し、かつマイクロ流体セル1806に光を通すように構成された光学窓をさらに含むことができる。さらに、マイクロ流体セル1806は、パッケージ1810のガラスパッケージ窓としても機能することできる。このため、マイクロ流体セル/ガラスパッケージ窓は、分光計1808(例えば、MEMSベースのFTIR分光計および検出器)を密封するように構成することができる。組立の観点からは、より良い組立および生産処理のために、マイクロ流体セル1806を、光学パッケージと同じ生産ライン上に置くことができる。
【0045】
図19は、いくつかの態様に係るウイルス検出用に構成された光学流体分析器1900の一例を示す図である。いくつかの例では、光学流体分析器1900が、患者の呼気サンプルのスペクトルを測定し、患者のウイルス感染のタイプを予測するように構成することができる。例えば、様々なケモメトリック技術を使用して、光学流体分析器のMLエンジン(AIエンジン)は、スペクトルの吸収帯からウイルスのタイプを予測することができる。呼気サンプルを測定するために、光学流体分析器1900は、入力チューブ1902を含むことができ、この入力チューブを介して、患者は、口から光学流体分析器1900の流体セル内に空気を吹き込むことができる。
【0046】
以下に、本開示の実施例の概要を示す。
【0047】
実施例1:光学流体分析器であって、入力光を生成するように構成された光源と、流体を受け入れるように構成された流体セルと、流体セルをその第1の側で密封するように構成された第1の光学素子であって、流体セル内にその第1の側から入力光を導くようにさらに構成された第1の光学素子と、流体セルを第1の側とは反対側のその第2の側で密封するように構成された第2の光学素子であって、流体セルからの出力光をその第2の側を介して受け入れるようにさらに構成された第2の光学素子と、第2の光学素子を介して出力光を受け入れるとともに、出力光に基づいて流体のスペクトルを得るように構成された分光計と、スペクトルを受け取るとともに、流体の少なくとも1のパラメータを定義する結果を生成するように構成された機械学習エンジンとを備えることを特徴とする光学流体分析器。
【0048】
実施例2:実施例1に記載の光学流体分析器において、第2の光学素子が、流体セルと分光計との間に配置されて、流体セルをその第2の側で密封するように構成された平坦な光学窓を備えることを特徴とする光学流体分析器。
【0049】
実施例3:実施例2に記載の光学流体分析器において、第1の光学素子が、光源と流体セルとの間に配置されて、流体セルをその第1の側で密封するように構成された追加の平坦な光学窓を備えることを特徴とする光学流体分析器。
【0050】
実施例4:実施例3に記載の光学流体分析器において、追加の平坦な光学窓と流体セルとの間に結合されたボールレンズをさらに備えることを特徴とする光学流体分析器。
【0051】
実施例5:実施例2に記載の光学流体分析器において、第1の光学素子が、光源と流体セルの第1の側との間に結合されたボールレンズを含むことを特徴とする光学流体分析器。
【0052】
実施例6:実施例5に記載の光学流体分析器において、ボールレンズと流体セルの第1の側との間にシーリングを提供するように構成されたボール台座をさらに備えることを特徴とする光学流体分析器。
【0053】
実施例7:実施例5または実施例6に記載の光学流体分析器において、平坦な光学窓が、分光計を含むパッケージのパッケージガラス窓を含み、当該光学流体分析器がさらに、パッケージガラス窓と流体セルの第2の側との間にシーリングを提供するように構成されたO-リングを含むことを特徴とする光学流体分析器。
【0054】
実施例8:実施例2に記載の光学流体分析器において、入力光を流体セルにその第1の側から導くように構成されたボールレンズと、ボールレンズと平坦な光学窓との間に結合されたゴム製スペーサまたはバネとをさらに備えることを特徴とする光学流体分析器。
【0055】
