IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ カーボン テクノロジー ホールディングス, エルエルシーの特許一覧

特表2024-544934最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス
<>
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図1
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図2
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図3
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図4
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図5
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図6
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図7
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図8
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図9
  • 特表-最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-12-05
(54)【発明の名称】最適化された組成パラメータを有するバイオカーボン組成物、及びこれを生成するためのプロセス
(51)【国際特許分類】
   C01B 32/05 20170101AFI20241128BHJP
【FI】
C01B32/05
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2024527589
(86)(22)【出願日】2022-11-08
(85)【翻訳文提出日】2024-07-05
(86)【国際出願番号】 US2022049237
(87)【国際公開番号】W WO2023086323
(87)【国際公開日】2023-05-19
(31)【優先権主張番号】63/278,573
(32)【優先日】2021-11-12
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】520490314
【氏名又は名称】カーボン テクノロジー ホールディングス, エルエルシー
(74)【代理人】
【識別番号】100097456
【弁理士】
【氏名又は名称】石川 徹
(72)【発明者】
【氏名】ジェームス エー. メネル
(72)【発明者】
【氏名】ダスティン スラック
(72)【発明者】
【氏名】ダレン ドーガード
【テーマコード(参考)】
4G146
【Fターム(参考)】
4G146AA01
4G146AA16
4G146AB01
4G146AB05
4G146AC27A
4G146AC27B
4G146BA08
4G146BA32
4G146BB04
4G146BC03
4G146CB02
4G146CB09
(57)【要約】
いくつかの変形形態では、本開示は、50重量%~99重量%の総炭素を含む、再生可能なバイオカーボン組成物であって、0.1~10から選択される塩基-酸比率、0.05~5から選択される鉄-カルシウム比率、5~50重量%から選択される鉄+カルシウムパラメータ、0.001~1から選択されるスラグ化係数、及び/又は0.1~10から選択される汚れ係数若しくは修正汚れ係数によって特徴付けられる、バイオカーボン組成物を提供する。いくつかの変形形態は、バイオマス原料を提供すること、バイオマス原料を熱分解して、中間バイオカーボン流を生成すること、中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理すること、及び/又はプロセスにおいて添加剤を導入して、塩基-酸比率又は他の組成パラメータを調節すること、並びに50重量%~99重量%の総炭素を含み、かつ組成パラメータのために最適化されたバイオカーボン組成物を回収すること、を含む、プロセスを提供する。
【選択図】なし
【特許請求の範囲】
【請求項1】
約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、前記バイオカーボン組成物が、以下の式:
【数1】
によって定義される塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージに対応し、前記塩基-酸比率が、少なくとも約0.1~多くとも約10である、バイオカーボン組成物。
【請求項2】
前記塩基-酸比率が、少なくとも約0.1~多くとも約0.4である、請求項1に記載のバイオカーボン組成物。
【請求項3】
前記塩基-酸比率が、少なくとも約0.5~多くとも約10である、請求項1に記載のバイオカーボン組成物。
【請求項4】
前記塩基-酸比率が、少なくとも約0.8~多くとも約10である、請求項1に記載のバイオカーボン組成物。
【請求項5】
前記塩基-酸比率が、少なくとも約1.5~多くとも約5である、請求項1に記載のバイオカーボン組成物。
【請求項6】
前記塩基-酸比率が、少なくとも約0.4~多くとも約0.7である、請求項1に記載のバイオカーボン組成物。
【請求項7】
前記塩基-酸比率が、多くとも約0.4又は少なくとも約0.7である、請求項1に記載のバイオカーボン組成物。
【請求項8】
前記バイオカーボン組成物が、各々ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしての、前記Feを前記CaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、前記鉄-カルシウム比率が、少なくとも約0.05~多くとも約5である、請求項1~7のいずれか一項に記載のバイオカーボン組成物。
【請求項9】
前記鉄-カルシウム比率が、約0.1~約2から選択される、請求項8に記載のバイオカーボン組成物。
【請求項10】
前記鉄-カルシウム比率が、約0.3~約1から選択される、請求項8に記載のバイオカーボン組成物。
【請求項11】
前記鉄-カルシウム比率が、多くとも約0.3又は少なくとも約3である、請求項8に記載のバイオカーボン組成物。
【請求項12】
前記バイオカーボン組成物が、各々ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしての、前記Fe及び前記CaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、前記鉄+カルシウムパラメータが、約5重量%~約50重量%から選択される、請求項1~11のいずれか一項に記載のバイオカーボン組成物。
【請求項13】
前記鉄+カルシウムパラメータが、約10重量%~約40重量%から選択される、請求項12に記載のバイオカーボン組成物。
【請求項14】
前記鉄+カルシウムパラメータが、約20重量%~約50重量%から選択される、請求項12に記載のバイオカーボン組成物。
【請求項15】
前記鉄+カルシウムパラメータが、多くとも10重量%である、請求項12に記載のバイオカーボン組成物。
【請求項16】
前記鉄+カルシウムパラメータが、少なくとも10重量%である、請求項12に記載のバイオカーボン組成物。
【請求項17】
前記バイオカーボン組成物が、前記塩基-酸比率に乾燥ベースでの前記バイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、前記スラグ化係数が、約0.001~約1から選択される、請求項1~16のいずれか一項に記載のバイオカーボン組成物。
【請求項18】
前記スラグ化係数が、約0.01~約0.5から選択される、請求項17に記載のバイオカーボン組成物。
【請求項19】
前記スラグ化係数が、約0.01~約0.1から選択される、請求項17に記載のバイオカーボン組成物。
【請求項20】
前記スラグ化係数が、多くとも約0.6である、請求項17に記載のバイオカーボン組成物。
【請求項21】
前記バイオカーボン組成物が、前記塩基-酸比率にASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしての前記NaOを掛けたものとして定義される汚れ係数によって特徴付けられ、前記汚れ係数が、約0.1~約10から選択される、請求項1~20のいずれか一項に記載のバイオカーボン組成物。
【請求項22】
前記汚れ係数が、多くとも約2である、請求項21に記載のバイオカーボン組成物。
【請求項23】
前記汚れ係数が、多くとも約1である、請求項22に記載のバイオカーボン組成物。
【請求項24】
前記バイオカーボン組成物が、前記塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、前記水溶性NaOが、ASTM D4326に従った前記バイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、前記修正汚れ係数が、約0.1~約10から選択される、請求項1~23のいずれか一項に記載のバイオカーボン組成物。
【請求項25】
前記修正汚れ係数が、多くとも約2である、請求項24に記載のバイオカーボン組成物。
【請求項26】
前記修正汚れ係数が、多くとも約1である、請求項24に記載のバイオカーボン組成物。
【請求項27】
前記バイオカーボン組成物が、ASTM D1412に従って定義される平衡水分含有量によって特徴付けられ、前記平衡水分含有量が、約0.1重量%~約10重量%から選択される、請求項1~26のいずれか一項に記載のバイオカーボン組成物。
【請求項28】
前記平衡水分含有量が、約1重量%~約5重量%から選択される、請求項27に記載のバイオカーボン組成物。
【請求項29】
前記バイオカーボン組成物が、ASTM D4326に従った前記バイオカーボン組成物中の前記SiOの重量パーセンテージとして定義されるシリカパーセンテージによって特徴付けられ、前記シリカパーセンテージが、約5重量%~約50重量%から選択される、請求項1~28のいずれか一項に記載のバイオカーボン組成物。
【請求項30】
前記シリカパーセンテージが、約10重量%~約30重量%から選択される、請求項29に記載のバイオカーボン組成物。
【請求項31】
前記バイオカーボン組成物が、多くとも10ppmの水銀を含む、請求項1~30のいずれか一項に記載のバイオカーボン組成物。
【請求項32】
前記バイオカーボン組成物が、本質的に水銀不含である、請求項1~30のいずれか一項に記載のバイオカーボン組成物。
【請求項33】
前記バイオカーボン組成物が、乾燥ベースで、約50重量%~約99重量%の固定炭素を含む、請求項1~32のいずれか一項に記載のバイオカーボン組成物。
【請求項34】
前記バイオカーボン組成物が、乾燥ベースで、少なくとも約75重量%の固定炭素を含む、請求項33に記載のバイオカーボン組成物。
【請求項35】
前記バイオカーボン組成物が、乾燥ベースで、少なくとも約90重量%の固定炭素を含む、請求項33に記載のバイオカーボン組成物。
【請求項36】
前記バイオカーボン組成物内の前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である、請求項1~35のいずれか一項に記載のバイオカーボン組成物。
【請求項37】
前記バイオカーボン組成物内の前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能である、請求項1~35のいずれか一項に記載のバイオカーボン組成物。
【請求項38】
前記バイオカーボン組成物が、ペレットの形態である、請求項1~37のいずれか一項に記載のバイオカーボン組成物。
【請求項39】
前記ペレットが、結合剤を更に含む、請求項38に記載のバイオカーボン組成物。
【請求項40】
前記結合剤が、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体を含む、請求項39に記載のバイオカーボン組成物。
【請求項41】
前記バイオカーボン組成物が、粉末の形態である、請求項1~37のいずれか一項に記載のバイオカーボン組成物。
【請求項42】
前記バイオカーボン組成物が、添加剤を更に含み、前記添加剤が、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体を含む、請求項1~41のいずれか一項に記載のバイオカーボン組成物。
【請求項43】
約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、前記バイオカーボン組成物が、以下の式:
【数2】
によって定義される拡張塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々が、ASTM D4326に従った前記バイオカーボン組成物における重量分率に対応し、前記拡張塩基-酸比率が、約0.05~約8から選択される、バイオカーボン組成物。
【請求項44】
前記拡張塩基-酸比率が、約0.1~約0.4から選択される、請求項43に記載のバイオカーボン組成物。
【請求項45】
前記拡張塩基-酸比率が、約0.5~約10から選択される、請求項43に記載のバイオカーボン組成物。
【請求項46】
前記拡張塩基-酸比率が、約0.8~約10から選択される、請求項43に記載のバイオカーボン組成物。
【請求項47】
前記拡張塩基-酸比率が、約0.5~約5から選択される、請求項43に記載のバイオカーボン組成物。
【請求項48】
前記拡張塩基-酸比率が、約0.4~約0.7から選択される、請求項43に記載のバイオカーボン組成物。
【請求項49】
前記拡張塩基-酸比率が、多くとも約0.4又は少なくとも約0.7である、請求項43に記載のバイオカーボン組成物。
【請求項50】
前記バイオカーボン組成物が、各々ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしての、前記Feを前記CaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、前記鉄-カルシウム比率が、約0.05~約5から選択される、請求項43~49のいずれか一項に記載のバイオカーボン組成物。
【請求項51】
前記鉄-カルシウム比率が、約0.1~約2から選択される、請求項50に記載のバイオカーボン組成物。
【請求項52】
前記鉄-カルシウム比率が、約0.3~約1から選択される、請求項50に記載のバイオカーボン組成物。
【請求項53】
前記鉄-カルシウム比率が、多くとも約0.3又は少なくとも約3である、請求項56に記載のバイオカーボン組成物。
【請求項54】
前記バイオカーボン組成物が、各々ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしての、前記Fe及び前記CaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、前記鉄+カルシウムパラメータが、約5重量%~約50重量%から選択される、請求項43~53のいずれか一項に記載のバイオカーボン組成物。
【請求項55】
前記鉄+カルシウムパラメータが、約10重量%~約40重量%から選択される、請求項54に記載のバイオカーボン組成物。
【請求項56】
前記鉄+カルシウムパラメータが、約20重量%~約50重量%から選択される、請求項54に記載のバイオカーボン組成物。
【請求項57】
前記鉄+カルシウムパラメータが、多くとも10重量%である、請求項54に記載のバイオカーボン組成物。
【請求項58】
前記鉄+カルシウムパラメータが、少なくとも10重量%である、請求項54に記載のバイオカーボン組成物。
【請求項59】
前記バイオカーボン組成物が、前記塩基-酸比率に乾燥ベースでの前記バイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、前記スラグ化係数が、約0.001~約1から選択され、前記塩基-酸比率が、以下の式:
【数3】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージに対応する、請求項43~58のいずれか一項に記載のバイオカーボン組成物。
【請求項60】
前記スラグ化係数が、約0.01~約0.5から選択される、請求項59に記載のバイオカーボン組成物。
【請求項61】
前記スラグ化係数が、約0.01~約0.1から選択される、請求項59に記載のバイオカーボン組成物。
【請求項62】
前記スラグ化係数が、多くとも約0.6である、請求項59に記載のバイオカーボン組成物。
【請求項63】
前記バイオカーボン組成物が、前記塩基-酸比率にASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、前記汚れ係数が、約0.1~約10から選択され、前記塩基-酸比率が、以下の式:
【数4】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージに対応する、請求項43~62のいずれか一項に記載のバイオカーボン組成物。
【請求項64】
前記汚れ係数が、多くとも約2である、請求項63に記載のバイオカーボン組成物。
【請求項65】
前記汚れ係数が、多くとも約1である、請求項63に記載のバイオカーボン組成物。
【請求項66】
前記バイオカーボン組成物が、前記塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、前記水溶性NaOが、ASTM D4326に従った前記バイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、前記修正汚れ係数が、約0.1~約10から選択され、前記塩基-酸比率が、以下の式:
【数5】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った前記バイオカーボン組成物における重量パーセンテージに対応する、請求項43~65のいずれか一項に記載のバイオカーボン組成物。
【請求項67】
前記修正汚れ係数が、多くとも約2である、請求項66に記載のバイオカーボン組成物。
【請求項68】
前記修正汚れ係数が、多くとも約1である、請求項66に記載のバイオカーボン組成物。
【請求項69】
前記バイオカーボン組成物が、ASTM D1412に従って定義される平衡水分含有量によって特徴付けられ、前記平衡水分含有量が、約0.1重量%~約10重量%から選択される、請求項43~68のいずれか一項に記載のバイオカーボン組成物。
【請求項70】
前記平衡水分含有量が、約1重量%~約5重量%から選択される、請求項69に記載のバイオカーボン組成物。
【請求項71】
前記バイオカーボン組成物が、ASTM D4326に従った前記バイオカーボン組成物中の前記SiOの重量パーセンテージとして定義されるシリカパーセンテージによって特徴付けられ、前記シリカパーセンテージが、約5重量%~約50重量%から選択される、請求項43~70のいずれか一項に記載のバイオカーボン組成物。
【請求項72】
前記シリカパーセンテージが、約10重量%~約30重量%から選択される、請求項71に記載のバイオカーボン組成物。
【請求項73】
前記バイオカーボン組成物が、多くとも10ppmの水銀を含む、請求項43~72のいずれか一項に記載のバイオカーボン組成物。
【請求項74】
前記バイオカーボン組成物が、本質的に水銀不含である、請求項43~72のいずれか一項に記載のバイオカーボン組成物。
【請求項75】
前記バイオカーボン組成物が、乾燥ベースで、約50重量%~約99重量%の固定炭素を含む、請求項43~74のいずれか一項に記載のバイオカーボン組成物。
【請求項76】
前記バイオカーボン組成物が、乾燥ベースで、少なくとも約75重量%の固定炭素を含む、請求項75に記載のバイオカーボン組成物。
【請求項77】
前記バイオカーボン組成物が、乾燥ベースで、少なくとも約90重量%の固定炭素を含む、請求項75に記載のバイオカーボン組成物。
【請求項78】
前記バイオカーボン組成物内の前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である、請求項43~77のいずれか一項に記載のバイオカーボン組成物。
【請求項79】
前記バイオカーボン組成物内の前記総炭素が、前記総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能である、請求項43~77のいずれか一項に記載のバイオカーボン組成物。
【請求項80】
前記バイオカーボン組成物が、ペレットの形態である、請求項43~79のいずれか一項に記載のバイオカーボン組成物。
【請求項81】
前記ペレットが、結合剤を更に含む、請求項80に記載のバイオカーボン組成物。
【請求項82】
前記結合剤が、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体を含む、請求項81に記載のバイオカーボン組成物。
【請求項83】
前記バイオカーボン組成物が、粉末の形態である、請求項43~79のいずれか一項に記載のバイオカーボン組成物。
【請求項84】
前記バイオカーボン組成物が、添加剤を更に含み、前記添加剤が、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体を含む、請求項43~83のいずれか一項に記載のバイオカーボン組成物。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2021年11月12日に出願された米国仮特許出願第63/278,573号の優先権の利益を主張するものであり、これは、その全体が参照により本明細書に組み込まれる。
【0002】
本発明は、概して、最適化された組成パラメータを有するバイオカーボン組成物、及びそのようなバイオカーボン組成物を生成するためのプロセスに関する。
【背景技術】
【0003】
バイオマスは、生物学的に生成された物質又は生体物質を説明するために使用される用語である。バイオマスに含有されている化学エネルギーは、光合成の自然プロセスを使用する太陽エネルギーに由来する。これは、植物がその周囲から二酸化炭素及び水を取り込み、日光からのエネルギーを使用して、それらを糖、デンプン、セルロース、ヘミセルロース、及びリグニンに変換するプロセスである。全ての再生可能なエネルギー供給源のうち、バイオマスは、それが効果的に貯蔵された太陽エネルギーであるという点で独特である。更に、バイオマスは、唯一の再生可能な炭素供給源である。
【0004】
炭素質材料としては、一般に、天然ガス、石油、石炭、及び亜炭などの化石資源、又はリグノセルロース系バイオマス及び様々な炭素濃縮廃棄物などの再生可能な資源が挙げられる。化石資源に関連する経済的コスト、環境的コスト、及び社会的コストの上昇に起因して、再生可能なバイオマスを使用して炭素系試薬を生成することへの関心が高まっている。
【0005】
最適化された組成パラメータを有するバイオカーボン組成物、及び最適化されたバイオカーボン組成物を生成するためのプロセスが必要とされている。バイオカーボン組成パラメータは、様々な商業的用途のために最適化されるべきである。
【発明の概要】
【0006】
いくつかの変形形態では、本発明は、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、以下の式:
【数1】
によって定義される塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、塩基-酸比率が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0007】
いくつかの実施形態では、塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7から選択される。ある特定の実施形態では、塩基-酸比率は、多くとも0.4又は少なくとも0.7である。
【0008】
いくつかの実施形態では、上記のバイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって更に特徴付けられ、鉄-カルシウム比率は、約0.05~約5から選択される。
【0009】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、鉄-カルシウム比率が、約0.05~約5から選択される、バイオカーボン組成物を提供する。
【0010】
いくつかの実施形態では、鉄-カルシウム比率は、約0.1~約2、又は約0.3~約1から選択される。ある特定の実施形態では、鉄-カルシウム比率は、多くとも0.3又は少なくとも3である。
【0011】
いくつかの実施形態では、上記のバイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって更に特徴付けられ、鉄+カルシウムパラメータは、約5重量%~約50重量%から選択される。
【0012】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、鉄+カルシウムパラメータが、約5重量%~約50重量%から選択される、バイオカーボン組成物を提供する。
【0013】
いくつかの実施形態では、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%から選択される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%である。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%である。
【0014】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって更に特徴付けられ、塩基-酸比率は、以下の式:
【数2】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、スラグ化係数は、約0.001~約1から選択される。
【0015】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、塩基-酸比率が、以下の式:
【数3】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、スラグ化係数が、約0.001~約1から選択される、バイオカーボン組成物を提供する。
【0016】
いくつかの実施形態では、スラグ化係数は、約0.01~約0.5、又は約0.01~約0.1から選択される。ある特定の実施形態では、スラグ化係数は、多くとも0.6である。
【0017】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって更に特徴付けられ、塩基-酸比率は、以下の式:
【数4】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、汚れ係数は、約0.1~約10から選択される。
【0018】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、塩基-酸比率が、以下の式:
【数5】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、汚れ係数が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0019】
いくつかの実施形態では、汚れ係数は、多くとも2である。ある特定の実施形態では、汚れ係数は、多くとも1である。典型的には、低い汚れ係数が望ましい。しかしながら、ある特定の実施形態では、中程度又は更に高い汚れ係数が、アルカリを含む複合材を製作する場合など、アルカリ結合堆積物を形成するのに有益である。
【0020】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって更に特徴付けられ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率は、以下の式:
【数6】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、修正汚れ係数は、約0.1~約10から選択される。
【0021】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、水溶性NaOが、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率が、以下の式:
【数7】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、修正汚れ係数が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0022】
いくつかの実施形態では、修正汚れ係数は、多くとも2である。ある特定の実施形態では、修正汚れ係数は、多くとも1である。
【0023】
いくつかの実施形態では、上記のバイオカーボン組成物は、ASTM D4326に従ったバイオカーボン組成物中のSiOの重量パーセンテージとして定義されるシリカパーセンテージによって更に特徴付けられ、シリカパーセンテージは、約5重量%~約50重量%から選択される。ある特定の実施形態では、シリカパーセンテージは、約10重量%~約30重量%から選択される。
【0024】
いくつかの実施形態では、上記のバイオカーボン組成物は、低い水銀含有量によって更に特徴付けられる。バイオカーボン組成物は、多くとも100ppmの水銀(ppm=重量ベースで100万分の1)を含み得るか、又は多くとも10ppmの水銀を含み得るか、又は本質的に水銀不含であり得る。
【0025】
いくつかの実施形態では、バイオカーボン組成物は、ASTM D1412による平衡水分含有量によって更に特徴付けられる。平衡水分は、全ての介在範囲を含む、約0.1重量%~約10重量%、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.5、0.8、1、1.2、1.5、2、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、4、4.5、5、6、7、8、9、又は10重量%であり得る。
【0026】
バイオカーボン組成物は、乾燥ベースで、約50重量%~約99重量%の固定炭素を含み得る。いくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約75重量%の固定炭素又は少なくとも約90重量%の固定炭素を含む。
【0027】
いくつかの実施形態では、バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも99%再生可能であり得る。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能であり得る。
【0028】
いくつかの実施形態では、バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも80%再生可能である。バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能であり得る。バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも95%再生可能であり得る。
【0029】
バイオカーボン組成物は、ペレットの形態であり得る。ペレットは、結合剤を含み得る。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体から選択され得る。いくつかの実施形態では、バイオカーボンペレットは、外部から添加された結合剤を含まない。
【0030】
バイオカーボン組成物は、粉末の形態であり得、これは、ルーズパウダー、圧縮粉末、造粒粉末、又は他の形態であり得る。
【0031】
いくつかの実施形態では、上記のバイオカーボン組成物は、以下の式:
【数8】
によって定義される拡張塩基-酸比率によって更に特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量分率に対応し、拡張塩基-酸比率は、約0.05~約8から選択される。
【0032】
本発明のいくつかの変形形態は、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、以下の式:
【数9】
によって定義される拡張塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量分率に対応し、拡張塩基-酸比率が、約0.05~約8から選択される、バイオカーボン組成物を提供する。
【0033】
いくつかの実施形態では、拡張塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7から選択される。ある特定の実施形態では、拡張塩基-酸比率は、多くとも0.4又は少なくとも0.7である。
【0034】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、鉄-カルシウム比率は、約0.05~約5から選択される。鉄-カルシウム比率は、例えば、約0.1~約2、又は約0.3~約1から選択され得る。ある特定の実施形態では、鉄-カルシウム比率は、多くとも0.3又は少なくとも3である。
【0035】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、鉄+カルシウムパラメータは、約5重量%~約50重量%から選択される。鉄+カルシウムパラメータは、例えば、約10重量%~約40重量%、又は約20重量%~約50重量%から選択され得る。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%である。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%である。
【0036】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率に燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、スラグ化係数は、約0.001~約1から選択される。スラグ化係数は、例えば、約0.01~約0.5、又は約0.01~約0.1から選択され得る。ある特定の実施形態では、スラグ化係数は、多くとも0.6である。
【0037】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、汚れ係数は、約0.1~約10から選択される。汚れ係数は、例えば、多くとも2又は多くとも1であり得る。
【0038】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、修正汚れ係数は、約0.1~約10から選択される。修正汚れ係数は、例えば、多くとも2又は多くとも1であり得る。
【0039】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、ASTM D4326に従ったバイオカーボン組成物中のSiOの重量パーセンテージとして定義されるシリカパーセンテージによって特徴付けられ、シリカパーセンテージは、約5重量%~約50重量%から選択される。シリカパーセンテージは、例えば、約10重量%~約30重量%から選択され得る。
【0040】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、多くとも100ppmの水銀を含むか、又は多くとも10ppmの水銀を含むか、又は本質的に水銀不含であり得る。
【0041】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、約50重量%~約99重量%の固定炭素を含む。ある特定の実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約75重量%の固定炭素又は少なくとも約90重量%の固定炭素を含む。
【0042】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも99%再生可能であり得る。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能であり得る。
【0043】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、ペレットの形態である。ペレットは、任意選択的に、結合剤を含む。
【0044】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、粉末の形態である。粉末は、ルーズパウダー、圧縮粉末、造粒粉末、又は別の形態の粉末であり得る。
【0045】
開示されているバイオカーボン組成物のいずれも、添加剤を更に含み得、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0046】
本発明のいくつかの変形形態は、最適化された塩基-酸比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、以下の式:
【数10】
によって定義される塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、塩基-酸比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、塩基-酸比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の塩基-酸比率が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0047】
いくつかのプロセスでは、バイオマスは、軟材チップ、硬材チップ、材木収穫残渣、木の枝、木の切り株、葉、樹皮、おがくず、トウモロコシ、トウモロコシ茎葉、小麦、小麦わら、イネ、イネわら、サトウキビ、サトウキビバガス、サトウキビわら、エネルギーサトウキビ、サトウダイコン、サトウダイコンパルプ、ヒマワリ、モロコシ、キャノーラ、藻類、ススキ、アルファルファ、スイッチグラス、果物、果物の殻、果物の茎、果物の皮、果物の種子、野菜、野菜の殻、野菜の茎、野菜の皮、野菜の種子、ブドウの搾りかす、扁桃の殻、ペカンの殻、ココナッツの殻、コーヒー澱、食品廃棄物、商業廃棄物、草ペレット、干し草ペレット、木材ペレット、厚紙、紙、紙パルプ、紙包装、紙トリミング、食品包装、建築若しくは解体廃棄物、枕木、リグニン、動物性肥料、都市固形廃棄物、都市下水、又はそれらの組み合わせから選択される。
【0048】
いくつかの実施形態では、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0049】
いくつかの実施形態では、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0050】
いくつかの実施形態では、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0051】
いくつかの実施形態では、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0052】
いくつかの実施形態では、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0053】
いくつかのプロセスでは、ステップ(c)が行われる。いくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0054】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0055】
いくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0056】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0057】
いくつかのプロセスでは、塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7になるように最適化される。ある特定の実施形態では、塩基-酸比率は、多くとも0.4又は少なくとも0.7になるように最適化される。
【0058】
本発明のいくつかの変形形態は、最適化された拡張塩基-酸比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、以下の式:
【数11】
によって定義される拡張塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々が、ASTM D4326に従った重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、塩基-酸比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、塩基-酸比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の拡張塩基-酸比率が、約0.05~約8から選択される、回収することと、を含む、プロセスを提供する。
【0059】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0060】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0061】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0062】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0063】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0064】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0065】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0066】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0067】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0068】
いくつかのプロセスでは、拡張塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7になるように最適化される。ある特定の実施形態では、拡張塩基-酸比率は、多くとも0.4又は少なくとも0.7になるように最適化される。
【0069】
開示されているプロセスのいずれかでは、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けることができ、バイオカーボン組成物の鉄-カルシウム比率は、約0.05~約5から選択される。
【0070】
いくつかの変形形態は、最適化された鉄-カルシウム比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられる、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、鉄-カルシウム比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、鉄-カルシウム比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の鉄-カルシウム比率が、約0.05~約5から選択される、回収することと、を含む、プロセスを提供する。
【0071】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0072】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0073】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0074】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0075】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0076】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0077】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0078】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0079】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0080】
いくつかのプロセスでは、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%になるように最適化される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%になるように最適化される。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%になるように最適化される。
【0081】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けることができ、バイオカーボン組成物の鉄+カルシウムパラメータは、5重量%~約50重量%から選択される。
【0082】
いくつかの変形形態は、最適化された鉄+カルシウムパラメータを有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられる、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、鉄+カルシウムパラメータを調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、鉄+カルシウムパラメータを調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の鉄+カルシウムパラメータが、5重量%~約50重量%から選択される、回収することと、を含む、プロセスを提供する。
【0083】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0084】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0085】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0086】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0087】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0088】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)が行われる。鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0089】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0090】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0091】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0092】
いくつかのプロセスでは、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%になるように最適化される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%になるように最適化される。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%になるように最適化される。
