特表-17208786IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 本田技研工業株式会社の特許一覧
再表2017-208786車両制御システム、車両制御方法、および車両制御プログラム
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2017年12月7日
【発行日】2018年12月27日
(54)【発明の名称】車両制御システム、車両制御方法、および車両制御プログラム
(51)【国際特許分類】
   B60W 30/10 20060101AFI20181130BHJP
   B60W 30/045 20120101ALI20181130BHJP
   B62D 6/00 20060101ALI20181130BHJP
   B62D 101/00 20060101ALN20181130BHJP
   B62D 111/00 20060101ALN20181130BHJP
   B62D 113/00 20060101ALN20181130BHJP
   B62D 119/00 20060101ALN20181130BHJP
【FI】
   B60W30/10
   B60W30/045
   B62D6/00ZYW
   B62D101:00
   B62D111:00
   B62D113:00
   B62D119:00
【審査請求】有
【予備審査請求】未請求
【全頁数】29
【出願番号】特願2018-520762(P2018-520762)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2017年5月12日
(31)【優先権主張番号】特願2016-108527(P2016-108527)
(32)【優先日】2016年5月31日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ
(71)【出願人】
【識別番号】000005326
【氏名又は名称】本田技研工業株式会社
(74)【代理人】
【識別番号】100165179
【弁理士】
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100154852
【弁理士】
【氏名又は名称】酒井 太一
(74)【代理人】
【識別番号】100194087
【弁理士】
【氏名又は名称】渡辺 伸一
(72)【発明者】
【氏名】吉田 峰由生
(72)【発明者】
【氏名】大庭 吉裕
(72)【発明者】
【氏名】小黒 宏史
【テーマコード(参考)】
3D232
3D241
【Fターム(参考)】
3D232CC20
3D232DA03
3D232DA22
3D232DA23
3D232DA25
3D232DA29
3D232DA33
3D232DA76
3D232DA84
3D232DA87
3D232DA90
3D232DB11
3D232DC33
3D232DC34
3D232DC38
3D232DD08
3D232DD17
3D232DE06
3D232EB04
3D232EC23
3D232EC34
3D232GG01
3D241BA02
3D241BA03
3D241BA08
3D241BA11
3D241BA12
3D241BA15
3D241BA26
3D241BA33
3D241BB01
3D241BB06
3D241BB16
3D241BB17
3D241BB27
3D241BB45
3D241BB46
3D241CC01
3D241CC08
3D241CC17
3D241CD05
3D241CD11
3D241CD12
3D241CD20
3D241CE04
3D241DA13Z
3D241DA23Z
3D241DA39Z
3D241DA58Z
3D241DB01Z
3D241DB02Z
3D241DB05Z
3D241DB07Z
3D241DB12Z
3D241DB20Z
3D241DC02Z
3D241DC03Z
3D241DC05Z
3D241DC26Z
3D241DC31Z
3D241DC33Z
3D241DC34Z
3D241DC35Z
3D241DC37Z
3D241DC38Z
3D241DC42Z
3D241DC43Z
3D241DC44Z
3D241DC45Z
3D241DC50Z
3D241DC57Z
3D241DC58Z
3D241DD12Z
(57)【要約】
車両制御システムは、車両の位置を認識する位置認識部と、前記車両の目標軌道を生成する軌道生成部と、前記軌道生成部により生成された目標軌道上に、前記位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する走行制御部と、を備える。
【特許請求の範囲】
【請求項1】
車両の位置を認識する位置認識部と、
前記車両の目標軌道を生成する軌道生成部と、
前記軌道生成部により生成された目標軌道上に、前記位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する走行制御部と、
を備える車両制御システム。
【請求項2】
前記走行制御部は、前記車両が、前記位置認識部により認識された前記車両の位置に最も近い前記目標軌道上の位置から、所定時間または所定距離だけ前記目標軌道上を走行したと仮定した場合における、前記車両の前記目標軌道上の位置を、前記基準位置として設定する、
請求項1記載の車両制御システム。
【請求項3】
前記走行制御部は、
前記円弧に基づく第1の指標値と、前記車両の進行方向に直交する方向における前記基準位置と前記車両の位置との偏差が大きくなるほど前記車両の操舵の制御を大きくするための第2の指標値とを導出し、
前記第1の指標値および前記第2の指標値に基づいて、前記車両の操舵を制御する、
請求項1または請求項2記載の車両制御システム。
【請求項4】
前記走行制御部は、前記偏差が第1所定値以上の場合、前記車両の操舵の制御を制限する、
請求項3記載の車両制御システム。
【請求項5】
前記走行制御部は、前記円弧の曲率が第2所定値を超える場合、前記車両の操舵の制御を制限する、
請求項1から4のうちいずれか1項記載の車両制御システム。
【請求項6】
前記走行制御部は、前記車両が、前記基準位置を求めるのに使用される所定時間よりも短い時間だけ前記円弧上を走行した場合における、前記車両の前記円弧上の位置と、前記位置認識部により認識された前記車両の位置とに基づいて、前記車両の操舵を制御する、
請求項3記載の車両制御システム。
【請求項7】
車載コンピュータが、
車両の将来の目標軌道を生成し、
前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する、
車両制御方法。
【請求項8】
車載コンピュータに、
車両の将来の目標軌道を生成させ、
前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定させ、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御させる、
車両制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両制御システム、車両制御方法、および車両制御プログラムに関する。
本願は、2016年5月31日に出願された日本国特願2016−108527号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
従来、前走車の走行軌跡に基づいて、自車両の操舵角を決定する装置が知られている(例えば、特許文献1参照)。この追従システムは、自車両の位置から前走車の走行軌跡に向けて下した垂線と、前走車の走行軌跡とが交わる垂線地点を設定する。更に、追従システムは、垂線地点から現在の自車両の速度で所定時間走行したときの予測位置を算出し、この予測位置における前走車の走行軌跡の曲率半径に基づいて、操舵制御を行う。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−100738号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、予測位置における前走車の走行軌跡が、急カーブを描くような曲率半径の小さい走行軌跡であった場合、自車両の操舵角が大きく変化してしまうことがある。
