特表-13161510IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターナショナル・ビジネス・マシーンズ・コーポレーションの特許一覧
再表2013-161510評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ
<>
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000003
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000004
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000005
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000006
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000007
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000008
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000009
  • 再表WO2013161510-評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ 図000010
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2013年10月31日
【発行日】2015年12月24日
(54)【発明の名称】評価の極性に基づいた文章の分類方法、コンピュータ・プログラム、コンピュータ
(51)【国際特許分類】
   G06F 17/30 20060101AFI20151201BHJP
【FI】
   G06F17/30 220Z
   G06F17/30 170A
【審査請求】有
【予備審査請求】未請求
【全頁数】13
【出願番号】特願2014-512437(P2014-512437)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2013年3月29日
(11)【特許番号】特許第5607859号(P5607859)
(45)【特許公報発行日】2014年10月15日
(31)【優先権主張番号】特願2012-100288(P2012-100288)
(32)【優先日】2012年4月25日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
(74)【代理人】
【識別番号】100108501
【弁理士】
【氏名又は名称】上野 剛史
(74)【代理人】
【識別番号】100112690
【弁理士】
【氏名又は名称】太佐 種一
(72)【発明者】
【氏名】金山 博
(72)【発明者】
【氏名】村上 拓真
(72)【発明者】
【氏名】宅間 大介
(57)【要約】
限られた時間・リソースの下で、効率的にレビュー文章の分析を行うために、大量のレビュー文章の中から、人(分析者)が参照すべき一部のレビュー文章を効率よく抽出する技術を提供する。
コンピュータにより複数の文章から一部の文章を抽出する方法であり、
各文章の肯定的な表現の程度及び否定的な表現の程度を一次評価するステップと、
少なくとも一部は前記肯定的な表現の程度及び前記否定的な表現の程度を変数とする複数の評価関数に基づいて、各文章を二次評価するステップと、
同一の評価関数に基づいた各評価結果のより高い文章を前記評価結果のより低い文章よりも優先して文章を抽出するステップと
を含む。
【特許請求の範囲】
【請求項1】
コンピュータにより複数の文章から一部の文章を抽出する方法であり、
各文章の肯定的な表現の程度及び否定的な表現の程度を一次評価するステップと、
少なくとも一部は前記肯定的な表現の程度及び前記否定的な表現の程度を変数とする複数の評価関数に基づいて、各文章を二次評価するステップと、
同一の評価関数に基づいた各評価結果のより高い文章を前記評価結果のより低い文章よりも優先して文章を抽出するステップと
を含む方法。
【請求項2】
前記一部の評価関数の一は、肯定的及び否定的な表現を平均的に含む文章に対してより高い評結果を出力する関数である請求項1に記載の方法。
【請求項3】
前記一部の評価関数の一は、p+nCpαp(1-α)n
×(p+n):pは肯定的な表現数、nは否定的な表現数、αは全文書中の好評の割合、で与えられる請求項1に記載の方法。
【請求項4】
前記一部の評価関数の一は、前記肯定的な表現の程度と前記否定的な表現の程度の和である請求項1に記載の方法。
【請求項5】
