特表-16194098IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱電機株式会社の特許一覧
<>
  • 再表WO2016194098-空気調和装置及び運転制御装置 図000003
  • 再表WO2016194098-空気調和装置及び運転制御装置 図000004
  • 再表WO2016194098-空気調和装置及び運転制御装置 図000005
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2016年12月8日
【発行日】2017年12月28日
(54)【発明の名称】空気調和装置及び運転制御装置
(51)【国際特許分類】
   F24F 11/02 20060101AFI20171201BHJP
   F25B 1/00 20060101ALI20171201BHJP
【FI】
   F24F11/02 102F
   F25B1/00 304S
   F25B1/00 101D
【審査請求】有
【予備審査請求】未請求
【全頁数】18
【出願番号】特願2017-521358(P2017-521358)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2015年6月1日
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
(71)【出願人】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
(74)【代理人】
【識別番号】110001461
【氏名又は名称】特許業務法人きさ特許商標事務所
(72)【発明者】
【氏名】水谷 周平
【テーマコード(参考)】
3L260
【Fターム(参考)】
3L260AB03
3L260BA32
3L260CA12
3L260CA32
3L260CB19
3L260CB62
3L260DA01
3L260EA07
3L260EA13
3L260EA18
3L260FA01
3L260FA10
3L260FB04
3L260HA01
(57)【要約】
本発明の空気調和装置1は、制御装置500(運転制御装置)を備え、制御装置500(運転制御装置)は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。
【特許請求の範囲】
【請求項1】
圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、
前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、
前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットと、
前記冷凍サイクルを制御する制御装置と
を備え、
前記制御装置は、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである
空気調和装置。
【請求項2】
前記熱源側ユニットが、
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を更に備え、
前記制御装置は、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放するものである
請求項1に記載の空気調和装置。
【請求項3】
熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整する
運転制御装置。
【請求項4】
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を前記熱源側ユニットに更に収容した空気調和装置を制御し、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放する
請求項3に記載の運転制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、既設配管を流用可能な空気調和装置、及び当該空気調和装置を制御可能な運転制御装置に関する。
【背景技術】
【0002】
従来、既設配管を流用可能な空気調和装置としては、例えば、圧縮機の運転周波数、減圧装置の開度等を制御し、既設配管内の冷媒の圧力が耐圧基準値を超えないようにしたものが知られている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−162126号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1の空気調和装置では、外気温度が通常よりも高い環境(以降、「高外気温度環境」と称する。)下での冷房運転時に室内機の負荷容量(運転容量)が低下した場合、既設配管の冷媒の圧力が通常の冷房運転時よりも上昇する可能性が高くなる。したがって、特許文献1の空気調和装置では、既設配管の冷媒の圧力が耐圧基準値を超える可能性が高くなるため、圧力異常により空気調和装置が異常停止する頻度が高くなり、空気調和装置の信頼性が保持できないという問題点があった。
【0005】
本発明は、上述の問題を解決するためになされたものであり、高外気温度環境下での冷房運転時においても、既設配管の冷媒の圧力を耐圧基準値未満に抑制することが可能な空気調和装置及び運転制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットと、前記冷凍サイクルを制御する制御装置とを備え、前記制御装置は、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。
【0007】
また、本発明に係る運転制御装置は、熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。
【発明の効果】
【0008】
本発明によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置の開度を調整できるため、既設配管の冷媒の圧力が耐圧基準値以下となるように制御できる。したがって、本発明によれば、圧力異常により空気調和装置が異常停止する頻度を低減可能な、信頼性の高い空気調和装置及び運転制御装置を提供することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。
図2】本発明の実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。
図3】本発明の実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0010】
実施の形態1.
