(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-07-05
(54)【発明の名称】磁気浮上式重力補償装置及び微動ステージ
(51)【国際特許分類】
H02N 15/00 20060101AFI20240628BHJP
H01L 21/68 20060101ALI20240628BHJP
【FI】
H02N15/00
H01L21/68 K
【審査請求】有
【予備審査請求】有
(21)【出願番号】P 2024502635
(86)(22)【出願日】2022-07-15
(85)【翻訳文提出日】2024-01-19
(86)【国際出願番号】 CN2022106043
(87)【国際公開番号】W WO2023284866
(87)【国際公開日】2023-01-19
(31)【優先権主張番号】202110804356.0
(32)【優先日】2021-07-16
(33)【優先権主張国・地域又は機関】CN
(81)【指定国・地域】
(71)【出願人】
【識別番号】524021589
【氏名又は名称】イングァン セミコンダクター テクノロジー カンパニー リミテッド
【氏名又は名称原語表記】YINGUAN SEMICONDUCTOR TECHNOLOGY CO., LTD.
(74)【代理人】
【識別番号】100103850
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100105854
【氏名又は名称】廣瀬 一
(74)【代理人】
【識別番号】100115679
【氏名又は名称】山田 勇毅
(74)【代理人】
【識別番号】100114177
【氏名又は名称】小林 龍
(74)【代理人】
【識別番号】100066980
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】ポン,レンチァン
(72)【発明者】
【氏名】フー,ビン
(72)【発明者】
【氏名】ジァン,シューチュー
(72)【発明者】
【氏名】ゴン,ウェイ
(72)【発明者】
【氏名】チェン,マオユー
【テーマコード(参考)】
5F131
【Fターム(参考)】
5F131AA02
5F131CA21
5F131CA37
5F131CA38
5F131DA33
5F131DC18
5F131EA02
5F131EA14
5F131EA22
5F131EA23
5F131EA24
5F131EA27
5F131EB01
5F131EB11
(57)【要約】
本願は磁気浮上式重力補償装置及び微動ステージを開示し、磁気浮上式重力補償装置は、内側ベース磁石、第1の端部磁性鋼、第2の端部磁性鋼、内側マグネットリング磁性鋼及び外側コイルを含み、内側ベース磁石は軸方向に沿って延在し、第1の端部磁性鋼及び第2の端部磁性鋼はそれぞれ内側ベース磁石の2つの軸方向端部に位置し且つ軸方向に沿って延在し、且つ第1の端部磁性鋼及び第2の端部磁性鋼の外径はそれぞれ内側ベース磁石の2つの軸方向端部から離れる方向に沿って徐々に大きくなり、内側マグネットリング磁性鋼は筒状をなし、内側ベース磁石と同軸に内側ベース磁石の外に位置し、外側コイルは内側ベース磁石と同軸に内側マグネットリング磁性鋼の外に位置し、内側ベース磁石、第1の端部磁性鋼及び第2の端部磁性鋼に対して固定される。外側コイルを含むため、外側コイル内の電流の方向及び大きさを制御することにより、ワークステージの重力及び可撓性機構の弾性力を克服した磁気浮上式重力補償装置全体の出力力を制御することができ、微動ステージの高い移動性能要求を満たす。
【特許請求の範囲】
【請求項1】
軸方向に沿って延在する内側ベース磁石と、
それぞれ前記内側ベース磁石の2つの軸方向端部に位置し且つ軸方向に沿って延在する第1の端部磁性鋼及び第2の端部磁性鋼であって、前記内側ベース磁石の前記2つの軸方向端部から離れる方向に沿って徐々に大きくなる外径をそれぞれ有する第1の端部磁性鋼及び第2の端部磁性鋼と、
筒状をなし、且つ前記内側ベース磁石と同軸に前記内側ベース磁石の外に位置し且つ前記内側ベース磁石と径方向に離間する内側マグネットリング磁性鋼と、
前記内側ベース磁石と同軸に前記内側マグネットリング磁性鋼の外に位置する外側コイルであって、前記内側マグネットリング磁性鋼と径方向に離間し、前記内側ベース磁石、前記第1の端部磁性鋼及び前記第2の端部磁性鋼に対して固定される外側コイルと、を含むことを特徴とする、磁気浮上式重力補償装置。
【請求項2】
前記内側ベース磁石の着磁方向は軸方向であり、前記第1の端部磁性鋼及び前記第2の端部磁性鋼の着磁方向は前記内側ベース磁石から軸方向に沿って外向きであり、前記内側マグネットリング磁性鋼の着磁方向は前記内側マグネットリング磁性鋼のリング内からリング外へ向かう方向である、ことを特徴とする請求項1に記載の磁気浮上式重力補償装置。
【請求項3】
前記内側ベース磁石の着磁方向は軸方向であり、前記第1の端部磁性鋼及び前記第2の端部磁性鋼の着磁方向は軸方向に沿って外から前記内側ベース磁石に向かう方向であり、前記内側マグネットリング磁性鋼の着磁方向は前記内側マグネットリング磁性鋼のリング外からリング内へ向かう方向である、ことを特徴とする請求項1に記載の磁気浮上式重力補償装置。
【請求項4】
前記内側マグネットリング磁性鋼と同軸に前記外側コイルの外に位置する外側マグネットリング磁性鋼であって、前記外側コイルと径方向に離間し、前記内側マグネットリング磁性鋼に対して固定される外側マグネットリング磁性鋼をさらに含み、
前記外側マグネットリング磁性鋼の着磁方向は前記内側マグネットリング磁性鋼の着磁方向と同じであることを特徴とする請求項2又は3に記載の磁気浮上式重力補償装置。
【請求項5】
前記外側マグネットリング磁性鋼は周方向に沿って互いに隣接する複数の円弧板で構成され、
各前記円弧板の着磁方向は、径方向であるか、又は、前記円弧板の周方向中央の径方向に平行する方向である、ことを特徴とする請求項4に記載の磁気浮上式重力補償装置。
【請求項6】
前記内側マグネットリング磁性鋼と同軸に前記外側コイルの外に位置し、前記外側コイルと径方向に離間する外側ガイドマグネットリングをさらに含む、ことを特徴とする請求項1に記載の磁気浮上式重力補償装置。
【請求項7】
前記内側ベース磁石は、永久磁石又は内側コイル又は前記永久磁石と前記内側コイルの組み合わせであり、
前記内側コイルは、前記第1の端部磁性鋼及び前記第2の端部磁性鋼の軸線の周りに周方向に巻き付かれる、ことを特徴とする請求項1に記載の磁気浮上式重力補償装置。
【請求項8】
前記内側マグネットリング磁性鋼は、周方向に沿って互いに隣接する複数のアーク板で構成され、
各前記アーク板の着磁方向は、径方向であるか、又は、前記アーク板の周方向中央の径方向に平行する方向である、ことを特徴とする請求項1に記載の磁気浮上式重力補償装置。
【請求項9】
ステージ装置と、
前記ステージ装置が微動ベースに対して垂直方向にスライド可能に前記微動ベースに接続される微動ベースと、