前記一部の評価関数の一は、前記肯定的な表現の程度と前記否定的な表現の程度の差である請求項1に記載の方法。
【請求項6】
前記一次評価するステップは、各文章に含まれる肯定的な表現の数及び否定的な表現の数に基づいて、前記肯定的な表現の程度及び否定的な表現の程度を一次評価する請求項1に記載の方法。
【請求項7】
前記抽出するステップは、異なる評価関数に基づいた各評価結果の文章を予め定められた順序に基づいて抽出する請求項1に記載の方法。
【請求項8】
前記抽出された文章をユーザに出力するステップを更に備える請求項1に記載の方法。
【請求項9】
前記出力するステップでは、前記抽出された文章がいずれの評価関数の評価結果に基づいて抽出されたのかを併せてユーザに出力する請求項8に記載の方法。
【請求項10】
前記出力するステップでは、前記抽出された文章中の前記肯定的な表現と前記否定的な表現とを相異なる表現形態で出力する請求項8に記載の方法。
【請求項11】
コンピュータに請求項1に記載の方法の各ステップを実行させるコンピュータ・プログラム。
【請求項12】
複数の文章から一部の文章を抽出するコンピュータであり、
各文章の肯定的な表現の程度及び否定的な表現の程度を一次評価する手段と、
少なくとも一部は前記肯定的な表現の程度及び前記否定的な表現の程度を変数とする複数の評価関数に基づいて、各文章を二次評価する手段と、
同一の評価関数に基づいた各評価結果のより高い文章を前記評価結果のより低い文章よりも優先して文章を抽出する手段と
を含むコンピュータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は情報処理技術に関係し、より詳しくは、情報処理を用いて評判分析を支援する技術に係る。
【背景技術】
【0002】
情報通信技術の進展と共に、より多くの人々がインタネットを介して、意見を共有する形態がみられる。例えば、通信販売サイトでは、商品の購入者がその商品のレビューをポストしたり、いわゆる口コミサイトでは、ある飲食店の利用者がそのレビューをポストしたりする形態が見られる。いずれも、サイトの利用者はそのレビューを自由に閲覧することができる。このようなレビュー機能、レビューサイトは、サイトの利用者にとって、将来の製品購入、サービス利用について指針を与える点で有用であるばかりでなく、製品やサービスの提供者にとっても、購入者・利用者の貴重なフィードバックを得ることができ、有用である。大量のレビュー文章から有用な知見を得るために、従来から様々な技術手法が提案されてきた(特許文献、非特許文献参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−299071号公報
【特許文献2】特表2004−514220号公報
【特許文献3】特開平10−27181号公報
【特許文献4】特開2006−146567号公報
【特許文献5】再公表WO2009−060829号公報
【特許文献6】再公表WO2008−075524号公報
【非特許文献】
【0004】
【非特許文献1】Turney, P. D.「Thumbsup or thumbs down? Semanticorientation applied to unsupervised classificationofreviews」、ACL '02 Proceedings of the 40th AnnualMeetingon Association forComputational Linguistics、2002年7月、417-424p, Association for ComputationalLinguistics Stroudsburg発行
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、人が大量のレビュー文章のすべてを読むのは非効率である。一方、レビュー文章の一部をランダムに読むのでは、有用なレビューを見落としてしまうリスクがある。
【0006】
本発明はこのような課題に鑑みてなされたものであり、その目的の一つは、限られた時間・リソースの下で、効率的にレビュー文章の分析を行うために、大量のレビュー文章の中から、人(分析者)が参照すべき一部のレビュー文章を効率よく抽出する技術を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明者らは鋭意研究の結果、次のような発明に想到した。すなわち本発明は、コンピュータにより複数の文章から一部の文章を抽出する方法であり、各文章の肯定的な表現の程度及び否定的な表現の程度を一次評価するステップと、少なくとも一部は前記肯定的な表現の程度及び前記否定的な表現の程度を変数とする複数の評価関数に基づいて、各文章を二次評価するステップと、同一の評価関数に基づいた各評価結果のより高い文章を前記評価結果のより低い文章よりも優先して文章を抽出するステップとを含む方法である。