本発明の実施の形態1に係る空気調和装置1(冷凍空調装置)について説明する。図1は、本実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。
【0011】
図1に示すように、空気調和装置1は、室外機である熱源側ユニット100(熱源機)と、熱源側ユニット100に対し並列に配置された室内機である第1の負荷側ユニット200a及び第2の負荷側ユニット200bとを備える。熱源側ユニット100と第1の負荷側ユニット200a及び第2の負荷側ユニット200bとの間は、既設配管である第1の延長冷媒配管300(液配管)及び第2の延長冷媒配管400(ガス配管)で接続されている。なお、図1には、負荷側ユニットが2台接続された構成としているが、負荷側ユニットの接続台数は1台でもよいし、3台以上としてもよい。
【0012】
本実施の形態1の空気調和装置1は、圧縮機2、熱源側熱交換器3、熱源側減圧装置4、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5b、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b、冷媒流路切替装置7、並びにアキュムレータ8に順次冷媒を循環させる1系統の冷凍サイクル(冷媒回路)を有している。
【0013】
圧縮機2は、熱源側ユニット100に収容され、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する周波数可変型の流体機械である。圧縮機2は、例えば、インバータにより回転周波数が制御されるスクロール圧縮機を用いることができる。
【0014】
熱源側熱交換器3(室外機熱交換器)は、冷房運転時には放熱器(凝縮器)として機能し、暖房運転時には蒸発器として機能する熱交換器であり、熱源側ユニット100に収容されている。熱源側熱交換器3は、熱源側熱交換器3の内部を流れる冷媒と、熱源側熱交換器用ファン(図示せず)によって送風される外気(例えば、室外空気)との熱交換を行うように構成される。熱源側熱交換器3は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成できる。
【0015】
第1の熱源側冷媒配管10(室外機液ライン)は、熱源側ユニット100に収容されており、一方の末端部が熱源側熱交換器3に連結されている。第1の熱源側冷媒配管10の他方の末端部は、第1の熱源側冷媒配管10の上に設けられた第1の延長冷媒配管接続バルブ9a(液操作弁)で、第1の延長冷媒配管300に連結されている。第1の延長冷媒配管接続バルブ9aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。
【0016】
熱源側減圧装置4は、冷房運転時に熱源側熱交換器3から流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるものである。熱源側減圧装置4は、熱源側ユニット100に収容されており、第1の熱源側冷媒配管10に設けられている。熱源側減圧装置4は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられ、室外電子膨張弁として構成される。なお、熱源側減圧装置4は、暖房運転時には、第1の延長冷媒配管300から第1の熱源側冷媒配管10に流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、熱源側熱交換器3に流入させるように構成できる。
【0017】
第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、冷房運転時に第1の延長冷媒配管300から流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bにそれぞれ流入させるものである。第1の負荷側減圧装置5aは、第1の負荷側ユニット200aに収容されており、第2の負荷側減圧装置5bは、第2の負荷側ユニット200bに収容されている。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁が用いられ、室内電子膨張弁として構成される。
【0018】
なお、第1の負荷側ユニット200aにおける冷房運転及び暖房運転の停止時においては、第1の負荷側減圧装置5aは閉止されるように調整される。同様に、第2の負荷側ユニット200bにおける冷房運転及び暖房運転の停止時においては、第2の負荷側減圧装置5bは閉止されるように調整される。また、第1の負荷側減圧装置5aは、暖房運転時においては、第1の負荷側熱交換器6aから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。同様に、第2の負荷側減圧装置5bは、暖房運転時においては、第2の負荷側熱交換器6bから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。
【0019】
第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b(室外機熱交換器)は、冷房運転時には蒸発器として機能し、暖房運転時には放熱器として機能する熱交換器である。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの内部を流れる冷媒と、外気(例えば、室内空気)との熱交換を行うように構成される。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。