弾性シートを含む可撓性機構であって、前記弾性シートは水平径方向に延在し、且つ前記弾性シートの径方向内側端部は前記ステージ装置に接続され、前記弾性シートの径方向外側端部は前記微動ベースに接続される可撓性機構と、
請求項1~8のいずれか一項に記載の磁気浮上式重力補償装置であって、前記内側ベース磁石、前記第1の端部磁性鋼、前記第2の端部磁性鋼及び前記外側コイルは固定子及び可動子のうちの一方に組み込まれ、前記内側マグネットリング磁性鋼は前記固定子及び前記可動子のうちの他方であり、前記磁気浮上式重力補償装置はステージ装置の下方に位置し、前記固定子は前記微動ベースに固定され、前記可動子は前記ステージ装置に固定される磁気浮上式重力補償装置と、を含む、ことを特徴とする微動ステージ。
【請求項10】
前記磁気浮上式重力補償装置は複数であり、複数の前記磁気浮上式重力補償装置の等価重心の位置する垂線は、前記ステージ装置の重心の位置する垂線と同一線である、ことを特徴とする請求項9に記載の微動ステージ。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、2021年07月16日に中国知識財産局に提出された、出願番号が202110804356.0で、出願の名称が「磁気浮上式重力補償装置及び微動ステージ」である特許出願の優先権を主張する。
本願は集積回路装置の製造分野に関し、具体的には、磁気浮上式重力補償装置及び微動ステージに関する。
【背景技術】
【0002】
半導体製造や検査分野においては、ワークステージにはシリコンウェハの受け渡しと精密位置決め機能が要求されるが、ワークステージにおけるコアアクチュエータは、シリコンウェハをZ、Rx、Ryの3軸に垂直に精密位置決めする微動ステージ(micropositioner)である。一般的に、垂直3軸微動ステージは3点アクチュエータを採用して配置され、垂直性能を保証するために、可撓性機構(例えば弾性シート等)を微動ステージの移動非干渉及びガイドとして適用することができるが、小ストローク範囲内で、可撓性機構のバネ剛性は一定値であり、その垂直方向アクチュエータに作用する反力は垂直変位に従ってリニア増加又は減少するが、ワークステージストロークの増大につれて、可撓性機構剛性の非リニア性も徐々に増大する。
【0003】
そのため、微動ステージアクチュエータの出力力は垂直ストロークに伴って調整する必要があり、それにより可撓性構造の可変剛性を補償し、通常、微動ステージ垂直方向のアクチュエータは通常ゼロ剛性重力補償装置+ボイスコイルモータの組み合わせ形態を採用し、ゼロ剛性重力補償装置は微動ステージにおけるステージ装置の重力を補償するために用いられ、ステージ装置はシリコンウェハを載置し、且つシリコンウェハを駆動して移動させるために用いられ、ボイスコイルモータは可撓性機構の弾性力及びステージ装置の垂直方向の移動に必要な押し引き力を提供し、異なる垂直ストローク範囲内に、可撓性機構の剛性にリニア領域及び非リニア領域が存在するため、単にボイスコイルモータの推進力を制御することでは、可撓性機構の弾性力と垂直移動の推進力を完全に補償することが非常に困難であり、且つ高加速度の作業状況で、ボイスコイルモータの出力が大きく、温度上昇が高く、微動ステージの高移動性能要求を満たすことが困難である。
【0004】
従来技術では、一般的に、比例弁によって圧縮ガスの圧力をリアルタイムに調整することにより、剛性一定の重力補償を実現することができる空気浮上式重力補償装置を採用するが、空気浮上式重力補償装置の構造が非常に複雑であり、且つ空気圧の制御にヒステリシス性が存在し、垂直性能の向上に影響を与える。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本願の実施形態の目的は磁気浮上式重力補償装置及び微動ステージを提供することであり、本願における磁気浮上式重力補償装置は構造及び制御がいずれも簡単であり、且つ構造がコンパクトであり、また、ワークステージの高い移動性能要求を満たすことができる。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本願の実施形態により提供される磁気浮上式重力補償装置は、
軸方向に沿って延在する内側ベース磁石と、
それぞれ前記内側ベース磁石の2つの軸方向端部に位置し且つ軸方向に沿って延在する第1の端部磁性鋼及び第2の端部磁性鋼であって、前記内側ベース磁石の前記2つの軸方向端部から離れる方向に沿って徐々に大きくなる外径をそれぞれ有する第1の端部磁性鋼及び第2の端部磁性鋼と、
筒状をなし、且つ前記内側ベース磁石と同軸に前記内側ベース磁石の外に位置し且つ前記内側ベース磁石と径方向に離間する内側マグネットリング磁性鋼と、
前記内側ベース磁石と同軸に前記内側マグネットリング磁性鋼の外に位置する外側コイルであって、前記内側マグネットリング磁性鋼と径方向に離間し、前記内側ベース磁石、前記第1の端部磁性鋼及び前記第2の端部磁性鋼に対して固定される外側コイルと、を含む。
【0007】
一実施例では、前記内側ベース磁石の着磁方向は軸方向であり、前記第1の端部磁性鋼及び前記第2の端部磁性鋼の着磁方向は前記内側ベース磁石から軸方向に沿って外向きであり、前記内側マグネットリング磁性鋼の着磁方向は、前記内側マグネットリング磁性鋼のリング内からリング外へ向かう方向である。
一実施例では、前記内側ベース磁石の着磁方向は軸方向であり、前記第1の端部磁性鋼及び前記第2の端部磁性鋼の着磁方向は軸方向に沿って外から前記内側ベース磁石に向かう方向であり、前記内側マグネットリング磁性鋼の着磁方向は、前記内側マグネットリング磁性鋼のリング外からリング内へ向かう方向である。
【0008】
一実施例では、前記磁気浮上式重力補償装置は、前記内側マグネットリング磁性鋼と同軸に前記外側コイルの外に位置する外側マグネットリング磁性鋼であって、前記外側コイルと径方向に離間し、前記内側マグネットリング磁性鋼に対して固定される外側マグネットリング磁性鋼をさらに含み、
前記外側マグネットリング磁性鋼の着磁方向は前記内側マグネットリング磁性鋼の着磁方向と同じである。
【0009】
一実施例では、前記外側マグネットリング磁性鋼は周方向に沿って互いに隣接する複数の円弧板で構成され、
各前記円弧板の着磁方向は径方向であるか、又は、前記円弧板の周方向中央の径方向に平行する方向である。
一実施例では、前記磁気浮上式重力補償装置は、前記内側マグネットリング磁性鋼と同軸に前記外側コイルの外に位置し、前記外側コイルと径方向に離間する外側ガイドマグネットリングをさらに含む。
【0010】
一実施例では、前記内側ベース磁石は、永久磁石又は内側コイル又は前記永久磁石と前記内側コイルの組み合わせであり、前記内側コイルは前記第1の端部磁性鋼及び前記第2の端部磁性鋼の軸線の周りに周方向に巻き付かれる。
一実施例では、前記内側マグネットリング磁性鋼は、周方向に沿って互いに隣接する複数のアーク板で構成され、各前記アーク板の着磁方向は径方向であるか、又は、前記アーク板の周方向中央の径方向に平行する方向である。