【0008】
ここで、前記一部の評価関数の一は、肯定的及び否定的な表現を平均的に含む文章に対してより高い評結果を出力する関数とすることができる。この関数は、具体的には、次の式を採用することができる。p+nCpαp(1-α)n× (p+n) :但し、αは全文書中の好評の割合である。
【0009】
他の評価関数としては、前記肯定的な表現の程度と前記否定的な表現の程度の和、前記肯定的な表現の程度と前記否定的な表現の程度の差を選択することもできる。
【0010】
また、前記一次評価するステップは、各文章に含まれる肯定的な表現の数及び否定的な表現の数に基づいて、前記肯定的な表現の程度及び否定的な表現の程度を一次評価することもできる。
【0011】
また、前記抽出するステップは、異なる評価関数に基づいた各評価結果の文章を予め定められた順序に基づいて抽出することもできる。
【0012】
また、前記抽出された文章をユーザに出力するステップを更に備えることもできる。この場合、前記抽出された文章がいずれの評価関数の評価結果に基づいて抽出されたのかを併せてユーザに出力することができる。さらに、前記抽出された文章中の前記肯定的な表現と前記否定的な表現とを相異なる表現形態で出力することもできる。
【0013】
本発明をこれらコンピュータ・プログラム、コンピュータ・システムとして把握した場合にも、上述した本発明を方法として把握した場合と実質的に同一の技術的特徴を備える事ができるのは当然である。
【発明の効果】
【0014】
本発明によれば、大量のレビュー文書の中から人(分析者)が参照すべき一部のレビュー文章を効率よく抽出することができる。
【図面の簡単な説明】
【0015】
図1】レビューサイトシステムを説明する概念図
図2】レビューサイト・サーバ内のハードディスク装置内に記憶されているデータのデータ構造の説明図
図3】コンピュータのハードウェア構成を説明するブロック図
図4】コンピュータの機能ブロック図
図5】コンピュータが実行する処理を説明するフローチャート
図6】コンピュータが実行する処理の一部を説明する概念図
図7】評価関数の意味を説明する概念図
図8】出力画面の一例を示す図
【発明を実施するための形態】
【0016】
実施形態
以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、本発明は多くの異なる態様で実施することが可能であり、実施の形態の記載内容に限定して解釈されるべきものではない。また、実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須とは限らないことに留意されたい。実施の形態の説明の全体を通じて(特段の断りのない限り)同じ要素には同じ番号を付している。
【0017】
図1は、レビューサイトのシステムを説明する概念図である。本システムは、レビューサイト・サーバ2と、ユーザ端末とを含み、これらはインタネット4を介して互いに通信可能に接続されている。また、ユーザ端末としては、通信機能を備えたあらゆる形態のコンピュータを採用することができる。例えば、図示するスマートフォン31、タブレット32、(ノート型)パーソナル・コンピュータ33の他にも、図示しないパーソナル・データ・アシスタント(PDA、携帯情報端末)、車載コンピュータ、ネットブック等を採用することができる。
【0018】
図2は、レビューサイト・サーバ2内のハードディスク装置20、21内に記憶されているデータのデータ構造を説明するものである。ハードディスク装置20に記憶されているレビューテーブル(図2(a))には、各レビュー文章が発信・ポストされた日時を示す発信日時 (created_at)、各レビューを特定するレビューID(id)と、そのレビューを発信したユーザを特定するユーザID(user_id)と、レビューの内容であるテキスト(text)を備えている。一方、ハードディスク装置21に記憶されているユーザテーブル(図2(b))には、ユーザを特定するユーザID(user_id)と、そのユーザの性別(gender)、年齢(age)、居住地(location)をそれぞれ特定する情報を備えている。なお、なお、レビューIDにレビュー対象の製品やサービスを特定するIDを付加してもよい。
【0019】