【0020】
なお、第1の負荷側熱交換器6aは、第1の負荷側ユニット200aに収容されており、第2の負荷側熱交換器6bは、第2の負荷側ユニット200bに収容されている。また、本実施の形態1の空気調和装置1では、負荷側熱交換器用ファン(図示せず)からの送風によって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに外気が供給されるように構成できる。
【0021】
冷媒流路切替装置7は、冷房運転時と暖房運転時とを切り替える際に、冷凍サイクルにおける冷媒の流れ方向を切り替えるものであり、熱源側ユニット100に収容されている。冷媒流路切替装置7としては、例えば四方弁が用いられる。
【0022】
冷媒流路切替装置7と、熱源側熱交換器3との間には、第5の熱源側冷媒配管18が連結されている。冷媒流路切替装置7とアキュムレータ8の冷媒流入口との間には、第3の熱源側冷媒配管14(アキュムレータ手前配管)が連結されている。冷媒流路切替装置7と圧縮機2の吐出口との間には、第4の熱源側冷媒配管16が連結されている。冷媒流路切替装置7と第2の延長冷媒配管400との間には、第2の熱源側冷媒配管12が連結されている。
【0023】
冷媒流路切替装置7は、冷房運転時において、第2の熱源側冷媒配管12から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第5の熱源側冷媒配管18に冷媒が流れるように構成される。また、冷媒流路切替装置7は、暖房運転において、第5の熱源側冷媒配管18から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第2の熱源側冷媒配管12に冷媒が流れるように構成される。
【0024】
なお、第2の熱源側冷媒配管12、第3の熱源側冷媒配管14、第4の熱源側冷媒配管16、及び第5の熱源側冷媒配管18は、熱源側ユニット100に収容されている。また、第2の熱源側冷媒配管12は、第2の熱源側冷媒配管12に設けられた第2の延長冷媒配管接続バルブ9b(ガス操作弁)で、第2の延長冷媒配管400に連結されている。第2の延長冷媒配管接続バルブ9bは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。
【0025】
アキュムレータ8は、余剰冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機2に大量の液冷媒が流入するのを防ぐ気液分離機能とを有するものである。アキュムレータ8は、圧縮機2の吸入管側に配置され、熱源側ユニット100に収容されている。
【0026】
次に、本実施の形態1に係る空気調和装置1に設けられた熱源側ユニット100のバイパス冷媒回路の構成について説明する。
【0027】
熱源側ユニット100は、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置で、第1の熱源側冷媒配管10から分岐されたバイパス冷媒配管20(高低圧バイパス配管)を備えている。バイパス冷媒配管20の末端部は、冷媒流路切替装置7とアキュムレータ8との間の位置で、第3の熱源側冷媒配管14に連結される。すなわち、バイパス冷媒配管20は、熱源側減圧装置4の冷媒流出口側の冷媒配管である第1の熱源側冷媒配管10と、アキュムレータ8の冷媒流入口側に連結された冷媒配管である第3の熱源側冷媒配管14との間をバイパスする冷媒配管である。
【0028】
バイパス冷媒配管20には、電力供給又は電力停止によって、流路を開放又は閉止するバルブである電磁弁25が設けられている。電磁弁25は、第1の熱源側冷媒配管10に流入した冷媒を、アキュムレータ8に流入させるものである。第1の熱源側冷媒配管10に流入する高圧又は中圧の冷媒の圧力を低圧まで減圧可能な容量係数(CV値)を有している。電磁弁25は、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。
【0029】
次に、本実施の形態1に係る空気調和装置1に配置されるセンサについて説明する。
【0030】
本実施の形態1に係る空気調和装置1は、第1の温度センサ30と、第2の温度センサ35aと、第1の圧力センサ40と、第2の圧力センサ45とを備える。
【0031】
第1の温度センサ30は、熱源側送風ファン(図示せず)によって吸い込まれ、熱源側熱交換器3に送風される外気(室外空気)の温度を検知する外気温度センサ(室外温度センサ)である。第1の温度センサ30は、例えば熱源側送風ファン(図示せず)の上流側に配置される。第2の温度センサ35aは、例えば、第1の負荷側ユニット200aに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第1の負荷側熱交換器6aに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第2の温度センサ35aが外気温度センサとして構成される場合、第2の温度センサ35aは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。第3の温度センサ35bは、例えば、第2の負荷側ユニット200bに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第2の負荷側熱交換器6bに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第3の温度センサ35bが外気温度センサとして構成される場合、第3の温度センサ35bは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。