本発明に係る態様は、このような事情を考慮してなされたものであり、よりスムーズな操舵制御を実現することができる車両制御システム、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
【課題を解決するための手段】
【0005】
(1)本発明の一態様に係る車両制御システムは、車両の位置を認識する位置認識部と、前記車両の目標軌道を生成する軌道生成部と、前記軌道生成部により生成された目標軌道上に、前記位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する走行制御部と、を備える。
【0006】
(2)上記(1)の態様において、前記走行制御部は、前記車両が、前記位置認識部により認識された前記車両の位置に最も近い前記目標軌道上の位置から、所定時間または所定距離だけ前記目標軌道上を走行したと仮定した場合における、前記車両の前記目標軌道上の位置を、前記基準位置として設定してもよい。
【0007】
(3)上記(1)または(2)の態様において、前記走行制御部は、前記円弧に基づく第1の指標値と、前記車両の進行方向に直交する方向における前記基準位置と前記車両の位置との偏差が大きくなるほど前記車両の操舵の制御を大きくするための第2の指標値とを導出し、前記第1の指標値および前記第2の指標値に基づいて、前記車両の操舵を制御してもよい。
【0008】
(4)上記(3)の態様において、前記走行制御部は、前記偏差が第1所定値以上の場合、前記車両の操舵の制御を制限してもよい。
【0009】
(5)上記(1)から(4)のいずれか1つの態様において、前記走行制御部は、前記円弧の曲率が第2所定値を超える場合、前記車両の操舵の制御を制限してもよい。
【0010】
(6)上記(3)の態様において、前記走行制御部は、前記車両が、前記基準位置を求めるのに使用される所定時間よりも短い時間だけ前記円弧上を走行した場合における、前記車両の前記円弧上の位置と、前記位置認識部により認識された前記車両の位置とに基づいて、前記車両の操舵を制御してもよい。
【0011】
(7)本発明の一態様に係る車両制御方法は、車載コンピュータが、車両の将来の目標軌道を生成し、前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する。
【0012】
(8)本発明の一態様に係る車両制御プログラムは、車載コンピュータに、車両の将来の目標軌道を生成させ、前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定させ、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御させる。
【発明の効果】
【0013】
上記(1)、(2)、(4)から(8)の態様によれば、基準位置と車両の位置とを通る円弧に基づいて、車両の操舵が制御されることにより、よりスムーズな操舵制御を実現することができる。
【0014】
上記(3)の態様によれば、走行制御部が、円弧に基づく第1の指標値と、車両の進行方向に直交する方向における基準位置と車両の位置との偏差が大きくなるほど車両の操舵の制御を大きくする第2の指標値とに基づいて、車両の操舵を制御することにより、より車両が目標軌道に近づくように操舵を制御することができる。
【図面の簡単な説明】
【0015】
図1】各実施形態の車両制御システムが搭載される車両の構成要素を示す図である。
図2】第1の実施形態に係る車両制御システムを中心とした機能構成図である。
図3】自車位置認識部により走行車線に対する自車両の相対位置が認識される様子を示す図である。
図4】ある区間について生成された行動計画の一例を示す図である。
図5】軌道生成部の構成の一例を示す図である。
図6】軌道候補生成部により生成される軌道の候補の一例を示す図である。
図7】軌道候補生成部により生成される軌道の候補を軌道点Kで表現した図である。
図8】車線変更ターゲット位置を示す図である。
図9】3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。
図10】加減速制御部および操舵角制御部と、その制御対象との関係を示す図である。
図11】操舵角制御部の機能の一例を示す図である。
図12】第1操舵角導出部による操舵角の導出処理を説明するための図である。
図13】第2操舵角導出部による第2操舵角の導出についての概念図である。
図14】操舵角制御部により実行される処理の流れを示すフローチャートである。
図15】注視位置が導出される様子の一例を示す図である。
図16】第1操舵角導出部より導出される円弧について説明するための図である。
図17】処理周期(2)における自車両が制御される様子の一例を示す図である。
図18】処理周期(3)における自車両が制御される様子の一例を示す図である。
図19】処理周期(4)における自車両が制御される様子の一例を示す図である。
図20】処理周期(5)における自車両が制御される様子の一例を示す図である。
図21】目標軌道が所定の曲率を有する場合に導出される注視位置の一例を示す図である。
図22】第2の実施形態の操舵角制御部の機能の一例を示す図である。
図23】操舵角制御部により実行される処理の流れを示すフローチャートである。
図24】操舵角マップの一例を示す図である。
図25】第3の実施形態の車両制御システムの機能構成の一例を示す図である。
【発明を実施するための形態】
【0016】
以下、図面を参照し、本発明の車両制御システム、車両制御方法、および車両制御プログラムの実施形態について説明する。
【0017】
(第1の実施形態)
図1は、各実施形態の車両制御システム100が搭載される車両(以下、自車両Mと称する)の構成要素を示す図である。車両制御システム100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車であり、ディーゼルエンジンやガソリンエンジン等の内燃機関を動力源とした自動車や、電動機を動力源とした電気自動車、内燃機関および電動機を兼ね備えたハイブリッド自動車等を含む。電気自動車は、例えば、二次電池、水素燃料電池、金属燃料電池、アルコール燃料電池等の電池により放電される電力を使用して駆動される。
【0018】
図1に示すように、自車両Mには、ファインダ20−1から20−7、レーダ30−1から30−6、およびカメラ40等のセンサと、ナビゲーション装置50(経路誘導装置)と、車両制御システム100とが搭載される。
【0019】
ファインダ20−1から20−7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20−1は、フロントグリル等に取り付けられ、ファインダ20−2および20−3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20−4は、トランクリッド等に取り付けられ、ファインダ20−5および20−6は、車体の側面や尾灯内部等に取り付けられる。上述したファインダ20−1から20−6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20−7は、ルーフ等に取り付けられる。
ファインダ20−7は、例えば、水平方向に関して360度の検出領域を有している。レーダ30−1および30−4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30−2、30−3、30−5、30−6は、レーダ30−1および30−4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。
【0020】
以下、ファインダ20−1から20−7を特段区別しない場合は、単に「ファインダ20」と記載し、レーダ30−1から30−6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM−CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。