【0093】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けることができ、塩基-酸比率は、以下の式:
【数12】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物のスラグ化係数は、約0.001~約1から選択される。
【0094】
いくつかの変形形態は、最適化されたスラグ化係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、
塩基-酸比率が、以下の式:
【数13】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、スラグ化係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、スラグ化係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物のスラグ化係数が、約0.001~約1から選択される、回収することと、を含む、プロセスを提供する。
【0095】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0096】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0097】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0098】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0099】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0100】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0101】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0102】
スラグ化係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0103】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0104】
いくつかのプロセスでは、スラグ化係数は、約0.01~約0.5、又は約0.01~約0.1になるように最適化される。ある特定の実施形態では、スラグ化係数は、多くとも0.6、例えば、約0.5、0.4、0.3、0.2、0.1、0.05、0.04、0.03、0.02、0.01、0.005、0.002、若しくは0.001、又はそれ未満になるように最適化される。
【0105】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けることができ、塩基-酸比率は、以下の式:
【数14】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物の汚れ係数は、約0.1~約10から選択される。
【0106】
いくつかの変形形態は、最適化された汚れ係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、
塩基-酸比率が、以下の式:
【数15】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、汚れ係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、汚れ係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の汚れ係数が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0107】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0108】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0109】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0110】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0111】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0112】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。汚れ係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0113】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0114】
汚れ係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0115】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0116】
いくつかのプロセスでは、汚れ係数は、多くとも2になるように最適化される。ある特定の実施形態では、汚れ係数は、多くとも1、例えば、約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、若しくは0.1、又はそれ未満になるように最適化される。
【0117】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けることができ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率は、以下の式:
【数16】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物の汚れ係数は、約0.1~約10から選択される。
【0118】
いくつかの変形形態は、最適化された修正汚れ係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率に水溶性NaOを掛けたものである修正汚れ係数によって特徴付けられ、水溶性NaOが、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、
塩基-酸比率が、以下の式:
【数17】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、修正汚れ係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、修正汚れ係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の修正汚れ係数が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0119】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0120】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0121】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0122】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0123】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0124】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0125】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0126】
修正汚れ係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0127】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。
【0128】
いくつかのプロセスでは、修正汚れ係数は、多くとも2になるように最適化される。ある特定の実施形態では、修正汚れ係数は、多くとも1、例えば、約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、若しくは0.1、又はそれ未満になるように最適化される。
【図面の簡単な説明】
【0129】
図1】バイオカーボンペレットの形態の、最適化された塩基-酸比率を有する例示的なバイオカーボン組成物の写真である。
【0130】
図2】バイオカーボン粉末の形態の、最適化された塩基-酸比率を有する例示的なバイオカーボン組成物の写真である。
【0131】
図3】いくつかの実施形態における、バイオマス原料を、最適化された塩基-酸比率を有するバイオカーボン組成物に変換するためのプロセスの簡略化されたブロックフロー図である。点線は、任意選択的な流れ及びユニットを示す。
【0132】
図4】いくつかの実施形態における、バイオマス原料を、最適化された増加した塩基-酸比率を有するバイオカーボン組成物に変換するためのプロセスの簡略化されたブロックフロー図である。点線は、任意選択的な流れ及びユニットを示す。
【0133】
図5】実施例1のバイオカーボン組成物についての組成、塩基-酸比率、及び他の特性を示すデータシートである。
【0134】
図6】実施例2のバイオカーボン組成物についての組成、塩基-酸比率、及び他の特性を示すデータシートである。
【0135】
図7】実施例3のバイオカーボン組成物についての組成、塩基-酸比率、及び他の特性を示すデータシートである。
【0136】
図8】実施例4のバイオカーボン組成物についての組成、塩基-酸比率、及び他の特性を示すデータシートである。
【0137】
図9】実施例5のバイオカーボン組成物についての組成(塩基-酸比率を計算することができる)及び他の特性を示すデータシートである。
【0138】
図10】実施例6のバイオカーボン組成物についての組成、塩基-酸比率、及び他の特性を示すデータシートである。
【発明を実施するための形態】
【0139】
詳細な説明
この説明は、当業者が本発明を作製及び使用することを可能にし、本発明のいくつかの実施形態、適合、変形形態、代替、及び使用を説明する。本発明のこれら及び他の実施形態、特徴、及び利点は、添付の図面と併せて本開示の以下の詳細な説明を参照すると、当業者にはより明らかになるであろう。
【0140】
本明細書及び添付の特許請求の範囲で使用される場合、単数形「a」、「an」、及び「the」は、文脈が明らかにそうでないことを示さない限り、複数の指示対象を含む。別途定義されない限り、本明細書で使用される全ての技術的及び科学的用語は、本発明が属する当業者によって一般に理解されるのと同じ意味を有する。
【0141】
別段の指示がない限り、本明細書及び特許請求の範囲で使用される反応条件、化学量論、成分の濃度などを表す全ての数字は、全ての場合において「約」という用語によって修飾されるものとして理解されるべきである。したがって、そうでないと示されない限り、以下の明細書及び添付の特許請求の範囲に記載される数値パラメータは、少なくとも特定の分析技術に依存して変動し得る近似値である。
【0142】
「含む(including)」、「含む(comprising)」、又は「~によって特徴付けられる(characterized by)」と同義である「含む(comprising)」という用語は、包括的又はオープンエンドであり、追加の記載されていない要素又は方法ステップを除外しない。「含む(comprising)」は、指定された請求項要素が必須であることを意味する請求項文言において使用される技術用語であるが、他の請求項要素を追加することができ、依然として請求項の範囲内の構成物を形成することができる。
【0143】
本明細書で使用される場合、「からなる(consisting of)」は、請求項に指定されていない任意の要素、ステップ、又は成分を除外する。「からなる(consists of)」という句(又はその変形)が、プリアンブルの直後ではなく、請求項の本文の節に現れる場合、その句は、その節に記載された要素のみを限定し、他の要素も全体として請求項から除外されない。本明細書で使用される場合、「から本質的になる(consisting essentially of)」という句は、請求項の範囲を、指定された要素又は方法ステップに加えて、特許請求される主題の基礎及び新規の特徴に実質的に影響を及ぼさないものに限定する。
【0144】
技術的な開示を可能にする目的で、様々な説明、仮説、理論、推測、仮定などが開示されている。本発明は、実際に真であるこれらのいずれにも依存しない。この詳細な説明における説明、仮説、理論、推測、又は仮定のいずれも、本発明の範囲を何ら限定するものと解釈されるべきではない。
【0145】
本目的では、「生体(biogenic)」は、数か月、数年、又は数十年の時間スケールで再生可能な炭素などの元素を含む材料(原料、生成物、又は中間体)を意味することを意図している。非生体材料は、非再生可能であり得るか、又は数世紀、数千年、数百万年、若しくは更に長い地質学的時間スケールの時間スケールで再生可能であり得る。生体材料は、生体源と非生体源との混合物を含み得る。
【0146】
本目的では、「試薬」とは、その最も広い意味での材料を意味することを意図しており、試薬は、燃料、化学物質、材料、化合物、添加剤、ブレンド成分、溶媒などであり得る。試薬は、必ずしも化学反応を引き起こすか又は化学反応に関与する化学試薬である必要はない。いくつかの実施形態では、試薬は、化学反応物であり、いくつかの実施形態では、試薬は、反応において消費される。試薬は、特定の反応のための化学触媒であり得る。試薬は、試薬が添加され得る材料の機械的、物理的、又は流体力学的特性を調節することを引き起こすか、又はそれに関与し得る。例えば、試薬を金属に導入して、ある特定の強度特性を金属に付与することができる。試薬は、化学分析又は物理的試験で使用するのに十分な純度(現在の状況では、典型的には炭素純度)の物質であり得る。
【0147】
本開示において、「製品」は、例えば、組成物、材料、物体、又は構造であり得る。「製品」という用語は、それが更なる処理のための中間体として他の当事者に対して販売され、保管され、取引され、更に処理され、販売されるかどうかなど、その商業的運命によって制限されないものとする。
【0148】
本明細書で使用される場合、生体試薬を説明するものとしての「高炭素」とは、生体試薬が、高炭素生体試薬を生成するために利用される初期原料と比較して高い炭素含有量を有することを意味する。高炭素生体試薬は、その重量の少なくとも約半分を炭素として含み得る。より典型的には、高炭素生体試薬は、少なくとも55重量%、60重量%、65重量%、又は70重量%の炭素を含むであろう。
【0149】
本明細書で使用される場合、「高炭素生体試薬」という用語は、様々な実施形態では、本明細書に開示されているプロセス及びシステムによって生成することができる材料を説明する。炭素含有量又は他の任意の濃度に関する制限は、用語自体からではなく、特定の実施形態及びその同等物を参照することによってのみ帰属されるものとする。例えば、開示されているプロセスに供される、炭素含有量が非常に低い出発材料は、出発材料に対して炭素が高度に濃縮されている(高い炭素収率)が、それにもかかわらず、多くとも50重量%の炭素などの、炭素が比較的少ない(低純度の炭素)高炭素生体試薬を生成し得ることが理解されよう。
【0150】
バイオマス原料を高炭素質材料に変換するための様々な変換技術が存在する。熱分解は、酸化剤(例えば、空気若しくは酸素)の完全な非存在下で、かつ酸化が感知できる程度に起こらないような酸化剤の制限された供給で、固体材料を熱変換するためのプロセスである。プロセス条件及び添加剤に応じて、バイオマス熱分解を調節して、広く変動する量のガス、液体、及び固体を生成することができる。より低いプロセス温度及びより長い蒸気滞留時間は、固体の生成に有利である。高温及びより長い滞留時間は、合成ガスへのバイオマス変換を増加させ、中程度の温度及び短い蒸気滞留時間は、概して、液体を生成するために最適である。歴史的に、木材のゆっくりとした熱分解は、大きなパイルにおいて、単純なバッチプロセスで、排出制御なしに実行されてきた。伝統的な木炭作製技術は、エネルギー効率が悪いばかりでなく、汚染性が高い。
【0151】
多くの工業用途では、バイオマス熱分解から得られるバイオカーボン組成物を提供することによって石炭を置き換えることが望ましい。石炭と同様に、バイオカーボン製品は、めったに純粋な炭素ではない。様々な金属を含む多くの他の成分が典型的に存在する。「灰」への言及は、実際には、燃焼後に残った材料を指し、その材料自体は、多くの個々の成分を含む。
【0152】
本開示では、「組成パラメータ」は、バイオカーボン組成物の関数であるか、又はバイオカーボン組成物と相関する、任意のパラメータである。いくつかの実施形態では、組成パラメータは、ASTM D4326によって、及びASTM D4326の結果からの入力を伴う方程式によって決定される。
【0153】
従来技術は、特定の用途のために最適化された組成パラメータを有するバイオカーボン組成物を教示しておらず、どの組成パラメータが様々な用途に重要であり得るかを教示していない。重要な組成パラメータは、これより詳細に説明する塩基-酸比率である。
【0154】
いくつかの変形形態では、本発明は、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、以下の式:
【数18】
によって定義される塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、塩基-酸比率が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0155】
いくつかの実施形態では、塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7から選択される。ある特定の実施形態では、塩基-酸比率は、多くとも0.4又は少なくとも0.7である。
【0156】
Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiO濃度は、参照によりその全体が本明細書に組み込まれ、本明細書では「ASTM D4326」と称されるASTM D4326-13 “Standard Test Method for Major and Minor Elements by XRF”に従った、サンプル燃焼後の灰分率内のものであることに留意されたい。
【0157】
Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの全てがバイオカーボン組成物の灰中に存在する必要はない。しかしながら、非ゼロ及び有限の塩基-酸比率を有するためには、(ASTM D4326による)検出可能な量の、Fe、CaO、MgO、KO、NaOのうちの少なくとも1つ、並びにSiO、Al、及びTiOのうちの少なくとも1つがある必要がある。
【0158】
ASTM D4326は、X線蛍光(XRF)技術を使用する、炭素サンプルからの灰中で一般に決定される主元素及び副元素を分析するための試験方法である。分析すべき炭素は、標準条件下で灰化され、一定の重量に点火される。これまでに灰化された材料は、標準条件下で一定の重量に点火される。灰は、四ホウ酸リチウム(Li)又は他の好適なフラックスと融合され、粉砕及びプレスされてペレットにされるか、又はガラスディスクに注型される。次いで、ペレット又はディスクは、短波長のX線ビームによって照射される。一次X線又は入射X線の吸収時に放出又は蛍光発光される特徴的なX線が分散され、選択された波長での強度は、高感度検出器によって測定される。検出器出力は、較正曲線又はコンピュータアルゴリズムによる濃度に関連している。Kスペクトル線は、この手順によって決定される元素全てに使用される。全ての元素が、元素として決定され、酸化物として報告される。分析された元素は、Si、Al、Fe、Ca、Mg、Na、K、P、Ti、Mn、Sr、及びBaを含む。灰の組成分析は、その完全な特性評価のためにバイオカーボンの品質を記述する際に使用される。灰組成物は、スラグ化及び汚れ特性を予測すること、並びに様々な商業的用途における潜在的利用を評価することに有用である。
【0159】
重要なことに、ASTM D4326による塩基-酸比率についての式中の成分の決定は、そのような成分がバイオカーボン組成物中の特定の酸化物として実際に存在することを意味してはいないが、その特定の酸化物としての存在は排除されない。例えば、ASTM D4326分析から返送されるCaOの場合、最終的なカルシウム原子は、純粋なカルシウム原子(Ca)、酸化カルシウム(CaO)、炭酸カルシウム(CaCO)、水酸化カルシウム(Ca(OH))、炭化カルシウム(CaC)、水素化カルシウム(CaH)、遊離又は緩く結合したカルシウムカチオン(Ca2+)、他の成分とのイオン架橋結合などにあるような、イオン結合したカルシウムカチオン(Ca2+)、他の形態のカルシウム、又はそれらの組み合わせとして、開始バイオカーボン組成物中に実際に存在していた可能性がある。ASTM D4326試験プロトコル中に、CaがCaOに酸化されたり、CaCOがCaOに熱分解されたりする。
【0160】
任意選択的に、バイオカーボン組成物の別個の分析を実施して、バイオカーボン組成物中の正確な原子及び分子を決定してもよい。別個の分析は、例えば、原子吸収分光法、原子放出分光法、誘導結合プラズマ質量分析法、誘導結合プラズマ光学放出分光法、又はX線吸収微細構造分光法を用いることができる。
【0161】
いくつかの実施形態では、上記のバイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって更に特徴付けられ、鉄-カルシウム比率は、約0.05~約5から選択される。
【0162】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、鉄-カルシウム比率が、約0.05~約5から選択される、バイオカーボン組成物を提供する。
【0163】
いくつかの実施形態では、鉄-カルシウム比率は、約0.1~約2、又は約0.3~約1から選択される。ある特定の実施形態では、鉄-カルシウム比率は、多くとも0.3又は少なくとも3である。様々な実施形態では、鉄-カルシウム比率は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.1、3.2、3.3、3.4、3.5、4、4.5、又は5である。
【0164】
いくつかの実施形態では、上記バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって更に特徴付けられ、鉄+カルシウムパラメータは、約5重量%~約50重量%から選択される。様々な実施形態では、鉄+カルシウムパラメータは、全ての介在範囲を含む、約、少なくとも約、又は多くとも約5、10、15、20、25、30、35、40、45、又は50重量%である。
【0165】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、鉄+カルシウムパラメータが、約5重量%~約50重量%から選択される、バイオカーボン組成物を提供する。
【0166】
いくつかの実施形態では、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%から選択される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%である。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%である。
【0167】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって更に特徴付けられ、塩基-酸比率は、以下の式:
【数19】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、スラグ化係数は、約0.001~約1から選択される。
【0168】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、塩基-酸比率が、以下の式:
【数20】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、スラグ化係数が、約0.001~約1から選択される、バイオカーボン組成物を提供する。
【0169】
いくつかの実施形態では、スラグ化係数は、約0.01~約0.5、又は約0.01~約0.1から選択される。ある特定の実施形態では、スラグ化係数は、多くとも0.6である。様々な実施形態では、スラグ化係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.001、0.002、0.005、0.01、0.02、0.03、0.04、0.05、0.1、0.2、0.3、0.4、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.9、0.95、又は1である。
【0170】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって更に特徴付けられ、塩基-酸比率は、以下の式:
【数21】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、汚れ係数は、約0.1~約10から選択される。
【0171】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、塩基-酸比率が、以下の式:
【数22】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、汚れ係数が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0172】
いくつかの実施形態では、汚れ係数は、多くとも2である。ある特定の実施形態では、汚れ係数は、多くとも1である。典型的には、低い汚れ係数が望ましい。しかしながら、ある特定の実施形態では、中程度又は更に高い汚れ係数が、アルカリを含む複合材を製作する場合など、アルカリ結合堆積物を形成するのに有益である。様々な実施形態では、汚れ係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.1、0.2、0.5、0.6、0.7、0.75、0.8、0.85、0.9、1、1.2、1.5、1.8、2、2.5、3、3.5、4、5、6、7、8、9、又は10である。
【0173】
いくつかの実施形態では、上記のバイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって更に特徴付けられ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率は、以下の式:
【数23】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、修正汚れ係数は、約0.1~約10から選択される。
【0174】
本発明はまた、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、水溶性NaOが、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率が、以下の式:
【数24】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、修正汚れ係数が、約0.1~約10から選択される、バイオカーボン組成物を提供する。
【0175】
いくつかの実施形態では、修正汚れ係数は、多くとも2である。ある特定の実施形態では、修正汚れ係数は、多くとも1である。様々な実施形態では、修正汚れ係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.1、0.2、0.5、0.6、0.7、0.75、0.8、0.85、0.9、1、1.2、1.5、1.8、2、2.5、3、3.5、4、5、6、7、8、9、又は10である。
【0176】
いくつかの実施形態では、上記のバイオカーボン組成物は、ASTM D1412による平衡水分含有量によって更に特徴付けられる。平衡水分は、全ての介在範囲を含む、約0.1重量%~約10重量%、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.5、0.8、1、1.2、1.5、2、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、4、4.5、5、6、7、8、9、又は10重量%であり得る。
【0177】
いくつかの実施形態では、上記のバイオカーボン組成物は、ASTM D4326に従ったバイオカーボン組成物中のSiOの重量パーセンテージとして定義されるシリカパーセンテージによって更に特徴付けられ、シリカパーセンテージは、約5重量%~約50重量%から選択される。シリカパーセンテージは、元々のバイオカーボン組成物中ではなく、灰(ASTM D4326での灰化試験)中のSiO濃度であることに留意されたい。ある特定の実施形態では、シリカパーセンテージは、約10重量%~約30重量%から選択される。様々な実施形態では、シリカパーセンテージは、全ての介在範囲を含む、約、少なくとも約、又は多くとも約5、10、15、20、25、30、35、40、45、又は50重量%である。
【0178】
いくつかの実施形態では、上記バイオカーボン組成物は、低い水銀含有量によって更に特徴付けられる。バイオカーボン組成物は、多くとも100ppmの水銀(ppm=重量ベースで100万分の1)を含み得るか、多くとも10ppmの水銀を含み得るか、又は本質的に水銀不含であり得る。「本質的に水銀不含」とは、サンプルを参照により本明細書に組み込まれるASTM D6414-14に従って分析する場合に、Hg又はHgを含む化合物が、絶対的にゼロ(存在しない)又は水銀の検出限界未満のいずれかであることを意味する。様々な実施形態では、バイオカーボン組成物は、多くとも約200、150、100、90、80、70、60、50、40、30、20、10、5、4、3、2、1、0.5、0.2、又は0.1ppmの水銀を含む。
【0179】
バイオカーボン組成物は、乾燥ベースで、約50重量%~約99重量%の固定炭素を含み得る。いくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約75重量%の固定炭素又は少なくとも約90重量%の固定炭素を含む。
【0180】
いくつかの実施形態では、バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも99%再生可能であり得る。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能であり得る。バイオカーボン組成物内の総炭素は、セルロース、ヘミセルロース、及びリグニンに由来する炭素のみならず、金属炭酸塩(例えば、炭酸カルシウム)などの存在する他の成分に含有される炭素(存在する場合)も含むことに留意されたい。
【0181】
いくつかの実施形態では、バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも80%再生可能である。バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能であり得る。バイオカーボン組成物内の固定炭素は、固定炭素の14C/12C同位体比率の測定から決定して、少なくとも95%再生可能であり得る。
【0182】
ある特定の実施形態では、バイオカーボン組成物は、結合剤を有するペレットの形態であり、結合剤は、非再生可能な炭素を含み、ペレットの残りは、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素を含む。
【0183】
バイオカーボン組成物は、ペレットの形態であり得る。図1は、バイオカーボンペレットの形態の、最適化された塩基-酸比率を有する例示的なバイオカーボン組成物の写真である。
【0184】
ある特定の実施形態では、バイオカーボン組成物は、結合剤を有するペレットの形態であり、結合剤は、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素である炭素を含む。ペレットの残りの部分(すなわち、結合剤ではない)は、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素を含む。いくつかの実施形態では、全ての炭素が完全に再生可能である。
【0185】
ある特定の実施形態では、バイオカーボン組成物は、添加剤を含み、添加剤は、非再生可能な炭素を含むが、ペレットの残りは、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素を含む。
【0186】
ある特定の実施形態では、バイオカーボン組成物は、添加剤を含み、添加剤は、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素である炭素を含む。組成物の残りの部分(すなわち、添加剤ではない)は、少なくとも50%、少なくとも90%、少なくとも95%、又は100%再生可能な炭素を含む。いくつかの実施形態では、全ての炭素が完全に再生可能である。
【0187】
本開示において、100%又は「完全に」再生可能な炭素は、化石燃料に由来し得る非常に少量の吸着された大気中のCO分子を許容する。
【0188】
バイオカーボン組成物は、ペレットの形態であり得る。ペレットは、結合剤を含み得る。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体であり得る。いくつかの実施形態では、バイオカーボンペレットは、外部から添加された結合剤を含まない。
【0189】
有機又は無機結合剤がある場合、塩基-酸比率及び他の組成パラメータは、結合剤を含む総材料に基づく。例えば、組成パラメータがASTM D4326に由来する場合、ペレット全体が灰化される。
【0190】
バイオカーボン組成物は、粉末の形態であり得、これは、ルーズパウダー、圧縮粉末、造粒粉末、又は他の形態であり得る。図2は、バイオカーボン粉末の形態の、最適化された塩基-酸比率を有する例示的なバイオカーボン組成物の写真である。
【0191】
バイオカーボン組成物中に有機又は無機添加剤がある場合、塩基-酸比率及び他の組成パラメータは、添加剤を含む総材料に基づく。例えば、組成パラメータがASTM D4326に由来する場合、サンプル全体が灰化される。
【0192】
いくつかの実施形態では、上記のバイオカーボン組成物は、以下の式:
【数25】
によって定義される拡張塩基-酸比率によって更に特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量分率に対応し、拡張塩基-酸比率は、約0.05~約8から選択される。
【0193】
本発明のいくつかの変形形態は、約50重量%~約99重量%の総炭素を含む、バイオカーボン組成物であって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物が、以下の式:
【数26】
によって定義される拡張塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量分率に対応し、拡張塩基-酸比率が、約0.05~約8から選択される、バイオカーボン組成物を提供する。
【0194】
Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの全てがバイオカーボン組成物の灰中に存在する必要はない。しかしながら、非ゼロ及び有限の拡張塩基-酸比率を有するためには、(ASTM D4326による)検出可能な量の、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaOのうちの少なくとも1つ、並びにSiO、Al、TiO、P、及びSOのうちの少なくとも1つがある必要がある。
【0195】
いくつかの実施形態では、拡張塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7から選択される。ある特定の実施形態では、拡張塩基-酸比率は、多くとも0.4又は少なくとも0.7である。
【0196】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられ、鉄-カルシウム比率は、約0.05~約5から選択される。鉄-カルシウム比率は、例えば、約0.1~約2、又は約0.3~約1から選択され得る。ある特定の実施形態では、鉄-カルシウム比率は、多くとも0.3又は少なくとも3である。
【0197】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられ、鉄+カルシウムパラメータは、約5重量%~約50重量%から選択される。鉄+カルシウムパラメータは、例えば、約10重量%~約40重量%、又は約20重量%~約50重量%から選択され得る。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%である。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%である。
【0198】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、スラグ化係数は、約0.001~約1から選択される。スラグ化係数は、例えば、約0.01~約0.5、又は約0.01~約0.1から選択され得る。ある特定の実施形態では、スラグ化係数は、多くとも0.6である。
【0199】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、汚れ係数は、約0.1~約10から選択される。汚れ係数は、例えば、多くとも2又は多くとも1であり得る。
【0200】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けられ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、修正汚れ係数は、約0.1~約10から選択される。修正汚れ係数は、例えば、多くとも2又は多くとも1であり得る。
【0201】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、ASTM D4326に従ったバイオカーボン組成物中のSiOの重量パーセンテージとして定義されるシリカパーセンテージによって特徴付けられ、シリカパーセンテージは、約5重量%~約50重量%から選択される。シリカパーセンテージは、例えば、約10重量%~約30重量%から選択され得る。
【0202】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、ASTM D1412による平衡水分含有量によって更に特徴付けられる。平衡水分は、全ての介在範囲を含む、約0.1重量%~約10重量%、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.5、0.8、1、1.2、1.5、2、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、4、4.5、5、6、7、8、9、又は10重量%であり得る。
【0203】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、多くとも約100ppmの水銀を含むか、多くとも約10ppmの水銀を含むか、又は本質的に水銀不含である。
【0204】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、約50重量%~約99重量%の固定炭素を含む。ある特定の実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約75重量%の固定炭素又は少なくとも約90重量%の固定炭素を含む。
【0205】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能である。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも99%再生可能であり得る。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能であり得る。
【0206】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、ペレットの形態である。ペレットは、任意選択的に、結合剤を含む。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体であり得る。
【0207】
最適化された拡張塩基-酸比率を有するバイオカーボン組成物のいくつかの実施形態では、バイオカーボン組成物は、粉末の形態である。粉末は、ルーズパウダー、圧縮粉末、造粒粉末、又は別の形態の粉末であり得る。
【0208】
開示されているバイオカーボン組成物のいずれも、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体から選択される添加剤など(これらに限定されることはない)の添加剤を更に含み得る。
【0209】
添加剤が存在する場合、添加剤は、本明細書に開示されている組成パラメータ(例えば、塩基-酸比率、スラグ化係数など)のいずれかを調節するように選択され得る。添加剤は、塩基-酸比率を直接調節することができ、添加剤自体は、塩基-酸比率についての式で使用される金属のうちの1つ以上を含有する。例えば、添加剤が純粋なアルミナである場合、塩基-酸比率は、バイオカーボン組成物中の添加剤の濃度によって決定される程度まで低下するであろう。
【0210】
本発明のいくつかの変形形態は、最適化された塩基-酸比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、以下の式:
【数27】
によって定義される塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従った重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、塩基-酸比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、塩基-酸比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の塩基-酸比率が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0211】
図3は、いくつかの実施形態における、バイオマス原料を、最適化された塩基-酸比率を有するバイオカーボン組成物に変換するためのプロセスの簡略化されたブロックフロー図である。点線は、任意選択的な流れ及びユニットを示す。
【0212】
いくつかのプロセスでは、バイオマスは、軟材チップ、硬材チップ、材木収穫残渣、木の枝、木の切り株、葉、樹皮、おがくず、トウモロコシ、トウモロコシ茎葉、小麦、小麦わら、イネ、イネわら、サトウキビ、サトウキビバガス、サトウキビわら、エネルギーサトウキビ、サトウダイコン、サトウダイコンパルプ、ヒマワリ、モロコシ、キャノーラ、藻類、ススキ、アルファルファ、スイッチグラス、果物、果物の殻、果物の茎、果物の皮、果物の種子、野菜、野菜の殻、野菜の茎、野菜の皮、野菜の種子、ブドウの搾りかす、扁桃の殻、ペカンの殻、ココナッツの殻、コーヒー澱、食品廃棄物、商業廃棄物、草ペレット、干し草ペレット、木材ペレット、厚紙、紙、紙パルプ、紙包装、紙トリミング、食品包装、建築若しくは解体廃棄物、枕木、リグニン、動物性肥料、都市固形廃棄物、都市下水、又はそれらの組み合わせ若しくは誘導体である。
【0213】
いくつかの実施形態では、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0214】
いくつかの実施形態では、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0215】
いくつかの実施形態では、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0216】
いくつかの実施形態では、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0217】
いくつかの実施形態では、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0218】
いくつかのプロセスでは、中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、又はそれらの組み合わせで洗浄又は処理することが行われる。いくつかのプロセスでは、添加剤は、ステップ(a)又はステップ(b)中に導入される。ある特定のプロセスでは、これらの選択肢の両方が使用され、すなわち、中間バイオカーボン流が、酸、塩基、塩、金属、H、HO、CO、CO、又はそれらの組み合わせで洗浄又は処理され、添加剤(洗浄又は処理からの任意の成分を除く)がステップ(a)又はステップ(b)中に導入される。
【0219】
ステップ(c)では、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0220】
中間バイオカーボン流を、H、HO、CO、CO、又はそれらの組み合わせで処理する場合、塩基-酸比率を調節するための化学反応は、水素、酸素、及び/又は炭素を、中間バイオカーボン流中に存在する1つ以上の金属に添加してもよい。代替的又は追加的に、H、HO、CO、CO、又はそれらの組み合わせによる処理は、水素、酸素、及び/又は炭素を、中間バイオカーボン流中に存在する1つ以上の金属から除去してもよい。H、HO、CO、及び/又はCOによる処理は、ASTM D4326の灰化プロトコルに起因して、金属の実際の形態が変更されても、必ずしも塩基-酸比率を変化させるわけではないことが認識されるであろう。しかしながら、H、HO、CO、及び/又はCOによる処理に続いて、中間バイオカーボン流の一部の除去が行われる場合、塩基-酸比率が調節され得る。例えば、液体水又は圧縮COを利用して、中間バイオカーボン流を洗浄し、例えば液体のpHに依存して、塩基-酸比率を変化させてもよい。ある特定の実施形態では、H、HO、CO、及び/又はCOによる処理は、ASTM D4326試験下で灰を形成することに多少影響を受けやすい化合物を創出し、その場合、塩基-酸比率が調節される。
【0221】
いくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0222】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体であり得る。
【0223】
いくつかのプロセスでは、塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7になるように最適化される。ある特定の実施形態では、塩基-酸比率は、多くとも0.4又は少なくとも0.7になるように最適化される。
【0224】
本発明のいくつかの変形形態は、最適化された拡張塩基-酸比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、以下の式:
【数28】
によって定義される拡張塩基-酸比率によって特徴付けられ、式中、Fe、CaO、MgO、KO、NaO、MnO、SrO、BaO、SiO、Al、TiO、P、及びSOの各々が、ASTM D4326に従った重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、拡張塩基-酸比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、拡張塩基-酸比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の拡張塩基-酸比率が、約0.05~約8から選択される、回収することと、を含む、プロセスを提供する。
