(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-07-12
(54)【発明の名称】誘導加熱配設および誘導加熱配設の温度を制御するための方法
(51)【国際特許分類】
A24F 40/57 20200101AFI20240705BHJP
A24F 40/465 20200101ALI20240705BHJP
【FI】
A24F40/57
A24F40/465
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2024500311
(86)(22)【出願日】2022-07-11
(85)【翻訳文提出日】2024-01-05
(86)【国際出願番号】 EP2022069352
(87)【国際公開番号】W WO2023285401
(87)【国際公開日】2023-01-19
(32)【優先日】2021-07-12
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】596060424
【氏名又は名称】フィリップ・モーリス・プロダクツ・ソシエテ・アノニム
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100141553
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】ブタン ヤニック
(72)【発明者】
【氏名】シャトー マキシム クレマン シャルル
【テーマコード(参考)】
4B162
【Fターム(参考)】
4B162AA03
4B162AA22
4B162AB12
4B162AB22
4B162AC12
4B162AC22
4B162AC34
4B162AD08
4B162AD23
(57)【要約】
誘導加熱配設を制御する方法が提供される。誘導加熱システムは、インダクタ、およびインダクタに結合され、その結果、インダクタへの交流電流の提供によりサセプタが加熱される、サセプタを備える。方法は、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、少なくとも一つのインダクタへ電流パルスを提供することと、サセプタに関連付けられた冷却イベントを検出することと、冷却イベントの持続時間の間の電流パルスの最大負荷サイクル限度を判定することと、検出された冷却イベントを補償するために、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを、最大負荷サイクル限度以下の負荷サイクルに増大することとを含む。
【選択図】
図2A
【特許請求の範囲】
【請求項1】
誘導加熱配設を制御する方法であって、誘導加熱システムが、インダクタ、および前記インダクタに結合され、その結果、前記インダクタへの交流電流の提供によりサセプタが加熱される、サセプタを備え、前記方法が、
前記サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、前記少なくとも一つのインダクタへ電流パルスを提供することと、
前記サセプタに関連付けられた冷却イベントを検出することと、
前記冷却イベントの持続時間の間の前記電流パルスの最大負荷サイクル限度を判定することと、
前記検出された冷却イベントを補償するために、前記検出された冷却イベントの前記持続時間の間、前記電流パルスの負荷サイクルを、前記最大負荷サイクル限度以下の負荷サイクルに増大することと、を含む、方法。。
【請求項2】
最大負荷サイクル限度を判定することが、好ましくは前記冷却イベント前の期間中の平均負荷サイクルに基づいて、前記最大負荷サイクル限度を計算することを含む、請求項1に記載の方法。
【請求項3】
前記最大負荷サイクル限度が、前記冷却イベント直前の前記期間中の前記平均負荷サイクルの増大として計算される、請求項2に記載の方法。
【請求項4】
前記増大が、3%~30%の一定の増大であり、好ましくは10%の増大である、請求項3に記載の方法。
【請求項5】
前記冷却イベント前の前記期間が、前記冷却イベント前の2~10秒の期間である、請求項2~4のいずれか一項に記載の方法。
【請求項6】
前記最大負荷サイクル限度が、前記加熱配設が作動した後の時間に基づく、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記目標コンダクタンスまたは抵抗が、前記サセプタ内の材料のキュリー温度以下のサセプタ温度に対応する、請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記サセプタが、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含み、前記第二のキュリー温度が前記第一のキュリー温度より低く、前記目標コンダクタンスまたは抵抗が、前記第二のキュリー温度以下のサセプタ温度に対応する、請求項1~7のいずれかに記載の方法。
【請求項9】
冷却イベントを検出することが、前記サセプタを通過または通る気流を検出することを含む、請求項1~8のいずれか一項に記載の方法。
【請求項10】
前記誘導加熱配設が、前記サセプタがエアロゾル形成基体を加熱するために使用されるエアロゾル発生システムの一部である、請求項1~9のいずれか一項に記載の方法。
【請求項11】
誘導加熱システムであって、電源と、
サセプタ、および前記サセプタに結合され、その結果、インダクタへの交流電流の提供により前記サセプタが加熱される少なくとも一つのインダクタを含む、誘導加熱配設と、
コントローラであって、
前記サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、前記サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、前記電源から前記インダクタへ電流パルスを供給することと、
前記サセプタに関連付けられた冷却イベントを検出することと、
前記検出された冷却イベントを補償するために前記電流パルスの負荷サイクルを増大することであって、前記コントローラが、前記検出された冷却イベントの前記持続時間の間、前記電流パルスの前記負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、誘導加熱システム。
【請求項12】
前記コントローラが、好ましくは前記冷却イベント前の期間中の平均負荷サイクルに基づいて、前記最大負荷サイクル限度を計算するように構成される、請求項11に記載の誘導加熱システム。
【請求項13】
前記コントローラが、前記冷却イベント直前の前記期間中の前記平均負荷サイクルの増大として前記最大負荷サイクル限度を計算するように構成される、請求項12に記載の誘導加熱システム。
【請求項14】
前記冷却イベント前の前記期間が、前記冷却イベント前の2~10秒の期間である、請求項12~13のいずれか一項に記載の誘導加熱システム。
【請求項15】
誘導加熱システムを備えるエアロゾル発生装置であって、前記誘導加熱システムが、
電源と、
インダクタへの交流電流の提供により、前記インダクタに結合されたサセプタが加熱されるように構成された少なくとも一つのインダクタを含む、誘導加熱配設であって、前記サセプタが、エアロゾル形成基体を加熱するように構成される、誘導加熱配設と、
コントローラであって、
前記サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、前記サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、前記電源から前記インダクタへ電流パルスを供給することと、
前記サセプタに関連付けられた冷却イベントを検出することと、
前記検出された冷却イベントを補償するために前記電流パルスの負荷サイクルを増大することであって、前記コントローラが、前記検出された冷却イベントの前記持続時間の間、前記電流パルスの前記負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、エアロゾル発生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、誘導加熱配設、および誘導加熱配設の温度を制御するための方法に関する。特に、本開示は、誘導加熱配設を備えるエアロゾル発生システム、および過熱を防止するためにエアロゾル発生システム内の誘導加熱配設を制御する方法に関する。
【背景技術】
【0002】
エアロゾル形成基体を加熱してエアロゾルを生成するように構成された誘導加熱配設を備える、eシガレットおよび加熱式たばこシステムなどのエアロゾル発生システムの数が増えている。誘導加熱配設は典型的に、サセプタに誘導的に結合されるインダクタを備える。インダクタは、サセプタの加熱を引き起こす交番磁界を発生する。典型的には、サセプタはエアロゾル形成基体と直接接触し、熱はサセプタから主に伝導によってエアロゾル形成基体に伝達される。サセプタの温度は、発生するエアロゾルの量の観点から、およびその組成物の観点からの両方で最適なエアロゾル発生を提供するために制御する必要がある。
【0003】
ほとんどの誘導加熱式エアロゾル発生装置では、エアロゾル形成基体の加熱によって発生した蒸気は、気流によってサセプタから離れるように運ばれる。蒸気は気流内で冷却されて、エアロゾルを発生する。エアロゾルが吸入のために意図されている一部のエアロゾル発生装置では、気流は、ユーザーが装置で吸煙することによって発生され得る。ユーザーが装置で吸煙することにより、断続的かつ不規則な気流がサセプタを通過する。サセプタを通過するこの気流は、サセプタを冷却する。そのため、動作中、気流の冷却効果に対抗して最適なエアロゾル発生を確保するために、より多くの電力をインダクタに提供する必要がある。さらなる電力は、検出されたユーザー吸煙に対する応答として提供する必要がある。
【0004】
したがって、このようなエアロゾル発生装置にとって、最適なエアロゾルの発生およびユーザーへのエアロゾルの送達を確保するために、およびユーザーが装置で吸煙するなどの冷却イベントに対応することができるよう、サセプタの温度を正確に監視および制御することが重要である。
【0005】
誘導加熱配設は、無接触のサセプタの加熱を提供する。これは、多くの状況、特にサセプタがインダクタとは別個のシステムの構成要素内に提供される場合に有益である。同じ理由から、サセプタへの直接的な電気的接続を必要とすることなく、かつ別個の専用の温度センサを必要とすることなく、サセプタ温度を監視および制御することが望ましい。誘導回路内のサセプタの見かけの抵抗または見かけのコンダクタンスを監視して、サセプタ温度の表示を提供することができる。次いで、所望のサセプタ温度を提供するようインダクタに供給される電力を制御することができる。
【0006】
しかしながら、見かけの抵抗または見かけのコンダクタンスと温度との間の関係が変化し得る状況がある。これらの状況では、見かけの抵抗または見かけのコンダクタンスのみに依存してサセプタ温度の表示を提供することは、過熱が生じる可能性を排除しない。こうした状況の一つは、サセプタにわたる冷却空気流である。
【0007】
特にユーザー吸煙または他の冷却イベント中の誘導加熱サセプタの過熱の可能性を低減する、誘導加熱配設および制御方法を提供することが望ましい。
【発明の概要】
【0008】
本発明の一実施形態によると、誘導加熱配設を制御する方法が提供される。誘導加熱システムは、インダクタおよびサセプタを備えてもよく、サセプタは、インダクタに結合され、その結果、インダクタへの交流電流の提供によりサセプタが加熱される。
【0009】
方法は、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、少なくとも一つのインダクタへ電流パルスを提供することと、サセプタに関連付けられた冷却イベントを検出することと、冷却イベントの持続時間の間の電流パルスの最大負荷サイクル限度を判定することと、検出された冷却イベントを補償するために、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを、最大負荷サイクル限度以下の負荷サイクルに増大することとを含み得る。最大負荷サイクル限度は、100%未満であってもよい。最大負荷サイクル限度は、95%以下であってもよい。
【0010】
実験は、サセプタにわたる冷却空気流などの、サセプタに関連付けられた冷却イベントが、サセプタのコンダクタンスとサセプタの温度との間の関係を変化させ得ることを示す。特に、サセプタにわたる冷却気流は、そのキュリー温度およびその付近でサセプタのコンダクタンスを減少させる場合がある。サセプタ内の材料のキュリー温度付近で動作し、かつサセプタ温度を制御するために、冷却気流の不在下で確立されるサセプタの見かけの抵抗またはコンダクタンスとサセプタの温度との間の相関を使用するシステムでは、これは、サセプタの実際の温度の不正確な判定につながり、結果としてサセプタの過熱につながる可能性がある。この文脈におけるサセプタの過熱とは、動作中の所望または最適な温度を超える温度への加熱を意味する。この問題は、特に、サセプタを通過する可変気流とともに、および可変周囲環境において動作することができるシステムにおいて対処が困難である。
【0011】
最大負荷サイクル限度が判定され、最大負荷サイクル限度は、こうした冷却イベント中のサセプタの過熱を防止するために超えられない。最大負荷サイクル限度を判定することは、メモリから最大負荷サイクル限度を読み取ることを含み得る。最大負荷サイクル限度を判定することは、最大負荷サイクル限度を計算することを含み得る。
【0012】
最大負荷サイクル限度を計算することは、冷却イベント前の期間中に使用された平均負荷サイクルに基づいて、最大負荷サイクル限度を計算することを含み得る。これは、冷却イベント前の平均負荷サイクルは、冷却イベントがない場合にサセプタの目標温度を維持するために必要な電力レベルを反映し得るため、有利である。
【0013】
最大負荷サイクル限度は、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として計算されてもよい。一定の増大は、3%~30%であってもよい。一定の増大は、好ましくは3%~15%であってもよい。一定の増大は、およそ10%であってもよい。
【0014】
最大負荷サイクル限度は、冷却イベント直前の期間中の平均負荷サイクルの割合として計算されてもよい。割合は、105%~200%であってもよい。割合は、好ましくは110%~150%であってもよい。割合は、およそ125%であってもよい。
【0015】
冷却イベント前の期間は、冷却イベント前の2~10秒の期間であってもよい。冷却イベント前の期間は、好ましくは6~7秒の期間であってもよい。冷却イベント前の期間は、より好ましくは6.4秒の期間であってもよい。
【0016】
最大負荷サイクル限度は、加熱配設が作動した後の時間に基づいてもよい。誘導加熱配設の使用期間中に、サセプタ温度とサセプタの見かけの抵抗またはコンダクタンスとの間の関係が変化する場合がある。特に、所与のサセプタ温度に対して、サセプタのコンダクタンスは、加熱期間にわたって減少する傾向がある。そのため、加熱配設の作動後の時間が増大するにつれて過熱のリスクが増大し得る。したがって、最大負荷サイクル限度は、加熱配設の作動後の時間が増大するにつれて低減し得る。最大負荷サイクル限度は、加熱配設の作動後の所定の時間後にのみ判定されてもよい。
【0017】
サセプタに関連付けられたコンダクタンスまたは抵抗は、サセプタおよび結合されたインダクタの見かけのコンダクタンスまたは見かけの抵抗であり得る。方法は、繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定することと、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整することとを含み得る。
【0018】
有利なことに、目標コンダクタンスまたは目標抵抗は、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される。
【0019】