【0021】
カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば、周期的に繰り返し自車両Mの前方を撮像する。カメラ40は、複数のカメラを含むステレオカメラであってもよい。
【0022】
なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
【0023】
図2は、第1の実施形態に係る車両制御システム100を中心とした機能構成図である。自車両Mには、ファインダ20、レーダ30、およびカメラ40などを含む検知デバイスDDと、ナビゲーション装置50と、通信装置55と、車両センサ60と、表示装置62と、スピーカ64と、スイッチ部66と、操作デバイス70と、操作検出センサ72と、切替スイッチ80と、車両制御システム100と、走行駆動力出力装置200と、ステアリング装置210と、ブレーキ装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、車両制御システム100および車両制御システム100以外の上記構成(検知デバイスDDなど)を含んで車両制御システムと呼称する場合がある。
【0024】
ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって自車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、車両制御システム100の目標車線決定部110に提供される。自車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置50は、車両制御システム100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、自車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。また、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。この場合、端末装置と車両制御システム100との間で、無線または有線による通信によって情報の送受信が行われる。
【0025】
通信装置55は、例えば、セルラー網やWi−Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用した無線通信を行う。
【0026】
車両センサ60は、車速を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
【0027】
表示装置62は、情報を画像として表示する。表示装置62は、例えばLCD(Liquid Crystal Display)や、有機EL(Electroluminescence)表示装置等を含む。本実施形態では、表示装置62は、自車両Mのフロントウィンドウに画像を反射させて、車両乗員の視野内に画像を表示するヘッドアップディスプレイであるものとして説明する。なお、表示装置62は、ナビゲーション装置50が備える表示装置や、自車両Mの状態(速度等)を表示するインストルメントパネルの表示装置であってもよい。スピーカ64は、情報を音声として出力する。
【0028】
操作デバイス70は、例えば、アクセルペダルやステアリングホイール、ブレーキペダル、シフトレバー等を含む。操作デバイス70には、運転者による操作の有無や量を検出する操作検出センサ72が取り付けられている。操作検出センサ72は、例えば、アクセル開度センサ、ステアリングトルクセンサ、ブレーキセンサ、シフト位置センサ等を含む。操作検出センサ72は、検出結果としてのアクセル開度、ステアリングトルク、ブレーキ踏量、シフト位置等を走行制御部160に出力する。なお、これに代えて、操作検出センサ72の検出結果が、直接的に走行駆動力出力装置200、ステアリング装置210、またはブレーキ装置220に出力されてもよい。
【0029】
切替スイッチ80は、運転者等によって操作されるスイッチである。切替スイッチ80は、運転者等の操作を受け付け、走行制御部160による制御モードを自動運転モードまたは手動運転モードのいずれか一方に指定する制御モード指定信号を生成し、切替制御部150に出力する。自動運転モードとは、上述したように、運転者が操作を行わない(或いは手動運転モードに比して操作量が小さい、または操作頻度が低い)状態で走行する運転モードであり、より具体的には、行動計画に基づいて走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220の一部または全部を制御する運転モードである。また、切替スイッチ80は、自動運転モードを切り替える操作の他、種々の操作を受け付けてもよい。
【0030】
車両制御システム100の説明に先立って、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220について説明する。
【0031】
走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、自車両Mが内燃機関を動力源とした自動車である場合、エンジン、変速機、およびエンジンを制御するエンジンECU(Electronic Control Unit)を備え、自車両Mが電動機を動力源とした電気自動車である場合、走行用モータおよび走行用モータを制御するモータECUを備え、自車両Mがハイブリッド自動車である場合、エンジン、変速機、およびエンジンECUと走行用モータおよびモータECUとを備える。走行駆動力出力装置200がエンジンのみを含む場合、エンジンECUは、後述する走行制御部160から入力される情報に従って、エンジンのスロットル開度やシフト段等を調整する。走行駆動力出力装置200が走行用モータのみを含む場合、モータECUは、走行制御部160から入力される情報に従って、走行用モータに与えるPWM信号のデューティ比を調整する。走行駆動力出力装置200がエンジンおよび走行用モータを含む場合、エンジンECUおよびモータECUは、走行制御部160から入力される情報に従って、互いに協調して走行駆動力を制御する。
【0032】
ステアリング装置210は、例えば、ステアリングECUと、電動モータとを備える。
電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、車両制御システム100から入力される情報、或いは入力されるステアリング操舵角またはステアリングトルクの情報に従って電動モータを駆動し、転舵輪の向きを変更させる。
【0033】
ブレーキ装置220は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、制動制御部とを備える電動サーボブレーキ装置である。電動サーボブレーキ装置の制動制御部は、走行制御部160から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。電動サーボブレーキ装置は、ブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置220は、上記説明した電動サーボブレーキ装置に限らず、電子制御式油圧ブレーキ装置であってもよい。電子制御式油圧ブレーキ装置は、走行制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する。また、ブレーキ装置220は、走行駆動力出力装置200に含まれ得る走行用モータによる回生ブレーキを含んでもよい。
【0034】
[車両制御システム]
以下、車両制御システム100について説明する。車両制御システム100は、例えば、一以上のプロセッサまたは同等の機能を有するハードウェアにより実現される。車両制御システム100は、CPUなどのプロセッサ、記憶装置、および通信インターフェースが内部バスによって接続されたECU(Electronic Control Unit)、或いはMPU(Micro-Processing Unit)などが組み合わされた構成であってよい。