【0225】
図4は、いくつかの実施形態における、バイオマス原料を、最適化された増加した塩基-酸比率を有するバイオカーボン組成物に変換するためのプロセスの簡略化されたブロックフロー図である。点線は、任意選択的な流れ及びユニットを示す。
【0226】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、バイオマスは、軟材チップ、硬材チップ、材木収穫残渣、木の枝、木の切り株、葉、樹皮、おがくず、トウモロコシ、トウモロコシ茎葉、小麦、小麦わら、イネ、イネわら、サトウキビ、サトウキビバガス、サトウキビわら、エネルギーサトウキビ、サトウダイコン、サトウダイコンパルプ、ヒマワリ、モロコシ、キャノーラ、藻類、ススキ、アルファルファ、スイッチグラス、果物、果物の殻、果物の茎、果物の皮、果物の種子、野菜、野菜の殻、野菜の茎、野菜の皮、野菜の種子、ブドウの搾りかす、扁桃の殻、ペカンの殻、ココナッツの殻、コーヒー澱、食品廃棄物、商業廃棄物、草ペレット、干し草ペレット、木材ペレット、厚紙、紙、紙パルプ、紙包装、紙トリミング、食品包装、建築若しくは解体廃棄物、枕木、リグニン、動物性肥料、都市固形廃棄物、都市下水、又はそれらの組み合わせ若しくは誘導体である。
【0227】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0228】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0229】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0230】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0231】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0232】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。拡張塩基-酸比率が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0233】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0234】
拡張塩基-酸比率が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0235】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0236】
いくつかのプロセスでは、拡張塩基-酸比率は、約0.1~約0.4、又は約0.5~約10、又は約0.8~約10、又は約1.5~約5、又は約0.4~約0.7になるように最適化される。ある特定の実施形態では、拡張塩基-酸比率は、多くとも0.4又は少なくとも0.7になるように最適化される。
【0237】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けることができ、バイオカーボン組成物の鉄-カルシウム比率は、約0.05~約5から選択される。
【0238】
いくつかの変形形態は、最適化された鉄-カルシウム比率を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、FeをCaOで割ったものとして定義される鉄-カルシウム比率によって特徴付けられる、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、鉄-カルシウム比率を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、鉄-カルシウム比率を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の鉄-カルシウム比率が、約0.05~約5から選択される、回収することと、を含む、プロセスを提供する。
【0239】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0240】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0241】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0242】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0243】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0244】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。鉄-カルシウム比率が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0245】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0246】
鉄-カルシウム比率が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0247】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0248】
いくつかのプロセスでは、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%になるように最適化される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%になるように最適化される。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%になるように最適化される。
【0249】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けることができ、バイオカーボン組成物の鉄+カルシウムパラメータは、5重量%~約50重量%から選択される。
【0250】
いくつかの変形形態は、最適化された鉄+カルシウムパラメータを有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、各々ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしての、Fe及びCaOの合計として定義される鉄+カルシウムパラメータによって特徴付けられる、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、鉄+カルシウムパラメータを調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、鉄+カルシウムパラメータを調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の鉄+カルシウムパラメータが、5重量%~約50重量%から選択される、回収することと、を含む、プロセスを提供する。
【0251】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0252】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0253】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0254】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0255】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0256】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(c)が行われる。鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0257】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0258】
鉄+カルシウムパラメータが最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0259】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0260】
いくつかのプロセスでは、鉄+カルシウムパラメータは、約10重量%~約40重量%、又は約20重量%~約50重量%になるように最適化される。ある特定の実施形態では、鉄+カルシウムパラメータは、多くとも10重量%になるように最適化される。他の実施形態では、鉄+カルシウムパラメータは、少なくとも10重量%になるように最適化される。
【0261】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けることができ、塩基-酸比率は、以下の式:
【数29】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物のスラグ化係数は、約0.001~約1から選択される。
【0262】
いくつかの変形形態は、最適化されたスラグ化係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率に乾燥ベースでのバイオカーボン組成物中に存在する硫黄の重量パーセンテージを掛けたものとして定義されるスラグ化係数によって特徴付けられ、
塩基-酸比率が、以下の式:
【数30】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、スラグ化係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、スラグ化係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物のスラグ化係数が、約0.001~約1から選択される、回収することと、を含む、プロセスを提供する。
【0263】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0264】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0265】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0266】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0267】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0268】
スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。スラグ化係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0269】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0270】
スラグ化係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0271】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0272】
いくつかのプロセスでは、スラグ化係数は、約0.01~約0.5、又は約0.01~約0.1になるように最適化される。ある特定の実施形態では、スラグ化係数は、多くとも0.6になるように最適化される。
【0273】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けることができ、塩基-酸比率は、以下の式:
【数31】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物の汚れ係数は、約0.1~約10から選択される。
【0274】
いくつかの変形形態は、最適化された汚れ係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率にASTM D4326に従ったバイオカーボン組成物における重量パーセンテージとしてのNaOを掛けたものとして定義される汚れ係数によって特徴付けられ、
塩基-酸比率が、以下の式:
【数32】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、汚れ係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、汚れ係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の汚れ係数が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0275】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0276】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0277】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0278】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0279】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0280】
汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。汚れ係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0281】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0282】
汚れ係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25、26、27、28、29、30、31、32、又は33MJ/kgのより高い発熱量を有する。
【0283】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0284】
いくつかのプロセスでは、汚れ係数は、多くとも2になるように最適化される。ある特定の実施形態では、汚れ係数は、多くとも1になるように最適化される。
【0285】
先に開示されているプロセスのいずれかでは、バイオカーボン組成物は、塩基-酸比率に水溶性NaOを掛けたものとして定義される修正汚れ係数によって特徴付けることができ、水溶性NaOは、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、塩基-酸比率は、以下の式:
【数33】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々は、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応し、バイオカーボン組成物の汚れ係数は、約0.1~約10から選択される。
【0286】
いくつかの変形形態は、最適化された修正汚れ係数を有するバイオカーボン組成物を生成するためのプロセスであって、プロセスが、
(a)バイオマスを含む出発原料を提供することであって、出発原料を任意選択的に乾燥させる、提供することと、
(b)出発原料を熱分解して、中間バイオカーボン流及び熱分解蒸気を生成することであって、中間バイオカーボン流が、塩基-酸比率に水溶性NaOを掛けたものである修正汚れ係数によって特徴付けられ、水溶性NaOが、ASTM D4326に従ったバイオカーボン組成物に由来する灰から水の存在下で浸出するNaOの重量パーセンテージであり、
塩基-酸比率が、以下の式:
【数34】
によって定義され、式中、Fe、CaO、MgO、KO、NaO、SiO、Al、及びTiOの各々が、ASTM D4326に従ったバイオカーボン組成物における重量パーセンテージに対応する、生成することと、
(c)中間バイオカーボン流を、酸、塩基、塩、金属、H、HO、CO、CO、若しくはそれらの組み合わせで洗浄又は処理して、修正汚れ係数を調節すること、及び/又はステップ(a)若しくはステップ(b)中に添加剤を導入して、修正汚れ係数を調節することと、
(d)約50重量%~約99重量%の総炭素を含むバイオカーボン組成物を回収することであって、総炭素が、総炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能であり、バイオカーボン組成物の修正汚れ係数が、約0.1~約10から選択される、回収することと、を含む、プロセスを提供する。
【0287】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、塩基性成分を選択的に除去し、それによって、Fe、CaO、MgO、KO、又はNaOを還元する。
【0288】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られる酸性水を利用する。例えば、酸性水を熱分解蒸気の凝縮から得て、約1~約7のpHを有する凝縮液体を生成することができる。
【0289】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、酸性成分を選択的に除去し、それによって、SiO、Al、又はTiOを還元する。
【0290】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、ステップ(a)から、ステップ(b)から、又はステップ(c)の前に行われる別のプロセスステップから得られるアルカリ性水を利用する。
【0291】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)は、中間バイオカーボン流の水蒸気洗浄を利用する。代替的又は追加的に、ステップ(d)は、バイオカーボン組成物の水蒸気洗浄を利用することができる。
【0292】
修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(c)が行われる。修正汚れ係数が最適化されるいくつかのプロセスでは、ステップ(d)が行われる。ある特定のプロセスでは、ステップ(c)及び(d)の両方が行われる。
【0293】
ステップ(d)が用いられる場合、添加剤は、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、石灰岩、石灰、ドロマイト、ドロマイト石灰、ベントナイト、石膏、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、鉄鉱石精鉱、蛍石、フルオロスパー、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、ホウ砂、シリカ、アルミナ、アルミノシリケート、チタン、二酸化チタン、炭化チタン、水素化チタン、窒化チタン、又はそれらの組み合わせ若しくは誘導体であり得る。
【0294】
修正汚れ係数が最適化されるいくつかのプロセスでは、バイオカーボン組成物は、乾燥ベースで、少なくとも約25MJ/kgのより高い発熱量を有する。
【0295】
バイオカーボン組成物をペレット化して、バイオカーボンペレットを生成することができる。結合剤を利用して、ペレット化を補助することができる。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体であり得る。
【0296】
いくつかのプロセスでは、修正汚れ係数は、多くとも2になるように最適化される。ある特定の実施形態では、修正汚れ係数は、多くとも1になるように最適化される。
【0297】
本明細書に開示されているプロセスのいずれも、前に考察されている組成パラメータについての事前に選択された値又は範囲を達成するように最適化され得る。バイオカーボン組成物についての特性の任意の考察が、本明細書において、プロセスの考察の各事例に参照により組み込まれる。
【0298】
プロセスは、単一の組成パラメータ(例えば、塩基-酸比率)、又は1つより多くの組成パラメータ、例えば、2、3、4、5、6、7、8、9、10、若しくはそれより多くの組成パラメータを標的にするように最適化され得る。ある特定の組成パラメータ間にある程度の共分散があり、そのため、一方の最適化が他方に影響を与えることが認識されるであろう。例えば、選択された値を達成するための塩基-酸比率の最適化は、係数の多くが同じであるため、拡張塩基-酸比率に影響を与えるであろう(Fe、SiOなど)。別の例は、塩基-酸比率の線形関数である汚れ係数であり、これは、NaOが他の方向に調節されない限り、塩基-酸比率の変化が汚れ係数の変化を引き起こすことを意味する。
【0299】
当業者によって理解されるように、様々なプロセス最適化方法論を実施することができる。例としては、線形最適化、非線形最適化、ある特定の組成パラメータがより重要として指定される加重最適化、実験の設計及び分析、統計的プロセス制御、人工知能、機械学習、及び他の技術が挙げられるが、これらに限定されることはない。
【0300】
いくつかの実施形態では、組成パラメータは、バイオカーボン組成物の意図された使用に基づいて事前に選択される。次いで、バイオカーボン組成物を作製するプロセスは、所定の公差内で、事前に選択された組成パラメータを実現するために、プロセス制御を使用して最適化される。プロセス最適化は、以前の実験又は生成キャンペーン、シミュレーション、計算、及び分析の結果を利用することができる。例えば、事前に選択された塩基-酸比率が2.2である場合、プロセスは、2.2±0.2(約10%の公差)の連続的な塩基-酸比率設定値を標的にするために、洗浄処理又は添加剤(又は両方)を使用して設計され得る。制御された塩基-酸比率は、より高い数値がより低い数値よりも許容されるように偏っていてよく、例えば、プロセスは、2.2+0.4/-0.1の連続的な塩基-酸比率設定値を標的にするために、洗浄処理又は添加剤(又はその両方)を使用して設計され得る。本開示では、組成パラメータは、プロセス制御を介して設定値を実際に達成するようにプロセスを最適化するためにそのようなパラメータが選択される場合、「事前に選択された」組成パラメータであり得る。また、プロセス制御は、フィードバックループ及び比例積分微分論理プログラムなどのプロセス制御の原理を用いることができる。
【0301】
バイオカーボン組成物の意図される使用は、例えば、固体燃料、固体ガス化装置原料、(エネルギーのための、還元化学のための、又は炭素含有量のための)冶金プロセス入力、農業用炭素、活性炭、電極、電池(例えば、リチウムイオン電池)、炭素複合材、及び他の材料のための炭素前駆体など、広く変動し得る。バイオカーボン組成物が、最終的に、エネルギー生成のために、又は金属作製プロセスの一部として燃焼されるか又は酸化されるかのいずれかである場合、組成パラメータは、例えば、比較的低い塩基-酸比率、スラグ化係数、及び/又は汚れ係数を使用することによって、反応器におけるスラグ化及び汚れなどの問題を回避するように最適化され得る。バイオカーボン組成物が、酸性成分を除去するための濾過媒体として使用される場合、組成パラメータは、例えば、比較的高い塩基-酸比率を使用することによって、及び結果的に、塩基-酸比率の線形関数である任意のパラメータ(例えば、汚れ係数)についての比較的高い値を使用することによって、酸の中和を増強するように最適化され得る。バイオカーボン組成物が、金属作製プロセスにおいて還元剤として使用される場合、組成パラメータは、例えば、中程度の塩基-酸比率を使用することによって、FeOからのFeの生成などの還元化学についての所望のpHを達成するために、酸及び塩基含有量のバランスを取るように最適化され得る。バイオカーボン組成物が、農業用炭素として使用される場合、組成パラメータは、塩基-酸比率及び他のパラメータを選択するために、炭素が配置される土壌を考慮するように最適化され得る。
【0302】
いくつかの実施形態は、バイオカーボン組成物の燃焼に関する。バイオカーボン組成物を燃焼して、(通常は空気から)C及びOをCO及びHOに変換する場合、出発バイオカーボン組成物が純粋なカーボンを本質的に含有しない限り、金属酸化物(及び場合によっては純粋な金属)が残される。残留金属酸化物及びその他の不燃性成分は、通常灰と呼ばれる成分を形成する。初期バイオマス原料は、空気又は酸素による酸化中に金属酸化物に酸化する金属を含有し得るか、又は初期バイオマス原料は、炭素酸化中に更に酸化されない金属酸化物を含有し得る。例えば、ケイ素の場合、Siは、純粋なSiとして、シリカ(SiO)として、及び/又はケイ酸(酸化物及びヒドロキシル基に結合されたケイ素)などの様々な他の化合物としてバイオマス原料中に存在し得る。
【0303】
反応器内でバイオカーボン組成物の燃焼中に、煙道ガスとともに上昇する微細な粒子灰は、フライアッシュ又は煙道灰と呼ばれ、上昇しないより重い灰は、ボトムアッシュと呼ばれる。上昇も落下もせず、反応器の壁に、又は他の熱伝達表面に蓄積する灰は、重大な問題を引き起こす。スラグ化は、炉、ガス化装置、又はボイラーの壁に、部分的に融解した堆積物を伴い得る溶融した灰の蓄積である。スラグ化は、水蒸気生成のための必要な熱伝達を減少させるため、有害である。汚れは、例えば、反応器壁、又はボイラーの再加熱器/過熱器領域であり得る、熱伝達表面上の固体灰の蓄積である。きれいなボイラーチューブ表面は、水蒸気生成のための最大の熱伝達をもたらし、結果として、発電所での発電をもたらす。スラグ化及び汚れの両方が、エネルギー/電気を生成する燃焼プロセスの有効性を低下させる。
【0304】
水蒸気又は電気の生成のための石炭代替製品としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.4~0.7)を含む、約0.1~約1.5、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、又は1.5になるように調節される。
【0305】
水蒸気又は電気の生成のための石炭代替製品としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.05~約1.2、例えば、約、少なくとも約、又は多くとも約0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、又は1.2になるように調節される。
【0306】
水蒸気又は電気の生成のための石炭代替製品としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、汚れ係数及び/又は修正汚れ係数は、全ての介在範囲を含む、約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、若しくは0.1、又はそれ未満である。水蒸気又は電気の生産のための石炭代替製品としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、スラグ化係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.001、0.002、0.005、0.01、0.02、0.03、0.04、0.05、0.1、0.2、0.3、0.4、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.9、0.95、又は1である。
【0307】
いくつかの実施形態は、単独の燃焼生成(CO及びHO)ではなく合成ガス(CO及びH)を生成するための、バイオカーボン組成物のガス化に関する。燃焼中に生じ得るスラグ及び汚れの問題は、ガス化においても起こり得る。ガス化装置では、バイオカーボン組成物中の炭素は、合成ガスに変換され、バイオカーボン組成物中の鉱物は、灰に変換される。灰の大部分は、溶融され、ガス化装置の壁(すなわち、耐火物又は膜)上に堆積され、ガス化装置の底部から流出する液体スラグを形成する。例えば、統合気化複合サイクル(IGCC)プラントのための同伴流気化器では、鉱物の大部分は、気化器の壁上の液体スラグに変換し、底部から流出し、そこで、これは、通常、水浴中で固化させられる。ガス化装置内のスラグの蓄積は、合成ガスの生成を低下させる。また、鉱物のわずかな部分は、ガス化装置から下流処理への粗合成ガスを伴って、フライアッシュとして同伴される。この溶融した/粘着性のあるフライアッシュは、合成ガス冷却器の汚れを引き起こす可能性があり、これはまた、IGCCプラントへのスラリー供給の問題のある目詰まりを引き起こす可能性がある。ガス化における灰スラグ化及び汚れの他の懸念としては、ガス化装置からの大量の未変換の炭素及びガス化装置内の耐火性ライニングの材料破損が挙げられる。
【0308】
ガス化のためのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.5~1.5)を含む、約0.1~約2.0、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、又は2.0になるように調節される。
【0309】
ガス化のためのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.05~約1.6、例えば、約、少なくとも約、又は多くとも約0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、又は1.6になるように調節される。
【0310】
ガス化のためのバイオカーボン組成物の使用に関するいくつかの実施形態では、汚れ係数及び/又は修正汚れ係数は、全ての介在範囲を含む、約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、若しくは0.1、又はそれ未満である。ガス化のためのバイオカーボン組成物の使用に関するいくつかの実施形態では、スラグ化係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.001、0.002、0.005、0.01、0.02、0.03、0.04、0.05、0.1、0.2、0.3、0.4、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.9、0.95、又は1である。
【0311】
いくつかの実施形態は、金属又は還元型の金属酸化物を生成するための冶金炭素としてのバイオカーボン組成物の使用に関する。冶金炭素のための最適な塩基-酸比率(及び拡張塩基-酸比率)は、生成される特定の金属又は金属合金、及び原料(金属鉱石)組成物に依存し得る。
【0312】
冶金炭素のための最適な塩基-酸比率(及び拡張塩基-酸比率)はまた、冶金加工中に生成されるスラグの性質に依存し得る。この文脈では、出発金属鉱石に由来するスラグ、及びバイオカーボン組成物に由来するスラグがあり得ることに留意されたい。冶金プロセスでは、スラグ成分は、典型的には、十分に混合され、単一のスラグを形成する。スラグの供給源を区別するために、金属鉱石スラグ及びバイオカーボン組成スラグを参照することができる。多くの金属鉱石スラグは、製鉄及び製鋼において典型的であるような基本的なスラグ、又は非鉄製錬において典型的であるような酸性スラグのいずれかとして記載され得る。金属鉱石スラグが酸性の傾向である場合、冶金バイオカーボンについてのより高い塩基-酸比率が好ましく、そのため、バイオカーボン組成スラグは、酸性金属鉱石スラグに対抗する。金属鉱石スラグが塩基性の傾向である場合、冶金バイオカーボンについてのより低い塩基-酸比率が好ましく、そのため、バイオカーボン組成スラグは、塩基性金属鉱石スラグに対抗する。例えば、多くの鉄鉱石は、金属鉱石スラグに溶融するFeO(酸化鉄)を有するかなりの量のSiO及びAlを含有する。最適化された塩基-酸比率は、これらの酸性成分に対抗することができる。
【0313】
鉄又は鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.5~3)を含む、約0.1~約10、例えば、約、少なくとも約、又は多くとも約0.5、1、1.5、2、2.5、3、4、5、6、7、8、9、又は10になるように調節される。
【0314】
鉄又は鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.05~約8、例えば、約、少なくとも約、又は多くとも約0.25、0.5、1、1.5、2、2.5、3、4、5、6、7、8、9、又は8になるように調節される。
【0315】
非鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、1.5~6)を含む、約0.1~約10、例えば、約、少なくとも約、又は多くとも約0.2、0.5、1、1.5、2、3、4、5、6、7、8、9、又は10になるように調節される。
【0316】
非鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.05~約8、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.5、1、1.5、2、3、4、5、6、7、又は8になるように調節される。
【0317】
鉄、鉄合金、又は非鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、汚れ係数及び/又は修正汚れ係数は、全ての介在範囲を含む、約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、若しくは0.1、又はそれ未満である。鉄、鉄合金、又は非鉄合金の作製における冶金炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、スラグ化係数は、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.001、0.002、0.005、0.01、0.02、0.03、0.04、0.05、0.1、0.2、0.3、0.4、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.9、0.95、又は1である。
【0318】
いくつかの実施形態は、農業用炭素としてのバイオカーボン組成物の使用に関する。農業用炭素は、例えば、土壌、無土媒体、又は水耕栽培媒体などの様々な農業用媒体における使用を含む。農業用炭素としてのバイオカーボン組成物の様々な用途については、参照により本明細書に組み込まれる米国特許第10,640,429号を参照されたい。
【0319】
農業用カーボンの用途では、バイオカーボン組成物の塩基-酸比率は、所望の媒体におけるpHを制御するように調節され得る。例えば、約5.6未満の土壌pHは、ほとんどの作物で低いと考えられる。概して、理想的な土壌のpH範囲は、6.0~7.0である。ほとんどの植物栄養素は、ほぼ中性の土壌pHにおいてそれらのピーク利用可能性に達する。
【0320】
農業用炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.8~1.2)を含む、約0.5~約2.0、例えば、約、少なくとも約、又は多くとも約0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、又は2.0になるように調節される。
【0321】
農業用炭素としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.25~約1.6、例えば、約、少なくとも約、又は多くとも約0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、又は1.6になるように調節される。
【0322】
ある特定の実施形態では、塩基-酸比率(又は拡張塩基-酸比率)は、バイオカーボン組成物を農業用媒体に組み込むときに農業用媒体に添加されることが意図される添加剤の選択と併せて選択される。これらの実施形態では、添加剤(例えば、アンモニア)は、必ずしもバイオカーボン組成物自体に存在するわけではないが、バイオカーボン組成物とともに農業用媒体に存在するであろう。
【0323】
いくつかの実施形態は、電池電極におけるバイオカーボン組成物の使用に関する。リチウムイオン電池などの電池電極における炭素使用は、周知である。参照により本明細書に組み込まれるTogonon et al.,“Pure carbon-based electrodes for metal-ion batteries”,Carbon Trends 3,100035,2021を参照されたい。バイオカーボン組成物は、電極中の導電性添加剤として、又はリチウムイオン電池中でLiイオンをインターカレートするためのアノード材料などの一次電極材料として利用され得る。電池電極(アノード又はカソード)として、又はその中で使用するためのバイオカーボン組成物の塩基-酸比率は、電池中の活性金属イオン、並びに電極中に存在する他の材料に基づいて選択され得る。
【0324】
電池電極におけるバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.4~1.5)を含む、約0.2~約2.0、例えば、約、少なくとも約、又は多くとも約0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、又は2.0になるように調節される。
【0325】
電池電極におけるバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.1~約1.6、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、又は1.6になるように調節される。
【0326】
いくつかの実施形態は、活性炭としての、又は活性炭を作製するための前駆体としてのバイオカーボン組成物の使用に関する。活性炭としての使用のためのバイオカーボン組成物の塩基-酸比率は、例えば、成分が、酸性、塩基性、又は中性のpHであるかどうかなど、活性炭への吸着を介して除去される成分に基づいて選択され得る。
【0327】
活性炭としての、又は活性炭を作製するための前駆体としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、塩基-酸比率は、任意の介在範囲(例えば、0.8~1.7)を含む、約0.2~約2.0、例えば、約、少なくとも約、又は多くとも約0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、又は2.0になるように調節される。
【0328】
活性炭としての、又は活性炭を作製するための前駆体としてのバイオカーボン組成物の使用に関するいくつかの実施形態では、拡張塩基-酸比率は、任意の介在範囲を含む、約0.1~約1.6、例えば、約、少なくとも約、又は多くとも約0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、又は1.6になるように調節される。
【0329】
いくつかの実施形態では、酸性水洗浄は、組成パラメータを最適化するために利用される。バイオカーボンは、出発バイオマスをバイオチャー、ガス、蒸気、又は液体に変換する非燃焼熱プロセス(典型的には、熱分解)によって生成される。プロセスは、開始原料とともに入ってくる水、及び熱分解反応中に生成される水の両方が、水の外部供給源の必要性の一部又は全てを置き換える手法で利用されるように構成され得る。
【0330】
いくつかの変形形態では、バイオカーボン組成物を生成するためのプロセスは、
(a)バイオマス及び約0重量%~約75重量%の水を含む出発原料を提供することと、
(b)出発原料を乾燥させて、0重量%~約50重量%の水を含む乾燥原料、及び第1の蒸気を生成することと、
(c)乾燥原料を熱分解して、高温固体及び第2の蒸気を生成することと、
(d)第1の蒸気の少なくとも一部を凝縮させて、約1~約7の第1のpHを有する第1の凝縮液体を生成することと、
(e)第2の蒸気の少なくとも一部を凝縮させて、約1~約7の第2のpHを有する第2の凝縮液体を生成することと、
(f)第1の凝縮液体の少なくとも一部、第2の凝縮液体の少なくとも一部、又は第1の凝縮液体の少なくとも一部及び第2の凝縮液体の少なくとも一部を含む混合物を含む酸性水を形成することと、
(g)酸性水の少なくとも一部を使用して高温固体を洗浄及び冷却して、洗浄された冷却された固体を生成することであって、少なくとも1つの組成パラメータが調節される、生成することと、
(h)洗浄された冷却された固体を、少なくとも約50重量%の炭素を含むバイオカーボン組成物として回収することと、を含む。
【0331】
いくつかの実施形態では、乾燥原料は、0重量%~約25重量%の水を含む。様々な実施形態では、乾燥原料は、多くとも約10重量%の水を含む。
【0332】
プロセスステップ(b)は、例えば、水蒸気駆動乾燥機又は空気駆動乾燥機を利用することができる。
【0333】
主に水及び軽質酸を含む、乾燥機からの生成された蒸気は、ステップ(d)において、乾燥機煙道ガス流から凝縮される。
【0334】
第1の凝縮液体の酸性度は、乾燥機の動作条件及び原料のタイプによって変動し得る。より厳しい乾燥機環境では、非水成分が、供給物からガスを放出し、凝縮中の収集を可能にする傾向があるであろう。
【0335】
いくつかの実施形態では、第1のpHは、例えば、約2~約7、又は約3~約6.5、又は約4~約6.5である。いくつかの実施形態では、第2のpHは、例えば、約2~約7、又は約3~約6.5、又は約4~約6.5である。いくつかの実施形態では、第1のpHは多くとも7であり、第2のpHは多くとも7である。他の実施形態では、第1のpHは多くとも7であり、第2のpHは約7である。他の実施形態では、第2のpHは多くとも7であり、第1のpHは約7である。
【0336】
いくつかの実施形態では、ステップ(f)において、酸性水は、第1の凝縮液体のみを含む。他の実施形態では、ステップ(f)において、酸性水は、第2の凝縮液体のみを含む。更に他の実施形態では、ステップ(f)において、酸性水は、第1の凝縮液体及び第2の凝縮液体の両方を含む。酸性水は、第1の凝縮液体の一部又は全て、並びに第2の凝縮液体の一部又は全てを含み得る。ある特定の実施形態では、酸性水は、第1の凝縮液体の全て、並びに第2の凝縮液体の全てを含む。酸性水が第1の凝縮液体と第2の凝縮液体との組み合わせを含む場合、組み合わされた酸性水のpHは、各々の凝縮液体のpHの対数平均となるであろう。
【0337】
ステップ(f)における酸性水は、出発原料乾燥1メートルトン当たり約1~約500ガロン、例えば、出発原料乾燥1メートルトン当たり約50~約100ガロンの量で形成され得る(供給物の元々の水分含有量に依存する)。
【0338】
いくつかの実施形態では、ステップ(f)で生成された酸性水の一部は、ステップ(g)で使用されずに別の当事者に販売又は輸送される水共生成物として回収される。
【0339】
いくつかの実施形態では、ステップ(g)中に、高温固体を洗浄又は冷却するために、他の水供給源(例えば、井戸水)は使用されない。
【0340】
いくつかの実施形態では、ステップ(g)において、高温固体は、最初は、約300℃~約800℃の基材温度にあり、酸性水は、高温固体を基材温度未満の冷却基材温度に冷却する。冷却基材温度は、例えば、多くとも300℃、多くとも200℃、多くとも100℃、多くとも50℃、又は約20~30℃であり得る。
【0341】
いくつかの実施形態では、ステップ(g)における洗浄は、高レベルの灰(例えば、最大50重量%の灰)を一般に含み得る高温固体から灰を除去する。洗浄された冷却された固体は、例えば、多くとも約5重量%の総灰分、多くとも約1重量%の総灰分、又は多くとも約0.2重量%の総灰分を含み得る。ステップ(g)における灰分低減の程度は、例えば、少なくとも約25%、50%、60%、70%、80%、90%、95%、99%、又は100%であり得る。
【0342】
いくつかの実施形態では、ステップ(g)における洗浄は、高温固体から、鉄、アルミニウム、チタン、ホウ素、ケイ素、カルシウム、カリウム、亜鉛、鉛、カドミウム、マンガン、クロム、ヒ素、水銀、ニッケル、コバルト、銅、スズ、アンチモン、バナジウム、モリブデン、これらの元素のいずれかの酸化物、又はそれらの組み合わせ若しくは誘導体を含む不純物を除去する。プロセスにおいて調節される組成パラメータは、クロム含有量などの個々の濃度であり得るか、又は例えば、ASTM D4326に従って、バイオカーボン組成物中に天然に存在するか、若しくは灰中に存在するかのいずれかの複数の成分の関数であり得る。
【0343】
他の元素又は化合物は、高温固体中に不純物として存在し得る。洗浄された冷却された固体は、多くとも約1000ppm、多くとも約100ppm、又は多くとも約50ppmの不純物の総濃度を含み得る。ステップ(g)における不純物低減の程度は、例えば、少なくとも約25%、50%、60%、70%、80%、90%、95%、99%、又は100%であり得る。例えば、高温固体は、最大20,000ppmの不純物レベルを含み得、50ppmまでの減少は、99.7%の不純物低減の程度に換算される。
【0344】
いくつかの実施形態では、ステップ(g)における洗浄は、乾燥ベースで、少なくとも約22MJ/kgのより高い加熱値(HHV)、例えば、乾燥ベースで、少なくとも約23、24、25、26、27、28、29、30、31、32、又は33MJ/kgのHHVを有する洗浄された冷却された固体を生成する。ステップ(g)におけるHHV増加の程度は、例えば、少なくとも約5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、又は100%であり得る。先に考察されている灰の除去は、洗浄された冷却された固体、したがって、バイオカーボン組成物について、より高いHHVをもたらすことに留意されたい。
【0345】
洗浄された冷却された固体は、ステップ(g)の後に、又は場合によってはステップ(g)と統合されて、バイオカーボンペレットを生成するためにペレット化され得る。本明細書で使用される場合、「バイオカーボンペレット」は、生体炭素を含むペレットを意味する。ペレットの幾何形状は、後に教示されるように、広く変動し得る。いくつかの実施形態では、外部結合剤は、ペレット化中に、洗浄された冷却された固体に導入されない。結合剤は、バイオカーボンペレットの生成を補助するために、洗浄された冷却された固体に導入され得る。結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、キサンタンガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体であり得る。
【0346】
プロセスの水強度は、バイオカーボン組成物1メートルトン当たり、多くとも約-10kgのHOであり得、例えば、水強度は、バイオカーボン組成物1メートルトン当たり、多くとも約-100、-200、-500、又は-1000kgのHOであり得る。プロセスのいくつかの実施形態では、外部水は利用されない。
【0347】
出発原料が生体及び再生可能な炭素を含有するバイオマスである場合、熱分解で得られる炭素も生体である。これは、例えばASTM D6866を使用して、炭素の14C/12C同位体比率の測定から示すことができる。バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、少なくとも90%再生可能であり得る。いくつかの実施形態では、バイオカーボン組成物内の総炭素は、総炭素の14C/12C同位体比率の測定から決定して、完全に再生可能である。
【0348】
二酸化炭素に酸化される任意の生体炭素は、生体COを創出する。これはまた、生成されたCOのサンプル中の炭素の14C/12C同位体比率の測定からも示すことができる。バイオマスに由来するこの生体COは、環境に戻り、光合成を介して成長するバイオマスによって再び吸収される。このようにして、正味のCO排出が大幅に低減される。