サセプタは、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含んでもよい。第二のキュリー温度は第一のキュリー温度より低くてもよい。目標コンダクタンスまたは抵抗は、第二のキュリー温度以下のサセプタ温度に対応してもよい。
【0020】
第一および第二のサセプタ材料は、一緒に結合され、それ故に互いに物理的に密着して接触し、それによって両方のサセプタ材料が熱伝導に起因して同じ温度を有することが確保される、二つの別個の材料であることが好ましい。二つのサセプタ材料は、好ましくは、それらの主表面のうちの一つに沿って結合される二つの層または細片であることが好ましい。サセプタはさらに、サセプタ材料のさらなる第三の層を含んでもよい。サセプタ材料の第三の層は、第一のサセプタ材料で作製されることが好ましい。サセプタ材料の第三の層の厚さは、第二のサセプタ材料の層の厚さ未満であることが好ましい。
【0021】
目標コンダクタンスまたは抵抗は、冷却イベントが存在しない場合、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲内にあるサセプタ温度に対応し得る。この温度範囲の下限において、サセプタ内の材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を開始する。この温度範囲の上限において、材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を完了する。
【0022】
誘導加熱配設は、サセプタがエアロゾル形成基体を加熱するのに使用されるエアロゾル発生システムの一部であってもよい。エアロゾル形成システムは、エアロゾル発生装置およびエアロゾル発生物品を備えてもよい。サセプタおよびエアロゾル形成基体は、エアロゾル発生物品の一部を形成してもよく、エアロゾル発生装置は、エアロゾル発生物品を取り外し可能に受容するように構成されてもよい。
【0023】
方法は、サセプタに関連付けられた一つ以上の較正値を測定するために較正プロセスを実施することをさらに含み得る。誘導加熱配設に提供される電力を制御することは、サセプタの温度が一つ以上の較正値に基づいて調整されるように電力を制御することを含み得る。較正値は、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲の上限および下限に対応し得る。
【0024】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一のコンダクタンス値と、サセプタの第二の較正温度に関連付けられた第二のコンダクタンス値とを含み得る。誘導加熱配設に提供される電力を制御することは、サセプタに関連付けられたコンダクタンス値を第一のコンダクタンス値と第二のコンダクタンス値との間に維持することを含み得る。
【0025】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一の抵抗値と、サセプタの第二の較正温度に関連付けられた第二の抵抗値とを含み得る。誘導加熱配設に提供される電力を制御することは、サセプタに関連付けられた抵抗値を第一の抵抗値と第二の抵抗値との間に維持することを含み得る。
【0026】
誘導加熱配設に提供される電力を制御することは、サセプタの温度が第一の較正温度と第二の較正温度との間になるように電力を制御することを含み得る。
【0027】
第一の較正温度は、摂氏150度~摂氏350度であってもよく、第二の較正温度は、摂氏200度~摂氏400度であってもよい。第一の較正温度と第二の較正温度との間の温度差は、少なくとも摂氏50度であってもよい。
【0028】
較正プロセスは、エアロゾルを生成するためのエアロゾル発生装置のユーザー動作中に実施されてもよい。このようにして、加熱プロセスを制御するために使用される較正値は、較正プロセスを製造時に実施する場合よりも、より正確かつ信頼性がある。これは、サセプタが、エアロゾル発生装置の一部を形成しない、別個のエアロゾル発生物品の一部を形成する場合に特に重要である。こうした状況では、製造時における較正は不可能である。
【0029】
較正プロセスは、所定の持続時間、所定の回数のユーザー吸煙、所定の数の温度ステップ、および測定された電源の電圧のうちの一つ以上に基づいて定期的に実施されてもよい。条件は、エアロゾル発生装置のユーザー操作中に変わることがある。例えば、サセプタは、誘導加熱配設に対して移動してもよく、電源(例えば、電池)は、経時的にいくらかの効率を失う可能性があるなどである。したがって、較正プロセスを定期的に実施することで、較正値の信頼性が保証され、それによって、エアロゾル発生装置の使用全体を通して最適な温度調節が維持されることを保証する。
【0030】
較正プロセスを実施することは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)誘導加熱配設の少なくとも電流値を監視する工程と、(iii)少なくとも電流値が最大値に達するときに誘導加熱配設への電力の提供を中断する工程であって、最大値における電流値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)サセプタに関連付けられた電流値が最小値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小値における電流値は、サセプタの第一の較正温度に対応する、制御する工程と、を含み得る。誘導加熱配設の少なくとも電流値を監視することは、誘導加熱配設の電圧値を監視することをさらに含み得る。
【0031】
方法は、サセプタに関連付けられたコンダクタンス値が最小値に達するときに、工程(i)~(iv)を繰り返すことをさらに含み得る。工程(i)~(iv)を繰り返した後、最大値における電流値に対応するコンダクタンス値が第二の較正値として記憶されてもよく、最小値における電流値に対応するコンダクタンス値が第一の較正値として記憶されてもよい。別の方法として、最大値における電流値に対応する抵抗値が第二の較正値として記憶されてもよく、最小値における電流値に対応する抵抗値が第一の較正値として記憶されてもよい。
【0032】
較正プロセスを実施することは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)サセプタに関連付けられたコンダクタンス値または抵抗値を監視する工程と、(iii)コンダクタンス値が最大値に達するとき、または抵抗値が最小値に達するときに、誘導加熱配設への電力の提供を中断する工程であって、最大電流値または最小抵抗値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小コンダクタンス値または最大抵抗値は、サセプタの第一の較正温度に対応する、制御する工程と、を含み得る。
【0033】
工程(i)~(iv)は、コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに繰り返され得る。
【0034】
工程(i)~(iv)を繰り返した後、最大コンダクタンス値または最小抵抗値が第二のコンダクタンス値として記憶されてもよく、最小コンダクタンス値または最大抵抗値が第一のコンダクタンス値として記憶されてもよい。
【0035】
較正プロセスは、エアロゾル生成を大幅に遅らせることなく、迅速で信頼性が高い。さらに、較正プロセスの工程を繰り返すことにより、熱が基体内に拡散するのにより時間がかかるために、繰り返される較正プロセスから得られた較正値に基づいて、その後の温度調節が著しく改善される。少なくとも測定された電流値に基づいて較正プロセスを実施することは、電源の電圧が一定のままであると仮定する。したがって、較正プロセス中にコンダクタンス値または抵抗値を監視すること(したがって測定された電流値および電圧値の両方を使用すること)により、電源の電圧が長期間にわたって(例えば、何度も再充電された後に)変化する場合の較正の信頼性がさらに改善される。
【0036】
方法は、予熱プロセスを実施して、サセプタを第一の較正温度に加熱することをさらに含み得る。予熱プロセスは、所定の持続時間を有し得る。予熱プロセスにより、較正プロセスの起動前に基体内に熱が拡散することが可能になり、それによって、較正値の信頼性がさらに改善される。
【0037】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、誘導加熱配設の少なくとも電流値を監視することと、電流値が最小値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値における電流値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0038】
電流値が予熱プロセスの所定の持続時間の間に最小値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとを含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返される。方法は、サセプタの電流値が予熱プロセスの所定の持続時間の間に最小値に達しない場合、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0039】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、サセプタに関連付けられたコンダクタンス値または抵抗値を監視することと、コンダクタンス値が最小値に達するとき、または抵抗値が最大値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値におけるコンダクタンス値、または最大値における抵抗値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0040】
予熱プロセスの所定の持続時間の間に、コンダクタンス値が最小値に達する、または抵抗値が最大値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとをさらに含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返されてもよい。予熱プロセスの所定の持続時間の間、コンダクタンス値が最小値に達しない、または抵抗値が最大値に達しない場合、方法は、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0041】
所定の持続時間の間に予熱プロセスの工程を実施することにより、基体の物理的状態(例えば、基体が乾燥しているか湿潤しているか)に関係なく、熱を時宜にかなって基体内に拡散させて較正プロセス中に測定される最小コンダクタンス値に達することが可能になる。これにより、較正プロセスの信頼性が保証される。
【0042】
冷却イベントを検出することは、ユーザーがエアロゾル発生システムで吸煙することを検出することを含み得る。冷却イベントを検出することは、気流がサセプタを通過または通るのを検出することを含み得る。気流センサまたは圧力センサを使用して、気流を検出してもよい。気流センサは、サーミスタまたは熱電対を含み得る。
【0043】
冷却イベントの持続時間は、検出された気圧が閾値圧力を下回る持続時間であってもよい。冷却イベントの持続時間は、検出された気流速度が閾値気流速度を上回る持続時間であってもよい。冷却イベントの持続時間は、冷却イベント検出後の一定の持続時間として判定されてもよい。例えば、冷却イベントの持続時間は、4秒に固定されてもよく、これは長いユーザー吸煙に対応する。
【0044】
インダクタは、インダクタコイルを含み得る。インダクタコイルは、らせん状コイルまたは平坦な平面状コイル、特にパンケーキコイルまたは湾曲した平面状コイルであってもよい。インダクタは、変化する磁界を発生するために使用されてもよい。変化する磁界は、高周波の変化する磁界であってもよい。変化する磁界は、500kHz(キロヘルツ)~30MHz(メガヘルツ)、具体的には5MHz~15MHz、好ましくは5MHz~10MHzの範囲内であってもよい。変化する磁界は、サセプタ材料の電気的および磁気的特性に応じて、渦電流またはヒステリシス損失のうちの少なくとも一つに起因してサセプタを誘導加熱するために使用される。
【0045】
誘導加熱配設は、DC/ACコンバータと、DC/ACコンバータに接続されたインダクタとを含み得る。サセプタは、誘導的に結合して、インダクタに配設されてもよい。電源からの電力は、DC/ACコンバータを介して、複数の電流パルスとして、インダクタに供給されてもよく、各パルスは時間間隔で分離される。誘導加熱配設に提供される電力を制御することは、複数のパルスのそれぞれの間の時間間隔を制御することを含み得る。誘導加熱配設に提供される電力を制御することは、複数のパルスの各パルスの長さを制御することを含んでもよい。
【0046】
方法は、DC/ACコンバータの入力側において、電源から引き出されるDC電流を測定することをさらに含み得る。サセプタに関連付けられたコンダクタンス値または抵抗値は、電源のDC供給電圧に基づいて、および電源から引き出されるDC電流から判定され得る。方法は、DC/ACコンバータの入力側において、電源のDC供給電圧を測定することをさらに含み得る。これは、サセプタの実際のコンダクタンス(サセプタが物品の一部を形成する場合には、判定できない)と、このように判定される見かけのコンダクタンス(サセプタが、結合される(DC/ACコンバータの)LCR回路のコンダクタンスを付与するため、負荷(R)の大部分がサセプタの抵抗によるものであるため)との間に単調な関係があるという事実による。コンダクタンスは1/Rである。したがって、このテキストにおいてサセプタのコンダクタンスに言及する場合、サセプタが別個のエアロゾル発生物品の一部を形成する場合の見かけのコンダクタンスに言及している。
【0047】
本発明の別の実施形態によると、
電源と、
サセプタ、およびサセプタに結合され、その結果、インダクタへの交流電流の提供によりサセプタが加熱される少なくとも一つのインダクタを含む、誘導加熱配設と、
コントローラであって、
サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、電源からインダクタへ電流パルスを供給することと、
サセプタに関連付けられた冷却イベントを検出することと、
検出された冷却イベントを補償するために電流パルスの負荷サイクルを増大することであって、コントローラが、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、誘導加熱システムが提供される。最大負荷サイクル限度は、100%未満である。最大負荷サイクル限度は、95%以下であってもよい。
【0048】
最大負荷サイクル限度は、こうした冷却イベント中のサセプタの過熱を防止するために超えられない。コントローラは、メモリから最大負荷サイクル限度を読み取ることによって、最大負荷サイクル限度を判定してもよい。コントローラは、最大負荷サイクル限度を計算することによって、最大負荷サイクル限度を判定してもよい。
【0049】
コントローラは、冷却イベント前の期間中の平均負荷サイクルに基づいて、最大負荷サイクル限度を計算するように構成されてもよい。コントローラは、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として最大負荷サイクル限度を計算するように構成されてもよい。一定の増大は、3%~30%であってもよい。一定の増大は、好ましくは3%~15%であってもよい。一定の増大は、およそ10%であってもよい。
【0050】
コントローラは、冷却イベント直前の期間中の平均負荷サイクルの割合として最大負荷サイクル限度を計算するように構成されてもよい。割合は、105%~200%であってもよい。割合は、好ましくは110%~150%であってもよい。割合は、およそ125%であってもよい。
【0051】
冷却イベント前の期間は、冷却イベント前の2~10秒の期間であってもよい。冷却イベント前の期間は、好ましくは6~7秒の期間であってもよい。冷却イベント前の期間は、より好ましくは6.4秒の期間であってもよい。
【0052】
