特表-13146057IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 本田技研工業株式会社の特許一覧
<>
  • 再表WO2013146057-車両及び車両の制御方法 図000003
  • 再表WO2013146057-車両及び車両の制御方法 図000004
  • 再表WO2013146057-車両及び車両の制御方法 図000005
  • 再表WO2013146057-車両及び車両の制御方法 図000006
  • 再表WO2013146057-車両及び車両の制御方法 図000007
  • 再表WO2013146057-車両及び車両の制御方法 図000008
  • 再表WO2013146057-車両及び車両の制御方法 図000009
  • 再表WO2013146057-車両及び車両の制御方法 図000010
  • 再表WO2013146057-車両及び車両の制御方法 図000011
  • 再表WO2013146057-車両及び車両の制御方法 図000012
  • 再表WO2013146057-車両及び車両の制御方法 図000013
  • 再表WO2013146057-車両及び車両の制御方法 図000014
  • 再表WO2013146057-車両及び車両の制御方法 図000015
  • 再表WO2013146057-車両及び車両の制御方法 図000016
  • 再表WO2013146057-車両及び車両の制御方法 図000017
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2013年10月3日
【発行日】2015年12月10日
(54)【発明の名称】車両及び車両の制御方法
(51)【国際特許分類】
   B60W 20/00 20060101AFI20151113BHJP
   B60K 17/356 20060101ALI20151113BHJP
   B60K 17/34 20060101ALI20151113BHJP
   B60K 23/08 20060101ALI20151113BHJP
   B60K 6/48 20071001ALI20151113BHJP
   B60K 6/52 20071001ALI20151113BHJP
   B60W 10/06 20060101ALI20151113BHJP
   B60W 10/08 20060101ALI20151113BHJP
   B60L 11/14 20060101ALI20151113BHJP
   B60L 15/20 20060101ALI20151113BHJP
   B60W 10/119 20120101ALI20151113BHJP
   B60W 30/182 20120101ALI20151113BHJP
【FI】
   B60K6/20 400
   B60K17/356 BZHV
   B60K17/34 B
   B60K23/08 C
   B60K6/48
   B60K6/52
   B60K6/20 310
   B60K6/20 320
   B60L11/14
   B60L15/20 S
   B60W10/06
   B60W10/08
   B60W10/119
   B60W30/182
【審査請求】有
【予備審査請求】未請求
【全頁数】32
【出願番号】特願2014-507574(P2014-507574)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2013年2月28日
(11)【特許番号】特許第5596243号(P5596243)
(45)【特許公報発行日】2014年9月24日
(31)【優先権主張番号】特願2012-81695(P2012-81695)
(32)【優先日】2012年3月30日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】100077665
【弁理士】
【氏名又は名称】千葉 剛宏
(74)【代理人】
【識別番号】100116676
【弁理士】
【氏名又は名称】宮寺 利幸
(74)【代理人】
【識別番号】100149261
【弁理士】
【氏名又は名称】大内 秀治
(74)【代理人】
【識別番号】100136548
【弁理士】
【氏名又は名称】仲宗根 康晴
(74)【代理人】
【識別番号】100136641
【弁理士】
【氏名又は名称】坂井 志郎
(74)【代理人】
【識別番号】100169225
【弁理士】
【氏名又は名称】山野 明
(72)【発明者】
【氏名】野口 真利
【テーマコード(参考)】
3D036
3D043
3D202
3D241
5H125
【Fターム(参考)】
3D036GA11
3D036GF05
3D036GG44
3D036GH20
3D036GJ17
3D043AA03
3D043AB17
3D043EA03
3D043EA05
3D043EB12
3D043EE08
3D043EF12
3D043EF21
3D202AA08
3D202BB01
3D202BB11
3D202BB53
3D202CC21
3D202CC23
3D202CC24
3D202CC45
3D202DD00
3D202DD01
3D202DD05
3D202FF02
3D241AA21
3D241AA31
3D241AB01
3D241AC01
3D241AC02
3D241AC14
3D241AD10
3D241AD31
3D241AD32
3D241AD33
3D241AD51
3D241AE02
3D241AF01
3D241BA18
3D241BA26
3D241BA44
3D241BB01
3D241BB14
3D241BB21
3D241BB27
3D241BB78
3D241BC01
3D241CA01
3D241CA02
3D241CA03
3D241CA06
3D241CA09
3D241CA12
3D241CA13
3D241CA14
3D241CA16
3D241CC02
3D241CC03
3D241CD03
3D241CD06
3D241CD07
3D241CD12
3D241CD14
3D241CD15
3D241CD16
3D241DA13B
3D241DA13Z
3D241DA14Z
3D241DA20B
3D241DA20Z
3D241DA23Z
3D241DA55Z
3D241DA69B
3D241DA69Z
3D241DB02B
3D241DB02Z
3D241DB05Z
3D241DB09A
3D241DB09B
3D241DB09Z
3D241DB12Z
3D241DB27Z
3D241DB32Z
3D241DC43Z
5H125AA01
5H125AB01
5H125AC08
5H125AC12
5H125BA05
5H125BD17
5H125CA09
5H125EE51
5H125EE53
(57)【要約】
内燃機関を有する構成において駆動状態を好適に選択することが可能な車両及び車両の制御方法を提供する。車両(10)及びその制御方法では、第1単独駆動状態(前輪(32)及び後輪(36)の一方が駆動される状態)から複合駆動状態へと切り替えるための第1切替閾値(G1a)と、第2単独駆動状態(内燃機関(12)により前輪(32)及び後輪(36)の他方が駆動される状態)から複合駆動状態へと切り替えるための第2切替閾値(G1b)とに異なる値が設定される。
【特許請求の範囲】
【請求項1】
前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、
内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、
前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、
前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)と
を備える車両(10、10A)であって、
前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第2駆動装置(34、38a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第2単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値が設定される
ことを特徴とする車両(10、10A)。
【請求項2】
請求項1記載の車両(10、10A)において、
前記第2切替閾値を前記第1切替閾値よりも小さくする
ことを特徴とする車両(10、10A)。
【請求項3】
前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、
内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、
前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、
前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)と
を備える車両(10、10A)であって、
前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記内燃機関(12、12a)が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関(12、12a)が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値が設定される