実施例9:実施例1~実施例8のいずれかに記載の光学流体分析器において、第1の光学素子および第2の光学素子が、コリメートされた設計を有する光結合素子を含み、この光結合素子が、入力光を流体セル内にその第1の側で結合するように構成された第1のレンズと、出力光を流体セルからその第2の側を介して受け入れ、出力光を分光計内に結合するように構成された第2のレンズとを含むことを特徴とする光学流体分析器。
【0056】
実施例10:実施例9に記載の光学流体分析器において、第1のレンズおよび第2のレンズの各々が、ボールレンズまたはハーフボールレンズを含むことを特徴とする光学流体分析器。
【0057】
実施例11:実施例9に記載の光学流体分析器において、第1のレンズおよび第2のレンズの各々が、平凸レンズを含み、当該光学流体分析器がさらに、光源の後方に結合され、入力光の後方光線を集めて、この後方光線を第1のレンズに向けて反射するように構成された反射器を含むことを特徴とする光学流体分析器。
【0058】
実施例12:実施例1~実施例3のいずれかに記載の光学流体分析器において、光源からの入力光を受け入れて、この入力光を流体セル内にその第1の側で反射するように構成された第1の軸外放物面ミラーと、流体セルからの出力光をその第2の側を介して受け入れて、出力光を分光計内に反射するように構成された第2の軸外放物面ミラーとをさらに備えることを特徴とする光学流体分析器。
【0059】
実施例13:実施例1~実施例3のいずれかに記載の光学流体分析器において、光源からの入力光を受け入れて、この入力光を流体セル内にその第1の側で反射するように構成された軸外放物面ミラーをさらに含み、第2の光学素子が、流体セルからの出力光をその第2の側を介して受け入れて、この出力光を分光計内に導くように構成されたレンズを含むことを特徴とする光学流体分析器。
【0060】
実施例14:実施例1、実施例2または実施例5~実施例9のいずれかに記載の光学流体分析器において、第1の光学素子が、光源と流体セルの第1の側との間に結合されたボールレンズを含み、このボールレンズは、その両端部にフィルタ応答コーティングが施されていることを特徴とする光学流体分析器。
【0061】
実施例15:実施例14に記載の光学流体分析器において、ボールレンズに結合された回転デバイスをさらに備え、この回転デバイスが、入力光がフィルタ応答コーティングを通過することなくボールレンズを通過する第1の向きと、入力光がボールレンズのフィルタ応答コーティングを通過する第2の向きとの間でボールレンズを回転させるように構成され、当該光学流体分析器が、ボールレンズが第2の向きにあるときに機械学習エンジンを較正する較正モードで動作するように構成されていることを特徴とする光学流体分析器。
【0062】
実施例16:実施例1~実施例15のいずれかに記載の光学流体分析器において、第1の光学素子または第2の光学素子のうちの少なくとも一方に結合され、第1の光学素子または第2の光学素子のうちの少なくとも一方の運動を引き起こして、流体セル内の光路長を変化させるように構成されたアクチュエータをさらに備えることを特徴とする光学流体分析器。
【0063】
実施例17:実施例1~実施例16のいずれかに記載の光学流体分析器において、第1の光学素子または第2の光学素子のうちの少なくとも一方が、流体セルを向く内面に、流体のスティクションを防止するためのコーティングを含むことを特徴とする光学流体分析器。
【0064】
実施例18:実施例1~実施例17のいずれかに記載の光学流体分析器において、機械学習エンジンを訓練するように構成された流体データを含むデータベースをさらに含むことを特徴とする光学流体分析器。
【0065】
実施例19:実施例1~実施例18のいずれかに記載の光学流体分析器において、流体セル内の流体に関連するセンサデータを生成し、機械学習エンジンにセンサデータを提供するように構成された少なくとも1のセンサをさらに備えることを特徴とする光学流体分析器。
【0066】
実施例20:実施例19に記載の光学流体分析器において、少なくとも1のセンサが、圧力センサ、流量センサ、温度センサまたは湿度センサのうちの少なくとも1つを含むことを特徴とする光学流体分析器。
【0067】
実施例21:実施例1~実施例20のいずれかに記載の光学流体分析器において、流体セルが、マイクロ流体セルを含むことを特徴とする光学流体分析器。