【0032】
第1の圧力センサ40は、冷房運転時において、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pを検知する圧力センサ(中間圧力センサ)である。すなわち、第1の圧力センサ40は、第1の熱源側冷媒配管10の、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置に配置されている。第2の圧力センサ45は、冷房運転時においては、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの出口から流出し、合流した冷媒の低圧圧力を検知する圧力センサ(低圧圧力センサ)であり、暖房運転時においては、熱源側熱交換器3の出口から流出する冷媒の圧力を検知するものである。第2の圧力センサ45は、第3の熱源側冷媒配管14に配置されている。
【0033】
第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bの材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。また、第1の圧力センサ40及び第2の圧力センサ45としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bは、同一の材料で構成してもよいし、異なる材料で構成してもよい。また、第1の圧力センサ40及び第2の圧力センサ45についても、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。
【0034】
次に、本実施の形態1に係る空気調和装置1の全体の制御を行う制御装置500(運転制御装置)について説明する。
【0035】
本実施の形態1に係る制御装置500は、熱源側ユニット100の運転状態を制御する第1の制御部50(室外機側制御装置)と、第1の負荷側ユニット200aの運転状態を制御する第2の制御部55a(室内機側制御装置)と、第2の負荷側ユニット200bの運転状態を制御する第3の制御部55b(室内機側制御装置)とを備える。
【0036】
第1の制御部50、第2の制御部55a、及び第3の制御部55bは、CPU、メモリ(例えば、ROM、RAM等)、I/Oポート等を備えたマイクロコンピュータを有している。なお、制御装置500は、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間を通信線58で接続して、制御信号の送受信等、相互に通信を行うことができるように構成される。なお、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間の通信は無線で行うように構成してもよい。
【0037】
第1の制御部50は、例えば、熱源側ユニット100の運転の開始及び停止、熱源側減圧装置4の開度の調整、電磁弁25の開放又は閉止、圧縮機2の運転周波数の調整等の運転状態を制御できるように構成される。また、第1の制御部50は、制御目標値等の各種データを記憶できる記憶部(図示せず)を有するように構成される。また、第1の制御部50は、第1の温度センサ30で検知した温度情報の電気信号、並びに第1の圧力センサ40及び第2の圧力センサ45で検知した圧力情報の電気信号を受信するように構成される。
【0038】
第2の制御部55aは、第1の負荷側ユニット200aの運転の開始及び停止、第1の負荷側減圧装置5aの開度の調整等の運転状態を制御するように構成される。第2の制御部55aは、第1の負荷側ユニット200aの負荷容量Q1(運転容量)を所定の間隔で(例えば、1分おきに)計測するように構成される。また、第2の制御部55aは、第2の温度センサ35aで検知した温度情報の電気信号を受信するように構成される。
【0039】
第3の制御部55bは、第2の負荷側ユニット200bの運転の開始及び停止、第2の負荷側減圧装置5bの開度の調整等の運転状態を制御するように構成される。第3の制御部55bは、第2の負荷側ユニット200bの負荷容量Q2を所定の間隔で(例えば、1分おきに)計測するように構成され、また、第2の制御部55aは、第3の温度センサ35bで検知した温度情報の電気信号を受信するように構成される。
【0040】
なお、第2の制御部55aにおいて計測された第1の負荷側ユニット200aの負荷容量Q1及び第3の制御部55bにおいて計測された第2の負荷側ユニット200bの負荷容量Q2は、通信線58を介して第1の制御部50に送信される。第1の制御部50では、第1の負荷側ユニット200a及び第2の負荷側ユニット200bにおける合計負荷容量Qが以下の式(1)で算出され、第1の制御部50の記憶部に記憶される。
Q=Q1+Q2 …(1)
【0041】
次に、本実施の形態1に係る空気調和装置1の通常の冷房運転時の動作について説明する。
【0042】