最大負荷サイクル限度は、加熱配設が作動した後の時間に基づいてもよい。誘導加熱配設の使用期間中に、サセプタ温度とサセプタの見かけの抵抗またはコンダクタンスとの間の関係が変化する場合がある。特に、所与のサセプタ温度に対して、サセプタのコンダクタンスは、加熱期間にわたって減少する傾向がある。そのため、加熱配設の作動後の時間が増大するにつれて過熱のリスクが増大し得る。したがって、最大負荷サイクル限度は、加熱配設の作動後の時間が増大するにつれて低減し得る。コントローラは、加熱配設の作動後の所定の時間後にのみ、最大負荷サイクル限度を判定してもよい。
【0053】
サセプタに関連付けられたコンダクタンスまたは抵抗は、サセプタおよび結合されたインダクタの見かけのコンダクタンスまたは見かけの抵抗であり得る。コントローラは、繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整するように構成されてもよい。
【0054】
有利なことに、目標コンダクタンスまたは目標抵抗は、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される。
【0055】
サセプタは、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含んでもよい。第二のキュリー温度は第一のキュリー温度より低くてもよい。目標コンダクタンスまたは抵抗は、第二のキュリー温度以下のサセプタ温度に対応してもよい。
【0056】
第一および第二のサセプタ材料は、一緒に結合され、それ故に互いに物理的に密着して接触し、それによって両方のサセプタ材料が熱伝導に起因して同じ温度を有することが確保される、二つの別個の材料であることが好ましい。二つのサセプタ材料は、好ましくは、それらの主表面のうちの一つに沿って結合される二つの層または細片であることが好ましい。サセプタはさらに、サセプタ材料のさらなる第三の層を含んでもよい。サセプタ材料の第三の層は、第一のサセプタ材料で作製されることが好ましい。サセプタ材料の第三の層の厚さは、第二のサセプタ材料の層の厚さ未満であることが好ましい。
【0057】
目標コンダクタンスまたは抵抗は、冷却イベントが存在しない場合、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲内にあるサセプタ温度に対応し得る。この温度範囲の下限において、サセプタ内の材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を開始する。この温度範囲の上限において、材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を完了する。
【0058】
コントローラは、サセプタに関連付けられた一つ以上の較正値を測定するために較正プロセスを実施するように構成されてもよい。コントローラは、サセプタの温度が一つ以上の較正値に基づいて調整されるように、誘導加熱配設に提供される電力を制御するように構成されてもよい。較正値は、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲の上限および下限に対応し得る。
【0059】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一のコンダクタンス値と、サセプタの第二の較正温度に関連付けられた第二のコンダクタンス値とを含み得る。コントローラは、サセプタに関連付けられたコンダクタンス値を第一のコンダクタンス値と第二のコンダクタンス値との間に維持するために、誘導加熱配設に提供される電力を制御するように構成されてもよい。
【0060】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一の抵抗値と、サセプタの第二の較正温度に関連付けられた第二の抵抗値とを含み得る。コントローラは、サセプタに関連付けられた抵抗値を第一の抵抗値と第二の抵抗値との間に維持するために、誘導加熱配設に提供される電力を制御するように構成されてもよい。
【0061】
コントローラは、サセプタの温度が第一の較正温度と第二の較正温度との間になるように電力を制御するように構成されてもよい。
【0062】
第一の較正温度は、摂氏150度~摂氏350度であってもよく、第二の較正温度は、摂氏200度~摂氏400度であってもよい。第一の較正温度と第二の較正温度との間の温度差は、少なくとも摂氏50度であってもよい。
【0063】
コントローラは、エアロゾルを生成するためのエアロゾル発生装置のユーザー操作中に較正プロセスを実施するように構成されてもよい。このようにして、加熱プロセスを制御するために使用される較正値は、較正プロセスを製造時に実施する場合よりも、より正確かつ信頼性がある。これは、サセプタが、エアロゾル発生装置の一部を形成しない、別個のエアロゾル発生物品の一部を形成する場合に特に重要である。こうした状況では、製造時における較正は不可能である。
【0064】
コントローラは、所定の持続時間、所定の回数のユーザー吸煙、所定の数の温度ステップ、および測定された電源の電圧のうちの一つ以上に基づいて、定期的に較正プロセスを実施するように構成されてもよい。
【0065】
条件は、エアロゾル発生装置のユーザー操作中に変わることがある。例えば、サセプタは、誘導加熱配設に対して移動してもよく、電源(例えば、電池)は、経時的にいくらかの効率を失う可能性があるなどである。したがって、較正プロセスを定期的に実施することにより、較正値の信頼性が確保され、それによって、エアロゾル発生装置の使用全体を通して最適な温度調節が維持されることが確保される。
【0066】
コントローラは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)誘導加熱配設の少なくとも電流値を監視する工程と、(iii)少なくとも電流値が最大値に達するときに誘導加熱配設への電力の提供を中断する工程であって、最大値における電流値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)サセプタに関連付けられた電流値が最小値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小値における電流値は、サセプタの第一の較正温度に対応する、制御する工程と、を含む較正プロセスを実施するように構成され得る。誘導加熱配設の少なくとも電流値を監視することは、誘導加熱配設の電圧値を監視することをさらに含み得る。
【0067】
コントローラは、サセプタに関連付けられたコンダクタンス値が最小値に達するときに、工程(i)~(iv)を繰り返すように構成され得る。工程(i)~(iv)を繰り返した後、最大値における電流値に対応するコンダクタンス値が第二の較正値として記憶されてもよく、最小値における電流値に対応するコンダクタンス値が第一の較正値として記憶されてもよい。別の方法として、最大値における電流値に対応する抵抗値が第二の較正値として記憶されてもよく、最小値における電流値に対応する抵抗値が第一の較正値として記憶されてもよい。
【0068】
コントローラは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)サセプタに関連付けられたコンダクタンス値または抵抗値を監視する工程と、(iii)コンダクタンス値が最大値に達するとき、または抵抗値が最小値に達するときに、誘導加熱配設への電力の提供を中断する工程であって、最大電流値または最小抵抗値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小コンダクタンス値または最大抵抗値は、サセプタの第一の較正温度に対応する、制御する工程と、を含む較正プロセスを実施するように構成され得る。
【0069】
コントローラは、コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに、工程(i)~(iv)を繰り返するように構成されてもよい。
【0070】
工程(i)~(iv)を繰り返した後、コントローラは、最大コンダクタンス値または最小抵抗値を第二のコンダクタンス値として記憶してもよく、最小コンダクタンス値または最大抵抗値を第一のコンダクタンス値として記憶してもよい。
【0071】
較正プロセスは、エアロゾル生成を大幅に遅らせることなく、迅速で信頼性が高い。さらに、較正プロセスの工程を繰り返すことにより、熱が基体内に拡散するのにより時間がかかるために、繰り返される較正プロセスから得られた較正値に基づいて、その後の温度調節が著しく改善される。少なくとも測定された電流値に基づいて較正プロセスを実施することは、電源の電圧が一定のままであると仮定する。したがって、較正プロセス中にコンダクタンス値または抵抗値を監視すること(したがって測定された電流値および電圧値の両方を使用すること)により、電源の電圧が長期間にわたって(例えば、何度も再充電された後に)変化する場合の較正の信頼性がさらに改善される。
【0072】
コントローラは、予熱プロセスを実施して、サセプタを第一の較正温度に加熱するように構成されてもよい。予熱プロセスは、所定の持続時間を有し得る。予熱プロセスにより、較正プロセスの起動前に基体内に熱が拡散することが可能になり、それによって、較正値の信頼性がさらに改善される。
【0073】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、誘導加熱配設の少なくとも電流値を監視することと、電流値が最小値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値における電流値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0074】
電流値が予熱プロセスの所定の持続時間の間に最小値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとを含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返される。方法は、サセプタの電流値が予熱プロセスの所定の持続時間の間に最小値に達しない場合、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0075】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、サセプタに関連付けられたコンダクタンス値または抵抗値を監視することと、コンダクタンス値が最小値に達するとき、または抵抗値が最大値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値におけるコンダクタンス値、または最大値における抵抗値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0076】
予熱プロセスの所定の持続時間の間に、コンダクタンス値が最小値に達する、または抵抗値が最大値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとをさらに含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返されてもよい。予熱プロセスの所定の持続時間の間、コンダクタンス値が最小値に達しない、または抵抗値が最大値に達しない場合、方法は、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0077】
所定の持続時間の間に予熱プロセスの工程を実施することにより、基体の物理的状態(例えば、基体が乾燥しているか湿潤しているか)に関係なく、熱を時宜にかなって基体内に拡散させて較正プロセス中に測定される最小コンダクタンス値に達することが可能になる。これにより、較正プロセスの信頼性が保証される。
【0078】
インダクタは、インダクタコイルを含み得る。インダクタコイルは、らせん状コイルまたは平坦な平面状コイル、特にパンケーキコイルまたは湾曲した平面状コイルであってもよい。インダクタは、変化する磁界を発生するために使用されてもよい。変化する磁界は、高周波の変化する磁界であってもよい。変化する磁界は、500kHz(キロヘルツ)~30MHz(メガヘルツ)、具体的には5MHz~15MHz、好ましくは5MHz~10MHzの範囲内であってもよい。変化する磁界は、サセプタ材料の電気的および磁気的特性に応じて、渦電流またはヒステリシス損失のうちの少なくとも一つに起因してサセプタを誘導加熱するために使用される。誘導加熱システムは、複数のインダクタを備えてもよい。
【0079】
電源は、DC供給電圧およびDC電流を提供してもよく、誘導加熱システムは、電源とインダクタとの間に接続されたDC/ACコンバータを備える。コントローラは、DC供給電圧、および電源から引き出されるDC電流からコンダクタンスまたは抵抗を判定するように構成されてもよい。
【0080】
誘導加熱配設は、DC/ACコンバータと、DC/ACコンバータに接続されたインダクタとを含み得る。サセプタは、誘導的に結合して、インダクタに配設されてもよい。電源からの電力は、DC/ACコンバータを介して、複数の電流パルスとして、インダクタに供給されてもよく、各パルスは時間間隔で分離される。誘導加熱配設に提供される電力を制御することは、複数のパルスのそれぞれの間の時間間隔を制御することを含み得る。誘導加熱配設に提供される電力を制御することは、複数のパルスの各パルスの長さを制御することを含んでもよい。コントローラは、DC/ACコンバータの入力側において、電源から引き出されるDC電流を測定するように構成されてもよい。サセプタに関連付けられたコンダクタンス値または抵抗値は、電源のDC供給電圧に基づいて、および電源から引き出されるDC電流から判定され得る。コントローラは、DC/ACコンバータの入力側において、電源のDC供給電圧を測定するように構成されてもよい。これは、サセプタの実際のコンダクタンス(サセプタが物品の一部を形成する場合には、判定できない)と、このように判定される見かけのコンダクタンス(サセプタが、結合される(DC/ACコンバータの)LCR回路のコンダクタンスを付与するため、負荷(R)の大部分がサセプタの抵抗によるものであるため)との間に単調な関係があるという事実による。コンダクタンスは1/Rである。したがって、このテキストにおいてサセプタのコンダクタンスに言及する場合、サセプタが別個のエアロゾル発生物品の一部を形成する場合の見かけのコンダクタンスに言及している。
【0081】
誘導加熱システムは、コントローラに接続された気流センサを備えてもよく、コントローラは、気流センサからの入力信号に基づいて冷却イベントを検出するように構成される。気流センサは、サーミスタまたは熱電対を含み得る。
【0082】
コントローラは、冷却イベントの持続時間を、検出された気圧が閾値圧力を下回る持続時間として判定するように構成されてもよい。コントローラは、冷却イベントの持続時間を、検出された気流速度が閾値気流速度を上回る持続時間として判定するように構成されてもよい。コントローラは、冷却イベントの持続時間を、冷却イベント検出後の一定の持続時間として判定するように構成されてもよい。例えば、冷却イベントの持続時間は、4秒に固定されてもよく、これは長いユーザー吸煙に対応する。
【0083】
本発明の別の実施形態では、電源と、
インダクタへの交流電流の提供により、インダクタに結合されたサセプタが加熱されるように構成された少なくとも一つのインダクタを含む、誘導加熱配設であって、サセプタが、エアロゾル形成基体を加熱するように構成される、誘導加熱配設と、
コントローラであって、
サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、電源からインダクタへ電流パルスを供給することと、
サセプタに関連付けられた冷却イベントを検出することと、
検出された冷却イベントを補償するために電流パルスの負荷サイクルを増大することであって、コントローラが、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、誘導加熱システムを備えるエアロゾル発生装置が提供される。最大負荷サイクル限度は、100%未満であってもよい。最大負荷サイクル限度は、95%以下であってもよい。