【0011】
本発明によりさらに提供される微動ステージは、
ステージ装置と、
前記ステージ装置が微動ベースに対して垂直方向にスライド可能に前記微動ベースに接続される微動ベースと、
弾性シートを含む可撓性機構であって、前記弾性シートは水平径方向に延在し、且つ前記弾性シートの径方向内側端部は前記ステージ装置に接続され、前記弾性シートの径方向外側端部は前記微動ベースに接続される可撓性機構と、
上記磁気浮上式重力補償装置であって、前記内側ベース磁石、前記第1の端部磁性鋼、前記第2の端部磁性鋼及び前記外側コイルは固定子及び可動子のうちの一方に組み込まれ、前記内側マグネットリング磁性鋼は前記固定子及び前記可動子のうちの他方であり、前記磁気浮上式重力補償装置はステージ装置の下方に位置し、前記固定子は前記微動ベースに固定され、前記可動子は前記ステージ装置に固定される磁気浮上式重力補償装置と、を含む。
【0012】
一実施例では、前記磁気浮上式重力補償装置は複数であり、複数の前記磁気浮上式重力補償装置の等価重心の位置する垂線は、前記ステージ装置の重心の位置する垂線と同一線である。
【発明の効果】
【0013】
本願の実施形態は従来技術に対し、本願の磁気浮上式重力補償装置は従来技術の空気圧式剛性一定の重力補償装置の構造が複雑で、制御が複雑で、制御にヒステリシス性が存在する等の問題を解決し、従来の重力補償装置の剛性がゼロ又は非リニアであるという問題を解決する。本願は外側コイル電流がゼロである場合、磁気浮上出力力がリニア領域においてストロークに沿ってリニア特性を呈し、且つゼロ点で出力力がステージ装置の重力を相殺することができ、非リニア領域において、外側コイルにおける電流を変更することによって出力力の調整を実現し、ステージ装置の重力及び可撓性機構の弾性力を補償することを実現する。本願によれば、ステージ装置の重力を補償することができるだけでなく、大きなストローク範囲内で可撓性機構の弾性変形反力をバランスすることもでき、垂直アクチュエータの負荷を低減させ、微動ステージの垂直性能を大幅に向上させる。また、磁気浮上式重力補償装置は外側コイルをさらに含むため、外側コイル内の電流の方向及び大きさを制御することにより、ステージ装置の重力及び可撓性機構の弾性力を克服した磁気浮上式重力補償装置全体の出力力を制御することができ、それによりステージ装置の移動速度等を正確に制御することができ、また、ステージ装置の高い移動性能要求を満たすことができる。
【図面の簡単な説明】
【0014】
本願の一部を構成する明細書の添付の図面は、本願のさらなる理解を提供するために用いられ、本願の例示的な実施例及びそれらの説明は、本願を解釈するために用いられ、本願に対する不当な制限を構成しない。図面は以下の通りである。
【
図1】本願の実施例1における磁気浮上式重力補償装置の構造概略図である。
【
図3】アーク板における磁束線が径方向に沿って設けられる場合の構造概略図である。
【
図4】アーク板における磁束線が平行に設けられる場合の構造概略図である。
【
図5b】外側コイル電流がゼロである場合、リニアストローク範囲内における磁気浮上式重力補償装置の出力力のグラフである。
【
図5c】本願の実施例1におけるリニアストローク範囲内の磁気浮上式重力補償装置の出力力のグラフである。
【
図6】本願の実施例2における磁気浮上式重力補償装置の構造概略図である。
【
図8】円弧板における磁束線が径方向に沿って設けられる場合の構造概略図である。
【
図9】円弧板における磁束線が平行に設けられる場合の構造概略図である。
【
図10】本願の実施例2における外側コイル非通電時の磁束線図である。
【
図11】本願の実施例3における磁気浮上式重力補償装置の構造概略図である。
【
図12】本願の実施例4における磁気浮上式重力補償装置の構造概略図である。
【
図14a】本願の実施例4における内側コイルと外側コイルのいずれにも通電していない場合の磁束線図である。
【
図14b】本願の実施例4における内側コイルに通電し、外側コイルに通電していない場合の磁束線図である。
【
図15a】本願における微動ステージの構造概略図である。
【
図15b】本願における可撓性機構の構造概略図である。
【
図16】本願における磁気浮上式重力補償装置の数が異なる場合の微動ステージの構造概略図である。 ここで、上記図面は以下の符号を含む。 1…内側ベース磁石、11…内側リング、12…内側コイル、2…第1の端部磁性鋼、3…第2の端部磁性鋼、4…内側マグネットリング磁性鋼、41…アーク板、5…外側コイル、6…ステージ、7…可撓性機構、71…弾性シート、8…外側マグネットリング磁性鋼、81…円弧板、10…外側ガイドマグネットリング、100…磁気浮上式重力補償装置、101…第1のフレーム、102…第2のフレーム、103…回転ベース、104…微動ベース。
【発明を実施するための形態】
【0015】
以下、本願の実施例の目的、技術案及び利点をより明確にするために、図面を参照して本願の各実施形態について詳細に説明する。しかしながら、当業者であれば理解できるように、本願の各実施形態において、読者が本願をよりよく理解するために多くの技術的詳細を提供する。ただし、これらの技術的詳細及び以下の各実施形態による様々な変更及び修正がなくても、本願の特許請求の範囲に記載された技術案を実現することができる。
【0016】
以下の説明では、様々な開示された実施例に対する完全な理解を提供するために、様々な開示された実施例を説明する目的で、特定の詳細が記載される。しかしながら、当業者は、実施形態がこれらの具体的な詳細のうちの1つ以上なしに実施され得ることを認識するであろう。その他の状況において、本願に関連する周知の装置、構造及び技術は、実施例の説明を不必要に混同することを回避するために、詳細に示されていないか、又は説明されていないこともあり得る。
【0017】
他の必要がないかぎり、明細書全体及び特許請求の範囲において、用語「含む」及びその変形、例えば「含有する」及び「有する」は開放的に含むことと理解すべきであり、即ち「含むが、限定されるものではない」と解釈すべきである。
以下は図面を参照して本願の各実施例を詳細に説明し、本願の目的、特徴及び利点をより明確に理解するためである。理解すべきものとして、図面に示した実施例は本願の範囲を限定するものではなく、本願の技術案の実質的な精神を説明するためである。
【0018】
明細書全体において、「1つの実施例」又は「一実施例」への言及は、実施例で説明される特定の特性、構造又は特徴が、少なくとも1つの実施例に含まれることを意味する。従って、明細書全体の各位置における「1つの実施例」又は「一実施例」の出現は全て同じ実施例を指す必要はない。また、特定の特性、構造又は特徴は1つ又は複数の実施例においていかなる方式で組み合わせることができる。
【0019】