圧縮機2から吐出された高温高圧のガス冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3に流入した高温高圧のガス冷媒は、室外空気等の低温の媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、第1の熱源側冷媒配管10に設けられた熱源側減圧装置4で膨張及び減圧されて、中圧の液冷媒又は二相冷媒となり、第1の延長冷媒配管300を経由して熱源側ユニット100に流入する。
【0043】
熱源側ユニット100に流入した中圧の液冷媒又は二相冷媒は、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入する。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入した中圧の液冷媒又は二相冷媒は、更に膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに流入し、室内空気等の高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bから流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、第2の延長冷媒配管400、第2の熱源側冷媒配管12、冷媒流路切替装置7、及び第3の熱源側冷媒配管14を経由して、アキュムレータ8に流入する。乾き度の高い二相冷媒又は低温低圧のガス冷媒は、アキュムレータ8で液相成分が除去された後に、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、第4の熱源側冷媒配管16、冷媒流路切替装置7、第5の熱源側冷媒配管18を経由して熱源側熱交換器3へ流入する。空気調和装置1の冷房運転では以上のサイクルが繰り返される。
【0044】
なお、暖房運転時においては、冷媒流路切替装置7の内部の流路は、図1に示すように実線の流路から点線の流路に切り替えられる。これによって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに高温高圧のガス冷媒が流入し、室内空気等の低温の媒体に熱を放出し、高圧の液冷媒となる。これによって、室内空気は冷媒の放熱作用によって加熱されることとなる。
【0045】
次に、本実施の形態1に係る空気調和装置1の制御装置500における制御処理を説明する。
【0046】
本実施の形態1に係る空気調和装置1の制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量Qが経時的に低減した場合において、合計負荷容量Qの変動値に応じて熱源側減圧装置4の開度を調整するように構成される。
【0047】
図2は、本実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。図2の制御処理は、冷房運転時に常時行うようにしてもよいし、例えば、外気温度Tの変動を検知した際に随時行うようにしてもよい。
【0048】
ステップS11においては、第1の温度センサ30で検知した外気温度Tが、基準外気温度T0より高いか否かが制御装置500において判定される。基準外気温度T0は、高外気温度環境と通常の外気温度環境との間の境界値として設定され、例えば、52℃に設定される。ここで、通常の温度環境とは、合計負荷容量Qの変動によって既設配管を流れる冷媒の圧力が耐圧基準値を超えない外気温度環境をいう。外気温度Tが基準外気温度T0以下である場合、制御処理は終了し、通常の冷房運転が継続される。
【0049】
外気温度Tが基準外気温度T0を超える場合、ステップS12において、制御装置500は、第1の負荷側ユニット200aにおける現在の負荷容量Q1now及び第2の負荷側ユニット200bにおける現在の負荷容量Q2nowを計測し、現在の合計負荷容量Qnowを以下の式(2)で演算する。
now=Q1now+Q2now …(2)
【0050】
次いで、ステップS13において、現在の合計負荷容量Qnowが、制御装置500の記憶部に記憶されている直近の合計負荷容量Qlast未満であるか否かが制御装置500において判定される。現在の合計負荷容量Qnowが直近の合計負荷容量Qlast以上である場合、制御処理は終了し、通常の冷房運転が継続される。
【0051】
現在の合計負荷容量Qnowが、直近の合計負荷容量Qlast未満である場合、ステップS14において、熱源側減圧装置4の開度調整値ΔDを算出する。開度調整値ΔDは補正係数Kを用いて以下の式(3)から演算される。
ΔD=K×(Qlast−Qnow) …(3)
【0052】
ここで、補正係数Kは、例えば、合計負荷容量Qの変動値、第1の圧力センサ40で検知される圧力Pの変動値、及び圧力Pの変動を相殺するための開度調整値ΔDの実測値の相関関係から演算され、決定される定数である。
【0053】
次いで、ステップS15において、制御装置500は、熱源側減圧装置4の開度Dを開度調整値ΔDだけ開放するように制御し、制御処理は終了する。
【0054】
次に、本実施の形態1による本発明の効果を説明する。
【0055】
上述したとおり、本実施の形態1に係る空気調和装置1は、圧縮機2、熱源側熱交換器3、減圧装置(熱源側減圧装置4)、及び負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルと、圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)を収容する熱源側ユニット100と、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を収容し、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)と、冷凍サイクルを制御する制御装置500とを備え、制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。
