特表-16166814IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産自動車株式会社の特許一覧
<>
  • 再表WO2016166814-電動車両の発進制御装置 図000003
  • 再表WO2016166814-電動車両の発進制御装置 図000004
  • 再表WO2016166814-電動車両の発進制御装置 図000005
  • 再表WO2016166814-電動車両の発進制御装置 図000006
  • 再表WO2016166814-電動車両の発進制御装置 図000007
  • 再表WO2016166814-電動車両の発進制御装置 図000008
  • 再表WO2016166814-電動車両の発進制御装置 図000009
  • 再表WO2016166814-電動車両の発進制御装置 図000010
  • 再表WO2016166814-電動車両の発進制御装置 図000011
  • 再表WO2016166814-電動車両の発進制御装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2016年10月20日
【発行日】2017年12月28日
(54)【発明の名称】電動車両の発進制御装置
(51)【国際特許分類】
   F16H 61/02 20060101AFI20171201BHJP
   F16H 59/08 20060101ALI20171201BHJP
   F16H 59/40 20060101ALI20171201BHJP
   F16H 59/70 20060101ALI20171201BHJP
   F16H 59/74 20060101ALI20171201BHJP
   F16H 61/68 20060101ALI20171201BHJP
   F16H 63/50 20060101ALI20171201BHJP
   B60K 6/387 20071001ALI20171201BHJP
   B60W 10/10 20120101ALI20171201BHJP
   B60W 20/00 20160101ALI20171201BHJP
   B60K 6/442 20071001ALI20171201BHJP
   B60L 11/14 20060101ALI20171201BHJP
   B60L 15/20 20060101ALI20171201BHJP
   B60L 9/18 20060101ALI20171201BHJP
【FI】
   F16H61/02
   F16H59/08
   F16H59/40
   F16H59/70
   F16H59/74
   F16H61/68
   F16H63/50
   B60K6/387ZHV
   B60W10/10 900
   B60W20/00 900
   B60K6/442
   B60L11/14
   B60L15/20 K
   B60L9/18 J
【審査請求】有
【予備審査請求】有
【全頁数】30
【出願番号】特願2017-512493(P2017-512493)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2015年4月14日
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
(71)【出願人】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(74)【代理人】
【識別番号】240000327
【弁護士】
【氏名又は名称】弁護士法人クレオ国際法律特許事務所
(72)【発明者】
【氏名】月▲崎▼ 敦史
(72)【発明者】
【氏名】古閑 雅人
(72)【発明者】
【氏名】福田 寛之
(72)【発明者】
【氏名】豊田 良平
【テーマコード(参考)】
3D202
3J552
5H125
【Fターム(参考)】
3D202AA02
3D202BB35
3D202BB37
3D202CC01
3D202CC03
3D202CC04
3D202CC72
3D202DD01
3D202DD05
3D202DD06
3D202DD07
3D202DD32
3D202EE16
3D202FF06
3D202FF12
3J552MA04
3J552NA01
3J552NB01
3J552NB05
3J552NB08
3J552PA02
3J552PA20
3J552PA26
3J552RA06
3J552RA21
3J552RB02
3J552RB17
3J552RB18
3J552RC02
3J552SA26
3J552SA27
3J552SA30
3J552SB05
3J552SB16
3J552SB39
3J552TB02
3J552TB13
3J552UA07
3J552VA37W
3J552VA62W
3J552VA78W
3J552VB01W
5H125AA01
5H125AC08
5H125AC12
5H125BE05
5H125DD01
5H125DD06
5H125EE41
(57)【要約】
発進要求があった場合、発進ショックを抑えながら、発進要求に対し応答の良い車両発進を達成する電動車両の発進制御装置を提供すること。
駆動系に、動力源としての第1モータジェネレータ(MG1)と、第1モータジェネレータ(MG1)からの出力を変速して駆動輪(19)へ伝達する多段歯車変速機(1)と、を備える。多段歯車変速機(1)は、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチ(C1),(C2),(C3)を有する。このハイブリッド車両において、車両が停止したときに発進用クラッチである第3係合クラッチ(C3)が締結されていると、車両停止状態を含めて次に発進するまで第3係合クラッチ(C3)の締結を維持する変速機コントロールユニット(23)を設ける。
【特許請求の範囲】
【請求項1】
駆動系に、動力源としての電動機と、前記電動機からの出力を変速して駆動輪へ伝達する変速機と、を備え、前記変速機は、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有する電動車両において、
前記係合クラッチのうち、発進要求があったときに噛み合い締結されるクラッチを発進用クラッチというとき、車両が停止したときに前記発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで前記発進用クラッチの締結を維持する発進コントローラを設ける
ことを特徴とする電動車両の発進制御装置。
【請求項2】
請求項1に記載された電動車両の発進制御装置において、
前記変速機は、前記発進用クラッチが締結される発進変速段を有し、
前記発進コントローラは、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジがセレクトされるまで前記発進変速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項3】
請求項2に記載された電動車両の発進制御装置において、
前記変速機は、第1発進用クラッチが締結される1速段と、第2発進用クラッチが締結される2速段を有し、
前記発進コントローラは、車両停止前の減速中に前記2速段から前記1速段へのダウン変速制御が開始され、車両停止時に前記1速段へのダウン変速が完了しているとき、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジが選択されるまでダウン変速後の前記1速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項4】
請求項2に記載された電動車両の発進制御装置において、
前記変速機は、第1発進用クラッチが締結される1速段と、第2発進用クラッチが締結される2速段を有し、
前記発進コントローラは、車両停止前の減速中に前記2速段から前記1速段へのダウン変速制御が開始され、車両停止時に前記1速段へのダウン変速が完了していないとき、ダウン変速前の前記2速段に戻し、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジが選択されるまで戻した前記2速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項5】
請求項1から請求項4までの何れか一項に記載された電動車両の発進制御装置において、
前記変速機は、前記発進用クラッチが締結される発進変速段を有し、
前記発進コントローラは、車両停止状態で走行レンジのままで他のレンジへのセレクト操作を行わないと、前記発進変速段で再発進する
ことを特徴とする電動車両の発進制御装置。
【請求項6】
請求項1から請求項5までの何れか一項に記載された電動車両の発進制御装置において、
前記電動車両は、動力源として電動機と内燃機関を備えたハイブリッド車両であり、
前記変速機は、ニュートラル位置からのカップリングスリーブのストローク方向が一方のときEV1速段を選択し、他方のときEV2速段を選択する係合クラッチを有し、回転差吸収要素を持たないことによりEV発進する多段歯車変速機である
ことを特徴とする電動車両の発進制御装置。
【請求項7】
請求項1から請求項5までの何れか一項に記載された電動車両の発進制御装置において、
前記電動車両は、動力源として電動機のみを備えた電気自動車であり、
前記変速機は、ニュートラル位置からのカップリングスリーブのストローク方向が一方のときにロー変速段を選択し、他方のときにハイ変速段を選択する係合クラッチを有する2速歯車変速機である
ことを特徴とする電動車両の発進制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電動機からの駆動系に変速機を備え、変速機に、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有する電動車両の発進制御装置に関する。
【背景技術】
【0002】