【0068】
実施例22:実施例21に記載の光学流体分析器において、第2の光学素子が、分光計を含むパッケージのパッケージガラス窓を含み、このパッケージガラス窓が、マイクロ流体セルを含むことを特徴とする光学流体分析器。
【0069】
実施例23:実施例1~実施例22のいずれかに記載の光学流体分析器において、流体が患者の呼気サンプルを含み、当該光学流体分析器が、流体セルに結合され、患者の呼気サンプルを受け入れて、患者の呼気サンプルを流体セル内に供給するように構成された入力チューブをさらに備えることを特徴とする光学流体分析器。
【0070】
実施例24:実施例1~実施例23のいずれかに記載の光学流体分析器において、分光計が、微小電気機械システム(MEMS)ベースのフーリエ変換赤外(FTIR)分光計を含むことを特徴とする光学流体分析器。
【0071】
本開示内では、「例示的な」という単語は、「一例、一実施例または一実例として機能する」という意味で使用される。本明細書で「例示的な」として説明される実装または態様は、必ずしも、本開示の他の態様よりも好ましいまたは有利であると解釈されるべきではない。同様に、「態様」という用語は、本開示のすべての態様が、議論された特徴、利点または動作モードを含むことを要求するものではない。「結合された」という用語は、本明細書では、2つのオブジェクト間の直接的または間接的な結合を指すために使用される。例えば、オブジェクトAがオブジェクトBに物理的に接触し、かつ、オブジェクトBがオブジェクトCに接触する場合、オブジェクトAおよびCは、たとえそれらが互いに直接物理的に接触していないとしても、依然として互いに結合されているとみなされ得る。例えば、第1オブジェクトが第2オブジェクトに物理的に直接接触していない場合でも、第1オブジェクトは第2オブジェクトに結合され得る。「回路(circuit)」および「電気回路(circuitry)」という用語は、広範に使用され、かつ、電気デバイスおよび導体のハードウェア実装と、情報および命令のソフトウェア実装と、の両方を含むことを意図しており、ハードウェア実装は、接続および構成された場合に、電子回路のタイプに限定されることなく、本開示で説明される機能の実行を可能にし、ソフトウェア実装は、プロセッサによって実行された場合に、本開示で説明される機能の実行を可能にする。
【0072】
図1図19に示されるコンポーネント、ステップ、特徴および/または機能のうちの1または複数は、単一のコンポーネント、ステップ、特徴または機能に再配置および/または結合されてもよく、若しくは、いくつかのコンポーネント、ステップまたは機能で具体化されてもよい。本明細書に開示される新規な特徴から逸脱することなく、追加の要素、コンポーネント、ステップおよび/または機能が追加されてもよい。図1図19に示される装置、デバイスおよび/またはコンポーネントは、本明細書で説明される方法、特徴またはステップのうちの1または複数を実行するように構成されてもよい。本明細書で説明される新規なアルゴリズムは、ソフトウェアに効率的に実装されてもよく、および/または、ハードウェアに埋め込まれてもよい。
【0073】
開示された方法におけるステップの特定の順序または階層は、例示的なプロセスを例示するものであることを理解されたい。設計志向に基づいて、方法におけるステップの特定の順序または階層が並べ替えられてもよいことが理解される。添付の方法の請求項は、様々なステップの要素をサンプルの順序で提示しており、かつ、本明細書で特に記載がない限り、提示される特定の順序または階層に限定されることを意図するものではない。
【0074】