【0349】
先の又は他の実施形態では、バイオカーボン組成物は、バイオカーボン組成物1メートルトン当たり、多くとも0kgのCOeの炭素強度、例えば、バイオカーボン組成物1メートルトン当たり、多くとも約-100、-200、-300、-400、又は-500kgのCOeの炭素強度によって特徴付けられる。プロセスは、ネガティブ炭素強度及びネガティブ水強度によって同時に特徴付けられ得る。
【0350】
製品(又はプロセス)の「炭素強度」は、製品1トン当たりに、又は場合によって製品を作製するために処理される原料1トン当たりに生成される二酸化炭素の重量による正味量である。CO換算炭素強度は、製品1トン当たりに生成される二酸化炭素換算量の正味量として定義することもできる。「二酸化炭素換算量」又は「COe」は、同等の地球温暖化効果を有するであろうCOの量を表す。炭素強度の典型的な単位は、製品1メートルトン(1000kg)当たりの二酸化炭素換算量のキログラムである。
【0351】
温室効果ガス(又は「GHG」)は、熱を吸収して再放出し、それによって惑星の大気を他の方法よりも暖かく保つ、大気中の任意のガスである。地球の大気中の主なGHGは、水蒸気、二酸化炭素、メタン、亜酸化窒素、及びオゾンである。慣例では、COの地球温暖化係数は、1と定義されている。CHの地球温暖化係数は約30であり、すなわち、メタンは、温室効果ガスとしてCOよりも30倍強力である。“IPCC Fourth Assessment Report:Climate Change 2007”,Intergovernmental Panel on Climate Change,Cambridge University Press,Cambridge(2007)(参照により本明細書に組み込まれる)を参照されたい。
【0352】
一般に、製品及びプロセスの炭素強度を計算するためには、出発物質の炭素強度、出発物質の中間体への変換に関連する炭素強度、及び中間体の最終製品への変換に関連する炭素強度を推定する必要がある。化学工学の当業者は、これらの計算を行うことができ、これは、ライフサイクル分析ソフトウェア(例えば、GREET(登録商標)又はSimaPro(登録商標)ソフトウェア)などのソフトウェアによって補助され得る。
【0353】
炭素強度及び水強度の計算には、既知のライフサイクル分析の原則を用いることができる。ライフサイクルアセスメント(life-cycle assessment、LCA)は、原材料の加工、製造、流通、使用、リサイクル、及び最終処分を含む、製品のライフサイクル全体にわたる環境への影響を評価するために使用される既知の方法である。LCAを実施する場合、通常、最終製品の運命を特定する必要がある。例えば、鋼の場合、鋼は、長期間にわたって置かれるように設置されることが多い。いくつかの実施形態では、工業リサイクルオプション(鋼は地球上で最もリサイクルされる材料である)を含む、鋼の寿命終了オプションが考慮される。
【0354】
LCAはまた、特定の材料に関連する環境入出力に関する現状を考慮することができる。例えば、伐採されていない森林残渣は、分解を受けて大量のメタンを放出し、重度のGHGペナルティを引き起こす。これらの森林残渣が代わりにバイオカーボン、及びその後の金属の生成に向けられる場合、回避されたメタン排出量は、全体的な炭素強度について考慮に入れることができる。非常に多くの可能性があり、現状自体が進化しているため、適切な業界平均が採用されるように、LCAソフトウェア内のデータベースを利用することができる。
【0355】
いくつかの変形形態では、バイオカーボン組成物を生成するためのプロセスは、
(a)バイオマス及び約0重量%~約75重量%の水を含む出発原料を提供することと、
(b)任意選択的に、出発原料を乾燥させて、0重量%~約50重量%の水を含む乾燥原料、及び第1の蒸気を生成することと、
(c)乾燥原料(又は、ステップ(b)が行われない場合、出発原料)を熱分解して、高温固体及び第2の蒸気を生成することと、
(d)ステップ(b)が行われる場合、第1の蒸気の少なくとも一部を凝縮させて、約1~約7の第1のpHを有する第1の凝縮液体を生成することと、
(e)第2の蒸気の少なくとも一部を凝縮させて、約1~約7の第2のpHを有する第2の凝縮液体を生成することと、
(f)第2の凝縮液体の少なくとも一部、又はステップ(b)が行われる場合、第1の凝縮液体の少なくとも一部、又は第1の凝縮液体の少なくとも一部及び第2の凝縮液体の少なくとも一部を含む混合物を含む酸性水を形成することと、
(g)酸性水の少なくとも一部を使用して高温固体を洗浄及び冷却して、洗浄された冷却された固体を生成することであって、少なくとも1つの組成パラメータが調節される、生成することと、
(h)洗浄された冷却された固体を、少なくとも約50重量%の炭素を含むバイオカーボン組成物として回収することと、を含む。
【0356】
プロセスの水強度は、バイオカーボン組成物1メートルトン当たり多くとも約1000kgのHOであり得、例えば、水強度は、バイオカーボン組成物1メートルトン当たり、多くとも約900、800、700、600、500、400、300、200、100、50、25、10、0、-10、-25、-50、-100、-200、-500、又は-1000kgのHOであり得る。
【0357】
低水強度プロセスの水強度は、ステップ(f)及び(g)における酸性水の回収及び再利用を用いない他の同等のプロセスと比較して、約1%、2%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%、95%、100%、又はそれ以上低減され得る。
【0358】
本開示によって生成されたバイオカーボン組成物は、冶金炭素であり得る。本開示では、「冶金炭素」とは、金属を伴うプロセスで使用されることが意図される炭素を意味する。冶金炭素は、例えば、金属鉱石を金属に変換するプロセス、金属を精製するプロセス、金属に合金元素として炭素を添加するプロセス、炭素-金属複合材を作製するプロセス、又はそれらの組み合わせにおける原料であり得る。冶金炭素は、金属作製プロセスへの追加を必要としない他の使用を有することが認識されるであろう。したがって、冶金(metallurgical)という形容詞は、いくつかの(全てではないが)実施形態では、炭素を冶金学的処理の意図された使用に限定する。本明細書に開示されている冶金炭素が実際に冶金に利用されていない場合、冶金という形容詞は、その物理的構造、化学組成、又は材料特性の観点から炭素を別の方法で限定するものとして解釈されないものとする。冶金炭素を提供する任意の実施形態は、非冶金学的用途で使用される非冶金炭素を提供する実施形態についても言及するものとして理解されるべきである。したがって、様々な実施形態は、非冶金炭素製品を提供する。
【0359】
いくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、又は少なくとも約90重量%の炭素を含む。いくつかの実施形態では、バイオカーボン組成物は、乾燥ベースで、少なくとも約50重量%の固定炭素、少なくとも約75重量%の固定炭素、又は少なくとも約90重量%の固定炭素を含む。酸性水での洗浄中の灰の除去は、洗浄された冷却された固体において、したがって、バイオカーボン組成物において、より高い固定炭素含有量をもたらすことに留意されたい。
【0360】
バイオカーボン組成物は、約1重量%~約30重量%の水分、例えば、約5重量%~約15重量%の水分、約2重量%~約10重量%の水分、又は約0.1重量%~約1重量%の水分を含み得る。総水分は、例えば、ASTM D3302又はASTM D3173によって測定することができる。
【0361】
バイオカーボン組成物は、0~約30重量%の灰(又はそれ以上)、例えば、約2重量%~約25重量%の灰、約5重量%~約20重量%の灰、又は約8重量%~約15重量%の灰を含み得る。「灰」は、熱分解中に蒸発しない非炭素成分を指す。灰含有量は、ASTM D3175又は他の技術によって測定することができる。灰組成物は、ASTM D4326又は他の技術によって分析することができる。
【0362】
いくつかの実施形態では、バイオカーボン組成物は、添加剤を更に含む。添加剤の濃度は、バイオカーボン組成物の総重量に基づいて、約0.2重量%~約25重量%、約2重量%~約25重量%、約5重量%~約20重量%、又は約1重量%~約5重量%であり得る。ある特定の実施形態では、添加剤の濃度は、多くとも約1重量%、例えば、約、又は多くとも約0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.15、0.10、0.05、0.02、0.01重量%である。添加剤は任意選択的であるため、いくつかの実施形態では、添加剤濃度はゼロである。
【0363】
いくつかの実施形態では、添加剤は、部分的に酸化又は燃焼することができる。ある特定の実施形態では、添加剤は、再生可能な材料である。ある特定の実施形態では、添加剤は、カーボンニュートラル又はカーボンネガティブ添加剤である。カーボンニュートラル又はカーボンネガティブ添加剤の例は、光合成によって生成されるデンプンである。具体的に、太陽光エネルギーは、デンプンとしてバイオマスによって貯蔵され得る。
【0364】
いくつかの実施形態では、添加剤は、バイオカーボン組成物のための結合剤である。結合剤は、有機結合剤、無機結合剤、又はそれらの組み合わせであり得る。いくつかの実施形態では、添加剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、カルボキシメチルセルロース、セルロースエステル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体から選択される結合剤である。
【0365】
ある特定の実施形態では、添加剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、又はそれらの組み合わせ若しくは誘導体から選択される結合剤である。結合剤は、架橋され得る熱可塑性デンプンであり得る。熱可塑性デンプンは、デンプン及びポリオールの反応生成物であり得、ポリオールは、エチレングリコール、プロピレングリコール、グリセロール、ブタンジオール、ブタントリオール、エリスリトール、キシリトール、ソルビトール、又はそれらの組み合わせ若しくは誘導体であり得、反応生成物は、酸によって又は塩基によって触媒される反応から形成され得る。反応が酸によって触媒される場合、酸は、ギ酸、酢酸、乳酸、クエン酸、シュウ酸、ウロン酸、グルクロン酸、又はそれらの組み合わせ若しくは誘導体であり得る。
【0366】
いくつかの実施形態では、添加剤は、添加剤なしという点以外は同等のバイオカーボン組成物と比較して、バイオカーボン組成物の反応性を低下させる。
【0367】
反応性は、熱反応性であり得る。例えば、バイオカーボン組成物は、添加剤なしという点以外は同等のバイオカーボン組成物と比較して、より低い自己加熱を有し得る。反応性は、酸素、水、水素、一酸化炭素、金属(例えば、鉄又は酸化鉄)、又はこれらの種のうちの1つより多くとの化学反応性であり得る。
【0368】
いくつかの実施形態では、添加剤は、バイオカーボン組成物内で細孔充填する。これら又は他の実施形態では、添加剤は、バイオカーボン組成物の表面上に配置される。
【0369】
バイオカーボン組成物は、粉末形態であり得る。代替的又は追加的に、バイオカーボン組成物は、凝集形態であり得る。
【0370】
例えば、バイオカーボン組成物は、任意選択的に結合剤とともに、バイオカーボンペレットとして凝集形態であり得る。バイオカーボンペレットは、例えば、少なくとも30のハードグローブ粉砕性指数によって特徴付けることができる。バイオカーボンペレットは、少なくとも80%のペレット耐久性指数によって特徴付けることができる。
【0371】
バイオカーボン組成物を金属加工に使用して、鉄、銅、ニッケル、マグネシウム、マンガン、アルミニウム、スズ、亜鉛、コバルト、クロム、タングステン、モリブデン、ケイ素、又はそれらの組み合わせ若しくは誘導体から選択される卑金属を生成することができる。金属製品は、Al、Bi、B、C、Ce、Cr、Cu、Fe、H、Mg、Mn、Mo、N、Nb、Ni、P、Pb、Si、Sn、S、Ta、Ti、W、V、Zr、Zn、前述の元素のうちのいずれかの酸化物、炭化物、水素化物、窒化物、若しくは硫化物、又はそれらの組み合わせ若しくは誘導体から選択される元素などの合金元素で生成することができる。金属製品には、他の元素が含まれ得、これらの他の元素は、合金元素として機能するか、又は機能しない場合がある。
【0372】
いくつかの実施形態では、合金元素は、炭素を含む。炭素が金属製品中に存在する場合、炭素は、金属内に平衡濃度で存在し得る。代替的に、炭素は、金属内に非平衡濃度で存在し得、これは、炭素の平衡濃度よりも低いか、又は平衡濃度よりも高い可能性がある。
【0373】
いくつかの実施形態では、合金元素は、本明細書に開示されているバイオカーボン組成物に由来する炭素を含む。他の元素は、バイオカーボン組成物に由来することができ、水素、窒素、酸素、硫黄、又はリンを含む(が、これらに限定されない)合金元素として利用することができる。
【0374】
低水強度バイオカーボン組成物を金属作製プロセスで使用する場合、最終的な金属製品も同様に、水強度が低減されていると認めることができる。いくつかの実施形態は、カーボンネガティブな低減された水強度の金属製品を提供する(「カーボンネガティブ」は、ネガティブ炭素強度と同義である)。
【0375】
ある特定の実施形態では、合金元素は、水素を含む。水素が、それ自体がバイオマス原料に由来するバイオカーボン組成物に由来する場合、水素は、光合成を介して大気中の水から成長するバイオマスに添加されるため、カーボンニュートラル水素又はカーボンネガティブ水素であり得る。炭素と同様に、水素に関連する低減された水強度は、LCAの観点から、最終的な金属製品に引き継がれる。
【0376】
炭素の14C/12C同位体比率(固体炭素中、又はCO、CO、若しくはCHなどの蒸気形態の炭素中)を測定することは、実証済みの技法である。同様の概念を水素に適用することができ、H/H同位体比率が測定される(Hは、重水素Dとしても既知である)。化石源は、バイオマスと比較して重水素が枯渇する傾向がある。Schiegl et al.,“Deuterium content of organic matter”,Earth and Planetary Science Letters,Volume 7,Issue 4,1970,Pages 307-313、及びHayes,“Fractionation of the Isotopes of Carbon and Hydrogen in Biosynthetic Processes”,Mineralogical Society of America,National Meeting of the Geological Society of America,Boston,MA,2001(参照により本明細書に組み込まれる)を参照されたい。
【0377】
再生可能な水素は、市場において、再生可能なエネルギー基準、再生可能なエネルギークレジット、再生可能識別番号などを通してなど、様々な方法で認識され得る。ほんの一例として、ガソリンを生成する際に再生可能な水素を利用する製油所は、そのようなH含有量に対する再生可能なエネルギークレジットを受け取ることができる。鋼などの金属製品において、再生可能な水素は、金属の生成(例えば、Hによる金属鉱石の還元)中に利用することができるか、又は再生可能な水素は、最終製品物中の測定可能な合金元素であり得る。
【0378】
ある特定の実施形態では、合金元素は、窒素を含む。高強度オーステナイト系ステンレス鋼は、窒素の恩恵を受けることができる。窒素は、炭素よりも固体溶解度が高く、強力なオーステナイト安定剤であり、良好な侵入型固溶体強化剤であり、耐孔食性を向上させる。窒素が、それ自体がバイオマス原料に由来するバイオカーボン組成物に由来する場合、窒素は、窒素サイクルを介して大気中のNから成長するバイオマスに添加されるとき、カーボンニュートラル又はカーボンネガティブであり得る。他方で、合金化窒素が、最終的に、NHベースの肥料に由来し、NHが、エネルギー集約的なHaber合成に由来する場合、そのような窒素は、概して、カーボンニュートラル又はカーボンネガティブ窒素ではないであろう。いずれかが存在する場合、窒素含有量が通常多くとも1重量%であるため、金属製品の全体的な炭素強度及び水強度への寄与は非常に低い場合がある。Haberプロセスでさえ、例えば、再生可能エネルギーを使用してH産生のために水を分割すること、又は再生可能な水素を採用することによって、エネルギー強度を低下させることができる。
【0379】
ある特定の実施形態では、合金元素は、酸素を含む。酸素は、金属酸化物が避けられる一般に利用される合金元素ではない。しかしながら、特定の合金、特に非鉄合金は、侵入型固溶体強化を通じて金属を強化する侵入型合金元素として酸素(O原子として)を使用することができる。酸素が、それ自体がバイオマス原料に由来するバイオカーボン組成物に由来する場合、酸素は、出力としてOを有する光合成を介して大気中のCOに由来することが認識される。
【0380】
ある特定の実施形態では、合金元素は、硫黄を含む。硫黄が、それ自体がバイオマス原料に由来するバイオカーボン組成物に由来する場合、硫黄の炭素強度は、硫黄の供給源(例えば、土壌対添加された肥料)に依存する。
【0381】
ある特定の実施形態では、合金元素は、リンを含む。リンが、それ自体がバイオマス原料に由来するバイオカーボン組成物に由来する場合、リンの炭素強度は、リンの供給源(例えば、土壌対添加された肥料)に依存する。
【0382】
様々な実施形態では、金属製品は、粉末、ペレット、シート、ロッド、バー、ワイヤ、コイル、パイプ、プレート、壁、タンク、鋳造構造、工学的構造、電磁石、永久磁石、又はそれらの組み合わせから選択される形態である。金属製品は、最終構造であり得るか、又は従来の減法製造(サブトラクティブ・マニュファクチャリング)、付加製造(アディティブ・マニュファクチャリング)、若しくは他の技術を介して金属を含む構造を作製するための原料であり得る。
【0383】
いくつかの実施形態では、カーボンネガティブな低水強度鋼製品は、少なくとも約80重量%の鉄、少なくとも約90重量%の鉄、又は少なくとも約95重量%の鉄を含み得る。カーボンネガティブな低水強度鋼製品は、合金元素の約0.01重量%~約10重量%を占め得る。合金元素は、Al、Bi、B、C、Ce、Cr、Cu、H、Mg、Mn、Mo、N、Nb、Ni、P、Pb、Si、Sn、S、Ta、Ti、W、V、Zr、Zn、前述の元素のうちのいずれかの酸化物、炭化物、水素化物、窒化物、若しくは硫化物、又はそれらの組み合わせ若しくは誘導体であり得る。
【0384】
本発明の変形形態は、炭素基材を生成するためのバイオマスの最適化された熱分解、炭素基材の機械的サイズ縮小、及び任意選択的に調節可能なハードグローブ粉砕性指数(HGI)を有するバイオカーボンペレットを形成するために炭素基材を凝集させるための結合剤の使用を用いる。バイオカーボンペレットの水分レベルは、ペレット内の密度を変動させるように最適化することができる。バイオカーボンペレットのHGIを調節する能力は、下流用途(例えば、高炉内での使用)が様々なHGI要件を有するため、非常に有益である。HGIは、組成に少なくともいくらか依存しており、その理由から、HGIは、組成パラメータであるとみなされ得る。
【0385】
バイオマス(例えば、木材チップ)を製品に変換するための多種多様なバイオ精製プロセスの文脈において、粒子サイズ低減が必要である。サイズ縮小ステップは必須であるが、天然に存在するセルロース、ヘミセルロース、及びリグニンポリマーに強い結合が存在するため、非常にエネルギー集約的である。この問題は、小さな粒子が臨まれる場合に、特に深刻である。例えば、バイオマスのハンマーミル粉砕のエネルギー消費は、スクリーンメッシュサイズ縮小関数として指数関数的に増加する。
【0386】
未加工バイオマスは、多種多様な商業的用途について、熱分解された形態のバイオマス(これらの多くは、本特許出願に記載されている)よりも劣っている。バイオマスが生体試薬に熱分解されると、その機械的特性は、多くの場合、高炉又は微粉炭ボイラーなどの下流用途には役立たない。そのため、多くの場合、生体試薬をバイオカーボンペレットにペレット化することが好ましい。しかしながら、一度ペレット化すると、未加工バイオマスについて上記した問題のある粉砕エネルギーはまた、ペレットを工業用粉末に変換するのも困難であり、しばしば更に悪化する。これは、本質的に弱いペレットである緩い凝集体を作製することで潜在的に克服することができるが、これらの凝集体は、輸送及びプラント処理中に、時には反応器自体内で(例えば、金属床を支持するために)ペレットの耐久性が必要とされる多くの場合にペレット化の目的を無効にする。この問題は、一方では、ペレットの耐久性が望まれるが、他方では、ペレットの粉砕性が望まれるため、解決することは困難である。しかしながら、本開示は、良好な粉砕性及び適切な耐久性を有する、バイオカーボンペレット及びそれらを作製するプロセスを提供する。
【0387】
更に、各々独自の要件を有するバイオカーボンペレットの下流使用は非常に多いので、ペレットの粉砕性を調節することができることは非常に有利である。本発明者らは、調節可能に粉砕できるバイオカーボンペレットによく適したプロセス及び組成物を設計した。
【0388】
いくつかの変形形態では、本技術は、バイオカーボンペレットであって、
(a)約35重量%~約99重量%の生体試薬であって、乾燥ベースで、少なくとも約60重量%の炭素を含む、生体試薬と、
(b)約0重量%~約35重量%の水分と、
(c)約1重量%~約30重量%の結合剤と、を含み、
バイオカーボンペレットが、少なくとも30のハードグローブ粉砕性指数によって特徴付けられる、バイオカーボンペレットを提供する。
【0389】
いくつかの実施形態では、生体試薬は、乾燥ベースで、少なくとも約70重量%、少なくとも約80重量%、又は少なくとも約90重量%の炭素を含む。様々な実施形態では、生体試薬は、乾燥ベースで、約又は少なくとも約50、55、60、65、70、75、80、85、90、又は95重量%の炭素を含む。これらのパーセンテージは、生体試薬全体に対する総炭素(固定炭素及び揮発性炭素)の濃度を指す。
【0390】
いくつかの実施形態では、生体試薬は、乾燥ベースで、少なくとも約50重量%の固定炭素、少なくとも約75重量%の固定炭素、又は少なくとも約90重量%の固定炭素を含む。様々な実施形態では、生体試薬は、乾燥ベースで、約又は少なくとも約50、55、60、65、70、75、80、85、90、又は95重量%の固定炭素を含む。これらのパーセンテージは、総炭素に対してではなく、生体試薬全体(水を除く)に対する固定炭素の濃度を指す。固定炭素は、総炭素から揮発性炭素を差し引いたものである。
【0391】
いくつかのバイオカーボンペレットでは、炭素は、炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能である。例えば、炭素は、炭素の14C/12C同位体比率の測定から決定して、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも99%、又は少なくとも99.9%再生可能であり得る。ある特定の実施形態では、炭素は、炭素の14C/12C同位体比率の測定から決定して、完全に再生可能である。炭素の14C/12C同位体比率の測定は、ASTM D6866を利用することができる。
【0392】
ある特定の実施形態では、生体試薬は、乾燥ベースで、約75重量%~約94重量%の炭素と、約3重量%~約15重量%の酸素と、約1重量%~約10重量%の水素と、を含む。
【0393】
バイオカーボンペレットに存在する水分は、炭素若しくは結合剤に化学的に結合している水、炭素若しくは結合剤に物理的に結合(吸収若しくは吸着)している水、炭素若しくは結合剤に化学的若しくは物理的に結合していない水相中に存在する自由水、又はそれらの組み合わせであり得る。結合プロセス中に水分が望まれる場合、そのような水分は、自由水であるのではなく、炭素又は結合剤に化学的又は物理的に結合することが好ましい。
【0394】
様々な水分レベルが、ペレット製品において存在し得る。例えば、バイオカーボンペレットは、約1重量%~約30重量%(例えば、32重量%)、例えば、約5重量%~約15重量%の水分、約2重量%~約10重量%の水分、又は約0.1重量%~約1重量%の水分を含み得る。いくつかの実施形態では、バイオカーボンペレットは、約4~8重量%の水分を含む。様々な実施形態では、バイオカーボンペレットは、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.5、1、1.5、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、又は35重量%の水分を含む。
【0395】
水は、バイオカーボンペレットを作製するプロセス中に存在するが、次いで、それらのペレットは、任意選択的に乾燥される。これは、最終的なバイオカーボンペレットが、必ずしも水分を含まないことを意味する。農業などのいくつかの市場用途では、粉塵制御又は他の理由から、より高い水分レベルが望ましい。他の市場用途では、より低い水分レベルが望ましい可能性がある(例えば、1重量%の水分、又は更に低い水分)。いくつかの冶金学的用途では、低い水分が望ましいが、他の冶金学的用途では、多少の水分は、全体的な化学反応を補助するために許容可能であるか、又は望ましくさえある。
【0396】
いくつかのバイオカーボンペレットでは、バイオカーボンペレットは、約2重量%~約25重量%の結合剤、約5重量%~約20重量%の結合剤、又は約1重量%~約5重量%の結合剤を含む。様々な実施形態では、バイオカーボンペレットは、全ての介在範囲を含む、約、少なくとも約、又は多くとも約0.5、1、1.5、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、又は30重量%の結合剤を含む。いくつかの実施形態では、水分含有量と結合剤濃度との間には、逆の関係がある。
【0397】
結合剤は、バイオカーボンペレットの生体試薬内で細孔充填することができる。代替的又は追加的に、結合剤は、バイオカーボンペレットの表面上に配置することができる。
【0398】
結合剤は、有機結合剤又は無機結合剤であり得る。いくつかの実施形態では、結合剤は、再生可能な材料であるか、又はこれを含む。いくつかの実施形態では、結合剤は、生分解性材料であるか、又はこれを含む。いくつかの実施形態では、結合剤は、部分的に酸化又は燃焼することができる。
【0399】
様々な実施形態では、結合剤は、デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、カルボキシメチルセルロース、セルロースエステル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、それらの誘導体、又はそれらの組み合わせ若しくは誘導体から選択される。結合剤は、粉砕可能な可塑剤であり得るか、又はそれを含み得る。
【0400】
いくつかの実施形態では、結合剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンベースのポリマー(例えば、アミロース及びアミロペクチンをベースとするポリマー)、又はそれらの組み合わせ若しくは誘導体から選択される。デンプンは、非イオン性デンプン、アニオン性デンプン、カチオン性デンプン、又は両性イオン性デンプンであり得る。
【0401】
デンプンは、最も豊富なバイオポリマーのうちの1つである。デンプンは、完全に生分解性であり、安価であり、再生可能であり、かつ容易に化学的に改変され得る。デンプン分子の環状構造は、強い水素結合とともに、デンプンに剛性構造を与え、非常に秩序のある結晶及び粒状領域をもたらす。その粒状状態のデンプンは、概して、熱可塑性処理には適していない。熱可塑性デンプンを得るために、半結晶性デンプン顆粒は、熱的及び機械的力によって分解することができる。純粋なデンプンの融点は、その分解温度よりもかなり高いため、水又はグリコールなどの可塑剤を添加することができる。次いで、熱可塑性デンプンをもたらす高温での激しい混合(せん断)によって、天然の結晶性を破壊することができる。デンプンは、水、グリセロール、又はソルビトールなどのデンプンヒドロキシル基と水素結合することができる比較的低レベルの分子によって可塑化することができる。
【0402】
熱可塑性デンプンは、化学的に改変されるか、又は他のバイオポリマーとブレンドされて、より強く、より延性があり、かつ弾力性のあるバイオプラスチックを生成することができる。例えば、デンプンは、ポリ乳酸、ポリカプロラクトン、又はポリヒドロキシブチレートなどの天然及び合成(生分解性)ポリエステルとブレンドすることができる。デンプン/ポリエステルブレンドの相溶性を改善するために、ポリ(エチレン-コ-ビニルアルコール)又はポリビニルアルコールなどの好適な相溶性化剤を添加することができる。デンプンの親水性ヒドロキシル基(-OH)は、エステル化又はエーテル化などによって、疎水性反応性基で置き換えることができる。
【0403】
いくつかの実施形態では、デンプンを含む結合剤は、架橋デンプンであるか、又はそれを含む。デンプンを架橋するための様々な方法は、当該技術分野において既知である。デンプン材料は、例えば、水性媒体に溶解又は分散した後、酸性又はアルカリ性条件下で架橋することができる。アルデヒド(例えば、グルタルアルデヒド又はホルムアルデヒド)を使用して、デンプンを架橋させることができる。
【0404】
架橋デンプンの一例は、デンプンと、グリセロール、又は(限定されないが)エチレングリコール、プロピレングリコール、グリセロール、ブタンジオール、ブタントリオール、エリスリトール、キシリトール、ソルビトール、若しくはそれらの組み合わせなどの別のポリオールとの反応生成物である。反応生成物は、酸、例えば(限定されないが)、ギ酸、酢酸、乳酸、クエン酸、シュウ酸、ウロン酸、グルクロン酸、又はそれらの組み合わせによって触媒される架橋反応から形成することができる。硫酸などの無機酸はまた、架橋反応を触媒するために利用することができる。いくつかの実施形態では、熱可塑化又は架橋反応生成物は、代わりに、(限定されないが)アンモニア又はホウ酸ナトリウムなどの塩基によって触媒される架橋反応から形成することができる。
【0405】
いくつかの実施形態では、結合剤は、耐水性結合剤であるように設計される。例えば、デンプンの場合、親水性基は、より良好に水に抵抗する疎水性基によって置き換えることができる。
【0406】
いくつかの実施形態では、結合剤は、(限定されないが)バイオカーボンペレット内の水分保持、微生物のための食物供給源などの他の目的を果たす。
【0407】
いくつかの実施形態では、結合剤は、結合剤なしという点以外は同等のバイオカーボンペレットと比較して、バイオカーボンペレットの反応性を低下させる。反応性は、熱反応性若しくは化学反応性(又はその両方)を指すことができる。
【0408】
熱反応性の場合、バイオカーボンペレットは、結合剤を含まないという点以外は同等のバイオカーボンペレットと比較して低い自己加熱を有することができる。「自己加熱」は、バイオカーボンペレットの内部温度を上昇させるために、任意の外部点火の非存在下、比較的低温及び酸化雰囲気下で、自発的な発熱反応を受けるバイオカーボンペレットを指す。いくつかの実施形態では、バイオカーボンペレットは、Manual of Tests and Criteria,Seventh revised edition 2019,United Nations,Page 375,33.4.6 Test N.4:“Test method for self-heating substances”に従って自己加熱試験を受けた場合、非自己加熱として特徴付けられる。
【0409】
化学反応性は、酸素、水、水素、一酸化炭素、金属(例えば、鉄)、又はそれらの組み合わせとの反応性であり得る。化学反応性は、例えば、CO、CO、HO、熱分解油、及び熱に対する反応と関連付けられ得る。
【0410】
任意選択的に、含炭素ペレットは、無機ベントナイト粘土、石灰石、デンプン、セルロース、リグニン、又はアクリルアミドなどの添加剤(必ずしも結合剤ではない)を含む。リグニンが結合剤として又は他の添加剤として使用される場合、リグニンは、熱分解プロセスにおいて使用されるのと同じバイオマス原料から得ることができる。例えば、出発バイオマス原料をリグニン抽出ステップに供して、結合剤又は添加剤として使用するためにいくらかの量のリグニンを除去することができる。
【0411】
無機塩化物、無機フッ化物、又は石灰などのフラックス剤を含む他の可能な添加剤。いくつかの実施形態では、添加剤は、酸、塩基、又はそれらの塩から選択される。いくつかの実施形態では、少なくとも1つの添加剤は、金属、金属酸化物、金属水酸化物、金属ハロゲン化物、又はそれらの組み合わせ若しくは誘導体から選択される。例えば、添加剤は、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、ハロゲン化鉄、塩化鉄、臭化鉄、ドロマイト、ドロマイト石灰、蛍石、蛍石、ベントナイト、酸化カルシウム、石灰、チタン、チタン化合物、又はそれらの組み合わせ若しくは誘導体から選択され得る。
【0412】
添加剤は、原料が収穫される前後の任意の時点で原料自体に添加することを含む、プロセスの任意の1つ以上のステップの前、最中、又は後に導入することができる。しかしながら、添加剤がプロセス中にいつ導入されるかが重要であり、所望の製品に応じて重大であり得る。例えば、添加剤が熱分解の前に添加される場合、最終的な製品は、添加剤が熱分解条件下でどのように挙動するかに応じて、添加剤の誘導体又は添加剤自体を含むであろう。
【0413】
バイオカーボンペレットのハードグローブ粉砕性指数は、少なくとも30、少なくとも40、少なくとも50、少なくとも60、少なくとも70、少なくとも80、少なくとも90、又は少なくとも100であり得る。いくつかの実施形態では、ハードグローブ粉砕性指数は、約30~約50又は約50~約70である。“Standard Test Method for Grindability of Coal by the Hardgrove-Machine Method”に関するASTM-Standard D409/D409Mは、参照によりその全体が本明細書に組み込まれる。別段の指示がない限り、本開示におけるハードグローブ粉砕性指数又はHGIへの全ての言及は、ASTM-Standard D409/D409Mを参照している。
【0414】
様々な実施形態では、ハードグローブ粉砕性指数は、全ての介在範囲(例えば、25~40、30~60など)を含む、約、少なくとも約、又は多くとも約20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100である。
【0415】
バイオカーボンペレット(例えば、カーボンネガティブ及びネガティブ水強度バイオカーボンペレット)は、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、又は少なくとも99%のペレット耐久性指数によって特徴付けることができる。バイオカーボンペレットは、多くとも99%、多くとも95%、多くとも90%、多くとも85%、又は多くとも80%のペレット耐久性指数によって特徴付けることができる。別段の指示がない限り、本開示におけるペレット耐久性指数への全ての言及は、ISO17831-1:2015“Solid biofuels-Determination of mechanical durability of pellets and briquettes-Part1:Pellets”(参照によりその全体が本明細書に組み込まれる)を参照している。
【0416】
バイオカーボンペレットのサイズ及び幾何形状は、変動し得る。本明細書で使用される場合、「ペレット」は、ルーズパウダーではなく凝集した物体を意味する。ペレットの幾何学的形状は、球形又はほぼ球形に限定されることはない。また、本開示では、「ペレット」は、「ブリケット」、「顆粒」、及び「プリル」と同義である。ペレットの幾何学的形状は、球状(円形又はボール形状)、立方体(正方形)、八角形、六角形、ハニカム/蜂の巣形状、楕円形、卵形状、円柱形状、棒形状、ディスク形状、枕形状、ランダム形状、又はそれらの組み合わせであり得る。開示の便宜上、「ペレット」という用語は、概して、任意選択的に結合剤を使用して、凝集した粉末を含む任意の物体について使用される。
【0417】
バイオカーボンペレットは、球体の場合には真の直径である平均ペレット直径、又は任意の他の3D幾何学的形状の場合には等価な直径によって特徴付けることができる。非球形ペレットの等価直径は、実際のペレットと等価な体積の球体の直径である。いくつかの実施形態では、平均ペレット直径は、全ての介在範囲を含む、約又は少なくとも約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、若しくは25ミリメートルである。いくつかの実施形態では、平均ペレット直径は、全ての介在範囲を含む、約又は少なくとも約500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、又は6500ミクロンである。
【0418】
いくつかの実施形態では、平均ペレット直径の多くとも±100%、多くとも±50%、多くとも±25%、多くとも±10%、又は多くとも±5%の標準偏差など、サイズが比較的均一な複数のバイオカーボンペレットが存在する。他の実施形態では、これは一部の用途で有利であり得るので、広範囲のサイズのバイオカーボンペレットが存在する。
【0419】
本技術のいくつかの変形形態は、バイオカーボンペレットであって、
(a)約35重量%~約99重量%の生体試薬であって、乾燥ベースで、少なくとも約60重量%の炭素を含む、生体試薬と、
(b)約0重量%~約35重量%の水分と、
(c)約1重量%~約30重量%の反応性緩和剤と、を含み、
反応性緩和剤が、反応性緩和剤を含まないという点以外は同等のバイオカーボンペレットと比較して、バイオカーボンペレットの反応性を低下させる、バイオカーボンペレットを提供する。
【0420】
いくつかの実施形態では、生体試薬は、乾燥ベースで、少なくとも70重量%の炭素を含む。生体試薬は、少なくとも約50重量%の固定炭素を含み得る。
【0421】
生体試薬は、乾燥ベースで、約75重量%~約94重量%の炭素と、約3重量%~約15重量%の酸素と、約1重量%~約10重量%の水素と、を含み得る。
【0422】
いくつかの実施形態では、バイオカーボンペレットは、約1重量%~約30重量%の水分を含む。
【0423】
いくつかの実施形態では、炭素は、炭素の14C/12C同位体比率の測定から決定して、少なくとも50%再生可能である。ある特定の実施形態では、炭素は、炭素の14C/12C同位体比率の測定から決定して、完全に再生可能である。
【0424】
いくつかのバイオカーボンペレットでは、バイオカーボンペレットは、約2重量%~約25重量%の反応性緩和剤を含む。バイオカーボンペレットは、例えば、約5重量%~約20重量%、又は約1重量%~約5重量%の反応性緩和剤を含み得る。
【0425】
反応性緩和剤は、有機又は無機であり得る。反応性緩和剤は、再生可能な材料であり得る。いくつかの実施形態では、反応性緩和剤は、部分的に酸化又は燃焼することができる。反応性緩和剤は、好ましくは、組成パラメータを調節することができる。
【0426】
反応性緩和剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、カルボキシメチルセルロース、セルロースエステル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体から選択され得る。
【0427】
いくつかの実施形態では、反応性緩和剤は、デンプン、熱可塑性デンプン、架橋デンプン、デンプンポリマー、又はそれらの組み合わせ若しくは誘導体から選択される。
【0428】
ある特定の実施形態では、反応性緩和剤は、任意選択的に架橋された熱可塑性デンプンである。例えば、熱可塑性デンプンは、デンプンとポリオールとの反応生成物であり得る。ポリオールは、エチレングリコール、プロピレングリコール、グリセロール、ブタンジオール、ブタントリオール、エリスリトール、キシリトール、ソルビトール、又はそれらの組み合わせ若しくは誘導体から選択され得る。反応生成物は、酸、例えば(限定されないが)、ギ酸、酢酸、乳酸、クエン酸、シュウ酸、ウロン酸、グルクロン酸、若しくはそれらの組み合わせによって、又は塩基によって触媒される反応から形成することができる。
【0429】
反応性緩和剤がバイオカーボンペレットの反応性を低下させるいくつかのバイオカーボンペレットでは、反応性は、熱反応性である。例えば、バイオカーボンペレットは、反応性緩和剤を含まないという点以外は同等のバイオカーボンペレットと比較して、より低い自己加熱によって特徴付けることができる。
【0430】
反応性緩和剤がバイオカーボンペレットの反応性を低下させるいくつかのバイオカーボンペレットでは、反応性は、酸素、水、水素、一酸化炭素、金属(鉄など)、又はそれらの組み合わせとの化学反応性である。
【0431】
いくつかのバイオカーボンペレットでは、反応性緩和剤は、バイオカーボンペレットの生体試薬内の細孔に充填される。他のバイオカーボンペレットでは、反応性緩和剤は、バイオカーボンペレットの表面上に配置される。更に他のバイオカーボンペレットでは、反応性緩和剤は、バイオカーボンペレットの生体試薬内の細孔に充填され、その表面上に配置される。
【0432】
反応性緩和剤は、バイオカーボンペレットのハードグローブ粉砕性指数を調節可能に制御するための結合剤として機能することができる。いくつかの実施形態では、バイオカーボンペレットは、少なくとも30、例えば、約30~約50又は約50~約70のハードグローブ粉砕性指数によって特徴付けられる。他のHGI範囲は、本明細書の他の箇所に開示されており、反応性緩和剤が使用され、結合剤として機能する実施形態に等しく適用可能である。
【0433】
例えば、HGIを制御可能に調節するとともに、反応性緩和剤として機能する結合剤を選択することができる。これらの場合、結合剤がバイオカーボンペレットの表面上に配置されるだけでなく、生体炭素全体に分散される(バイオカーボンペレットの細孔を充填する)ことを確実にすることが望ましい場合がある。結合剤の濃度は、ペレットのバルク(内部)と比較して、表面上では異なる場合がある。場合によっては、表面に対してより高い濃度の結合剤がペレットバルク中に存在するが、他の場合(例えば、低減された自己加熱ペレットのための特定の実施形態)では、表面においてより高い結合剤濃度が所望される。2つの異なる結合剤(化学種)を有することも可能であり、1つはペレットのバルク内にあり、1つは表面にある。そのような場合、バルク結合剤は、結合剤と称することができ、ペレット表面剤は、ペレット反応性緩和剤と称することができる。そのような実施形態であっても、結合剤がペレット生成プロセス中に添加される場合、いくらかの量の結合剤がペレット表面に存在することが理解されよう。同様に、反応性緩和剤が形成された後にペレット上にコーティングされる場合、いくらかの量の反応性緩和剤がペレット細孔内に拡散することが予想され得る。
【0434】
本技術の他の変形形態は、バイオカーボンペレットを生成するプロセスであって、プロセスが、
(a)バイオマス原料を乾燥させることと、
(b)バイオマス原料を熱分解して、生体試薬を生成することであって、生体試薬が、少なくとも約50重量%の炭素及び少なくとも約5重量%の水分を含む、生成することと、
(c)生体試薬を機械的に処理して、複数の含炭素粒子を生成することと、
(d)含炭素粒子を結合剤と組み合わせて、炭素-結合剤混合物を形成することと、
(e)ステップ(d)の後、又はステップ(d)と同時に、炭素-結合剤混合物をペレット化して、バイオカーボンペレットを生成することと、
(f)任意選択的に、バイオカーボンペレットを少なくとも部分的に乾燥させることと、
(g)ステップ(a)で収集された第1の蒸気の少なくとも一部を凝縮させて、約1~約7の第1のpHを有する第1の凝縮液体を生成することと、
(h)ステップ(b)又はステップ(f)で収集された第2の蒸気の少なくとも一部を凝縮させて、約1~約7の第2のpHを有する第2の凝縮液体を生成することと、
(i)第1の凝縮液体の少なくとも一部、第2の凝縮液体の少なくとも一部、又は第1の凝縮液体の少なくとも一部及び第2の凝縮液体の少なくとも一部を含む混合物を含む酸性水を形成することと、
(j)酸性水の少なくとも一部を使用して高温固体を洗浄及び冷却して、洗浄された冷却された固体を生成することであって、少なくとも1つの組成パラメータが調節される、生成することと、
(k)少なくとも約50重量%の炭素を含むバイオカーボンペレットを回収することと、を含む、プロセスを提供する。
【0435】
いくつかのプロセス実施形態では、生体試薬は、乾燥ベースで、少なくとも約70重量%、少なくとも約80重量%、又は少なくとも約90重量%の炭素を含む。
【0436】
いくつかのプロセス実施形態では、生体試薬は、少なくとも約50重量%の固定炭素、少なくとも約75重量%の固定炭素、又は少なくとも約90重量%の固定炭素を含む。
【0437】
炭素は、炭素の14C/12C同位体比率の測定から決定して、少なくとも50%、少なくとも90%、少なくとも95%、又は完全に再生可能であり得る。いくつかの実施形態では、炭素の14C/12C同位体比率の測定は、ASTM D6866を利用する。
【0438】
ある特定のプロセスでは、生体試薬は、乾燥ベースで、約75重量%~約94重量%の炭素と、約3重量%~約15重量%の酸素と、約1重量%~約10重量%の水素と、を含む。
【0439】
いくつかのプロセスでは、生体試薬は、ステップ(b)において、少なくとも約10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、又は40重量%の水分を含む。水分含有量が少なくとも40重量%である場合でも、バイオカーボンペレットを作製することができるが、ペレット密度は低い(多くの用途には低すぎる)と予想される。いくつかの実施形態では、ステップ(c)、ステップ(d)、又はステップ(e)は、ステップ(b)の水分よりも低い水分で行われる。例えば、ステップ(f)が行われるとき、乾燥は、ステップ(b)における水分よりも低い水分、及び任意選択的に、ステップ(c)、ステップ(d)、又はステップ(e)における水分よりも低い水分をもたらし得る。
【0440】
いくつかの実施形態では、ステップ(f)は、ステップ(e)の後に行われる。これらの又は他の実施形態では、ステップ(f)は、ステップ(e)と統合される。例えば、ペレット化ユニットは、ペレットが形成されているときにペレットから水を放出することを可能にすることができる。すなわち、ペレット化ユニットは、乾燥機としても作用することができる。ある特定の実施形態では、ある量の乾燥が、ペレット化中に行われ、追加の乾燥は、例えば、乾燥ユニット内又は周囲条件下で、ペレット化の後に行われる。
【0441】
いくつかの実施形態では、生体試薬は、ステップ(c)中に乾燥されない。これらの又は他の実施形態では、生体試薬は、ステップ(d)中に乾燥されない。これらの又は他の実施形態では、生体試薬は、ステップ(e)中に乾燥されない。
【0442】
バイオカーボンペレットは、約1重量%~約30重量%の水分、例えば、約5重量%~約15重量%の水分、約2重量%~約10重量%の水分、又は約0.1重量%~約1重量%の水分を含み得る。
【0443】
いくつかのプロセスでは、ステップ(b)は、約250℃~約1250℃、例えば、約300℃~約700℃から選択される熱分解温度で行われる。いくつかのプロセスでは、ステップ(b)は、約10秒~約24時間選択された熱分解時間にわたって行われる。他の考えられる熱分解条件は、本明細書の後半に記載される。
【0444】
ステップ(c)は、ハンマーミル、押出機、アトリションミル、ディスクミル、ピンミル、ボールミル、コーンクラッシャ、ジョークラッシャ、又はそれらの組み合わせから選択される機械的処理装置を利用することができる。
