特表-18179145IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝三菱電機産業システム株式会社の特許一覧
<>
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000003
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000004
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000005
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000006
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000007
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000008
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000009
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000010
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000011
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000012
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000013
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000014
  • 再表WO2018179145-電力変換装置およびそのテスト方法 図000015
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2018年10月4日
【発行日】2019年12月26日
(54)【発明の名称】電力変換装置およびそのテスト方法
(51)【国際特許分類】
   H02M 7/48 20070101AFI20191129BHJP
   H02M 7/49 20070101ALI20191129BHJP
   G05F 1/70 20060101ALI20191129BHJP
【FI】
   H02M7/48 R
   H02M7/49
   G05F1/70 N
【審査請求】有
【予備審査請求】未請求
【全頁数】20
【出願番号】特願2019-508433(P2019-508433)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2017年3月29日
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ
(71)【出願人】
【識別番号】501137636
【氏名又は名称】東芝三菱電機産業システム株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】米村 直樹
(72)【発明者】
【氏名】土谷 多一郎
【テーマコード(参考)】
5H420
5H770
【Fターム(参考)】
5H420BB13
5H420CC05
5H420EA11
5H420EB09
5H420FF03
5H420FF04
5H420FF22
5H420FF24
5H770AA28
5H770BA11
5H770DA03
5H770DA23
5H770DA31
5H770EA01
5H770GA13
5H770GA17
5H770HA02Y
5H770HA03X
5H770HA03Y
5H770JA17X
5H770JA17Y
(57)【要約】
電力変換装置では、電力系統(1)と3個のアーム(A1〜A3)との間が遮断されているテスト期間(時刻t3〜t4)に、3個のアーム(A1〜A3)の循環電流(Iz)が指令値(Izrt)になるように、3個のアーム(A1〜A3)の各々のインバータ(10)を制御し、テスト期間における循環電流(Iz)に基づいて電力変換装置が正常であるか否かを判定する。したがって、電力系統(1)に影響することなく電力変換装置が正常であるか否かを判定できる。
【特許請求の範囲】
【請求項1】
電力変換装置であって、
デルタ接続された3個のアームを備え、
前記3個のアームの各々は、
直流電力を蓄えるコンデンサと、
直流電力を交流電力に変換するインバータとを含み、
さらに、電力系統と前記3個のアームとの間が遮断されているテスト期間に、前記3個のアームの循環電流が第1の指令値になるように、前記3個のアームの各々の前記インバータを制御する第1の制御部と、