従来、ドグクラッチを締結する発進変速段へのセレクト操作時、電動機を一瞬駆動し、その回転を変速機入力軸に伝達し、変速機をニュートラル位置から発進変速段選択位置への切り替えを可能とする装置が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−245329号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来装置にあっては、自動変速機のように、液圧作動のドグクラッチを締結させてニュートラル位置から発進変速段選択位置へ切り替えようとしても、車両停止中は電動機が停止状態で液圧発生ポンプも停止している。このため、アクセルペダルを踏み込んで電動機を起動させる次の発進操作時まで、発進変速段選択状態になり得ず、発進ショックや発進遅れを免れない、という問題がある。
【0005】
本発明は、上記問題に着目してなされたもので、発進要求があった場合、発進ショックを抑えながら、発進要求に対し応答の良い車両発進を達成する電動車両の発進制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明の電動車両は、駆動系に、動力源としての電動機と、電動機からの出力を変速して駆動輪へ伝達する変速機と、を備える。変速機は、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有する。
この電動車両において、係合クラッチのうち、発進要求があったときに噛み合い締結されるクラッチを発進用クラッチというとき、車両が停止したときに発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで発進用クラッチの締結を維持する発進コントローラを設ける。
【発明の効果】
【0007】
よって、車両が停止したときに発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで発進用クラッチの締結が維持される。
即ち、発進用クラッチが係合クラッチの場合は、歯の頂面同士の位相が合っていると、締結方向にストロークできず、位相をずらしてから締結させる必要があり時間を要する。
これに対し、発進用クラッチが予め締結されていることで、車両停止状態から発進要求があった場合、噛み合い締結される発進用クラッチの締結動作が不要となり、発進ショックが抑えられると共に、発進要求から車両発進までに要する時間が短縮される。
この結果、発進要求があった場合、発進ショックを抑えながら、発進要求に対し応答の良い車両発進を達成することができる。
【図面の簡単な説明】
【0008】
図1】実施例1の発進制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。
図2】実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。
図3】実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において変速パターンを切り替える考え方を示す変速マップ概要図である。
図4】実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において3つの係合クラッチの切り替え位置による変速パターンを示す変速パターン図である。
図5】実施例1の変速機コントロールユニットで実行される発進制御処理の流れを示すフローチャートである。
図6】「EV2nd」の変速パターンが選択されたときの多段歯車変速機におけるMG1トルクの流れを示すトルクフロー図である。
図7】「EV1st」の変速パターンが選択されたときの多段歯車変速機におけるMG1トルクの流れを示すトルクフロー図である。
図8】多段歯車変速機の変速パターンを「EV2nd」から「EV1st」へ切り替えるダウン変速を減速中に完了して車両停止するときの車速・MG1回転数・MG1 1stクラッチ・MG1 2ndクラッチ・セレクトレンジ位置の各特性を示すタイムチャートである。
図9】多段歯車変速機の変速パターンを「EV2nd」から「EV1st」へ切り替えるダウン変速を減速中に完了しないで車両停止するときの車速・MG1回転数・MG1 1stクラッチ・MG1 2ndクラッチ・セレクトレンジ位置の各特性を示すタイムチャートである。
図10】実施例2の発進制御装置が適用された電気自動車の駆動系及び制御系を示す全体システム図である。
【発明を実施するための形態】
【0009】
以下、本発明の電動車両の発進制御装置を実現する最良の形態を、図面に示す実施例1及び実施例2に基づいて説明する。
【実施例1】
【0010】
まず、構成を説明する。
実施例1の発進制御装置は、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両(電動車両の一例)に適用したものである。以下、実施例1におけるハイブリッド車両の発進制御装置の構成を、「全体システム構成」、「変速制御系構成」、「変速パターン構成」、「発進制御処理構成」に分けて説明する。
【0011】
[全体システム構成]
図1は、実施例1の発進制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す。以下、図1に基づき、全体システム構成を説明する。
【0012】
ハイブリッド車両の駆動系は、図1に示すように、内燃機関ICEと、第1モータジェネレータMG1と、第2モータジェネレータMG2と、3つの係合クラッチC1,C2,C3を有する多段歯車変速機1と、を備えている。なお、「ICE」は「Internal-Combustion Engine」の略称である。
【0013】
前記内燃機関ICEは、例えば、クランク軸方向を車幅方向として車両のフロントルームに配置したガソリンエンジンやディーゼルエンジン等である。この内燃機関ICEは、多段歯車変速機1の変速機ケース10に連結されると共に、内燃機関出力軸が、多段歯車変速機1の第1軸11に接続される。なお、内燃機関ICEは、基本的に、第2モータジェネレータMG2をスタータモータとしてMG2始動する。但し、極低温時などのように強電バッテリ3を用いたMG2始動が確保できない場合に備えてスタータモータ2を残している。
【0014】
前記第1モータジェネレータMG1及び第2モータジェネレータMG2は、いずれも強電バッテリ3を共通の電源とする三相交流の永久磁石型同期モータである。第1モータジェネレータMG1のステータは、第1モータジェネレータMG1のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第1モータジェネレータMG1のロータに一体の第1モータ軸が、多段歯車変速機1の第2軸12に接続される。第2モータジェネレータMG2のステータは、第2モータジェネレータMG2のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第2モータジェネレータMG2のロータに一体の第2モータ軸が、多段歯車変速機1の第6軸16に接続される。第1モータジェネレータMG1のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第1インバータ4が、第1ACハーネス5を介して接続される。第2モータジェネレータMG2のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第2インバータ6が、第2ACハーネス7を介して接続される。強電バッテリ3と第1インバータ4及び第2インバータ6は、ジャンクションボックス9を介してDCハーネス8により接続される。
【0015】
前記多段歯車変速機1は、変速比が異なる複数の歯車対を有する常時噛み合い式変速機であり、変速機ケース10内に互いに平行に配置され、歯車が設けられる6つの歯車軸11〜16と、歯車対を選択する3つの係合クラッチC1,C2,C3と、を備える。歯車軸としては、第1軸11と、第2軸12と、第3軸13と、第4軸14と、第5軸15と、第6軸16が設けられる。係合クラッチとしては、第1係合クラッチC1と、第2係合クラッチC2と、第3係合クラッチC3が設けられる。なお、変速機ケース10には、ケース内の軸受け部分や歯車の噛み合い部分に潤滑オイルを供給する電動オイルポンプ20が付設される。
【0016】
前記第1軸11は、内燃機関ICEが連結される軸であり、第1軸11には、図1の右側から順に、第1歯車101、第2歯車102、第3歯車103が配置される。第1歯車101は、第1軸11に対して一体(一体化固定を含む)に設けられる。第2歯車102と第3歯車103は、軸方向に突出するボス部が第1軸11の外周に挿入される遊転歯車であり、第2係合クラッチC2を介し第1軸11に対して駆動連結可能に設けられる。
【0017】
前記第2軸12は、第1モータジェネレータMG1が連結され、第1軸11の外側位置に軸心を一致させて同軸配置された円筒軸であり、第2軸12には、図1の右側から順に、第4歯車104、第5歯車105が配置される。第4歯車104と第5歯車105は、第2軸12に対して一体(一体化固定を含む)に設けられる。
【0018】
前記第3軸13は、多段歯車変速機1の出力側に配置された軸であり、第3軸13には、図1の右側から順に、第6歯車106、第7歯車107、第8歯車108、第9歯車109、第10歯車110が配置される。第6歯車106と第7歯車107と第8歯車108は、第3軸13に対して一体(一体化固定を含む)に設けられる。第9歯車109と第10歯車110は、軸方向に突出するボス部が第3軸13の外周に挿入される遊転歯車であり、第3係合クラッチC3を介し第3軸13に対して駆動連結可能に設けられる。そして、第6歯車106は第1軸11の第2歯車102に噛み合い、第7歯車107はデファレンシャル歯車17の第16歯車116と噛み合い、第8歯車108は第1軸11の第3歯車103に噛み合う。第9歯車109は第2軸12の第4歯車104に噛み合い、第10歯車110は第2軸12の第5歯車105に噛み合う。
【0019】
前記第4軸14は、変速機ケース10に両端が支持された軸であり、第4軸14には、図1の右側から順に、第11歯車111、第12歯車112、第13歯車113が配置される。第11歯車111は、第4軸14に対して一体(一体化固定を含む)に設けられる。第12歯車112と第13歯車113は、軸方向に突出するボス部が第4軸14の外周に挿入される遊転歯車であり、第1係合クラッチC1を介し第4軸14に対して駆動連結可能に設けられる。そして、第11歯車111は第1軸11の第1歯車101に噛み合い、第12歯車112は第1軸11の第2歯車102と噛み合い、第13歯車113は第2軸12の第4歯車104と噛み合う。