図3は、パーソナル・コンピュータ1のハードウェア構成を説明するブロック図である。コンピュータ1のハードウェア構成は、(低速及び高速の)バス10、バス10に接続されるCPU(演算制御装置)11、RAM(ランダム・アクセス・メモリ:記憶装置)12、ROM(リード・オンリ・メモリ:記憶装置)13、HDD(ハード・ディスク・ドライブ:記憶装置)14、通信インタフェース15、入出力インタフェース16を備えている。さらに、入出力インタフェース16に接続されるマウス17、フラット・パネル・ディスプレイ(表示装置)18、キーボード19等を備えている。なお、コンピュータ1は一般的なパーソナル・コンピュータ・アーキテクチャを採用するものとして説明したが、例えば、より高いデータ処理能力や可用性を求めて、CPU11やHDD14等を多重化することができる。また、デスクトップ型の他、様々なタイプのコンピュータ・システムを採用することができる。
【0020】
このコンピュータ1のソフトウェア構成は、基本的な機能を提供するオペレーティング・システム(OS)と、OSの機能を利用するアプリケーション・ソフトウェアと、入出力装置のドライバ・ソフトウェアとを備えている。これらの各ソフトウェアは、各種データと共にRAM12上にロードされ、CPU11等により実行され、コンピュータ1は全体として、図4に示す機能モジュールとして機能し、図5に示す処理を実行する。
【0021】
図4は、実施例に係るコンピュータ1の機能モジュールを説明する機能ブロック図である。コンピュータ1は、一次評価モジュール101、二次評価モジュール102、抽出モジュール103、出力モジュール104として機能する。
【0022】
図5は、このコンピュータ1が実行する処理を説明するフローチャートである。また、図6は、図5のフローチャートのステップS101からS103を説明する概念図である。まず、コンピュータ1が、それぞれに特定の固有名詞(ここではPPPと記す)が含まれる複数のレビュー文章D(1)〜D(N)を入手する(S101)。なお、Nはレビュー文章の一覧表示が困難なほど、十分に大きな値である。具体的には、コンピュータ1からレビューサイト・サーバ2に対して、条件を送信する。条件としては、例えば、レビュー文章中に固有名詞PPPを含み、かつ発信された期間が指定期間内のもの、という条件を付けることができる。次に、コンピュータ1はレビューサイト・サーバ2から上記条件に適合するレビュー文章群のデータを受信する。この際、上記条件に適合するレビュー群のデータ(図2(a)参照)およびレビューに関連付けられるユーザのプロフィール(図2(b)参照)を受信する。これら受信したデータは、コンピュータ1のHDD14に記憶される。また、上記期間が将来を含み、上記期間の終期が到来するまで、逐次レビューサイト・サーバ2からコンピュータ1にレビューが送られてもよい。さらに異なる態様としては、予め、コンピュータ1のHDD14にレビュー文章群のデータ(図2(a)参照)およびレビュー文章に関連付けられるユーザのプロフィール(図2(b)参照)が大量に記憶されている場合には、これらのデータの中から、上記条件に適合するレビュー群を検索することもできる。
【0023】
次に、一次評価モジュール101により、各レビューの肯定的な表現の程度及び否定的な表現の程度を一次評価する(ステップS101)。ここでは、好評(肯定的な表現)を示すワードのリスト及び不評(否定的な表現)を示すワード・表現のリストを予めHDD14に記憶しておき、各レビュー文章中の好評数(p)と、不評数(n)とをカウントする。これらの評価ワード・表現は、評価対象の商品やサービスに応じて予め設定しておくことが好ましい。なお、この他にも、例えば、各好評ワード・表現に好評らしさに応じたスコア、各不評ワード・表現に不評らしさに応じたスコアをそれぞれ予め設定しておき、これらのスコアに基づいて一次評価を行うことも出来る。
【0024】
以下、化粧品に対するレビュー文章4件を一次評価した結果を示す。()で囲んだ部分が好評ワード・表現、<>で囲んだ部分が不評ワード・表現である。
レビュー文章1:好評5・不評0
(分量が多く)、(安い)ので(いいですね)!他のスキンケア商品との(相性もいい)ので(安心しています)
レビュー文章2:好評5・不評1
特に、(ニキビに悩んでいるのではないです)が、(価格も手ごろ)だったので購入。(刺激も少なく)、若いうちには(良いと思います)。現在は、乾燥肌なので、化粧水などつけたとしても<潤いが不足します>…よって、現在は使用していません。ニキビに悩んでいる方の使用も(良さそう)です。
レビュー文章3:好評4・不評1
肌荒れ、ニキビに(安心して使えます)。普段は拭き取り化粧水を使っています。軽く顔にすべらせたあとパッティングします。ニキビができているところに多めに使うと、たしかに(よくなります)。潤いに関しては乾燥肌の方には<物足りないかもしれません>が、脂性肌の私には(ちょうどいい)です。(便利な化粧水です)。
レビュー文章4:好評2・不評3
<あまり効果判りません>。ニキビや吹き出物も最近は出来ないので<必要性を感じません>。肌にヒリヒリを感じたことは無いので、拭き取り用として使ってはいます。リピーと購入は<微妙かな>?でもお値段が(安く)て(いい)??