ことを特徴とする車両(10、10A)。
【請求項4】
請求項3記載の車両(10、10A)において、
前記作動時閾値を前記停止時閾値よりも小さくする
ことを特徴とする車両(10、10A)。
【請求項5】
請求項3又は4記載の車両(10、10A)において、
前記内燃機関(12、12a)は、前記第1単独駆動状態において、前記車両(10、10A)に設けられた発電機に対して選択的に駆動力を付与する
ことを特徴とする車両(10、10A)。
【請求項6】
前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)とを備える車両(10、10A)の制御方法であって、
前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第2駆動装置(34、38a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第2単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値を設定する
ことを特徴とする車両(10、10A)の制御方法。
【請求項7】
前輪(32a、32b)及び後輪(36a、36b)の一方を駆動する第1駆動装置(38、34a)と、内燃機関(12、12a)を含み前記前輪(32a、32b)及び前記後輪(36a、36b)の他方を駆動する第2駆動装置(34、38a)と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)を制御して前記前輪(32a、32b)及び前記後輪(36a、36b)の駆動状態を制御する駆動状態制御装置(28)と、前記内燃機関(12、12a)の作動状態を制御する内燃機関制御装置(28)とを備える車両(10、10A)の制御方法であって、
前記駆動状態制御装置(28)は、前記第1駆動装置(38、34a)の駆動力のみにより前記車両(10、10A)を駆動させる状態である第1単独駆動状態と、前記第1駆動装置(38、34a)及び前記第2駆動装置(34、38a)の駆動力により前記車両(10、10A)を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置(28)は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両(10、10A)に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記内燃機関(12、12a)が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関(12、12a)が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値を設定する
ことを特徴とする車両(10、10A)の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば、前輪駆動及び後輪駆動の少なくとも一方と全輪駆動との切替えを行う車両及びその制御方法に関する。
【背景技術】
【0002】
米国特許第5540299号公報(以下「US 5540299 A」という。)には、前輪1FL、1FR(主駆動輪(primarily driven wheels))を駆動するエンジン2と、後輪1RL、1RR(補助駆動輪(secondarily driven wheels))を駆動するモータML、MRを有する車両の駆動方法が開示されている(要約、図1、請求項1)。US 5540299 Aでは、横G(すなわち、横加速度)が所定値以上となったとき(図15のW23:YES)、運転者によるハンドル操作による車体の姿勢制御に委ねるのが好ましいという観点から、正駆動の実行が禁止される(図15のW31、第22欄22〜33行目)。ここにいう「正駆動」(normal driving)は、駆動補助(assisting drive)を意味し、「逆駆動」(reverse driving)としての制動(braking)の対義語として定義されている(第8欄55〜59行目)。また、4輪駆動として、車両の安定性を向上させる方が好ましいという観点から、図15のW23でYESのときは、強制的に独立モードで正駆動を実行させることもできるとされている(第22欄33〜40行目)。
【0003】
さらに、前輪の駆動と後輪の駆動を別個独立に行うことが可能な4輪駆動車が提案されている(米国特許出願公開第2012/0015772号公報(以下「US 2012/0015772 A1」という。))。US 2012/0015772 A1では、内燃機関4及び電動機5が直列に配置された駆動ユニット6により前輪Wfを駆動し、電動機2A、2Bにより後輪Wrを駆動する(図1、段落[0084]、[0085])。
【発明の概要】
【0004】
上記のように、US 5540299 Aでは、エンジン2により駆動される前輪1FL、1FRが主駆動輪とされ、モータML、MRにより駆動される後輪1RL、1RRが補助駆動輪とされる(請求項1)。換言すると、US 5540299 Aの車両では、エンジン2のみによる前輪駆動と、エンジン2及びモータML、MRによる4輪駆動とを行うが、モータML、MRのみによる後輪駆動については触れられていない。また、US 5540299 Aでは、図15のW23で用いる横Gの所定値を具体的にどのような値とするかについては検討されていない。
【0005】
この発明は、このような課題を考慮してなされたものであり、内燃機関を有する構成において駆動状態を好適に選択することが可能な車両及び車両の制御方法を提供することを目的とする。
【0006】
この発明に係る車両は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備えるものであって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値が設定されることを特徴とする。
【0007】
この発明によれば、第1単独駆動状態(前輪及び後輪の一方が駆動される状態)から複合駆動状態へと切り替えるための第1切替閾値と、第2単独駆動状態(内燃機関により前輪及び後輪の他方が駆動される状態)から複合駆動状態へと切り替えるための第2切替閾値とに異なる値が設定される。換言すると、内燃機関が作動している場合と、内燃機関が停止している場合とで、横加速度関連値の閾値を切り替えることが可能となる。このため、例えば、内燃機関の作動に伴うエネルギ消費と車両の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
【0008】
前記第2切替閾値を前記第1切替閾値よりも小さくしてもよい。これにより、内燃機関による駆動を行わない第1単独駆動状態から複合駆動状態への切替えと比較して、内燃機関による駆動を行う第2単独駆動状態から複合駆動状態への切替えを早く行うこととなる。このため、複合駆動状態への切替え前に内燃機関を作動させている場合、早期に操縦安定性を向上させることが可能となる。
【0009】
この発明に係る車両は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備えるものであって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値が設定されることを特徴とする。
【0010】
この発明によれば、内燃機関の停止時において第1単独駆動状態(前輪及び後輪の一方が駆動される状態)から複合駆動状態へと切り替えるための停止時閾値と、内燃機関の作動時において第1単独駆動状態から複合駆動状態へと切り替えるための作動時閾値とに異なる値が設定される。換言すると、内燃機関が作動している場合と、内燃機関が停止している場合とで、横加速度相関値の閾値を切り替える。このため、例えば、内燃機関の作動に伴うエネルギ消費と車両の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
【0011】
前記作動時閾値を前記停止時閾値よりも小さくしてもよい。これにより、内燃機関の停止時における第1単独駆動状態から複合駆動状態への切替えと比較して、内燃機関の作動時における第1単独駆動状態から複合駆動状態への切替えを早く行うこととなる。このため、第1単独駆動状態から複合駆動状態への切替え前に内燃機関を作動させている場合、早期に操縦安定性を向上させることが可能となる。
【0012】
前記内燃機関は、前記第1単独駆動状態において、前記車両に設けられた発電機に対して選択的に駆動力を付与してもよい。これにより、第1単独駆動状態において、内燃機関からの駆動力により発電機を作動させることで車両内に電力を供給することが可能となる。
【0013】
この発明に係る車両の制御方法は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値を設定することを特徴とする。
【0014】
この発明に係る車両の制御方法は、前輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値を設定することを特徴とする。
【図面の簡単な説明】
【0015】
図1】この発明の一実施形態に係る車両の駆動系及びその周辺の概略構成図である。
図2】前記実施形態における走行状態(駆動状態)及び駆動源の切替えの様子の一例を示す図である。
図3】前記実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第1フローチャートである。