前記第5軸15は、変速機ケース10に両端が支持された軸であり、第4軸14の第11歯車111と噛み合う第14歯車114が一体(一体化固定を含む)に設けられる。
前記第6軸16は、第2モータジェネレータMG2が連結される軸であり、第5軸15の第14歯車114と噛み合う第15歯車115が一体(一体化固定を含む)に設けられる。
そして、第2モータジェネレータMG2と内燃機関ICEは、互いに噛み合う第15歯車115、第14歯車114、第11歯車111、第1歯車101により構成されるギヤ列により機械的に連結されている。このギヤ列は、第2モータジェネレータMG2による内燃機関ICEのMG2始動時、MG2回転数を減速する減速ギヤ列となり、内燃機関ICEの駆動で第2モータジェネレータMG2を発電するMG2発電時、機関回転数を増速する増速ギヤ列となる。
【0020】
前記第1係合クラッチC1は、第4軸14のうち、第12歯車112と第13歯車113の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第1係合クラッチC1が左側締結位置(Left)のとき、第4軸14と第13歯車113を駆動連結する。第1係合クラッチC1が中立位置(N)のとき、第4軸14と第12歯車112を解放すると共に、第4軸14と第13歯車113を解放する。第1係合クラッチC1が右側締結位置(Right)のとき、第4軸14と第12歯車112を駆動連結する。
【0021】
前記第2係合クラッチC2は、第1軸11のうち、第2歯車102と第3歯車103の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第2係合クラッチC2が左側締結位置(Left)のとき、第1軸11と第3歯車103を駆動連結する。第2係合クラッチC2が中立位置(N)のとき、第1軸11と第2歯車102を解放すると共に、第1軸11と第3歯車103を解放する。第2係合クラッチC2が右側締結位置(Right)のとき、第1軸11と第2歯車102を駆動連結する。
【0022】
前記第3係合クラッチC3は、第3軸13のうち、第9歯車109と第10歯車110の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第3係合クラッチC3が左側締結位置(Left)のとき、第3軸13と第10歯車110を駆動連結する。第3係合クラッチC3が中立位置(N)のとき、第3軸13と第9歯車109を解放すると共に、第3軸13と第10歯車110を解放する。第3係合クラッチC3が右側締結位置(Right)のとき、第3軸13と第9歯車109を駆動連結する。そして、多段歯車変速機1の第3軸13に一体(一体化固定を含む)に設けられた第7歯車107に噛み合う第16歯車116は、デファレンシャル歯車17及び左右のドライブ軸18を介して左右の駆動輪19に接続されている。
【0023】
ハイブリッド車両の制御系は、図1に示すように、ハイブリッドコントロールモジュール21と、モータコントロールユニット22と、変速機コントロールユニット23と、エンジンコントロールユニット24と、を備えている。
【0024】
前記ハイブリッドコントロールモジュール21(略称:「HCM」)は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段である。このハイブリッドコントロールモジュール21は、他のコントロールユニット(モータコントロールユニット22、変速機コントロールユニット23、エンジンコントロールユニット24など)とCAN通信線25により双方向情報交換可能に接続されている。なお、CAN通信線25の「CAN」とは、「Controller Area Network」の略称である。
【0025】
前記モータコントロールユニット22(略称:「MCU」)は、第1インバータ4と第2インバータ6に対する制御指令により第1モータジェネレータMG1と第2モータジェネレータMG2の力行制御や回生制御などを行う。第1モータジェネレータMG1及び第2モータジェネレータMG2に対する制御モードとしては、「トルク制御」と「回転数FB制御」がある。「トルク制御」は、目標駆動力に対して分担する目標モータトルクが決まると、実モータトルクを目標モータトルクに追従させる制御を行う。「回転数FB制御」は、走行中に係合クラッチC1,C2,C3の何れかを噛み合い締結する変速要求があると、クラッチ入出力回転数を回転同期させる目標モータ回転数を決め、実モータ回転数を目標モータ回転数に収束させるようにFBトルクを出力する制御を行う。
【0026】
前記変速機コントロールユニット23(略称:「TMCU」)は、所定の入力情報に基づいて電動アクチュエータ31,32,33(図2参照)へ電流指令を出力することにより、多段歯車変速機1の変速パターンを切り替える変速制御を行う。この変速制御では、係合クラッチC1,C2,C3を選択的に噛み合い締結/解放させ、複数対の歯車対から動力伝達に関与する歯車対を選択する。ここで、解放されている係合クラッチC1,C2,C3の何れかを締結する変速要求時には、クラッチ入出力の差回転数を抑えて噛み合い締結を確保するために、第1モータジェネレータMG1又は第2モータジェネレータMG2の回転数FB制御(回転同期制御)を併用する。
【0027】
前記エンジンコントロールユニット24(略称:「ECU」)は、所定の入力情報に基づいてモータコントロールユニット22や点火プラグや燃料噴射アクチュエータなどへ制御指令を出力することにより、内燃機関ICEの始動制御や内燃機関ICEの停止制御や燃料カット制御などを行う。
【0028】
[変速制御系構成]
実施例1の多段歯車変速機1は、変速要素として、噛み合い締結による係合クラッチC1,C2,C3(ドグクラッチ)を採用することにより引き摺りを低減することで効率化を図った点を特徴とする。そして、係合クラッチC1,C2,C3のいずれかを噛み合い締結させる変速要求があると、クラッチ入出力の差回転数を、第1モータジェネレータMG1(係合クラッチC3の締結時)又は第2モータジェネレータMG2(係合クラッチC1,C2の締結時)により回転同期させ、同期判定回転数範囲内になると噛み合いストロークを開始することで実現している。又、締結されている係合クラッチC1,C2,C3のいずれかを解放させる変速要求があると、解放クラッチのクラッチ伝達トルクを低下させ、解放トルク判定値以下になると解放ストロークを開始することで実現している。以下、図2に基づき、多段歯車変速機1の変速制御系構成を説明する。
【0029】
変速制御系は、図2に示すように、係合クラッチとして、第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3を備えている。アクチュエータとして、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33を備えている。そして、アクチュエータ動作をクラッチ係合/解放動作に変換する機構として、第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43を備えている。さらに、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33の制御手段として、変速機コントロールユニット23を備えている。
【0030】
前記第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3は、ニュートラル位置(N:解放位置)と、左側締結位置(Left:左側クラッチ噛み合い締結位置)と、右側締結位置(Right:右側クラッチ噛み合い締結位置)と、を切り替えるドグクラッチである。各係合クラッチC1,C2,C3は何れも同じ構成であり、カップリングスリーブ51,52,53と、左側ドグクラッチリング54,55,56と、右側ドグクラッチリング57,58,59と、を備える。カップリングスリーブ51,52,53は、第4軸14,第1軸11,第3軸13に固定された図外のハブを介してスプライン結合により軸方向にストローク可能に設けられたもので、両側に平らな頂面によるドグ歯51a,51b,52a,52b,53a,53bを有する。さらに、カップリングスリーブ51,52,53の周方向中央部にフォーク溝51c,52c,53cを有する。左側ドグクラッチリング54,55,56は、各係合クラッチC1,C2,C3の左側遊転歯車である各歯車113,103,110のボス部に固定され、ドグ歯51a,52a,53aに対向する平らな頂面によるドグ歯54a,55a,56aを有する。右側ドグクラッチリング57,58,59は、各係合クラッチC1,C2,C3の右側遊転歯車である各歯車112,102,109のボス部に固定され、ドグ歯51b,52b,53bに対向する平らな頂面によるドグ歯57b,58b,59bを有する。
【0031】
前記第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43は、電動アクチュエータ31,32,33の回動動作を、カップリングスリーブ51,52,53の軸方向ストローク動作に変換する機構である。各係合クラッチ動作機構41,42,43は何れも同じ構成であり、回動リンク61,62,63と、シフトロッド64,65,66と、シフトフォーク67,68,69と、を備える。回動リンク61,62,63は、一端が電動アクチュエータ31,32,33のアクチュエータ軸に設けられ、他端がシフトロッド64,65,66に相対変位可能に連結される。シフトロッド64,65,66は、ロッド分割位置にスプリング64a,65a,66aが介装され、ロッド伝達力の大きさと方向に応じて伸縮可能とされている。シフトフォーク67,68,69は、一端がシフトロッド64,65,66に固定され、他端がカップリングスリーブ51,52,53のフォーク溝51c,52c,53cに配置される。
【0032】