【0084】
エアロゾル発生装置は、エアロゾル形成基体を受容するように構成された空洞を備えてもよく、エアロゾル形成基体は、空洞内に位置付けられたときにサセプタによって加熱される。
【0085】
エアロゾル形成基体は、別個のエアロゾル発生物品内に提供されてもよい。サセプタは、エアロゾル発生物品の一部であってもよい。サセプタは、エアロゾル発生装置の一部であってもよい。エアロゾル発生装置は、複数のサセプタを備え得る。
【0086】
使用時、サセプタは空洞内に位置付けられてもよい。使用時、サセプタは、エアロゾル形成基体またはエアロゾル発生物品内に少なくとも部分的に位置付けられてもよい。使用時、サセプタは、エアロゾル形成基体またはエアロゾル発生物品の外側に少なくとも部分的に位置付けられてもよい。
【0087】
最大負荷サイクル限度は、こうした冷却イベント中のサセプタの過熱を防止するために超えられない。コントローラは、メモリから最大負荷サイクル限度を読み取ることによって、最大負荷サイクル限度を判定してもよい。コントローラは、最大負荷サイクル限度を計算することによって、最大負荷サイクル限度を判定してもよい。
【0088】
コントローラは、冷却イベント前の期間中の平均負荷サイクルに基づいて、最大負荷サイクル限度を計算するように構成されてもよい。コントローラは、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として最大負荷サイクル限度を計算するように構成されてもよい。一定の増大は、3%~30%であってもよい。一定の増大は、好ましくは3%~15%であってもよい。一定の増大は、およそ10%であってもよい。
【0089】
コントローラは、冷却イベント直前の期間中の平均負荷サイクルの割合として最大負荷サイクル限度を計算するように構成されてもよい。割合は、105%~200%であってもよい。割合は、好ましくは110%~150%であってもよい。割合は、およそ125%であってもよい。
【0090】
冷却イベント前の期間は、冷却イベント前の2~10秒の期間であってもよい。冷却イベント前の期間は、好ましくは6~7秒の期間であってもよい。冷却イベント前の期間は、より好ましくは6.4秒の期間であってもよい。
【0091】
最大負荷サイクル限度は、加熱配設が作動した後の時間に基づいてもよい。誘導加熱配設の使用期間中に、サセプタ温度とサセプタの見かけの抵抗またはコンダクタンスとの間の関係が変化する場合がある。特に、所与のサセプタ温度に対して、サセプタのコンダクタンスは、加熱期間にわたって減少する傾向がある。そのため、加熱配設の作動後の時間が増大するにつれて過熱のリスクが増大し得る。したがって、最大負荷サイクル限度は、加熱配設の作動後の時間が増大するにつれて低減し得る。コントローラは、加熱配設の作動後の所定の時間後にのみ、最大負荷サイクル限度を判定してもよい。
【0092】
サセプタに関連付けられたコンダクタンスまたは抵抗は、サセプタおよび結合されたインダクタの見かけのコンダクタンスまたは見かけの抵抗であり得る。コントローラは、繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整するように構成されてもよい。
【0093】
有利なことに、目標コンダクタンスまたは目標抵抗は、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される。
【0094】
サセプタは、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含んでもよい。第二のキュリー温度は第一のキュリー温度より低くてもよい。目標コンダクタンスまたは抵抗は、第二のキュリー温度以下のサセプタ温度に対応してもよい。
【0095】
第一および第二のサセプタ材料は、一緒に結合され、それ故に互いに物理的に密着して接触し、それによって両方のサセプタ材料が熱伝導に起因して同じ温度を有することが確保される、二つの別個の材料であることが好ましい。二つのサセプタ材料は、好ましくは、それらの主表面のうちの一つに沿って結合される二つの層または細片であることが好ましい。サセプタはさらに、サセプタ材料のさらなる第三の層を含んでもよい。サセプタ材料の第三の層は、第一のサセプタ材料で作製されることが好ましい。サセプタ材料の第三の層の厚さは、第二のサセプタ材料の層の厚さ未満であることが好ましい。
【0096】
目標コンダクタンスまたは抵抗は、冷却イベントが存在しない場合、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲内にあるサセプタ温度に対応し得る。この温度範囲の下限において、サセプタ内の材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を開始する。この温度範囲の上限において、材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を完了する。
【0097】
コントローラは、サセプタに関連付けられた一つ以上の較正値を測定するために較正プロセスを実施するように構成されてもよい。コントローラは、サセプタの温度が一つ以上の較正値に基づいて調整されるように、誘導加熱配設に提供される電力を制御するように構成されてもよい。較正値は、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲の上限および下限に対応し得る。
【0098】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一のコンダクタンス値と、サセプタの第二の較正温度に関連付けられた第二のコンダクタンス値とを含み得る。コントローラは、サセプタに関連付けられたコンダクタンス値を第一のコンダクタンス値と第二のコンダクタンス値との間に維持するために、誘導加熱配設に提供される電力を制御するように構成されてもよい。
【0099】
一つ以上の較正値は、サセプタの第一の較正温度に関連付けられた第一の抵抗値と、サセプタの第二の較正温度に関連付けられた第二の抵抗値とを含み得る。コントローラは、サセプタに関連付けられた抵抗値を第一の抵抗値と第二の抵抗値との間に維持するために、誘導加熱配設に提供される電力を制御するように構成されてもよい。
【0100】
コントローラは、サセプタの温度が第一の較正温度と第二の較正温度との間になるように電力を制御するように構成されてもよい。
【0101】
第一の較正温度は、摂氏150度~摂氏350度であってもよく、第二の較正温度は、摂氏200度~摂氏400度であってもよい。第一の較正温度と第二の較正温度との間の温度差は、少なくとも摂氏50度であってもよい。
【0102】
コントローラは、エアロゾルを生成するためのエアロゾル発生装置のユーザー操作中に較正プロセスを実施するように構成されてもよい。このようにして、加熱プロセスを制御するために使用される較正値は、較正プロセスを製造時に実施する場合よりも、より正確かつ信頼性がある。これは、サセプタが、エアロゾル発生装置の一部を形成しない、別個のエアロゾル発生物品の一部を形成する場合に特に重要である。こうした状況では、製造時における較正は不可能である。
【0103】
コントローラは、所定の持続時間、所定の回数のユーザー吸煙、所定の数の温度ステップ、および測定された電源の電圧のうちの一つ以上に基づいて、定期的に較正プロセスを実施するように構成されてもよい。
【0104】
条件は、エアロゾル発生装置のユーザー操作中に変わることがある。例えば、サセプタは、誘導加熱配設に対して移動してもよく、電源(例えば、電池)は、経時的にいくらかの効率を失う可能性があるなどである。したがって、較正プロセスを定期的に実施することにより、較正値の信頼性が確保され、それによって、エアロゾル発生装置の使用全体を通して最適な温度調節が維持されることが確保される。
【0105】
コントローラは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)誘導加熱配設の少なくとも電流値を監視する工程と、(iii)少なくとも電流値が最大値に達するときに誘導加熱配設への電力の提供を中断する工程であって、最大値における電流値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)サセプタに関連付けられた電流値が最小値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小値における電流値は、サセプタの第一の較正温度に対応する、制御する工程と、を含む較正プロセスを実施するように構成され得る。誘導加熱配設の少なくとも電流値を監視することは、誘導加熱配設の電圧値を監視することをさらに含み得る。
【0106】
コントローラは、サセプタに関連付けられたコンダクタンス値が最小値に達するときに、工程(i)~(iv)を繰り返すように構成され得る。工程(i)~(iv)を繰り返した後、最大値における電流値に対応するコンダクタンス値が第二の較正値として記憶されてもよく、最小値における電流値に対応するコンダクタンス値が第一の較正値として記憶されてもよい。別の方法として、最大値における電流値に対応する抵抗値が第二の較正値として記憶されてもよく、最小値における電流値に対応する抵抗値が第一の較正値として記憶されてもよい。
【0107】
コントローラは、(i)誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程と、(ii)サセプタに関連付けられたコンダクタンス値または抵抗値を監視する工程と、(iii)コンダクタンス値が最大値に達するとき、または抵抗値が最小値に達するときに、誘導加熱配設への電力の提供を中断する工程であって、最大電流値または最小抵抗値は、サセプタの第二の較正温度に対応する、中断する工程と、(iv)コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させる工程であって、最小コンダクタンス値または最大抵抗値は、サセプタの第一の較正温度に対応する、制御する工程と、を含む較正プロセスを実施するように構成され得る。
【0108】
コントローラは、コンダクタンス値が最小値に達する、または抵抗値が最大値に達するときに、工程(i)~(iv)を繰り返するように構成されてもよい。
【0109】
工程(i)~(iv)を繰り返した後、コントローラは、最大コンダクタンス値または最小抵抗値を第二のコンダクタンス値として記憶してもよく、最小コンダクタンス値または最大抵抗値を第一のコンダクタンス値として記憶してもよい。
【0110】
較正プロセスは、エアロゾル生成を大幅に遅らせることなく、迅速で信頼性が高い。さらに、較正プロセスの工程を繰り返すことにより、熱が基体内に拡散するのにより時間がかかるために、繰り返される較正プロセスから得られた較正値に基づいて、その後の温度調節が著しく改善される。少なくとも測定された電流値に基づいて較正プロセスを実施することは、電源の電圧が一定のままであると仮定する。したがって、較正プロセス中にコンダクタンス値または抵抗値を監視すること(したがって測定された電流値および電圧値の両方を使用すること)により、電源の電圧が長期間にわたって(例えば、何度も再充電された後に)変化する場合の較正の信頼性がさらに改善される。
【0111】
コントローラは、予熱プロセスを実施して、サセプタを第一の較正温度に加熱するように構成されてもよい。予熱プロセスは、所定の持続時間を有し得る。予熱プロセスにより、較正プロセスの起動前に基体内に熱が拡散することが可能になり、それによって、較正値の信頼性がさらに改善される。
【0112】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、誘導加熱配設の少なくとも電流値を監視することと、電流値が最小値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値における電流値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0113】
電流値が予熱プロセスの所定の持続時間の間に最小値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとを含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返される。方法は、サセプタの電流値が予熱プロセスの所定の持続時間の間に最小値に達しない場合、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0114】
予熱プロセスを実施することは、誘導加熱配設に提供される電力を制御して、サセプタの温度を上昇させることと、サセプタに関連付けられたコンダクタンス値または抵抗値を監視することと、コンダクタンス値が最小値に達するとき、または抵抗値が最大値に達するときに、誘導加熱配設への電力の提供を中断することであって、最小値におけるコンダクタンス値、または最大値における抵抗値は、サセプタの第一の較正温度に対応する、中断することとを含み得る。
【0115】
予熱プロセスの所定の持続時間の間に、コンダクタンス値が最小値に達する、または抵抗値が最大値に達する場合、方法は、誘導加熱配設への電力の提供を中断して、サセプタの温度を低下させることと、その後に、誘導加熱配設への電力の提供を再開して、サセプタの温度を第一の較正温度に上昇させることとをさらに含み得る。誘導加熱配設への電力の提供を中断すること、および誘導加熱配設への電力提供を再開することは、予熱プロセスの所定の持続時間の間繰り返されてもよい。予熱プロセスの所定の持続時間の間、コンダクタンス値が最小値に達しない、または抵抗値が最大値に達しない場合、方法は、エアロゾル発生装置の動作を停止することをさらに含み得る。
【0116】
所定の持続時間の間に予熱プロセスの工程を実施することにより、基体の物理的状態(例えば、基体が乾燥しているか湿潤しているか)に関係なく、熱を時宜にかなって基体内に拡散させて較正プロセス中に測定される最小コンダクタンス値に達することが可能になる。これにより、較正プロセスの信頼性が保証される。
【0117】
インダクタは、インダクタコイルを含み得る。インダクタコイルは、らせん状コイルまたは平坦な平面状コイル、特にパンケーキコイルまたは湾曲した平面状コイルであってもよい。インダクタは、空洞の少なくとも一部分を取り囲むらせん状コイルであってもよい。インダクタは、空洞内に、またはこれと隣接して位置付けられた平坦な平面状コイルであってもよい。インダクタは、変化する磁界を発生するために使用されてもよい。インダクタは、空洞内に変化する磁界を発生するために使用されてもよい。変化する磁界は、高周波の変化する磁界であってもよい。変化する磁界は、500kHz(キロヘルツ)~30MHz(メガヘルツ)、具体的には5MHz~15MHz、好ましくは5MHz~10MHzの範囲内であってもよい。変化する磁界は、サセプタ材料の電気的および磁気的特性に応じて、渦電流またはヒステリシス損失のうちの少なくとも一つに起因してサセプタを誘導加熱するために使用される。誘導加熱システムは、複数のインダクタを備えてもよい。複数のインダクタは、互いに同一なものでも、互いに異なるものでもよい。
【0118】
電源は、DC供給電圧およびDC電流を提供してもよく、誘導加熱システムは、電源とインダクタとの間に接続されたDC/ACコンバータを備える。コントローラは、DC供給電圧、および電源から引き出されるDC電流からコンダクタンスまたは抵抗を判定するように構成されてもよい。
【0119】