【0445】
いくつかのプロセスでは、ステップ(c)及びステップ(d)が統合される。例えば、結合剤をハンマーミル若しくは押出機、又は他の機械的処理装置に直接供給することができる。
【0446】
バイオカーボンペレットは、約2重量%~約25重量%の結合剤、例えば約5重量%~約20重量%の結合剤、又は約1重量%~約5重量%の結合剤を含み得る。結合剤は、有機又は無機であってもよい。
【0447】
結合剤は、デンプン、架橋デンプン、デンプンポリマー、セルロース、セルロースエーテル、カルボキシメチルセルロース、セルロースエステル、ヘミセルロース、メチルセルロース、キトサン、リグニン、ラクトース、スクロース、デキストロース、マルトデキストリン、バナナ粉、小麦粉、小麦デンプン、大豆粉、トウモロコシ粉、木粉、コールタール、石炭微粉、メトコークス、アスファルト、コールタールピッチ、石油ピッチ、瀝青、熱分解タール、ギルソナイト、ベントナイト粘土、ホウ砂、石灰石、石灰、ワックス、植物性ワックス、重曹、ベーキングパウダー、水酸化ナトリウム、水酸化カリウム、鉄鉱石精鉱、シリカヒューム、石膏、ポートランドセメント、グアーガム、ポリビドン、ポリアクリルアミド、ポリラクチド、フェノール-ホルムアルデヒド樹脂、植物性樹脂、リサイクルされた屋根板、リサイクルされたタイヤ、又はそれらの組み合わせ若しくは誘導体から選択され得る。ある特定のプロセスでは、結合剤は、デンプン、架橋デンプン、デンプンポリマー、又はそれらの組み合わせ若しくは誘導体から選択される。
【0448】
ステップ(e)は、押出機、リングダイペレットミル、フラットダイペレットミル、ロールコンパクタ、ロールブリケッタ、湿式凝集ミル、乾式凝集ミル、又はそれらの組み合わせから選択されるペレット化装置を利用することができる。
【0449】
いくつかのプロセスでは、ステップ(d)及びステップ(e)が統合される。例えば、結合剤は、ペレット化ユニットに直接導入することができる。ステップ(d)及びステップ(e)が別々に実行される場合、結合剤は、炭素-結合剤混合物をペレット化するように構成されたユニットにそのような混合物を導入する前に、含炭素粒子と混合されて、炭素-結合剤混合物を形成する。
【0450】
本発明のいくつかの実施形態では、バイオカーボンペレットは、より小さな物体を作製するための出発材料として利用され、「ペレット」は幾何形状を限定しないため、バイオカーボンペレットとも称され得る。例えば、平均ペレット直径が10mmである初期バイオカーボンペレットを作製することができる。次いで、これらの初期バイオカーボンペレットは、様々な機械的手段を使用して(例えば、ハンマーミルを使用して)破砕することができる。破砕したペレットは、スクリーニングなどによってサイズに応じて分離することができる。このようにして、例えば、約、少なくとも約、又は多くとも約50、100、150、200、300、400、500、600、700、800、900、1000、1500、2000、3000、4000、若しくは5000ミクロンの平均ペレット直径を有する、より小さなバイオカーボンペレットを生成することができる。より小さなバイオカーボンペレットの平均ペレット直径は、結合剤を用いてペレットを作製するために使用された初期含炭素粒子の平均粒子直径より大きくてもよい。
【0451】
バイオカーボンペレットを破砕してより小さいバイオカーボンペレットを生成するとき、粉砕(及び任意選択的にスクリーニング)のステップは、ステップ(e)と統合することができ、ステップ(e)の後に行うことができ、ステップ(f)と統合することができ、又はステップ(f)の後に行うことができ、これには、潜在的に工業用の場所でのものも含まれる。より小さいバイオカーボンペレットを生成するための任意選択的なステップは、ハンマーミル、アトリションミル、ディスクミル、ピンミル、ボールミル、コーンクラッシャ、ジョークラッシャ、ロッククラッシャ、又はそれらの組み合わせから選択される粉砕装置を利用することができる。
【0452】
様々なプロセス実施形態では、ハードグローブ粉砕性指数は、少なくとも40、少なくとも50、少なくとも60、少なくとも70、少なくとも80、少なくとも90、又は少なくとも100である。例えば、ハードグローブ粉砕性指数は、約30~約50又は約50~約70であり得る。
【0453】
様々なプロセスでは、プロセス条件は、全ての介在範囲(例えば、30~60、33~47など)を含む、約、少なくとも約、又は多くとも約20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100のハードグローブ粉砕性指数を有する最終バイオカーボンペレットを生成するように選択及び最適化される。
【0454】
いくつかのプロセスでは、バイオカーボンペレットは、少なくとも80%、少なくとも90%、又は少なくとも95%のペレット耐久性指数によって特徴付けられる。
【0455】
いくつかの実施形態では、プロセスは、ハードグローブ粉砕性指数を事前に選択することと、事前に選択されたハードグローブ粉砕性指数に基づいてプロセス条件を調節することと、バイオカーボンペレットについて事前に選択されたハードグローブ粉砕性指数の±20%以内を達成することと、を含み、調節プロセス条件は、熱分解温度、熱分解時間、機械的処理条件、ペレット化条件、結合剤タイプ、結合剤濃度、結合条件、及び乾燥のうちの1つ以上を調節することを含む。ある特定の実施形態のプロセスは、バイオカーボンペレットについての事前に選択されたハードグローブ粉砕性指数の±10%以内又は±5%以内を達成し得る。
【0456】
本明細書に開示されているバイオカーボンペレットは、多種多様な下流用途を有する。バイオカーボンペレットは、貯蔵、販売、配送、及び他の製品に変換することができる。バイオカーボンペレットは、金属製造中の高炉などの炉に供給するために微粉砕、破砕、又はミリングすることができる。バイオカーボンペレットは、金属製造におけるTecnored炉などの炉に直接供給することができる。バイオカーボンペレットは、ボイラーで使用するために微粉砕して、炭素を燃焼させ、電気エネルギー又は熱を生成することができる。バイオカーボンペレットは、バイオカーボンペレットから合成ガスを作製する目的で、ガス化装置に供給するために微粉砕、破砕、又はミリングすることができる。
【0457】
ある特定の実施形態では、バイオカーボンペレットは、直接、又は微粉砕、破砕、粉砕、若しくは他の方法で粒子サイズを減少させるステップの後に、炉に供給されるネガティブ水強度及びカーボンネガティブ冶金炭素ペレットである。炉は、高炉、炉頂ガス再循環高炉、シャフト炉、反射炉(空気炉としても既知である)、るつぼ炉、消音炉、レトルト炉、フラッシュ炉、Tecnored炉、Ausmelt炉、ISASMELT炉、パッドル炉、ボギー炉床炉、連続チェーン炉、プッシャー炉、回転炉床炉、ウォーキングビーム炉、電気アーク炉、誘導炉、塩基性酸素炉、パッドル炉、ベッセマー炉、直接還元金属炉、又はそれらの組み合わせ若しくは派生物であり得る。
【0458】
バイオカーボンペレットのハードグローブ粉砕性指数にかかわらず、これらは必ずしも後で粉砕プロセスを受けるわけではないことに留意されたい。例えば、バイオカーボンペレットは、農業用途において直接使用することができる。別の例として、バイオカーボンペレットは、造園壁などの人工(engineered)構造に直接組み込むことができる。次いで、バイオカーボンペレットを含む構造の寿命の終わりに、ペレットは、粉砕、燃焼、ガス化、又はそうでなければ再利用若しくは再生され得る。
【0459】
熱分解プロセス及びシステム
バイオマス原料を熱分解して、炭素を含む生体試薬を生成するのに好適なプロセス及びシステムについて、ここで更に詳細に説明する。
【0460】
「熱分解」及び「熱分解する」は、概して、炭素質材料の熱分解を指す。熱分解では、完全燃焼に必要とされる酸素(Oモルベース)の多くとも10%、5%、1%、0.5%、0.1%、又は0.01%など、材料の完全燃焼に必要とされるよりも少ない酸素が存在する。いくつかの実施形態では、熱分解は、酸素の非存在下で実行される。
【0461】
熱分解中に生じ得る例示的な変化は、以下のうちのいずれかを含む:(i)熱供給源からの熱伝達は、原料内の温度を上昇させる;(ii)このより高い温度での一次熱分解反応の開始は、揮発物を放出し、チャーを形成する;(iii)より低温の固体に向かっての高温揮発物の流れは、高温揮発物とより低温の非熱分解原料との間の熱伝達をもたらす;(iv)原料のより低温の部分における揮発物の一部が凝縮し、続いて、二次反応が起こることで、タールが生成され得る;(v)一次熱分解反応が競合して同時に生じる間、自己触媒的二次熱分解反応が進行する;並びに(vi)更なる熱分解、改質、水性ガスシフト反応、フリーラジカル再結合、又は脱水も生じ得、これらは、滞留時間、温度、及び圧力プロファイルの関数である。
【0462】
熱分解は、出発原料(例えば、リグノセルロース系バイオマス)を少なくとも部分的に脱水することができる。様々な実施形態では、熱分解は、出発原料から水の少なくとも約50%、75%、90%、95%、99%又はそれ以上を除去する。
【0463】
様々な実施形態では、出発バイオマス原料は、軟材チップ、硬材チップ、材木収穫残渣、木の枝、木の切り株、葉、樹皮、おがくず、トウモロコシ、トウモロコシ茎葉、小麦、小麦わら、稲、稲わら、サトウキビ、サトウキビバガス、サトウキビわら、エネルギーサトウキビ、サトウダイコン、サトウダイコンパルプ、ヒマワリ、モロコシ、キャノーラ、藻類、ススキ、アルファルファ、スイッチグラス、果物、果物の殻、果物の茎、果物の皮、果物の種子、野菜、野菜の殻、野菜の茎、野菜の皮、野菜の種子、ブドウの搾りかす、扁桃の殻、ペカンの殻、ココナッツの殻、コーヒー粉、食品廃棄物、商業廃棄物、草ペレット、干し草ペレット、木材ペレット、厚紙、紙、紙パルプ、紙包装、紙トリミング、食品包装、建築若しくは解体廃棄物、リグニン、動物性肥料、都市固形廃棄物、都市下水、又はそれらの組み合わせ若しくは誘導体から選択される。バイオマス原料は、少なくとも炭素、水素、及び酸素を含む。
【0464】
生体試薬は、少なくとも約50重量%、少なくとも約75重量%、又は少なくとも約90重量%の炭素(総炭素)を含み得る。様々な実施形態では、生体試薬は、約、少なくとも約、又は多くとも約50、55、60、65、70、75、80、85、90、95、若しくは99重量%の炭素を含む。総炭素は、揮発性物質中に存在する固定炭素と非固定炭素との和である。いくつかの実施形態では、成分の重量パーセンテージは、絶対ベースであり、これは、特に言及されていない限り仮定される。他の実施形態では、成分重量パーセンテージは、無水及び無灰ベースである。
【0465】
生体試薬は、少なくとも約50重量%、少なくとも約75重量%、又は少なくとも約90重量%の固定炭素を含み得る。様々な実施形態では、生体試薬は、約、少なくとも約、又は多くとも約50、55、60、65、70、75、80、85、90、95、若しくは99重量%の固定炭素を含む。
【0466】
(生体試薬内の)炭素は、例えば、少なくとも約50重量%、少なくとも約75重量%、又は少なくとも約90重量%の固定炭素であり得、炭素の残りは揮発性炭素である。様々な実施形態では、炭素は、約、少なくとも約、又は多くとも約50、55、60、65、70、75、80、85、90、95、99、若しくは100重量%の固定炭素を含む。
【0467】
熱分解条件は、生体試薬及び熱分解排ガスの所望の組成、出発原料、反応器構成、並びに他の要因に応じて大きく変動し得る。
【0468】
いくつかの実施形態では、多重反応器ゾーンは、原料変動及び製品要件に対する柔軟性及び調節可能性を維持しながら、熱分解からの炭素収率及び生成物品質を最適化するように設計され、動作される。
【0469】
いくつかの実施形態では、温度及び滞留時間は、比較的遅い熱分解化学反応を達成するように選択される。利点は、バイオマス構造に含有される細胞壁の実質的な保存である可能性があり、これは、最終生成物が出発バイオマスの形状及び強度の一部、大部分、又は全てを保持することができることを意味する。この潜在的な利益を最大化するために、細胞壁を機械的に破壊しないか、又は別の方法でもバイオマス粒子を小さな微粉に変換しない装置を利用する場合がある。様々な反応器構成を、以下のプロセスの説明に従って考察する。
【0470】
追加的に、原料が木材チップ又はペレットなどのミリング又はサイズ決めされた原料である場合、原料を注意深くミリング又はサイズ決めすることが望ましくなり得る。慎重な初期処理は、天然原料供給源(例えば、木)に存在する強度及び細胞壁完全性を保存する傾向がある。これはまた、最終生成物が出発バイオマスの形状及び強度の一部、大部分、又は全部を保持すべき場合に重要であり得る。
【0471】
いくつかの実施形態では、熱分解反応器の第1のゾーンは、バイオマスに「衝撃」を与えない様式でバイオマス(又は別の含炭素原料)を供給するように構成され、衝撃は、細胞壁を破裂させ、蒸気及びガスへの固相の高速分解を開始させる。この第1のゾーンは、穏やかな熱分解と考えることができる。
【0472】
いくつかの実施形態では、熱分解反応器の第2のゾーンは、一次反応ゾーンとして構成され、予熱されたバイオマスは、ガス及び凝縮性蒸気を放出するために熱分解化学反応を受け、高炭素反応中間体であるかなりの量の固体材料を残す。バイオマス成分(主にセルロース、ヘミセルロース、及びリグニン)は、分解して蒸気を創出し、この蒸気は、細孔を貫通するか、又は新たなナノ細孔を創出することによって逃げる。後者の効果は、多孔性及び表面積の創出に寄与する。
【0473】
いくつかの実施形態では、熱分解反応器の第3のゾーンは、高炭素反応中間体を受け取り、固体をある程度冷却するように構成されている。典型的には、第3ゾーンは、第2ゾーンよりも低い温度である。第3のゾーンでは、化学反応及び物質移動は、驚くほど複雑であり得る。特定の理論又は提案された機構によって限定されることなく、二次反応が第3のゾーンで生じ得ると考えられる。本質的に、気相にある含炭素成分は、分解して追加の固定炭素を形成するか、又は炭素上に吸着されるようになり得る。したがって、いくつかの実施形態では、最終的な炭素質材料は、単に処理ステップの固体の脱気された残留物ではなく、炭素を形成することができる有機蒸気(例えば、タール)の分解などによって気相から堆積された追加の炭素を含む。
【0474】
ある特定の実施形態は、生成物の炭素含有量を高めるために、冷却された炭素が含炭素種を含む環境に供される別々のユニットを含むことによって、追加の炭素形成の概念を拡張する。このユニットの温度が熱分解温度未満である場合、追加の炭素は、追加の固定炭素ではなく吸着された炭素質種の形態にあると予想される。
【0475】
任意の特定のゾーン中に存在する1つ以上の相の中間入力及び出力(パージ又はプローブ)流、様々な質量及びエネルギー再循環スキーム、プロセスのどこかに導入することができる様々な添加剤、生成物分布を調整するための反応及び分離条件の両方を含むプロセス条件の調節可能性などに関して、多くの選択肢がある。ゾーン特有の入力及び出力流は、FTIRサンプリング及び動的プロセス調節などによって、良好なプロセス監視及び制御を可能にする。
【0476】
いくつかの実施形態は、高速熱分解を使用せず、いくつかの実施形態は、低速熱分解を使用しない。驚くべきことに、非常に高い割合の固定炭素を有する組成物を含む高品質の炭素材料を、開示されているプロセス及びシステムから得ることができる。
【0477】
いくつかの実施形態では、高炭素生体試薬を生成するための熱分解プロセスは、以下のステップ:
(a)バイオマスを含む含炭素原料を提供するステップと、
(b)任意選択的に、原料を乾燥させて、原料内に含まれる水分の少なくとも一部を除去するステップと、
(c)任意選択的に、原料を脱気して、もしあれば、原料内に含まれる格子間酸素の少なくとも一部を除去するステップと、
(d)実質的に不活性な気相の存在下で、少なくとも10分間、約250℃~約700℃から選択される少なくとも1つの温度で、原料を熱分解して、高温熱分解固体、凝縮性蒸気、及び非凝縮性ガスを生成するステップと、
(e)高温熱分解固体から凝縮性蒸気の少なくとも一部と非凝縮性ガスの少なくとも一部とを分離するステップと、
(f)高温熱分解固体を冷却して、冷却された熱分解固体を生成するステップと、
(g)冷却された熱分解固体の少なくとも一部分を含む高炭素生体試薬を回収するステップと、を含む。
【0478】
「バイオマス」は、本開示の目的では、任意の生体原料又は生体原料と非生体原料との混合物として解釈されるものとする。基本的に、バイオマスは、少なくとも炭素、水素、及び酸素を含む。本発明の方法及び装置は、様々なタイプ、サイズ、及び水分含有量の広範囲の原料に適応することができる。
【0479】
バイオマスとしては、例えば、植物及び植物由来材料、植生、農業廃棄物、林業廃棄物、木材廃棄物、紙廃棄物、動物由来廃棄物、家禽由来廃棄物、並びに都市固形廃棄物が挙げられる。バイオマスを利用する本発明の様々な実施形態では、バイオマス原料は、材木収穫残渣、軟材チップ、硬材チップ、木の枝、木の切り株、木材の節、葉、樹皮、おがくず、規格外製紙用パルプ、セルロース、トウモロコシ、トウモロコシ茎葉、小麦わら、稲わら、サトウキビバガス、スイッチグラス、ススキ、動物性肥料、都市廃棄物、都市下水、商業廃棄物、ブドウの搾りかす、扁桃の殻、ペカンの殻、ココナッツの殻、コーヒー粉、草ペレット、干し草ペレット、木材ペレット、厚紙、紙、炭水化物、プラスチック、又は布から選択される材料を含み得る。当業者は、原料の選択肢が事実上無制限であることを容易に理解するであろう。
【0480】
本発明は、最終製品の炭素強度が、純粋なバイオマス原料と同様に低くはないが、純粋な化石燃料原料が使用される場合よりも低いことを認識して、バイオマスと化石燃料との混合物(例えば、バイオマス/石炭ブレンド)にも使用することができる。いくつかの実施形態では、原料は、石炭、オイルシェール、原油、アスファルト、又は原油処理からの固体(石油コークスなど)を含む。原料としては、廃タイヤ、再生プラスチック、再生紙、建設廃棄物、解体廃棄物、及び他の廃棄物又は再生材料を挙げることができる。
【0481】
特定の1つ以上の原料の選択は、技術的に重要とはみなされないが、経済的なプロセスに有利に働く傾向にある方法で実施される。典型的には、選定される原料にかかわらず、(いくつかの実施形態では)望ましくない物質を除去するためのスクリーニングが存在し得る。原料は、処理前に任意選択的に乾燥させることができる。含炭素原料は、トラック、列車、船、はしけ、トラクタートレーラー、又は任意の他の車両若しくは搬送手段などの任意の既知の手段によって輸送可能であり得る。
【0482】
用いられる原料は、多種多様な粒子サイズ又は形状に提供又は加工することができる。例えば、供給材料は、微粉末、又は微細粒子と粗大粒子との混合物であり得る。供給材料は、木材チップ又は他の形態の木材(例えば、円形、円筒形、正方形など)などの大きな材料片の形態にあり得る。いくつかの実施形態では、供給材料は、ペレット、又は一緒にプレスされているか、若しくは他の方法で、例えば結合剤などで結合されている他の凝集形態の粒子を含む。
【0483】
サイズ縮小は、費用がかかり、エネルギー集約的なプロセスであることに留意されたい。熱分解された材料は、著しく少ないエネルギー入力でサイズ決めすることができる。したがって、原料ではなく生成物の粒子サイズを低減することが望ましくなり得る。これは、プロセスが微細な出発材料を必要とせず、かつ処理中に必ずしも任意の大幅な粒子サイズ縮小がないことから、本発明における選択肢である。非常に大きな原料片を処理する能力は、本発明の重要な経済的利点である。特に、高炭素生成物のいくつかの市場用途は、実際に、大きなサイズ(例えば、センチメートルのオーダー)を必要とし、そのためいくつかの実施形態では、大きな片が供給され、生成され、販売される。
【0484】
円筒形などの構造的完全性を有する最終的な炭素質生体試薬を生成することが望ましい場合、本発明の文脈において少なくとも2つの選択肢がある。第一に、プロセスから生成された材料を収集し、次いで、更に機械的に加工して所望の形態にすることができる。例えば、生成物を結合剤とともにプレス又はペレット化することができる。最終生成物のための所望のサイズ又は形状を一般に有する供給材料を利用して、供給材料の基本構造を破壊しない処理ステップを用いる、という第2の選択肢がある。いくつかの実施形態では、供給物及び生成物は、球形、円筒形、又は立方体などの同様の幾何学的形状を有する。
【0485】
プロセス全体を通して供給材料のおおよそのサイズを維持する能力は、製品強度が重要である場合に有益である。また、これは、高固定炭素材料をペレット化する困難さ及びコストを回避する。
【0486】
出発供給材料は、理解されるように、ある範囲の水分レベルで提供され得る。いくつかの実施形態では、供給材料は、既に十分に乾燥している場合があるので、熱分解前に更に乾燥させる必要はない。典型的には、通常水分を含むバイオマスの商業的供給源を利用し、バイオマスを熱分解反応器に導入する前に乾燥ステップを通して供給することが望ましい。しかしながら、いくつかの実施形態では、乾燥原料を利用することができる。
【0487】
熱分解反応器内において、気相中で、約、又は多くとも約10mol%、5mol%、4mol%、3mol%、2mol%、1.5mol%、1mol%、0.5mol%、0.2mol%、0.1mol%、0.05mol%、0.02mol%、又は0.01mol%のOなどの比較的低い酸素環境を提供することが望ましい。第一に、制御されない燃焼は、安全上の理由から、熱分解反応器において回避されるべきである。COへのいくらかの量の総炭素酸化が生じ得、発熱酸化から放出される熱は、吸熱熱分解化学反応を補助し得る。合成ガスへの部分酸化を含む大量の炭素の酸化は、固体への炭素収率を低下させる。
【0488】
実際には、反応器中で厳密に無酸素環境を達成することは、困難であり得る。この限界に近づくことができ、いくつかの実施形態では、反応器は、気相中に分子酸素を実質的に含まない。熱分解反応器中に酸素がほとんど又は全く存在しないことを確実にするために、供給材料が反応器に導入される前に、供給材料から空気を除去することが望ましい場合がある。原料中の空気を除去又は低減する様々な方法がある。
【0489】
いくつかの実施形態では、乾燥の前後に、吸着された酸素を除去し、原料細孔に浸透して細孔から酸素を除去することができる別のガスの存在下で原料が搬送される脱気ユニットが利用される。本質的に、21体積%未満のOを有する任意のガスを様々な有効性で用いることができる。いくつかの実施形態では、窒素が用いられる。いくつかの実施形態では、CO又はCOが用いられる。窒素と少量の酸素との混合物などの混合物を使用することができる。水蒸気が脱気ガス中に存在してもよいが、供給物にかなりの水分を加えて戻すことは回避するべきである。脱気ユニットからの流出物は、(大気若しくは排出物処理ユニットに)パージされ得るか、又は再循環され得る。
【0490】
原則として、脱気ユニットからの流出物(又はその一部)は、固体から除去された酸素が高度に希釈されるので、熱分解反応器自体に導入することができる。この実施形態では、反応器が向流構成で動作される場合、脱気流出ガスを反応器の最後のゾーンに導入することが有利であり得る。
【0491】
様々なタイプの脱気ユニットを用いることができる。乾燥が行われる場合、存在する水分から可溶性酸素を洗浄する非効率性のために、乾燥を脱気の前に行うことができる。ある特定の実施形態では、乾燥ステップ及び脱気ステップが単一のユニットに組み合わされるか、又はいくらかの量の脱気が乾燥中に達成される。
【0492】
任意選択的に乾燥された、及び任意選択的に脱気された供給材料は、熱分解反応器又は直列若しくは並列の多重反応器に導入される。供給材料は、例えばスクリュー供給装置又はロックホッパーを含む任意の既知の手段を使用して導入することができる。いくつかの実施形態では、材料供給システムは、エアナイフを組み込む。
【0493】
単一の反応器が用いられる場合、複数のゾーンが存在し得る。2つ、3つ、4つ、又はそれより多くのゾーンなどの複数のゾーンは、全体的なプロセス性能を調節するために、温度、固体滞留時間、ガス滞留時間、ガス組成、流れパターン、又は圧力の別々の制御を可能にすることができる。
【0494】
「ゾーン」への言及は、単一の物理的ユニット、物理的に分離されたユニット、又はそれらの任意の組み合わせ内の空間の領域を含むように広く解釈されるものとする。連続反応器に関して、ゾーンの境界は、反応器内のフライトの存在又は別々のゾーンに熱を提供するための別個の加熱要素などの構造に関連し得る。代替的又は追加的に、連続反応器におけるゾーンの境界は、例えば、別個の温度、流体フローパターン、固体フローパターン、反応の程度などの機能に関連し得る。単一バッチ反応器では、「ゾーン」は、空間ではなく時間での動作レジームである。多重バッチ反応器を使用することもできる。
【0495】
あるゾーンから別のゾーンへの急激な遷移は、必ずしもないことが理解されよう。例えば、予熱ゾーンと熱分解ゾーンとの間の境界は、いくらか任意であり得、いくらかの量の熱分解が、予熱ゾーンの一部において起こり得、いくらかの量の「予熱」が、熱分解ゾーンにおいて起こり続け得る。反応器中の温度プロファイルは、反応器内のゾーン境界を含めて、典型的には連続的である。
【0496】
いくつかの実施形態は、予熱又は穏やかな熱分解の条件下で動作される第1のゾーンを用いる。第1のゾーンの温度は、約150℃~約500℃、例えば、約300℃~約400℃から選択され得る。第1のゾーンの温度は、バイオマス材料に衝撃を与えて細胞壁を破裂させ、蒸気及びガスへの固相の高速分解を開始するほどは高くない。
【0497】
本明細書におけるゾーン温度への全ての言及は、存在するバルク固体、又は気相、又は反応器壁(プロセス側)に適用することができる温度を含むように、非限定的に解釈されるべきである。軸方向及び半径方向の両方に、並びに時間的に(すなわち、始動後又は過渡現象に起因して)、各ゾーンにおいて温度勾配が存在することが理解されるであろう。したがって、ゾーン温度への言及は、実際の速度論に影響を及ぼし得る平均温度又は他の有効温度への言及であり得る。温度は、熱電対若しくは他の温度プローブによって直接測定することができ、又は他の手段によって間接的に測定若しくは推定することができる。
【0498】
第2のゾーン、又は一般に一次熱分解ゾーンは、熱分解又は炭化の条件下で動作される。第2のゾーンの温度は、約250℃~約700℃、例えば、約、又は低くとも約、又は高くとも約300℃、350℃、400℃、450℃、500℃、550℃、600℃、若しくは650℃から選択され得る。このゾーン内で、予熱されたバイオマスは、熱分解化学反応を受けてガス及び凝縮性蒸気を放出し、高炭素反応中間体としてかなりの量の固体材料が残る。バイオマス成分(主にセルロース、ヘミセルロース、及びリグニン)は、分解して蒸気を創出し、この蒸気は、細孔を貫通するか、又は新たな細孔を創出することによって逃げる。温度は、少なくとも第2のゾーンの滞留時間、並びに原料の性質及び所望の製品特性に依存する。
【0499】
第3のゾーン又は冷却ゾーンは、高炭素反応中間体を様々な程度に冷却するように動作される。最低でも、第3のゾーンの温度は、第2のゾーンの温度よりも低い温度であるべきである。第3のゾーンの温度は、約100℃~約550℃、例えば約150℃~約350℃から選択され得る。
【0500】
化学反応は、冷却ゾーンで生じ続けることができる。特定の理論に限定されるものではないが、二次熱分解反応が、第3のゾーンにおいて開始され得ると考えられる。気相中にある含炭素成分は、(第3のゾーンの温度の低下により)凝縮し得る。しかしながら、温度は、凝縮された液体から追加の固定炭素を形成することができる反応(二次熱分解)、又は少なくとも吸着種と固定炭素との間の結合を形成することができる反応を促進するのに十分に高いままである。起こり得る1つの例示的な反応は、一酸化炭素を二酸化炭素及び固定炭素に変換するためのブードワ反応である。
【0501】
反応器ゾーンの滞留時間は、変動し得る。所望の量の熱分解のために、より高い温度がより短い反応時間を可能にすることができ、逆もまた同様であるように、時間及び温度の相互作用がある。連続反応器(ゾーン)における滞留時間は、体積を体積流量で除したものである。バッチ反応器中の滞留時間は、反応温度への加熱後のバッチ反応時間である。
【0502】
多相反応器では、複数の滞留時間が存在することを認識すべきである。本文脈では、各ゾーンにおいて、固相及び蒸気相の両方の滞留時間(及び滞留時間分布)が存在する。複数のゾーンを用いる所与の装置について、所与のスループットで、ゾーンにわたる滞留時間は、概して、固体側で結合されるが、複数の入口及び出口ポートが個々のゾーンで利用される場合、滞留時間は、蒸気側で結合されない場合がある。固体及び蒸気の滞留時間は、結合されない。
【0503】
予熱ゾーンの固体滞留時間は、約5分~約60分、例えば、約10、20、30、40、又は50分から選択され得る。温度に応じて、バイオマスを所望の予熱温度に到達させるのに十分な時間が望ましい。粒子のタイプ及びサイズ、物理的装置、並びに加熱パラメータに依存する熱伝達速度は、固体を所望の予熱温度に到達させるのに必要な最小滞留時間を規定する。追加の時間は、いくらかの量の穏やかな熱分解が予熱ゾーンにおいて意図されない限り、より高い資本コストに寄与するので、通常望ましくない。
【0504】
熱分解ゾーンの固体滞留時間は、約10分~約120分、例えば、約20、30、40、50、60、70、80、90、又は100分から選択され得る。このゾーンにおける熱分解温度に応じて、必要な熱伝達に続いて炭化の化学反応を起こさせるのに十分な時間があるべきである。約10分未満の時間では、多量の非炭素元素を除去するために、温度は、700℃超などの非常に高い必要がある。この温度は、高速熱分解並びに炭素自体に由来する蒸気及びガスのその生成を促進するが、意図される生成物が固体炭素である場合には回避されるべきである。
【0505】
静的システムでは、ある特定の時間に実質的に到達し得る平衡変換が存在するであろう。ある特定の実施形態におけるように、蒸気が、連続的な揮発物除去を伴って固体上を連続的に流れている場合、平衡制約は、反応速度がゼロに近づくまで熱分解及び脱揮を継続させるように除去され得る。より長い時間は、残存する難分解性固体を実質的に変化させる傾向がない。
【0506】
冷却ゾーンの固体滞留時間は、約5分~約60分、例えば、約10、20、30、40、又は50分から選択され得る。このゾーンにおける冷却温度に応じて、炭素固体を所望の温度まで冷却させるのに十分な時間があるべきである。冷却速度及び温度は、炭素を冷却させるのに必要な最小滞留時間を規定する。いくらかの量の二次熱分解が望まれない限り、追加の時間は、好ましくない。
【0507】
上で考察したように、蒸気相の滞留時間は、別々に選択及び制御することができる。予熱ゾーンの蒸気滞留時間は、約0.1分~約15分、例えば約0.5、1、2、3、4、5、6、7、8、9、又は10分から選択され得る。熱分解ゾーンの蒸気滞留時間は、約0.1分~約20分、例えば約0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、又は15分から選択され得る。冷却ゾーンの蒸気滞留時間は、約0.1分~約15分、例えば約0.5、1、2、3、4、5、6、7、8、9、又は10分から選択され得る。短い蒸気滞留時間は、システムからの揮発物の高速な一掃を促進し、一方、より長い蒸気滞留時間は、蒸気相中の成分と固相との反応を促進する。
【0508】
反応器、及びシステム全体の動作モードは、連続式、半連続式、バッチ式、又はそれらの任意の組み合わせ若しくは変形形態であり得る。いくつかの実施形態では、反応器は、固体及び蒸気が実質的に反対方向に流れる連続向流反応器である。反応器は、バッチで動作することもできるが、例えば、バッチ容器から気相を周期的に導入及び除去することによって、シミュレートされた蒸気の向流で動作することができる。
【0509】
様々な流れパターンが所望であり得るか、又は観察され得る。多重反応器ゾーンにおける複数の相を伴う化学反応及び同時分離では、流体力学は、非常に複雑になり得る。典型的には、固体の流れは、栓流(半径方向次元において十分に混合されている)に近づくことができ、一方、蒸気の流れは、完全混合流(半径方向次元及び軸方向次元の両方における高速輸送)に近づくことができる。蒸気のための複数の入口及び出口ポートは、全体的な混合に寄与することができる。
【0510】
各ゾーン中の圧力は、別々に選択及び制御することができる。各ゾーンの圧力は、約1kPa~約3000kPa、例えば約101.3kPa(標準大気圧)から独立的に選択され得る。圧力の独立したゾーン制御は、大気圧未満のゾーン圧力が所望されるときにガスを取り出すための真空ポートを含む、複数のガス入口及び出口が使用されるときに可能である。
【0511】
プロセスは、いくつかの実施形態では、大気圧で都合よく動作することができる。大気圧での動作には、機械的な単純さから安全性の向上に及ぶ多くの利点がある。ある特定の実施形態では、熱分解ゾーンは、約90kPa、95kPa、100kPa、101kPa、102kPa、105kPa、又は110kPa(絶対圧力)の圧力で動作される。
【0512】
真空動作(例えば、10~100kPa)は、システムからの揮発物の高速な一掃を促進する。排ガスが高圧動作に供給される場合、より高い圧力(例えば、100~1000kPa)が有用であり得る。高い圧力はまた、熱伝達、化学反応、又は分離を促進するために有用であり得る。
【0513】
凝縮性蒸気の少なくとも一部と非凝縮性ガスの少なくとも一部とを高温熱分解固体から分離するステップは、反応器自体において、又は別個の分離ユニットを使用して実現することができる。実質的に不活性な掃引ガスを1つ以上のゾーンに導入することができる。次いで、凝縮性蒸気及び非凝縮性ガスは、掃引ガス中のゾーンから運び去られ、反応器から出る。
【0514】
掃引ガスは、例えば、N、Ar、CO、CO、H、HO、CH、他の軽質炭化水素、又はそれらの組み合わせであり得る。掃引ガスは、導入前に最初に予熱することができ、あるいは加熱源から得られる場合には冷却することができる。
【0515】
掃引ガスは、揮発性成分が凝縮又は更に反応し得る前に揮発性成分をシステムから取り除くことによって、揮発性成分をより完全に除去する。掃引ガスは、所与のプロセス温度で単に揮発から得られるよりも高い速度で揮発物を除去することを可能にする。又は、掃引ガスの使用は、ある特定の量の揮発物を除去するために、より穏やかな温度が使用されることを可能にする。掃引ガスが揮発物の除去を改善する理由は、分離の機構が単に相対的な揮発性ではなく、むしろ掃引ガスによって補助される液体/蒸気相の分離であるからである。掃引ガスは、所与の揮発性種を連続的に枯渇させて、より多くの揮発性種を蒸発させて熱力学的平衡を達成することによって、揮発の物質移動制限を低減するとともに、熱力学的制限を低減することができる。
【0516】
いくつかの実施形態は、高い固定炭素を有する生成物を生成するために、後続の処理段階から揮発性有機炭素でいっぱいのガスを除去する。除去しなければ、揮発性炭素は、熱分解された固体上に吸着又は吸収される場合があり、それによって、所望され得る炭素のより純粋な形態を達成するために追加のエネルギー(コスト)を必要とする。蒸気を迅速に除去することによって、熱分解固体中の多孔性を高めることができるとも推測される。より高い多孔性は、いくつかの製品にとって望ましい。
【0517】
ある特定の実施形態では、掃引ガスは、大気圧などの比較的低いプロセス圧力と併せて、大量の不活性ガスを必要とすることなく、高速蒸気除去を提供する。
【0518】
いくつかの実施形態では、掃引ガスは、原料の流れ方向に対して向流で流れる。他の実施形態では、掃引ガスは、原料の流れ方向に対して並流で流れる。いくつかの実施形態では、固体の流れパターンは、栓流に近づくが、掃引ガス及び気相の流れパターンは、概して、1つ以上のゾーンにおいて完全混合流に近づく。
【0519】
掃引は、反応器ゾーンのうちのいずれか1つ以上で実行することができる。いくつかの実施形態では、掃引ガスは、冷却ゾーンに導入され、冷却又は熱分解ゾーンから(生成された揮発物とともに)抽出される。いくつかの実施形態では、掃引ガスは、熱分解ゾーンに導入され、熱分解又は予熱ゾーンから抽出される。いくつかの実施形態では、掃引ガスは、予熱ゾーンに導入され、熱分解ゾーンから抽出される。これらの又は他の実施形態では、掃引ガスは、予熱ゾーン、熱分解ゾーン、及び冷却ゾーンの各々に導入することができ、ゾーンの各々から抽出することもできる。
【0520】
いくつかの実施形態では、分離が実施される1つ又は複数のゾーンは、反応器から物理的に分離されたユニットである。分離ユニット又はゾーンは、所望であれば、反応器ゾーンの間に配置することができる。例えば、熱分解ユニットと冷却ユニットとの間に分離ユニットを設置することができる。
【0521】
掃引ガスは、特に固体流が連続的である場合に、連続的に導入することができる。熱分解反応がバッチプロセスとして動作される場合、掃引ガスは、揮発物を除去するために、ある特定の量の時間後に、又は周期的に導入され得る。熱分解反応が連続的に動作される場合であっても、掃引ガスは、所望であれば、好適な弁及び制御を用いて、半連続的又は周期的に導入することができる。
【0522】
含揮発物掃引ガスは、1つ以上の反応器ゾーンから出ることができ、複数のゾーンから得られる場合には組み合わせることができる。次いで、様々な蒸気を含む得られたガス流を、空気放出の制御のために熱酸化装置に供給することができる。任意の既知の熱酸化ユニットを用いることができる。いくつかの実施形態では、熱酸化装置に天然ガス及び空気を供給して、その中に含有される揮発物を実質的に破壊するのに十分な温度に到達させる。
【0523】
熱酸化装置の流出物は、水、二酸化炭素、及び窒素を含む高温ガス流である。この流出流は、所望であれば、空気排出に直接パージすることができる。熱酸化装置流出物のエネルギー含有量は、例えば廃熱回収ユニットにおいて回収され得る。エネルギー含有量は、別の流れ(掃引ガスなど)との熱交換によって回収することもできる。エネルギー含有量は、乾燥機又は反応器などのプロセスにおける他の場所のユニットを直接若しくは間接的に加熱するか、又は加熱を補助することによって利用することができる。いくつかの実施形態では、本質的に全ての熱酸化装置流出物が、乾燥機の間接加熱(ユーティリティ側)に用いられる。熱酸化装置は、天然ガス以外の燃料を用いることができる。
【0524】
炭素質材料の収率は、原料のタイプ及びプロセス条件を含む上記の要因に応じて変動し得る。いくつかの実施形態では、乾燥ベースでの出発原料のパーセンテージとしての固体の正味収率は、少なくとも25%、30%、35%、40%、45%、50%又はそれ以上である。残りは、テルペン、タール、アルコール、酸、アルデヒド、又はケトンなどの凝縮性蒸気と、一酸化炭素、水素、二酸化炭素、及びメタンなどの非凝縮性ガスとの間で分割される。非凝縮性ガスと比較した凝縮性蒸気の相対量は、存在する水を含むプロセス条件にも依存する。
【0525】
炭素バランスに関して、いくつかの実施形態では、原料中の出発炭素のパーセンテージとしての炭素の正味収率は、少なくとも25%、30%、40%、50%、60%、65%、70%、75%、80%又はそれ以上である。例えば、いくつかの実施形態では、炭素質材料は、出発原料中に含有される炭素の約40%~約70%を含む。残りの炭素は、メタン、一酸化炭素、二酸化炭素、軽質炭化水素、芳香族化合物、タール、テルペン、アルコール、酸、アルデヒド、又はケトンを様々な程度で形成する。
【0526】
代替的な実施形態では、これらの化合物のいくらかの部分は、製品の炭素及びエネルギー含有量を富化するために炭素に富む固体と組み合わされる。これらの実施形態では、様々な蒸気を含む、反応器から得られるガス流の一部又は全部を、少なくとも部分的に凝縮させ、次いで、冷却ゾーン又は別々の冷却ユニットに由来する冷却された熱分解固体上を通過させることができる。これらの実施形態は、以下により詳細に記載される。
【0527】
冷却ゾーン(存在する場合)内での反応及び冷却に続いて、炭素質固体を別個の冷却ユニットに導入することができる。いくつかの実施形態では、固体が回収され、単に低速で冷却される。炭素質固体が空気中で反応性又は不安定である場合、不活性雰囲気を維持するか、又は固体を例えば、周囲温度などの多くとも40℃の温度に急速に冷却することが望ましくなり得る。いくつかの実施形態では、急速冷却のために水クエンチが用いられる。いくつかの実施形態では、流動床冷却器が用いられる。「冷却ユニット」は、容器、タンク、パイプ、又はそれらの一部も含むように広く解釈されるべきである。
【0528】
いくつかの実施形態では、プロセスは、冷却ユニットを動作させて、温かい熱分解された固体を水蒸気で冷却し、それによって、低温の熱分解された固体及び過熱水蒸気を生成することを更に含み、乾燥は、少なくとも部分的に、外部冷却器から得られた過熱水蒸気を用いて実施される。任意選択的に、冷却ユニットは、最初に温かい熱分解固体を水蒸気で冷却して第1の冷却ユニット温度に到達させ、次いで空気で冷却して第2の冷却ユニット温度に到達させるように動作させることができ、第2の冷却ユニット温度は、第1の冷却ユニット温度よりも低く、空気の存在下で温かい熱分解固体の燃焼リスクの低減に関連付けられる。
【0529】
周囲条件への冷却に続いて、炭素質固体は、回収及び貯蔵されるか、別の現場作業に搬送されるか、別の現場に輸送されるか、又はそうでなければ処分、取引、若しくは販売され得る。固体をユニットに供給して粒子サイズを減少させることができる。粉砕機、シュレッダー、グラインダー、微粉砕機、ジェットミル、ピンミル、及びボールミルを含む様々なサイズ縮小ユニットが当該技術分野で既知である。
【0530】
スクリーニング又は粒子サイズに基づく分離のためのいくつかの他の手段が含まれ得る。粉砕は、存在する場合、粉砕の上流又は下流であり得る。スクリーニングされた材料の一部(例えば、大きな塊)は、粉砕ユニットに戻すことができる。小さな粒子及び大きな粒子は、別々の下流使用のために回収され得る。いくつかの実施形態では、冷却された熱分解固体は、微粉砕炭素又は活性炭生成物などの微粉末に粉砕される。
【0531】
本明細書に開示されている任意のステップの前、最中、又は後に、様々な添加剤をプロセス全体にわたって導入することができる。添加剤は、所望の炭素純度を達成するために炭素収率又は熱分解時間/温度などのプロセス性能を改善するように選択されるプロセス添加剤、及び高炭素生体試薬又は試薬を組み込む下流生成物の特性を改善するように選択される生成物添加剤として広く分類することができる。ある特定の添加剤は、強化されたプロセス及び製品(生体試薬又は生体試薬を含む製品)特性を提供することができる。
【0532】
添加剤は、原料が収穫される前後の任意の時点で原料自体に添加することを含む、プロセスの任意の1つ以上のステップの前、最中、又は後に添加することができる。添加剤処理は、原料のサイジング、乾燥、又は他の調製の前、最中、若しくは後に組み込むことができる。添加剤は、原料供給施設、輸送トラック、揚陸設備、貯蔵ビン、コンベヤ(開放又は閉鎖コンベヤを含む)、乾燥機、プロセスヒーター、又は任意の他のユニットに、又はその上に組み込むことができる。添加剤は、添加剤を導入するための好適な手段を使用して、熱分解プロセス自体のどこにでも添加することができる。所望であれば、炭化後、又は微粉砕後であっても、添加剤を添加することができる。
【0533】
いくつかの実施形態では、添加剤は、金属、金属酸化物、金属水酸化物、又はそれらの組み合わせから選択される。例えば、添加剤は、決して限定されないが、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、ドロマイト、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、及びそれらの組み合わせから選択され得る。
【0534】
いくつかの実施形態では、添加剤は、酸、塩基、又はそれらの塩から選択される。例えば、添加剤は、決して限定されないが、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、又はそれらの組み合わせから選択され得る。
【0535】
いくつかの実施形態では、添加剤は、金属ハロゲン化物から選択される。金属ハロゲン化物は、金属とハロゲン(フッ素、塩素、臭素、ヨウ素、及びアスタチン)との間の化合物である。ハロゲンは、金属と多くの化合物を形成することができる。金属ハロゲン化物は、概して、塩基性金属塩とハロゲン化水素酸との直接結合、又はより一般には中和によって得られる。いくつかの実施形態では、添加剤は、塩化鉄(FeCl若しくはFeCl)、臭化鉄(FeBr若しくはFeBr)、又はそれらの水和物、及びそれらの任意の組み合わせから選択される。
【0536】
添加剤は、より高いエネルギー含有量(エネルギー密度)を有する最終製品をもたらすことができる。エネルギー含有量の増加は、総炭素、固定炭素、揮発性炭素、又は更に水素の増加から生じ得る。代替的又は追加的に、エネルギー含有量の増加は、不燃性物質又は炭素よりも低いエネルギー密度を有する材料の除去から生じ得る。いくつかの実施形態では、添加剤は、固体及び気体の形成に有利になるように、又は固体の形成に有利になるように、液体形成の程度を低減する。
【0537】
いかなる特定の仮説にも限定されることなく、添加剤は、出発バイオマス、又は熱分解前の処理されたバイオマスを化学的に改変して、より大きな強度/完全性のために細胞壁の破壊を低減することができる。いくつかの実施形態では、添加剤は、熱分解前にバイオマス原料の固定炭素含有量を増加させることができる。
【0538】
添加剤は、改善された機械的特性、例えば、降伏強度、圧縮強度、引張強度、疲労強度、衝撃強度、弾性率、体積弾性率、又はせん断弾性率を有する生体試薬をもたらし得る。添加剤は、単に存在することによって(例えば、添加剤自体が混合物に強度を付与する)、又は添加剤相内若しくは得られた混合物内で起こる何らかの変換によって、機械的特性を改善することができる。例えば、ガラス化などの反応は、添加剤を含む生体試薬の一部内で生じ得、それによって最終強度を改善する。
【0539】
化学添加剤は、湿潤又は乾燥バイオマス原料に適用することができる。添加剤は、固体粉末、スプレー、ミスト、液体、又は蒸気として適用することができる。いくつかの実施形態では、添加剤は、液体溶液(水溶液又は溶媒中など)の噴霧によって、又はタンク、ビン、バッグ、若しくは他の容器中に浸漬することによって導入することができる。
【0540】
ある特定の実施形態では、浸漬前処理が用いられ、固体原料は、バッチ式又は連続式のいずれかで、固体供給材料へ添加剤を浸透させるのに十分な時間、添加剤を含む浴に浸漬される。
【0541】
いくつかの実施形態では、原料に適用される添加剤は、熱分解のためのエネルギー必要量を低減するか、又は炭素質生成物の収率を増加させることができる。これらの又は他の実施形態では、原料に適用される添加剤は、炭素質製品の意図された使用に望ましい機能性を提供することができる。
【0542】
スループット又はプロセス容量は、小さな実験室規模のユニットから、任意のパイロット規模、実証規模、又は半商業規模を含む完全な動作まで広く変動し得る。様々な実施形態では、プロセス能力(原料、生成物、又は両方について)は、少なくとも約1kg/日、10kg/日、100kg/日、1トン/日(全てのトンはメートルトンである)、10トン/日、100トン/日、500トン/日、1000トン/日、2000トン/日又はそれ以上である。
【0543】
いくつかの実施形態では、生成された固体の一部は、プロセスのフロントエンドに、すなわち、乾燥若しくは脱気ユニットに、又は直接反応器に再循環され得る。フロントエンドに戻り、再びプロセスを通過することによって、処理された固体は、固定炭素がより高くなり得る。プロセス内で生成又は存在する固体、液体、及びガス流は、独立的に再循環され、後続のステップに渡され、又は任意の時点でプロセスから除去/パージされ得る。
【0544】