当該明細書及び特許請求の範囲において使用される単数形「一」及び「前記」は、特に明示しない限り、複数の指示物を含むものとする。なお、特に明記しない限り、「あるいは」という用語は、一般的に、「及び/又は」を含む意味で用いられる。
以下の説明では、本願の構造及び動作方式を明確に示すために、多くの方向性言語を用いて説明するが、「前」、「後」、「左」、「右」、「外」、「内」、「外向き」、「内向き」、「上」、「下」等の言語を便宜的な用語として理解すべきであり、限定的な用語として理解すべきではない。そして、下記各図において座標軸がZ(第1の方向Z)に沿った方向は磁気浮上式重力補償装置の軸線方向、即ち垂直方向であり、これらの方向性語彙はいずれも便宜的な用語であり、限定的な語彙と理解すべきではない。ここで、「X向」、「X方向」及び「Y向」、「Y方向」は水平方向に交差する方向を意味し、「Z向」及び「Z方向」は垂直方向を意味する。
なお、以下の各図において矢印「→」方向は磁化方向を示し、「×」はコイル断面を示す。
【0020】
以下、図面を参照して本願の実施例1の磁気浮上式重力補償装置について説明する。
図1及び
図2に示すように、磁気浮上式重力補償装置100は、内側ベース磁石1、第1の端部磁性鋼2、第2の端部磁性鋼3、内側マグネットリング磁性鋼4及び外側コイル5を含む。ここで、内側ベース磁石1は円筒状をなし且つ軸方向に沿って延在し、内側ベース磁石1は永久磁石である。第1の端部磁性鋼2及び第2の端部磁性鋼3はそれぞれ内側ベース磁石1の2つの軸方向端部に位置し且つ軸方向に沿って延在し、第1の端部磁性鋼2及び第2の端部磁性鋼3の外径はそれぞれ内側ベース磁石1の2つの軸方向端部から離れる方向に沿って徐々に大きくなる。内側マグネットリング磁性鋼4は円筒状をなし、内側マグネットリング磁性鋼4は内側ベース磁石1と同軸に内側ベース磁石1の外に位置し、且つ内側ベース磁石1と径方向に離間する。外側コイル5は内側ベース磁石1と同軸であり且つ内側マグネットリング磁性鋼4の外に位置し、外側コイル5は内側マグネットリング磁性鋼4と径方向に離間する。外側コイル5は通常、電力増幅器を備えるため、外側コイル5内の電流を調整することにより、外側コイル5が発生する磁界を調整することができる。外側コイル5は内側ベース磁石1、第1の端部磁性鋼2及び第2の端部磁性鋼3に対して固定され、即ち、外側コイル5と第1の端部磁性鋼2又は第2の端部磁性鋼3との間はブラケット又は他の構造によって固定接続される。内側ベース磁石1、第1の端部磁性鋼2、第2の端部磁性鋼3及び外側コイル5は共に第1のフレーム101を構成し、当該第1のフレーム101と内側マグネットリング磁性鋼4との間は互いに磁気作用し、それにより互いに軸方向に移動することができる。第1のフレーム101を可動子に、内側マグネットリング磁性鋼4を固定子にしてもよく、内側マグネットリング磁性鋼4を可動子に、第1のフレーム101を固定子にしてもよい。第1のフレーム101が可動子である場合、第1のフレーム101に担持されてステージ装置を駆動して移動させ、内側マグネットリング磁性鋼4が可動子である場合、内側マグネットリング磁性鋼4に担持されてステージ装置を駆動して移動させる。以下、第1のフレーム101を可動子とする場合を例として、本願の磁気浮上式重力補償装置100について説明し、下述の磁気浮上式重力補償装置100のストローク又は変位は即ち第1のフレーム101の内側マグネットリング磁性鋼4に対する第1の方向(Z)に沿った変位である。
【0021】
本願における磁気浮上式重力補償装置100は微動ステージ内に応用されることができる。一般的に言えば、微動ステージは、ステージ装置、可撓性機構7、微動ベース104及び上記実施例における磁気浮上式重力補償装置100を含み、ステージ装置は微動ベース104に対して垂直方向にスライド可能に微動ベース104に接続され、
図15a及び
図15bに示すように、可撓性機構7の一端はステージ装置に接続され、他端は微動ベース104に接続され、磁気浮上式重力補償装置100はステージ装置の下方に位置し且つステージ装置の重力を力補償できるように構成される。
【0022】
具体的には、
図15a及び
図15bに示すように、ステージ装置は、ステージ6と、ステージ6の下方に設けられた回転ベース103と、を含む。ここで、ステージ6はシリコンウェハを吸着するために用いられ、真空吸着や静電吸着等を用いてもよい。可撓性機構7は複数の弾性シート71を含み、弾性シート71は微動ベース104と回転ベース103との間に径方向に水平に延在し、且つ両端において微動ベース104と回転ベース103にそれぞれ固定接続される。具体的には、可撓性機構7の径方向内側端部は回転ベース103に接続され、径方向外側端部は微動ベース104に接続される。
【0023】
図1及び
図2に示すように、第1の端部磁性鋼2及び第2の端部磁性鋼3は軸方向の貫通孔を有する円錐台形状をなすが、理解できるように、第1の端部磁性鋼2及び第2の端部磁性鋼3は本願の範囲から逸脱せずに中実構造にしてもよい。第1の端部磁性鋼2及び第2の端部磁性鋼3の外径のサイズはいずれも内側ベース磁石1の2つの軸方向端部に近い側から下方及び上方に向かって徐々に大きくなっている。第1の端部磁性鋼2及び第2の端部磁性鋼3にそれぞれ軸方向の貫通孔が設けられ、その軸方向の貫通孔は内側ベース磁石1の軸方向の貫通孔と同軸であり且つ同じ直径を有して互いに連通されている。第1の端部磁性鋼2及び第2の端部磁性鋼3は、互いに同一の形状及びサイズを有しており、内側ベース磁石1の中央半径面に対して鏡像対称である。内側マグネットリング磁性鋼4は円筒状をなし、内側ベース磁石1と同軸に内側ベース磁石1の外に位置し、且つ内側ベース磁石1と径方向に離間する。示される実施例では第1の端部磁性鋼2及び第2の端部磁性鋼3は内側ベース磁石1に隣接しているが、これらの間には、通常1mm以下のある程度のエアギャップが設けられてもよい。
【0024】
本実施例における磁気浮上式重力補償装置100は、下述の垂直補償と垂直駆動の両方の機能を有している。
図2及び
図15aに示すように、第1のフレーム101と内側マグネットリング磁性鋼4との間に機械的接続がなく、リニアストローク範囲内で、可撓性機構7の剛性が一定であり、且つ第1のフレーム101と内側マグネットリング磁性鋼4との間の相互作用は剛性が変化しない垂直方向付勢力を発生することができる。ここで、内側マグネットリング磁性鋼4と内側ベース磁石1とがお互いの軸方向に対して中央に位置すれば、装置ゼロ点となり、装置がゼロ点に位置する時にステージ装置の重力を補償する必要があるため、その外部出力磁気浮上力はステージ装置の重力に等しい必要がある。この時、可撓性機構7の弾性力はゼロであり、外側コイル5に通電せず、磁気浮上式重力補償装置100の出力磁気浮上力の方向は垂直で上向きである。ステージ装置とベースとの間に設けられた可撓性機構7の弾性力はリニアストローク範囲内でステージ装置の垂直移動に伴ってリニアに変化するため、磁気浮上式重力補償装置100の出力磁気浮上力もステージ装置の垂直移動に伴ってリニアに変化し、且つ両者の変化勾配が等しい場合にのみ、磁気浮上式重力補償装置100はステージ装置の重力及び可撓性機構7の弾性力に対する補償作用を完全に実現することができる。これに基づき、装置における第1の端部磁性鋼2及び第2の端部磁性鋼3の外径サイズは内側ベース磁石1の両端に近い側からそれぞれ下向き及び上向きに徐々に増大し、ステージ装置がリニアストローク範囲内にあれば、磁気浮上式重力補償装置100の出力磁気浮上力は可撓性機構7の出力弾性力とステージ装置の重力との和に等しい。