誘導加熱配設は、DC/ACコンバータと、DC/ACコンバータに接続されたインダクタとを含み得る。サセプタは、誘導的に結合して、インダクタに配設されてもよい。電源からの電力は、DC/ACコンバータを介して、複数の電流パルスとして、インダクタに供給されてもよく、各パルスは時間間隔で分離される。誘導加熱配設に提供される電力を制御することは、複数のパルスのそれぞれの間の時間間隔を制御することを含み得る。誘導加熱配設に提供される電力を制御することは、複数のパルスの各パルスの長さを制御することを含んでもよい。コントローラは、DC/ACコンバータの入力側において、電源から引き出されるDC電流を測定するように構成されてもよい。サセプタに関連付けられたコンダクタンス値または抵抗値は、電源のDC供給電圧に基づいて、および電源から引き出されるDC電流から判定され得る。コントローラは、DC/ACコンバータの入力側において、電源のDC供給電圧を測定するように構成されてもよい。これは、サセプタの実際のコンダクタンス(サセプタが物品の一部を形成する場合には、判定できない)と、このように判定される見かけのコンダクタンス(サセプタが、結合される(DC/ACコンバータの)LCR回路のコンダクタンスを付与するため、負荷(R)の大部分がサセプタの抵抗によるものであるため)との間に単調な関係があるという事実による。コンダクタンスは1/Rである。したがって、このテキストにおいてサセプタのコンダクタンスに言及する場合、サセプタが別個のエアロゾル発生物品の一部を形成する場合の見かけのコンダクタンスに言及している。
【0120】
誘導加熱システムは、コントローラに接続された気流センサを備えてもよく、コントローラは、気流センサからの入力信号に基づいて冷却イベントを検出するように構成される。気流センサは、サーミスタまたは熱電対を含み得る。
【0121】
コントローラは、冷却イベントの持続時間を、検出された気圧が閾値圧力を下回る持続時間として判定するように構成されてもよい。コントローラは、冷却イベントの持続時間を、検出された気流速度が閾値気流速度を上回る持続時間として判定するように構成されてもよい。コントローラは、冷却イベントの持続時間を、冷却イベント検出後の一定の持続時間として判定するように構成されてもよい。例えば、冷却イベントの持続時間は、4秒に固定されてもよく、これは長いユーザー吸煙に対応する。
【0122】
さらなる実施形態では、上述の実施形態によるエアロゾル発生装置と、サセプタおよびエアロゾル形成基体を含有するエアロゾル発生物品とを備えるエアロゾル発生システムが提供され、エアロゾル発生物品は、エアロゾル発生装置から分離可能である。
【0123】
エアロゾル発生物品は、マウスピースを備えうる。エアロゾル発生物品は、フィルターを備えてもよい。
【0124】
本明細書で使用される「エアロゾル発生装置」という用語は、エアロゾルを発生するためにエアロゾル形成基体と相互作用する装置を指す。エアロゾル発生装置は、エアロゾル形成基体を含むエアロゾル発生物品と、エアロゾル形成基体を含むカートリッジとのうちの一方または両方と相互作用してもよい。
【0125】
本明細書で使用される「エアロゾル発生システム」という用語は、エアロゾル形成基体とのエアロゾル発生装置の組み合わせを指す。エアロゾル形成基体が、エアロゾル発生物品の一部を形成する時、エアロゾル発生システムは、エアロゾル発生物品とのエアロゾル発生装置の組み合わせを指す。エアロゾル発生システムにおいて、エアロゾル形成基体およびエアロゾル発生装置は協働して、エアロゾルを発生する。
【0126】
本明細書で使用される「エアロゾル形成基体」という用語は、エアロゾルを形成することができる揮発性化合物を放出する能力を有する基体を指す。揮発性化合物はエアロゾル形成基体を加熱する、または燃焼することによって放出されてもよい。加熱または燃焼に代わるものとして、一部の場合において、化学反応によって、または超音波などの機械的な刺激によって揮発性化合物が放出されてもよい。エアロゾル形成基体は固体であってもよく、または固体構成成分と液体構成成分の両方を含んでもよい。エアロゾル形成基体は、エアロゾル発生物品の一部であってもよい。
【0127】
本明細書で使用される「エアロゾル発生物品」という用語は、エアロゾルを形成することができる揮発性化合物を放出する能力を有するエアロゾル形成基体を含む物品を指す。エアロゾル発生物品は使い捨てであってもよい。たばこを含むエアロゾル形成基体を含むエアロゾル発生物品は、本明細書においてたばこスティックと呼ばれる場合がある。
【0128】
エアロゾル形成基体はニコチンを含んでもよい。エアロゾル形成基体はたばこを含んでもよく、例えば加熱に伴いエアロゾル形成基体から放出される揮発性のたばこ風味化合物を含有するたばこ含有材料を含んでもよい。好ましい実施形態において、エアロゾル形成基体は、均質化したたばこ材料、例えばキャストリーフたばこを含んでもよい。エアロゾル形成基体は固体成分と液体成分の両方を含んでもよい。エアロゾル形成基体は、加熱に伴い基体から放出される揮発性のたばこ風味化合物を含有するたばこ含有材料を含んでもよい。エアロゾル形成基体は非たばこ材料を含んでもよい。エアロゾル形成基体はエアロゾル形成体をさらに含んでもよい。適切なエアロゾル形成体の例は、グリセリンおよびプロピレングリコールである。
【0129】
本明細書で使用される場合、「マウスピース」という用語は、エアロゾルを直接吸入するためにユーザーの口の中へと入れられる、エアロゾル発生物品、エアロゾル発生装置、またはエアロゾル発生システムの一部分を意味する。
【0130】
本明細書で使用される場合、「サセプタ」という用語は、磁場のエネルギーを熱へと変換する能力を有する材料を含む要素を指す。サセプタが交番磁界内に位置しているときに、サセプタは加熱される。サセプタの加熱は、サセプタ材料の電気的特性および磁性に依存して、サセプタ内で誘導されるヒステリシス損失および渦電流のうちの少なくとも一つの結果であり得る。
【0131】
本明細書で使用される場合、「誘導的に結合する」という用語は、交番磁界によって貫通されたときにサセプタを加熱することを指す。加熱は、サセプタ内の渦電流の発生によって引き起こされ得る。加熱は、磁気ヒステリシス損失によって引き起こされてもよい。
【0132】
本明細書で使用される場合、電流パルスの「負荷サイクル」という用語は、電流パルスが供給される合計期間に対するパルス持続時間、またはパルス幅の比の割合を意味する。
【0133】
本明細書で使用される場合、「吸煙」という用語は、ユーザーが、エアロゾルをユーザーの口または鼻を介してユーザーの身体に吸い込む動作を意味する。
【0134】
説明したすべての実施形態において、検出された冷却イベント中に最大負荷サイクル限度を使用することは、過熱を防止するという利点を有する。
【0135】
本発明は特許請求の範囲に定義されている。しかしながら、以下に非限定的な実施例の非網羅的なリストを提供している。これらの実施例の特徴のうちのいずれか一つ以上は、本明細書に記載の別の実施例、実施形態、または態様のうちのいずれか一つ以上の特徴と組み合わされてもよい。
【0136】
実施例1:
誘導加熱配設を制御する方法であって、誘導加熱システムが、インダクタおよびサセプタを備え、サセプタが、インダクタに結合され、その結果、インダクタへの交流電流の提供によりサセプタが加熱され、方法が、
サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、少なくとも一つのインダクタへ電流パルスを提供することと、
サセプタに関連付けられた冷却イベントを検出することと、
冷却イベントの持続時間の間の電流パルスの最大負荷サイクル限度を判定することと、
検出された冷却イベントを補償するために、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを、最大負荷サイクル限度以下の負荷サイクルに増大することと、を含む、方法。
実施例2:
最大負荷サイクル限度が、100%未満である、実施例1による方法。
実施例3:
最大負荷サイクル限度を判定することが、メモリから最大負荷サイクル限度を読み取ることを含む、実施例1または2による方法。
実施例4:
最大負荷サイクル限度を判定することが、最大負荷サイクル限度を計算することを含む、実施例1または2による方法。
実施例5:
最大負荷サイクル限度を計算することが、冷却イベント前の期間中に使用された平均負荷サイクルに基づいて、最大負荷サイクル限度を計算することを含む、実施例4による方法。
実施例6:
最大負荷サイクル限度が、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として計算される、実施例5による方法。
実施例7:
一定の増大が、3%~30%である、実施例6による方法。
実施例8:
一定の増大が、3%~15%である、実施例6による方法。
実施例9:
一定の増大が、およそ10%である、実施例6による方法。
実施例10:
冷却イベント前の期間が、冷却イベント前の2~10秒の期間である、実施例5~9のいずれか一つによる方法。
実施例11:
冷却イベント前の期間が、6~7秒の期間である、実施例5~9のいずれか一つによる方法。
実施例12:
冷却イベント前の期間が、6.4秒の期間である、実施例5~9のいずれか一つによる方法。
実施例13:
最大負荷サイクル限度が、加熱配設が作動した後の時間に基づく、実施例1~12のいずれか一つによる方法。
実施例14:
最大負荷サイクル限度が、加熱配設の作動後の時間が増大するにつれて低減する、実施例13による方法。
実施例15:
最大負荷サイクル限度が、加熱配設の作動後の所定の時間後にのみ判定される、実施例1~14のいずれか一つによる方法。
実施例16:
コンダクタンス、
またはサセプタに関連付けられた抵抗が、サセプタおよび結合されたインダクタの見かけのコンダクタンスまたは見かけの抵抗である、実施例1~15のいずれか一つによる方法。
実施例17:
繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定することと、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整することと、を含む、実施例1~16のいずれか一つによる方法。
実施例18:
目標コンダクタンスまたは目標抵抗が、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される、実施例1~17のいずれか一つによる方法。
実施例19:
サセプタが、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含む、実施例1~18のいずれか一つによる方法。
実施例20:
目標コンダクタンスまたは抵抗が、冷却イベントが存在しない場合、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲内にあるサセプタ温度に対応する、実施例1~19のいずれか一つによる方法。
実施例21:
冷却イベントを検出することが、エアロゾル発生システムでのユーザー吸煙を検出することを含む、実施例1~20のいずれか一つによる方法。
実施例22:
冷却イベントを検出することが、サセプタを通過または通る気流を検出することを含む、実施例1~21のいずれか一つによる方法。
実施例23:
冷却イベントの持続時間が、冷却イベント検出後の一定の持続時間として判定される、実施例1~21のいずれか一つによる方法。
実施例25:
冷却イベントの持続時間が、検出された気圧が閾値圧力を下回る持続時間である、実施例1~22のいずれか一つによる方法。
実施例25:
冷却イベントの持続時間が、検出された気流速度が閾値気流速度を上回る持続時間である、実施例1~22のいずれか一つによる方法。
実施例26:
インダクタが、インダクタコイルを含む、実施例1~25のいずれか一つによる方法。
実施例27:
インダクタが、500kHz(キロヘルツ)~30MHz(メガヘルツ)の周波数を有する高周波の変化する磁界を発生するために使用される、実施例1~26のいずれか一つによる方法。
実施例28:
誘導加熱システムであって、
電源と、
サセプタ、およびサセプタに結合され、その結果、インダクタへの交流電流の提供によりサセプタが加熱される少なくとも一つのインダクタを含む、誘導加熱配設と、
コントローラであって、
サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、電源からインダクタへ電流パルスを供給することと、
サセプタに関連付けられた冷却イベントを検出することと、
検出された冷却イベントを補償するために電流パルスの負荷サイクルを増大することであって、コントローラが、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、誘導加熱システム。
実施例29:
最大負荷サイクル限度が、100%未満である、実施例28による誘導加熱システム。
実施例30:
コントローラが、メモリから最大負荷サイクル限度を読み取ることによって、最大負荷サイクル限度を判定するように構成される、実施例28または29による誘導加熱システム。
実施例31:
コントローラが、最大負荷サイクル限度を計算することによって最大負荷サイクル限度を判定するように構成される、実施例28または29による誘導加熱システム。
実施例32:
コントローラが、冷却イベント前の期間中の平均負荷サイクルに基づいて、最大負荷サイクル限度を計算するように構成される、実施例31による誘導加熱システム。
実施例33:
コントローラが、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として最大負荷サイクル限度を計算するように構成される、実施例32による誘導加熱システム。
実施例34:
一定の増大が、3%~30%である、実施例33による誘導加熱システム。
実施例35:
一定の増大が10%である、実施例33による誘導加熱システム。
実施例36:
冷却イベント前の期間が、冷却イベント前の2~10秒の期間である、実施例28~35のいずれか一つによる誘導加熱システム。
実施例37:
冷却イベント前の期間が、6~7秒の期間である、実施例28~35のいずれか一つによる誘導加熱システム。
実施例38:
冷却イベント前の期間が、6.4秒の期間である、実施例28~35のいずれか一つによる誘導加熱システム。
実施例39:
最大負荷サイクル限度が、加熱配設が作動した後の時間に基づく、実施例28~38のいずれか一つによる誘導加熱システム。
実施例40:
コントローラが、加熱配設の作動後の所定の時間の後にのみ、最大負荷サイクル限度を判定するように構成される、実施例28~39のいずれか一つによる誘導加熱システム。
実施例41:
サセプタに関連付けられたコンダクタンスまたは抵抗が、サセプタおよび結合されたインダクタの見かけのコンダクタンスまたは見かけの抵抗である、実施例28~40のいずれか一つによる誘導加熱システム。
実施例42:
コントローラが、繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整するように構成される、実施例28~41のいずれか一つによる誘導加熱システム。
実施例43:
目標コンダクタンスまたは目標抵抗が、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される、実施例28~42のいずれか一つによる誘導加熱システム。
実施例44:
サセプタが、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含む、実施例28~43のいずれか一つによる誘導加熱システム。
実施例45:
目標コンダクタンスまたは抵抗が、冷却イベントが存在しない場合、温度が上昇するにつれてサセプタのコンダクタンスが単調に増大する温度範囲内にあるサセプタ温度に対応する、実施例28~44のいずれか一つによる誘導加熱システム。
実施例46:
インダクタがインダクタコイルを含む、実施例28~45のいずれか一つによる誘導加熱システム。
実施例47:
インダクタが、500kHz(キロヘルツ)~30MHz(メガヘルツ)、特に5MHz~15MHz、好ましくは5MHz~10MHzの範囲の周波数を有する高周波変動磁場を発生する、実施例28~46のいずれか一つによる誘導加熱システム。
実施例48:
電源がDC供給電圧およびDC電流を提供し、誘導加熱システムが、電源とインダクタとの間に接続されたDC/ACコンバータを備える、実施例28~47のいずれか一つによる誘導加熱システム。
実施例49:
コントローラが、DC供給電圧および電源から引き出されるDC電流からコンダクタンスまたは抵抗を判定するように構成される、実施例48による誘導加熱システム。
実施例50:
誘導加熱配設が、DC/ACコンバータを備え、インダクタが、DC/ACコンバータに接続される、実施例28~49のいずれか一つによる誘導加熱システム。
実施例51:
電源からの電力が、DC/ACコンバータを介して、複数の電流パルスとしてインダクタに供給され、各パルスが時間間隔で分離される、実施例50による誘導加熱システム。
実施例52:
コントローラが、DC/ACコンバータの入力側において、電源から引き出されるDC電流を測定するように構成される、実施例50または51による誘導加熱システム。
実施例53:
サセプタに関連付けられたコンダクタンス値または抵抗値が、電源のDC供給電圧に基づいて、および電源から引き出されるDC電流から判定される、実施例28~52のいずれか一つによる誘導加熱システム。
実施例54:
コントローラが、DC/ACコンバータの入力側において、電源のDC供給電圧を測定するように構成される、実施例51または53による誘導加熱システム。
実施例55:
誘導加熱システムが、コントローラに接続された気流センサを備え、コントローラが、気流センサからの入力信号に基づいて冷却イベントを検出するように構成される、実施例28~54のいずれか一つによる誘導加熱システム。
実施例56:
気流センサが、サーミスタまたは熱電対を含む、実施例55による誘導加熱システム。
実施例57:
コントローラが、冷却イベント検出後の一定の期間として冷却イベントの持続時間を判定するように構成される、実施例28~56のいずれか一つによる誘導加熱システム。
実施例58:
コントローラが、検出された気圧が閾値圧力を下回る持続時間として、冷却イベントの持続時間を判定するように構成される、実施例28~56のいずれか一つによる誘導加熱システム。
実施例59:
コントローラが、冷却イベントの持続時間を、検出された気流速度が閾値気流速度を上回る持続時間として判定するように構成される、実施例28~56のいずれか一つによる誘導加熱システム。
実施例60:
誘導加熱システムを備えるエアロゾル発生装置であって、
電源と、
インダクタへの交流電流の提供により、インダクタに結合されたサセプタが加熱されるように構成された少なくとも一つのインダクタを含む、誘導加熱配設であって、サセプタが、エアロゾル形成基体を加熱するように構成される、誘導加熱配設と、
コントローラであって、
サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、サセプタに関連付けられたコンダクタンスまたは抵抗を目標コンダクタンスまたは抵抗に維持するために、電源からインダクタへ電流パルスを供給することと、
前記サセプタに関連付けられた冷却イベントを検出することと、
検出された冷却イベントを補償するために電流パルスの負荷サイクルを増大することであって、コントローラが、検出された冷却イベントの持続時間の間、電流パルスの負荷サイクルを最大負荷サイクル限度以下に制限するように構成される、増大することと、を行うように構成されたコントローラと、を備える、エアロゾル発生装置。
実施例61:
最大負荷サイクル限度が、100%未満である、実施例60によるエアロゾル発生装置。
実施例62:
エアロゾル発生装置が、エアロゾル形成基体を受容するように構成された空洞を備え、エアロゾル形成基体が、空洞内に位置付けられたときに、サセプタによって加熱される、実施例60または61によるエアロゾル発生装置。
実施例63:
エアロゾル形成基体が、別個のエアロゾル発生物品内に提供される、実施例60~62のいずれか一つによるエアロゾル発生装置。
実施例64:
サセプタが、エアロゾル発生物品の一部である、実施例63によるエアロゾル発生装置。
実施例65:
サセプタが、エアロゾル発生装置の一部である、実施例63によるエアロゾル発生装置。
実施例66:
使用時、サセプタが空洞内に位置付けられる、実施例60~65のいずれか一つによるエアロゾル発生装置。
実施例67:
使用時、サセプタが、エアロゾル形成基体またはエアロゾル発生物品内に少なくとも部分的に位置付けられる、実施例60~66のいずれか一つによるエアロゾル発生装置。
実施例68:
使用時、サセプタが、エアロゾル形成基体またはエアロゾル発生物品の外側に少なくとも部分的に位置付けられる、実施例60~67のいずれか一つによるエアロゾル発生装置。
実施例69:
コントローラが、メモリから最大負荷サイクル限度を読み取ることによって、最大負荷サイクル限度を判定するように構成される、実施例60~68のいずれか一つによるエアロゾル発生装置。
実施例70:
コントローラが、最大負荷サイクル限度を計算することによって最大負荷サイクル限度を判定するように構成される、実施例60~68のいずれか一つによるエアロゾル発生装置。
実施例71:
コントローラが、冷却イベント前の期間中の平均負荷サイクルに基づいて、最大負荷サイクル限度を計算するように構成される、実施例70によるエアロゾル発生装置。
実施例72:
コントローラが、冷却イベント直前の期間中の平均負荷サイクルの一定の増大として最大負荷サイクル限度を計算するように構成される、実施例71によるエアロゾル発生装置。
実施例73:
一定の増大が、3%~30%である、実施例72によるエアロゾル発生装置。
実施例74:
一定の増大が10%である、実施例72によるエアロゾル発生装置。
実施例75:
冷却イベント前の期間が、冷却イベント前の2~10秒の期間、好ましくは6~7秒の期間、より好ましくは6.4秒の期間である、実施例60~74のいずれか一つによるエアロゾル発生装置。
実施例76:
最大負荷サイクル限度が、加熱配設が作動した後の時間に基づく、実施例60~75のいずれか一つによるエアロゾル発生装置。
実施例77:
最大負荷サイクル限度が、加熱配設の作動後の時間が増大するにつれて低減する、実施例60~76のいずれか一つによるエアロゾル発生装置。
実施例78:
コントローラが、加熱配設の作動後の所定の時間の後にのみ、最大負荷サイクル限度を判定するように構成される、実施例60~77のいずれか一つによるエアロゾル発生装置。
実施例79:
コントローラが、繰り返し、サセプタに関連付けられたコンダクタンスまたは抵抗を判定し、判定されたコンダクタンスまたは抵抗に基づいて、電流パルスの供給を調整するように構成される、実施例60~78のいずれか一つによるエアロゾル発生装置。
実施例80:
目標コンダクタンスまたは目標抵抗が、サセプタに関連付けられた冷却イベントがない場合、サセプタ内の材料のキュリー温度以下のサセプタ温度に対応するように判定される、実施例60~79のいずれか一つによるエアロゾル発生装置。
実施例81:
サセプタが、第一のキュリー温度を有する第一のサセプタ材料と、第二のキュリー温度を有する第二のサセプタ材料とを含む、実施例60~80のいずれか一つによるエアロゾル発生装置。
実施例82:
インダクタが、空洞の少なくとも一部分を取り囲むらせん状コイルを含む、実施例62~81のいずれか一つによるエアロゾル発生装置。
実施例83:
インダクタが、空洞内、またはこれに隣接して位置付けられた平坦な平面状コイルを含む、実施例62~81のいずれか一つによるエアロゾル発生装置。
実施例84:
インダクタが、空洞内に変化する磁界を発生する、実施例62~83のいずれか一つによるエアロゾル発生装置。
実施例85:
変化する磁界が、500kHz(キロヘルツ)~30MHz(メガヘルツ)、特に5MHz~15MHz、好ましくは5MHz~10MHzの範囲の周波数を有する高周波の変化する磁界である、実施例84によるエアロゾル発生装置。
実施例86:
電源が、DC供給電圧およびDC電流を提供し、誘導加熱システムが、電源とインダクタとの間に接続されたDC/ACコンバータを備える、実施例60~85のいずれか一つによるエアロゾル発生装置。
実施例87:
コントローラが、DC供給電圧および電源から引き出されるDC電流からコンダクタンスまたは抵抗を判定するように構成される、実施例86によるエアロゾル発生装置。
実施例88:
誘導加熱配設が、DC/ACコンバータを備え、インダクタが、DC/ACコンバータに接続される、実施例60~87のいずれか一つによるエアロゾル発生装置。
実施例89:
電源からの電力が、DC/ACコンバータを介して、複数の電流パルスとしてインダクタに供給され、各パルスが時間間隔で分離される、実施例88によるエアロゾル発生装置。
実施例90:
コントローラが、複数のパルスのそれぞれの間の時間間隔を制御することによって、誘導加熱配設に提供される電力を制御するように構成される、実施例89によるエアロゾル発生装置。
実施例91:
コントローラが、複数のパルスのそれぞれのパルスの長さを制御することによって、誘導加熱配設に提供される電力を制御するように構成される、実施例89によるエアロゾル発生装置。
実施例92:
コントローラが、DC/ACコンバータの入力側において、電源から引き出されるDC電流を測定するように構成される、実施例88~91のいずれか一つによるエアロゾル発生装置。
実施例93:
コントローラが、DC/ACコンバータの入力側において、電源のDC供給電圧を測定するように構成される、実施例88~92のいずれか一つによるエアロゾル発生装置。
実施例94:
コントローラに接続された気流センサを備え、コントローラが、気流センサからの入力信号に基づいて、冷却イベントを検出するように構成される、実施例60~93のいずれか一つによるエアロゾル発生装置。
実施例95:
気流センサが、サーミスタまたは熱電対を含む、実施例94によるエアロゾル発生装置。
実施例96:
コントローラが、冷却イベントの検出後の一定の期間として冷却イベントの持続時間を判定するように構成される、実施例60~95のいずれか一つによるエアロゾル発生装置。
実施例97:
コントローラが、検出された気圧が閾値圧力を下回る持続時間として、冷却イベントの持続時間を判定するように構成される、実施例60~95のいずれか一つによるエアロゾル発生装置。
実施例98:
コントローラが、検出された気流速度が閾値気流速度を上回る持続時間として、冷却イベントの持続時間を判定するように構成される、実施例60~95のいずれか一つによるエアロゾル発生装置。
実施例99:
実施例60~98のいずれか一つによるエアロゾル発生装置と、サセプタおよびエアロゾル形成基体を含有するエアロゾル発生物品とを備え、エアロゾル発生物品が、エアロゾル発生装置から分離可能である、エアロゾル発生システム。
実施例100:
エアロゾル発生物品が、マウスピースを備える、実施例99による誘導加熱システム。
実施例101:
エアロゾル発生物品が、フィルターを備える、実施例99または100による誘導加熱システム。
【0137】
ここで、以下の図を参照しながら実施例をさらに説明する。
【図面の簡単な説明】
【0138】
【
図1】
図1は、エアロゾル発生物品の概略断面図を示し、
図2Aは、
図1に示すエアロゾル発生物品と共に使用するためのエアロゾル発生装置の概略断面図を示す。
【
図2B】
図2Bは、
図1に示すエアロゾル発生物品と係合するエアロゾル発生装置の概略断面図を示す。
【
図3】
図3は
図2に関連して説明したエアロゾル発生装置の誘導加熱装置を示すブロック図である。
【
図4】
図4は
図3に関連して説明した誘導加熱装置の電子構成要素を示す概略図である。
【
図5】
図5は、
図4に関連して説明した誘導加熱装置のLC負荷ネットワークのインダクタ上の概略図である。
【
図6】
図6はサセプタ材料がそのキュリー点に関連する相転移を受けるときに発生する、遠隔検出可能な電流の変化を示したDC電流対時間のグラフである。
【
図7】
図7は、エアロゾル発生装置の動作中のサセプタに関連付けられたコンダクタンスプロファイルおよび電流パルスの対応する負荷サイクルを示す。
【
図8】
図8は、
図2のエアロゾル発生装置における電流パルスの負荷サイクルを制限するための方法を示す流れ図である。
【発明を実施するための形態】
【0139】
図1は、エアロゾル発生物品100を示す。
図1に示すエアロゾル発生物品100は、エアロゾル発生基体のロッド12、およびエアロゾル発生基体のロッド12の下流の場所にある下流セクション14を備える。さらに、エアロゾル発生物品100は、エアロゾル発生基体のロッド12の上流の場所に上流セクション16を備える。したがって、エアロゾル発生物品100は、上流端または遠位端18から下流端または口側端20まで延びる。
【0140】
下流セクション14は、エアロゾル発生基体のロッド12のすぐ下流に位置する支持要素22を備え、支持要素22は、ロッド12と長手方向に整列している。
図1の実施形態では、支持要素18の上流端は、エアロゾル発生基体のロッド12の下流端に当接している。さらに、下流セクション14は、支持要素22のすぐ下流に位置するエアロゾル冷却要素24を備え、エアロゾル冷却要素24は、ロッド12および支持要素22と長手方向に整列している。
図1の実施形態において、エアロゾル冷却要素24の上流端は、支持要素22の下流端に当接している。
【0141】
支持要素22およびエアロゾル冷却要素24は共に、エアロゾル発生物品100の中間中空セクション50を画定する。全体として、中間中空セクション50は、エアロゾル発生物品の全体的なRTDに実質的に寄与しない。
【0142】
支持要素22は、第一の中空管状セグメント26を備える。第一の中空管状セグメント26は、酢酸セルロースから作製された中空円筒管の形態で提供される。第一の中空管状セグメント26は、第一の中空管状セグメントの上流端30から第一の中空管状セグメント20の下流端32まで全面的に延びる、内部空洞28を画定する。内部空洞28は、実質的に空であり、したがって、実質的に無制限の気流が内部空洞28に沿って可能になる。
【0143】
第一の中空管状セグメント26は、約8ミリメートルの長さ、約7.25ミリメートルの外径、および約1.9ミリメートルの内径(DFTS)を有する。したがって、第一の中空管状セグメント26の周辺壁の厚さは、約2.67ミリメートルである。
【0144】
エアロゾル冷却要素24は、第二の中空管状セグメント34を備える。第二の中空管状セグメント34は、セルロースアセテートで作製された中空円筒状管の形態で提供されている。第二の中空管状セグメント34は、第二の中空管状セグメントの上流端38から第二の中空管状セグメント34の下流端40にずっと延びる内部空洞36を画定する。内部空洞36は実質的に空であり、そのため内部空洞36に沿って、実質的に制限のない気流が可能である。
【0145】
第二の中空管状セグメント34は、約8ミリメートルの長さ、約7.25ミリメートルの外径、および約3.25ミリメートルの内径(DSTS)を有する。したがって、第二の中空管状セグメント34の周辺壁の厚さは、約2ミリメートルである。
【0146】
エアロゾル発生物品100は、第二の中空管状セグメント34に沿った場所に提供された通気ゾーン60を備える。より詳細に、通気ゾーンは、第二の中空管状セグメント34の上流端から約2ミリメートルにて提供されている。エアロゾル発生物品100の通気レベルは、約25パーセントである。
【0147】
図1の実施形態では、下流セクション14は、中間中空セクション50の下流の位置にマウスピース要素42をさらに備える。より詳細には、マウスピース要素42は、エアロゾル冷却要素24のすぐ下流に位置付けられる。
図1の図面に示す通り、マウスピース要素42の上流端は、エアロゾル冷却要素18の下流端40に当接する。
【0148】
マウスピース要素42は、低密度酢酸セルロースの円筒形プラグの形態で提供されている。マウスピース要素42は、約12ミリメートルの長さ、および約7.25ミリメートルの外径を有する。
【0149】
ロッド12は、上述のタイプのうちの一つのエアロゾル発生基体を含む。エアロゾル発生基体のロッド12は、約7.25ミリメートルの外径、および約12ミリメートルの長さを有する。
【0150】
エアロゾル発生物品100は、エアロゾル発生基体のロッド12内に細長いサセプタ要素44をさらに備える。より詳細には、サセプタ要素44は、ロッド12の長手方向に対してほぼ平行になるように、エアロゾル発生基体内に実質的に長手方向に配置されている。
図1の図面に示されるように、サセプタ要素44は、ロッド内の半径方向で中央の位置に位置付けられており、ロッド12の長手方向軸に沿って効果的に延びる。
【0151】