図4】前記実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第2フローチャートである。
図5】緩加速時における横加速度(以下「横G」という。)と旋回半径比との関係を駆動状態に応じて示す図である。
図6】ワイド・オープン・スロットル(WOT)時における横Gと旋回半径比との関係を駆動状態に応じて示す図である。
図7】第1フラグ及び第2フラグを設定するフローチャート(図3のS3の詳細)である。
図8】横Gを検出するために用いる各種の値の定義を説明するための図である。
図9】駆動状態切替え禁止閾値を選択するフローチャート(図7のS32の詳細)である。
図10】アクセル開度と駆動状態切替え禁止閾値との関係の第1例を示す図である。
図11】アクセル開度と駆動状態切替え禁止閾値との関係の第2例を示す図である。
図12】この発明の変形例に係る車両の駆動系及びその周辺の概略構成図である。
図13】前後加速度(以下「前後G」という。)と駆動状態切替え禁止閾値との関係の第1例を示す図である。
図14】前後Gと駆動状態切替え禁止閾値との関係の第2例を示す図である。
図15】車速と駆動状態切替え禁止閾値との関係の一例を示す図である。
【発明を実施するための形態】
【0016】
I.一実施形態
A.構成
A−1.全体構成
図1は、この発明の一実施形態に係る車両10の駆動系及びその周辺の概略構成図である。図1に示すように、車両10は、車両10の前側に直列配置されたエンジン12及び第1走行モータ14(以下「第1モータ14」又は「前側モータ14」という。)と、車両10の後ろ側に配置された第2及び第3走行モータ16、18(以下「第2及び第3モータ16、18」又は「後ろ側モータ16、18」という。)と、高圧バッテリ20(以下「バッテリ20」ともいう。)と、第1〜第3インバータ22、24、26と、駆動電子制御装置28(以下「駆動ECU28」又は「ECU28」という。)とを有する。
【0017】
エンジン12及び第1モータ14は、トランスミッション30を介して左前輪32a及び右前輪32b(以下「前輪32」と総称する。)に駆動力(以下「前輪駆動力Ff」という。)を伝達する。エンジン12及び第1モータ14は、前輪駆動装置34(操舵輪駆動装置)を構成する。例えば、車両10が低負荷のときに第1モータ14のみによる駆動を行い、中負荷のときにエンジン12のみによる駆動を行い、高負荷のときにエンジン12及び第1モータ14による駆動を行う。或いは、図示しないクラッチによりエンジン12とトランスミッション30とを切り離した状態(又は接続した状態)でエンジン12により第1モータ14を駆動させることで第1モータ14による発電を行い、その発電電力をバッテリ20に充電し又は図示しない補機に供給することもできる。換言すると、第1モータ14を発電機として用いることもできる。
【0018】
第2モータ16は、その出力軸が左後輪36aの回転軸に接続されており、左後輪36aに駆動力を伝達する。第3モータ18は、その出力軸が右後輪36bの回転軸に接続されており、右後輪36bに駆動力を伝達する。第2及び第3モータ16、18は、後輪駆動装置38(非操舵輪駆動装置)を構成する。以下では、左後輪36a及び右後輪36bを合わせて後輪36と総称する。また、後輪駆動装置38から後輪36に伝達される駆動力を後輪駆動力Frという。
【0019】
高圧バッテリ20は、第1〜第3インバータ22、24、26を介して第1〜第3モータ14、16、18に電力を供給すると共に、第1〜第3モータ14、16、18からの回生電力Pregを充電する。
【0020】
駆動ECU28は、各種センサ及び各電子制御装置(以下「ECU」という。)からの出力に基づいてエンジン12及び第1〜第3インバータ22、24、26を制御することにより、エンジン12及び第1〜第3モータ14、16、18の出力を制御する。駆動ECU28は、入出力部40、演算部42及び記憶部44を有する。また、駆動ECU28は、複数のECUを組み合わせたものであってもよい。例えば、エンジン12及び第1〜第3モータ14、16、18それぞれに対応して設けた複数のECUと、エンジン12及び第1〜第3モータ14、16、18の駆動状態を管理するECUとにより駆動ECU28を構成してもよい。
【0021】
駆動ECU28に対して出力する各種センサには、例えば、車速センサ50、シフト位置センサ52、アクセルペダル開度センサ54、ヨーレートセンサ56及びタイヤ舵角センサ58がある。
【0022】
A−2.各部の構成及び機能
エンジン12は、例えば、6気筒型エンジンであるが、2気筒、4気筒又は8気筒型等のその他のエンジンであってもよい。また、エンジン12は、ガソリンエンジンに限らず、ディーゼルエンジン、空気エンジン等のエンジンとすることができる。
【0023】
第1〜第3モータ14、16、18は、例えば、3相交流ブラシレス式であるが、3相交流ブラシ式、単相交流式、直流式等のその他のモータであってもよい。第1〜第3モータ14、16、18の仕様は等しくても異なるものであってもよい。また、左後輪36a及び右後輪36bを1つの走行モータで駆動してもよい。
【0024】
第1〜第3インバータ22、24、26は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換して第1〜第3モータ14、16、18に供給する一方、第1〜第3モータ14、16、18の回生動作に伴う交流/直流変換後の直流を高圧バッテリ20に供給する。
【0025】
高圧バッテリ20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。本実施形態ではリチウムイオン2次電池を利用している。なお、第1〜第3インバータ22、24、26と高圧バッテリ20との間に図示しないDC/DCコンバータを設け、高圧バッテリ20の出力電圧又は第1〜第3モータ14、16、18の出力電圧を昇圧又は降圧してもよい。
【0026】
車両10の駆動系の構成としては、例えば、US 2012/0015772 A1に記載のものを用いることができる。
【0027】
車速センサ50は、車速V[km/h]を検出する。シフト位置センサ52は、図示しないシフトレバーの位置(駐車レンジとしての「P」、ニュートラルレンジとしての「N」、前進走行レンジとしての「D」、後退走行レンジとしての「R」等)(以下「シフト位置Ps」という。)を検出する。アクセルペダル開度センサ54は、図示しないアクセルペダルの開度(以下「アクセル開度θap」という。)を検出する。ヨーレートセンサ56は、車両10のヨーレートYrを検出する。タイヤ舵角センサ58は、操舵輪としての前輪32の実舵角(以下「タイヤ舵角σ」という。)がある。
【0028】
B.各種制御
B−1.駆動状態の切替え
(1−1.概要)
図2は、本実施形態における走行状態(駆動状態)及び駆動源の切替えの様子の一例を示す。本実施形態において、走行状態(駆動状態)及び駆動源の切替えは、駆動ECU28が制御する。
【0029】
図2の「走行状態」は、車両10が停車中、前進駆動中、回生中及び後退駆動中のいずれであるかを意味し、「駆動状態」は、車両10が「RWD」(後輪駆動:Rear Wheel Drive)、「FWD」(前輪駆動:Front Wheel Drive)又は「AWD」(前後輪駆動:All Wheel Drive)のいずれで駆動しているかを示す。RWD及びFWDは、いずれも2輪駆動(2WD)であり、AWDは、4輪駆動(4WD)である。さらに、図2中の回生は、第1〜第3走行モータ14、16、18の少なくとも1つが回生を行っていることを示す。
【0030】
また、図2において、「シフト位置」は、図示しないシフトレバーの位置を意味し、「P」は駐車レンジを、「D」は前進走行レンジを、「R」は後退走行レンジを示す。
【0031】
さらに、図2において、「駆動源」は、車両10を駆動させる装置を意味し、「ENG」はエンジン12を、駆動状態が「RWD」であるときの「MOT」は後ろ側モータ16、18を、駆動状態が「AWD」であるときの「ENG+MOT」はエンジン12並びに前側及び後ろ側モータ14、16、18を、「回生」は、前側及び後ろ側モータ14、16、18の少なくともいずれかを意味する。
【0032】
図2に示すように、本実施形態では、車速Vを「低速域」、「中速域」、「高速域」及び「後退域」に区分し、これらの区分に応じて駆動源を切り替える。
【0033】
より具体的には、車速Vが低速域で前進駆動しているとき及び後退駆動しているときはRWDを用いる。
【0034】
車速Vが中速域で前進駆動しているときはFWD又はAWDを用いる。FWDとAWDの切替えは、アクセル開度θapについて閾値(以下「アクセル開度閾値THθ」又は「閾値THθ」という。)を設けておき、アクセル開度θapがアクセル開度閾値THθを下回るときはFWDを選択し、アクセル開度がアクセル開度閾値を上回るときはAWDを選択する。車速Vが高速域で前進駆動しているときはFWDを用いる。
【0035】
なお、走行状態(駆動状態)の切替えは、US 2012/0015772 A1の図13及びその関連記載に示すような方法で行ってもよい。
【0036】
(1−2.駆動状態の具体的切替え)
(1−2−1.全体的な流れ)
図3及び図4は、本実施形態における走行状態(駆動状態)及び駆動源の切替えを行う第1及び第2フローチャートである。ステップS1において、ECU28は、車両10の前進を要するか否かを判定する。当該判定は、例えば、シフト位置センサ52から通知されたシフト位置Psが、前進を示す位置(前進走行レンジD)であるか否かを確認することにより行う。前進を要する場合(S1:YES)、ステップS2に進む。