【0035】
図2に戻り、車両制御システム100は、例えば、目標車線決定部110と、自動運転制御部120と、走行制御部160と、記憶部180とを備える。自動運転制御部120は、例えば、自動運転モード制御部130と、自車位置認識部140と、外界認識部142と、行動計画生成部144と、軌道生成部146と、切替制御部150とを備える。目標車線決定部110、自動運転制御部120の各部、および走行制御部160のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。
【0036】
記憶部180には、例えば、高精度地図情報182、目標車線情報184、行動計画情報186などの情報が格納される。記憶部180は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部180に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部180にインストールされてもよい。また、車両制御システム100は、複数のコンピュータ装置によって分散化されたものであってもよい。
【0037】
目標車線決定部110は、例えば、MPUにより実現される。目標車線決定部110は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、高精度地図情報182を参照してブロックごとに目標車線を決定する。目標車線決定部110は、例えば、左から何番目の車線を走行するといった決定を行う。目標車線決定部110は、例えば、経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、目標車線を決定する。目標車線決定部110により決定された目標車線は、目標車線情報184として記憶部180に記憶される。
【0038】
高精度地図情報182は、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報である。高精度地図情報182は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、高精度地図情報182には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。
【0039】
自動運転モード制御部130は、自動運転制御部120が実施する自動運転のモードを決定する。本実施形態における自動運転のモードには、以下のモードが含まれる。なお、以下はあくまで一例であり、自動運転のモードの数や種類は任意に決定されてよい。
[モードA]
モードAは、最も自動運転の度合が高いモードである。モードAが実施されている場合、複雑な合流制御など、全ての車両制御が自動的に行われるため、車両乗員は自車両Mの周辺や状態を監視する必要が無い。
[モードB]
モードBは、モードAの次に自動運転の度合が高いモードである。モードBが実施されている場合、原則として全ての車両制御が自動的に行われるが、場面に応じて自車両Mの運転操作が車両乗員に委ねられる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある。
[モードC]
モードCは、モードBの次に自動運転の度合が高いモードである。モードCが実施されている場合、車両乗員は、場面に応じた切替スイッチ80に対する確認操作を行う必要がある。モードCでは、例えば、車線変更のタイミングが車両乗員に通知され、車両乗員が切替スイッチ80に対して車線変更を指示する操作を行った場合に、自動的な車線変更が行われる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある。
【0040】
自動運転モード制御部130は、切替スイッチ80に対する車両乗員の操作、行動計画生成部144により決定されたイベント、軌道生成部146により決定された走行態様などに基づいて、自動運転のモードを決定する。自動運転のモードには、自車両Mの検知デバイスDDの性能等に応じた限界が設定されてもよい。例えば、検知デバイスDDの性能が低い場合には、モードAは実施されないものとしてよい。いずれのモードにおいても、切替スイッチ80における運転操作系の構成に対する操作によって、手動運転モードに切り替えること(オーバーライド)は可能である。
【0041】
自動運転制御部120の自車位置認識部140は、記憶部180に格納された高精度地図情報182と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、自車両Mが走行している車線(走行車線)、および、走行車線に対する自車両Mの相対位置を認識する。
【0042】
自車位置認識部140は、例えば、高精度地図情報182から認識される道路区画線のパターン(例えば実線と破線の配列)と、カメラ40によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。
この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
【0043】
図3は、自車位置認識部140により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。自車位置認識部140は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置として認識する。なお、これに代えて、自車位置認識部140は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部140により認識される自車両Mの相対位置は、目標車線決定部110に提供される。
【0044】
外界認識部142は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両とは、例えば、自車両Mの周辺を走行する車両であって、自車両Mと同じ方向に走行する車両である。周辺車両の位置は、他車両の重心やコーナー等の代表点で表されてもよいし、他車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、上記各種機器の情報に基づいて把握される、周辺車両の加速度、車線変更をしているか否か(あるいは車線変更をしようとしているか否か)を含んでもよい。また、外界認識部142は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
【0045】
行動計画生成部144は、自動運転のスタート地点、および/または自動運転の目的地を設定する。自動運転のスタート地点は、自車両Mの現在位置であってもよいし、自動運転を指示する操作がなされた地点でもよい。行動計画生成部144は、そのスタート地点と自動運転の目的地との間の区間において、行動計画を生成する。なお、これに限らず、行動計画生成部144は、任意の区間について行動計画を生成してもよい。
【0046】
行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、自車両Mを減速させる減速イベントや、自車両Mを加速させる加速イベント、走行車線を逸脱しないように自車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、自車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように自車両Mを走行させたりする分岐イベント、本線に合流するための合流車線において自車両Mを加減速させ、走行車線を変更させる合流イベント、自動運転の開始地点で手動運転モードから自動運転モードに移行させたり、自動運転の終了予定地点で自動運転モードから手動運転モードに移行させたりするハンドオーバイベント等が含まれる。行動計画生成部144は、目標車線決定部110により決定された目標車線が切り替わる箇所において、車線変更イベント、分岐イベント、または合流イベントを設定する。行動計画生成部144によって生成された行動計画を示す情報は、行動計画情報186として記憶部180に格納される。
【0047】