【0025】
図5bに磁気浮上式重力補償装置100の外側コイル5における電流がゼロでありリニアストローク範囲内の出力力シミュレーション曲線を示す。図中横軸は磁気浮上式重力補償装置100のストロークを示し、縦軸は出力力を示す。図中に2つの逆方向変位端点とゼロ点及びその対応する出力力が表記されている。図においてx、-xは単方向の限界変位であり、Gは単一の磁気浮上式重力補償装置100が補償すべきステージ装置の重力であり、G+F、-F+Gは単一の磁気浮上式重力補償装置100のリニアストローク範囲端点における出力力である。磁気浮上式重力補償装置100の設計剛性をkにすると、順方向ストローク端点xにおける磁気浮上式重力補償装置100の出力力振幅はG+F=G+kxであり、これにより磁気浮上式重力補償装置100の出力力範囲は「-F+G、F+G」であることが分かる。図から分かるように、当該磁気浮上式重力補償装置100の出力力はストロークに伴ってリニアに変化し、それによりステージ装置の重力及び可撓性機構7が発生するリニア変化の弾性力を補償することができる。
【0026】
以上説明したように、リニアストローク範囲内において、外側コイル5における電流がゼロである場合、磁気浮上式重力補償装置100は垂直補償作用を有し、ステージ装置の重力及び可撓性機構7の弾性力を補償することができ、且つ磁気浮上式重力補償装置100は剛性一定の特性を有する。
【0027】
本磁気浮上式重力補償装置100は、リニアストローク範囲内の場合よりも、大きなストローク範囲での適用が可能である。それとリニアストローク範囲との違いは、リニアストローク範囲内で可撓性機構7の剛性が一定であるが、大きなストローク範囲がリニアストローク範囲とリニアストローク範囲を超える非リニアストローク範囲を含み、非リニアストローク範囲内で可撓性機構7の剛性が一定ではないことである。また、
図5aに示すように、図中横軸は磁気浮上式重力補償装置100の第1の方向(Z)に沿った変位であり、縦軸は可撓性機構7の第1の方向(Z)に沿った出力力である。図から分かるように、第1の方向に変位するストローク範囲内のリニア領域A(即ち、リニアストローク範囲)において、可撓性機構7の出力剛性は一定であり、その弾性力と変位はリニアに変化するが、磁気浮上式重力補償装置100が当該領域外で移動する時、即ちストローク範囲内の非リニア領域Bにおいて、この時に可撓性機構7の出力剛性は変位に従って変化し、その弾性力と変位も非リニアに変化するが、第1の端部磁性鋼2と第2の端部磁性鋼3によって補償される力は常にリニアに変化し、非リニア領域で移動する時に、第1の端部磁性鋼2及び第2の端部磁性鋼3は依然としてリニア補償しかできず、可撓性機構7の一部の弾性力が補償されないことを引き起こし、この時、外側コイル5内の電流方向及び振幅を制御することによって対応する方向及び大きさのローレンツ力を発生させ、第1の端部磁性鋼2及び第2の端部磁性鋼3に補償されない当該部分の弾性力を補償することができる。従って、本磁気浮上式重力補償装置100は、非リニア領域Bにおいても垂直補償作用を有する。
【0028】
上記リニアストローク範囲及び非リニアストローク範囲を組み合わせると、磁気浮上式重力補償装置100の出力力はステージ装置の重力及び可撓性機構7の弾性力を補償するために用いられ、磁気浮上式重力補償装置100の第1のフレーム101が内側マグネットリング磁性鋼4に対して第1の方向(Z)に沿ってリニア領域Aのストローク範囲内で変位する場合、可撓性機構7の出力弾性力はリニアに変化し、外側コイル5内の電流がゼロである場合、第1の端部磁性鋼2及び第2の端部磁性鋼3の外径サイズはいずれもそれぞれ内側ベース磁石1の両軸方向端部に近い側から下向き及び上向きに徐々に増大するため、第1の端部磁性鋼2と第2の端部磁性鋼3の外径サイズの変化勾配は可撓性機構7の出力弾性力の変化勾配と一致し、リニア領域A内において、磁気浮上式重力補償装置100の出力磁気浮上力は可撓性機構7の出力弾性力とステージ装置の重力との和に等しい。
【0029】
非リニア領域では、可撓性機構7の出力力は非リニア変化を呈するが、外側コイル5内の電流がゼロである場合、磁気浮上式重力補償装置100の出力磁気浮上力は依然としてリニア変化を呈するため、磁気浮上式重力補償装置100の出力磁気浮上力は可撓性機構7の出力弾性力振幅とステージ装置の重力との和に等しくならず、この場合外側コイル5内に電流を流すことができ、外側コイル5内に発生する軸方向磁界によって磁気浮上式重力補償装置100の出力力を調整し、第1のフレーム101が内側マグネットリング磁性鋼4に対して非リニア領域にあるストローク範囲内で変位する場合、磁気浮上式重力補償装置100の出力磁気浮上力は可撓性機構7の出力弾性力とステージ装置の重力との和に依然として等しい。
【0030】
従って、具体的には、本願の磁気浮上式重力補償装置100は、リニアストローク範囲内の剛性一定の重力補償装置であり、リニアストローク範囲及び非リニアストローク範囲を含む大きなストローク範囲内で出力力調整可能な高集積度装置である。即ち、微動ステージ垂直移動モジュールのリニアストローク範囲内において、外側コイル5の電流がゼロである場合、磁気浮上式重力補償装置100の出力力はステージ装置の重力及び可撓性機構7のリニア領域内における弾性力を補償することができる。大きなストローク範囲内において、外側コイル5の電流の大きさ及び方向を調整することにより、第1のフレーム101と内側マグネットリング磁性鋼4との間の相互作用力を調整することができ、磁気浮上式重力補償装置100の出力力を調整することができ、可撓性機構7の非リニア領域における補償力を提供することができる。
【0031】
リニアストローク範囲内において、本実施例の磁気浮上式重力補償装置100の垂直補償作用はさらに他の特徴を有し、
図5cに示すように、図において横軸は磁気浮上式重力補償装置100における第1のフレーム101の第1の方向(Z)に沿った変位であり、縦軸は磁気浮上式重力補償装置100の第1の方向(Z)に沿った出力力である。図中5本の曲線はそれぞれ外側コイル5の異なる入力電流の作業状況での磁気浮上式重力補償装置100の出力力曲線に対応する。
【0032】
なお、
図5cにおいて外側コイル5における電流は一定であるが、実際の状況において、磁気浮上式重力補償装置100が大きなストローク範囲にある時、可撓性機構7の弾性力を補償するために、必要に応じて電流の大きさを段階的に調整する必要がある。
図5c及び