前記変速機コントロールユニット23は、車速センサ71、アクセル開度センサ72、変速機出力軸回転数センサ73、エンジン回転数センサ74、MG1回転数センサ75、MG2回転数センサ76、インヒビタースイッチ77、などからのセンサ信号やスイッチ信号を入力する。なお、変速機出力軸回転数センサ73は、第3軸13の軸端部に設けられ、第3軸13の軸回転数を検出する。そして、カップリングスリーブ51,52,53の位置によって決まる係合クラッチC1,C2,C3の噛み合い締結と解放を制御する位置サーボ制御部(例えば、PID制御による位置サーボ系)を備えている。この位置サーボ制御部は、第1スリーブ位置センサ81、第2スリーブ位置センサ82、第3スリーブ位置センサ83からのセンサ信号を入力する。そして、各スリーブ位置センサ81,82,83のセンサ値を読み込み、カップリングスリーブ51,52,53の位置が噛み合いストロークによる締結位置又は解放位置になるように、電動アクチュエータ31,32,33に電流を与える。即ち、カップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯との双方が噛合した噛み合い位置にある締結状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13に駆動連結する。一方、カップリングスリーブ51,52,53が、軸線方向へ変位することでカップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯が非噛み合い位置にある解放状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13から切り離す。
【0033】
[変速パターン構成]
実施例1の多段歯車変速機1は、流体継手などの回転差吸収要素を持たないことで動力伝達損失を低減すると共に、内燃機関ICEをモータアシストすることでICE変速段を減らし、コンパクト化(EV変速段:1-2速、ICE変速段:1-4速)を図った点を特徴とする。以下、図3及び図4に基づき、多段歯車変速機1の変速パターン構成を説明する。
【0034】
変速パターンの考え方は、図3に示すように、車速VSPが所定車速VSP0以下の発進領域においては、多段歯車変速機1が回転差吸収要素を持たないため、「EVモード」でモータ駆動力のみによるモータ発進とする。そして、走行領域においては、図3に示すように、駆動力の要求が大きいとき、エンジン駆動力をモータ駆動力によりアシストする「パラレルHEVモード」により対応するという変速パターンの考え方を採る。つまり、車速VSPの上昇に従って、ICE変速段は、(ICE1st→)ICE2nd→ICE3rd→ICE4thへと変速段が移行し、EV変速段は、EV1st→EV2ndへと変速段が移行する。よって、図3に示す変速パターンの考え方に基づき、変速パターンを切り替える変速要求を出すための変速マップを作成する。
【0035】
係合クラッチC1,C2,C3を有する多段歯車変速機1により得ることが可能な変速パターンは図4に示す通りである。なお、図4中の「Lock」は、変速パターンとして成立しないインターロックパターンを表し、「EV-」は、第1モータジェネレータMG1が駆動輪19に駆動連結されていない状態を表し、「ICE-」は、内燃機関ICEが駆動輪19に駆動連結されていない状態を表す。そして、変速制御では、図4に示す変速パターンの全てを用いる必要は無く、これらの変速パターンから必要に応じて選択しても勿論良い。以下、各変速パターンについて説明する。
【0036】
第2係合クラッチC2が「N」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」であれば「EV- ICEgen」、第1係合クラッチC1が「N」であれば「Neutral」、第1係合クラッチC1が「Right」であれば「EV- ICE3rd」である。ここで、「EV- ICEgen」の変速パターンは、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電時、又は、MG1発電にMG2発電を加えたダブルアイドル発電時に選択されるパターンである。「Neutral」の変速パターンは、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択されるパターンである。
【0037】
第2係合クラッチC2が「N」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」であれば「EV1st ICE1st」、第1係合クラッチC1が「N」であれば「EV1st ICE-」、第1係合クラッチC1が「Right」であれば「EV1st ICE3rd」である。ここで、「EV1st ICE-」の変速パターンは、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のパターン、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で1速EV走行を行う「シリーズHEVモード」のパターンである。よって、例えば、「EV1st ICE-」による「シリーズHEVモード」を選択しての走行中、駆動力不足による減速に基づいて第1係合クラッチC1を「N」から「Left」に切り替える。この場合、駆動力が確保される「EV1st ICE1st」の変速パターンによる「パラレルHEVモード(1速)」の走行に移行する。
【0038】
第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE2nd」である。よって、例えば、「EV1st ICE-」による「シリーズHEVモード」を選択しての1速EV走行中に駆動力要求が高くなったことで、第2係合クラッチC2を「N」から「Left」に切り替える。この場合、駆動力が確保される「EV1st ICE2nd」の変速パターンによる「パラレルHEVモード」の走行に移行する。
【0039】
第2係合クラッチC2が「Left」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」であれば「EV1.5 ICE2nd」、第1係合クラッチC1が「N」であれば「EV- ICE2nd」である。
【0040】
第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE2nd」である。よって、例えば、「EV1st ICE2nd」による変速パターンを選択しての「パラレルHEVモード」での走行中、アップ変速要求に従って第3係合クラッチC3を「Left」から「N」を経過して「Right」に切り替える。この場合、EV変速段を2速段とする「EV2nd ICE2nd」の変速パターンによる「パラレルHEVモード」の走行に移行する。例えば、「EV2nd ICE4th」による変速パターンを選択しての「パラレルHEVモード」での走行中、ダウン変速要求に従って第2係合クラッチC2を「Right」から「N」を経過して「Left」に切り替える。この場合、ICE変速段を2速段とする「EV2nd ICE2nd」の変速パターンによる「パラレルHEVモード」の走行に移行する。
【0041】
第2係合クラッチC2が「N」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」であれば「EV2nd ICE3rd’」、第1係合クラッチC1が「N」であれば「EV2nd ICE-」、第1係合クラッチC1が「Right」であれば「EV2nd ICE3rd」である。ここで、「EV2nd ICE-」の変速パターンは、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のパターン、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で2速EV走行を行う「シリーズHEVモード」のパターンである。よって、例えば、「EV2nd ICE2nd」による変速パターンを選択しての「パラレルHEVモード」での走行中、アップ変速要求に従って、第2係合クラッチC2を「Right」から「N」に切り替え、第1係合クラッチC1を「N」から「Right」に切り替える。この場合、ICE変速段を3速段とする「EV2nd ICE3rd」の変速パターンによる「パラレルHEVモード」の走行に移行する。
【0042】
第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE4th」である。
【0043】
第2係合クラッチC2が「Right」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速パターンとなる。第1係合クラッチC1が「Left」であれば「EV2.5 ICE4th」、第1係合クラッチC1が「N」であれば「EV- ICE4th」である。
【0044】
第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE4th」である。
【0045】
[発進制御処理構成]
図5は、実施例1の変速機コントロールユニット23(発進コントローラ)で実行される発進制御処理の流れを示す。以下、発進制御処理構成の一例をあらわす図5の各ステップについて説明する。この処理において、第1係合クラッチC1及び第2係合クラッチC2が共に「N」で、第3係合クラッチC3が「Right」のときの「EV2nd ICE-」の変速パターンを、以下「EV2nd」という。また、第1係合クラッチC1及び第2係合クラッチC2が共に「N」で、第3係合クラッチC3が「Left」のときの「EV1st ICE-」の変速パターンを、以下「EV1st」という。
【0046】
ステップS1では、「EV2nd」の変速パターンを選択しての走行であるか否かを判断する。YES(EV2ndでの走行)の場合はステップS2へ進み、NO(EV2nd以外での走行)の場合はステップS1の判断を繰り返す。
ここで、「EV2nd」による変速パターンは、第1スリーブ位置センサ81及び第2スリーブ位置センサ82からのセンサ信号が「N」の位置を示し、第3スリーブ位置センサ83からのセンサ信号が「Right」の位置を示すことで判断する。
【0047】
ステップS2では、ステップS1での「EV2nd」の変速パターンを選択している走行であるとの判断に続き、減速を開始したか否かを判断する。YES(減速開始)の場合はステップS3へ進み、NO(減速開始でない)の場合はステップS2の判断を繰り返す。
ここで、減速開始は、車速の低下やアクセル足離し操作やブレーキ踏み込み操作などにより判断する。
【0048】