図4は、ある区間について生成された行動計画の一例を示す図である。図示するように、行動計画生成部144は、目標車線情報184が示す目標車線上を自車両Mが走行するために必要な行動計画を生成する。なお、行動計画生成部144は、自車両Mの状況変化に応じて、目標車線情報184に拘わらず、動的に行動計画を変更してもよい。例えば、行動計画生成部144は、車両走行中に外界認識部142によって認識された周辺車両の速度が閾値を超えたり、自車線に隣接する車線を走行する周辺車両の移動方向が自車線方向に向いたりした場合に、自車両Mが走行予定の運転区間に設定されたイベントを変更する。例えば、レーンキープイベントの後に車線変更イベントが実行されるようにイベントが設定されている場合において、外界認識部142の認識結果によって当該レーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部144は、レーンキープイベントの次のイベントを、車線変更イベントから減速イベントやレーンキープイベント等に変更してよい。この結果、車両制御システム100は、外界の状態に変化が生じた場合においても、安全に自車両Mを自動走行させることができる。
【0048】
図5は、軌道生成部146の構成の一例を示す図である。軌道生成部146は、例えば、走行態様決定部146Aと、軌道候補生成部146Bと、評価・選択部146Cとを備える。
【0049】
走行態様決定部146Aは、例えば、レーンキープイベントを実施する際に、定速走行、追従走行、低速追従走行、減速走行、カーブ走行、障害物回避走行などのうちいずれかの走行態様を決定する。この場合、走行態様決定部146Aは、自車両Mの前方に他車両が存在しない場合に、走行態様を定速走行に決定する。また、走行態様決定部146Aは、前走車両に対して追従走行するような場合に、走行態様を追従走行に決定する。また、走行態様決定部146Aは、渋滞場面などにおいて、走行態様を低速追従走行に決定する。また、走行態様決定部146Aは、外界認識部142により前走車両の減速が認識された場合や、停車や駐車などのイベントを実施する場合に、走行態様を減速走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mがカーブ路に差し掛かったことが認識された場合に、走行態様をカーブ走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mの前方に障害物が認識された場合に、走行態様を障害物回避走行に決定する。また、走行態様決定部146Aは、車線変更イベント、追い越しイベント、分岐イベント、合流イベント、ハンドオーバイベントなどを実施する場合に、それぞれのイベントに応じた走行態様を決定する。
【0050】
軌道候補生成部146Bは、走行態様決定部146Aにより決定された走行態様に基づいて、軌道の候補を生成する。図6は、軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。図6は、自車両Mが車線L1から車線L2に車線変更する場合に生成される軌道の候補を示している。
【0051】
軌道候補生成部146Bは、図6に示すような軌道を、例えば、将来の所定時間ごとに、自車両Mの所定位置(例えば重心や後輪軸中心)が到達すべき目標軌道点(軌道点K)の集まりとして決定する。図7は、軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。軌道点Kの間隔が広いほど、自車両Mの速度は速くなり、軌道点Kの間隔が狭いほど、自車両Mの速度は遅くなる。従って、軌道候補生成部146Bは、加速したい場合には軌道点Kの間隔を徐々に広くし、減速したい場合は軌道点の間隔を徐々に狭くする。
【0052】
このように、軌道点Kは速度成分を含むものであるため、軌道候補生成部146Bは、軌道点Kのそれぞれに対して目標速度を与える必要がある。目標速度は、走行態様決定部146Aにより決定された走行態様に応じて決定される。
【0053】
ここで、車線変更(分岐を含む)を行う場合の目標速度の決定手法について説明する。
軌道候補生成部146Bは、まず、車線変更ターゲット位置(或いは合流ターゲット位置)を設定する。車線変更ターゲット位置は、周辺車両との相対位置として設定されるものであり、「どの周辺車両の間に車線変更するか」を決定するものである。軌道候補生成部146Bは、車線変更ターゲット位置を基準として3台の周辺車両に着目し、車線変更を行う場合の目標速度を決定する。図8は、車線変更ターゲット位置TAを示す図である。
図中、L1は自車線を表し、L2は隣接車線を表している。ここで、自車両Mと同じ車線で、自車両Mの直前を走行する周辺車両を前走車両mA、車線変更ターゲット位置TAの直前を走行する周辺車両を前方基準車両mB、車線変更ターゲット位置TAの直後を走行する周辺車両を後方基準車両mCと定義する。自車両Mは、車線変更ターゲット位置TAの側方まで移動するために加減速を行う必要があるが、この際に前走車両mAに追いついてしまうことを回避しなければならない。このため、軌道候補生成部146Bは、3台の周辺車両の将来の状態を予測し、各周辺車両と干渉しないように目標速度を決定する。
【0054】
図9は、3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。図中、mA、mBおよびmCから延出する直線は、それぞれの周辺車両が定速走行したと仮定した場合の進行方向における変位を示している。自車両Mは、車線変更が完了するポイントCPにおいて、前方基準車両mBと後方基準車両mCとの間にあり、且つ、それ以前において前走車両mAよりも後ろにいなければならない。このような制約の下、軌道候補生成部146Bは、車線変更が完了するまでの目標速度の時系列パターンを、複数導出する。そして、目標速度の時系列パターンをスプライン曲線等のモデルに適用することで、図7に示すような軌道の候補を複数導出する。なお、3台の周辺車両の運動パターンは、図9に示すような定速度に限らず、定加速度、定ジャーク(躍度)を前提として予測されてもよい。
【0055】
評価・選択部146Cは、軌道候補生成部146Bにより生成された軌道の候補に対して、例えば、計画性と安全性の二つの観点で評価を行い、走行制御部160に出力する目標軌道を選択する。計画性の観点からは、例えば、既に生成されたプラン(例えば行動計画)に対する追従性が高く、軌道の全長が短い場合に軌道が高く評価される。例えば、右方向に車線変更することが望まれる場合に、一旦左方向に車線変更して戻るといった軌道は、低い評価となる。安全性の観点からは、例えば、それぞれの軌道点において、自車両Mと物体(周辺車両等)との距離が遠く、加減速度や操舵角の変化量などが小さいほど高く評価される。
【0056】
切替制御部150は、切替スイッチ80から入力される信号に基づいて自動運転モードと手動運転モードとを相互に切り替える。また、切替制御部150は、操作デバイス70に対する加速、減速または操舵を指示する操作に基づいて、自動運転モードから手動運転モードに切り替える。例えば、切替制御部150は、操作デバイス70から入力された信号の示す操作量が閾値を超えた状態が、基準時間以上継続した場合に、自動運転モードから手動運転モードに切り替える(オーバーライド)。また、切替制御部150は、オーバーライドによる手動運転モードへの切り替えの後、所定時間の間、操作デバイス70に対する操作が検出されなかった場合に、自動運転モードに復帰させてもよい。
【0057】
走行制御部160は、例えば、図2に示したように、加減速制御部162と、操舵角制御部164とを含む。走行制御部160は、軌道候補生成部146Bによって生成された軌道を、予定の時刻(軌道点に対応付けられた時刻)通りに自車両Mが通過するように、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220を制御する。なお、本実施形態では、操舵角制御部164は、走行制御部160の一部として説明するが、操舵角制御部164は、軌道生成部146の一部であってもよい。
【0058】