いくつかの実施形態では、熱分解された材料は、回収され、次いで、更なる熱分解のために別々のユニットに供給されて、より高い炭素純度を有する製品を創出する。いくつかの実施形態では、二次プロセスは、加熱された不活性ガス(加熱されたNなど)が通過させられる鋼ドラムなどの単純な容器内で行うことができる。この目的に有用な他の容器としては、プロセスタンク、バレル、ビン、トート、サック、及びロールオフが挙げられる。揮発物を含むこの二次掃引ガスは、例えば、熱酸化装置に送ることができるか、又は主プロセス反応器に戻すことができる。生成物を冷却するために、最初は例えば周囲温度である不活性ガスの別の流れを固体に通して固体を冷却し、次いで不活性ガス予熱システムに戻すことができる。
【0545】
本技術のいくつかの変形形態は、
(a)含炭素原料を導入するように構成された供給装置と、
(b)供給装置と動作可能に連通して配置され、含炭素原料内に含まれる水分を除去するように構成された任意選択的な乾燥機と、
(c)乾燥機と動作可能に連通して配置された多重ゾーン反応器であって、多重ゾーン反応器が、空間的に分離された冷却ゾーンと動作可能に連通して配置された少なくとも1つの熱分解ゾーンを含み、凝縮性蒸気及び非凝縮性ガスを固体から除去するための出口を有するように構成された、多重ゾーン反応器と、
(d)多重ゾーン反応器と動作可能に連通して配置された固体冷却器と、
(e)固体冷却器と動作可能に連通して配置された高炭素生体試薬回収ユニットと、を備える、高炭素生体試薬生成システムを利用する。
【0546】
いくつかの変形形態は、
(a)含炭素原料を導入するように構成された供給装置と、
(b)供給装置と動作可能に連通して配置され、含炭素原料内に含まれる水分を除去するように構成された任意選択的な乾燥機と、
(c)乾燥機と動作可能に連通して配置され、原料を加熱又は穏やかに熱分解するように構成された任意選択的な予熱器と、
(d)予熱器と動作可能に連通して配置され、原料を熱分解するように構成された熱分解反応器と、
(e)熱分解反応器と動作可能に連通して配置され、熱分解固体を冷却するように構成された冷却器と、
(f)冷却器と動作可能に連通して配置された高炭素生体試薬回収ユニットと、を備える、高炭素生体試薬生成システムであって、
システムが、固体から凝縮性蒸気及び非凝縮性ガスを除去するための少なくとも1つのガス出口を備えて構成されている、生体試薬生成システムを利用する。
【0547】
供給装置は、供給固体を第1の反応ゾーンに導入するためのスクリュー供給装置又はオーガ機構の使用などによって、多重ゾーン反応器と物理的に統合することができる。
【0548】
いくつかの実施形態では、システムは、熱分解ゾーンと動作可能に連通して配置された予熱ゾーンを更に備える。熱分解ゾーン、冷却ゾーン、及び予熱ゾーン(それが存在する)の各々は、単一のユニット内に位置することができ、又は別々のユニット中に位置することができる。
【0549】
任意選択的に、乾燥機は、多重ゾーン反応器内の乾燥ゾーンとして構成することができる。任意選択的に、固体冷却器は、多重ゾーン反応器内に配置することができる(すなわち、追加の冷却ゾーンとして構成されるか、又は主冷却ゾーンと統合される)。
【0550】
システムは、システムから酸素を除去するためのパージ手段を含み得る。例えば、パージ手段は、実質的に不活性なガスを導入するための1つ以上の入口と、実質的に不活性なガス及び置換された酸素をシステムから除去するための1つ以上の出口と、を備えることができる。いくつかの実施形態では、パージ手段は、乾燥機と多重ゾーン反応器との間に動作可能に連通して配置された脱気装置である。
【0551】
多重ゾーン反応器は、少なくとも第1のガス入口及び第1のガス出口を備えるように構成することができる。第1のガス入口及び第1のガス出口は、異なるゾーン又は同じゾーンと連通して配置することができる。
【0552】
いくつかの実施形態では、多重ゾーン反応器は、第2のガス入口又は第2のガス出口を備えて構成される。いくつかの実施形態では、多重ゾーン反応器は、第3のガス入口又は第3のガス出口を備えて構成される。いくつかの実施形態では、多重ゾーン反応器は、第4のガス入口又は第4のガス出口を備えて構成される。いくつかの実施形態では、多重ゾーン反応器中に存在する各ゾーンは、ガス入口及びガス出口を備えて構成されている。
【0553】
ガス入口及び出口は、蒸気の導入及び取り出しを可能にするだけでなく、具体的に、ガス出口(プローブ)は、プロセスの全ての段階まで、及び潜在的にプロセスの全ての段階を含む、プロセスの様々な段階にわたる正確なプロセス監視及び制御を可能にする。正確なプロセス監視は、動作履歴を利用してプロセス条件を調節することができる場合、動的にも、ある期間にわたっても、歩留まり及び効率の改善をもたらすことが予想される。
【0554】
いくつかの実施形態では、反応ガスプローブは、熱分解ゾーンと動作可能に連通して配置される。そのような反応ガスプローブは、反応の程度、熱分解選択性、又は他のプロセス監視を決定するために、ガスを抽出し、それらを分析するのに有用であり得る。次いで、測定に基づいて、プロセスは、供給速度、不活性ガス掃引の速度、(1つ以上のゾーンの)温度、(1つ以上のゾーンの)圧力、添加剤などを調節することによってなど、任意の数の方法で制御又は調節することができる。
【0555】
本明細書で意図されるように、反応ガスプローブを介した「監視及び制御」は、反応ガスプローブを介した任意の1つ以上のサンプル抽出を含み、及び任意選択的に、必要又は望ましいとみなされる場合、プロセス制御の周知の原理(フィードバック、フィードフォワード、比例積分微分論理など)を使用して、測定に基づいてプロセス作成又は設備調節を行うことを含むように解釈されるべきである。
【0556】
反応ガスプローブは、多くの方法でガスサンプルを取り出すように構成することができる。例えば、サンプリングラインは、熱分解反応器圧力よりも低い圧力を有することができ、その結果、サンプリングラインが開かれると、ある量のガスを熱分解ゾーンから容易に取り出すことができる。サンプリングラインは、熱分解ゾーンが大気圧に近い場合など、真空下であり得る。典型的には、反応ガスプローブは、1つのガス出力又はその一部(例えば、ガス出力ラインから分岐したライン)と関連付けられる。
【0557】
いくつかの実施形態では、ガス入力及びガス出力の両方が、不活性ガスをゾーンに周期的に導入し、不活性ガスをプロセスサンプルとともにガス出力から引き出す(「サンプル掃引」)ことによって、反応ガスプローブとして利用される。そのような構成は、処理のための実質的に不活性なガスのためのガス入口/出口を有しないゾーンで使用することができ、又は、反応ガスプローブは、プロセス入口及び出口に加えて、別々のガス入口/出口と関連付けることができる。(サンプル掃引を利用する実施形態では)サンプリングのために周期的に導入及び取り出されるサンプリング不活性ガスは、必要に応じて、分析の精度の理由から、又は分析トレーサーを導入するためのいずれかにより、プロセス不活性ガスとは異なる場合がある。
【0558】
例えば、熱分解ゾーンの気相中の酢酸濃度は、サンプルを抽出するためのガスプローブを使用して測定することができ、次いで、サンプルは、好適な技術(ガスクロマトグラフィー、GC;質量分析、MS;GC-MS、又はフーリエ変換赤外分光法、FTIRなど)を使用して分析される。ガス相中のCO又はCO濃度を測定し、例えば、ガス/蒸気に対する熱分解選択性の指標として使用することができる。気相中のテルペン濃度を測定し、例えば、液体に対する熱分解選択性の指標として使用することができる。
【0559】
いくつかの実施形態では、システムは、冷却ゾーン、又は乾燥ゾーン(存在する場合)若しくは予熱ゾーン(存在する場合)と動作可能に連通して配置された少なくとも1つの追加のガスプローブを更に備える。
【0560】
冷却ゾーン用のガスプローブは、例えば、冷却ゾーン中で起こる任意の追加の化学反応の程度を決定するのに有用であり得る。冷却ゾーン中のガスプローブは、(例えば、冷却ゾーン内に配置された熱電対に加えて)温度の独立した測定としても有用であり得る。この独立した測定は、冷却温度とある特定の種の測定された量との相関であり得る。相関は、別々に展開され得るか、又はプロセス動作のある期間の後に確立され得る。
【0561】
乾燥ゾーン用のガスプローブは、例えば水分含有量を測定することによって、乾燥の程度を決定するのに有用であり得る。予熱ゾーン中のガスプローブは、例えば、起こる任意の穏やかな熱分解の程度を決定するのに有用であり得る。
【0562】
ある特定の実施形態では、冷却ゾーンは、ガス入口を備えて構成され、熱分解ゾーンは、ガス出口を備えて構成されて、固相に対して気相の実質的に向流の流れを生成する。代替的又は追加的に、予熱ゾーン(存在する場合)は、ガス出口を備えて構成されて、固相に対して気相の実質的に向流の流れを生成することができる。代替的又は追加的に、乾燥ゾーンは、ガス出口を備えて構成されて、実質的に向流の流れを生成することができる。
【0563】
1つ又は複数の熱分解反応器は、熱分解プロセスを実施することができる任意の好適な反応器構成から選択され得る。例示的な反応器構成としては、固定床反応器、流動床反応器、噴流床反応器、オーガ、アブレーション反応器、回転コーン、回転ドラムキルン、か焼器、ロースター、移動床反応器、輸送床反応器、アブレーション反応器、回転コーン、又はマイクロ波支援熱分解反応器が挙げられるが、これらに限定されることはない。
【0564】
オーガが使用されるいくつかの実施形態では、砂又は別の熱キャリアを任意選択的に、用いることができる。例えば、原料及び砂は、スクリューの一端で供給することができる。スクリューは、砂と原料とを混合し、それらを反応器を通して搬送する。スクリューは、原料滞留時間の良好な制御を提供することができ、熱分解生成物をキャリア又は流動化ガスで希釈しない。砂は、別々の容器で再加熱することができる。
【0565】
アブレーションプロセスが使用されるいくつかの実施形態では、原料は、溶銑表面に対して高速で移動させられる。表面に形成される任意のチャーのアブレーションは、高い熱伝達率を維持することができる。そのような装置は、生成物の希釈を防止することができる。別法として、原料粒子をキャリアガス中に懸濁させ、壁が加熱されたサイクロンを通して高速で導入することができる。
【0566】
流動床反応器が使用されるいくつかの実施形態では、原料は、典型的には再循環生成物ガスであるガスによって流動化された高温砂の床に導入することができる。本明細書における「砂」への言及は、ガラス粒子、回収された灰粒子などの同様の実質的に不活性な材料も含む。流動砂からの高い熱伝達率は、原料の急速な加熱をもたらすことができる。砂粒子との摩擦によるいくらかのアブレーションがあり得る。熱は、通常、高温燃焼ガスが流れる熱交換器管によって提供される。
【0567】
ガス、砂、及び原料が一緒に移動する循環流動床反応器を用いることができる。例示的な輸送ガスとしては、再循環生成ガス及び燃焼ガスが挙げられる。砂からの高い熱伝達率は、原料の急速な加熱を確実にし、アブレーションは、通常の流動床よりも強いと予想される。分離器を用いて、生成物ガスを砂及びチャー粒子から分離することができる。砂粒子は、流動バーナー容器中で再加熱し、反応器に再循環させることができる。
【0568】
いくつかの実施形態では、多重ゾーン反応器は、原料入口と、反応ゾーンの各々内の温度及び混合を別々に制御するように構成された複数の空間的に分離された反応ゾーンと、炭素質固体出口と、を備える連続反応器であり、反応ゾーンのうちの1つは、実質的に不活性なガスを反応器に導入するための第1のガス入口を備えて構成され、反応ゾーンのうちの1つは、第1のガス出口を備えて構成されている。
【0569】
様々な実施形態では、反応器は、少なくとも2つ、3つ、4つ、又はそれより多くの反応ゾーンを含む。反応ゾーンの各々は、電気熱伝達、水蒸気熱伝達、熱油熱伝達、相変化熱伝達、廃熱熱伝達、又はそれらの組み合わせから独立して選択される別々に調節可能な加熱手段と連通して配置される。いくつかの実施形態では、少なくとも1つの反応器ゾーンは、存在する場合、熱酸化装置からの流出流で加熱される。
【0570】
反応器は、反応器中に存在する全ての反応ゾーンまでの少なくとも2つの反応ゾーンの気相組成及び気相滞留時間を別々に調節するように構成することができる。
【0571】
反応器は、第2のガス入口又は第2のガス出口を装備することができる。いくつかの実施形態では、反応器は、各反応ゾーンにガス入口を備えて構成されている。これらの又は他の実施形態では、反応器は、各反応ゾーンにガス出口を備えて構成されている。反応器は、並流又は向流反応器であり得る。
【0572】
いくつかの実施形態では、原料入口は、スクリュー又はオーガ供給機構を備える。いくつかの実施形態では、炭素質固体出口は、スクリュー又はオーガ出力機構を備える。
【0573】
ある特定の実施形態は、スクリュー供給装置を備えた回転か焼器を利用する。これらの実施形態では、反応器は、軸方向に回転可能であり、すなわち、反応器は、その中心軸を中心に回転する。回転速度は、固体流れパターン、並びに熱及び質量輸送に影響を与える。反応ゾーンの各々は、内壁上に配置されたフライトを備えて構成され、固体の撹拌を提供することができる。フライトは、反応ゾーンの各々において別々に調節可能であり得る。
【0574】
オーガ、スクリュー、又はパドルコンベヤなどの固体を撹拌する他の手段を用いることができる。いくつかの実施形態では、反応器は、反応ゾーンの各々の全体にわたって配置された単一の連続オーガを含む。他の実施形態では、反応器は、反応ゾーンの各々の全体にわたって配置された二軸スクリューを含む。
【0575】
いくつかのシステムは、特に、プロセス全体にわたって供給材料のおおよそのサイズを維持する能力、すなわち、その構造を破壊又は著しく損傷することなくバイオマス原料を処理する能力を伴って設計される。いくつかの実施形態では、熱分解ゾーンは、熱分解される供給材料のサイズを大幅に減少させる傾向があるオーガ、スクリュー、又はレーキを含まない。
【0576】
本発明のいくつかの実施形態では、システムは、凝縮性蒸気及び非凝縮性ガスが除去される出口と動作可能に連通して配置された熱酸化装置を更に含む。熱酸化装置は、別々の燃料(天然ガスなど)及び酸化剤(空気など)を、燃料及び少なくとも一部の凝縮性蒸気を燃焼させるように適合された燃焼チャンバに受け入れるように構成され得る。CO又はCHなどのある特定の非凝縮性ガスも酸化させてCOにすることができる。
【0577】
熱酸化装置が用いられる場合、システムは、熱酸化装置と乾燥機との間に配置され、燃焼の熱の少なくとも一部を乾燥機に利用するように構成された熱交換器を含み得る。この実施形態は、プロセスの全体的なエネルギー効率に著しく寄与することができる。
【0578】
いくつかの実施形態では、システムは、固体冷却器と動作可能に連通して配置され、少なくとも部分的に凝縮した形態の凝縮性蒸気を固体と組み合わせるように構成された炭素強化ユニットを更に備える。炭素強化ユニットは、回収ユニットから得られる高炭素生体試薬の炭素含有量を増加させることができる。
【0579】
システムは、高炭素生体試薬を更に熱分解してその炭素含有量を更に増加させるように適合された別々の熱分解ユニットを更に含み得る。別々の熱分解ユニットは、タンク、バレル、ビン、ドラム、トート、サック、又はロールオフなどの比較的単純な容器、ユニット、又はデバイスであり得る。
【0580】
システム全体は、固定位置にあってもよいし、いくつかの位置に分布していてもよい。システムは、実際のスケールアップのために簡単に複製することができるモジュールを使用して構築することができる。システムはまた、プロセス産業において周知であるように、経済規模原理を使用して構築することができる。
【0581】
これより、固体の炭素強化に関するいくつかの変形形態を更に説明する。いくつかの実施形態では、高炭素生体試薬を生成するためのプロセスは、
(a)バイオマスを含む含炭素原料を提供することと、
(b)任意選択的に、原料を乾燥させて、原料内に含まれる水分の少なくとも一部を除去することと、
(c)任意選択的に、原料を脱気して、もしあれば、原料内に含まれる格子間酸素の少なくとも一部を除去することと、
(d)熱分解ゾーンにおいて、実質的に不活性なガスの存在下で、少なくとも10分間及び約250℃~約700℃から選択される熱分解温度で、原料を熱分解して、高温熱分解固体、凝縮性蒸気、及び非凝縮性ガスを生成することと、
(e)高温熱分解固体から凝縮性蒸気の少なくとも一部と非凝縮性ガスの少なくとも一部とを分離することと、
(f)冷却ゾーンにおいて、実質的に不活性なガスの存在下で、少なくとも5分間及び熱分解温度未満の冷却温度で、高温熱分解固体を冷却して、温かい熱分解固体を生成することと、
(g)任意選択的に、温かい熱分解固体を冷却して、低温の熱分解固体を生成することと、
(h)その後、ステップ(e)からの凝縮性蒸気の少なくとも一部又は非凝縮性ガスの少なくとも一部を、温かい熱分解固体又は冷たい熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を形成することと、
(i)向上した熱分解固体の少なくとも一部を含む高炭素生体試薬を回収することと、を含む。
【0582】
いくつかの実施形態では、ステップ(h)は、ステップ(e)からの凝縮性蒸気の少なくとも一部を、蒸気又は凝縮形態で、温かい熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。いくつかの実施形態では、ステップ(h)は、ステップ(e)からの非凝縮性ガスの少なくとも一部を温かい熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。
【0583】
代替的又は追加的に、蒸気又はガスを低温の熱分解固体と接触させることができる。いくつかの実施形態では、ステップ(h)は、ステップ(e)からの凝縮性蒸気の少なくとも一部を、蒸気又は凝縮形態で、低温熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。いくつかの実施形態では、ステップ(h)は、ステップ(e)からの非凝縮性ガスの少なくとも一部を、低温の熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。
【0584】
ある特定の実施形態では、ステップ(h)は、ステップ(e)からの凝縮性蒸気の実質的に全てを、蒸気又は凝縮形態で、低温熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。ある特定の実施形態では、ステップ(h)は、ステップ(e)からの非凝縮性ガスの実質的に全てを、低温の熱分解固体に通過させて、炭素含有量が増加した強化熱分解固体を生成することを含む。
【0585】
プロセスは、炭素強化のために蒸気又はガスを使用する前に、蒸気又はガスを処理又は分離する様々な方法を含み得る。例えば、ステップ(e)から得られた凝縮性蒸気の少なくとも一部及び非凝縮性ガスの少なくとも一部から本質的になる中間供給流は、少なくとも第1及び第2の出力流を生成するように構成された分離ユニットに供給することができる。ある特定の実施形態では、中間供給流は、凝縮性蒸気の全て、非凝縮性ガスの全て、又はその両方を含む。
【0586】
分離技術は、蒸留カラム、フラッシュ容器、遠心分離器、サイクロン、膜、フィルタ、充填床、キャピラリーカラムなどを含むか又は使用することができる。分離は、主に、例えば、蒸留、吸収、吸着、又は拡散に基づくことができ、蒸気圧、活性、分子量、密度、粘度、極性、化学官能性、固定相への親和性、及びそれらの任意の組み合わせにおける差異を利用することができる。
【0587】
いくつかの実施形態では、第1及び第2の出力流は、相対揮発度に基づいて中間供給流から分離される。例えば、分離ユニットは、蒸留カラム、フラッシュタンク、又は凝縮器であり得る。
【0588】
したがって、いくつかの実施形態では、第1の出力流は、凝縮性蒸気を含み、第2の出力流は、非凝縮性ガスを含む。凝縮性蒸気は、テルペン、アルコール、酸、アルデヒド、又はケトンから選択される少なくとも1つの含炭素化合物を含み得る。熱分解からの蒸気は、ベンゼン、トルエン、エチルベンゼン、及びキシレンなどの芳香族化合物を含み得る。難分解性タールなどのより重い芳香族化合物が蒸気中に存在し得る。非凝縮性ガスは、一酸化炭素、二酸化炭素、又はメタンから選択される少なくとも1つの含炭素分子を含み得る。
【0589】
いくつかの実施形態では、第1及び第2の出力流は、相対的な極性に基づいて分離された中間供給流である。例えば、分離ユニットは、ストリッピングカラム、充填床、クロマトグラフィーカラム、又は膜であり得る。
【0590】
したがって、いくつかの実施形態では、第1の出力流は、極性化合物を含み、第2の出力流は、非極性化合物を含む。極性化合物は、メタノール、フルフラール、又は酢酸から選択される少なくとも1つの含炭素分子を含み得る。非極性化合物は、一酸化炭素、二酸化炭素、メタン、テルペン、又はテルペン誘導体から選択される少なくとも1つの含炭素分子を含み得る。
【0591】
ステップ(h)は、ステップ(h)を含まないこと以外は同一のプロセスに対して、高炭素生体試薬の総炭素含有量を増加させることができる。炭素含有量の増加の程度は、様々な実施形態では、例えば、約1%、2%、5%、10%、15%、25%、又は更にそれ以上であり得る。
【0592】
いくつかの実施形態では、ステップ(h)は、高炭素生体試薬の固定炭素含有量を増加させる。これらの又は他の実施形態では、ステップ(h)は、高炭素生体試薬の揮発性炭素含有量を増加させる。揮発性炭素含有量は、試薬中の揮発性物質に起因する炭素である。揮発性物質は、脂肪族又は芳香族化合物(例えば、テルペン);アルコール、アルデヒド、又はケトンを含む酸素化物;及び様々なタールを含む炭化水素であり得るが、これらに限定されない。揮発性炭素は、典型的には、周囲条件で固体に結合又は吸着されたままであるが、加熱されると、固定炭素が酸化されるか、ガス化されるか、又は他の方法で蒸気として放出される前に、放出される。
【0593】
ステップ(h)に関連する条件に応じて、いくらかの量の揮発性炭素が固定炭素になることが可能である(例えば、COからのブードワ炭素形成を介して)。典型的には、揮発性物質は、固定炭素のミクロ細孔に入り、凝縮/吸着種として存在するが、比較的揮発性のままである。この残留揮発性は、高い表面積及び多孔性を必要とする製品用途と比較して、燃料用途にとってより有利であり得る。
【0594】
ステップ(h)は、高炭素生体試薬のエネルギー含有量(すなわち、エネルギー密度)を増加させることができる。エネルギー含有量の増加は、総炭素、固定炭素、揮発性炭素、又は更に水素の増加から生じ得る。エネルギー含有量の増加の程度は、様々な実施形態では、例えば、約1%、2%、5%、10%、15%、25%、又は更に高いものであり得る。
【0595】
更なる分離を用いて、プロセス又は更なる処理内で使用するために、非凝縮性ガス又は凝縮性蒸気を回収することができる。例えば、精製された一酸化炭素又は水素を生成するために、更なる処理を含めることができる。
【0596】
別の例として、酢酸の分離を行い、続いて酢酸をエタノールに還元することができる。酢酸の還元は、少なくとも部分的に、生成された非凝縮性ガスに由来する水素を使用して実現することができる。
【0597】
凝縮性蒸気は、高炭素生体試薬の炭素含有量を増加させるために、プロセス(熱酸化などによる)又は炭素濃縮のいずれかにおけるエネルギーのために使用することができる。CO又はCHなどのある特定の非凝縮性ガスは、プロセスにおけるエネルギーのために、又は熱分解ステップのための実質的に不活性なガスの一部として利用することができる。また、前述のものの任意の組み合わせも可能である。
【0598】
ステップ(h)を含むことの潜在的な利点は、ガス流が洗浄され、得られるガス流がCO及びCOについて濃縮されていることである。得られたガス流は、エネルギー回収のために利用することができ、固体の炭素濃縮のために再循環させることができ、又は反応器中で不活性ガスとして使用することができる。同様に、凝縮性蒸気から非凝縮性ガスを分離することによって、CO/CO流は、例えば、反応器システム又は冷却システムにおける不活性ガスとしての使用のために調製される。
【0599】
他の変形形態は、炭素強化ステップの原理が、炭素を添加することが望まれる任意の原料に適用され得るという認識を前提とする。
【0600】
いくつかの実施形態では、高炭素生体試薬を生成するためのバッチ又は連続プロセスは、
(a)含炭素材料を含む固体流を提供することと、
(b)凝縮性含炭素蒸気、非凝縮性含炭素ガス、又は凝縮性含炭素蒸気と非凝縮性含炭素ガスとの混合物を含むガス流を提供することと、
(c)ガス流を好適な条件下で固体流を通過させて、含炭素材料に対して増加した炭素含有量を有する含炭素生成物を形成することと、を含む。
【0601】
いくつかの実施形態では、出発含炭素材料は、熱分解バイオマス又は焙焼バイオマスである。ガス流は、含炭素材料を提供する統合プロセスの間に得ることができる。又は、ガス流は、含炭素材料の別々の処理から得ることができる。ガス流又はその一部は、外部供給源(例えば、製材所のオーブン)から得ることができる。様々な供給源からのガス流の混合物、並びに含炭素材料の混合物が可能である。
【0602】
いくつかの実施形態では、プロセスは、プロセスを繰り返して、含炭素生成物の炭素又はエネルギー含有量を更に増加させる、ガス流を再循環又は再利用することを更に含む。いくつかの実施形態では、プロセスは、プロセスを実施して、含炭素材料とは異なる別の原料の炭素又はエネルギー含有量を増加させる、ガス流を再循環又は再利用することを更に含む。
【0603】
いくつかの実施形態では、プロセスは、少なくとも第1及び第2の出力流を生成するように構成された分離ユニットにガス流を導入することを更に含み、ガス流は、凝縮性含炭素蒸気と非凝縮性含炭素ガスとの混合物を含む。第1及び第2の出力流は、相対揮発度、相対極性、又は任意の他の特性に基づいて分離することができる。ガス流は、含炭素材料の別々の処理から得ることができる。
【0604】
いくつかの実施形態では、プロセスは、プロセスを繰り返して、含炭素生成物の炭素含有量を更に増加させる、ガス流を再循環又は再利用することを更に含む。いくつかの実施形態では、プロセスは、プロセスを実施して、別の原料の炭素含有量を増加させる、ガス流を再循環又は再利用することを更に含む。
【0605】
含炭素製品は、出発含炭素材料に対して、増加した総炭素含有量、より高い固定炭素含有量、より高い揮発性炭素含有量、より高いエネルギー含有量、又はそれらの任意の組み合わせを有することができる。
【0606】
関連する変形形態では、高炭素生体試薬生成システムは、
(a)含炭素原料を導入するように構成された供給装置と、
(b)供給装置と動作可能に連通して配置され、含炭素原料内に含まれる水分を除去するように構成された任意選択的な乾燥機と、
(c)乾燥機と動作可能に連通して配置された多重ゾーン反応器であって、多重ゾーン反応器が、空間的に分離された冷却ゾーンと動作可能に連通して配置された少なくとも1つの熱分解ゾーンを含み、凝縮性蒸気及び非凝縮性ガスを固体から除去するための出口を有するように構成された、多重ゾーン反応器と、
(d)多重ゾーン反応器と動作可能に連通して配置された固体冷却器と、
(e)固体冷却器と動作可能に連通して配置され、凝縮性蒸気又は非凝縮性ガスを固体に通過させて、炭素含有量が増加した強化固体を形成するように構成された材料濃縮ユニットと、
(f)材料濃縮ユニットと動作可能に連通して配置された高炭素生体試薬回収ユニットと、を備える。
【0607】
システムは、熱分解ゾーンと動作可能に連通して配置された予熱ゾーンを更に備えることができる。いくつかの実施形態では、乾燥機は、多重ゾーン反応器内の乾燥ゾーンとして構成されている。ゾーンの各々は、単一のユニット内又は別々のユニット内に位置することができる。また、固体冷却器は、多重ゾーン反応器内に配置することができる。
【0608】
いくつかの実施形態では、冷却ゾーンは、ガス入口を備えて構成され、熱分解ゾーンは、ガス出口を備えて構成され、それによって固相に対する気相の実質的に向流の流れを生成する。これら又は他の実施形態では、予熱ゾーン又は乾燥ゾーン(若しくは乾燥機)は、ガス出口を備えて構成され、固相に対して気相の実質的に向流の流れを生成する。
【0609】
特定の実施形態では、システムは、材料濃縮ユニットを組み込み、材料濃縮ユニットは、
(i)上部部分及び下部部分を有するハウジングと、
(ii)凝縮性蒸気及び非凝縮性ガスを運ぶように構成された、ハウジングの下部部分の底部にある入口と、
(iii)凝縮性蒸気及び非凝縮性ガスに由来する濃縮ガス流を運ぶように構成された、ハウジングの上部部分の頂部にある出口と、
(iv)ハウジングの上部部分と下部部分との間に画定された経路と、
(v)経路に続く輸送システムであって、輸送システムが、固体を輸送するように構成され、ハウジングが、固体が凝縮性蒸気のうちの少なくとも一部又は非凝縮性ガスのうちの少なくとも一部を吸着するように成形される、輸送システムと、を備える。
【0610】
本発明は、高炭素生体試薬として有用な種々の組成物、及びそのような試薬を組み込む生成物を生成することができる。いくつかの変形形態では、高炭素生体試薬は、本明細書に開示されている任意のプロセス、例えば、
(a)バイオマスを含む含炭素原料を提供するステップと、
(b)任意選択的に、原料を乾燥させて、原料内に含まれる水分の少なくとも一部を除去するステップと、
(c)任意選択的に、原料を脱気して、もしあれば、原料内に含まれる格子間酸素の少なくとも一部を除去するステップと、
(d)熱分解ゾーンにおいて、実質的に不活性なガスの存在下で、少なくとも10分間及び約250℃~約700℃から選択される熱分解温度で、原料を熱分解して、高温熱分解固体、凝縮性蒸気、及び非凝縮性ガスを生成するステップと、
(e)高温熱分解固体から凝縮性蒸気の少なくとも一部と非凝縮性ガスの少なくとも一部とを分離するステップと、
(f)冷却ゾーンにおいて、実質的に不活性なガスの存在下で、少なくとも5分間及び熱分解温度未満の冷却温度で、高温熱分解固体を冷却して、温かい熱分解固体を生成するステップと、
(g)温かい熱分解固体を冷却して、低温の熱分解固体を生成するステップと、
(h)冷たい熱分解固体の少なくとも一部を含む高炭素生体試薬を回収するステップと、を含む、プロセスによって生成される。
【0611】
いくつかの実施形態では、試薬は、乾燥ベースで、約少なくとも70重量%、少なくとも80重量%、少なくとも90重量%、又は少なくとも95重量%の総炭素を含む。総炭素は、少なくとも固定炭素を含み、揮発性物質からの炭素を更に含み得る。いくつかの実施形態では、揮発性物質からの炭素は、高炭素生体試薬中に存在する総炭素の約少なくとも5%、少なくとも10%、少なくとも25%、又は少なくとも50%である。例えば、固定炭素は、ASTM D3172を使用して測定することができ、揮発性炭素は、ASTM D3175を使用して測定することができる。
【0612】
高炭素生体試薬は、乾燥ベースで、約10重量%以下、例えば約5重量%以下の水素を含み得る。生体試薬は、乾燥ベースで、約1重量%以下、例えば約0.5重量%以下の窒素を含み得る。生体試薬は、乾燥ベースで、約0.5重量%以下、例えば約0.2重量%以下のリンを含み得る。生体試薬は、乾燥ベースで、約0.2重量%以下、例えば約0.1重量%以下の硫黄を含み得る。
【0613】
炭素、水素、及び窒素は、例えば、元素分析のためのASTM D5373を使用して測定することができる。酸素は、例えば、ASTM D3176を使用して測定することができる。硫黄は、例えば、ASTM D3177を使用して測定することができる。
【0614】
ある特定の実施形態は、水素(存在し得る任意の水分を除く)、窒素、リン、又は硫黄をほとんど又は本質的に含まず、実質的に炭素に加えて任意の灰及び存在する水分である試薬を提供する。したがって、いくつかの実施形態は、乾燥/無灰(DAF)ベースで100%以下の炭素を有する生体試薬を提供する。
【0615】
一般に言えば、バイオマスなどの原料は、熱分解中に容易に放出されない、シリカ及び様々な金属を含む不揮発性種を含む。もちろん、無灰原料を利用することも可能であり、この場合、熱分解固体中に実質的な量の灰が存在すべきではない。灰は、例えば、ASTM D3174を使用して測定することができる。
【0616】
灰などの様々な量の不燃性物質が存在し得る。高炭素生体試薬は、乾燥ベースで、約10重量%以下、例えば約5重量%、約2重量%、約1重量%以下の不燃性物質を含み得る。ある特定の実施形態では、試薬は、灰をほとんど含まないか、又は灰若しくは他の不燃性物質を本質的に全く含まない。したがって、いくつかの実施形態は、乾燥ベースで100%の炭素を含む本質的に純粋な炭素を提供する。
【0617】
様々な量の水分が存在し得る。総質量基準で、高炭素生体試薬は、少なくとも1重量%、2重量%、5重量%、10重量%、15重量%、25重量%、35重量%、50重量%、又はそれより多くの水分を含み得る。本明細書で意図される場合、「水分」は、吸収された水分、吸着された水分子、化学的水和物、及び物理的水和物を含む、生体試薬中に存在する任意の形態の水を含むものとして解釈されるべきである。平衡含水量は、相対湿度などの少なくとも局所環境によって変動し得る。また、水分は、輸送、使用準備、及び他の物流中に変動し得る。水分は、例えば、ASTM D3173を使用して測定することができる。
【0618】
高炭素生体試薬は、本目的では、絶乾試薬の全燃焼に関連するより高い発熱量に基づくエネルギー密度を意味する、様々なエネルギー含有量を有することができる。例えば、高炭素生体試薬は、約少なくとも11,000Btu/lb、少なくとも12,000Btu/lb、少なくとも13,000Btu/lb、少なくとも14,000Btu/lb、又は少なくとも15,000Btu/lbのエネルギー含有量を有し得る。ある特定の実施形態では、エネルギー含有量は、約14,000~15,000Btu/lbである。エネルギー含有量は、例えば、ASTM D5865を使用して測定することができる。
【0619】
高炭素生体試薬は、粗粉末又は微粉末などの粉末に形成することができる。例えば、試薬は、実施形態では、約200メッシュ、約100メッシュ、約50メッシュ、約10メッシュ、約6メッシュ、約4メッシュ、又は約2メッシュの平均メッシュサイズを有する粉末に形成することができる。
【0620】
いくつかの実施形態では、高炭素生体試薬は、圧縮された、結合された、又は凝集された粒子を含む構造体に形成される。これらの物体を形成するための出発材料は、粒子サイズ縮小によって得られる中間体などの試薬の粉末形態であり得る。物体は、機械的プレス又は他の力によって、任意選択的に結合剤又は粒子を一緒に凝集させる他の手段を用いて形成することができる。
【0621】
いくつかの実施形態では、高炭素生体試薬は、その構造が実質的に原料に由来する構造体の形態で生成される。例えば、原料チップは、高炭素生体試薬の製品チップを生成することができる。又は、原料シリンダは、高炭素生体試薬シリンダを生成することができ、これは、いくらか小さくすることができるが、そうでなければ、出発材料の基本構造及び幾何形状を維持することができる。
【0622】
本発明による高炭素生体試薬は、少なくとも約1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm、9cm、10cm、又はそれより大きな最小寸法を有する物体として生成され得るか、又はそのような物体に形成され得る。様々な実施形態では、最小寸法又は最大寸法は、長さ、幅、又は直径であり得る。
【0623】
本発明の他の変形形態は、プロセスへの、生成物への、又はその両方への添加剤の組み込みに関する。いくつかの実施形態では、高炭素生体試薬は、プロセス中に組み込まれる少なくとも1つのプロセス添加剤を含む。これらの又は他の実施形態では、試薬は、プロセス後に試薬に導入される少なくとも1つの生成物添加剤を含む。
【0624】
いくつかの実施形態では、高炭素生体試薬は、乾燥ベースで、
70重量%以上の総炭素と、
5重量%以下の水素と、
1重量%以下の窒素と、
0.5重量%以下のリンと、
0.2重量%以下の硫黄と、
金属、金属酸化物、金属水酸化物、金属ハロゲン化物、又はそれらの組み合わせから選択される添加剤と、を含む。
【0625】
添加剤は、決して限定されないが、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、ドロマイト、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、及びそれらの組み合わせから選択され得る。
【0626】
いくつかの実施形態では、高炭素生体試薬は、乾燥ベースで、
70重量%以上の総炭素と、
5重量%以下の水素と、
1重量%以下の窒素と、
0.5重量%以下のリンと、
0.2重量%以下の硫黄と、
酸、塩基、又はそれらの塩から選択される添加剤と、を含む。
【0627】
添加剤は、決して限定されないが、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、又はそれらの組み合わせから選択され得る。
【0628】
ある特定の実施形態では、高炭素生体試薬は、乾燥ベースで、
70重量%以上の総炭素と、
5重量%以下の水素と、
1重量%以下の窒素と、
0.5重量%以下のリンと、
0.2重量%以下の硫黄と、
金属、金属酸化物、金属水酸化物、金属ハロゲン化物、又はそれらの組み合わせから選択される第1の添加剤と、
酸、塩基、又はそれらの塩から選択される第2の添加剤と、を含み、
第1の添加剤は、第2の添加剤とは異なる。
【0629】
第1の添加剤は、マグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、ドロマイト、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、及びそれらの組み合わせから選択することができ、第2の添加剤は、水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、又はそれらの組み合わせから独立的に選択され得る。
【0630】
ある特定の高炭素生体試薬は、乾燥ベースで、炭素、水素、窒素、リン、硫黄、不燃性物質、及びマグネシウム、マンガン、アルミニウム、ニッケル、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、ドロマイト、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、又はそれらの組み合わせから選択される添加剤から本質的になる。
【0631】
ある特定の高炭素生体試薬は、乾燥ベースで、炭素、水素、窒素、リン、硫黄、不燃性物質、及び水酸化ナトリウム、水酸化カリウム、酸化マグネシウム、臭化水素、塩化水素、ケイ酸ナトリウム、又はそれらの組み合わせから選択される添加剤から本質的になる。
【0632】
添加剤(又は全添加剤)の量は、約0.1重量%、約1重量%、約5重量%、約10重量%、又は約20重量%を含む、約0.01重量%~約25重量%など、広く変動し得る。したがって、約1重量%を超えるなどの比較的大量の添加剤が組み込まれる場合、全試薬重量(添加剤を含む)に基づいて計算されるエネルギー含有量が減少することが理解されよう。更に、様々な実施形態では、添加剤を有する高炭素生体試薬は、約少なくとも11,000Btu/lb、少なくとも12,000Btu/lb、少なくとも13,000Btu/lb、少なくとも14,000Btu/lb、又は少なくとも15,000Btu/lbのエネルギー含有量を有することができる。
【0633】
製品形態に関する上記の考察は、添加剤を組み込む実施形態にも適用される。実際、ある特定の実施形態は、特定の用途のための最終特性を向上させるために、結合剤、フラックス剤、又は他の改質剤として添加剤を組み込む。
【0634】
いくつかの実施形態では、高炭素生体試薬中に含有される炭素の大部分は、再生可能な炭素として分類される。いくつかの実施形態では、実質的に全ての炭素が再生可能な炭素として分類される。価値が高炭素生体試薬内の再生可能な炭素含有量に起因するある特定の市場機構(例えば、再生可能識別番号、税額控除など)が存在し得る。
【0635】
ある特定の実施形態では、固定炭素は、非再生可能な炭素(例えば、石炭由来)として分類することができ、一方、別々に添加することができる揮発性炭素は、エネルギー含有量だけでなく再生可能な炭素価も増加させるために再生可能な炭素とすることができる。
【0636】
本明細書に記載されるように生成される高炭素生体試薬は、多種多様な炭素質製品に有用である。高炭素生体試薬は、それ自体望ましい市場製品であり得る。本明細書で提供される高炭素生体試薬は、最新技術と比較して、より低いレベルの不純物、低減されたプロセス排出物、及び改善された持続可能性(より高い再生可能な炭素含有量を含む)と関連付けられる。
【0637】
変形形態では、製品は、開示されているプロセスによって得ることができるか、又は本明細書に示される組成物に記載される高炭素生体試薬のいずれか、又はそれらの任意の部分、組み合わせ、若しくは誘導体を含む。
【0638】
一般に言えば、高炭素生体試薬は、エネルギー(電気及び熱を含む)を生成するために燃焼され得るか;合成ガスを生成するために部分的に酸化され、ガス化され、若しくは水蒸気改質され得るか;それらの吸着又は吸収特性のために利用され得るか;金属精製(金属酸化物の還元など)若しくは他の工業処理中のそれらの反応特性のために利用され得るか;又は炭素鋼及び様々な他の金属合金におけるそれらの材料特性のために利用され得る。本質的に、高炭素生体試薬は、開発すべき特殊使用を含む、炭素系商品又は先端材料の任意の市場用途に利用され得る。
【0639】
任意の製品用途における適合性又は実際の使用の前に、開示されている高炭素生体試薬は、様々な方法で分析、測定、及び任意選択的に(添加剤などによって)改変することができる。化学組成及びエネルギー含有量以外の潜在的に重要ないくつかの特性としては、いくつかの特性を挙げると、密度、粒子サイズ、表面積、ミクロ多孔性、吸収性、吸着性、結合能、反応性、脱硫活性、及び塩基性が挙げられる。
【0640】
これらの高炭素生体試薬を組み込むことができる製品又は材料としては、炭素系高炉付加製品、炭素系タコナイトペレット付加製品、取鍋添加炭素系製品、メトコークス炭素系製品、石炭代替製品、炭素系コーキング製品、炭素ブリーズ製品、流動床炭素系原料、炭素系炉付加製品、注入可能炭素系製品、微粉炭素系製品、ストーカー炭素系製品、炭素電極、又は活性炭製品が挙げられるが、決してこれらに限定されない。
【0641】
金属生成における開示されている高炭素生体試薬の使用は、スラグを低減し、全体的効率を増加させ、ライフサイクル環境影響を低減することができる。したがって、本発明の実施形態は、金属の処理及び製造に特によく適している。
【0642】
本発明のいくつかの変形形態は、高炭素生体試薬を炭素系高炉付加生成物として利用する。高炉は、(限定されないが)鉄などの工業用金属を生成するための製錬に使用される冶金炉の一種である。製錬は、抽出冶金の一形態であり、その主な用途は、その鉱石から金属を生成することである。製錬は、鉱石を分解するために熱及び化学還元剤を使用する。炭素又は炭素に由来する一酸化炭素は、鉱石から酸素を除去し、元素金属を残す。
【0643】
還元剤は、高炭素生体試薬から本質的になり得るか、又はそれを含み得る。高炉では、高炭素生体試薬、鉱石、及び典型的には石灰石は、炉の頂部を通して連続的に供給することができ、一方、空気(任意選択的に酸素濃縮を伴う)は、チャンバの底部に吹き込み、その結果、化学反応は、材料が下方に移動するにつれて炉全体にわたって起こる。最終製品は、通常、底部から取り出される溶融金属及びスラグ相、並びに炉の頂部から出る煙道ガスである。高温の一酸化炭素濃縮ガスの上昇流と接触する鉱石の下降流は、向流プロセスである。
【0644】
高炉内の炭素品質は、その耐劣化性によって測定される。透過性媒体としての炭素の役割は、経済的な高炉動作において重要である。炭素の分解は、高炉での位置によって変動し、CO、HO、又はOとの反応と、炭素粒子同士の摩耗及び投入物の他の成分に対する炭素粒子の摩耗との組み合わせを伴う。分解された炭素粒子は、目詰まり及び性能低下を引き起こす場合がある。
【0645】
コークス反応性試験は、高炉内の炭素の性能の高く評価される尺度である。この試験は、2つの要素:コークス反応性指数(CRI)及び反応後コークス強度(CSR)を有する。低いCRI値(高い反応性)及び高いCSR値を有する炭素系材料は、より良好な高炉性能のために好ましい。CRIは、当該技術分野において既知の任意の好適な方法に従って、例えば、ASTM法DS341によって、受け取ったままの状態で決定することができる。
【0646】
いくつかの実施形態では、高炭素生体試薬は、高炉に直接導入するのに好適な特性を有する炭素製品を提供する。
【0647】
高炭素生体試薬の強度は、当該技術分野で既知の任意の好適な方法によって、例えば、落下破砕試験又はCSR試験によって決定することができる。いくつかの実施形態では、高炭素生体試薬は、任意選択的に別の炭素源とブレンドされた場合、少なくとも約50%、60%、又は70%のCSRを有する最終炭素製品を提供する。複合製品はまた、高炉での燃焼に好適な反応性を有する最終コークス製品を提供することができる。いくつかの実施形態では、製品は、高炭素生体試薬が、メトコール、メトコークス、粉コークス、鋳物用コークス、又は注入可能な石炭の添加剤又は代替物としての使用に好適であるようなCRIを有する。
【0648】
いくつかの実施形態は、高炉生成物として使用するのに不十分なCRI又はCSRを有する別の炭素源(例えば、コークス)に添加された場合に、高炉で使用するのに十分なCRI又はCSRを有する複合生成物を提供する高炭素生体試薬を提供するのに十分な量で添加剤を用いる。いくつかの実施形態では、添加剤は、約40%、30%、又は20%以下のCRIを有する高炭素生体試薬を提供するのに十分な量で存在する。
【0649】
いくつかの実施形態では、アルカリ土類金属、又はその酸化物若しくは炭酸塩から選択される添加剤は、高炭素生体試薬を生成するプロセスの間又は後に導入される。例えば、カルシウム、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、又は炭酸マグネシウムを添加剤として導入することができる。熱分解の前、最中、又は後にこれらの化合物を添加することにより、高炉内の高炭素生体試薬の反応性を高めることができる。これらの化合物は、より強い材料、すなわちより高いCSRをもたらし、それによって高炉効率を改善することができる。加えて、アルカリ土類金属、又はそれらの酸化物若しくは炭酸塩から選択されるものなどの添加剤は、より低い排出(例えば、SO)をもたらすことができる。
【0650】
いくつかの実施形態では、高炉代替生成物は、少なくとも約55重量%の炭素、約0.5重量%以下の硫黄、約8重量%以下の不燃性材料、及び少なくとも約11,000Btu/ポンドの発熱量を含む、本発明による高炭素生体試薬である。いくつかの実施形態では、高炉代替生成物は、約0.035重量%以下のリン、約0.5重量%~約50重量%の揮発性物質、及び任意選択的に添加剤を更に含む。いくつかの実施形態では、高炉代替生成物は、約2重量%~約15重量%のドロマイト、約2重量%~約15重量%のドロマイト石灰、約2重量%~約15重量%のベントナイト、又は約2重量%~約15重量%の酸化カルシウムを含む。いくつかの実施形態では、高炉代替生成物は、実質的に約1cm~約10cmの範囲の寸法を有する。
【0651】
いくつかの実施形態では、本発明による高炭素生体試薬は、鋳物用コークス代替生成物として有用である。鋳物用コークスは、概して、少なくとも約85重量%の炭素含有量、約0.6重量%の硫黄含有量、約1.5重量%以下の揮発性物質、約13重量%以下の灰、約8重量%以下の水分、約0.035重量%のリン、約30のCRI値、及び約5cm~約25cmの範囲の寸法を有することを特徴とする。
【0652】