ステップS3では、ステップS2での減速開始であるとの判断に続き、「EV2nd」から「EV1st」へ変速パターンを切り替えるEV2nd→EV1stダウン変速開始であるか否かを判断する。YES(EV2nd→EV1stダウン変速開始)の場合はステップS4へ進み、NO(EV2nd→EV1stダウン変速開始でない)の場合はステップS3の判断を繰り返す。
ここで、EV2nd→EV1stダウン変速開始は、「EV2nd」から「EV1st」へと変速パターンを切り替える変速要求の有無により判断する。
【0049】
ステップS4では、ステップS3でのEV2nd→EV1stダウン変速開始であるとの判断に続き、車両停止状態であるか否かを判断する。YES(車両停止)の場合はステップS5へ進み、NO(走行中)の場合はステップS4の判断を繰り返す。
ここで、車両停止状態は、車速センサ71からの車速信号が車両停止状態を示すことにより判断する。
【0050】
ステップS5では、ステップS4での車両停止状態であるとの判断に続き、「EV1st」へのダウン変速が完了しているか否かを判断する。YES(EV1stへのダウン変速完了)の場合はステップS6へ進み、NO(EV1stへのダウン変速未完了)の場合はステップS11へ進む。
ここで、「EV1st」へのダウン変速完了は、第1スリーブ位置センサ81及び第2スリーブ位置センサ82からのセンサ信号が「N」の位置を示し、第3スリーブ位置センサ83からのセンサ信号が「Left」の位置を示すことで判断する。そして、第3スリーブ位置センサ83からのセンサ信号が「Left」の位置に到達していない場合は、「EV1st」への変速未完了であると判断する。
【0051】
ステップS6では、ステップS5での「EV1st」へのダウン変速完了であるとの判断に続き、運転者によるレバー操作により「Dレンジ」から「Pレンジ」又は「Nレンジ」にセレクト操作されたか否かを判断する。YES(P,Nへのセレクト操作有り)の場合はステップS7へ進み、NO(P,Nへのセレクト操作無し)の場合はステップS10へ進む。
ここで、「Dレンジ」から「Pレンジ」又は「Nレンジ」へのセレクト操作は、インヒビタースイッチ77からのスイッチ信号により判断する。
【0052】
ステップS7では、ステップS6でのP,Nへのセレクト操作有りとの判断、或いは、ステップS8でのDレンジへのセレクト操作無しとの判断に続き、多段歯車変速機1の変速パターンとして「EV1st」を維持し、ステップS8へ進む。
ここで、「EV1st」を維持するとは、第1係合クラッチC1及び第2係合クラッチC2を共に「N」位置とし、第3係合クラッチC3を「Left」位置とする状態を保つことをいう。
【0053】
ステップS8では、ステップS7での「EV1st」の維持に続き、運転者によるレバー操作により「Pレンジ」又は「Nレンジ」から「Dレンジ」にセレクト操作されたか否かを判断する。YES(Dへのセレクト操作有り)の場合はステップS9へ進み、NO(Dへのセレクト操作無し)の場合はステップS7へ戻る。
ここで、「Pレンジ」又は「Nレンジ」から「Dレンジ」へのセレクト操作は、インヒビタースイッチ77からのスイッチ信号により判断する。
【0054】
ステップS9では、ステップS8での「Dレンジ」へのセレクト操作有りとの判断に続き、ステップS7にて維持されていた「EV1st」で発進し、エンドへ進む。
【0055】
ステップS10では、ステップS6でのP,Nへのセレクト操作無し(=Dレンジ)であるとの判断に続き、ダウン変速が完了している「EV1st」で再発進し、エンドへ進む。
【0056】
ステップS11では、ステップS5での「EV1st」へのダウン変速未完了であるとの判断に続き、変速パターンをダウン変速が開始される前の「EV2nd」へ戻し、ステップS12へ進む。
つまり、第3スリーブ位置センサ83からのセンサ信号が「Left」の位置に到達していない場合は、カップリングスリーブ53を車両停止判断時の位置から「Right」の位置まで逆方向に戻す。
【0057】
ステップS12では、ステップS11での「EV2nd」への戻し操作に続き、運転者によるレバー操作により「Dレンジ」から「Pレンジ」又は「Nレンジ」にセレクト操作されたか否かを判断する。YES(P,Nへのセレクト操作有り)の場合はステップS13へ進み、NO(P,Nへのセレクト操作無し)の場合はステップS16へ進む。
ここで、「Dレンジ」から「Pレンジ」又は「Nレンジ」へのセレクト操作は、インヒビタースイッチ77からのスイッチ信号により判断する。
【0058】
ステップS13では、ステップS12でのP,Nへのセレクト操作有りとの判断、或いは、ステップS14でのDレンジへのセレクト操作無しとの判断に続き、多段歯車変速機1の変速パターンとして「EV2nd」を維持し、ステップS14へ進む。
ここで、「EV2nd」を維持するとは、第1係合クラッチC1及び第2係合クラッチC2を共に「N」位置とし、第3係合クラッチC3を「Right」位置とする状態を保つことをいう。
【0059】
ステップS14では、ステップS13での「EV2nd」の維持に続き、運転者によるレバー操作により「Pレンジ」又は「Nレンジ」から「Dレンジ」にセレクト操作されたか否かを判断する。YES(Dへのセレクト操作有り)の場合はステップS15へ進み、NO(Dへのセレクト操作無し)の場合はステップS13へ戻る。
ここで、「Pレンジ」又は「Nレンジ」から「Dレンジ」へのセレクト操作は、インヒビタースイッチ77からのスイッチ信号により判断する。
【0060】
ステップS15では、ステップS14での「Dレンジ」へのセレクト操作有りとの判断に続き、ステップS13にて維持されていた「EV2nd」で発進し、エンドへ進む。
【0061】
ステップS16では、ステップS12でのP,Nへのセレクト操作無し(=Dレンジ)であるとの判断に続き、ステップS11にて戻された「EV2nd」で再発進し、エンドへ進む。
【0062】
次に、作用を説明する。
実施例1のハイブリッド車両の発進制御装置における作用を、「発進制御処理作用」、「発進制御作用」、「発進制御の特徴作用」に分けて説明する。
【0063】
[発進制御処理作用]
以下、図5に示すフローチャートに基づき、「EV2nd」の変速パターンによるEV走行状態で減速及び変速を開始して車両停止し、車両停止状態からEV発進するときの発進制御処理作用を説明する。
【0064】
「EV2nd」の変速パターン選択によるEV走行状態で減速を開始し、減速中に「EV2nd」から「EV1st」へと変速パターンを切り替えるダウン変速が開始されると、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む。この「EV2nd」から「EV1st」へのダウン変速が開始されると、ステップS4にて車両停止まで至っていないと判断されている減速期間中、「EV2nd」から「EV1st」へのダウン変速を進行させる。
【0065】
そして、ステップS4にて車両停止状態に至ったと判断されると、次のステップS5では、「EV1st」への変速が完了しているか否かが判断される。ステップS5で「EV1st」へのダウン変速を完了していると判断されると、ダウン変速後の「EV1st」を維持するステップS6〜ステップS10へと進む。一方、ステップS5で「EV1st」へのダウン変速を完了していないと判断されると、ダウン変速前の「EV2nd」を維持するステップS11〜ステップS16へと進む。
【0066】
ステップS6〜ステップS10へと進む流れでは、例えば、長時間車両停止や長時間駐車などを意図し、「Dレンジ」から「Pレンジ」又は「Nレンジ」へのセレクト操作がなされると、ステップS6からステップS7→ステップS8へと進む。そして、ステップS8にて「Dレンジ」へのセレクト操作が判断されない限り、ステップS7→ステップS8へと進む流れが繰り返され、ステップS7では、多段歯車変速機1の変速パターンとして「EV1st」が維持される。
【0067】
そして、ステップS8にて発進要求である「Dレンジ」へのセレクト操作が判断されると、ステップS8からステップS9→エンドへ進み、ステップS9では、ステップS7にて維持されていた「EV1st」を発進用変速パターンとし、ブレーキ足離し操作及びアクセル踏み込み操作に従って発進する。一方、例えば、短時間車両停止となる信号待ちなどであって、「Dレンジ」のままでセレクト操作を行わないと、ステップS6からステップS10→エンドへと進む。このステップS10では、ダウン変速が完了している「EV1st」を発進用変速パターンとし、ブレーキ足離し操作及びアクセル踏み込み操作に従って再発進する。
【0068】
ステップS11〜ステップS16へと進む流れでは、まず、ステップS5で「EV1st」への変速を完了していないと判断されると、ステップS5からステップS11へと進み、ステップS11では、変速パターンがダウン変速開始前の「EV2nd」へと戻される。そして、例えば、長時間車両停止や長時間駐車などを意図し、「Dレンジ」から「Pレンジ」又は「Nレンジ」へのセレクト操作がなされると、ステップS12からステップS13→ステップS14へと進む。そして、ステップS14にて「Dレンジ」へのセレクト操作が判断されない限り、ステップS13→ステップS14へと進む流れが繰り返され、ステップS13では、多段歯車変速機1の変速パターンとして「EV2nd」が維持される。
【0069】
そして、ステップS14にて発進要求である「Dレンジ」へのセレクト操作が判断されると、ステップS14からステップS15→エンドへ進み、ステップS15では、ステップS13にて維持されていた「EV2nd」を発進変速パターンとし、ブレーキ足離し操作及びアクセル踏み込み操作に従って発進する。一方、例えば、短時間車両停止となる信号待ちなどであって、「Dレンジ」のままでセレクト操作を行わないと、ステップS12からステップS16→エンドへと進む。このステップS16では、ステップS11で戻された「EV2nd」を発進変速パターンとし、ブレーキ足離し操作及びアクセル踏み込み操作に従って再発進する。
【0070】
[発進制御作用]
以下、図6図9に基づき、「EV2nd」から「EV1st」へと変速パターンを切り替えるダウン変速を伴う発進制御作用を説明する。
【0071】
まず、「EV2nd」の変速パターンが選択されたときの多段歯車変速機1におけるMG1トルクの流れを、図6に基づき説明する。