【0025】
次に、二次評価モジュール102により、複数の評価関数に基づいて、各レビュー文章を二次評価する(ステップS102)。ここでは、以下の5つの評価関数を用いている。評価関数m1: p
評価関数m2: p+n
評価関数m3: p/(p+n)
評価関数m4: p-n
評価関数m5: p+nCpαp(1-α)n× (p+n)、αは全レビュー中の好評の割合
【0026】
各評価関数の意味は、以下の通りである。すなわち、評価関数m1は、好評ワードを多く含むレビュー文章Dを高く評価する。評価関数m2は、好評・不評にかかわらず評価ワードを多く含むレビューを高く評価する。評価関数m3は、評価ワードのうち好評ワードの割合が高いレビューを高く評価する。評価関数m4は、不評ワードを最小限に、好評ワードの多いレビューを高く評価する。評価関数5は平均的に好評及び不評ワードを含むレビューをより高く評価する。さらに、評価関数m5は、以下のような背景で決定したものである。全文書中の評価表現の出現をP率 α=P/(P+N) のベルヌーイ試行と考える。ここで、P、Nはそれぞれ全文書中の好評数、不評数とする。k回の試行(k個の評価表現)でのP率の密度関数は、二項分布B(k,α) の密度関数を横軸方向に 1/k につぶした形になる。その分布において、文書xの好不評数Px、NxによるP率 Px/(Px+Nx)が観測される確率を文書xの評価表現の指標とする。なお、mCn の計算は、m、nが大きいと時間がかかるため、必要に応じて正規分布、ポアソン分布で近似しても良い。
【0027】
図7は、評価関数m1,m2,m5を説明するグラフである。この二次元グラフは、縦軸に好評ワードの数Pを、横軸に不評ワードの数Nをとり、各レビュー文章Dをグラフ上の印×にプロットしたものである。さらに、評価関数m1の等高線を細線で、評価関数m2の等高線を点線で、評価関数m5の等高線を太線でそれぞれ表している。レビュー文章には評価表現の少ないレビュー、不満のレビュー等様々なものが含まれるが、評価関数m1によりファンのレビューを、評価関数m2により評価表現の多いレビューを、評価関数m5により平均的な意見で評価表現の多いレビューをそれぞれ効果的に切り分けることができることを示している。
【0028】
次に、抽出モジュール103により、K件のレビュー文章が抽出される(ステップS103)。各レビュー文章Dには、評価関数m1〜m5による評価スコアが5つ付されている。抽出モジュール103は、評価関数毎に、最も評価スコアの高い文章から順に、各レビュー文章をソートする。そして、評価関数m1による評価スコアの最も高いレビュー文章、評価関数m2による評価スコアの最も高いレビュー文章、評価関数m3による評価スコアの最も高いレビュー文章、評価関数m4による評価スコアの最も高いレビュー文章、評価関数m5による評価スコアの最も高いレビュー文章(重複を廃して高々5件)を選択する。次に、評価関数m1による評価スコアの次に高いレビュー文章、評価関数m2による評価スコアの次に高いレビュー文章、評価関数m3による評価スコアの次に高いレビュー文章、評価関数m4による評価スコアの次に高いレビュー文章、評価関数m5による評価スコアの次に高いレビュー文章を(重複を廃して高々5件)選択する。以下同様に、K件に達するまで文章の選択を行う。
【0029】
次に、出力モジュール104により、選択済みのK件のレビュー文章をディスプレイ18上に表示させる(ステップS104)。図8は、表示画面の一例を示すものである。この画面には、選択されたK件のレビュー文章の一部が表示されており、太い四角で囲んだ部分に注目すると、表示されているレビュー文章が、どの評価関数で高い評価スコアを獲得して選択されたのかが一目で分かるように表示されている。例えば、画面の一番上に表示されているレビュー文章は、m1、m2、m5の欄にチェックマークが付してあり、評価関数m1、m2、m5による評価結果に基づいて表示されていることが分かる。また、ユーザが不要と思う評価関数を消去し、新たな評価関数を追加することもできる。さらに、特定の評価関数による評価結果のみを表示させることもできる。さらに、評価結果をアイコンでより簡易に示すことも出来る。なお、出力モジュール104は、図7に示したグラフをディスプレイ18上に表示させることもできる。