図10は、加減速制御部162および操舵角制御部164と、その制御対象との関係を示す図である。加減速制御部162および操舵角制御部164は、自動運転制御部120における軌道生成部146から目標軌道が供給されると共に、ナビゲーション装置50および自車位置認識部140により特定された自車両の位置が供給される。加減速制御部162は、自動運転制御部120から取得した目標軌道および自車両Mの位置に基づいて、走行駆動力出力装置200およびブレーキ装置220を制御する。操舵角制御部164は、自動運転制御部120から取得した目標軌道および自車両Mの位置に基づいて、ステアリング装置210を制御する。
【0059】
[操舵角制御部の機能]
図11は、操舵角制御部164の機能の一例を示す図である。操舵角制御部164は、例えば、注視位置導出部170、第1操舵角導出部172、第2操舵角導出部174、および統合部176を備える。
【0060】
注視位置導出部170は、自車両Mの注視位置(基準位置)を導出する。注視位置導出部170は、自車両Mが、自車両Mの位置に最も近い目標軌道上の位置から、所定時間だけ目標軌道上を走行したと仮定した場合における、自車両Mの目標軌道上の位置を、注視位置として設定する。
【0061】
第1操舵角導出部172は、自車両Mの進行方向に沿った接線を有し且つ注視位置と自車両Mの位置とを通る仮想的な円弧に基づいて、自車両Mの操舵を制御する。ここで、自車両Mの進行方向とは、車両の中心軸の方向であってもよいし、その瞬間の自車両Mの速度ベクトルの向く方向であってもよいし、これらに対してヨーレートに基づく補正を行った方向であってもよい。
【0062】
図12は、第1操舵角導出部172による操舵角の導出処理を説明するための図である。図12(A)は第1操舵角の導出処理の流れを示し、図12(B)は、自車両の位置の推移を示す。第1操舵角導出部172は、自車両Mが所定の定常円上を旋回するものとして仮定する。定常円とは、例えばステアリングホイールをある切れ角に転蛇した状態で走行した場合の旋回軌跡である。
【0063】
例えば第1操舵角導出部172は、目標軌道における、時刻tの自車両Mの位置(現在位置;x0,y0)、時刻t+1の自車両Mの位置(x1,y1)、および時刻t+2の自車両Mの位置(x2,y2)を導出する。第1操舵角導出部172は、自車両Mが、この3点の位置を通過する定常円を、ある時間において旋回するものとして仮定し、定常円の曲率を導出する。第1操舵角導出部172は、定常状態で自車両Mが定常円を旋回するものとみなして、下記式(1)に基づいて、自車両Mの操舵角を導出する。下記式(1)において、δは操舵角(ハンドル角)、kは定常円の曲率、Aはスタビリティファクタ、Vは車速、Lはホイールベース、nはギア比である。操舵角は、例えば絶対値で示され、以下の説明においても同様である。
δ=k×(1+A×V)×L×n・・・(1)
【0064】
なお、第1操舵角導出部172は、目標軌道における、時刻tの自車両Mの位置(現在位置;x0,y0)、時刻t−1の自車両Mの位置(−x1,−y1)、および時刻t+1の自車両Mの位置(x1,y1)を導出し、この3点の位置を通過する定常円を用いて曲率を導出してもよい。
【0065】
また、第1操舵角導出部172は、円弧の曲率が所定値(第2所定値)を超える場合、円弧の曲率を所定値以下に修正することで、自車両Mの操舵の制御を制限してもよい。円弧は、定常円の円周の一部である。
【0066】
第2操舵角導出部174は、自車両Mの進行方向に直交する方向における注視位置と自車両Mの位置との偏差が大きくなるほど自車両Mの操舵の制御を大きくするための第2操舵角を導出する。
【0067】
図13は、第2操舵角導出部174による第2操舵角の導出についての概念図である。
図13(A)は第2操舵角の導出処理の流れを示し、図13(B)は、第2操舵角が導出される様子を示す。第2操舵角導出部174は、自車両Mの進行方向に直交する方向における目標軌道KL上の注視位置OBと自車両Mの位置との横方向のずれGを導出する。更に、第2操舵角導出部174は、ずれGおよび車速をパラメータとした関数に基づいて指標値を導出し、導出した指標値に係数Kを加味して新たな指標値を導出する。また、第2操舵角導出部174は、導出した新たな指標値と車速とに基づいて、第2操舵角を導出する。なお、第2操舵角導出部174は、ずれGが所定値(第1所定値)以上の場合、或いは第2操舵角が所定角以上の場合、自車両Mの操舵の制御を制限してもよい。これによって、第2操舵角導出部174は、自車両Mが急旋回することを抑制することができる。
【0068】
統合部176は、第1操舵角と第2操舵角とを統合して、ステアリング装置210に出力する操舵角を導出する。統合部176は、車速に応じて第1操舵角および第2操舵角に対する重み付けを変更してもよい。具体的には、統合部176は、低車速(例えば車速が第1の所定速度以下)の場合には、第1操舵角の重み付けを第2操舵角の重み付けに対して大きくする。円弧に基づいて導出される第1操舵角は、低車速では誤差が小さいためである。一方に、高車速(第2の所定速度以上)では、第2操舵角の重み付けを第1操舵角の重み付けに対して大きくすることで、第1操舵角のズレを補償することができる。
【0069】
[操舵角制御部の処理]
図14は、操舵角制御部164により実行される処理の流れを示すフローチャートである。本処理は、自動運転制御部120の処理周期ごとに実行される。
【0070】
まず、操舵角制御部164の注視位置導出部170は、自車両Mに近い目標軌道上の位置を設定する(ステップS100)。次に、操舵角制御部164は、設定した位置と、自車両Mの車速とに基づいて、所定時間後の自車両Mの注視位置を導出する(ステップS102)。
【0071】
図15は、注視位置が導出される様子の一例を示す図である。図15は、自車両Mの位置が目標軌道から乖離している場面を示している。乖離しているとは、自車両Mの重心などの「所定位置」が、目標軌道のうち「所定位置」から最も近い位置から、所定距離以上、離れていることをいう。図15に示すように、注視位置導出部170は、自車両Mに最も近い目標軌道KL上の位置である始点Sを設定する。注視位置導出部170は、自車両Mが始点Sから所定時間Trefの間に走行した位置(或いは所定距離走行した位置;以下同様)を注視位置OBとして設定する。注視位置導出部170は、車速に所定時間Trefを乗算することで所定時間Trefにおいて自車両Mが走行する距離Dを導出する。注視位置導出部170は、目標軌道KL上において始点Sから距離Dの位置を注視位置OBとして設定する。
【0072】
上述した注視位置OBを求めるのに使用される所定時間Trefは、走行制御部160が処理を実行する1サンプリング時間Tsに比して長い時間である。例えば走行制御部160の処理周期が0.1秒である場合、所定時間Trefは0.5秒である。この場合、注視位置OBは0.5秒後に自車両Mが位置すると仮定された位置である。
【0073】
次に、第1操舵角導出部172は、現在の自車両Mの位置と注視位置OBとを結ぶ円弧を導出する(ステップS104)。次に、第1操舵角導出部172は、導出した円弧上を走行するための第1操舵角を導出する(ステップS106)。
【0074】
図16は、第1操舵角導出部172により導出される円弧ARについて説明するための図である。図16に示すように、第1操舵角導出部172は、現在の自車両Mの位置と注視位置OBとを結ぶ円弧ARを導出する。円弧ARは、例えば自車両Mの進行方向に沿った接線TLを有し、注視位置OBと自車両Mの位置とを通るものである。そして、第1操舵角導出部172は、導出した円弧AR上を走行するための操舵角を導出する。また、図中、OPは、走行制御部160の1サンプリング時間Tsの処理で自車両Mが走行したと仮定した円弧AR上の移動位置である。
【0075】
次に、第2操舵角導出部174が、自車両Mと注視位置OBとの横方向のずれ(偏差)に基づいて、第2操舵角を導出する(ステップS108)。
【0076】