【0037】
ステップS2において、ECU28は、後ろ側モータ16、18の駆動が可能であるか否かを判定する。当該判定は、例えば、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20の充電状態(SOC:State of Charge)に基づいて行う。
【0038】
より具体的には、図示しない温度センサにより後ろ側モータ16、18それぞれの温度(以下「後ろ側モータ温度」という。)を検出し、後ろ側モータ温度が、後ろ側モータ16、18の過熱を判定するための閾値を上回る場合、後ろ側モータ16、18の駆動が可能でないと判定する。また、後ろ側モータ16、18に関する各種センサ(例えば、電圧センサ、電流センサ、回転角センサ)からの出力が、後ろ側モータ16、18に異常が発生していることを判定するための閾値を超える場合、後ろ側モータ16、18の駆動が可能でないと判定する。さらに、バッテリ20のSOCが、後ろ側モータ16、18を駆動するのに十分であるか否かを判定するための閾値を下回る場合、後ろ側モータ16、18の駆動が可能でないと判定する。なお、後述するように、後ろ側モータ16、18の駆動が可能であるか否かの判定は、上記以外の判定基準に基づいて行ってもよい。
【0039】
後ろ側モータ16、18の駆動が可能である場合(S2:YES)、ステップS3において、ECU28は、主として横G(横加速度関連値)に基づいて第1フラグFLG1及び第2フラグFLG2を設定する。第1フラグFLG1は、駆動状態の切替えを禁止するか否かを設定するフラグ(駆動状態切替え禁止判定フラグ)であり、後述するステップS4で用いる。第2フラグFLG2は、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、エンジン12を始動するか否かを設定するフラグ(エンジン始動判定フラグ)であり、後述するステップS6で用いる。第1フラグFLG1及び第2フラグFLG2の設定方法の詳細は、図7を用いて後述する。
【0040】
続くステップS4において、ECU28は、第1フラグFLG1に基づいて駆動状態の切替えを禁止するか否かを判定する。具体的には、第1フラグFLG1が0のとき、駆動状態の切替えを禁止せず(許可し)、第1フラグFLG1が1のとき、駆動状態の切替えを禁止する。
【0041】
第1フラグFLG1が1であり、駆動状態の切替えを禁止する場合(S4:YES)、ステップS5において、ECU28は、駆動状態をAWDに固定する。駆動状態の切替えを禁止しない場合(S4:NO)、ステップS6に進む。
【0042】
ステップS6において、ECU28は、第2フラグFLG2に基づいてエンジン12を始動するか否かを判定する。具体的には、第2フラグFLG2が0のとき、ステップS6の判定によってはエンジン12を始動せず、第2フラグFLG2が1のとき、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、エンジン12を始動する。
【0043】
第2フラグFLG2に基づいてエンジン12を始動しない場合(S6:NO)、ステップS8に進む。第2フラグFLG2に基づいてエンジン12を始動する場合(S6:YES)、ステップS7において、ECU28は、エンジン12を始動させ、ステップS8に進む。
【0044】
なお、上記のように、ステップS7のエンジン12の始動は、駆動状態がFWD、RWD又はAWDのいずれであるかにかかわらず、行われる。換言すると、その時点における駆動状態がFWD又はAWDであれば、既にエンジン12は作動中であるため、そのまま作動状態を継続する。一方、その時点における駆動状態がRWDであれば、駆動源としては後ろ側モータ16、18を用いているため、エンジン12は始動させるものの、アイドリング状態で待機させる。このようにアイドリング状態としておくのは、第2フラグFLG2が1である場合、その後に駆動状態の切替えを禁止してAWDへの切替え(S5)を行う可能性が高いところ、AWDへの移行を円滑に行うためである。
【0045】
ステップS8において、ECU28は、車両10が減速中であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が減速中である場合(S8:YES)、ステップS9において、ECU28は、走行状態として回生を選択する。これに伴い、ECU28は、第1〜第3走行モータ14、16、18の少なくとも1つにより回生を実行させる。一方、車両10が減速中でない場合(S8:NO)、図4のステップS10に進む。
【0046】
図4のステップS10において、ECU28は、車両10が低車速(例えば、0〜30km/h)であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が低車速である場合(S10:YES)、ステップS11において、ECU28は、駆動状態としてRWDを選択する。これに伴い、後ろ側モータ16、18により車両10を駆動する。一方、車両10が低車速でない場合(S10:NO)、ステップS12に進む。
【0047】
ステップS12において、ECU28は、車両10が中車速(例えば、31〜80km/h)であるか否かを判定する。当該判定は、例えば、車速センサ50からの車速Vを用いて行う。車両10が中車速である場合(S12:YES)、ステップS13において、ECU28は、アクセル開度θapが前記アクセル開度閾値THθ以下であるか否かを判定する。上記のように、閾値THθは、FWD又はAWDの選択に用いる閾値である。
【0048】
アクセル開度θapが閾値THθ以下である場合(S13:YES)、ステップS14において、ECU28は、駆動状態としてFWDを選択する。これに伴い、エンジン12及び第1モータ14のいずれか一方又は両方により車両10を駆動する。一方、アクセル開度θapが閾値THθ以下でない場合(S13:NO)、ステップS15において、ECU28は、駆動状態としてAWDを選択する。これに伴い、エンジン12及び第1〜第3モータ14、16、18により車両10を駆動する。
【0049】
ステップS12に戻り、車両10が中車速でない場合(S12:NO)、車両10は高車速(例えば、81km/h以上)で走行していると言える。この場合、ステップS16において、ECU28は、駆動状態としてFWDを選択する。
【0050】
図3のステップS2に戻り、後ろ側モータ16、18の駆動が可能でない場合(S2:NO)、ステップS17において、ECU28は、駆動状態としてFWDを選択する。これにより、後ろ側モータ16、18が駆動不可な状況でのRWD又はAWDへの遷移を防止することが可能となる。
【0051】
ステップS1に戻り、前進を要さない場合(S1:NO)、ステップS18において、ECU28は、車両10の後退を要するか否かを判定する。当該判定は、例えば、シフト位置センサ52から通知されたシフト位置Psが、後退を示す位置(後退走行レンジR)であるか否かを確認することにより行う。後退を要する場合(S18:YES)、ステップS19において、ECU28は、駆動状態としてRWDを選択する。後退を要しない場合(S18:NO)、ステップS20において、ECU28は、走行状態として停車を選択し、エンジン12及び第1〜第3モータ14、16、18のいずれも停止させる。
【0052】
(1−2−2.第1フラグFLG1及び第2フラグFLG2の設定)
(1−2−2−1.考え方)
図5は、緩加速時における横Gと旋回半径比R/R0との関係を駆動状態に応じて示す図である。ここにいう緩加速とは、車両10の加速が緩やかであること(車速Vの時間微分値が小さいこと)を意味し、例えば、アクセル開度θapが比較的小さい状態に対応する。旋回半径比R/R0は、実旋回半径R[m]が基準旋回半径R0[m]からどれだけ外れているかを示す値である。旋回半径比R/R0は、車両10の旋回特性を示す指標として用いる。
【0053】
基準旋回半径R0及び実旋回半径Rの算出方法の詳細は、例えば、特開2011−252564号公報又は特開2008−230513号公報を用いることができる。
【0054】
なお、基準旋回半径R0に対して実旋回半径Rが小さくなり、旋回半径比R/R0が小さくなると、オーバーステアの傾向を意味する。一方、基準旋回半径R0に対して実旋回半径Rが大きくなり、旋回半径比R/R0が大きくなると、アンダーステアの傾向を意味する。
【0055】
図6は、ワイド・オープン・スロットル(WOT)時における横Gと旋回半径比R/R0との関係を駆動状態に応じて示す図である。WOTは、いわゆるフルスロットルを意味し、アクセル開度θapが最大となる。
【0056】
図5(及び図6)に示すように、横Gが第1乖離発生値Gdiv1(第1横G)を下回るとき、各駆動状態(FWD、RWD及びAWD)についての旋回半径比R/R0は、略等しい値を取る。横Gが第1乖離発生値Gdiv1を上回ると、FWDの旋回半径比R/R0と、RWD及びAWDの旋回半径比R/R0とが乖離を始める。また、横Gが第2乖離発生値Gdiv2(第2横G)を上回ると、RWDの旋回半径比R/R0と、AWDの旋回半径比R/R0とが乖離を始める。
【0057】
上記のように、同一の横Gについて各駆動状態で旋回半径比R/R0の乖離が生じる場合(換言すると、乖離量が所定値を上回った場合)、駆動状態を切り替えることで車両10の旋回特性が急変して運転者に違和感を与えるおそれがある。そこで、本実施形態では、横Gが所定の閾値(以下「駆動状態切替え禁止閾値G1」又は「第1横G閾値G1」という。)を上回るとき、駆動状態の切替えを禁止する。