【0030】
このような処理を行うことで、好評の意見を持つレビュー文書を偏りなく取り出すことができる。すなわち、K件の中に、好評の意見だけのもの、不評も言及しているもの、などを含めることができる。その結果、ユーザ(分析者)が読み切れる量、または画面に一覧表示できる量の範囲内で、ユーザが本当に把握したい好評の情報にアクセスできる可能性が向上する。また、表示の際に、一次元の整序ではないことを分析者が直感的に理解することができる。さらに、興味のあるタイプの文書を重点的に参照することができる。
【0031】
なお、本発明は、全体がハードウェアの実施形態、全体がソフトウェアの実施形態、またはハードウェアおよびソフトウェア両方のエレメントを包含する実施形態の形を取ることができる。ある好適な実施形態において、本発明は、以下に限らないが、ファームウェア、常駐ソフトウェア、マイクロコード、構文解析ピココードなどを含めた、ソフトウェアに実装される。
【0032】
さらに、本発明は、コンピュータまたは任意の命令実行システムによってまたはこれに関連させて使用するプログラム・コードを備えるコンピュータ・プログラム、コンピュータ可読媒体の形態を採ることもできる。本説明目的の上で、コンピュータ可読媒体は、任意の命令実行システム、装置、またはデバイスによってまたはこれに関連させて使用するためのプログラムを、収容、格納、通信、伝搬、または伝送できる任意の装置であり得る。具体的には、前述の構文解析制御モジュールは、この意味で命令実行システム、またはコンピュータを構成する。
【0033】
媒体は、電子的、磁気的、光学的、電磁気的、赤外的、または半導体のシステム(もしくは装置もしくはデバイス)または伝搬媒体とすることができる。コンピュータ可読媒体の例には、半導体または固体メモリ、磁気テープ、着脱可能コンピュータ・ディスケット、ランダム・アクセス・メモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read−only memory)、剛体磁気ディスク、および光ディスクが含まれる。光ディスクの現時点での例には、コンパクト・ディスク読み取り専用メモリ(CD−ROM:compact disk read only memory)、コンパクト・ディスク読み取り/書き込み(CD−R/W:compact disk read/write)メモリ、およびDVDが含まれる。
【0034】
プログラム・コードを格納もしくは実行またはその両方を行うのに適したデータ処理システムは、システム・バスを介して直接的または間接的にメモリ・エレメントに連結された少なくとも一つのプロセッサを含み得る。このメモリ・エレメントには、プログラム・コードの実際の実行の過程で使われるローカル・メモリ、バルク記憶装置、および、実行中にバルク記憶装置から読み出さねばならない回数を低減するために、少なくとも一部のプログラム・コードに一時的保管を提供するキャッシュ・メモリを含めることができる。
【符号の説明】
【0035】
1…パーソナル・コンピュータ、
11…CPU(演算制御装置)
12…RAM(ランダム・アクセス・メモリ:記憶装置)
13…ROM(リード・オンリ・メモリ:記憶装置)
14…HDD(ハード・ディスク・ドライブ:記憶装置)
15…通信インタフェース
16…入出力インタフェース
17…マウス
18…フラット・パネル・ディスプレイ(表示装置)
2…レビューサイト・サーバ
20、21…ハード・ディスク・ドライブ
31…スマートフォン
32…タブレット
33…(ノート型)パーソナル・コンピュータ
101…一次評価モジュール
102…二次評価モジュール
103…抽出モジュール
104…出力モジュール
図1
図2
図3
図4
図5
図6
図7
図8
【国際調査報告】