次に、統合部176が、第1操舵角および第2操舵角を統合して、制御に用いる操舵角を導出する(ステップS110)。統合部176は、第1操舵角および第2操舵角を合算して操舵角を導出してもよいし、第1操舵角および第2操舵角に対してそれぞれに重みを付け、加重和を求めることで、操舵角を導出してもよい。また、統合部176は、導出した操舵角が所定角以上である場合、操舵角を所定角、または所定角以下に制限してもよい。これにより本フローチャートの処理は終了する。
【0077】
なお、第1操舵角、第2操舵角、統合部176によって導出された操舵角のうち、一部または全部の操舵角が所定角以上である場合、操舵角が所定角以上に制御される前に、操舵角制御部164は、車両乗員にハンドオーバを促してもよい。この場合、例えば、操舵角制御部164は、スピーカ64や表示装置62にハンドオーバを促す通知を出力させる。これにより、自動運転において操舵角が所定角以上で制御されることが抑制される。また、操舵角が所定角以上で操舵されることを認識しない状態で、乗員がハンドオーバすることが抑制される。
【0078】
図17から図20を参照して、自車両Mが制御される様子を説明する。図17から図20は、処理周期(2)から(5)における自車両Mが制御される様子の一例を示す図である。操舵角制御部164は、処理周期ごとに操舵角を導出する。自車両Mは、処理周期ごとに導出された操舵角に基づいて制御される。なお、前述した図16は、処理周期(1)である。
【0079】
処理周期(1)で、次の処理周期(2)の自車両Mの注視位置OBが導出されたものとする。図17に示すように、処理周期(2)において、処理周期(1)で導出された円弧AR上の移動位置OPに自車両Mが移動する。そして、処理周期(3)の自車両Mの円弧ARが導出される。
【0080】
図18に示すように、処理周期(3)において、処理周期(2)で導出された円弧AR上の移動位置OPに自車両Mが移動し、処理周期(4)の自車両Mの円弧ARが導出される。
【0081】
図19に示すように、処理周期(4)において、処理周期(3)で導出された円弧AR上の移動位置OPに自車両Mが移動し、図20に示すように、処理周期(5)において、処理周期(4)で導出された円弧AR上の移動位置OPに自車両Mが移動する。
【0082】
このように、処理周期ごとに注視位置OBが導出され、注視位置OBと自車両Mとを繋ぐ円弧ARが導出される。操舵角制御部164は、導出された円弧ARに基づいて、操舵角を導出する。この結果、自車両Mは、滑らかな軌道で目標軌道に近づくことができる。
また、自車両Mは、目標軌道に沿うように、その目標軌道に進入することができる。この結果、よりスムーズな操舵制御を実現することができる。
【0083】
また、上記では、一例として、自車両Mの位置が目標軌道から所定以上乖離している場面について説明したが、ここでは自車両Mの位置が目標軌道から所定以上乖離していない場面、または自車両Mの位置と目標軌道とが合致する場面の処理について説明する。
【0084】
注視位置導出部170は、目標軌道の曲率に応じて、自車両Mの注視位置を導出する。
例えば、注視位置導出部170は、目標軌道の曲率が大きくなる程、注視位置を自車両Mの近くに導出し、目標軌道の曲率がゼロ(直線)に近い程、注視位置を自車両Mの遠くに導出する。第1操舵角導出部172は、例えば、現在の自車両Mの位置と注視位置とを結ぶ円弧を導出し、導出した円弧上を走行するための第1操舵角を導出する。
【0085】
図21は、目標軌道が所定の曲率を有する場合に導出される注視位置の一例を示す図である。自車両Mの位置が目標軌道上に存在する場合において、注視位置導出部170は、目標軌道が所定の曲率を有する場合、自車両Mに近い位置OB1を注視位置として導出する。この場合、自車両Mと位置OB1とを通る円弧の半径は小さくなり、自車両Mは、目標軌道とのズレが小さい状態で走行する。例えば注視位置導出部170が、注視位置を自車両Mに遠い位置OB2に導出すると、注視位置と自車両Mとを通る円弧は、目標軌道から外れるため、自車両Mは、目標軌道とのズレが大きい状態で走行する。
【0086】
このように、目標軌道の曲率に応じて、自車両Mの注視位置が導出されることにより、目標軌道の曲率が大きい場合、円弧の半径は小さくなり、自車両Mは目標軌道に対して追従性よく制御される。この結果、曲率の大きい目標軌道と自車両Mの位置との間にずれを生じることが抑制される。また、目標軌道の曲率がゼロに近い場合、円弧の半径は大きくなり直線に近づくため、自車両Mの走行安定性が向上する。
【0087】
また、注視位置導出部170は、目標軌道の軌道点Kのそれぞれに対して与えられる目標速度に応じて、自車両Mの注視位置を導出する。例えば、注視位置導出部170は、目標速度が速い程、走行安定性を向上させるために、注視位置を遠くに導出する。一方、注視位置導出部170は、目標速度が遅い程、目標軌道に対して追従性よく自車両を制御するために、注視位置を近くに導出する。
【0088】
例えば、目標軌道は、横方向に関する重力加速度(横G)が所定値以下で自車両Mが走行することができる軌道である。カーブ路では、例えば、横Gが所定値を超えないように、目標速度は所定速度以下に設定される。従って、カーブ路の注視位置は、直線路の注視位置に比して、自車両Mの近くとなる。
【0089】
上述したように、目標軌道の曲率が小さい場合、または目標車速が速い場合、注視位置は自車両Mから遠くに設定されることで、自車両Mの挙動は安定する。一方、目標軌道の曲率が大きい場合、または目標車速が遅い場合、注視位置は自車両Mから近くに設定されることで、自車両Mは目標軌道に対して追従性よく制御されるため、目標軌道と自車両Mとのズレは抑制される。
【0090】
なお、第2操舵角導出部174は、自車両Mと注視位置OBとの横方向のずれ(偏差)に基づいて、第2操舵角を導出する。統合部176は、第1操舵角および第2操舵角を統合して、自車両Mの位置と目標軌道との関係を加味した操舵角を導出する。
【0091】
以上説明した第1の実施形態によれば、車両制御システム100が、自車両Mの進行方向に沿った接線TLを有し、注視位置OBと自車両Mの位置とを通る円弧ARに基づいて導出した第1操舵角と、自車両Mの進行方向に直交する方向における注視位置OBと自車両Mの位置との偏差が大きくなるほど自車両Mの操舵の制御を大きくするための第2操舵角とに基づいて自車両Mの操舵を制御することにより、よりスムーズな操舵制御を実現することができる。
【0092】
(第2の実施形態)
以下、第2の実施形態について説明する。図22は、第2の実施形態の操舵角制御部164Aの機能の一例を示す図である。第2の実施形態における操舵角制御部164Aでは、第2操舵角導出部174および統合部176が省略されてよい。操舵角制御部164Aは、第1の実施形態と比較すると、注視位置導出部164Aaおよび操舵角導出部164Abを備える。注視位置導出部164Aaおよび操舵角導出部164Abは、それぞれ第1の実施形態の注視位置導出部170および第1操舵角導出部172と同等の機能を有する。以下、第1の実施形態との相違点を中心に説明する。
【0093】
図23は、操舵角制御部164Aにより実行される処理の流れを示すフローチャートである。
【0094】
まず、操舵角制御部164Aの注視位置導出部164Aaは、自車両Mに近い目標軌道上の位置を設定する(ステップS200)。次に、操舵角制御部164Aは、設定した位置と、自車両Mの車速とに基づいて、所定時間後の自車両Mの注視位置を導出する(ステップS202)。
【0095】
次に、操舵角導出部164Abは、現在の自車両Mの位置と注視位置とを結ぶ円弧を導出する(ステップS204)。次に、操舵角導出部164Abは、導出した円弧上を走行するための操舵角を導出する(ステップS206)。
【0096】
次に、操舵角導出部164Abは、車速と第1操舵角とに基づいて、操舵角を導出する(ステップS208)。これにより本フローチャートの処理は終了する。例えば操舵角導出部164Abは、車速と最大操舵角とが対応付けられた操舵角マップMPを参照して、操舵角を導出する。操舵角導出部164Abは、操舵角マップMPを参照することで、操舵角が所定以下に制限されるように操舵角を導出する。図24は、操舵角マップMPの一例を示す図である。縦軸は操舵角の最大値を示し、横軸は車速を示している。操舵角マップMPにおいて、車速が所定の車速以下の場合、車速が速くなる程、操舵角の最大値が小さくなり、車速が所定の車速を超える場合、操舵角の最大値が所定角に固定される。この所定角は、設定される最大値のうち、最も小さい最大値である。