図16から分かるように、外側コイル5のプリセット入力電流はそれぞれ-2A、-1A、0A、1A及び2Aであり、これらがゼロ点において磁気浮上式重力補償装置100に対応する出力力はそれぞれm5、m4、m1、m2及びm3であり、入力電流が0Aである場合、その出力力は第1の方向に沿った作用力m1であり、出力力と微動ステージにおける磁気浮上式重力補償装置100の数との積がステージ装置の重力となる。
【0033】
内側マグネットリング磁性鋼4と内側ベース磁石1とがお互いの軸方向に対して中央に位置すれば、装置ゼロ点となり、外側コイル5の電流がゼロである時、磁気浮上式重力補償装置100の出力力はステージ装置の重力と大きさが等しく方向が逆であり、ゼロ点に位置する時に磁気浮上式重力補償装置100はステージ装置の重力を完全に補償することができず又は補償力がステージ装置の重力を超えると、外側コイル5における電流の大きさを変更することにより磁気浮上式重力補償装置100の出力力を調整することができ、当該出力力をステージ装置の重力に合わせることができる。また、図における各出力曲線のリニア性はいずれも良好であり(即ちいずれも剛性一定を示す)、第1の端部磁性鋼2と第2の端部磁性鋼3のテーパを利用して磁界のリニア化を実現し、第1のフレーム101による磁界と内側マグネットリング磁性鋼4による磁界の相互作用を応用してゼロ点におけるステージ装置の重力補償手段を実現する。
【0034】
従って、本願はステージ装置の重力を補償するだけでなく、ステージ装置の重力に基づいて調整することもでき、作業者は外側コイル5における電流を簡単に変更するだけで装置全体にゼロ点でバランスを維持させることができ、生産効率及び微動ステージの安定性を大幅に向上させ、また、上記方式を採用すると、さらに磁気浮上式重力補償装置100の構造をコンパクトにし、設計スペースを節約し、集積度が非常に高い。
【0035】
なお、上記
図5cに示す図は外側コイル5における電流が一定値である時の図であるが、実際の状況において、可撓性機構7が非リニア領域にある時、外側コイル5における電流は可撓性機構7の弾性力変化に基づいて変化する必要があり、それにより磁気浮上式重力補償装置100の出力力はステージ装置の重力と可撓性機構7の弾性力を完全に補償することができる。
【0036】
本実施例における磁気浮上式重力補償装置100は上記垂直補償作用に加え、さらに垂直駆動作用を有する。
図5cから分かるように、外側コイル5に異なる電流を入力する場合、磁気浮上式重力補償装置100は異なる出力力を有する。同様に、外側コイル5の電流方向及び振幅を制御すればステージ装置の移動方向及び加速度を制御することができ、垂直駆動作用を果たす。
【0037】
リニアストローク範囲内において、磁気浮上式重力補償装置100は剛性一定の特性を有し、磁気浮上式重力補償装置100は常にステージ装置の重力及び可撓性機構7の弾性力を補償することができる。初期のゼロ点位置にある時、外側コイル5に定電流が流れているか否かに関わらず、外側コイル5における電流方向及び振幅を簡単に変更するだけでステージ装置の移動に必要な加速度力を提供することができ、ステージ装置を急速に反応させ、例えば急速に加速又は減速し、垂直補償及び垂直駆動の役割を同時に果たす。そして、このような制御によりコイル部分の電流を小さくするため、温度上昇が低く、ステージ装置が高動的応答の応用要求を満たすことができる。
【0038】
大きなストローク範囲において、外側コイル5は電流方向及び振幅を絶えず変更して一部の可撓性機構7の非リニア弾性力を補償する必要があり、その上でさらに計算により外側コイル5における電流方向及び振幅を変更して依然としてステージ装置の移動に必要な加速度力を提供することができる。
以上説明したように、磁気浮上式重力補償装置100は垂直補償作用を有するだけでなく、垂直駆動作用も有する。そのため、微動ステージに適用すると、垂直駆動装置を別途に設置する必要がなく、微動ステージの設計スペースを節約し、微動ステージの構造をよりコンパクトにし、集積度が非常に高い。本願において、外側コイル5はステージ装置の移動に必要な軸方向加速度の力及び可撓性機構7の非リニア領域における補償力を提供すればよいので、そのコイル部分の電流が小さく、温度上昇が低く、そのためステージ装置は、例えば急速加速又は減速のような高動的応答の応用要求を満たすことができる。そして、本願における磁気浮上式重力補償装置100は構造がコンパクトであるため、ステージ装置の設計空間を節約することができ、集積度が非常に高い。
【0039】
また、なお、外側コイル5が設けられるため、
図5aに示すように、磁気浮上重力が大きなストローク範囲内でもステージ装置の重力及び可撓性機構7の弾性力を補償する作用を実現することができる。また外側コイル5が追加されるため、内側マグネットリング磁性鋼4と内側ベース磁石1とがお互いの軸方向に対して中央に位置すれば、装置ゼロ点となり、外側コイル5における電流の大きさを調整することによりステージ装置の重量を補助的に補償することができる。
【0040】
また、
図2~
図4に示すように、具体的には、本実施例では、第1の端部磁性鋼2及び第2の端部磁性鋼3の着磁方向は内側ベース磁石1から軸方向に沿って外向きであり、内側ベース磁石1の着磁方向は第1の端部磁性鋼2及び第2の端部磁性鋼3のいずれかと同じであってもよく、本実施例では、内側ベース磁石1の着磁方向は第1の端部磁性鋼2と同じであり、内側マグネットリング磁性鋼4の着磁方向は径方向に沿って外向きである。外側コイル5による磁界は必要に応じて任意に調整することができる。当然のことながら、いくつかの実施例では、第1の端部磁性鋼2及び第2の端部磁性鋼3の着磁方向は軸方向に沿って外から内側ベース磁石1に向かう方向であってもよく、即ち上記内側ベース磁石1から軸方向に沿って外向きの方向と逆であり、内側マグネットリング磁性鋼4の着磁方向もそれに応じて径方向内向きに設けられてもよい。
【0041】
いくつかの実施例では、
図1、
図3及び
図4に示すように、内側マグネットリング磁性鋼4は周方向に沿って隣接する複数のアーク板41で構成され、且つ
図3に示すように各アーク板41の着磁方向は内側マグネットリング磁性鋼4の径方向に沿って設けられ、即ちアーク板41内の異なる周方向位置における着磁方向はいずれも径方向に沿っているか、又は
図4に示すようにアーク板41の着磁方向はアーク板41の周方向中央の径方向に平行し、即ちアーク板41の各磁束線はいずれも平行に設けられ且つアーク板41の周方向の対称平面に平行する。アーク板41内の各磁束線はいずれも平行である場合、各アーク板41を着磁しやすい。アーク板41を平行磁場に入れるだけで、着磁を完了することができる。
【0042】