前述の説明は、当業者が本明細書に記載の様々な態様を実施することができるようにするために提供される。これらの態様に対する様々な修正は当業者には容易に明らかであり、本明細書で定義される一般原理は他の態様にも適用されてもよい。したがって、特許請求の範囲は、本明細書に示される態様に限定されることを意図するものではなく、特許請求の範囲の文言と一致する全範囲を与えられるべきであり、単数形での要素への言及は、そのように特に明記されていない限り「唯一のもの」を意味することを意図しておらず、むしろ「1または複数」であることを意図している。特に明記しない限り、「いくつかの」という用語は1または複数を指す。アイテムのリスト「のうちの少なくとも1つ」を指す語句は、単一の部材を含むそれらのアイテムの任意の組合せを指す。一例として、「a、bまたはcのうちの少なくとも1つ」は:a、b、cと:aおよびbと:aおよびcと:bおよびcと:a、bおよびcとをカバーすることを意図している。当業者に知られているまたは後に知られるようになる、本開示を通じて説明される様々な態様の要素に対する構造的および機能的な等価物はすべて、参照により本明細書に明示的に組み込まれ、かつ、特許請求の範囲に包含されることが意図される。さらに、本明細書に開示されるものは、そのような開示が特許請求の範囲に明示的に記載されているかどうかに関わらず、公衆に提供されることを意図したものではない。請求項の要素は、その要素が「means for」という表現を使用して明示的に記載されていない限り、または方法の請求項の場合は、その要素が「step for」という表現を使用して記載されていない限り、米国特許法第112条(f)の規定に基づいて解釈されるべきではない。
図1
図2
図3
図4
図5A
図5B
図6
図7
図8
図9
図10
図11A
図11B
図12
図13
図14
図15
図16
図17
図18
図19
【手続補正書】
【提出日】2023-06-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
光学流体分析器であって、
入力光を生成するように構成された光源と、
流体を受け入れるように構成された流体セルと、
前記流体セルをその第1の側で密封するように構成された第1の光学素子であって、前記第1の光学素子が、前記流体セル内にその第1の側から入力光を導くようにさらに構成され、前記第1の光学素子が、前記光源と前記流体セルの第1の側との間に結合されたボールレンズを含み、このボールレンズは、その両端部にフィルタ応答コーティングが施されている、第1の光学素子と、
前記流体セルを前記第1の側とは反対側のその第2の側で密封するように構成された第2の光学素子であって、前記流体セルからの出力光をその第2の側を介して受け入れるようにさらに構成された第2の光学素子と、
前記第2の光学素子を介して前記出力光を受け入れるとともに、前記出力光に基づいて流体のスペクトルを得るように構成された分光計と、
前記ボールレンズに結合された回転デバイスであって、入力光が前記フィルタ応答コーティングを通過することなく前記ボールレンズを通過する第1の向きと、入力光が前記ボールレンズのフィルタ応答コーティングを通過する第2の向きとの間で前記ボールレンズを回転させるように構成された回転デバイスと、
前記スペクトルを受け取るとともに、流体の少なくとも1のパラメータを定義する結果を生成するように構成された機械学習エンジンとを備え、当該光学流体分析器が、前記ボールレンズが前記第2の向きにあるときに前記機械学習エンジンを較正する較正モードで動作するように構成されていることを特徴とする光学流体分析器。
【請求項2】
請求項1に記載の光学流体分析器において、
前記第2の光学素子が、前記流体セルと前記分光計との間に配置されて、前記流体セルをその第2の側で密封するように構成された平坦な光学窓を備えることを特徴とする光学流体分析器。
【請求項3】
請求項に記載の光学流体分析器において、
前記ボールレンズと前記流体セルの第1の側との間にシーリングを提供するように構成されたボール台座をさらに備えることを特徴とする光学流体分析器。
【請求項4】
請求項に記載の光学流体分析器において、
前記平坦な光学窓が、前記分光計を含むパッケージのパッケージガラス窓を含み、当該光学流体分析器がさらに、
前記パッケージガラス窓と前記流体セルの第2の側との間にシーリングを提供するように構成されたO-リングを含むことを特徴とする光学流体分析器。
【請求項5】
請求項2に記載の光学流体分析器において、
記ボールレンズと前記平坦な光学窓との間に結合されたゴム製スペーサまたはバネをさらに備えることを特徴とする光学流体分析器。
【請求項6】
請求項1に記載の光学流体分析器において、