【0058】
本実施形態において、第1横G閾値G1は、現時点(演算時点)においてエンジン12が停止している場合の第1横G閾値G1a(第1切替閾値及び停止時閾値)と、現時点においてエンジン12が作動している場合の第1横G閾値G1b(第2切替閾値及び作動時閾値)とを選択的に用いる。以下では、第1横G閾値G1を第1横G閾値G1a、G1bの総称又は第1横G閾値G1a、G1bのうち実際に横Gとの比較に利用するものとして用いる。
【0059】
図5に示すように、第1横G閾値G1aは、FWDとRWD及びAWDとで旋回半径比R/R0に乖離が生じ始める横G(すなわち、第1乖離発生値Gdiv1)と等しい値に設定される。或いは、実際に乖離が始まる時点で駆動状態の切替えを確実に禁止する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりも小さい値に設定してもよい。或いは、乖離量を所定値未満に抑えるという観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりもやや大きい値に設定することもできる。
【0060】
また、図5から明らかなように、駆動状態毎に旋回半径比R/R0の乖離が生じる横Gには、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2がある。このうち、本実施形態では、より小さい値(すなわち、第1乖離発生値Gdiv1)を第1横G閾値G1aとして設定している。以下では、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2のうち小さい値を「乖離基準値Gref」という。
【0061】
エンジン12の作動時に用いる第1横G閾値G1bは、エンジン12の停止時に用いる第1横G閾値G1aよりも小さい値に設定する。これは、エンジン12が停止している場合、エネルギ効率の観点からすれば、エンジン12の始動を遅くする方が好ましく、また、エンジン12が作動中である場合、後ろ側モータ16、18を早期に作動させることで操縦安定性を早期に高めることが好ましいとの観点に基づくものである。
【0062】
図5及び図6を比較すると理解されるように、各駆動状態での旋回半径比R/R0(並びに第1乖離発生値Gdiv1、第2乖離発生値Gdiv2及び乖離基準値Gref)は、加速状態(例えば、緩加速又はWOT加速の別)によっても変化する。そこで、本実施形態では、アクセル開度θapに応じて第1横G閾値G1(第1横G閾値G1a、G1b)を可変とする。後述するように、アクセル開度θapに加えて又はアクセル開度θapに代えて別の指標を用いて第1横G閾値G1を可変としてもよい。
【0063】
また、本実施形態では、横Gが大きくなったことに伴って駆動状態の切替えを禁止する際、駆動状態をAWDに固定する(図3のS5)。これにより、横Gが大きい状態でも車両10の姿勢を安定させ易くなる。
【0064】
駆動状態をAWDに固定する場合、エンジン12を作動させることとなる。それまでの駆動状態がRWDであり、横Gが第1横G閾値G1に到達して初めてエンジン12を始動させた場合、エンジン12が必要な出力に到達するまでに走行状態が不安定になる可能性も考えられる。そこで、本実施形態では、エンジン12の停止時に用いる第1横G閾値G1aについては、エンジン12を始動させる横Gの閾値(以下「エンジン始動閾値G2」又は「第2横G閾値G2」という。)を併せて設定する。第2横G閾値G2には、第1横G閾値G1aよりも小さい値を設定する。これにより、エンジン12を駆動に用いない駆動状態(すなわち、RWD)からAWDへの移行を円滑にすることが可能となる。
【0065】
(1−2−2−2.具体的処理)
図7は、第1フラグFLG1及び第2フラグFLG2を設定するフローチャート(図3のS3の詳細)である。ステップS31において、ECU28は、アクセルペダル開度センサ54からアクセル開度θapを取得する。
【0066】
ステップS32において、ECU28は、アクセル開度θapに基づいて駆動状態切替え禁止閾値G1(第1横G閾値G1)を選択する(図5及び図6参照)。上記のように、閾値G1は、閾値G1a、G1bから選択する。第1横G閾値G1の選択方法の詳細については、図9を用いて後述する。
【0067】
ステップS33において、ECU28は、アクセル開度θapに基づいてエンジン始動閾値G2(第2横G閾値G2)を選択する(図5及び図6参照)。第2横G閾値G2の選択方法の詳細については、後述する。
【0068】
ステップS34において、ECU28は、横Gを検出する。横Gの検出は、以下の方法で行う。すなわち、ECU28は、以下の式(1)を用いて横Gを検出(又は算出)する。
【0069】
横G=(V2×σ)/(1+A+V2)/L ・・・(1)
【0070】
式(1)において、Vは、車速センサ50が検出した車速であり、σは、タイヤ舵角センサ58が検出したタイヤ舵角であり、Aは、スタビリティファクタであり、Lは、ホイールベースである(図8参照)。
【0071】
上記式(1)によれば、タイヤ舵角σの増加に応じて横Gが増加する。このため、高μ路に比べて第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2がより低い値となる低μ路においても、運転者の旋回意志を反映することが可能となる。加えて、式(1)によれば、傾斜路等であっても、横Gを検出することが可能となる。
【0072】
或いは、ECU28は、以下の式(2)を用いて横Gを検出(又は算出)してもよい。
【0073】
横G=Yr×V ・・・(2)
【0074】
式(2)において、Yrは、ヨーレートセンサ56が検出したヨーレートであり、Vは、車速センサ50が検出した車速である。式(2)によれば、車両10がスピンしている場合でも、横Gを検出することが可能となる。加えて、式(2)によれば、傾斜路等であっても、横Gを検出することが可能となる。
【0075】
なお、横Gの検出は、それ自体で横Gを検出する横Gセンサ(静電容量検出方式、ピエゾ抵抗方式等)を用いて行うことも可能である。
【0076】
図7に戻り、ステップS35において、ECU28は、ステップS34で検出した横Gが、ステップS32で選択した駆動状態切替え禁止閾値G1を下回るか否かを判定する。横Gが閾値G1を下回る場合(S35:YES)、ステップS36において、ECU28は、駆動状態の切替えを許可するため、第1フラグFLG1に0を設定する。一方、横Gが閾値G1を下回らない場合(S35:NO)、ステップS37において、ECU28は、駆動状態の切替えを禁止するため、第1フラグFLG1に1を設定する。
【0077】
続くステップS38において、ECU28は、ステップS34で検出した横Gが、ステップS33で選択したエンジン始動閾値G2を下回るか否かを判定する。横Gが閾値G2を下回る場合(S38:YES)、ステップS39において、ECU28は、現在の駆動状態がRWDであればエンジン12を停止させたままとするため、第2フラグFLG2に0を設定する。一方、横Gが閾値G2を下回らない場合(S38:NO)、ステップS40において、ECU28は、駆動状態がRWDであってもエンジン12を始動させるため、第2フラグFLG2に1を設定する。
【0078】
(1−2−2−3.駆動状態切替え禁止閾値G1の設定)
図9は、駆動状態切替え禁止閾値G1を設定するフローチャート(図7のS32の詳細)である。ステップS51において、ECU28は、現時点(演算時点)における駆動状態がFWD又はAWDであるか否かを判定する。当該判定は、例えば、ECU28自身が選択している駆動状態を用いる。或いは、ECU28が指令した駆動状態と、実際の車輪(前輪32a、32b及び後輪36a、36b)の駆動状態は必ずしも一致しない場合がある。そこで、実測値(例えば、各車輪に設けた車輪速センサ(図示せず)からの出力)を用いて駆動状態を判定してもよい。
【0079】
現時点の駆動状態がFWD又はAWDである場合(S51:YES)、ステップS52において、ECU28は、エンジン12の作動時に用いる第1横G閾値G1bをアクセル開度θapに応じて設定する(図5及び図6参照)。なお、アクセル開度θapと閾値G1bとの関係は、例えば、図10又は図11に示すようマップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。
【0080】
図10では、アクセル開度θapが増加するに連れて閾値G1bが減少する。また、図11では、アクセル開度θapが0からθ1の間は閾値G1bが一定である。これは、加速度が低い状態(0〜θ1)では、閾値G1bを変化させる実質的な意味がないとの考えに立ったものである。また、アクセル開度θapがθ1からθ2の間は閾値G1bを減少させる。これは、図5及び図6等を参照して説明したように、アクセル開度θapが増加して前後加速度(前後G)が大きくなると、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなることと符合する。
【0081】
図9のステップS51に戻り、現時点の駆動状態がFWD又はAWDでない場合(S51:NO)、ステップS53において、ECU28は、エンジン12が作動中であるか否かを判定する。駆動状態がRWD(後ろ側モータ16、18による駆動)であるにもかかわらず、エンジン12が作動中である場合としては、例えば、バッテリ20のSOCが、所定の閾値(SOC閾値)を下回っているため、エンジン12からの駆動力により第1モータ14で発電させる場合がある。或いは、図示しない補機における駆動電力を補うため、第1モータ14による発電を行う場合もある。