図1に示すように、内側マグネットリング磁性鋼4は8枚のブロック化磁性鋼で接合されてなる。ここで、8枚のブロック化磁性鋼は円筒によって45°の等角間隔で径方向に沿って8等分されたアーク板41である。ただし、内側マグネットリング磁性鋼4は他の数のブロック化磁性鋼で接合されてもよく、内側マグネットリング磁性鋼4が発生する径方向不平衡力を解消するために、そのブロック数Nは偶数に設定され、例えば2ブロック、4ブロック、6ブロック等である。内側マグネットリング磁性鋼4は、磁性鋼の着磁と加工を容易にするようにブロック化磁性鋼で接合されてなる。なお、当然のことながら、いくつかの実施例では、内側マグネットリング磁性鋼4は一体型磁性リングであってもよい。
【0043】
本願の実施例2は磁気浮上式重力補償装置100を提供し、本実施例は実施例1と基本的に同じであり、相違点は、
図6及び7に示すように、本実施例における磁気浮上式重力補償装置100は外側マグネットリング磁性鋼8をさらに含んでもよく、当該外側マグネットリング磁性鋼8は内側マグネットリング磁性鋼4と同軸に設けられ、外側コイル5の外に位置し、また、外側コイル5と径方向に沿って離間することにある。外側マグネットリング磁性鋼8の着磁方向は内側マグネットリング磁性鋼4の着磁方向と同じであり、即ち、外側マグネットリング磁性鋼8の着磁方向は径方向外向き又は径方向内向きであってもよい。
【0044】
また、外側マグネットリング磁性鋼8と内側マグネットリング磁性鋼4は相対的に固定され、外側マグネットリング磁性鋼8と内側マグネットリング磁性鋼4はブラケット又は連結ロッド等の装置によって一体に固定されてもよく、即ち外側マグネットリング磁性鋼8と内側マグネットリング磁性鋼4は共に第2のフレーム102を構成し、当該第2のフレーム102は固定子又は可動子であってもよく、当該第2のフレーム102と上記第1のフレーム101との間に相互磁気作用力を発生させて相互移動でき、第1のフレーム101及び第2のフレーム102のいずれか一方は可動子であり、他方は固定子である。
【0045】
本願における磁気浮上式重力補償装置100において、第1のフレーム101と第2のフレーム102との間に機械的接続がなく、ストローク範囲内において、第1のフレーム101における内側ベース磁石1、第1の端部磁性鋼2及び第2の端部磁性鋼3と、第2のフレーム102における内側マグネットリング磁性鋼4及び外側マグネットリング磁性鋼8による磁界との間に相互作用して垂直に上向きで、大きさが一定の磁気浮上作用力を発生することができ、当該磁気浮上作用力はステージ装置の垂直方向移動機構のゼロ点における重力に等しく方向が逆であり、第1のフレーム101における第1の端部磁性鋼2及び第2の端部磁性鋼3の外側テーパは第1のフレーム101の出力磁力をリニア化させ、内側ベース磁石1、第1の端部磁性鋼2及び第2の端部磁性鋼3と、第2のフレーム102における内側マグネットリング磁性鋼4及び外側マグネットリング磁性鋼8による磁界との間の相互作用は垂直に上向きで、剛性が一定の磁気浮上作用力を発生することができ、2つの作用力を重ね合わせると出力剛性一定の垂直磁気浮上力を実現することができる。
【0046】
外側コイル5は通常、電力増幅器を備え、外側コイル5の電流入力を調整し、磁界が移動電荷に対してローレンツ力を発生させるというローレンツ力の法則により、外側コイル5は径方向に沿って内側マグネットリング磁性鋼4と外側マグネットリング磁性鋼8との間に配置され、前記第1のフレーム101における外側コイル5の入力電流の方向及び振幅を調整することにより、外側コイル5と第2のフレーム102の磁界相互作用に異なるローレンツ力を発生させ、当該ローレンツ力は第1のフレーム101と第2のフレーム102を予め設定された軌跡に従って相対的に変位させることができ、この時外側コイル5はステージ装置の重力を克服する必要がなく、移動に必要な加速度の力及び可撓性機構7の弾性力が非リニア領域においてリニア部分の干渉動力を超える補償力を提供すればよいため、磁気浮上式重力補償装置100の電流が小さく、温度上昇が低く、ステージ装置は高動的応答の応用要求を満たすことができる。
【0047】
また、
図6、
図8及び
図9に示すように、外側マグネットリング磁性鋼8は周方向に互いに隣接する複数の円弧板81で構成されてもよく、又は、いくつかの実施例では、外側マグネットリング磁性鋼8は1つの完全なマグネットリングであってもよく、
図8に示すように各円弧板81の着磁方向は外側マグネットリング磁性鋼8の径方向に沿って設けられるか、又は
図9に示すように円弧板81の着磁方向は円弧板81の周方向中央の径方向に平行する。即ち円弧板81の各磁束線は外側マグネットリング磁性鋼8の径方向に沿って設けられてもよく、又は円弧板81の各磁束線はいずれも平行に設けられ且つアーク板41の周方向対称面に平行する。各磁束線がいずれも平行である場合、各円弧板81を着磁しやすい。円弧板81を平行磁場に入れるだけで、着磁を完了することができる。
【0048】
図6に示すように、外側マグネットリング磁性鋼8は8枚のブロック化磁性鋼で接合されてなる。ここで、8枚のブロック化磁性鋼は円筒が45°の等角間隔で径方向に沿って8等分された円弧板81磁性鋼である。ただし、外側マグネットリング磁性鋼8は他の数のブロック化磁性鋼で接合されてなってもよく、外側マグネットリング磁性鋼8が生成した径方向不平衡力を解消するために、そのブロック化数Nは偶数に設定され、例えば2ブロック、4ブロック、6ブロック等である。外側マグネットリング磁性鋼8は、磁性鋼の着磁と加工を容易にするようにブロック化磁性鋼で接合されてなる。
【0049】
本実施例の磁束線は
図10に示すように、図において
図6の軸方向断面概略図の一部を示し、図において磁束線の走行方向は設計された磁気回路とほぼ一致する。
本願の実施例3は磁気浮上式重力補償装置100を提供し、実施例3は実施例1とほぼ同じであり、その主な相違点は、
図11に示すように、本実施例における磁気浮上式重力補償装置100は、内側マグネットリング磁性鋼4と同軸に外側コイル5の外に位置し、外側コイル5と径方向に離間する外側ガイドマグネットリング10をさらに含むことにある。当該外側ガイドマグネットリング10は、例えば鉄や高透磁(Fe Si B)98(Cu Nb)2アモルファス合金等の透磁材料で構成される。外側ガイドマグネットリング10によって磁気浮上式重力補償装置100全体による磁界を補強することができる。
【0050】
また、外側ガイドマグネットリング10は、周方向に互いに隣接する複数のアーク板からなるが、当然ながら、一体型の円環であってもよい。
本願の実施例4は磁気浮上式重力補償装置100を提供し、実施例4は実施例2と基本的に同じであり、その主な相違点は、実施例2において、内側ベース磁石1は永久磁石であるが、
図12及び