「EV2nd」の変速パターンでは、第1係合クラッチC1が「N」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「Right」位置である。従って、MG1トルクは、第1モータジェネレータMG1から第2軸12→第4歯車104→第9歯車109→第3軸13→第7歯車107→第16歯車116→デファレンシャル歯車17→ドライブ軸18→駆動輪19へと流れる。
【0072】
次に、「EV1st」の変速パターンが選択されたときの多段歯車変速機1におけるMG1トルクの流れを、図7に基づき説明する。
「EV1st」の変速パターンでは、第1係合クラッチC1が「N」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「Left」位置である。従って、MG1トルクは、第1モータジェネレータMG1から第2軸12→第5歯車105→第10歯車110→第3軸13→第7歯車107→第16歯車116→デファレンシャル歯車17→ドライブ軸18→駆動輪19へと流れる。
【0073】
従って、「EV2nd」から「EV1st」へ変速パターンを切り替えるダウン変速は、第3係合クラッチC3のカップリングスリーブ53を、「Right」の締結位置から「N」位置を経由して「Left」の締結位置までストロークさせることで達成される。このとき、第1係合クラッチC1及び第2係合クラッチC2は、いずれも「N」位置のままとする。
【0074】
図8及び図9に基づき、「EV2nd」から「EV1st」への変速パターンの切り替えによるダウン変速を伴う発進制御作用を説明する。ここで、「Right」と「Left」の2つの締結位置によるクラッチ部を有する第3係合クラッチC3が、発進要求があったときに締結される発進クラッチに相当する。そして、第3係合クラッチC3のうち、カップリングスリーブ53と右側ドグクラッチリング59により構成され、ドグ歯53b,59bの締結位置が「Right」であるクラッチ部を「MG1 2ndクラッチ」という(第2発進用クラッチに相当)。第3係合クラッチC3のうち、カップリングスリーブ53と左側ドグクラッチリング56により構成され、ドグ歯53a,56aの締結位置が「Left」であるクラッチ部を「MG1 1stクラッチ」という(第1発進用クラッチに相当)。
【0075】
図8は、多段歯車変速機1の変速パターンを「EV2nd」から「EV1st」へ切り替えるダウン変速を減速中に完了して車両停止するときのタイムチャートを示す。この図8において、時刻t1はMG1 2ndクラッチの解放指令時刻である。時刻t2はMG1 2ndクラッチの解放完了時刻である。時刻t3はMG1 1stクラッチの締結指令時刻である。時刻t4はMG1 1stクラッチの締結完了時刻である。時刻t5は車両停止時刻である。時刻t6はDレンジからPレンジ又はNレンジへのセレクト操作時刻である。
【0076】
減速中に「EV2nd」から「EV1st」へと変速パターンを切り替えるダウン変速要求があると、時刻t1にてMG1 2ndクラッチへ解放指令が出力され、時刻t2にてMG1 2ndクラッチの解放が完了する。この時刻t2から時刻t3までの間は、第3係合クラッチC3のカップリングスリーブ53がMG1 1stクラッチ側にもMG1 2ndクラッチ側にも締結していない位置にあり、多段歯車変速機1はニュートラル状態になる。よって、第1モータジェネレータMG1の回転数は、時刻t2から時刻t3までの間、モータ負荷の低下に伴って上昇する。
【0077】
そして、時刻t3にてMG1 1stクラッチへ締結指令が出力され、減速中である時刻t4にてMG1 1stクラッチの締結が完了する。この時刻t4から時刻t5までの間は、車速の低下に伴って第1モータジェネレータMG1の回転数も低下し、車両停止時刻t5では、第1モータジェネレータMG1の回転数がゼロになる。
【0078】
この車両停止時刻t5において、「EV1st」への変速が完了しているため、Dレンジである時刻t5から時刻t6までは、MG1 1stクラッチの締結による「EV1st」が発進変速段として維持される。そして、時刻t6にてDレンジからPレンジ又はNレンジにセレクト操作されると、通常の変速制御手法の場合は、MG1 1stクラッチを解放し(図8の破線)、多段歯車変速機1がニュートラル状態にされる。しかし、DレンジからPレンジ又はNレンジへのセレクト操作にもかかわらず、時刻t6以降であって次の発進要求操作が行われるまでは、MG1 1stクラッチの締結による「EV1st」が発進変速段として維持される。
【0079】
図9は、多段歯車変速機1の変速パターンを「EV2nd」から「EV1st」へ切り替えるダウン変速を減速中に完了しないで車両停止するときのタイムチャートを示す。この図9において、時刻t1はMG1 2ndクラッチの解放指令時刻である。時刻t2は車両停止時刻であると共にMG1 2ndクラッチの戻し締結指令時刻である。時刻t3はMG1 2ndクラッチの戻し締結完了時刻である。時刻t4はDレンジからPレンジ又はNレンジへのセレクト操作時刻である。
【0080】
車両停止直前の減速中に「EV2nd」から「EV1st」へ変速パターンを切り替えるダウン変速要求があると、時刻t1にてMG1 2ndクラッチへ解放指令が出力されるが、MG1 2ndクラッチの解放完了を待たずに、時刻t2にて車両が停止する。よって、車両停止時刻t2でMG1 2ndクラッチの戻し締結指令が出力され、時刻t3にてMG1 2ndクラッチの戻し締結が完了する。つまり、第3係合クラッチC3のカップリングスリーブ53が、MG1 2ndクラッチ側に締結した「EV2nd」というダウン変速前の変速段に戻される。
【0081】
そして、時刻t3において、「EV2nd」への変速戻しが完了しているため、Dレンジである時刻t3から時刻t4まで、MG1 2ndクラッチの締結による「EV2nd」が発進変速段として維持される。そして、時刻t4にてDレンジからPレンジ又はNレンジにセレクト操作されると、通常の変速制御手法の場合は、MG1 2ndクラッチを解放し(図9の破線)、多段歯車変速機1がニュートラル状態にされる。しかし、DレンジからPレンジ又はNレンジへのセレクト操作にもかかわらず、時刻t4以降であって次の発進要求操作が行われるまでは、MG1 2ndクラッチの締結による「EV2nd」が発進変速段として維持される。
【0082】
[発進制御の特徴作用]
実施例1では、車両が停止したときに第3係合クラッチC3が締結されていると、車両停止状態を含めて次に発進するまで第3係合クラッチC3の締結を維持する構成とした。
【0083】
即ち、発進用クラッチが係合クラッチの場合には、ドグ歯の頂面同士の位相が合っていると、締結方向にストロークできず、無理に締結させようとすると、ドグ歯の接触時や噛み合い初期における伝達トルクの変動により発進ショックを招く。この発進ショックを抑えるには、位相をずらしてから締結させる必要があり時間を要する。このため、車両停止状態で係合クラッチの締結動作を行って発進しようとすると、噛み合い締結が完了するまで待つ必要があることで、速やかに発進できない。
これに対し、第3係合クラッチC3が予め締結されていることで、車両停止状態から発進要求があった場合、噛み合い締結される第3係合クラッチC3の締結動作が不要となる。従って、発進ショックが抑えられると共に、発進要求から車両発進までに要する時間が短縮される。つまり、素早い発進要求があった場合にも、これに対応する素早い発進応答が確保される。
【0084】
例えば、上り勾配路でPレンジからNレンジを通過する際、又は、PレンジからNレンジへセレクトする際、動力伝達経路が遮断するNレンジで車両が後方にずり下がる。下り勾配路でも同様に、Nレンジで車両が前方にずり下がる。
これに対し、車両が停止したときに締結されている第3係合クラッチC3の締結を、車両停止状態を含めて次に発進するまで維持する。このため、勾配路での車両停止状態において、Nレンジを通過する操作やNレンジへセレクトする操作をしても、動力伝達経路が遮断されることなく、車両のずり下がりが防止される。
【0085】
実施例1では、車両停止状態でDレンジからPレンジやNレンジへセレクト操作されると、次にDレンジがセレクトされるまで「EV1st」又は「EV2nd」による発進変速段を維持する構成とした(S7、S13)。
従って、PレンジやNレンジから素早い発進要求があった場合でも、Dレンジへのセレクト操作から車両発進までの時間が短縮される。
【0086】
実施例1では、車両停止前の減速中に「EV2nd」から「EV1st」へのダウン変速制御が開始され、車両停止時に「EV1st」へのダウン変速が完了している。このとき、車両停止状態でDレンジからP,Nレンジへセレクト操作されると、次にDレンジがセレクトされるまでダウン変速後の「EV1st」を維持する構成とした(S5→S6→S7→S8)。
従って、車両停止時に「EV1st」へのダウン変速が完了しているとき、次の発進要求に対して発進駆動性能が高い「EV1st」によるEV発進が確保される。
【0087】
実施例1では、車両停止前の減速中に「EV2nd」から「EV1st」へのダウン変速制御が開始され、車両停止時に「EV1st」へのダウン変速が完了していない。このときはダウン変速前の「EV2nd」に戻し、車両停止状態でDレンジからPレンジやNレンジへセレクト操作されると、次にDレンジがセレクトされるまで戻した「EV2nd」を維持する構成とした(S5→S11→S12→S13→S14)。
従って、車両停止時に「EV1st」へのダウン変速が完了していないとき、次の発進要求に対して「EV2nd」によるEV発進が確保される。
【0088】
実施例1では、車両停止状態でDレンジのままで他のレンジ(P,Nレンジ)へのセレクト操作を行わないと、「EV1st」又は「EV2nd」による発進変速段で再発進する(S6→S10、S12→S16)。
従って、信号待ちからの発進時などで、レンジ位置を変更するセレクト操作を行わない素早い発進要求に対し、発進要求操作から再発進までの時間が短縮される。
【0089】
実施例1では、変速機が、ハイブリッド車両の多段歯車変速機1である。この多段歯車変速機1は、N位置からのカップリングスリーブ53のストローク方向が一方のとき「EV1st」を選択し、他方のとき「EV2nd」を選択する第3係合クラッチC3を有し、回転差吸収要素を持たないことによりEV発進する構成とした(図3)。
従って、ハイブリッド車両でEV発進する際、カップリングスリーブ53を共通とする「EV1st」又は「EV2nd」の変速パターンを選択してのEV発進が確保される。