【0097】
以上説明した第2の実施形態によれば、車両制御システム100が、自車両Mの進行方向に沿った接線TLを有し、注視位置OBと自車両Mの位置とを通る円弧ARに基づいて導出した第1操舵角に基づいて自車両Mの操舵を制御することにより、処理負荷を軽減しつつ、自車両Mが滑らかに目標軌道上に戻るように制御することができる。
【0098】
(第3の実施形態)
以下、第3の実施形態について説明する。第3の実施形態における車両制御システム100Aは、自動運転が実行されている場合に操舵を導出するのではなく、手動運転が実行されている場合に操舵角を導出する点で、第1の実施形態と相違する。以下、係る相違点を中心に説明する。
【0099】
図25は、第3の実施形態の車両制御システム100Aの機能構成の一例を示す図である。車両制御システム100Aは、自車位置認識部140、外界認識部142、カーブ判定部147、目標軌道設定部148(軌道生成部)、走行制御部160、および高精度地図情報182が格納された記憶部180を含む。
【0100】
カーブ判定部147は、自車位置認識部140により認識される自車両Mの位置と高精度地図情報182とを照合した結果に基づいて、自車両Mが走行する、または走行する予定の道路がカーブ路であるか否かを判定する。
【0101】
目標軌道設定部148は、カーブ判定部147によって自車両Mがカーブ路を走行する、または走行する予定であると判定された場合、カーブ路における目標軌道を生成する。
カーブ路における目標軌道とは、例えばカーブ路における中央の点を連ねた軌道である。
【0102】
操舵角制御部164は、目標軌道設定部148により設定された目標軌道に基づいて、操舵角を導出する。本実施形態では、操舵角制御部164が、操舵角を導出するタイミングは、カーブ路において、自車両Mの位置が目標軌道から乖離している場合、或いは乖離した場合であるものとして説明する。乖離している場合、或いは乖離した場合とは、自車両Mの重心などの「所定位置」が、目標軌道のうち「所定位置」から最も近い位置から、所定距離以上、離れていることをいう。操舵角制御部164は、自車両Mの位置が目標軌道から乖離している場合、或いは乖離した場合、自車両Mが目標軌道上を走行するように操舵角を導出する。操舵角制御部164は、ステアリング装置210に導出した操舵角を出力することで、車両乗員の手動運転をアシストする。なお、このアシスト機能は、切替スイッチ80が操作されることでオンまたはオフに制御されてよい。
【0103】
例えばアシスト機能がオン状態に設定されている状態で、車両乗員の操作の誤りによって自車両Mの位置が目標軌道から乖離した場合、自車両Mは、操舵角制御部164により導出された操舵角に基づいて制御される。これにより自車両Mは、目標軌道上を走行するように制御される。
【0104】
以上説明した第3の実施形態によれば、車両制御システム100Aは、手動運転が実施されている場合において、自車両Mが目標軌道から乖離したときに、自車両Mが目標軌道上を走行するように手動運転をアシストすることによって、自車両Mの走行安定性を向上させることができる。
【0105】
以上説明した実施形態によれば、車両の位置を認識する位置認識部と、車両の将来の目標軌道を生成する軌道生成部と、目標軌道上に前記位置認識部により認識された車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ基準位置と車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する走行制御部とを備えることにより、よりスムーズな操舵制御を実現することができる。
【0106】
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
【符号の説明】
【0107】
20…ファインダ、30…レーダ、40…カメラ、DD…検知デバイス、50…ナビゲーション装置、60…車両センサ、62…表示装置、100…車両制御システム、110…目標車線決定部、120…自動運転制御部、130…自動運転モード制御部、140…自車位置認識部、142…外界認識部、144…行動計画生成部、146…軌道生成部、146A…走行態様決定部、146B…軌道候補生成部、146C…評価・選択部、147…カーブ判定部、148…目標軌道設定部、150…切替制御部、160…走行制御部、162…加減速制御部、164…操舵角制御部、170‥注視位置導出部、172‥第1操舵角導出部、174‥第2操舵角導出部、176…統合部、180…記憶部、200…走行駆動力出力装置、210…ステアリング装置、220…ブレーキ装置、M…自車両
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25

【手続補正書】
【提出日】2017年10月13日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
車両の位置を認識する位置認識部と、
前記車両の目標軌道を生成する軌道生成部と、
前記軌道生成部により生成された目標軌道上に、前記位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御する走行制御部と、
を備え、
前記走行制御部は、前記車両が、前記位置認識部により認識された前記車両の位置に最も近い前記目標軌道上の位置から、所定時間または所定距離だけ前記目標軌道上を走行したと仮定した場合における、前記車両の前記目標軌道上の位置を、前記基準位置として設定する
車両制御システム。
【請求項2】
(削除)
【請求項3】
前記走行制御部は、
前記円弧に基づく第1の指標値と、前記車両の進行方向に直交する方向における前記基準位置と前記車両の位置との偏差が大きくなるほど前記車両の操舵の制御を大きくするための第2の指標値とを導出し、
前記第1の指標値および前記第2の指標値に基づいて、前記車両の操舵を制御する、
請求項1記載の車両制御システム。
【請求項4】
前記走行制御部は、前記偏差が第1所定値以上の場合、前記車両の操舵の制御を制限する、
請求項3記載の車両制御システム。
【請求項5】
前記走行制御部は、前記円弧の曲率が第2所定値を超える場合、前記車両の操舵の制御を制限する、
請求項1,3,4のうちいずれか1項記載の車両制御システム。
【請求項6】
前記走行制御部は、前記車両が、前記基準位置を求めるのに使用される所定時間よりも短い時間だけ前記円弧上を走行した場合における、前記車両の前記円弧上の位置と、前記位置認識部により認識された前記車両の位置とに基づいて、前記車両の操舵を制御する、
請求項3記載の車両制御システム。
【請求項7】
車載コンピュータが、
車両の将来の目標軌道を生成し、
前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定し、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御し、
前記車両が、前記位置認識部により認識された前記車両の位置に最も近い前記目標軌道上の位置から、所定時間または所定距離だけ前記目標軌道上を走行したと仮定した場合における、前記車両の前記目標軌道上の位置を、前記基準位置として設定する
車両制御方法。
【請求項8】
車載コンピュータに、
車両の将来の目標軌道を生成させ、
前記生成された目標軌道上に、車両の位置を認識する位置認識部により認識された前記車両の位置に対する基準位置を設定させ、前記車両の進行方向に沿った接線を有し且つ前記基準位置と前記車両の位置とを通る円弧に基づいて、前記車両の操舵を制御させ、
前記車両が、前記位置認識部により認識された前記車両の位置に最も近い前記目標軌道上の位置から、所定時間または所定距離だけ前記目標軌道上を走行したと仮定した場合における、前記車両の前記目標軌道上の位置を、前記基準位置として設定する
車両制御プログラム。
【国際調査報告】