前記電力系統と前記3個のアームとの間が導通している通常動作時に、前記電力系統と前記3個のアームとの間で授受される電力が第2の指令値になるように、前記3個のアームの各々の前記インバータを制御する第2の制御部とを備え、
前記テスト期間における前記循環電流に基づいて前記電力変換装置が正常であるか否かが判定される、電力変換装置。
【請求項2】
さらに、それらの第1端子がそれぞれ前記電力系統の三相交流電圧を受け、それらの第2端子がそれぞれ前記3個のアームに接続され、前記テスト期間の前の充電期間にオンされ、前記テスト期間にオフされ、前記通常動作時にオンされる3個のスイッチを備え、
前記充電期間に前記3個のスイッチがオンされると、前記電力系統から前記インバータを介して前記コンデンサに電流が流れて前記コンデンサに直流電力が蓄えられる、請求項1に記載の電力変換装置。
【請求項3】
さらに、それぞれ前記3個のアームに流れる電流を検出する3個の電流検出器を備え、
前記第1の制御部は、前記3個の電流検出器の検出値に基づいて前記循環電流を求め、求めた前記循環電流が前記第1の指令値になるように前記インバータを制御する、請求項1に記載の電力変換装置。
【請求項4】
さらに、テスト信号に応答して、予め定められた時間だけ前記第1の指令値を生成する信号発生部を備える、請求項1に記載の電力変換装置。
【請求項5】
前記第1の指令値は正弦波状に変化し、
前記信号発生部は、前記第1の指令値の振幅を最小値から最大値まで徐々に増大させた後に、前記最大値から前記最小値まで徐々に減少させる、請求項4に記載の電力変換装置。
【請求項6】
前記第1の指令値は正弦波状に変化し、
前記循環電流の振幅および位相が前記第1の指令値に追従して変化する場合は前記電力変換装置は正常であると判定され、
前記循環電流の振幅および位相が前記第1の指令値に追従して変化しない場合は前記電力変換装置は正常でないと判定される、請求項1に記載の電力変換装置。
【請求項7】
さらに、前記循環電流と前記第1の指令値との偏差に基づいて前記電力変換装置が正常であるか否かを判定し、判定結果を示す信号を出力する判定器を備える、請求項1に記載の電力変換装置。
【請求項8】
前記3個のアームの各々は複数の単位変換器を含み、
前記複数の単位変換器の各々は前記コンデンサおよび前記インバータを有し、
複数の前記インバータはカスケード接続されている、請求項1に記載の電力変換装置。
【請求項9】
前記電力変換装置は、前記電力系統の無効電力を補償する無効電力補償装置として使用される、請求項1に記載の電力変換装置。
【請求項10】
デルタ接続された3個のアームを備え、前記3個のアームの各々は、直流電力を蓄えるコンデンサと、直流電力を交流電力に変換するインバータとを含み、通常動作時には電力系統と前記3個のアームとの間で電力を授受する電力変換装置をテストする方法であって、
前記電力系統と前記3個のアームとの間が遮断されているテスト期間に、前記3個のアームの循環電流が指令値になるように、前記3個のアームの各々の前記インバータを制御し、前記テスト期間における前記循環電流に基づいて前記電力変換装置が正常であるか否かを判定する、電力変換装置のテスト方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は電力変換装置およびそのテスト方法に関し、特に、デルタ接続された3個のアームを備えた電力変換装置と、そのテスト方法に関する。
【背景技術】
【0002】
国際公開2012/099176号明細書(特許文献1)には、MMCC(Modular Multilevel Cascade Converter)と呼ばれる電力変換装置が開示されている。この電力変換装置は、デルタ接続された3個のアームを備える。各アームは、複数のコンデンサと、カスケード接続された複数のインバータとを含む。各コンデンサは直流電力を蓄える。各インバータは、対応するコンデンサの直流電力を交流電力に変換する。この電力変換装置は、たとえば、電力系統の無効電力補償装置として使用される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開2012/099176号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、このような電力変換装置を電力系統に接続して運転を開始した場合に電力変換装置が正常に動作せず、電力系統に悪影響が及ぶ場合があった。
【0005】
それゆえに、この発明の主たる目的は、電力系統に影響することなく、正常に動作するか否かを判定することが可能な電力変換装置およびそのテスト方法を提供することである。
【課題を解決するための手段】
【0006】