【0090】
次に、効果を説明する。
実施例1のハイブリッド車両の発進制御装置にあっては、下記に列挙する効果が得られる。
【0091】
(1) 駆動系に、動力源としての電動機(第1モータジェネレータMG1)と、電動機(第1モータジェネレータMG1)からの出力を変速して駆動輪19へ伝達する変速機(多段歯車変速機1)と、を備え、変速機(多段歯車変速機1)は、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチC1,C2,C3を有する電動車両(ハイブリッド車両)において、
係合クラッチC1,C2,C3のうち、発進要求があったときに噛み合い締結されるクラッチを発進用クラッチ(第3係合クラッチC3)というとき、車両が停止したときに発進用クラッチ(第3係合クラッチC3)が締結されていると、車両停止状態を含めて次に発進するまで発進用クラッチ(第3係合クラッチC3)の締結を維持する発進コントローラ(変速機コントロールユニット23、図5)を設ける。
このため、発進要求があった場合、発進ショックを抑えながら、発進要求に対し応答の良い車両発進を達成することができる。加えて、勾配路での車両停止状態において、ニュートラルレンジ(Nレンジ)を通過する操作やニュートラルレンジ(Nレンジ)へセレクトする操作をしても、車両のずり下がりを防止することができる。
【0092】
(2) 変速機(多段歯車変速機1)は、発進用クラッチ(MG1 1stクラッチ、MG1 2ndクラッチ)が締結される発進変速段(「EV1st」、「EV2nd」)を有し、
発進コントローラ(変速機コントロールユニット23、図5)は、車両停止状態で走行レンジ(Dレンジ)からパーキングレンジ(Pレンジ)やニュートラルレンジ(Nレンジ)へセレクト操作されると、次に走行レンジ(Dレンジ)が選択されるまで車両停止したときの発進変速段(「EV1st」、「EV2nd」)を維持する。
このため、(1)の効果に加え、パーキングレンジ(Pレンジ)やニュートラルレンジ(Nレンジ)から素早い発進要求があった場合でも、走行レンジ(Dレンジ)へのセレクト操作から車両発進までの時間を短縮することができる。
【0093】
(3) 変速機は、第1発進用クラッチ(MG1 1stクラッチ)が締結される1速段(「EV1st」)と、第2発進用クラッチ((MG1 2ndクラッチ)が締結される2速段(「EV2nd」)を有する多段変速機(多段歯車変速機1)であり、
発進コントローラ(変速機コントロールユニット23、図5)は、車両停止前の減速中に2速段(「EV2nd」)から1速段(「EV1st」)へのダウン変速制御が開始され、車両停止時に1速段(「EV1st」)へのダウン変速が完了しているとき、車両停止状態で走行レンジ(Dレンジ)からパーキングレンジ(Pレンジ)やニュートラルレンジ(Nレンジ)へセレクト操作されると、次に走行レンジ(Dレンジ)が選択されるまでダウン変速後の1速段(「EV1st」)を維持する(S5→S6→S7→S8)。
このため、(2)の効果に加え、車両停止時に1速段(「EV1st」)へのダウン変速が完了しているとき、次の発進要求に対して発進駆動性能が高い1速段(「EV1st」)によるEV発進を確保することができる。
【0094】
(4) 変速機は、第1発進用クラッチ(MG1 1stクラッチ)が締結される1速段(「EV1st」)と、第2発進用クラッチ((MG1 2ndクラッチ)が締結される2速段(「EV2nd」)を有する多段変速機(多段歯車変速機1)であり、
発進コントローラ(変速機コントロールユニット23、図5)は、車両停止前の減速中に2速段(「EV2nd」)から1速段(「EV1st」)へのダウン変速制御が開始され、車両停止時に1速段(「EV1st」)へのダウン変速が完了していないとき、ダウン変速前の2速段(「EV2nd」)に戻し、車両停止状態で走行レンジ(Dレンジ)からパーキングレンジ(Pレンジ)やニュートラルレンジ(Nレンジ)へセレクト操作されると、次に走行レンジ(Dレンジ)が選択されるまで戻した2速段(「EV2nd」)を維持する(S5→S11→S12→S13→S14)。
このため、(2)の効果に加え、車両停止時に1速段(「EV1st」)へのダウン変速が完了していないとき、次の発進要求に対して2速段(「EV2nd」)によるEV発進を確保することができる。
【0095】
(5) 変速機(多段歯車変速機1)は、発進用クラッチ(第3係合クラッチC3のMG1 1stクラッチとMG1 2ndクラッチ)が締結される発進変速段(「EV1st」、「EV2nd」)を有し、
発進コントローラ(変速機コントロールユニット23、図5)は、車両停止状態で走行レンジ(Dレンジ)のままで他のレンジ(P,Nレンジ)へのセレクト操作を行わないと、発進変速段(「EV1st」、「EV2nd」)で再発進する(S6→S10、S12→S16)。
このため、(1)〜(4)の効果に加え、セレクト操作を行わない素早い発進要求に対し、発進要求操作から再発進までの時間を短縮することができる。
【0096】
(6) 電動車両は、動力源として電動機(第1モータジェネレータMG1、第2モータジェネレータMG2)と内燃機関ICEを備えたハイブリッド車両であり、
変速機は、ニュートラル位置(N位置)からのカップリングスリーブ53のストローク方向が一方のときEV1速段(「EV1st」)を選択し、他方のときEV2速段(「EV2nd」)を選択する係合クラッチ(第3係合クラッチC3)を有し、回転差吸収要素を持たないことによりEV発進する多段歯車変速機1である。
このため、(1)〜(5)の効果に加え、ハイブリッド車両でEV発進する際、カップリングスリーブ53を共通とする「EV1st」又は「EV2nd」の変速パターンを選択してのEV発進を確保することができる。
【実施例2】
【0097】
実施例2は、実施例1のハイブリッド車両に代え、電気自動車に対して発進制御装置を適用した例である。
【0098】
まず、構成を説明する。
実施例2の発進制御装置は、駆動系構成要素として、1つのモータジェネレータと、1つの係合クラッチを有する2速歯車変速機と、を備えた電気自動車(電動車両の他の一例)に適用したものである。以下、実施例2における電気自動車の発進制御装置の「全体システム構成」を説明する。
【0099】
[全体システム構成]
図10は、実施例1の発進制御装置が適用された電気自動車の駆動系及び制御系を示す。以下、図10に基づき、全体システム構成を説明する。
【0100】
電気自動車の駆動系は、図10に示すように、モータジェネレータMGと、1つの係合クラッチCを有する2速歯車変速機1’と、を備えている。
【0101】
前記モータジェネレータMGは、強電バッテリ3’を電源とする三相交流の永久磁石型同期モータである。モータジェネレータMGのステータは、モータジェネレータMGのケースに固定され、そのケースが2速歯車変速機1’の変速機ケース10’に固定される。そして、モータジェネレータMGのロータに一体のモータ軸は、2速歯車変速機1’のうち第1軸11’に接続される。モータジェネレータMGのステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ4’が、ACハーネス5’を介して接続される。強電バッテリ3’とインバータ4’は、ジャンクションボックス9’を介してDCハーネス8’により接続される。
【0102】
前記2速歯車変速機1’は、変速比が異なる2つの歯車対を有する常時噛み合い式変速機であり、変速機ケース10’内に互いに平行配置され、歯車が設けられる2つの歯車軸と、歯車対を選択する1つの係合クラッチCと、を備える。歯車軸としては、第1軸11’と、第3軸13’が設けられる。
【0103】
前記第1軸11’は、モータジェネレータMGが連結される軸であり、第1軸11’には、図10の右側から順に、第2歯車102’、第3歯車103’が配置される。第2歯車102’と第3歯車103’は、軸方向に突出するボス部が第1軸11’の外周に挿入される遊転歯車であり、係合クラッチCを介し第1軸11’に対して駆動連結可能に設けられる。
【0104】
前記第3軸13’は、2速歯車変速機1’の出力側に配置された軸であり、第3軸13’には、図10の右側から順に、第6歯車106’、第7歯車107’、第8歯車108’が配置される。第6歯車106’と第7歯車107’と第8歯車108’は、第3軸13’に対して一体(一体化固定を含む)に設けられる。そして、第6歯車106’は第1軸11’の第2歯車102’に噛み合い、第7歯車107’はデファレンシャル歯車17’の第16歯車116’と噛み合い、第8歯車108’は第1軸11の第3歯車103’に噛み合う。
【0105】
前記係合クラッチCは、第1軸11’の第2歯車102’と第3歯車103’の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。係合クラッチCが左側締結位置(Left)のとき、第1軸11’と第3歯車103’を駆動連結する。係合クラッチCが中立位置(N)のとき、第1軸11’と第2歯車102’を解放すると共に、第1軸11’と第3歯車103’を解放する。係合クラッチCが右側締結位置(Right)のとき、第1軸11’の第2歯車102’を駆動連結する。そして、2速歯車変速機1’の第3軸13’に有する第7歯車107’に噛み合う第16歯車116’は、デファレンシャル歯車17’及び左右のドライブ軸18’を介して左右の駆動輪19’に接続されている。
【0106】
電気自動車の制御系は、図10に示すように、モータコントロールユニット22’と、変速機コントロールユニット23’と、を備えている。なお、モータコントロールユニット22’と変速機コントロールユニット23’は、CAN通信線25’により双方向情報交換可能に接続されている。
【0107】
前記モータコントロールユニット22’(略称:「MCU」)は、インバータ4’に対する制御指令によりモータジェネレータMGの力行制御や回生制御などを行う。
【0108】
前記変速機コントロールユニット23’(略称:「TMCU」)は、所定の入力情報に基づいて図外の電動アクチュエータへ電流指令を出力することにより、2速歯車変速機1’の変速段を切り替える変速制御を行う。この変速制御では、実施例1の第3係合クラッチC3と沿うように、係合クラッチCを選択的に噛み合い締結/解放させ、2つの歯車対から動力伝達に関与する歯車対を選択する。これにより、ロー変速段(第3歯車103’と第8歯車108’の歯車対選択)とハイ変速段(第2歯車102’と第6歯車106’の歯車対選択)を得る。