【0056】
また、本実施の形態1に係る運転制御装置(制御装置500)は、熱源側ユニット100に収容される圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)と、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)に収容される負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)とを冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置1を制御し、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。
【0057】
従来より、圧縮機、四方弁、室外熱交換器、室外機側絞り装置、及びアキュムレータを含む室外機と、室内側絞り装置、室内熱交換器を含む室内機とを、ガス配管及び液配管で接続して構成した冷凍空調装置がある。また、従来の冷凍空調装置には、冷凍空調装置の更新の際に、室外機及び室内機のみを更新し、ガス配管及び液配管については既設配管を流用し、既設配管(ガス配管及び液配管)を洗浄して再利用する機種(既設配管流用機種)がある。
【0058】
更新前の冷凍空調装置においては、ガス配管及び液配管は。R22又はR407C等の設計圧力が低い冷媒の冷媒特性に合わせて耐圧設計されている場合がある。また、更新後の冷凍空調装置においては、R22又はR407Cと比較して設計圧力が高いR410A等の冷媒が用いられる場合がある。したがって、既設配管を流用する冷凍空調装置は、室外機及び室内機で、既設配管に流入する冷媒の圧力がガス配管及び液配管の耐圧基準値を超えないように制御可能な構成を有している。
【0059】
例えば、既設配管を流用する冷凍空調装置としては、室外機液ラインに圧力センサを取り付け、既設配管に流入する冷媒の圧力(中間圧力)を検知するものがある。圧力センサを用いた冷凍空調装置では、圧縮機の周波数と、室外機液ラインに取り付けられた室外機側絞り装置の開度とを調整することで、圧力センサで検知した冷媒圧力が、目標値(目標中間圧力)になるように制御している。
【0060】
近年、地球温暖化の進行又は都市部のヒートアイランド現象により、冷凍空調装置の室外機が設置される環境温度が上昇する傾向にある。また、室外機の集中設置により吹き出し口及び吸い込み口が遮られ、室外機からの放熱が妨害されるショートサーキットにより、室外機の吸込み空気温度が上昇する場合がある。したがって、冷凍空調装置の室外機においては、室外機で利用可能な外気(室外空気)の温度の広範囲化(例えば、外気温度の許容上限値の上昇)が可能な構成が要求される。
【0061】
しかしながら、高外気温度環境下の冷房運転時には、高圧圧力及び既設配管に流入する冷媒の圧力が上昇するため、冷凍空調装置の圧力異常の発生頻度が上昇する。一方、冷房運転中に室内機の負荷容量が減少した場合は、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が上昇する。したがって、高外気温度環境下の冷房運転時に、室内機の負荷容量が減少した場合は、既設配管に流入する冷媒の圧力が耐圧基準値を超える可能性が高くなるという問題点があった。
【0062】
例えば、室内機の接続台数が5台であり、5台とも負荷容量が同一の室内機を有する冷凍空調装置を考える。ここでは、5台全ての室内機を運転している状態の合計負荷容量を100%とする。高外気温度環境下の冷房運転時に、5台全ての室内機を運転している状態から4台の室内機が停止した場合、室内機の合計負荷容量は20%となる。また、5台全ての室内機が運転している状態から4台の室内機が停止した場合、停止した4台の室内機の電子膨張弁は閉止状態となる。よって、5台全ての室内機を運転している状態での冷媒循環量を100%とすると、4台の室内機が停止した場合は、既設配管に流入する冷媒の圧力を維持するため、冷媒循環量が20%となるように圧縮機周波数を減速させる必要がある。しかしながら、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が一時的に上昇し、既設配管の耐圧基準値を超え、圧力異常が生じることとなる。
【0063】
これに対し、本実施の形態1の構成によれば、負荷容量の減少を検知したタイミングで、熱源側減圧装置4の開度を制御できる。すなわち、本実施の形態1の構成によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置4の開度を調整できる。よって、本実施の形態1の構成によれば、高外気温度環境下の冷房運転時に、負荷容量の減少により既設配管を流れる冷媒の圧力が上昇するのを抑制でき、既設配管を流れる冷媒の圧力が耐圧基準値P0(例えば、29kg/cm)以下となるように制御できる。したがって、本実施の形態1の構成によれば、圧力異常により空気調和装置1が異常停止する頻度を低減可能な、信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。
【0064】
実施の形態2.