図13に示すように、本実施例では、内側ベース磁石1は内側コイル12であることにある。もちろん、内側コイル12を固定するために、内側コイル12は内側リング11の軸線に沿って内側リング11に巻き付けられてもよく、当該内側リング11は一般的な材質であってもよく、透磁体又は永久磁石であってもよい。第1の端部磁性鋼2及び第2の端部磁性鋼3は、内側リング11の軸方向の両端に設けられる。当該内側リング11が永久磁石で形成される場合、永久磁石及び内側コイル12は共に内側ベース磁石1を構成し、第1の端部磁性鋼2及び第2の端部磁性鋼3と共に第1のフレーム101を形成し、第2のフレーム102と相互作用して磁気浮上力を発生させる。なお、内側コイル12は他の方式で固定されてもよく、それが第1の端部磁性鋼2と第2の端部磁性鋼3との間に位置し且つそのうちの導線が軸線の周りに周方向に巻き付けられればよく、内側コイル12における電流方向は必要に応じて調整されてもよく、
図13に示すように、内側コイル12に通電すると、内側コイル12の磁力方向は軸線に沿って上向きであり、いくつかの実施例では、内側コイル12の電流方向が逆である場合、内側コイル12の磁力方向は軸線に沿って下向きである。
【0051】
内側コイル12には通常、内側コイル12の入力を調整する電力増幅器が配置され、右手の法則により、前記第1のフレーム101における内側コイル12の入力電流の方向及び振幅を調整することにより、異なる重量のステージ装置の重力に合わせ、それにより磁気浮上式重力補償装置100の適用範囲を向上させる。
外側コイル5の電流がゼロである場合、磁気浮上式重力補償装置100が発生する磁気作用力がステージ装置の重力及び可撓性機構7の弾性力を補償すると、外側コイル5の電流の方向及び振幅を調整することにより、磁気浮上式重力補償装置100を予め設定された軌跡に沿って高加速度で移動させ、ステージ装置の第1の方向(Z)に沿った移動性能を向上させる。
【0052】
本実施例は構造に対応する磁束線は
図14a及び
図14bに示すように、図に
図13の軸方向断面概略図の一部を示し、
図14aは内側コイル12に通電して外側コイル5に通電していない場合の磁束線図であり、
図14bは内側コイル12に通電せず外側コイル5にも通電していない場合の磁束線図である。図から分かるように、磁束線は第1の平面(XoY)に沿って鏡像対称である。
【0053】
以上、本願の好ましい実施例について詳述したが、必要があれば、各特許、出願及び出版品の態様、特徴及び構想を利用して実施例の態様を修正することで、他の実施例を提供してもよいことは理解できるであろう。
上記の詳細な説明を考慮して実施例に対してこれら及び他の変更を加えることができる。一般的に、特許請求の範囲において、使用される用語は説明書及び特許請求の範囲に開示された具体的な実施例に限定されるものではなく、全ての可能な実施例及びこれらの特許請求の範囲が有し得る全ての同等範囲を含むと理解されるべきである。
【0054】
また、なお、上記各実施例に言及された関連技術の詳細及び達成できる技術的効果は他の実施形態において依然として有効であり、重複を減少するために、いくつかの実施例において説明を省略する。
本願はさらに微動ステージを提供し、
図15a~
図16に示すように、微動ステージは、ステージ装置、可撓性機構7、微動ベース104及び上記各実施例におけるいずれかの実施例における磁気浮上式重力補償装置100を含み、ステージ装置は微動ベース104に対して垂直方向にスライド可能に微動ベース104に接続され、可撓性機構7は複数の弾性シート71を含み、弾性シート71は水平径方向に延在し、且つ弾性シート71の径方向内側端部はステージ装置に接続され、弾性シート71の径方向外側端部は微動ベース104に接続され、磁気浮上式重力補償装置100はステージ装置の下方に位置し且つステージ装置を力補償できるように構成される。具体的には、内側ベース磁石1、第1の端部磁性鋼2、第2の端部磁性鋼3及び外側コイル5は固定子及び可動子のうちの一方に組み込まれ、内側マグネットリング磁性鋼4は固定子及び可動子のうちの他方であり、磁気浮上式重力補償装置100はステージ装置の下方に位置し、磁気浮上重力可動子は前記ステージ装置を支持する。
【0055】
具体的には、ステージ装置は、ステージ6と、ステージ6の下方に設けられた回転ベース103とを含み、可撓性機構7は微動ベース104と回転ベース103との間に径方向に延在し且つ両端において微動ベース104及び回転ベース103に固定接続される。具体的には、可撓性機構7の径方向内側端部は回転ベース103に接続され、径方向外側端部は微動ベース104に接続される。
【0056】
また、
図15bに示すように、可撓性機構7は複数の弾性シート71を含み、各弾性シート71はステージ装置の中心周りにステージ装置の外周に環設され、各弾性シート71の径方向の外側は微動ステージの他の部材に接続され、磁気浮上式重力補償装置100は複数であり、各磁気浮上式重力補償装置100は並列に設けられ、且つ互いに離間する。当然のことながら、いくつかの実施例では、磁気浮上式重力補償装置100は1つだけであってもよい。
【0057】
図16は本願による磁気浮上式重力補償装置100を用いたステージ装置の底面図を示す。ステージ装置の下方にキャビティが設けられ、本願による磁気浮上式重力補償装置100を収容するために用いられる。ここで、ステージ装置下方のキャビティは1つ、2つ、3つ又は4つであってもよい。図には1つの磁気浮上式重力補償装置100が中心点に配置され、2つの磁気浮上式重力補償装置100が並列に配置され、3つの磁気浮上式重力補償装置100が例えば正三角形に配置され、4つの磁気浮上式重力補償装置100が正方形に配置される概略図が示されているが、他の数及び他の配置態様の磁気浮上式重力補償装置100が設けられてもよい。磁気浮上式重力補償装置100を使用する作業テーブルの形状も図示の正方形に限定されるものではなく、必要に応じて任意の形状に設定されてもよい。理解すべきものとして、複数の磁気浮上式重力補償装置100の等価重心の位置する垂線は垂直方向移動機構の重心の位置する垂線と同一線する必要がある。
【0058】
図16に示すように、本願の磁気浮上式重力補償装置100によればストロークに伴ってリニアに変化する磁気浮上力を提供することができ、即ちステージ装置の重力を補償できるだけでなく、可撓性機構7が発生する弾性力を補償することもでき、ある場合に微動ステージの重力補償に対する要求を満たすことができる。また外側コイル5はステージ装置の移動に必要な加速度駆動力及び可撓性機構の可変剛性領域における補償力を提供するだけでよいため、そのコイル部分の電流が小さく、温度上昇が低く、ステージ装置は高動的応答の応用要求を満たすことができる。そして、本願における磁気浮上式重力補償装置100によれば、構造がコンパクトであるため、ステージ装置の設計空間を節約することができ、集積度が非常に高い。
【0059】
また、なお、微動ステージにおける他の部材構造及び接続関係は公開番号CN112259488Bの出願における説明を参照することができ、当該特許公開は参照により本明細書に組み込まれる。
当業者であれば理解できるように、上記各実施形態は本願を実現する具体的な実施例であり、実際の応用において、本願の精神及び範囲から逸脱せずに形式及び詳細についてそれに対して様々な変更を行うことができる。
【国際調査報告】