サセプタ要素44は、ロッド12の上流端から下流端まで全面的に延びている。実際には、サセプタ要素44は、エアロゾル発生基体のロッド12と実質的に同じ長さを有する。
【0152】
図1の実施形態では、サセプタ要素44は、細片の形態で提供されており、約12ミリメートルの長さ、約60マイクロメートルの厚さ、および約4ミリメートルの幅を有する。上流セクション16は、エアロゾル発生基体のロッド12のすぐ上流に位置する上流要素46を備え、上流要素46は、ロッド12と長手方向に整列している。
図1の実施形態では、上流要素46の下流端は、エアロゾル発生基体のロッド12の上流端に当接する。これにより、有利なことに、サセプタ要素44が外れることを防止する。さらに、これにより、消費者が使用後に加熱されたサセプタ要素44に偶発的に接触し得ないことを確実にする。
【0153】
上流要素46は、硬質ラッパーによって囲まれたセルロースアセテートの円筒形プラグの形態で提供される。上流要素46は、約5ミリメートルの長さを有する。
【0154】
サセプタ44は、少なくとも二つの異なる材料を含む。サセプタ44は、少なくとも二つの層、すなわち、第二のサセプタ材料の第二の層と物理的に接触して配置される第一のサセプタ材料の第一の層を含む。第一のサセプタ材料および第二のサセプタ材料は各々、キュリー温度を有してもよい。この場合、第二のサセプタ材料のキュリー温度は第一のサセプタ材料のキュリー温度よりも低い。第一の材料は、キュリー温度を有しない場合がある。第一のサセプタ材料は、アルミニウム、鉄またはステンレス鋼であってもよい。第二のサセプタ材料は、ニッケルまたはニッケル合金であってもよい。サセプタ44は、第二のサセプタ材料の少なくとも一つのパッチを第一のサセプタ材料の細片上に電気めっきすることによって形成されてもよい。サセプタは、第二のサセプタ材料の細片を第一のサセプタ材料の細片に被覆することによって形成され得る。
【0155】
使用時、空気は、遠位端18から口側端20に、ユーザーによってエアロゾル発生物品100を介して引き出される。エアロゾル発生物品100の遠位端18はまた、エアロゾル発生物品100の上流端として記述されてもよく、エアロゾル発生物品100の口側端20はまた、エアロゾル発生物品100の下流端として記述されてもよい。口側端20と遠位端18との間に位置するエアロゾル発生物品100の要素は、口側端20の上流、または代替的に遠位端18の下流にあると記述することができる。エアロゾル形成基体12は、エアロゾル発生物品100の遠位端または上流端18に位置する。
図1に示したエアロゾル発生物品100は、
図2Aに示したエアロゾル発生装置200などのエアロゾル発生装置と係合して、エアロゾルを生成するように設計されている。エアロゾル発生装置200は、エアロゾル発生物品100を受容するよう構成された空洞220を有するハウジング210を含む。エアロゾル発生装置200は、エアロゾルを生成するためのエアロゾル発生物品100を加熱するように構成された誘導加熱装置230をさらに含む。
図2Bは、エアロゾル発生物品100が空洞220内に挿入されるときの、エアロゾル発生装置200を示す。誘導加熱装置230は、
図3にブロック図として示されている。誘導加熱装置230は、DC電源310および加熱配設320(電源電子回路とも呼ぶ)を備える。加熱配設は、コントローラ330、DC/ACコンバータ340、整合ネットワーク350、およびインダクタ240を含む。
【0156】
DC電源310は、DC電力を加熱配設320に提供するように構成される。具体的には、DC電源310は、DC供給電圧(VDC)およびDC電流(IDC)をDC/ACコンバータ340に提供するように構成される。電源310はリチウムイオン電池などの電池であることが好ましい。代替として、電源310はコンデンサなどの別の形態の電荷蓄積装置であってもよい。電源310は再充電を必要とする場合がある。例えば、電源310はおおよそ六分間、または六分の倍数の時間にわたるエアロゾルの連続的な発生を可能にするのに十分な容量を有してもよい。別の例において、電源310は所定の回数の吸煙、または加熱配設の不連続的な起動を可能にするのに十分な容量を有してもよい。
【0157】
DC/ACコンバータ340は、高周波の交流電流でインダクタ240を供給するように構成される。本明細書で使用される場合、「高周波の交流電流」という用語は、約500キロヘルツ~約30メガヘルツの周波数を有する、交流電流を意味する。高周波の交流電流は、約1メガヘルツ~約30メガヘルツ(約1メガヘルツ~約10メガヘルツ、または約5メガヘルツ~約8メガヘルツなど)の周波数を有してもよい。
【0158】
図4は、誘導加熱装置230、特にDC/ACコンバータ340の電気構成要素を概略的に示す。DC/ACコンバータ340は、好ましくはクラスE電力増幅器を備える。クラスE電力増幅器は、電界効果トランジスタ420と、例えば、金属酸化膜半導体電界効果トランジスタを含むトランジスタスイッチ410、電界効果トランジスタ420に切換信号(ゲート・ソース電圧)を供給するための矢印430で示したトランジスタスイッチ供給回路と、分路コンデンサC1およびインダクタ240に対応するコンデンサC2とインダクタL2の直列接続を含むLC負荷ネットワーク440とを備える。さらに、チョークL1を備えるDC電源310が、動作中にDC電源310から引き出される、DC電流IDCと共に、DC供給電圧VDCを供給するために示されている。インダクタL2のオーム抵抗Rcoilと、サセプタ44のオーム抵抗Rloadの和である、合計オーム負荷450を表すオーム抵抗Rが、
図5により詳細に示される。
【0159】
DC/ACコンバータ340は、クラスE電力増幅器を含むものとして示されているが、DC/ACコンバータ340は、DC電流をAC電流に変換する任意の適切な回路を使用し得ることが理解されるべきである。例えば、DC/ACコンバータ340は、二つのトランジスタスイッチを含むクラスD電力増幅器を備えてもよい。別の例として、DC/ACコンバータ340は、対で作用する四つのスイッチングトランジスタを有するフルブリッジ電力インバータを備えてもよい。
【0160】
図3に戻ると、インダクタ240は、負荷への最適な適合のために整合ネットワーク350を介してDC/ACコンバータ340から交流電流を受信してもよいが、整合ネットワーク350は必須ではない。整合ネットワーク350は小型の整合変成器を備えうる。整合ネットワーク350は、DC/ACコンバータ340とインダクタ240との間の電力伝達効率を改善しうる。
【0161】
図2Aに示すように、インダクタ240は、エアロゾル発生装置200の空洞220の遠位部分225に隣接して位置する。したがって、エアロゾル発生装置200の動作中に、インダクタ240に供給される高周波の交流電流は、インダクタ240に、エアロゾル発生装置200の遠位部分225内に高周波の交番磁界を発生させる。交番磁界は、好ましくは1~30メガヘルツ、好ましくは2~10メガヘルツ、例えば5~7メガヘルツの周波数を有する。
図2Bから分かるように、エアロゾル発生物品100が空洞200に挿入されるとき、エアロゾル発生物品100のエアロゾル形成基体12は、エアロゾル発生物品100のサセプタ44がこの交番磁界内に位置するように、インダクタ240に隣接して位置する。交番磁界がサセプタ44を貫通すると、交番磁界がサセプタ44の加熱を引き起こす。例えば、渦電流は、結果として加熱されるサセプタ44内で発生される。さらなる加熱がサセプタ44内の磁気ヒステリシス損失により提供される。加熱されたサセプタ44は、エアロゾルを形成するのに十分な温度までエアロゾル発生物品100のエアロゾル形成基体12を加熱する。エアロゾルはエアロゾル発生物品100を通って下流に引き出され、ユーザーによって吸い込まれる。
【0162】
コントローラ330はマイクロコントローラ、好ましくはプログラム可能なマイクロコントローラであってもよい。コントローラ330は、サセプタ44の温度を制御するために、DC電源310から誘導加熱配設320への電力供給を調節するようにプログラムされる。コントローラは、説明されるように、吸煙センサ360から入力を受信してもよい。
【0163】
図6は、サセプタ44の温度(温度は破線620で示される)が上昇するにつれて経時的に電源310から引き出されるDC電流IDC間の関係を示す。DC電流は線600で示される。電源310から引き出されるDC電流IDCは、DC/ACコンバータ340の入力側で測定される。この図の目的上、電源310の電圧VDCはほぼ一定であると想定されうる。サセプタ44が誘導的に加熱されると、サセプタ44の見かけの抵抗が増大する。この抵抗の増大は、電源310から引き出されるDC電流IDCの減少として観察され、定電圧では、サセプタ44の温度が上昇するにつれて減少する。インダクタ240によって提供される高周波の交番磁界は、サセプタ表面の近くで、表皮効果として既知の効果である渦電流を誘導する。サセプタ44の抵抗は、第一のサセプタ材料の電気抵抗率、第二のサセプタ材料の抵抗率に部分的に、および誘導された渦電流に利用可能なそれぞれの材料の表皮層の深さに部分的に依存し、抵抗率は温度に依存する。第二のサセプタ材料がそのキュリー温度に達すると、その磁性が失われる。これにより、第二のサセプタ材料内で渦電流に利用可能な表皮層が増大し、これによりサセプタ44の見かけの抵抗が減少する。その結果、第二のサセプタ材料の皮膚深度が増加し始め、抵抗が下がり始めると、検出されたDC電流IDCの一時的な増加が生じる。
【0164】
これは
図6の谷(局所最小値)として見なされる。電流は、第二のサセプタ材料がその自然磁気特性を失った点と整合する最大皮膚深度に達するまで増加し続ける。この点はキュリー温度と呼ばれ、
図6では丘(局所最大値)として見なされる。この時点で、第二のサセプタ材料は、強磁性またはフェリ磁性状態から常磁性状態への相変化を受けている。この時点で、サセプタ44は既知の温度(固有材料特異的温度であるキュリー温度)にある。インダクタ240が、キュリー温度に達した後、交番磁界を発生し続ける場合(すなわち、DC/ACコンバータ340への電力が中断されない)、サセプタ44内で発生される渦電流が、サセプタ44の抵抗に対して流れ、これにより、サセプタ44のジュール加熱が継続され、これにより、抵抗は再び増大し(抵抗は温度の多項式依存性を有し、大半の金属サセプタ材料については、発明者らの目的のために三次多項式依存性に近似することができる)、電流は、インダクタ240がサセプタ44に電力を供給し続ける限り、再び低下し始める。
【0165】
したがって、
図6から分かるように、サセプタ44の見かけの抵抗(および対応する電源310から引き出される電流IDC)は、サセプタ44の特定の温度範囲にわたる厳密に単調な関係にあるサセプタ44の温度によって変化し得る。厳密に単調な関係により、見かけの抵抗または見かけのコンダクタンス(1/R)の判定からのサセプタ44の温度の明確な判定が可能になる。これは、見かけの抵抗の判定された値がそれぞれ、温度の一つの値のみを表すためであり、その関係に曖昧性がない。サセプタ44の温度と見かけの抵抗との単調な関係は、サセプタ44の温度を判定および制御することができるようにし、したがってエアロゾル形成基体12の温度を判定および制御することができる。サセプタ44の見かけの抵抗は、少なくともDC電源310から引き出されるDC電流IDCを監視することによって遠隔的に検出することができる。
【0166】
少なくとも、電源310から引き出されるDC電流IDCは、コントローラ330によって監視される。好ましくは、電源310から引き出されるDC電流IDCおよびDC供給電圧VDCの両方が監視される。コントローラ330は、コンダクタンス値または抵抗値に基づいて、加熱配設320に提供される電力の供給を調節する。コンダクタンスは、DC電流IDCのDC供給電圧VDCに対する比率として定義され、抵抗は、DC供給電圧VDCのDC電流IDCに対する比率として定義される。加熱配設320は、DC電流IDCを測定するための電流センサ(図示せず)を備えてもよい。加熱配設は、DC供給電圧VDCを測定するための電圧センサ(図示せず)を随意に含みうる。電流センサおよび電圧センサは、DC/ACコンバータ340の入力側に位置する。DC電流IDC、および任意選択でDC供給電圧VDCは、コントローラ330へのフィードバックチャネルによって提供され、インダクタ240へのAC電力PACのさらなる供給を制御する。
【0167】
コントローラ330は、測定されたコンダクタンス値または測定された抵抗値を、サセプタ44の目標動作温度に対応する目標値に維持することによって、サセプタ44の温度を制御し得る。コントローラ330は、任意の適切な制御ループを使用して、例えば、比例積分微分制御ループを使用することによって、測定されたコンダクタンス値または測定された抵抗値を目標値に維持してもよい。
【0168】
サセプタ44の見かけの抵抗(または見かけのコンダクタンス)とサセプタ44の温度との間の厳密に単調な関係を利用するために、エアロゾルを生成するためのユーザー操作中、コンダクタンス値またはサセプタと関連付けられ、DC/ACコンバータ340の入力側で測定される抵抗値が、第一の較正温度に対応する第一の較正値と、第二の較正温度に対応する第二の較正値との間に維持される。第二の較正温度は、第二のサセプタ材料(
図6の電流プロットの丘)のキュリー温度である。第一の較正温度は、第二のサセプタ材料の皮膚深度が増加し始める(抵抗の一時的な低下をもたらす)、サセプタの温度以上の温度である。したがって、第一の較正温度は、第二のサセプタ材料の最大透過性における温度以上の温度である。第一の較正温度は、第二の較正温度より少なくとも摂氏50度低い。少なくとも第二の較正値は、以下でより詳細に説明するように、サセプタ44の較正によって判定されてもよい。第一の較正値および第二の較正値は、コントローラ330のメモリ内に較正値として記憶されてもよい。
【0169】
コンダクタンス(抵抗)は、温度に対する多項式依存性を有するため、コンダクタンス(抵抗)は、温度の関数として非線形に挙動する。しかしながら、第一および第二の較正値は、第一の較正値と第二の較正値との間の差が小さいために、この依存性が第一の較正値と第二の較正値との間で線形として近似され得るように、そして第一および第二の較正値が動作温度範囲の上部にあるように選択される。したがって、温度を目標動作温度に調整するために、コンダクタンスは、線形方程式を介して、第一の較正値および第二の較正値に従って調整される。例えば、第一および第二の較正値がコンダクタンス値である場合、目標動作温度に対応する目標コンダクタンス値は、次のように与えられ得る:
GTarget=Glower+(x×ΔG)
式中、ΔGは、第一のコンダクタンス値と第二のコンダクタンス値との間の差であり、xはΔGの割合である。
【0170】
コントローラ330は、DC/ACコンバータ340のスイッチングトランジスタ410の負荷サイクルを調整することによって、加熱配設320への電力の提供を制御してもよい。例えば、加熱中に、DC/ACコンバータ340は、サセプタ44を加熱する交流電流を継続的に発生し、また同時にDC供給電圧VDCおよびDC電流IDCは、好ましくは一ミリ秒毎に100ミリ秒間測定されてもよい。コントローラ330によってコンダクタンスが監視される場合、コンダクタンスが目標動作温度に対応する値に達するまたは超えると、スイッチングトランジスタ410の負荷サイクルが低減される。コントローラ330によって抵抗が監視される場合、抵抗が目標動作温度に対応する値に達するまたは下回るとき、スイッチングトランジスタ410の負荷サイクルが低減される。例えば、スイッチングトランジスタ410の負荷サイクルは、約9%に低減されうる。言い換えれば、スイッチングトランジスタ410は、1ミリ秒の持続時間の間、10ミリ秒ごとにのみパルスを発生するモードに切り替わってもよい。スイッチングトランジスタ410のこの1ミリ秒のオン状態(導電状態)の間、DC供給電圧VDCの値およびDC電流IDCの値が測定され、コンダクタンスが判定される。コンダクタンスが減少する(または抵抗が増大する)と、サセプタ44の温度は目標動作温度を下回ることを示すため、トランジスタ410のゲートは、システムの選択された駆動周波数でパルスのトレーンを再び供給される。