前記第1の光学素子および前記第2の光学素子が、光結合素子を含み、この光結合素子が、
入力光を前記流体セル内にその第1の側で結合するように構成された第1のレンズであって、前記ボールレンズを含む第1のレンズと、
出力光を前記流体セルからその第2の側を介して受け入れ、前記出力光を前記分光計内に結合するように構成された第2のレンズとを含むことを特徴とする光学流体分析器。
【請求項7】
請求項に記載の光学流体分析器において、
前記第2のレンズが、ボールレンズを含むことを特徴とする光学流体分析器。
【請求項8】
請求項1に記載の光学流体分析器において、
前記光源からの入力光を受け入れて、この入力光を前記流体セル内にその第1の側で反射するように構成された第1の軸外放物面ミラーと、
前記流体セルからの出力光をその第2の側を介して受け入れて、前記出力光を前記分光計内に反射するように構成された第2の軸外放物面ミラーとをさらに備えることを特徴とする光学流体分析器。
【請求項9】
請求項1に記載の光学流体分析器において、
前記光源からの入力光を受け入れて、この入力光を前記流体セル内にその第1の側で反射するように構成された軸外放物面ミラーをさらに含み、前記第2の光学素子が、前記流体セルからの出力光をその第2の側を介して受け入れて、この出力光を前記分光計内に導くように構成されたレンズを含むことを特徴とする光学流体分析器。
【請求項10】
請求項1に記載の光学流体分析器において、
前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方が、前記流体セルを向く内面に、流体のスティクションを防止するためのコーティングを含むことを特徴とする光学流体分析器。
【請求項11】
請求項1に記載の光学流体分析器において、
前記機械学習エンジンを訓練するように構成された流体データを含むデータベースをさらに備えることを特徴とする光学流体分析器。
【請求項12】
請求項1に記載の光学流体分析器において、
前記流体セル内の流体に関連するセンサデータを生成し、前記機械学習エンジンに前記センサデータを提供するように構成された少なくとも1のセンサをさらに備えることを特徴とする光学流体分析器。
【請求項13】
請求項12に記載の光学流体分析器において、
前記少なくとも1のセンサが、圧力センサ、流量センサ、温度センサまたは湿度センサのうちの少なくとも1つを含むことを特徴とする光学流体分析器。
【請求項14】
請求項1に記載の光学流体分析器において、
前記流体セルが、マイクロ流体セルを含むことを特徴とする光学流体分析器。
【請求項15】
請求項14に記載の光学流体分析器において、
前記第2の光学素子が、前記分光計を含むパッケージのパッケージガラス窓を含み、このパッケージガラス窓が、前記マイクロ流体セルを含むことを特徴とする光学流体分析器。
【請求項16】
請求項1に記載の光学流体分析器において、
流体が患者の呼気サンプルを含み、当該光学流体分析器が、
前記流体セルに結合され、患者の呼気サンプルを受け入れて、患者の呼気サンプルを前記流体セル内に供給するように構成された入力チューブをさらに備えることを特徴とする光学流体分析器。
【請求項17】
請求項1に記載の光学流体分析器において、
前記分光計が、微小電気機械システム(MEMS)ベースのフーリエ変換赤外(FTIR)分光計を含むことを特徴とする光学流体分析器。
【請求項18】
請求項1に記載の光学流体分析器において、
前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方に結合され、前記第1の光学素子または前記第2の光学素子のうちの少なくとも一方の運動を引き起こして、前記流体セルの光路長を変化させるように構成されたアクチュエータをさらに備えることを特徴とする光学流体分析器。
【請求項19】
請求項2に記載の光学流体分析器において、
前記光源と前記流体セルとの間に配置されて、前記流体セルをその第1の側で密封するように構成された平坦な光学窓をさらに備え、前記ボールレンズが、前記平坦な光学窓と前記流体セルとの間に結合されていることを特徴とする光学流体分析器。
【国際調査報告】