本発明のいくつかの変形形態は、高炭素生体試薬を炭素系タコナイトペレット付加生成物として利用する。鉄及び鋼の作製に使用される鉱石は、酸化鉄である。主な酸化鉄鉱石としては、ヘマタイト、リモナイト(ブラウン鉱石とも呼ばれる)、タコナイト、及びマグネタイト、ブラック鉱石が挙げられる。タコナイトは、低品位であるが重要な鉱石であり、マグネタイト及びヘマタイトの両方を含む。タコナイトの鉄含有量は、概して、25重量%~30重量%である。高炉は、典型的には、効率的な操業のために、少なくとも50重量%の鉄含有鉱石を必要とする。鉄鉱石は、破砕、スクリーニング、タンブリング、浮選、及び磁気分離を含む選鉱を受けることができる。精製された鉱石は、60%を超える鉄に濃縮され、配送前にペレットに形成されることが多い。
【0653】
例えば、タコナイトを微粉末に粉砕し、ベントナイト粘土及び石灰石などの結合剤と合わせることができる。例えば、約65重量%の鉄を含む直径約1センチメートルのペレットを形成することができる。ペレットは、焼成され、マグネタイトをヘマタイトに酸化する。ペレットは、耐久性があり、高炉装入物が、加熱されたガスを通過させ、ペレット化された鉱石と反応させるのに十分な多孔性のままであることを確実にする。
【0654】
タコナイトペレットは、高炉付加生成物に関して上記したように、鉄を生成するために高炉に供給することができる。いくつかの実施形態では、高炭素生体試薬が高炉に導入される。これらの又は他の実施形態では、高炭素生体試薬は、タコナイトペレット自体に組み込まれる。例えば、選鉱後のタコナイト鉱石粉末は、高炭素生体試薬及び結合剤と混合され、小さな物体に圧延され、次いで、硬くなるまで焼成され得る。このような実施形態では、適切な組成を有するタコナイト-炭素ペレットを、別々の炭素源を必要とせずに、高炉に都合よく導入することができる。
【0655】
本発明のいくつかの変形形態は、取鍋添加炭素系生成物として高炭素生体試薬を利用する。取鍋は、溶融金属を輸送して注ぎ出すために使用される容器である。鋳造取鍋は、溶融金属を鋳型に注入して鋳造品を生成するために使用される。移送取鍋は、大量の溶融金属をあるプロセスから別のプロセスへ移送するために使用される。処理取鍋は、取鍋への様々な元素の添加による鋳鉄のダクタイル鉄への変換など、溶融金属のいくつかの態様を変化させるために取鍋内で起こるプロセスのために使用される。
【0656】
高炭素生体試薬は、任意のタイプの取鍋に導入することができるが、典型的には、炭素は、目標炭素含有量に基づいて好適な量で処理取鍋に添加される。取鍋に注入される炭素は、最終組成物への炭素の良好な物質輸送のために微粉末の形態にあり得る。いくつかの実施形態では、本発明による高炭素生体試薬は、取鍋添加生成物として使用される場合、約0.5cm、例えば約0.75cm、約1cm、約1.5cm、又はそれより大きな最小寸法を有する。
【0657】
いくつかの実施形態では、本発明による高炭素生体試薬は、例えば、炭素の取鍋添加が使用される(例えば、鋼製造中に取鍋炭素に添加される)塩基性酸素炉又は電気アーク炉施設において、取鍋付加炭素添加剤として有用である。
【0658】
いくつかの実施形態では、取鍋添加炭素添加剤は、最大約5重量%のマンガン、最大約5重量%の酸化カルシウム、又は最大約5重量%のドロマイト石灰を更に含む。
【0659】
海綿鉄とも呼ばれる直接還元鉄(DRI)は、天然ガス又は石炭から従来生成される還元ガスによる鉄鉱石(塊、ペレット、又は微粉の形態)の直接還元から生成される。還元ガスは、典型的には、還元剤として作用する水素と一酸化炭素の混合物である合成ガスである。本明細書で提供される高炭素生体試薬は、COを含むガス流に変換されて、還元剤として作用して直接還元鉄を生成することができる。
【0660】
鉄ナゲットは、高品質の製鋼及び鉄鋳造供給材料である。鉄ナゲットは、本質的に全て鉄及び炭素であり、脈石(スラグ)はほとんどなく、金属残留物は、低レベルである。それらは、優れた配送及び取り扱い特性を有する高級グレードの銑鉄製品である。鉄ナゲット又はその任意の部分に含有される炭素は、本明細書で提供される高炭素生体試薬であり得る。鉄ナゲットは、還元剤及びエネルギー源として高炭素生体試薬を使用して、回転炉床炉内で鉄鉱石を還元することによって生成することができる。
【0661】
本発明のいくつかの変形形態は、冶金コークス炭素系生成物として高炭素生体試薬を利用する。「メト」コークスとしても既知の冶金コークスは、通常、瀝青炭の様々なブレンドの分解蒸留によって製造される炭素材料である。最終固体は、冶金コークスと呼ばれる非溶融炭素である。揮発性ガスの損失及び部分的溶融の結果として、メトコークスは、開放多孔性形態を有する。メトコークスは、非常に低い揮発分を有する。しかしながら、元の瀝青炭原料の一部であった灰成分は、得られたコークス中に封入されたままである。メトコークス原料は、微粉末からバスケットボールサイズの塊までの広範囲のサイズで入手可能である。典型的な純度は、86~92重量%の固定炭素の範囲である。
【0662】
冶金コークスは、高品質で強靭で弾力性のある摩耗炭素が必要とされる場合に使用される。用途としては、導電性床材、摩擦材料(例えば、炭素ライニング)、鋳造用コーティング、鋳造用炭素ライザー、腐食材料、掘削用途、還元剤、熱処理剤、セラミック充填媒体、電解プロセス、及び酸素排除が挙げられるが、これらに限定されることはない。
【0663】
メトコークスは、約10,000~14,000Btu/ポンドの発熱量及び約10重量%以上の灰を有するものとして特徴付けることができる。したがって、いくつかの実施形態では、メトコークス代替生成物は、少なくとも約80重量%、85重量%、又は90重量%の炭素、約0.8重量%以下の硫黄、約3重量%以下の揮発性物質、約15重量%以下の灰、約13重量%以下の水分、及び約0.035重量%以下のリンを含む本発明による高炭素生体試薬(例えば、カーボンネガティブペレット)を含む。本発明による高炭素生体試薬は、メトコークス代替生成物として使用される場合、例えば、約2cm~約15cmのサイズ範囲を有し得る。
【0664】
いくつかの実施形態では、メトコークス代替生成物は、クロム、ニッケル、マンガン、酸化マグネシウム、ケイ素、アルミニウム、ドロマイト、フルオロスパー、酸化カルシウム、石灰、ドロマイト石灰、ベントナイト、及びそれらの組み合わせなどの添加剤を更に含む。
【0665】
本発明のいくつかの変形形態は、石炭代替生成物として高炭素生体試薬を利用する。石炭を使用する任意のプロセス又はシステムは、原則として、高炭素生体試薬を使用するように適合させることができる。
【0666】
いくつかの実施形態では、高炭素生体試薬は、石炭系生成物と組み合わされて、石炭系生成物よりも高いランクを有するか、又は燃焼したときに純粋な石炭系生成物よりも少ない排出を有する複合生成物を形成する。
【0667】
例えば、亜瀝青炭などの低品位炭は、本発明による選択された量の高炭素生体試薬を低品位炭生成物と組み合わせることによって、瀝青炭などの高品位炭生成物を通常必要とする用途において使用することができる。他の実施形態では、混合石炭製品(例えば、異なるランクの複数の石炭の組み合わせ)のランクは、混合石炭をある量の高炭素生体試薬と組み合わせることによって改善することができる。石炭製品と混合される高炭素生体試薬の量は、石炭製品のランク、高炭素生体試薬の特性(例えば、炭素含有量、発熱量など)、及び最終組み合わせ製品の所望のランクに応じて変動し得る。
【0668】
例えば、無煙炭は、概して、少なくとも約80重量%の炭素、約0.6重量%の硫黄、約5重量%の揮発性物質、最大約15重量%の灰、最大約10重量%の水分、及び約12,494Btu/lbの発熱量を有するものとして特徴付けられる。いくつかの実施形態では、無煙炭代替生成物は、少なくとも約80重量%の炭素、約0.6重量%以下の硫黄、約15重量%以下の灰、及び少なくとも約12,000Btu/lbの発熱量を含む高炭素生体試薬である。
【0669】
いくつかの実施形態では、高炭素生体試薬は、熱石炭代替製品として有用である。熱石炭生成物は、概して、高い硫黄レベル、高いリンレベル、高い灰含有量、及び最大約15,000Btu/lbの発熱量を有するものとして特徴付けられる。いくつかの実施形態では、熱石炭代替生成物は、約0.5重量%以下の硫黄、約4重量%以下の灰、及び少なくとも約12,000Btu/lbの発熱量を含む高炭素生体試薬である。
【0670】
本発明のいくつかの変形形態は、高炭素生体試薬を炭素系コーキング生成物として利用する。任意のコーキングプロセス又はシステムは、高炭素生体試薬を使用してコークスを生成するか、又はそれをコークス原料として使用するように適合させることができる。
【0671】
いくつかの実施形態では、高炭素生体試薬は、熱石炭又はコークス代替製品として有用である。例えば、熱石炭又はコークス代替製品は、少なくとも約50重量%の炭素、約8重量%以下の灰、約0.5重量%以下の硫黄、及び少なくとも約11,000Btu/lbの発熱量を含む高炭素生体試薬からなり得るか、又はこれらから本質的になり得る。他の実施形態では、熱コークス代替製品は、約0.5重量%~約50重量%の揮発性物質を更に含む。熱石炭又はコークス代替製品は、約0.4重量%~約15重量%の水分を含み得る。
【0672】
いくつかの実施形態では、高炭素生体試薬は、石油(ペット)コークス又はか焼ペットコークス代替製品として有用である。か焼ペットコークスは、概して、少なくとも約66重量%の炭素、最大4.6重量%の硫黄、最大約5.5重量%の揮発性物質、最大約19.5重量%の灰、及び最大約2重量%の水分を有することによって特徴付けられ、典型的には約3メッシュ以下のサイズである。いくつかの実施形態では、か焼ペットコークス代替製品は、少なくとも約66重量%の炭素、約4.6重量%以下の硫黄、約19.5重量%以下の灰、約2重量%以下の水分を含む高炭素生体試薬であり、約3メッシュ以下のサイズである。
【0673】
いくつかの実施形態では、高炭素生体試薬は、コーキング炭素置換炭素(例えば、コーキング炉内で冶金用石炭と同時焼成される)として有用である。一実施形態では、コーキング炭素代替製品は、少なくとも約55重量%の炭素、約0.5重量%以下の硫黄、約8重量%以下の不燃性材料、及び少なくとも約11,000Btu/ポンドの発熱量を含む高炭素生体試薬である。いくつかの実施形態では、コーキング炭素代替生成物は、約0.5重量%~約50重量%の揮発性物質、又は添加剤を含む。
【0674】
本発明のいくつかの変形形態は、高炭素生体試薬を炭素ブリーズ生成物として利用し、炭素ブリーズ生成物は、典型的には、6mm、3mm、2mm、1mm、又はそれ未満などの非常に微細な粒子サイズを有する。いくつかの実施形態では、本発明による高炭素生体試薬は、粉コークス代替生成物として有用である。粉コークスは、概して、約6mm以下の最大寸法、少なくとも約80重量%の炭素含有量、0.6~0.8重量%の硫黄、1%~20重量%の揮発性物質、最大約13重量%の灰、及び最大約13重量%の水分を有することを特徴とする。いくつかの実施形態では、粉コークス代替生成物は、少なくとも約80重量%の炭素、約0.8重量%以下の硫黄、約20重量%以下の揮発性物質、約13重量%以下の灰、約13重量%以下の水分、及び約6mmの最大寸法を含む本発明による高炭素生体試薬である。
【0675】
いくつかの実施形態では、高炭素生体試薬は、例えば、タコナイトペレット生成中又は製鉄プロセスにおいて、炭素ブリーズ代替製品として有用である。
【0676】
いくつかの変形形態は、様々な流動床のための原料として、又は流動床炭素系原料代替製品として高炭素生体試薬を利用する。炭素は、全燃焼、部分酸化、ガス化、水蒸気改質などのために流動床で用いることができる。炭素は、主に、エネルギー(例えば、熱及び電力の組み合わせ)又は液体燃料(例えば、メタノール又はフィッシャー・トロプシュディーゼル燃料)の生成を含む様々な下流使用のための合成ガスに変換することができる。
【0677】
いくつかの実施形態では、本発明による高炭素生体試薬は、例えば、石炭が(例えば、プロセス熱又はエネルギー生成のために)使用される流動床炉における流動床石炭代替生成物として有用である。
【0678】
いくつかの変形形態は、炭素系炉付加製品として高炭素生体試薬を利用する。石炭系炭素炉付加製品は、概して、高い硫黄レベル、高いリンレベル、及び高灰分を有するものとして特徴付けられ、これらは、金属製品の劣化に寄与し、大気汚染を引き起こす。いくつかの実施形態では、高炭素生体試薬を含む炭素炉付加代替生成物は、約0.5重量%以下の硫黄、約4重量%以下の灰、約0.03重量%以下のリン、及び約7.5cmの最大寸法を含む。いくつかの実施形態では、炭素炉付加代替生成物代替生成物は、約0.5重量%~約50重量%の揮発性物質及び約0.4重量%~約15重量%の水分を含む。
【0679】
いくつかの実施形態では、高炭素生体試薬は、例えば、塩基性酸素炉又は電気アーク炉施設で、炉付加炭素が使用される場所ならどこでも、炉付加炭素添加剤として有用である。例えば、炉付加炭素は、電気アーク炉施設での鋼製造中にスクラップ鋼に添加することができる。電気アーク炉用途では、不純物の早期除去後に不純物がプロセスに戻されないように、高純度炭素が望ましい。
【0680】
いくつかの実施形態では、炉付加炭素添加剤は、少なくとも約80重量%の炭素、約0.5重量%以下の硫黄、約8重量%以下の不燃性材料、及び少なくとも約11,000Btu/ポンドの発熱量を含む高炭素生体試薬である。いくつかの実施形態では、炉付加炭素添加剤は、最大約5重量%のマンガン、最大約5重量%のフルオロスパー、約5重量%~約10重量%のドロマイト、約5重量%~約10重量%のドロマイト石灰、又は約5重量%~約10重量%の酸化カルシウムを更に含む。
【0681】
いくつかの変形形態は、ストーカー炉炭素系製品として高炭素生体試薬を利用する。いくつかの実施形態では、本発明による高炭素生体試薬は、例えば、石炭が使用される(例えば、プロセス熱又はエネルギー生成のために)ストーカー炉施設におけるストーカー石炭代替生成物として有用である。
【0682】
いくつかの変形形態は、注入可能な(例えば、微粉)炭素系材料として高炭素生体試薬を利用する。いくつかの実施形態では、高炭素生体試薬は、注入グレードのか焼ペットコークス代替製品として有用である。注入グレードのか焼ペットコークスは、概して、少なくとも約66重量%の炭素、約0.55~約3重量%の硫黄、最大約5.5重量%の揮発性物質、最大約10重量%の灰、最大約2重量%の水分を有することによって特徴付けられ、約6メッシュ以下のサイズである。いくつかの実施形態では、か焼ペットコークス代替製品は、少なくとも約66重量%の炭素、約3重量%以下の硫黄、約10重量%以下の灰、約2重量%以下の水分を含む高炭素生体試薬であり、約6メッシュ以下のサイズである。
【0683】
いくつかの実施形態では、高炭素生体試薬は、注入可能な炭素が使用される(例えば、鋼製造中にスラグ又は取鍋に注入される)任意の用途において、例えば、塩基性酸素炉又は電気アーク炉施設における注入可能な炭素代替製品として有用である。
【0684】
いくつかの実施形態では、高炭素生体試薬は、例えば、微粉炭が(例えば、プロセス熱又はエネルギー生成のために)使用される場合はいつでも、微粉炭素代替製品として有用である。いくつかの実施形態では、微粉砕炭代替生成物は、最大約10パーセントの酸化カルシウムを含む。
【0685】
いくつかの変形形態は、金属生成のための炭素付加製品として高炭素生体試薬を利用する。いくつかの実施形態では、本発明による高炭素生体試薬は、炭素鋼又は炭素を含む別の金属合金の生成のための炭素付加生成物として有用である。石炭系後期段階炭素付加製品は、概して、高い硫黄レベル、高いリンレベル、及び高灰分、並びに金属品質を低下させ、大気汚染に寄与する高い水銀レベルを有するものとして特徴付けられる。本発明のいくつかの実施形態では、炭素付加生成物は、約0.5重量%以下の硫黄、約4重量%以下の灰、約0.03重量%以下のリン、約1~5mmの最小寸法、及び約8~12mmの最大寸法を含む。
【0686】
いくつかの変形形態は、炭素電極内の高炭素生体試薬を利用する。いくつかの実施形態では、高炭素生体試薬は、例えば、アルミニウム生成における使用に好適な電極(例えば、アノード)材料として有用である。
【0687】
炭素電極における高炭素生体試薬の他の用途としては、電池、燃料電池、キャパシタ、及び他のエネルギー貯蔵又はエネルギー送達デバイスにおける用途が挙げられる。例えば、リチウムイオン電池において、高炭素生体試薬は、リチウムをインターカレートするためにアノード側で使用することができる。これらの用途では、炭素純度及び低い灰分が非常に重要であり得る。
【0688】
本発明のいくつかの変形形態は、高炭素生体試薬を触媒担体として利用する。炭素は、炭素相に担持された硫化コバルト-モリブデン金属触媒を使用する合成ガスからの混合アルコール合成、又は合成ガスからの高級炭化水素のフィッシャー・トロプシュ合成のための炭素に担持された鉄系触媒などの広範囲の触媒化学反応における既知の触媒支持体である。
【0689】
いくつかの変形形態は、高炭素生体試薬を活性炭製品として利用する。活性炭は、水処理、空気浄化、溶媒蒸気回収、食品及び飲料処理、並びに医薬品を含む、多種多様な液相及び気相用途において使用される。活性炭については、材料の多孔性及び表面積が一般に重要である。本明細書で提供される高炭素生体試薬は、様々な実施形態では、(i)化石燃料系活性炭よりも大きい表面積;(ii)炭素再生可能性;(iii)添加剤と併用したバイオマス原料の脈管性が、汚染物質制御を強化する添加剤の浸透/分布をより良好に可能にすること;かつ(iv)より少ない不活性材料(灰)が、より大きな反応性をもたらすこと、に起因して、優れた活性炭製品を提供することができる。
【0690】
高炭素生体試薬の市場用途の上記説明において、説明された用途は排他的ではなく、網羅的でもないことが認識されるべきである。したがって、1つのタイプの炭素製品に好適であると記載される高炭素生体試薬は、様々な実施形態では、記載される任意の他の用途に好適であり得る。これらの用途は例示にすぎず、高炭素生体試薬の他の用途もある。
【0691】
加えて、いくつかの実施形態では、同じ物理的材料が、統合された方法又は順番のいずれかで、複数の市場プロセスにおいて使用され得る。したがって、例えば、炭素電極又は活性炭として使用される高炭素生体試薬は、性能材料としてのその有効寿命の終わりに、エネルギー価値のための燃焼プロセス又は金属作製(例えば、金属鉱石の還元)プロセスなどに導入することができる。
【0692】
いくつかの実施形態は、生体試薬を、その反応性又は吸着特性のために、また燃料としても使用することができる。例えば、排出流中に注入される生体試薬は、汚染物質を除去し、続いて生体試薬粒子及び場合によっては汚染物質を燃焼させて、エネルギーを生成し、汚染物質を熱的に破壊又は化学的に酸化するのに好適であり得る。
【0693】
従来の化石燃料系製品と比較して、高炭素生体試薬には、著しい環境上及び製品使用上の利点が伴い得る。高炭素生体試薬は、環境的に優れているだけでなく、例えば、より高い純度のために処理の観点から機能的にも優れているものであり得る。
【0694】
金属生成のいくつかの実施形態に関して、開示されているプロセスによる生体試薬の生成は、金属生成における使用のためにこれらを調製するために必要な石炭系生成物のコーキングと比較して、著しくより少ないCO、CO、NO、SO、及び有害大気汚染物質の排出をもたらし得る。
【0695】
石炭又はコークスの代わりに高炭素生体試薬を使用することによっても、SO、有害大気汚染物質、及び水銀の環境排出が大幅に低減される。
【0696】
また、これらの高炭素生体試薬の純度(低灰分を含む)のために、開示されている生体試薬は、スラグを低減し、バッチ金属作製プロセスにおける生成能力を増加させる可能性を有する。
【0697】
いくつかの実施形態では、生体試薬は、活性炭として機能する。ある特定の実施形態では、生体試薬の一部は活性炭生成物として回収され、生体試薬の別の部分(例えば、残りの部分)は、結合剤を使用してペレット化されて、バイオカーボンペレットを生成する。他の実施形態では、生体試薬は、結合剤を使用してペレット化されて、バイオカーボンペレットを生成し、これらのバイオカーボンペレットは、活性炭生成物への後の変換のために配送される。後の変換は、微粉砕して粉末に戻すことを含み得、また、例えば、水蒸気、酸、又は塩基による化学処理を含み得る。これらの実施形態では、バイオカーボンペレットは、活性炭前駆体ペレットとみなすことができる。
【0698】
ある特定の実施形態では、生体試薬内の固定炭素は、主に活性炭を作製するために使用することができ、生体試薬内の揮発性炭素は、主に還元ガスを作製するために使用することができる。例えば、ステップ(b)で生成された生体試薬内の固定炭素の少なくとも50重量%、少なくとも90重量%、又は本質的に全てをステップ(f)で活性炭として回収することができ、一方、例えば、ステップ(b)で生成された生体試薬内の揮発性炭素の少なくとも50重量%、少なくとも90重量%、又は本質的に全てを還元ガスに向けることができる(例えば、揮発性炭素のCOへの水蒸気改質反応を介して)。
【0699】
活性炭は、生成される場合、例えば、少なくとも約500、750、800、1000、1500、又は2000のヨウ素価によって特徴付けることができる。活性炭は、活性炭の14C/12C同位体比率の測定から決定して、少なくとも50%、60%、70%、80%、90%、又は95%の再生可能な炭素含有量によって特徴付けることができる。いくつかの実施形態では、活性炭は、活性炭の14C/12C同位体比率の測定から決定して、(完全に)再生可能な活性炭として特徴付けることができる。
【0700】
いくつかの実施形態では、熱分解反応器は、異なるタイプの活性炭の生成を最適化するように構成されている。例えば、反応条件(例えば、時間、温度、及び水蒸気濃度)は、ヨウ素価などのある特定の属性を有する活性炭生成物のために選択され得る。異なる反応条件は、より高いヨウ素価を有するものなどの異なる活性炭生成物に対して選択され得る。熱分解反応器は、キャンペーンモードで動作して1つの生成物を生成し、次いで、別の生成物のための別のモードに切り替えることができる。第1の生成物は、第1のキャンペーンの間に連続的に若しくは周期的に除去されていてもよく、又は熱分解反応器の反応条件を切り替える前に除去されてもよい。
【0701】
活性炭は、例えば、少なくとも約500、750、1000、1500、又は2000のヨウ素価によって特徴付けることができる。活性炭は、活性炭の14C/12C同位体比率の測定から決定して、少なくとも90%の再生可能な炭素含有量によって特徴付けることができる。いくつかの実施形態では、活性炭は、活性炭の14C/12C同位体比率の測定から決定して、(完全に)再生可能な活性炭として特徴付けることができる。
【0702】
本明細書に開示されているプロセスによって生成される活性炭は、多くの方法で使用することができる。
【0703】
いくつかの実施形態では、活性炭は、一次生成物を精製するために、プロセスサイトにおいて内部的に利用される。いくつかの実施形態では、活性炭は、水を浄化するために現場で利用される。これらの又は他の実施形態では、活性炭は、液相排出を低減するために液体廃棄物流を処理するために、又は空気排出を低減するために蒸気廃棄物流を処理するために、現場で利用される。いくつかの実施形態では、活性炭は、新たなバイオマスの生成を補助するための土壌改良剤として利用され、新たなバイオマスは、現場で現地原料として利用されるのと同じタイプのバイオマスであり得る。
【0704】
本明細書に開示されているプロセスに従って調製された活性炭は、従来の化石燃料ベースの活性炭と同じ又はより良好な特性を有することができる。いくつかの実施形態では、活性炭は、化石燃料ベースの活性炭に関連する表面積に匹敵する表面積を有するか、それに等しいものを有するか、又は少なくともそれを有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物と同様に、又はそれよりも良好に汚染物質を制御することができる。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する不活性材料(例えば、灰)レベルに匹敵するか、それと等しいか、又はそれ未満の不活性材料(例えば、灰)レベルを有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する粒子サイズ又は粒子サイズ分布に匹敵する粒子サイズ又は粒子サイズ分布を有するか、それに等しいものを有するか、少なくともそれを有するか、又は多くともそれを有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する粒子形状に匹敵するか、実質的に類似するか、又はそれと同じ粒子形状を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する粒子形状とは実質的に異なる粒子形状を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する細孔体積に匹敵するか、それに等しいか、又はそれより大きな細孔体積を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する細孔寸法に匹敵するか、実質的に類似するか、又はそれと同じ細孔寸法を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する粒子の耐摩耗性値に匹敵するか、実質的に類似するか、又はこれと同じ粒子の耐摩耗性値を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連する硬度値に匹敵するか、実質的に類似するか、又はそれと同じ硬度値を有する。いくつかの実施形態では、活性炭は、従来の活性炭生成物に関連するかさ密度値に匹敵するか、実質的に類似するか、又はそれと同じかさ密度値を有する。いくつかの実施形態では、活性炭生成物は、従来の活性炭生成物に関連する吸着能力に匹敵するか、実質的に類似するか、又はそれと同じ吸着能力を有する。
【0705】
任意の製品用途における適合性又は実際の使用の前に、開示されている活性炭は、様々な方法で分析、測定、及び任意選択的に(添加剤などによって)改変することができる。潜在的に重要ないくつかの特性としては、密度、粒子サイズ、表面積、ミクロ多孔性、吸収性、吸着性、結合能、反応性、脱硫活性、塩基性、硬度、及びヨウ素価が挙げられる。
【0706】
活性炭は、水処理、空気浄化、溶媒蒸気回収、食品及び飲料処理、糖及び甘味料精製、自動車用途、及び医薬品を含む、多種多様な液相及び気相用途において商業的に使用される。活性炭について、鍵となる製品属性は、粒子サイズ、形状、組成、表面積、細孔容積、細孔寸法、粒子サイズ分布、炭素表面及び内部の化学的性質、粒子の耐摩耗性、硬度、かさ密度、及び吸着能力を含み得る。
【0707】
生体活性炭についてのかさ密度は、例えば、約50g/リットル~約650g/リットルであり得る。
【0708】
生物起源の活性炭の表面積は、広く変動し得る。例示的な表面積(例えば、BET表面積)は、約400m/g~約2000m/g以上の範囲、例えば、約500m/g、600m/g、800m/g、1000m/g、1200m/g、1400m/g、1600m/g、又は1800m/gである。表面積は、概して、吸着容量に相関する。
【0709】
細孔サイズ分布は、活性炭の最終的な性能を決定するために重要であり得る。細孔径測定は、ミクロ細孔含有量、メソ細孔含有量、及びマクロ細孔含有量を含み得る。
【0710】
ヨウ素価は、活性炭性能を特徴付けるために使用されるパラメータである。ヨウ素価は、炭素の活性化の程度を測定し、ミクロ細孔(例えば、0~20Å)含有量の尺度である。これは液相用途にとって重要な測定である。本開示の実施形態によって生成される活性炭生成物についての例示的なヨウ素価としては、全ての介在範囲を含む、約500、600、750、900、1000、1100、1200、1300、1500、1600、1750、1900、2000、2100、及び2200が挙げられる。ヨウ素価の単位は、炭素1グラム当たりのヨウ素のミリグラム数である。
【0711】
別の細孔関連測定値は、メソ細孔含有量(例えば、20~500Å)を測定するMethylene Blue Number(メチレンブルー数)である。本開示の実施形態によって生成される活性炭生成物についての例示的なメチレンブルー数としては、全ての介在範囲を含む、約100、150、200、250、300、350、400、450、及び500が挙げられる。メチレンブルー数の単位は、炭素1グラム当たりのメチレンブルー(メチルチオニニウム塩化物)のミリグラム数である。
【0712】
別の細孔関連測定値は、マクロ細孔含量(例えば、>500Å)を測定するMolasses Number(糖蜜数)である。本開示の実施形態によって生成される活性炭生成物の例示的な糖蜜数としては、全ての介在範囲を含む、100、150、200、250、300、350、及び400が挙げられる。糖蜜数の単位は、炭素1グラム当たりの糖蜜のミリグラム数である。
【0713】
いくつかの実施形態では、活性炭は、例えば、少なくとも約0.5cm/g、例えば少なくとも約1cm/gのメソ細孔体積によって特徴付けられる。
【0714】
活性炭は、その保水能力によって特徴付けることができる。様々な実施形態では、本開示の実施形態によって生成される活性炭生成物は、25℃で約10%~約300%(乾燥活性炭の重量で割った水の重量)、例えば、約50%~約100%、例えば、約60~80%の保水能力を有する。
【0715】
硬度又は摩耗数は、活性炭の耐摩耗性の尺度である。それは、取り扱い又は使用中の摩擦力及び機械的応力に耐える活性炭の物理的完全性の指標である。ある程度の硬度が望ましいが、硬度が高すぎると、過剰な装置摩耗が生じる可能性がある。ASTM D3802に従って測定される例示的な摩耗数は、約1%~約99%超の範囲、例えば、約1%、約5%、約10%、約15%、約20%、約25%、約30%、約35%、約40%、約45%、約50%、約55%、60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約96%、約97%、約98%、約99%、又は少なくとも約99%である。
【0716】
いくつかの実施形態では、活性炭が、適度に耐摩耗性であるが、活性炭を処理する資本設備において摩耗及び損耗を引き起こさない、最適な範囲の硬度を達成することができる。この最適条件は、本開示のいくつかの実施形態では、原料及び処理条件の選択により可能となる。下流使用が高硬度を扱うことができるいくつかの実施形態では、本開示のプロセスは、硬度を増加又は最大化して、約75%、約80%、約85%、約90%、約95%、約96%、約97%、約98%、約99%、又は少なくとも約99%の摩耗数を有する生物起源の活性炭生成物を生成するように動作することができる。
【0717】
本開示によって提供される生体活性炭は、広範囲の商業的使用を有する。例えば、限定するものではないが、生体活性炭は、排出制御、水精製、地下水処理、廃水処理、エアストリッパー用途、PCB除去用途、臭気除去用途、土壌蒸気抽出、製造ガスプラント、工業用水濾過、工業用燻蒸、タンク及びプロセスベント、ポンプ、送風機、フィルタ、プレフィルタ、ミストフィルタ、配管、配管モジュール、吸着器、吸収器、及びカラムにおいて利用することができる。
【0718】
一実施形態では、排出を低減するために活性炭を使用する方法は、
(a)本明細書に開示されている第2の反応器から回収された生体活性炭組成物を含む活性炭粒子を提供することと、
(b)少なくとも1つの選択された汚染物質を含む気相排出流を提供することと、
(c)気相排出流からの選択された汚染物質の除去を補助するように選択された添加剤を提供することと、
(d)活性炭粒子及び添加剤を気相排出流に導入し、それによって選択された汚染物質の少なくとも一部を活性炭粒子上に吸着させ、それによって気相排出流内に汚染物質吸着炭素粒子を生成することと、
(e)気相排出流から汚染物質吸着炭素粒子の一部を分離して、汚染物質が低減された気相排出流を生成することと、を含む。
【0719】
生体活性炭組成物のための添加剤は、活性炭粒子の一部として提供され得る。代替的又は追加的に、添加剤は、気相排出流、燃料床、又は燃焼ゾーンに直接導入することができる。当業者によって理解されるように、選択された汚染物質の除去のために添加剤を気相排出流に直接又は間接的に導入する他の方法も可能である。
【0720】
(気相排出流中の)選択された汚染物質は、水銀、ホウ素、セレン、ヒ素から選択される金属などの金属、又はそれらの任意の化合物、塩、若しくは組み合わせであり得る。選択された汚染物質は、例えば、有害な大気汚染物質、有機化合物(VOCなど)、又は非凝縮性ガスであり得る。いくつかの実施形態では、生物起源の活性炭生成物は、比較可能な量の非生物起源の活性炭生成物よりも多い量で、選択された汚染物質を吸着、吸収又は化学吸着する。いくつかのそのような実施形態では、選択された汚染物質は、金属、有害大気汚染物質、有機化合物(VOCなど)、非凝縮性ガス、又はそれらの任意の組み合わせである。いくつかの実施形態では、選択された汚染物質は水銀を含む。いくつかの実施形態では、選択された汚染物質はVOCを含む。いくつかの実施形態では、生体活性炭は、少なくとも約1重量%の水素又は少なくとも約10重量%の酸素を含む。
【0721】
有害な大気汚染物質は、がん又は他の深刻な健康への影響(例えば、生殖への影響若しくは出生異常、又は有害な環境及び生態学的影響)を引き起こすか又は引き起こし得る汚染物質である。修正されたClean Air Actのセクション112は、参照によりその全体が本明細書に組み込まれる。Clean Air Actのセクション112に従って、United States Environmental Protection Agency(米国環境保護庁(EPA))は、189個の有害大気汚染物質を制御するように義務付けられている。EPAによって有害大気汚染物質として分類される任意の現在又は将来の化合物は、本文脈における可能な選択された汚染物質に含まれる。
【0722】
揮発性有機化合物(その一部は有害大気汚染物質でもある)は、通常の室温条件で高い蒸気圧を有する有機化学物質である。例としては、短鎖アルカン、オレフィン、アルコール、ケトン、及びアルデヒドが挙げられる。多くの揮発性有機化合物は、ヒトの健康に危険であるか、又は環境に害を及ぼす。EPAは、空気、水及び土地における揮発性有機化合物を規制している。EPAの揮発性有機化合物の定義は、40 CFR §51.100(参照によりその全体が本明細書に組み込まれる)に記載されている。
【0723】
非凝縮性ガスは、通常の室温条件下で凝縮しないガスである。非凝縮性ガスとしては、窒素酸化物、一酸化炭素、二酸化炭素、硫化水素、二酸化硫黄、三酸化硫黄、メタン、エタン、エチレン、オゾン、アンモニア、又はそれらの組み合わせを挙げることができるが、これらに限定されない。
【0724】
開示された活性炭粒子によって複数の汚染物質を除去することができる。いくつかの実施形態では、汚染物質吸着炭素粒子は、少なくとも2つの汚染物質、少なくとも3つの汚染物質、又はそれ以上を含む。本明細書に開示されている活性炭は、複数の汚染物質の制御並びにある特定の標的汚染物質(例えば、セレン)の制御を可能にすることができる。
【0725】
いくつかの実施形態では、汚染物質吸着炭素粒子は、活性炭粒子を再生するために処理される。いくつかの実施形態では、本方法は、汚染物質吸着炭素粒子を熱酸化することを含む。汚染物質吸着炭素粒子又はその再生形態は、燃焼してエネルギーを提供することができる。
【0726】
いくつかの実施形態では、活性炭のための添加剤は、酸、塩基、塩、金属、金属酸化物、金属水酸化物、金属ハロゲン化物、又はそれらの組み合わせから選択される。いくつかの実施形態では、添加剤は、マグネシウム、マンガン、アルミニウム、ニッケル、鉄、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、苦灰石、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、水酸化ナトリウム、水酸化カリウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、有機酸(例えば、クエン酸)、又はそれらの組み合わせ若しくは誘導体から選択される。
【0727】
いくつかの実施形態では、気相排出流は、高硫黄含有量金属鉱石の処理などの金属処理に由来する。
【0728】
水銀制御に関する例示的実施形態として、活性炭は、静電集塵器又は織物フィルタなどの微粒子状物質制御デバイスの上流に(配管などに)注入されることができる。場合によっては、煙道ガス脱硫(乾式又は湿式)システムを活性炭注入点の下流に配置することができる。活性炭は、粉末として空気圧で注入することができる。注入位置は、既存のプラント構成(新しい場所でない限り)、及び追加の下流の微粒子状物質制御機器が改変されるかどうかによって決定することができる。
【0729】
微粒子状物質制御デバイスを現在装備しているボイラーについて、水銀制御のために生体活性炭注入を実施することは、(i)既存の微粒子状物質制御デバイス(静電集塵器若しくは織物フィルタ)の上流に粉末活性炭を注入すること、(ii)既存の静電集塵器の下流及びレトロフィット織物フィルタの上流に粉末活性炭を注入すること、又は(iii)静電集塵器の電界間に粉末活性炭を注入することを包含し得る。鉄又は含鉄化合物を含めると、水銀制御のための静電集塵器の性能を劇的に改善することができる。更に、鉄又は含鉄化合物を含めると、使用済み活性炭固体を他の灰から分離することができるので、寿命末期の選択肢が大幅に変化する可能性がある。
【0730】
いくつかの実施形態では、粉末活性炭注入アプローチは、既存のSO制御デバイスと組み合わせて用いられ得る。活性炭は、注入点の下流で活性炭吸着剤を収集する手段の利用可能性に従って、SO制御デバイスの前又はSO制御デバイスの後に注入することができる。
【0731】
いくつかの実施形態では、同じ物理的材料が、統合された方法又は順番のいずれかで、複数のプロセスにおいて使用されることができる。したがって、例えば、活性炭は、性能材料としてのその有効寿命の終わりに、エネルギー価値のための燃焼プロセスに、又は炭素を必要とするが活性炭の特性を必要としない金属作製プロセスなどに導入することができる。
【0732】
本開示の生体活性炭及び原理は、例えば、水、様々な純度の水性流、溶媒、液体燃料、ポリマー、溶融塩、及び溶融金属の処理を含む液相用途に適用することができる。本明細書で意図される場合、「液相」は、スラリー、懸濁液、エマルション、多相系、又は少なくともいくらかの量の存在する液体状態を有する(又は有するように調節することができる)任意の他の材料を含む。
【0733】
一実施形態では、本開示は、いくつかの変形形態では、液体を精製するために活性炭を使用する方法であって、
(a)第2の反応器から回収された活性炭粒子を提供するステップと、
(b)少なくとも1つの選択された汚染物質を含む液体を提供するステップと、
(c)液体からの選択された汚染物質の除去を補助するように選択された添加剤を提供するステップと、
(d)液体を活性炭粒子及び添加剤と接触させて、少なくとも1つの選択された汚染物質を活性炭粒子上に吸着させ、それによって、汚染物質吸着炭素粒子及び汚染物質低減液体を生成するステップと、を含む、方法を提供する。
【0734】
添加剤は、活性炭粒子の一部として提供され得る。代替的に、添加剤は、液体に直接導入され得る。いくつかの実施形態では、添加剤(同じであるか、又は異なり得る)は、活性炭粒子の一部として、並びに液体に直接導入される。
【0735】
液相用途に関するいくつかの実施形態では、添加剤は、酸、塩基、塩、金属、金属酸化物、金属水酸化物、金属ハロゲン化物、又はそれらの組み合わせから選択される。例えば、添加剤は、マグネシウム、マンガン、アルミニウム、ニッケル、鉄、クロム、ケイ素、ホウ素、セリウム、モリブデン、リン、タングステン、バナジウム、塩化鉄、臭化鉄、酸化マグネシウム、苦灰石、ドロマイト石灰、蛍石、フルオロスパー、ベントナイト、酸化カルシウム、石灰、水酸化ナトリウム、水酸化カリウム、臭化水素、塩化水素、ケイ酸ナトリウム、過マンガン酸カリウム、有機酸(例えば、クエン酸)、又はそれらの組み合わせ若しくは誘導体から選択することができる。
【0736】
いくつかの実施形態では、(処理される液体中の)選択された汚染物質は、ヒ素、ホウ素、セレン、水銀から選択される金属などの金属、又はそれらの任意の化合物、塩、若しくは組み合わせである。いくつかの実施形態では、選択された汚染物質は、有機化合物(VOCなど)、ハロゲン、生物学的化合物、殺虫剤、又は除草剤である。汚染物質吸着炭素粒子は、2つ、3つ、又はそれより多くの汚染物質を含み得る。いくつかの実施形態では、活性炭生成物は、比較可能な量の非生物起源の活性炭生成物よりも多い量で、選択された汚染物質を吸着、吸収又は化学吸着する。いくつかのそのような実施形態では、選択された汚染物質は、金属、有害大気汚染物質、有機化合物(VOCなど)、非凝縮性ガス、又はそれらの任意の組み合わせである。いくつかの実施形態では、選択された汚染物質は水銀を含む。いくつかの実施形態では、選択された汚染物質はVOCを含む。いくつかの実施形態では、生体活性炭は、少なくとも約1重量%の水素又は少なくとも約10重量%の酸素を含む。
【0737】
処理すべき液体は、典型的には水性であってもよいが、必ずしも本開示の原理に必須というわけではない。いくつかの実施形態では、液体は、固定床において活性炭粒子で処理される。他の実施形態では、液体は、溶液中又は移動床中の活性炭粒子で処理される。
【0738】
一実施形態では、本開示は、生体活性炭組成物を使用して液体から含硫黄汚染物質の少なくとも一部を除去する方法であって、方法が、
(a)本明細書に開示されている第2の反応器から回収された活性炭粒子を提供することと、
(b)含硫黄汚染物質を含む液体を提供することと、
(c)液体からの含硫黄汚染物質の除去を補助するように選択された添加剤を提供することと、
(d)液体を活性炭粒子及び添加剤と接触させて、含硫黄汚染物質の少なくとも一部を活性炭粒子上又は活性炭粒子内に吸着又は吸収させることと、を含む、方法を提供する。
【0739】
いくつかの実施形態では、含硫黄汚染物質は、元素硫黄、硫酸、亜硫酸、二酸化硫黄、三酸化硫黄、硫酸アニオン、重硫酸アニオン、亜硫酸アニオン、重亜硫酸アニオン、チオール、スルフィド、ジスルフィド、ポリスルフィド、チオエーテル、チオエステル、チオアセタール、スルホキシド、スルホン、チオスルフィネート、スルフィミド、スルホキシミド、スルホンジイミン、ハロゲン化硫黄、チオケトン、チオアルデヒド、硫黄酸化物、チオカルボン酸、チオアミド、スルホン酸、スルフィン酸、スルフェン酸、スルホニウム、オキソスルホニウム、スルフラン、パーサルフラン(persulfuranes)、又はそれらの組み合わせ、塩、若しくは誘導体から選択される。例えば、含硫黄汚染物質は、アニオン又は塩形態のスルフェートであり得る。
【0740】
液体は、水などの水性液体であり得る。いくつかの実施形態では、水は、金属鉱業、酸性鉱山排水、ミネラル処理、都市下水処理、パルプ及び紙、エタノール、又は廃水中の含硫黄汚染物質を排出することができる任意の他の工業プロセスから選択されるプロセスに関連する廃水である。水はまた、湖、川、又は小川などの天然の水域(又はその一部)であってもよい。
【0741】
一実施形態では、本開示は、水中のスルフェートの濃度を低減するプロセスであって、プロセスが、
(a)本明細書に開示されている第2の反応器から回収された活性炭粒子を提供することと、
(b)スルフェートを含む水の体積又は流れを提供することと、
(c)水からのスルフェートの除去を補助するように選択された添加剤を提供することと、
(d)水を活性炭粒子及び添加剤と接触させて、スルフェートの少なくとも一部を活性炭粒子上又は活性炭粒子内に吸着又は吸収させることと、を含む、プロセスを提供する。
【0742】
いくつかの実施形態では、スルフェートは、水中で約10mg/L以下の濃度など、水中で約50mg/L以下の濃度に低減される。いくつかの実施形態では、スルフェートは、主に硫酸アニオン又は重硫酸アニオンの形態で存在する。pHに依存して、スルフェートは、硫酸塩の形態で存在することもできる。
【0743】
水は、廃水流の一部又は全部から誘導することができる。例示的な廃水流は、金属鉱業、酸性鉱山排水、ミネラル処理、都市下水処理、パルプ及び紙、エタノール、又は含硫黄汚染物質を廃水に排出し得る任意の他の工業プロセスに関連し得る。水は、湖、川、又は小川などの天然の水域であり得る。いくつかの実施形態では、プロセスは連続的に行われる。他の実施形態では、プロセスはバッチで行われる。
【0744】
水が活性炭で処理される場合、水の濾過、水の浸透、又は活性炭粒子の水への直接添加(沈降、清澄化などを伴う)があり得る。浸透が使用される場合、活性炭は、浸透デバイス内で、又は浸透デバイスを補助するために、いくつかの方法で使用することができる。いくつかの実施形態では、活性炭粒子及び添加剤は、浸透の前に水に直接導入される。活性炭粒子及び添加剤は、任意選択的に、浸透の前の予備濾過において使用される。ある特定の実施形態では、活性炭粒子及び添加剤は、浸透のために膜に組み込まれる。
【0745】
本開示はまた、気相から含硫黄汚染物質を除去するために生物起源の活性炭組成物を使用する方法であって、方法が、
(a)本明細書に開示されている第2の反応器から回収された活性炭粒子を提供することと、
(b)少なくとも1つの含硫黄汚染物質を含む気相排出流を提供することと、
(c)気相排出流からの含硫黄汚染物質の除去を補助するように選択された添加剤を提供することと、
(d)活性炭粒子及び添加剤を気相排出流に導入して、含硫黄汚染物質の少なくとも一部を活性炭粒子上に吸着又は吸収させることと、
(e)気相排出流から活性炭粒子の少なくとも一部を分離することと、を含む、方法を提供する。
【0746】
いくつかの実施形態では、含硫黄汚染物質は、元素硫黄、硫酸、亜硫酸、二酸化硫黄、三酸化硫黄、硫酸アニオン、重硫酸アニオン、亜硫酸アニオン、重亜硫酸アニオン、チオール、スルフィド、ジスルフィド、ポリスルフィド、チオエーテル、チオエステル、チオアセタール、スルホキシド、スルホン、チオスルフィネート、スルフィミド、スルホキシミド、スルホンジイミン、ハロゲン化硫黄、チオケトン、チオアルデヒド、硫黄酸化物、チオカルボン酸、チオアミド、スルホン酸、スルフィン酸、スルフェン酸、スルホニウム、オキソスルホニウム、スルフラン、パーサルフラン(persulfuranes)、又はそれらの組み合わせ、塩、若しくは誘導体から選択される。
【0747】
開示されている活性炭は、従来の活性炭が使用され得る用途において使用することができる。いくつかの実施形態では、活性炭は、従来の活性炭の全(すなわち、100%)代替物として使用される。いくつかの実施形態では、活性炭は、特定の用途に使用される活性炭の本質的に全て又は実質的に全てを含む。いくつかの実施形態では、活性炭は、約1%~約100%の生体活性炭を含む。
【0748】
例えば、限定するものではないが、活性炭は、単独で、又は従来の活性炭生成物と組み合わせて、フィルタに使用することができる。いくつかの実施形態では、充填床又は充填カラムは、開示された活性炭を含む。そのような実施形態では、生物起源の活性炭は、特定の充填床又は充填カラムに好適なサイズ特性を有する。ガス流への生体活性炭の注入は、石炭火力発電所、バイオマス火力発電所、金属加工プラント、原油精製所、化学プラント、ポリマープラント、パルプ及び製紙プラント、セメントプラント、廃棄物焼却炉、食品処理プラント、ガス化プラント、並びに合成ガスプラントに由来するガス流又は液体流中の汚染物質排出の制御に有用であり得る。
【0749】
金属酸化物還元におけるバイオカーボンの使用
ペレット形態又はその微粉砕形態などのバイオカーボンが、金属鉱石炉又は化学還元炉に供給される様々な実施形態がある。
【0750】