【0171】
電力は、電流の連続した一連のパルスの形態でコントローラ330によってインダクタ240に供給されてもよい。特に、電力は、それぞれが時間間隔ごとに分離された一連のパルスで、インダクタ240に供給されてもよい。連続した一連のパルスは、二つ以上の加熱パルスおよび連続した加熱パルス間の一つ以上のプロービングパルスを含んでもよい。加熱パルスは、サセプタ44を加熱するなどの強度を有する。プロービングパルスは、サセプタ44を加熱するのではなく、むしろコンダクタンス値または抵抗値、次いでサセプタ温度の進化(減少)に関するフィードバックを得るような強度を有する分離された電力パルスである。コントローラ330は、DC電源によってインダクタ240に供給される電力の連続した加熱パルス間の時間間隔の持続時間を制御することによって、電力を制御してもよい。追加的または代替的に、コントローラ330は、DC電源によってインダクタ240に供給される電力の連続した加熱パルスのそれぞれの長さ(言い換えれば、持続時間)を制御することによって、電力を制御しうる。
【0172】
コントローラ330は、コンダクタンスがサセプタ44の既知の温度で測定される較正値を得るために、較正プロセスを実施するようにプログラムされる。サセプタの既知の温度は、第一の較正値に対応する第一の較正温度と、第二の較正値に対応する第二の較正温度とであってもよい。好ましくは、較正プロセスは、ユーザーがエアロゾル発生装置200を操作するたびに、例えば、ユーザーがエアロゾル発生物品100をエアロゾル発生装置200に挿入するたびに実施される。
【0173】
較正プロセス中、コントローラ330は、DC/ACコンバータ340を制御して、サセプタ44を加熱するために、継続的にまたは断続的に電力をインダクタ240に供給する。コントローラ330は、電源によって引き出される電流IDC、および場合により、供給電圧VDCを測定することによって、サセプタ44に関連付けられたコンダクタンスまたは抵抗を監視する。
図6に関連して上述したように、サセプタ44が加熱されると、測定された電流は、第一の転換点に達し、電流が増大するまで減少する。この第一の転換点は、局所最小コンダクタンス値(局所最大抵抗値)に対応する。コントローラ330は、第一の較正値として、コンダクタンスの局所最小値(または抵抗の局所最大値)を記録してもよい。コントローラは、最小電流に達した後の所定の時間におけるコンダクタンスまたは抵抗の値を第一の較正値として記録しうる。コンダクタンスまたは抵抗は、測定された電流IDCおよび測定された電圧VDCに基づいて判定されうる。あるいは、電源310の既知の特性である、供給電圧VDCがほぼ一定であると仮定されてもよい。第一の較正値におけるサセプタ44の温度は、第一の較正温度と称される。第一の較正温度は、摂氏150度~摂氏350度であることが好ましい。より好ましくは、エアロゾル形成基体12がたばこを含む場合、第一の較正温度は摂氏320度である。第一の較正温度は、第二の較正温度より少なくとも摂氏50度低い。
【0174】
コントローラ330が、DC/ACコンバータ340によって提供される電力を、インダクタ240に制御し続けると、測定された電流は、測定された電流が減少し始める前に、第二の転換点に達し、最大電流(第二のサセプタ材料のキュリー温度に対応する)が観察されるまで増加する。この転換点は、局所最大コンダクタンス値(局所最小抵抗値)に対応する。コントローラ330は、コンダクタンスの局所最大値(または抵抗の局所最小値)を第二の較正値として記録する。第二の較正値でのサセプタ44の温度は、第二の較正温度と称される。好ましくは、第二の較正温度は、摂氏200度~摂氏400度である。最大値が検出されると、コントローラ330は、DC/ACコンバータ340を制御して、インダクタ240への電力の提供を中断し、その結果、サセプタ44の温度の低下およびそれに対応するコンダクタンスの低下をもたらす。
【0175】
グラフの形状のために、サセプタ44を継続的に加熱して第一の較正値および第二の較正値を得るこのプロセスは、少なくとも一回繰り返されてもよい。インダクタ240への電力の提供を中断した後、コントローラ330は、第二の最小コンダクタンス値(第二の最大抵抗値)に対応する第三の転換点が観察されるまで、コンダクタンス(または抵抗)を監視し続ける。第三の転換点が検出されると、コントローラ330は、DC/ACコンバータ340を制御して、第二の最大コンダクタンス値(第二の最小抵抗値)に対応する第四の転換点が検出されるまで、継続的にインダクタ240に電力を供給する。コントローラ330は、第三の転換点における、またはその直後にコンダクタンス値または抵抗値を第一の較正値として、第四の転換点におけるコンダクタンス値または抵抗値を第二の較正値として記憶する。最小および最大測定電流に対応する転換点の測定の繰り返しは、エアロゾルを生成するための装置のユーザー操作中のその後の温度調節を著しく改善する。好ましくは、コントローラ330は、第二の最大値および第二の最小値から得られたコンダクタンス値または抵抗値に基づいて電力を調節するが、これは、熱がエアロゾル形成基体12およびサセプタ44内に分散するためにより多くの時間を必要とするため、より信頼性が高い。
【0176】
較正プロセスの信頼性をさらに改善するために、コントローラ310は、較正プロセスの前に予熱プロセスを実施するように任意にプログラムされてもよい。例えば、エアロゾル形成基体12が特に乾燥しているか、または類似の条件である場合、較正は、熱がエアロゾル形成基体12内に広がる前に実施され、較正値の信頼性が低減されことがある。エアロゾル形成基体12が湿っていた場合、サセプタ44は谷温度に達するのにより長い時間がかかる(基体12の含水量に起因して)。
【0177】
予熱プロセスを実施するために、コントローラ330は、継続的に電力をインダクタ240に供給するように構成される。上述のように、電流は、サセプタ44の温度が上昇するにつれて減少し始め、最小値に達する。この段階で、コントローラ330は、加熱を続ける前にサセプタ44が冷却できるように所定の期間待機するように構成される。したがって、コントローラ330は、DC/ACコンバータ340を制御して、インダクタ240への電力の提供を中断する。所定の期間の後、コントローラ330は、DC/ACコンバータ340を制御して、最小値に達するまで電力を供給する。この時点で、コントローラはDC/ACコンバータ340を制御して、再度、インダクタ240への電力の提供を中断する。コントローラ330は再び、同じ所定の期間待機して、加熱を続ける前にサセプタ44を冷却させる。このサセプタ44の加熱および冷却は、予熱プロセスの所定の持続時間にわたって繰り返される。予熱プロセスの所定の持続時間は、好ましくは11秒である。予熱プロセスの所定の組み合わせた持続時間に続いて、較正プロセスは、好ましくは20秒である。
【0178】
エアロゾル形成基体12が乾燥している場合、予熱プロセスの第一の最小値は、所定の時間内に達し、電力の中断は、所定の期間の終了まで繰り返される。エアロゾル形成基体12が湿っている場合、予熱プロセスの第一の最小値は、所定の期間の終了に向かって達する。したがって、所定の持続時間の間予熱プロセスを実施することは、基体12の物理的状態にかかわらず、継続的に電力を供給して第一の最大値に達する準備ができている状態になるために、基体12が最低温度に達するのに十分な時間であることを確保する。これにより、基体12が事前に谷に達していないというリスクを負わずに、可能な限り早期に較正が可能となる。
【0179】
さらに、エアロゾル発生物品100は、最小値が常に予熱プロセスの所定の持続時間内に達成されるように構成されてもよい。予熱プロセスの所定の持続時間内に最小値に達しない場合、これは、エアロゾル形成基体12を含むエアロゾル発生物品100が、エアロゾル発生装置200での使用に適さないことを示し得る。例えば、エアロゾル発生物品100は、エアロゾル発生装置200で使用することが意図されたエアロゾル形成基体100とは異なる、またはより低品質のエアロゾル形成基体12を含んでもよい。別の例として、エアロゾル発生物品100は、例えば、エアロゾル発生物品100およびエアロゾル発生装置200が異なる製造業者によって製造される場合、加熱配設320と共に使用するように構成されない場合がある。したがって、コントローラ330は、エアロゾル発生装置200の動作を停止する制御信号を発生するように構成されてもよい。
【0180】
予熱プロセスは、例えば、エアロゾル発生装置200のユーザー起動などのユーザー入力の受信に応答して実施されてもよい。追加的または代替的に、コントローラ330は、エアロゾル発生装置200内のエアロゾル発生物品100の存在を検出するように構成されてもよく、予熱プロセスは、エアロゾル発生装置200の空洞220内のエアロゾル発生物品100の存在を検出することに応答して実施されてもよい。
【0181】
予熱プロセスおよび較正プロセスに続いて、コントローラ330は、サセプタ44に関連付けられたコンダクタンスまたは抵抗を目標値に維持するようDC/ACコンバータ340を制御する。これは加熱プロセスと称される。目標値は、連続的または段階的に経時的に変化してもよいが、常に較正プロセス中に判定される最大値と最小値との間にある。再較正プロセスは、装置の使用期間にわたってドリフトし得る最大値および最小値を再確立するために、加熱プロセス中に設定された時間間隔で実施されてもよい。
【0182】
サセプタ44に関連付けられたコンダクタンスまたは抵抗を目標値に維持するために、コントローラ330はDC/ACコンバータ340の負荷サイクルを変化させる。サセプタが、システムでのユーザー吸煙中など、サセプタを通過する増大した気流によって冷却される場合、サセプタに関連付けられたコンダクタンスは低下する。次いで、コントローラ330は、電流パルスの負荷サイクルを増大させてインダクタに提供される電力を増大させ、それによってサセプタのコンダクタンスを目標値に向けて戻す。
【0183】
動作中の装置またはサセプタの過熱を防止するために、一つ以上の安全プロセスを実施してもよい。一つの安全プロセスは、ユーザー吸煙などの冷却イベントが検出された時に実施される。実験は、ユーザー吸煙などのサセプタを冷却するイベント中、
図6に示すS字形状の曲線が圧縮を受け、その結果、DC電流(またはコンダクタンス)の局所最小値がより高い値を有し、キュリー温度でのDC電流の局所最大値が低減することを示す。使用吸煙中の曲線の形状は、
図6に点線610で概略的に示されている。
【0184】
図6に示す曲線のこの平坦化は、通常の制御プロセスが過熱につながる場合があることを意味する。例えば、目標コンダクタンスが較正プロセス中に確立される局所最大コンダクタンスに近いときにユーザー吸煙などの冷却イベントが発生する場合、目標コンダクタンスは実際には達成可能ではない場合がある。その状況では、コントローラが、サセプタが過熱される、すなわち望ましくないエアロゾルが提供される温度に加熱される点まで電流パルスの負荷サイクルを増大させ続けるリスクがある。
【0185】
サセプタの過熱の可能性を低減するために、コントローラは、ユーザー吸煙などの冷却イベント中に負荷サイクル限度を導入する。例えば、ユーザー吸煙前の定常状態中、目標コンダクタンスを維持するために30%の負荷サイクルが必要である場合がある。サセプタが冷却されると、コントローラは、目標コンダクタンスを維持するために、負荷サイクルを50%に増大する必要があり得る。しかしながら、コントローラは、過熱を防止するために、50%未満の負荷サイクル限度を導入する場合がある。これは、吸煙中にサセプタが目標温度に達しない可能性があるが、最低限度の熱不足を防止するよりも過熱を防止する方が重要であることを意味する。
【0186】
この実施例では、負荷サイクル限度は、ユーザー吸煙の開始前6.4秒に生じる平均負荷サイクルの10%増大として計算される。負荷サイクル限度の計算は、装置が作動した後に経過した時間、または装置が作動した後に吸煙した回数に応じて変更されてもよい。例えば、最初の二回の吸煙について、負荷サイクル限度は、ユーザー吸煙の開始前6.4秒に生じる平均負荷サイクルに20%を加えたものとして計算されてもよい。次の6回の吸煙について、負荷サイクルは、ユーザー吸煙の開始前6.4秒に生じる平均負荷サイクルに10%を加えたものとして計算されてもよい。任意のさらなる吸煙について、負荷サイクルは、ユーザー吸煙の開始前6.4秒に生じる平均負荷サイクルに5%を加えたものとして計算されてもよい。メモリに記憶された一定の負荷サイクル限度を含む、吸煙中に増大する負荷サイクルを制限する他の方法を使用することができる。
【0187】
図7は、コントローラのこの挙動を示す。上側の線700は、サセプタに関連付けられたコンダクタンス対時間である。ユーザー吸煙前、コンダクタンスは安定している。点720として示される、ユーザー吸煙の開始時に、サセプタが冷却されるにつれてコンダクタンスは低下し始める。コントローラは、コンダクタンスのこの低下を検出し、電流の負荷サイクルを増大させてコンダクタンスを上昇させる。経時的な負荷サイクルを下側の線710で示す。しかしながら、負荷サイクルの増大は、ユーザー吸煙の冷却効果を完全に補償するには十分ではない。一定の期間の間、コンダクタンスは、目標値未満に低下した後、加熱プロセスの目標温度に対応するコンダクタンスに戻るよう再び上昇し始める。このコンダクタンスの局所最小値は、コントローラによって計算および実施された負荷サイクル限度の直接的な結果である。吸煙の冷却効果を完全に補償するために負荷サイクルがブーストされる場合、コンダクタンスは目標値未満に降下しない。
【0188】
この実施形態では、吸煙の開始は、専用の吸煙センサ360からの信号を読み取ることによって検出される。この実施形態では、吸煙センサはサーミスタである。サーミスタは、空洞220の遠位端に位置付けられる。サーミスタからの信号を使用して、吸煙または他の冷却イベントの開始および吸煙または冷却イベントの終了を判定することができる。別の方法として、コントローラは、ユーザー吸煙の終了を、吸煙の開始後の一定の時間、例えば4秒であると判定してもよい。
【0189】
図8は、エアロゾル発生装置200内のインダクタに供給される電流パルスの負荷サイクルを制限するための方法800の流れ図である。上述のように、コントローラ330は、方法800を実施するようにプログラムされてもよい。
【0190】
方法は、上述のように、工程810で開始し、コントローラ330がサーミスタからの信号に基づいてユーザー吸煙を検出する。
【0191】
工程810でユーザー吸煙を検出することに応答して、コントローラ330は、吸煙の持続時間の間に適用される負荷サイクル限度を計算するように構成される。この計算は、工程820で行われ、6.4秒前の間に使用された平均負荷サイクルに10%を加えることを含む。
【0192】
負荷サイクル限度は、工程830でユーザー吸煙の終了が判定されるまで、コントローラによって適用される。ユーザー吸煙の終了は、サーミスタからの信号に基づいて判定される。
【0193】
ユーザー吸煙の終了が検出されると、工程840で負荷サイクル限度が除去される。その後、次のユーザー吸煙が検出されると、プロセスが繰り返される。
【0194】
本明細書および添付の特許請求の範囲の目的において、別途示されていない限り、量(amounts)、量(quantities)、割合などを表すすべての数字は、すべての場合において用語「約」によって修飾されるものとして理解されるべきである。また、全ての範囲は、開示された最大点及び最小点を含み、かつその中の任意の中間範囲を含み、これらは本明細書に具体的に列挙されている場合もあり、列挙されていない場合もある。この文脈内で、数字Aは、数字Aが修正する特性の測定値に対する一般的な標準誤差内にある数値を含むと考えられてもよい。数字Aは、添付の特許請求の範囲で使用される通りの一部の場合において、Aが逸脱する量が特許請求する本発明の基本的かつ新規の特性に実質的に影響を及ぼさないという条件で、上記に列挙された割合だけ逸脱してもよい。また、全ての範囲は、開示された最大点及び最小点を含み、かつその中の任意の中間範囲を含み、これらは本明細書に具体的に列挙されている場合もあり、列挙されていない場合もある。
【国際調査報告】