【0109】
なお、実施例2の電気自動車の発進制御装置における「変速制御系構成」については、図2に示す実施例1の構成において、係合クラッチCが一つの構成となる。「変速パターン構成」については、「ロー変速段」と「ハイ変速段」を、ニュートラル位置を介して切り替える構成となる。「変速制御処理構成」については、図5に示す実施例1の構成において、「EV1st」を「ロー変速段」とし、「EV2nd」を「ハイ変速段」と読み替える構成となる。また、「変速制御処理作用」、「変速制御作用」についても実施例1と同様であるので、説明を省略する。
【0110】
実施例2の電気自動車の発進制御装置にあっては、下記の効果が得られる。
(7) 電動車両は、動力源として電動機(モータジェネレータMG)のみを備えた電気自動車であり、
変速機は、ニュートラル位置(N位置)からのカップリングスリーブのストローク方向が一方のときに「ロー変速段」を選択し、他方のときに「ハイ変速段」を選択する係合クラッチCを有する2速歯車変速機1’である。
このため、上記(1)〜(5)の効果に加え、変速機(2速歯車変速機1’)の構成を簡潔としながら、電気自動車で発進する際、カップリングスリーブを共通とする「ロー変速段」又は「ハイ変速段」を選択しての発進を確保することができる。
【0111】
以上、本発明の電動車両の発進制御装置を実施例1及び実施例2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
【0112】
実施例1,2では、発進コントローラ(図5)として、減速中に「EV2nd」から「EV1st」へのダウン変速制御が開始されると、車両停止時に「EV1st」へのダウン変速が完了しているか否かを判断する例を示した。しかし、発進コントローラとしては、減速中に「EV2nd」から「EV1st」へのダウン変速制御が開始されると、車両停止時にカップリングスリーブの位置情報を入力し、「EV2nd」の締結位置に近いか、「EV1st」の締結位置に近いかを判断する。そして、より近い側の変速パターンを選択し、カップリングスリーブを選択側にストロークさせて変速パターンを「EV1st」又は「EV2nd」にする例としても良い。
【0113】
実施例1では、変速機として、3つの係合クラッチC1,C2,C3を有し、変速比が異なる複数の歯車対を有する常時噛み合い式による多段歯車変速機1の例を示した。実施例2では、変速機として、1つの係合クラッチCを有し、変速比が異なる2つの歯車対を有する常時噛み合い式による2速歯車変速機1’の例を示した。しかし、変速機としては、少なくとも一つの変速段を達成し、変速要素として、解放位置からのストロークにより噛み合い締結する係合クラッチを有する変速機であれば、実施例1,2で示した多段歯車変速機1や2速歯車変速機1’に限られない。
【0114】
実施例1では、本発明の発進制御装置を、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両に適用する例を示した。実施例2では、本発明の発進制御装置を、駆動系構成要素として、1つのモータジェネレータと、1つの係合クラッチを有する2速歯車変速機と、を備えた電気自動車に適用する例を示した。しかし、本発明の発進制御装置は、駆動系に、動力源としての電動機と、少なくとも一つの係合クラッチを有する変速機と、を備える電動車両であれば、他の形式のハイブリッド車両や電気自動車や燃料電池車などの電動車両に対しても適用することができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10

【手続補正書】
【提出日】2015年10月29日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
駆動系に、動力源としての電動機と、前記電動機からの出力を変速して駆動輪へ伝達する変速機と、を備え、前記変速機は、変速要素として、解放位置からのストロークにより噛み合い締結する複数の係合クラッチを有する電動車両において、
前記複数の係合クラッチのうち、発進要求があったときに噛み合い締結され、前記電動機と前記駆動輪を連結する係合クラッチを発進用クラッチというとき、車両が停止したときに前記発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで前記発進用クラッチの締結を維持する発進コントローラを設け、
前記変速機は、前記発進用クラッチが締結される発進変速段を有し、
前記発進コントローラは、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジがセレクトされるまで前記発進変速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項2】
(削除)
【請求項3】
請求項1に記載された電動車両の発進制御装置において、
前記変速機は、第1発進用クラッチが締結される1速段と、第2発進用クラッチが締結される2速段を有し、
前記発進コントローラは、車両停止前の減速中に前記2速段から前記1速段へのダウン変速制御が開始され、車両停止時に前記1速段へのダウン変速が完了しているとき、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジが選択されるまでダウン変速後の前記1速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項4】
請求項1に記載された電動車両の発進制御装置において、
前記変速機は、第1発進用クラッチが締結される1速段と、第2発進用クラッチが締結される2速段を有し、
前記発進コントローラは、車両停止前の減速中に前記2速段から前記1速段へのダウン変速制御が開始され、車両停止時に前記1速段へのダウン変速が完了していないとき、ダウン変速前の前記2速段に戻し、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジが選択されるまで戻した前記2速段を維持する
ことを特徴とする電動車両の発進制御装置。
【請求項5】
請求項1,3,4の何れか一項に記載された電動車両の発進制御装置において、
前記変速機は、前記発進用クラッチが締結される発進変速段を有し、
前記発進コントローラは、車両停止状態で走行レンジのままで他のレンジへのセレクト操作を行わないと、前記発進変速段で再発進する
ことを特徴とする電動車両の発進制御装置。
【請求項6】
請求項1,3,4,5の何れか一項に記載された電動車両の発進制御装置において、
前記電動車両は、動力源として電動機と内燃機関を備えたハイブリッド車両であり、
前記変速機は、ニュートラル位置からのカップリングスリーブのストローク方向が一方のときEV1速段を選択し、他方のときEV2速段を選択する係合クラッチを有し、回転差吸収要素を持たないことによりEV発進する多段歯車変速機である
ことを特徴とする電動車両の発進制御装置。
【請求項7】
請求項1,3,4,5の何れか一項に記載された電動車両の発進制御装置において、
前記電動車両は、動力源として電動機のみを備えた電気自動車であり、
前記変速機は、ニュートラル位置からのカップリングスリーブのストローク方向が一方のときにロー変速段を選択し、他方のときにハイ変速段を選択する係合クラッチを有する2速歯車変速機である
ことを特徴とする電動車両の発進制御装置。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0002
【補正方法】変更
【補正の内容】
【0002】
の電動機と、電動機からの出力を変速して駆動輪へ伝達する変速機と、を備える。変速機は、変速要素として、解放位置からのストロークにより噛み合い締結する複数の係合クラッチを有する。
この電動車両において、複数の係合クラッチのうち、発進要求があったときに噛み合い締結され、電動機と駆動輪を連結する係合クラッチを発進用クラッチというとき、車両が停止したときに発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで発進用クラッチの締結を維持する発進コントローラを設ける。
変速機は、発進用クラッチが締結される発進変速段を有する。
発進コントローラは、車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジがセレクトされるまで発進変速段を維持する。
発明の効果
[0007]
よって、車両が停止したときに発進用クラッチが締結されていると、車両停止状態を含めて次に発進するまで発進用クラッチの締結が維持される。
即ち、発進用クラッチが係合クラッチの場合は、歯の頂面同士の位相が合っていると、締結方向にストロークできず、位相をずらしてから締結させる必要があり時間を要する。
これに対し、発進用クラッチが予め締結されていることで、車両停止状態から発進要求があった場合、噛み合い締結される発進用クラッチの締結動作が不要となり、発進ショックが抑えられると共に、発進要求から車両発進までに要する時間が短縮される。
この結果、発進要求があった場合、発進ショックを抑えながら、発進要求に対し応答の良い車両発進を達成することができる。
車両停止状態で走行レンジからパーキングレンジやニュートラルレンジへセレクト操作されると、次に走行レンジがセレクトされるまで発進変速段が維持される。
これにより、パーキングレンジやニュートラルレンジから素早い発進要求があった場合でも、走行レンジへのセレクト操作から車両発進までの時間を短縮することができる。
図面の簡単な説明
[0008]
図1]実施例1の発進制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。
図2]実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。
図3]実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において変速パターンを切り替える考え方を示す変速マップ概要図である。
図4]実施例1の発進制御装置が適用されたハイブリッド車両に搭載された多
【国際調査報告】