【0082】
なお、ステップS51は、実質的に、エンジン12が作動中であるか否かを判定するものであるため、ステップS51を省略して、ステップS52のみとすることもできる。
【0083】
エンジン12が作動中である場合(S53:YES)、上述したように、ステップS52において、ECU28は、エンジン12の作動時に用いる第1横G閾値G1bをアクセル開度θapに応じて設定する。
【0084】
エンジン12が作動中でない場合(S53:NO)、ステップS54において、ECU28は、エンジン12の停止時に用いる第1横G閾値G1aをアクセル開度θapに応じて設定する(図5及び図6参照)。なお、第1横G閾値G1bと同様、アクセル開度θapと閾値G1aとの関係は、例えば、図10又は図11に示すようなマップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。
【0085】
図10及び図11にも示すように、アクセル開度θapが等しい場合、エンジン12の停止時に用いる第1横G閾値G1aは、エンジン12の作動時に用いる第1横G閾値G1bよりも大きくなる。但し、第1横G閾値G1aが第1横G閾値G1bよりも常に大きくなる必要はなく、アクセル開度θapが小さい場合(例えば、0〜θ1)又はアクセル開度θapが大きい場合(例えば、θ2以上)、第1横G閾値G1aと第1横G閾値G1bとを等しくすることもできる。
【0086】
(1−2−2−4.エンジン始動閾値G2の設定)
図7のステップS33に関し、閾値G2は、閾値G1と同様の方法で設定する。この場合、アクセル開度θapと閾値G2との関係は、マップとして予め記憶部44に記憶しておく。当該マップには、実験値又はシミュレーション値を利用することができる。或いは、閾値G1との差を予め設定しておき、閾値G1に基づいて閾値G2を設定することもできる。
【0087】
(1−2―3.走行状態(駆動状態)の切替え時の処理)
次に、走行状態(駆動状態)を切り替える際の処理について説明する。
【0088】
(1−2−3−1.RWDからFWDへの切替え時)
駆動ECU28が走行状態(駆動状態)をRWDからFWDに切り替えると判定した場合、駆動ECU28は、RWDからFWDに移行する過程において一時的にAWDを用いる。
【0089】
具体的には、非操舵輪としての後輪36の駆動力(後輪駆動力Fr)を徐々に減少させつつ、操舵輪としての前輪32の駆動力(前輪駆動力Ff)を徐々に増加させる。従って、一時的に(例えば、0.1〜2.0秒のいずれかの間)RWDとFDWが混在する状態、すなわち、AWDの状態を用いる。
【0090】
但し、この場合におけるAWD(以下「過渡的AWD」ともいう。)は、駆動ECU28が走行状態(駆動状態)としてAWDを選択すると判定して用いるもの(図2に示す「AWD」)ではなく、あくまでRWDからFWDに移行するために用いるものである。換言すると、図2に示すAWDは、図3及び図4のフローチャートに基づいて設定されるものであるのに対し、過渡的AWDは、図3及び図4のフローチャートに基づいてRWDからFWDに切り替えると判定された場合に用いられるものである。なお、駆動状態は、車速V、車速変化量(車速Vの時間微分値)、アクセル開度θap、開度変化量(アクセル開度θapの時間微分値)及びヨーレートYrの少なくとも1つに基づいて切り替えてもよい。
【0091】
過渡的AWDに際しては、例えば、前輪駆動力Ff及び後輪駆動力Frの合計(以下「合計駆動力Ftotal」という。)を一定に維持する。これにより、RWDからFWDへの切替えを車両10の挙動変化なしに行い、当該切替えに伴う挙動変化による運転者の違和感を防止することが可能となる。
【0092】
或いは、過渡的AWDに際しては、例えば、アクセル開度θap、開度変化量及び車速変化量の少なくとも1つに応じて合計駆動力Ftotalを変化させるように制御することもできる。例えば、アクセル開度θapが大きいとき、開度変化量が正の値であるとき又は車速変化量が正の値であるとき、合計駆動力Ftotalを増加させ、アクセル開度θapが小さいとき、開度変化量が負の値であるとき又は車速変化量が負の値であるとき、合計駆動力Ftotalを減少させてもよい。
【0093】
(1−2−3−2.FWDからRWDへの切替え時)
FWDからRWDへの切替え時においても、RWDからFWDへの切替え時と同様の処理を行うことができる。すなわち、RWDからFWDへの切替えに際して過渡的AWDを介在させる。また、過渡的AWDに際しては、合計駆動力Ftotalを制御することができる。
【0094】
(1−2−3−3.FWD又はRWDからAWDへの切替え時)
FWDからAWDへの切替え時には、例えば、前輪駆動力Ffを一定にした状態で後輪駆動力Frを増加させて合計駆動力Ftotalを増加させる。或いは、前輪駆動力Ffを減少させながら後輪駆動力Frを増加させて合計駆動力Ftotalを一定にする又は増加させる。或いは、前輪駆動力Ffを増加させながら後輪駆動力Frを増加させて合計駆動力Ftotalを増加させる。
【0095】
同様に、RWDからAWDへの切替え時には、例えば、後輪駆動力Frを一定にした状態で前輪駆動力Ffを増加させて合計駆動力Ftotalを増加させる。或いは、後輪駆動力Frを減少させながら前輪駆動力Ffを増加させて合計駆動力Ftotalを一定にする又は増加させる。或いは、後輪駆動力Frを増加させながら前輪駆動力Ffを増加させて合計駆動力Ftotalを増加させる。
【0096】
(1−2−3−4.AWDからFWD又はRWDへの切替え時)
AWDからFWDへの切替え時には、例えば、前輪駆動力Ffを一定にした状態で後輪駆動力Frを減少させて合計駆動力Ftotalを減少させる。或いは、前輪駆動力Ffを増加させながら後輪駆動力Frを減少させて合計駆動力Ftotalを一定にする又は減少させる。或いは、前輪駆動力Ffを減少させながら後輪駆動力Frを減少させて合計駆動力Ftotalを減少させる。
【0097】
同様に、AWDからRWDへの切替え時には、例えば、後輪駆動力Frを一定にした状態で前輪駆動力Ffを減少させて合計駆動力Ftotalを減少させる。或いは、後輪駆動力Frを増加させながら前輪駆動力Ffを減少させて合計駆動力Ftotalを一定にする又は減少させる。或いは、後輪駆動力Frを減少させながら前輪駆動力Ffを減少させて合計駆動力Ftotalを減少させる。
【0098】
C.本実施形態の効果
横Gに応じたFDWからAWDへの切替え及びRWDからAWDへの切替え(図3のS4:YES→S5)に着目した場合、本実施形態によれば、RWDからAWDへと切り替えるための第1横G閾値G1a(第1切替閾値)(図9のS51:NO→S54)と、FWDからAWDへと切り替えるための第1横G閾値G1b(第2切替閾値)(S51:YES→S52)とに異なる値が設定される(図5等参照)。換言すると、エンジン12が作動している場合と、エンジン12が停止している場合とで、第1横G閾値G1を切り替えることが可能となる。このため、例えば、エンジン12の作動に伴うエネルギ消費と車両10の操縦安定性(運転者の意志通りに車両を操縦できる性能)とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
【0099】
加えて、本実施形態では、FWDに用いる第1横G閾値G1b(第2切替閾値)を、RWDに用いる第1横G閾値G1a(第1切替閾値)よりも小さくする(図5等参照)。これにより、エンジン12による駆動を行わないRWDからAWDへの切替えと比較して、エンジン12による駆動を行うFWDからAWDへの切替えを早く行うこととなる。このため、AWDへの切替え前にエンジン12を作動させている場合、早期に操縦安定性を向上させることが可能となる。
【0100】
また、駆動状態がRWDである場合におけるエンジン12の作動状態に着目した場合、本実施形態によれば、エンジン12の停止時においてRWDからAWDへと切り替えるための第1横G閾値G1a(停止時閾値)(図9のS53:NO→S54)と、エンジン12の作動時においてRWDからAWDへと切り替えるための第1横G閾値G1b(作動時閾値)(図9のS53:YES→S52)とに異なる値が設定される。換言すると、エンジン12が作動している場合と、エンジン12が停止している場合とで、第1横G閾値G1を切り替える。このため、例えば、エンジン12の作動に伴うエネルギ消費と車両10の操縦安定性とのバランスを考慮して駆動状態の切替えを行うことが可能となる。
【0101】
加えて、本実施形態では、エンジン12の作動時(S53:YES)に用いる第1横G閾値G1b(作動時閾値)を、エンジン12の停止時(S53:NO)に用いる第1横G閾値G1a(停止時閾値)よりも小さくする(図5等参照)。これにより、エンジン12の停止時におけるRWDからAWDへの切替えと比較して、エンジン12の作動時におけるRWDからAWDへの切替えを早く行うこととなる。このため、RWDからAWDへの切替え前にエンジン12を作動させている場合、早期に操縦安定性を向上させることが可能となる。
【0102】
II.変形例
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
【0103】
A.車両10(適用対象)
上記実施形態では、自動四輪車である車両10について説明したが(図1)、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、FWD、RWD及びAWDのうち少なくともいずれか2つを切り替えることのできる車両であれば、これに限らない。例えば、自動二輪車、自動三輪車及び自動六輪車のいずれであってもよい。