本発明の実施の形態2では、上述の実施の形態1に係る制御装置500の電磁弁25の制御処理の一例を示す。図3は、本実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。
【0065】
本実施の形態2の空気調和装置1では、制御装置500は、冷房運転時に、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力が、既設配管である第1の延長冷媒配管300の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するように構成される。
【0066】
ステップS21においては、制御装置500では、第1の圧力センサ40で検知された、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pが、第1の延長冷媒配管300の耐圧基準値P0を超えるか否かが判定される。耐圧基準値P0は、例えば29kg/cmに設定される。
【0067】
圧力Pが耐圧基準値P0を超える場合、ステップS22において、制御装置500は電磁弁25を開放する。
【0068】
次いで、ステップS23において、制御装置500では、電磁弁25が開放されている時間Mがカウントされ、一定の時間M0を経過したか否かが判定される。一定の時間M0を経過していない場合は、電磁弁25の開放状態を維持する。
【0069】
ここで、一定の時間M0は、例えば制御装置500が圧縮機2の運転周波数を低減する制御を行い、圧力Pを耐圧基準値P0に抑制する場合、低減した圧縮機2の運転周波数が安定状態となるまでの時間とすることができる。例えば、一定の時間M0は60秒とすることができる。
【0070】
一定の時間M0を経過した後、ステップS24において、制御装置500は、電磁弁25を閉止し、制御処理を終了する。
【0071】
上述したとおり、本実施の形態2に係る空気調和装置1は、熱源側ユニット100が、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを更に備え、制御装置500は、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。
【0072】
また、本実施の形態2に係る運転制御装置(制御装置500)は、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを熱源側ユニット100に更に収容した空気調和装置1を制御し、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。
【0073】
本実施の形態2の構成によれば、第1の延長冷媒配管300に流れる冷媒の圧力を電磁弁25の開放により即時に低下させることができるため、更に信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。
【0074】
その他の実施の形態.
上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態は、空気調和装置1のみに限られず、給湯器等にも用いることができる。
【0075】
また、上述の実施の形態は互いに組み合わせて用いることが可能である。
【符号の説明】
【0076】
1 空気調和装置、2 圧縮機、3 熱源側熱交換器、4 熱源側減圧装置、5a 第1の負荷側減圧装置、5b 第2の負荷側減圧装置、6a 第1の負荷側熱交換器、6b 第2の負荷側熱交換器、7 冷媒流路切替装置、8 アキュムレータ、9a 第1の延長冷媒配管接続バルブ、9b 第2の延長冷媒配管接続バルブ、10 第1の熱源側冷媒配管、12 第2の熱源側冷媒配管、14 第3の熱源側冷媒配管、16 第4の熱源側冷媒配管、18 第5の熱源側冷媒配管、20 バイパス冷媒配管、25 電磁弁、30 第1の温度センサ、35a 第2の温度センサ、35b 第3の温度センサ、40 第1の圧力センサ、45 第2の圧力センサ、50 第1の制御部、55a 第2の制御部、55b 第3の制御部、58 通信線、100 熱源側ユニット、200a 第1の負荷側ユニット、200b 第2の負荷側ユニット、300 第1の延長冷媒配管、400 第2の延長冷媒配管、500 制御装置。
図1
図2
図3

【手続補正書】
【提出日】2017年8月29日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、
前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、
前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットと、
前記冷凍サイクルを制御する制御装置と
を備え、
前記制御装置は、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである
空気調和装置。
【請求項2】
前記熱源側ユニットが、
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を更に備え、
前記制御装置は、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放するものである
請求項1に記載の空気調和装置。
【請求項3】
前記一定の時間は、
前記制御装置が、前記圧縮機の運転周波数を低減する制御を行い、前記冷媒の圧力を前記耐圧基準値に抑制する場合に、低減した前記圧縮機の運転周波数が安定状態となるまでの時間である
請求項2に記載の空気調和装置。
【請求項4】
熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整する
運転制御装置。
【請求項5】
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を前記熱源側ユニットに更に収容した空気調和装置を制御し、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放する
請求項に記載の運転制御装置。
【国際調査報告】