金属鉱石炉又は化学還元炉は、高炉、炉頂ガス再循環高炉、シャフト炉、反射炉(空気炉としても既知である)、るつぼ炉、消音炉、レトルト炉、フラッシュ炉、Tecnored炉、Ausmelt炉、ISASMELT炉、パッドル炉、ボギー炉床炉、連続チェーン炉、プッシャー炉、回転炉床炉、ウォーキングビーム炉、電気アーク炉、誘導炉、塩基性酸素炉、パッドル炉、ベッセマー炉、直接還元金属炉、又はそれらの組み合わせ若しくは派生物であり得る。
【0751】
金属鉱石炉又は化学還元炉は、水平に、垂直に、又は傾斜して配置することができる。固体及び流体(液体若しくは気体)の流れは、並流又は向流であり得る。炉内の固体は、固定床又は流動床であり得る。金属鉱石炉又は化学還元炉は、温度、圧力、及び滞留時間の様々なプロセス条件で動作させることができる。
【0752】
本技術のいくつかの変形形態は、具体的には高炉に関する。高炉は、鉄又は銅などの工業用金属を生成するための製錬に使用される冶金炉の一種である。高炉は、鉄鉱石を製錬して、商業用の鉄及び鋼の生成に使用される中間体材料である銑鉄を生成する際に利用される。高炉はまた、例えば卑金属製錬において焼結プラントと組み合わせて使用される。
【0753】
「ブラスト」という用語は、燃焼空気が大気圧を超えて強制又は供給されることを指す。高炉では、金属鉱石、炭素(例えば、本開示では、生体試薬又はそれらの誘導体)、及び通常はフラックス(例えば、石灰石)が、炉の頂部を通して連続的に供給される一方で、空気の高温ブラスト(任意選択的に、酸素濃縮を伴う)が、羽口と呼ばれる一連のパイプを通して炉の下部に吹き込む。化学還元反応は、材料が下方に落下する際に炉全体にわたって起こる。生成物は、通常、底部から取り出される溶融金属及びスラグ相、並びに炉の頂部から出る廃ガス(還元排ガス)である。高温のCO濃縮ガスの上昇流と向流接触するフラックスに沿った金属鉱石の下降流は、金属鉱石を金属に還元する効率的な化学反応を可能にする。
【0754】
空気炉(反射炉など)は、通常、煙突煙道における高温ガスの対流によって自然に吸引される。この広い定義によれば、鉄のための塊鉄炉、スズのための吹き込みハウス、及び鉛のための製錬工場は、高炉として分類される。
【0755】
高炉は、現代の鉄生成の重要な部分のままである。現代の炉は、非常に効率的であり、煙道ガスからの廃熱を伴って入ってくるブラスト空気を予熱するカウパーストーブ、及び炉を出る高温ガスから熱を抽出する回収システムを含む。高炉は、典型的には、耐火レンガで裏打ちされた背の高い構造の形態で構築され、供給材料がその下降中に加熱されるにつれて膨張し、その後、溶融が生じ始めるにつれてサイズを縮小させるような外形にされる。
【0756】
鉄生成に関するいくつかの実施形態では、バイオカーボンペレット、鉄鉱石(酸化鉄)、及び石灰石フラックスが、高炉の頂部に装入される。鉄鉱石又は石灰石フラックスは、バイオカーボンペレット内に組み込むことができる。任意選択的に、バイオカーボンペレットは、高炉に供給する前にサイズが縮小される。例えば、バイオカーボンペレットは、高炉に供給される粉末に微粉砕することができる。
【0757】
高炉は、一酸化炭素含有量が高い高温の汚れたガスを炉スロートから出させるように構成することができ、一方、ブリーダー弁は、突然のガス圧力サージから炉の頂部を保護することができる。排気ガス中の粗大粒子は、沈降し、処分することができ、一方、ガスは、ベンチュリスクラバー又は静電集塵器又はガス冷却器を通って流れて、浄化されたガスの温度を下げることができる。炉の底部にある鋳造室は、液体鉄及びスラグを鋳造するための設備を備える。液体鉄及びスラグが開口部を通って樋を流下し、鉄とスラグとを分離するように、出銑孔を耐火プラグに穿孔することができる。銑鉄及びスラグが出銑されると、出銑孔は、耐火粘土で塞ぐことができる。羽口と呼ばれるノズルは、高炉の効率を高めるために熱風を供給するために使用される。熱風は、基部近くの冷却された羽口を通して炉内に向けられる。熱風温度は、例えば、約900℃~1300℃(空気温度)であり得る。高炉内の温度は、少なくとも約2000℃以上であり得る。他の炭素質材料又は酸素を羽口レベルで炉に注入して、炭素(バイオカーボンペレットから)と結合させて、追加のエネルギーを放出し、存在する還元ガスのパーセンテージを増加させることもでき、これは生産性を増加させる。
【0758】
高炉は、金属鉱石(例えば、鉄鉱石)中の酸素に対して対応する金属よりも強い親和性を有する一酸化炭素が金属をその元素形態に還元する化学還元の原理に基づいて動作する。高炉は、塊鉄炉及び反射炉とは異なり、高炉では、煙道ガスが鉱石及び金属と直接接触し、一酸化炭素を鉱石中に拡散させ、金属酸化物を炭素と混合された元素金属に還元させる。高炉は、通常、連続向流交換プロセスとして動作する。
【0759】
シリカは、通常、銑鉄から除去される。シリカは、酸化カルシウムと反応してケイ酸塩を形成し、これがスラグとして溶融銑鉄の表面に浮遊する。金属鉱石、フラックス、炭素、及び反応生成物の下方移動カラムは、煙道ガスが通過するのに十分な多孔性でなければならない。これは、生体試薬炭素が透過性であるのに十分な大きさの粒子(例えば、バイオカーボンペレット又はペレットに由来するより小さな物体)であることを必要とする。したがって、ペレット又は破砕したペレットは、その上の材料の重量によって破砕されないように十分に強くなければならない。炭素の物理的強度に加えて、硫黄、リン、及び灰も低いことが好ましい。
【0760】
多くの化学反応が高炉内で起こる。化学反応は、出発金属酸化物としてヘマタイト(Fe)を参照して理解することができる。酸化鉄のこの形態は、初期原料において、又は高炉内で生成されたままのいずれかにおいて、鉄鉱石処理において一般的である。鉄鉱石の他の形態(例えば、タコナイト)は、様々な濃度の異なる酸化鉄(Fe、Fe、FeOなど)を有するであろう。
【0761】
高炉内で溶融鉄を生成する主な全体的化学反応は、以下の通りである。
Fe+3CO→2Fe+3CO
これは吸熱反応である。この反応全体は、多くのステップにわたって生じ、第1のステップは、炉に吹き込む予熱されたブラスト空気が(例えば、バイオカーボンペレットからの)炭素と反応して一酸化炭素及び熱を生成することである:
2C+O→2CO
【0762】
高温の一酸化炭素は、鉄鉱石の還元剤であり、酸化鉄と反応して溶融鉄及び二酸化炭素を生成する。炉の異なる部分の温度(典型的には底部で最も高い)に応じて、鉄は、いくつかのステップで還元される。温度が通常200~700℃の範囲である頂部では、酸化鉄は、酸化鉄(II、III)、Feに部分的に還元される:
3Fe+CO→2Fe+CO
【0763】
約850℃の温度で、炉の更に下方で、鉄(II、III)は、酸化鉄(II)FeOに更に還元される:
Fe+CO→3FeO+CO
【0764】
高温の二酸化炭素、未反応の一酸化炭素、及び空気からの窒素は、新鮮な供給材料が反応ゾーンへと下方に移動するにつれて、炉を上方に通過する。材料が下方に移動するにつれて、向流ガスは、供給装入物を予熱するとともに石灰石(用いられる場合)を酸化カルシウムと二酸化炭素とに分解する:
CaCO→CaO+CO
【0765】
分解によって形成された酸化カルシウムは、鉄中の様々な酸性不純物(特に、シリカ)と反応して、主にケイ酸カルシウムCaSiOであるスラグを形成する:
SiO+CaO→CaSiO
【0766】
FeOが最大1200℃の範囲のより高い温度の領域に移動するにつれて、FeOは、鉄金属に更に還元され、再び一酸化炭素が反応物として用いられる:
FeO+CO→Fe+CO
【0767】
このプロセスで形成された二酸化炭素は、逆ブードワ反応によって炭素と反応させることによって、一酸化炭素に変換し戻すことができる:
C+CO→2CO
【0768】
上に示した化学反応では還元ガスは、炉内のインサイチュの生成物であるのではなく、代替的又は追加的に、高炉に直接導入することができることに留意することは重要である。典型的には、これらの実施形態では、還元ガスは水素及び一酸化炭素の両方を含み、これらは両方とも金属酸化物を化学的に還元するように機能する。任意選択的に、還元ガスは、改質、ガス化、又は部分的な酸化によってバイオカーボンペレットから別個に生成することができる。
【0769】
従来の高炉では、金属酸化物の還元を引き起こすために利用可能な水素がない。本開示では、水素を高炉に直接注入することができる。代替的又は追加的に、水素は、バイオカーボンペレットが水素と関連する揮発性炭素(例えば、重質タール成分)を含む場合、高炉に供給されるバイオカーボンペレット内で利用可能であり得る。代替的に又は追加的に、水素は、HO及びCOを反応させてH及びCOを生成する水ガスシフトの結果として、又は炭素の水蒸気再形成反応から利用可能であり得る。これらの反応(水ガスシフト又は水蒸気改質)のいずれかは、バイオカーボン(例えば、カーボンネガティブバイオカーボンペレット)とともに入ってくる水分によって補助され得る。水素は、先のものと同様であるがCOをHで置き換える追加の還元反応を引き起こすことができる:
3Fe+H→2Fe+H
Fe+4H→3Fe+4H
これらの反応は、COによる還元反応と並行して生じる。水素はまた、逆水性ガスシフト反応において二酸化炭素と反応してより多くのCOを生成することができる。ある特定の実施形態では、本質的に水素からなる還元ガスが高炉に供給される。
【0770】
高炉によって生成される「銑鉄」は、典型的には、約3~6重量%の比較的高い炭素含有量を有する。鋳鉄を作製するために銑鉄を使用することができる。高炉によって生成された銑鉄は、通常、炭素及び硫黄含有量を低減し、商業的に使用される様々なグレードの鋼を生成するために、更なる処理を受ける。塩基性酸素製鋼と呼ばれる更なるプロセスステップでは、炭素は、酸素を液体銑鉄に吹き付けることによって酸化されて、粗鋼を形成する。
【0771】
脱硫は、従来、銑鉄に含有される硫化鉄と反応して硫化カルシウムを形成する酸化カルシウムを添加することによって、製鉄所への液体鉄の輸送中に実行される。いくつかの実施形態では、脱硫はまた、金属硫化物を(還元ガス中の)COと反応させて、金属及び硫化カルボニル、CSOを形成することによって、炉内又は炉の下流で起こり得る。これらの又は他の実施形態では、脱硫はまた、金属硫化物を(還元ガス中の)Hと反応させて、金属及び硫化カルボニルHSを形成することによって、炉内又は炉の下流で起こり得る。
【0772】
他のタイプの炉は、他の化学反応を用いることができる。変換において炭素又は還元ガスを用いる、金属酸化物の金属への化学変換では、その炭素は、本質的に再生可能な炭素であることが理解されるであろう。本開示は、バイオマスの熱分解を介して生成される生体試薬中の再生可能な炭素を提供する。しかしながら、ある特定の実施形態では、炉内で利用される一部の炭素は、再生可能な炭素ではない。様々な実施形態では、金属鉱石炉で消費される総炭素のうち、再生可能な炭素のパーセンテージは、少なくとも約20%、30%、40%、50%、60%、70%、80%、90%、95%、99%、又は100%であり得る。
【0773】
本発明のいくつかの変形形態では、Tecnored炉、又はその変形が利用される。Tecnoredプロセスは、元々、ブラジルのTecnored Desenvolvimento Tecnologico S.A.によって開発され、冷間結合された、カーボン含有、自溶、及び自己還元ペレットを還元する低圧移動床還元炉に基づいている。還元は、低背型シャフト炉内で典型的な還元温度で実施される。プロセスは、高効率で溶銑(典型的には液体鉄)を生成する。
【0774】
Tecnored技術は、コークスレス製鉄プロセスであるように開発され、したがって、溶銑の生成における温室ガス放出を大幅に低減することに加えて、環境に有害なコークス炉の投資及び動作を回避した。Tecnoredプロセスは、高温ブラストと低温ブラストとの組み合わせを使用し、追加の酸素を必要としない。それは、コークスプラント、焼結プラント、及びトン数酸素プラントの必要性を排除する。したがって、このプロセスは、伝統的な製鉄ルートのものよりもはるかに低い動作コスト及び投資コストを有する。
【0775】
本開示において、Tecnoredプロセスは、様々な方法で生体試薬とともに使用するために適合させることができる。いくつかの実施形態は、鉄鉱石微粉又は鉄含有残留物に生体試薬を加えたものから生成される、自己還元凝集体(例えば、バイオカーボンペレット)を提供する。フラックス剤及び結合剤と混合されたこれらの材料は、凝集され、熱的に硬化されて、Tecnoredプロセスの物理的及び冶金学的要求に十分な強度を有するバイオカーボンペレットを生成する。次いで、生成された凝集物をTecnored炉内で製錬する。Tecnored炉のための燃料は、それ自体がバイオカーボンペレットでもあり得る。
【0776】
ブリケット内で酸化鉄の微細な粒子と還元剤とを合わせることによって、還元剤と接触する酸化物の表面積、したがって反応速度が劇的に増加する。自己還元ブリケットは、含有される鉄含有原料を完全に還元させるのに十分な還元剤を含むように設計することができ、任意選択的に、所望のフラックスを使用して、スラグ化学を提供することもできる。自己還元ブリケットは、炉に供給する前に低温で硬化される。自己還元ブリケット内の反応を駆動するのに必要な熱は、ブリケットの形態でもあり得る固体燃料の床によって提供され、その上に自己還元ブリケットが炉内に供給される。
【0777】
Tecnored炉は、(i)上部シャフトゾーン、(ii)溶融ゾーン、及び(iii)下部シャフトゾーンの3つのゾーンを有する。上部シャフトゾーンでは、固体燃料(例えば、生体試薬)が装入される。このゾーンでは、ブードワ反応(C+CO→2CO)が防止され、それによって、エネルギーが節約される。炉のこのゾーンにおける後燃焼は、COを燃焼させ、これは、装入物の予熱及び還元のためのエネルギーを提供する。ペレット内部では、以下の反応が非常に速い速度で起こる。
Fe+yCO→xFe+yCO
yCO+yC=2yCO
式中、xは1~典型的には5であり、yは1~典型的には7である。
【0778】
溶融ゾーンでは、装入物中の還元雰囲気によって、再酸化が防止される。装入物の溶融は、還元雰囲気下で起こる。下部シャフトゾーンでは、固体燃料が装入される。固体燃料は、バイオカーボンペレットを含むか、又は本質的にそれからなり得る。このゾーンでは、残留酸化鉄の更なる還元、並びに脈石材料及び燃料灰のスラグ化反応が液体状態で起こる。また、金属及びスラグ小滴の過熱が起こる。これらの過熱された金属及びスラグの液滴は、重力によって炉の炉床に沈み、そこに蓄積する。
【0779】
この改変されたTecnoredプロセスは、カーボンユニットの2つの異なる入力、すなわち還元剤及び固体燃料を用いる。還元剤は、従来、石炭微粉であるが、本開示では、還元剤は、微粉砕バイオカーボンペレットを含み得る。自己還元凝集体は、本明細書に開示されているバイオカーボンペレットであり得る。必要とされる炭素微粉の量は、C/F(炭素対鉱石微粉)比によって確立され、これは金属酸化物の完全な還元を達成するように選択され得る。
【0780】
固体燃料は、微粉の形態にある必要はない。例えば、固体燃料は、Tecnoredプロセスにおいて固体燃料から必要とされる物理的及び熱的欲求に対処するために、約40~80mmのサイズなどの塊の形態にあり得る。これらの塊は、バイオカーボンペレットを分解(例えば、破砕)することによって作製することができるが、完全に粉末にすることはできない。固体燃料は、(上部シャフトにおける吸熱ブードワ反応を回避するために)サイド供給装置を通して装入され、プロセスによって要求されるエネルギーの大部分を提供する。このエネルギーは、一次ブラスト(C+O→CO)及び二次ブラストによって形成され、炉床での固体燃料のガス化によって生成された上流COが燃焼される(2CO+O→2CO)。
【0781】
ある特定の例示的な実施形態では、改変されたTecnoredプロセスは、多くとも140メッシュのサイズを有する鉄鉱石微粉、多くとも200メッシュのサイズを有する生体試薬微粉、及び多くとも140メッシュのサイズの消石灰などのフラックスを、結合剤としてセメントを使用してペレット化することを含む。ペレットを硬化させ、200℃で乾燥させた後、Tecnored炉の頂部に供給する。炉内の装入物の全滞留時間は、約30~40分である。40mm~80mmの範囲のサイズの固体燃料の形態の生体試薬は、サイド供給装置を使用して高温ペレット領域の下の炉内に供給される。約1150℃の高温ブラスト空気が、炉の側面に位置している羽口を通して吹き込み、生体炭素のための燃焼空気を提供する。少量の炉ガスは、固体燃料の乾燥及び予熱に使用するために、サイド供給装置を通して流される。上部シャフトにおけるCOの後燃焼を促進するために、低温のブラスト空気がより高い点で吹き込む。生成された溶銑は、取鍋台車上の取鍋に出銑され、この取鍋台車は、スラグ除去のために取鍋を傾けることができる。液体鉄は、任意選択的に、取鍋中で脱硫され、スラグは、スラグポットにかき集められる。溶銑は、典型的には約3~5重量%の炭素を含む。
【0782】
従来、外部のCO又はHは、Tecnored炉を使用する自己還元プロセスにおいて重要な役目を果たさない。しかしながら、本開示の文脈において、外部H又はCO(還元ガスから)は、先の反応(Fe+yCO→xFe+yCO)において、又は反応物としての水素との反応(Fe+yH→xFe+yHO)において、酸化鉄の速度又は変換を増加させることによって、化学反応全体を補助することができる。還元化学反応は、高温還元ガスの物質移動が速いため、少なくともペレット又はブリケットの表面で、場合によってはペレット又はブリケットのバルク相内で補助することができる。いくつかの実施形態は、高炉の態様をTecnored炉の態様と合わせて、これによって炉内の還元ガスの使用に加えて、自己還元ペレット又はブリケットが利用される。
【0783】
言及したように、金属鉱石処理のための多数の可能な炉構成が存在する。本明細書は、全ての可能な炉で起こり得る様々な条件及び化学反応を詳細に説明しないが、本発明の原理は、金属鉱石から金属を作製するプロセスのどこかで炭素を使用する本質的に任意の炉又はプロセスに適用され得ることが、当業者によって理解される。
【0784】
いくつかのプロセスは、バイオカーボンペレットを利用し、いくつかのプロセスは、還元ガスを利用し、いくつかのプロセスは、バイオカーボンペレット及び還元ガスの両方を利用することも観察されるであろう。本明細書で提供されるプロセスは、固体バイオカーボンペレット及び還元ガスの両方を生成することができる。いくつかの実施形態では、固体バイオカーボンペレットのみが、金属鉱石変換プロセスにおいて用いられる。他の実施形態では、還元ガスのみが、金属鉱石変換プロセスにおいて用いられる。更に他の実施形態では、バイオカーボンペレット及び還元ガスの両方が、金属鉱石変換プロセスにおいて用いられる。再生可能な炭素の両方の供給源を用いるこれらの実施形態では、還元ガスからの金属鉱石変換における総炭素使用量のパーセンテージは、約、少なくとも約、又は多くとも約5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、若しくは100%であり得る。他の炭素使用量は、バイオカーボンペレットからのものであり得る。代替的に、他の炭素使用量の一部又は全ては、石炭微粉などの従来の炭素入力からのものであり得る。
【0785】
バイオカーボンの還元ガスへの変換
いくつかの変形形態は、バイオカーボンを用いて、カーボンネガティブ還元ガス(例えば、カーボンネガティブ合成ガス又はカーボンネガティブ水素)を生成する。還元ガスは、プロセス(例えば、金属製造プロセス)において現場で利用することができ、又は回収して販売することができる。
【0786】
次に、還元ガス(本明細書では「バイオ還元剤ガス」とも称される)の任意選択的な生成について、バイオカーボンペレットの形態であるカーボンネガティブバイオカーボンを参照して更に説明する。これらは非限定的な実施形態であり、カーボンネガティブバイオカーボンは、粉末形態、スラリー形態、又は別の形態であり得ることが理解される。
【0787】
バイオカーボンペレットの還元ガスへの変換は、バイオ還元剤形成ユニットと称することができる反応器内で行われる。バイオカーボンと反応して還元ガスを生成するために、反応物が用いられる。反応物は、酸素、水蒸気、又はそれらの組み合わせから選択され得る。いくつかの実施形態では、酸素を水蒸気と混合し、得られた混合物を第2の反応器に添加する。酸素又は酸素濃縮空気を添加して、酸素による炭素の部分酸化若しくは全酸化などの発熱反応を引き起こすか;還元ガス中でより好ましいH/CO比を達成するか;(iii)還元ガスの収率を増加させる;又は(iv)例えば、CO、熱分解生成物、タール、芳香族化合物、若しくは他の望ましくない生成物の量を減少させることによって還元ガスの純度を増加させることができる。
【0788】
いくつかの実施形態では、水蒸気が好ましい反応物である。水蒸気(すなわち、蒸気相のHO)は、入力流で反応器に導入することができる。水蒸気は、バイオカーボンペレットに含有される水分によって生成される水蒸気、並びに水を生成する任意の化学反応によって生成される水蒸気を含み得る。
【0789】
本明細書における化学種の「比」への全ての言及は、別段の指示がない限り、モル比への言及である。例えば、1のH/CO比率は、二酸化炭素1モル当たり水素1モルを意味する。
【0790】
水蒸気改質、部分酸化、水性ガスシフト(WGS)、又は燃焼反応は、酸素又は水蒸気が添加される場合に起こり得る。例示的な反応を、例えばセルロース系原料中に見られるセルロース繰り返し単位(C10)に関して以下に示す。バイオカーボンペレットを含む任意の含炭素原料を用いて同様の反応が起こり得る。
【表1】
【0791】
バイオ還元剤形成ユニットは、還元ガスを生成する少なくとも1つの化学反応を引き起こすことができる任意の反応器である。当該技術分野で周知の従来の水蒸気改質装置は、触媒を用いても用いなくても使用することができる。他の可能性としては、自己熱改質器、部分酸化反応器、及びいくつかの反応機構(例えば、部分酸化とそれに続く水性ガスシフト)を組み合わせた多段反応器が挙げられる。反応器の構成は、固定床、流動床、複数のマイクロチャネル、又はいくつかの他の構成であり得る。
【0792】
いくつかの実施形態では、反応物としての水蒸気の総量は、供給材料中の炭素1モル当たり少なくとも約0.1モルの水蒸気である。様々な実施形態では、炭素1モル当たり少なくとも約0.5、1.0、1.5、2.0、3.0、4.0、5.0、又はそれより多くのいずれかのモルの水蒸気が添加されるか、又は存在する。いくつかの実施形態では、炭素1モル当たり約1.5~3.0モルの水蒸気が添加されるか、又は存在する。
【0793】
第2の反応器に添加される水蒸気の量は、熱分解反応器の条件などの要因に応じて変動し得る。熱分解が炭素濃縮固体材料を生成する場合、概して、より多くの水蒸気(又はより多くの酸素)を使用して、必要なH及びO原子を利用可能なCに添加して、CO及びHを生成する。システム全体の観点から、バイオカーボンペレットに含有される水分は、プロセスにおいてどれだけの追加の水(蒸気)を加えるかを決定する際に考慮することができる。
【0794】
水蒸気に対する酸素の例示的な比率(O/HO)は、第2の反応器において、約2、1.5、1、0.5、0.2、0.1、0.05、0.02、0.01、又はそれ未満のうちのいずれかに等しいか、又は多くともおよそそれである。O/HOの比率が少なくとも1である場合、燃焼反応は、部分酸化よりも優勢になり始め、これは、望ましくない低いCO/CO比率をもたらし得る。
【0795】
いくつかの実施形態では、水蒸気を含まない酸素が反応物として使用される。酸素は、実質的に純粋な形態で添加され得るか、又は酸素が濃縮された空気の添加を介してプロセスに供給され得る。いくつかの実施形態では、酸素が濃縮されていない空気が添加される。他の実施形態では、例えば、近くの空気分離プラントからの流れとすることができる規格外流れ又は再循環流れからの濃縮空気を使用することができる。いくつかの実施形態では、Nの量が低減された(すなわち、多くとも79体積%)濃縮空気を使用すると、得られる還元ガス中のNが少なくなる。Nの除去は高価であり得るため、Nが少ないか又は全くない還元ガスを生成する方法が典型的には望ましい。
【0796】
いくつかの実施形態では、酸素の存在は、酸素の非存在下で同じ方法によってもたらされる比率と比較して、還元ガスにおけるH/COの比率を変化させる。還元ガスのH/CO比率は、約0.5~約2.0、例えば、約0.75~1.25、約1~1.5、又は約1.5~2.0であり得る。認識されるように、(より高い水蒸気添加率による)増加した水性ガスシフトは、より高いH/CO比率、例えば、少なくとも2.0、3.0、4.0、5.0、又は更により高いものを生成する傾向があり、これは、水素生成を含むある特定の用途に望ましい場合がある。
【0797】
触媒は、還元ガスを生成するために、反応器内で利用することができる。触媒は、アルカリ金属塩、アルカリ土類金属酸化物及び塩、石炭中の無機物質又は灰、遷移金属及びそれらの酸化物及び塩、並びに共晶塩混合物を含み得るが、これらに限定されない。触媒の具体例としては、これらに限定されないが、水酸化カリウム、炭酸カリウム、水酸化リチウム、炭酸リチウム、水酸化セシウム、酸化ニッケル、ニッケル置換合成雲母モンモリロナイト(NiSMM)、NiSMM担持モリブデン、鉄ヒドロキシ酸化物、鉄硝酸塩、鉄-カルシウム含浸塩、ニッケルウラニル酸化物、フッ化ナトリウム、及び氷晶石が挙げられる。
【0798】
他の例示的な触媒としては、ニッケル、酸化ニッケル、ロジウム、ルテニウム、イリジウム、パラジウム、及び白金が挙げられるが、これらに限定されることはない。このような触媒は、例えば、ガンマ-アルミナなどの担体材料上にコーティング又は堆積させることができ、担体材料は、マグネシウム、ランタン、又はバリウムなどの安定化元素でドープすることができる。
【0799】
システムに添加される前に、全表面積、活性表面積、サイト密度、触媒安定性、触媒寿命、触媒組成、表面粗さ、表面分散、多孔性、密度、又は熱拡散率に影響を与える既知の技術を用いて、任意の触媒を前処理又は活性化することができる。触媒の前処理には、焼成、ウォッシュコート添加、粒子サイズ縮小、及び熱的又は化学的手段による表面活性化が含まれるが、これらに限定されることはない。
【0800】
触媒の添加は、最初に、水又はガス化若しくは改質され得る任意の炭化水素などの溶媒中に触媒を溶解又はスラリー化することによって行うことができる。いくつかの実施形態では、触媒は、そのようなスラリーを容器に直接注入することによって添加される。いくつかの実施形態では、触媒は水蒸気に添加され、水蒸気/触媒混合物がシステムに添加される。これらの実施形態では、添加される触媒は、水蒸気中でその平衡溶解度にあるか又はその近くにあることができ、又は水蒸気中に同伴された粒子として導入され、それによってシステム中に導入されることができる。
【0801】
材料は、概して、単軸スクリュー、二軸スクリュー、ラムなどによって反応器の内外に搬送することができる。材料は、物理的力(金属接触)、圧力駆動流、空気圧駆動流、遠心流、重力流、流動化流、又は固相及び気相を移動させるいくつかの他の既知の手段によって機械的に搬送することができる。特に、機械的に堅牢である必要がある、バイオカーボンペレット床の上に配置された金属酸化物の床を用いる実施形態では、バイオカーボンペレットの固定床を反応器内で利用することができる。
【0802】
いくつかの実施形態では、反応器は、バイオカーボンペレット、又はそれから形成される粉末のガス化を使用して、還元ガスを生成する。ガス化は、高温、典型的には約600℃~約1100℃で行われる。反応性の低い生体試薬は、より高い動作温度を必要とする。導入される反応物(例えば、空気、酸素、濃縮空気、又は酸素-水蒸気混合物)の量は、典型的にはガス化温度を制御する主要な因子であろう。大気圧から約50barまでの動作圧力がバイオマスガス化において用いられてきた。ガス化はまた、反応物、一般に空気、高純度酸素、水蒸気、又はこれらのガスの何らかの混合物を必要とする。
【0803】
ガス化装置は、容器内で固体を支持する手段、固体及びガスの両方の流れの方向、並びに反応器に熱を供給する方法に基づいて区別することができる。ガス化装置がほぼ大気圧又は高圧で動作されるか否か、及びガス化装置が空気吹き又は酸素吹きであるか否かも際立った特徴である。一般的な分類は、固定床上昇流、固定床下降流、バブリング流動床、及び循環流動床である。
【0804】
固定床ガス化装置は、一般に、小麦わら、トウモロコシストーバー、又は庭ごみなどの繊維質草本供給原料を取り扱うことができない。しかしながら、開示されたプロセスでは、バイオマスが最初に生体試薬に熱分解され、ペレット化され、バイオカーボンペレットがガス化され得る。バイオカーボンペレットは、必ずしもペレットのサイズを縮小させることなく、固定床ガス化装置を使用して直接ガス化することができる。
【0805】
循環流動床ガス化技術は、Lurgi and Foster Wheelerから入手可能であり、バイオマス及び他の廃棄物に利用される既存のガス化技術の大部分を代表する。バブリング流動床ガス化(例えば、U-GAS(登録商標)技術)が商業的に使用されている。
【0806】
直接加熱ガス化装置は、単一の反応容器内で吸熱及び発熱ガス化反応を行い、追加の加熱は必要ない。対照的に、間接加熱ガス化装置は、外部熱供給源を必要とする。間接加熱ガス化装置は、一般に2つの容器を使用する。第1の容器は、供給物を水蒸気でガス化する(吸熱プロセス)。熱は、熱伝達媒体、通常は砂を循環させることによって供給される。第1の容器内で生成された還元ガス及び固体チャーは、砂とともに分離される。混合されたチャー及び砂は第2の容器に供給され、そこでチャーは空気で燃焼され、砂を加熱する。高温砂は第1の容器に循環して戻される。
【0807】
バイオカーボンペレットは、水分が存在し得るが、遊離液相が存在しない「乾燥供給物」として、又は水中のスラリー若しくは懸濁液としてガス化装置に導入することができる。乾燥供給ガス化装置は、典型的には還元ガスへの高い1パス当たりの炭素変換及び良好なエネルギー効率を可能にする。乾燥供給ガス化装置では、ガス化反応によって放出されるエネルギーによってガス化装置が極めて高い温度に達する可能性がある。この問題は、ウェットウォール設計を使用することによって解決することができる。
【0808】
いくつかの実施形態では、ガス化装置への供給物は、高い水素含有量を有するバイオカーボンペレットである。得られる還元ガスは、水素が比較的多く、H/CO比率が高く、例えば、H/CO>1.5であるか、又はそれを上回る。
【0809】
いくつかの実施形態では、ガス化装置への供給物は、低水素含有量を有するバイオカーボンペレットである。得られた還元ガスは、比較的低いH/CO比率を有すると予想される。H/CO>1を必要とする下流プロセスでは、水又は水蒸気をガス化装置に注入して、ガス化装置温度を緩和すること(顕熱効果又は吸熱化学作用によって)、並びにH/CO比率をより高いより望ましい比率にシフトさせることの両方が望ましい場合がある。水の添加はまた、水蒸気改質化学を介して、吸熱消費による温度緩和に寄与し得る。水蒸気改質において、HOは、炭素と、又はタール若しくはベンゼン/トルエン/キシレンなどの炭化水素と反応して、還元ガスを生成し、断熱ガス化温度を低下させる。
【0810】
ある特定の変形形態では、ガス化装置は、バブリング流動ガス化反応器などの流動床ガス化装置である。流動化は、ガス化装置床内で実質的に均一な温度をもたらす。アルミナ砂又はケイ砂などの流動床材料は、潜在的な摩耗問題を低減することができる。ガス化装置温度は、灰粒子が固体から溶融形態に変化し始めないように、十分に低い温度に調節することができ、それはガス化装置内で凝集及び流動化の損失を引き起こす可能性がある。
【0811】
流動床ガス化装置が使用される場合、全ての成分の総流量は、ガス化装置床が流動化されることを確実にすべきである。全ガス流量及び床直径は、ガス化装置を通るガス速度を確立する。適切な流動化を確実にするために、正確な速度が維持されなければならない。
【0812】
変形形態では、ガス化装置のタイプは、同伴流スラグ化、同伴流非スラグ化、輸送、バブリング流動床、循環流動床、又は固定床であり得る。いくつかの実施形態は、ガス化触媒を使用する。
【0813】
ガス、砂、及び原料(例えば、破砕又は微粉砕バイオカーボンペレット)が一緒に移動する循環流動床ガス化装置を用いることができる。例示的な輸送ガスとしては、再循環生成ガス、燃焼ガス、又は再循環ガスが挙げられる。砂からの高い熱伝達率は、原料の急速な加熱を確実にし、アブレーションは、通常の流動床よりも強いと予想される。分離器を用いて、還元ガスを砂及びチャー粒子から分離することができる。砂粒子は、流動バーナー容器中で再加熱し、反応器に再循環させることができる。
【0814】
向流固定床ガス化装置が使用されるいくつかの実施形態では、反応器は、ガス化剤(水蒸気、酸素、又は再循環ガスなど)が向流構成で流れる原料の固定床から本質的になる。灰は、乾燥して又はスラグとして除去される。
【0815】
並流固定床ガス化装置が使用されるいくつかの実施形態では、反応器は向流型と同様であるが、ガス化剤ガスは原料と並流構成で流れる。熱は、少量の原料を燃焼させることによって、又は外部熱供給源から床の上部に添加される。生成されたガスは高温で反応器を出て、この熱の多くは床の上部に添加されたガス化剤に伝達され、良好なエネルギー効率をもたらす。
【0816】
流動床反応器が使用されるいくつかの実施形態では、原料は、再循環ガス、酸素、空気、又は水蒸気中で流動化される。灰は、乾燥して、又は脱流体化する重い凝集体として除去することができる。固体の再循環又はその後の燃焼を使用して変換率を増加させることができる。流動床反応器は、スラグ化反応器の壁を損傷するであろう腐食性が高い灰を形成する原料に有用である。
【0817】
同伴流ガス化装置が使用されるいくつかの実施形態では、バイオカーボンペレットは微粉砕され、並流で酸素、空気、又は再循環ガスを用いてガス化される。ガス化反応は、非常に微細な粒子の濃密な雲の中で起こる。高温を用いることができ、それによって還元ガス中のタール及びメタンの量を少なくすることができる。
【0818】
同伴流反応器は、動作温度が、典型的には灰融解温度を十分に上回る可能性があるので、灰の大部分をスラグとして除去する。灰のより小さい部分は、非常に微細な乾燥フライアッシュとして、又はフライアッシュスラリーとして生成される。ある種の同伴床反応器は、部分的に固化したスラグで覆われた内部水冷壁又は水蒸気冷却壁を有する。
【0819】
ガス化装置チャンバは、フリーボードの適切な構成又は内部サイクロンの使用によって、固体下流動作のキャリーオーバーを、熱の回収に好適なレベルに保つように設計することができる。未反応の炭素は、ガス化装置チャンバの底部から引き出され、冷却され、回収され得る。
【0820】
ガス化装置は、含炭素種の部分酸化、逆水性ガスシフト、又は乾燥(CO)改質に有効な触媒などの触媒を含み得る。
【0821】
いくつかの実施形態では、バブリング流動床脱揮反応器が利用される。反応器は、少なくとも部分的に、高温再循環ガス流によって約600℃に加熱され、これは予想されるスラグ化温度より低い。水蒸気、酸素又は空気も第2の反応器に導入することができる。第2は、フリーボードの適切な構成又は内部サイクロンの使用によって、固体のキャリーオーバーを下流の熱の回収に好適なレベルに保つように設計することができる。未反応チャーは、脱揮チャンバの底部から引き出され、冷却され、次にユーティリティボイラーに供給されて、この流れの残りの発熱量を回収することができる。
【0822】
流動床ガス化装置が使用される場合、原料は、再循環ガスなどのガスによって流動化された高温砂の床に導入することができる。本明細書における「砂」への言及は、ガラス粒子、回収された灰粒子などの同様の実質的に不活性な材料も含む。流動砂からの高い熱伝達率は、原料の急速な加熱をもたらすことができる。砂粒子との摩擦によるいくらかのアブレーションがあり得る。熱は、高温燃焼ガスが流れる熱交換器管によって提供することができる。
【0823】
ガス、砂、及び原料が一緒に移動する循環流動床反応器を用いることができる。例示的な輸送ガスとしては、再循環生成ガス、燃焼ガス、又は再循環ガスが挙げられる。砂からの高い熱伝達率は、原料の急速な加熱を確実にし、アブレーションは、通常の流動床よりも強いと予想される。分離器を用いて、還元ガスを砂及びチャー粒子から分離することができる。砂粒子は、流動バーナー容器中で再加熱し、反応器に再循環させることができる。
【0824】
向流固定床反応器が使用されるいくつかの実施形態では、反応器は、ガス化剤(水蒸気、酸素、又は再循環ガスなど)が向流構成で流れる原料の固定床から本質的になる。灰は、乾燥して又はスラグとして除去される。
【0825】
並流固定床反応器が使用されるいくつかの実施形態では、反応器は向流型と同様であるが、ガス化剤ガスは原料と並流構成で流れる。熱は、少量の原料を燃焼させることによって、又は外部熱供給源から床の上部に添加される。還元ガスは高温で反応器を離れ、この熱の多くは床の上部に添加された反応物に伝達され、良好なエネルギー効率をもたらす。この構成ではタールが高温の炭素床を通過するので、タールレベルは向流型を使用する場合よりも低いと予想される。
【0826】
流動床反応器が使用されるいくつかの実施形態では、原料は、再循環ガス、酸素、空気、又は水蒸気中で流動化される。灰は、乾燥して、又は脱流体化する重い凝集体として除去される。固体の再循環又はその後の燃焼を使用して変換率を増加させることができる。
【0827】
熱及び物質移動を向上させるために、ノズルを使用して水を反応器に導入することができ、ノズルは、概して、流体フローがオリフィスを介して密閉チャンバ又はパイプに入るときに、流体フローの方向又は特性を制御するように設計された機械的デバイスである。ノズルは、水滴サイズを減少させて、水の微細な噴霧を生成することができる。ノズルは、噴霧ノズル(燃料噴射器と同様)、液体を接線方向に噴射する旋回ノズルなどから選択され得る。
【0828】
水供給源は、プロセス凝縮液、他の再循環水、廃水、補給水、ボイラー給水、水道水などからの直接配管を含み得る。水は、最初に洗浄、精製、処理、イオン化、蒸留などを行うことができる。いくつかの水供給源が使用される場合、水供給源の様々な体積比が可能である。いくつかの実施形態では、第2の反応器のための水の一部又は全ては廃水である。
【0829】
いくつかの変形形態では、還元ガスは、別の生成物に変換される前に、濾過、精製、又は他の方法で調整される。例えば、冷却された還元ガスを調整ユニットに導入することができ、ここで、ベンゼン、トルエン、エチルベンゼン、キシレン、硫黄化合物、窒素、金属、又は他の不純物が、還元ガスから除去される。
【0830】
いくつかの実施形態は、還元ガス浄化ユニットを含む。還元ガス浄化ユニットは、その設計において特に限定されることはない。例示的な還元ガス浄化ユニットは、サイクロン、遠心分離器、フィルタ、膜、溶媒ベースのシステム、及び粒子状物又は他の特定の汚染物質を除去する他の手段を含む。いくつかの実施形態では、酸性ガス除去ユニットは、還元ガスからHS、CO、又は他の酸性ガスを除去するための当該技術分野で既知の任意の手段であり得る。
【0831】
酸性ガス除去ステップの例としては、COのための溶媒によるCOの除去、又は圧力スイング吸着ユニットによるCOの除去が挙げられる。反応性溶媒ベースの酸性ガス除去に好適な溶媒としては、モノエタノールアミン、ジエタノールアミン、メチルジエタノールアミン、ジイソプロピルアミン、及びアミノエトキシエタノールが挙げられる。物理的溶媒ベースの酸性ガス除去に好適な溶媒としては、ポリエチレングリコールのジメチルエーテル(Selexol(登録商標)プロセスなど)及び冷却メタノール(Rectisol(登録商標)プロセスなど)が挙げられる。
【0832】
本発明に従って記載されるように生成された還元ガスは、多くの方法で利用することができる。還元ガスは、概して、水素、一酸化炭素、メタン、オレフィン(エチレンなど)、酸素化物(ジメチルエーテルなど)、アルコール(メタノール及びエタノールなど)、パラフィン、及び他の炭化水素に化学的に変換又は精製することができる。還元ガスは、フィッシャー・トロプシュ化学反応によって、直鎖又は分岐C~C15炭化水素、ディーゼル燃料、ガソリン、ワックス、又はオレフィンに;様々な触媒によって混合アルコールに;イソ合成によってイソブタンに;水素生成、続いてHaberプロセスによってアンモニアに;オキソ合成によってアルデヒド及びアルコールに;並びに様々なプロセスによって、ジメチルエーテル、酢酸、エチレン、プロピレン、及びホルムアルデヒドを含むメタノールの多くの誘導体に変換することができる。還元ガスは、固体酸化物燃料電池、スターリングエンジン、マイクロタービン、内燃機関、熱電発電機、スクロール膨張器、ガスバーナー、又は熱光起電力デバイスなどのエネルギー変換デバイスを使用してエネルギーに変換することもできる。
【0833】
この詳細な説明では、本発明の複数の実施形態、及び本発明がどのように理解及び実施され得るかに関する非限定的な例が参照されている。本発明の趣旨及び範囲から逸脱することなく、本明細書に示される特徴及び利点の全てを提供しない他の実施形態を利用することができる。本発明は、本明細書に記載される方法及びシステムの日常的な実験及び最適化を組み込む。そのような修正及び変形形態は、特許請求の範囲によって定義される本発明の範囲内であるとみなされる。
【0834】
本明細書に引用される全ての刊行物、特許、及び特許出願は、各刊行物、特許、又は特許出願が具体的かつ個別に本明細書に記載されているかのように、その全体が参照により本明細書に組み込まれる。
【0835】
上記の方法及びステップが特定の順序で生じるある特定の事象を示す場合、当業者は、ある特定のステップの順序を変更することができ、そのような変更が本発明の変形形態に従うことを認識するであろう。追加的に、ステップのいくつかは、可能であれば並列プロセスで同時に実行されてもよく、順次実行されてもよい。
【0836】
したがって、本開示の趣旨の範囲内であるか、又は添付の特許請求の範囲に見出される本発明の均等物である本発明の変形形態が存在する範囲で、本特許がそれらの変形形態も包含することが意図される。本発明は、特許請求の範囲によってのみ限定されるものとする。
【実施例
【0837】
実施例1~6は、本明細書に記載されている開示に従って、バイオカーボン組成物が調節可能な塩基-酸比率で作製することができることを実証する。
【0838】
実施例1:0.74の塩基-酸比率を有するバイオカーボン組成物。
ダグラスモミ材(Douglas fir wood)を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬をデンプン及びベントナイト粘土の結合剤と組み合わせて、混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザから本質的になるペレット化装置を使用して、粉末をペレット化し、それによって、約8mmの直径を有するペレットを生成する。ペレットを650℃で15~30分間更に炭化させ、次いで、約4重量%の水分に乾燥させる。組成及びその他の特性を、図5のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、0.74であると測定される。図5のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
【0839】
実施例2:0.85の塩基-酸比率を有するバイオカーボン組成物。
ダグラスモミ材(Douglas fir wood)を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬320lb(乾燥ベース)をデンプン結合剤50lbと組み合わせ、それによって混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザを含むペレット化装置を使用して、粉末をペレット化し、約8mmの直径を有するペレットを生成する。ペレットを約11重量%の水分に乾燥させる。組成及びその他の特性を、図6のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、0.85であると測定される。図6のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
【0840】
実施例3:1.39の塩基-酸比率を有するバイオカーボン組成物。
ダグラスモミ材を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬320lb(乾燥ベース)をデンプン結合剤40lbと組み合わせて、混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザから本質的になるペレット化装置を使用して、粉末をペレット化し、それによって、約8mmの直径を有するペレットを生成する。ペレットを約10重量%の水分に乾燥させる。組成及びその他の特性を、図7のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、1.39であると測定される。図7のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
【0841】
実施例4:1.57の塩基-酸比率を有するバイオカーボン組成物。
ダグラスモミ材(Douglas fir wood)を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬320lb(乾燥ベース)をデンプン結合剤30lbと組み合わせて、混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザから本質的になるペレット化装置を使用して、粉末をペレット化し、それによって、約8mmの直径を有するペレットを生成する。ペレットを約9重量%の水分に乾燥させる。組成及びその他の特性を、図8のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、1.57であると測定される。図8のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
【0842】
実施例5:5.13の塩基-酸比率を有するバイオカーボン組成物。
ダグラスモミ材(Douglas fir wood)を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬320lb(乾燥ベース)をデンプン結合剤30lbと組み合わせて、混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザから本質的になるペレット化装置を使用して、粉末をペレット化し、それによって、約8mmの直径を有するペレットを生成する。ペレットを酸性の水で洗浄し、次いで、約4重量%の水分に乾燥させる。組成及びその他の特性を、図9のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、5.13であると計算される。図9のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
【0843】
実施例6:7.62の塩基-酸比率を有するバイオカーボン組成物。
レッドパイン材を熱分解し、それによって、650℃の熱分解温度及び15~30分の熱分解時間で、バイオカーボン試薬を生成する。生体試薬320lb(乾燥ベース)をデンプン結合剤24lbと組み合わせて、混合物を形成する。押出機を使用して混合物を機械的に処理して、粉末を形成する。垂直リングダイペレタイザから本質的になるペレット化装置を使用して、粉末をペレット化し、それによって、約8mmの直径を有するペレットを生成する。次いで、ペレットを約7重量%の水分に乾燥させる。組成及びその他の特性を、図10のデータシートに示す。塩基-酸比率は、ASTM-Standard D4326に従って決定して、7.62であると測定される。図10のXラベルは、特定の測定が行われなかったことを示すことに留意されたい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【国際調査報告】