【0104】
また、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、エンジン12を作動させない駆動状態(上記実施形態ではRWD)とAWDとを切り替えることのできる車両であれば、これに限らない。例えば、自動二輪車、自動三輪車及び自動六輪車のいずれであってもよい。
【0105】
上記実施形態では、車両10は、1つのエンジン12及び3つの走行モータ14、16、18を駆動源として有したが、駆動源はこの組合せに限らない。例えば、車両10は、前輪32用の1つ又は複数の走行モータと、後輪36用の1つ又は複数の走行モータを駆動源として有してもよい。例えば、前輪32用又は後輪36用に1つの走行モータのみを用いることができる。この場合、差動装置を用いて左右輪に駆動力を分配すればよい。また、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、全ての車輪それぞれに個別の走行モータ(いわゆるインホイールモータを含む。)を割り当てる構成も可能である。
【0106】
さらに、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、1つの駆動用のエンジン12と1つの駆動用のモータ(第1〜第3モータ14、16、18のいずれか)とがあればよい。
【0107】
図12は、この発明の変形例に係る車両10Aの駆動系及びその周辺の概略構成図である。車両10Aでは、上記実施形態に係る車両10の前輪駆動装置34及び後輪駆動装置38の構成が反対になっている。すなわち、車両10Aの前輪駆動装置34aは、車両10Aの前側に配置された第2及び第3走行モータ16a、18aを備える。また、車両10Aの後輪駆動装置38aは、車両10Aの後ろ側に直列配置されたエンジン12a及び第1走行モータ14aを備える。
【0108】
上記実施形態及び図12の変形例では、前輪32が操舵輪であり、後輪36が非操舵輪であったが、前輪32及び後輪36の両方を操舵輪とする構成及び後輪36を操舵輪とし、前輪32を非操舵輪とする構成も可能である。
【0109】
B.第1〜第3走行モータ14、16、18
上記実施形態では、第1〜第3走行モータ14、16、18を3相交流ブラシレス式としたが、これに限らない。例えば、第1〜第3走行モータ14、16、18を3相交流ブラシ式、単相交流式又は直流式としてもよい。
【0110】
上記実施形態では、第1〜第3走行モータ14、16、18は、高圧バッテリ20から電力が供給されたが、これに加え、燃料電池から電力を供給されてもよい。
【0111】
C.車両10の駆動状態の制御
C−1.駆動状態の切替え
上記実施形態では、図3及び図4のフローチャートを用いて駆動状態の切替えを行ったが、駆動状態の切替え方法は、これに限らない。例えば、車速V、車速変化量、アクセル開度θap、開度変化量及びヨーレートYrの少なくとも1つに基づいて切り替えてもよい。或いは、US 2012/0015772 A1の図13及びその関連記載に示すような方法で走行状態(駆動状態)の切替えを行ってもよい。
【0112】
上記実施形態では、車両10の駆動状態としてFWD、RWD及びAWDを切替え可能としたが、第1乖離発生値Gdiv1(第1横G)又は第2乖離発生値Gdiv2(第2横G)における駆動状態毎の旋回半径比R/R0の乖離の観点からすれば、これらのうち少なくともいずれか2つを切り替えることのできるものであれば、これに限らない。例えば、FWDとAWDとの切替え(第1切替え)のみが可能な構成、又はRWDとAWDとの切替え(第2切替え)のみが可能な構成にも適用することができる。エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1を設定する観点からすれば、1つの車両10駆動用のエンジン12と1つの車両10駆動用のモータとがあればよい。
【0113】
上記実施形態では、横Gが第1横G閾値G1以上となり(図7のS35:NO)、駆動状態の切替えを禁止するとき(図7のS37、図3のS4:YES)、駆動状態をAWDに固定した(図3のS5)。しかしながら、駆動状態の切替えを禁止するときに選択する駆動状態はAWDに限定しなくてもよい。例えば、駆動状態の切替えを禁止するときに選択する駆動状態はFWD又はRWDであってもよい。或いは、予め設定された特定の駆動状態を選択するのではなく、駆動状態の切替えを禁止するときに選択していた駆動状態(禁止直前の駆動状態)に固定することも可能である。
【0114】
C−2.駆動状態切替え禁止閾値G1(第1横G閾値G1)
上記実施形態では、FWDとRWD及びAWDとで旋回半径比R/R0が乖離を開始する境界値としての第1乖離発生値Gdiv1と等しい値を第1横G閾値G1aとしたが(図5等参照)、第1横G閾値G1aはその他の値に設定することもできる。例えば、実際に乖離が始まる時点で駆動状態の切替えを確実に禁止する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりも小さい値に設定してもよい。或いは、乖離量を所定値未満に抑えるという観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1よりもやや大きい値に設定することもできる。
【0115】
上記実施形態では、駆動状態切替え禁止閾値G1を横Gの値としたが、横G自体の値でなくても、横Gに関連する値(横加速度関連値)であれば、これに限らない(ここにいう横加速度関連値には、横G自体を含む。)。例えば、上記式(2)では、ヨーレートYrと車速Vの積として横Gを算出すること(横G=Yr×V)に鑑み、第1横G閾値G1を車速Vで除したもの(G1/V)をヨーレートYrと比較する又は第1横G閾値G1をヨーレートYrで除したもの(G1/Yr)を車速Vと比較しても、同様の作用効果を生じさせることが可能である。換言すると、横Gを直接的に示す値の代わりに、横Gを間接的に示す値(上記例であれば、ヨーレートYr又は車速V)を所定の閾値(第1横G閾値G1を間接的に示す値)と比較しても、実質的には上記実施形態と同じことを意味する。上記式(1)についても同様のことが言える。
【0116】
また、エンジン12の作動状態(作動中又は停止中)に基づいて第1横G閾値G1aを設定する観点からすれば、第1横G閾値G1aを、第1乖離発生値Gdiv1又は乖離基準値Grefを基準として設定しなくてもよい。換言すると、エンジン12の作動時と停止時とで第1横G閾値G1a、G1bを切り替えればよい。
【0117】
この点、上記実施形態では、エンジン12の作動時における第1横G閾値G1bを、エンジン12の停止時における第1横G閾値G1aよりも小さくしたが(図5等参照)、例えば、RWD時における操縦安定性の早期確保のため、第1横G閾値G1aよりも大きくしてもよい。
【0118】
上記実施形態では、アクセル開度θapに基づいて第1横G閾値G1(第1横G閾値G1a、G1b)を切り替えた(図5図6図10及び図11参照)。しかしながら、駆動状態の切替えに応じた旋回半径比R/R0又はこれと同様の旋回特性関連値の変化(乖離)に影響を与える値であれば、アクセル開度θapに加えて又はこれに代えて、その他の値を用いることもできる。
【0119】
例えば、図13及び図14に示すように、前後加速度(前後G)に基づいて駆動状態切替え禁止閾値G1a、G1b(第1横G閾値G1a、G1b)を変化させることも可能である。前後Gは、例えば、図示しない前後Gセンサにより検出することができる。図13では、前後Gが増加するに連れて閾値G1a、G1bが減少する。
【0120】
また、図14では、前後Gが0からGf1の間は閾値G1a、G1bが一定である。これは、前後Gが低い状態(0〜Gf1)では、横Gの閾値G1a、G1bを変化させる実質的な意味がないとの考えに立ったものである。また、Gf1からGf2の間は閾値G1a、G1bを減少させる。これは、図5及び図6等を参照して説明したように、前後Gが大きくなると、横Gに関する第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなるためである。さらに、Gf2より大きくなると閾値G1a、G1bが一定となる。これは、例えば、閾値G1a、G1bが最小値に到達したためである。
【0121】
或いは、図15に示すように、車速Vに基づいて第1横G閾値G1a、G1bを変化させることもできる。図15では、車速Vが0からV1の間は閾値G1a、G1bが一定である。これは、車速Vが低い状態(0〜V1)では、閾値G1a、G1bを変化させる実質的な意味がないとの考えに立ったものである。また、V1からV2の間は閾値G1a、G1bを減少させる。これは、図5及び図6等を参照して説明したように、車速Vが増加して前後Gが大きくなると、横Gに関する第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が小さくなるためである。さらに、車速VがV2より大きくなると閾値G1a、G1bが一定となる。これは、例えば、閾値G1a、G1bが最小値に到達したためである。
【0122】
或いは、運転者の加速意図を示す加速意図関連値(アクセル開度θap以外のもの)に基づいて第1横G閾値G1a、G1bを変化させてもよい。アクセル開度θap以外の加速意図関連値としては、例えば、アクセル開度θapに応じて設定されるエンジン12の駆動力の要求値(要求駆動力)、当該要求駆動力に対してフィードバック制御、リミット制御等の種々の制御を行って実際にエンジン12の駆動力の目標値として設定される目標駆動力を用いることができる。
【0123】
また、例えば、第1横G閾値G1a、G1b以上となる条件が非常に限定されている場合、第1横G閾値G1a、G1bを固定して用いることも可能である。
【0124】
上記実施形態では、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2のうち小さい値としての乖離基準値Grefを基準として第1横G閾値G1aを設定した。換言すると、駆動状態の切替えの内容にかかわらず、第1横G閾値G1aを用いた。
【0125】
しかしながら、図5及び図6に示すように、第1乖離発生値Gdiv1及び第2乖離発生値Gdiv2が異なる値であることに着目すれば、駆動状態の切替え内容に応じて第1横G閾値G1aを可変とすることも可能である。換言すると、駆動状態の切替え内容に応じて異なる第1横G閾値G1aを設定することも可能である。例えば、FWDとRWD又はAWDとを切り替える場合には第1乖離発生値Gdiv1を第1横G閾値G1aとし、RWDとAWDとを切り替える場合には第2乖離発生値Gdiv2を第1横G閾値G1aとすることも可能である。この場合、RWDとAWDとを切り替える場合の第1横G閾値G1については、エンジン12の作動状態に応じて(上記実施形態における第1横G閾値G1a、G1bのように)さらに第1横G閾値G1aを切り替えてもよい。
【0126】
上記実施形態では、第1乖離発生値Gdiv1(第1横G)及び第2乖離発生値Gdiv2(第2横G)との比較の観点から第1横G閾値G1aを設定するものとして説明したが、駆動状態を切り替えた際の旋回半径比R/R0の変化量に焦点を当てて第1横G閾値G1aを設定しても実質的に同じである。
【0127】
すなわち、第1横G閾値G1aは、横Gが第1横G閾値G1aを上回っている状態でFWDとAWDとの切替え(第1切替え)を行ったとしたときの旋回半径比R/R0の予測変化量である第1変化量及びRWDとAWDとの切替え(第2切替え)を行ったとしたときの旋回半径比R/R0の予測変化量である第2変化量のうち小さい値に基づいて設定してもよい。なお、ここにいう第1切替え及び第2切替えには、FWDとRWDとを切り替える際の過渡的AWDを含む。或いは、駆動状態の切替え内容毎に第1横G閾値G1aを設定する場合、第1変化量及び第2変化量のそれぞれに応じて第1横G閾値G1aを設定することもできる。
【0128】
上記実施形態では、第1横G閾値G1a、G1bを予めECU28の記憶部44に記憶しておいたが、運転中に逐次演算することにより第1横G閾値G1a、G1bを算出することも可能である。この場合、例えば、横Gと旋回半径比R/R0の関係を駆動状態毎に記憶しておき、旋回半径比R/R0の変化量が所定値以上になる横Gを第1横G閾値G1aとし、第1横G閾値G1aとの関係から第1横G閾値G1bを演算することもできる。
【0129】
C−3.旋回半径比R/R0(旋回特性関連値)
上記実施形態では、駆動状態の切替えが行われた際、横Gとの関連で乖離が発生する旋回特性関連値として旋回半径比R/R0を用いたが、その他の旋回特性関連値(例えば、実旋回半径R自体、いずれかの車輪のスリップ率)に基づいて第1横G閾値G1及び第2横G閾値G2を設定してもよい。
【0130】
C−4.エンジン始動閾値G2(第2横G閾値G2)
上記実施形態では、アクセル開度θapに基づいて第2横G閾値G2を設定したが、将来的に横Gが第1横G閾値G1a以上となる可能性が高いことを判定してエンジン12を始動させておくことができれば、これに限らない。例えば、第1横G閾値G1aと同様、アクセル開度θapに加えて又はこれに代えて、その他の値(前後G、車速V)に基づいて第2横G閾値G2を設定することもできる。或いは、第1横G閾値G1a以上となる条件が非常に限定されている場合、第1横G閾値G1aと同様、第2横G閾値G2を固定して用いることも可能である。
【0131】
或いは、閾値G2は、閾値G1aに基づいて設定することも可能である。ここで、前後Gが小さい場合、横Gの変化量(時間微分値)も小さいとの考えに立てば、前後Gが小さい場合、閾値G1aとの差を小さくして閾値G2を設定し、前後Gが大きい場合、閾値G1aとの差を大きくして閾値G2を設定してもよい。
【0132】
C−5.その他
図3のステップS2では、後ろ側モータ16、18の駆動が可能であるか否かの判定を、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20のSOCに基づいて行ったが、後ろ側モータ16、18の駆動が可能であるか否かの判定をすることができれば、これに限らない。例えば、後ろ側モータ16、18の温度、後ろ側モータ16、18における異常発生及びバッテリ20のSOCのいずれか1つ又は2つにより判定してもよい。
【0133】
或いは、上記各指標の一部若しくは全部に加え又はこれらに代えて、別の指標を用いることも可能である。例えば、バッテリ20の劣化度(充電回数、使用期間等)を用いることもできる。
【0134】
なお、図4のフローチャートでは、車両10が高車速であるとき(S12:NO)、FWDを選択して後ろ側モータ16、18を駆動させない。このため、実質的に、車速Vによっても後ろ側モータ16、18の駆動が可能であるか否かの判定を行っていることとなる。
【0135】
上記実施形態では、RWDを選択しているときには、図3のステップS7及びエンジン12の駆動力により第1モータ14で発電する場合を除き、エンジン12をアイドリングさせずに停止させることを念頭に置いていたが、図3のステップS7及び発電以外の場合においてエンジン12をアイドリング状態で待機させることも可能である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15

【手続補正書】
【提出日】2014年2月24日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
輪及び後輪の一方を駆動する第1駆動装置と
内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と
前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と
前記内燃機関の作動状態を制御する内燃機関制御装置と
を備える車両であって、
前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値が設定される
ことを特徴とする車両。
【請求項2】
請求項1記載の車両において、
前記第2切替閾値を前記第1切替閾値よりも小さくする
ことを特徴とする車両。
【請求項3】
輪及び後輪の一方を駆動する第1駆動装置と
内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と
前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と
前記内燃機関の作動状態を制御する内燃機関制御装置と
を備える車両であって、
前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値が設定される
ことを特徴とする車両。
【請求項4】
請求項3記載の車両において、
前記作動時閾値を前記停止時閾値よりも小さくする
ことを特徴とする車両。
【請求項5】
請求項3又は4記載の車両において、
前記内燃機関は、前記第1単独駆動状態において、前記車両に設けられた発電機に対して選択的に駆動力を付与する
ことを特徴とする車両。
【請求項6】
輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、
前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第2駆動装置の駆動力のみにより前記車両を駆動させる状態である第2単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替え及び前記第2単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第1切替閾値と、前記第2単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である第2切替閾値とに異なる値を設定する
ことを特徴とする車両の制御方法。
【請求項7】
輪及び後輪の一方を駆動する第1駆動装置と、内燃機関を含み前記前輪及び前記後輪の他方を駆動する第2駆動装置と、前記第1駆動装置及び前記第2駆動装置を制御して前記前輪及び前記後輪の駆動状態を制御する駆動状態制御装置と、前記内燃機関の作動状態を制御する内燃機関制御装置とを備える車両の制御方法であって、
前記駆動状態制御装置は、前記第1駆動装置の駆動力のみにより前記車両を駆動させる状態である第1単独駆動状態と、前記第1駆動装置及び前記第2駆動装置の駆動力により前記車両を駆動させる状態である複合駆動状態とを切り替え、
さらに、前記駆動状態制御装置は、前記第1単独駆動状態から前記複合駆動状態への切替えを、前記車両に作用する横加速度に関連する横加速度関連値に基づいて実行し、
前記内燃機関が停止している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である停止時閾値と、前記内燃機関が作動している状態において前記第1単独駆動状態から前記複合駆動状態へと切り替えるための前記横加速度関連値である作動時閾値とに異なる値を設定する
ことを特徴とする車両の制御方法。
【国際調査報告】