この発明に係る電力変換装置は、デルタ接続された3個のアームを備えたものである。3個のアームの各々は、直流電力を蓄えるコンデンサと、直流電力を交流電力に変換するインバータとを含む。この電力変換装置は、さらに、電力系統と3個のアームとの間が遮断されているテスト期間に、3個のアームの循環電流が第1の指令値になるように、3個のアームの各々のインバータを制御する第1の制御部と、電力系統と3個のアームとの間が導通している通常動作時に、電力系統と3個のアームとの間で授受される電力が第2の指令値になるように、3個のアームの各々のインバータを制御する第2の制御部とを備える。テスト期間における循環電流に基づいて電力変換装置が正常であるか否かが判定される。
【発明の効果】
【0007】
この発明に係る電力変換装置では、電力系統と3個のアームとの間が遮断されているテスト期間に、3個のアームの循環電流が第1の指令値になるように、3個のアームの各々のインバータが制御され、テスト期間における循環電流に基づいて電力変換装置が正常であるか否かが判定される。したがって、電力系統に影響することなく電力変換装置が正常であるか否かを判定することができる。
【図面の簡単な説明】
【0008】
図1】この発明の一実施の形態による電力変換装置の構成を示す回路ブロック図である。
図2図1に示した単位変換器の構成を示す回路ブロック図である。
図3図1に示した制御装置に含まれる循環電流制御部の構成を示すブロック図である。
図4図3に示したIzrt発生部の構成を示すブロック図である。
図5図4に示した正パルス信号および台形波信号の波形を示すタイムチャートである。
図6図1に示した制御装置に含まれる直流電圧制御部の構成を示すブロック図である。
図7図1に示した制御装置に含まれる無効電力制御部の構成を示すブロック図である。
図8図1に示した制御装置に含まれる電圧指令部の構成を示すブロック図である。
図9図1に示した制御装置に含まれるゲート信号発生回路の構成を示す回路図である。
図10図9に示した交流電圧指令値Vuvr、キャリア信号Cuv、およびゲート信号Auv,Buvの波形を例示するタイムチャートである。
図11図1図10に示した電力変換装置の動作を例示するタイムチャートである。
図12図3に示した電流指令値Izrおよび循環電流Izのシミュレーション結果を示すタイムチャートである。
図13】実施の形態の変更例を示すブロック図である。
【発明を実施するための形態】
【0009】
図1は、この発明の一実施の形態による電力変換装置の構成を示す回路ブロック図である。図1において、この電力変換装置は、電力系統1の無効電力を補償する無効電力補償装置として使用され、スイッチS1〜S6、変圧器2,3、限流抵抗器R1〜R3、交流ラインUL,VL,WL、電流検出器C1〜C3、リアクトルL1〜L3、アームA1〜A3、および制御装置4を備える。アームA1〜A3の各々は、カスケード接続された複数の単位変換器5を含む。
【0010】
変圧器2は、電力系統1の三相の送電線1u,1v,1wの交流電圧に応じた値の交流電圧Vu,Vv,Vwを制御装置4に与える。スイッチS1〜S3の一方端子はそれぞれ送電線1u,1v,1wに接続され、それらの他方端子はそれぞれ変圧器3の3つの一次巻線に接続される。スイッチS1〜S3は、単位変換器5に含まれるコンデンサの初期充電を行なう充電期間はオンされ、電力変換装置が正常に動作するか否かをテストするテスト期間はオフされる。また、スイッチS1〜S3は、電力変換装置の通常動作時にはオンされ、たとえば電力変換装置のメンテナンス時にオフされる。
【0011】
変圧器3は、3つの一次巻線と3つの二次巻線とを含み、三相交流電力を授受する。限流抵抗器R1〜R3の一方端子はそれぞれ変圧器3の3つの二次巻線に接続され、それらの他方端子はそれぞれ交流ラインUL,VL,WLの一方端子に接続される。限流抵抗器R1〜R3は、単位変換器5に含まれるコンデンサの初期充電を行なう充電期間に、電力系統1からアームA1〜A3に流れる電流を制限する。
【0012】
スイッチS4〜S6は、それぞれ限流抵抗器R1〜R3に並列接続され、初期充電期間において電力系統1からアームA1〜A3に流れる電流が安定した後にオンされる。また、スイッチS4〜S6は、通常動作時にオンされ、たとえば電力変換装置のメンテナンス時にオフされる。
【0013】
リアクトルL1およびアームA1は、交流ラインULの他方端子と交流ラインVLの他方端子との間に直列接続される。リアクトルL2およびアームA2は、交流ラインVLの他方端子と交流ラインWLの他方端子との間に直列接続される。リアクトルL3およびアームA3は、交流ラインWLの他方端子と交流ラインULの他方端子との間に直列接続される。すなわち、アームA1〜A3はデルタ接続されている。
【0014】
リアクトルL1〜L3は、アームA1〜A3に流れる循環電流を抑制する。アームA1〜A3は、制御装置4によって制御され、三相交流電力を発生する。電流検出器C1〜C3は、それぞれアームA1〜A3に流れる交流電流に応じた値の交流電流Iuv,Ivw,Iwuを制御装置4にフィードバックする。単位変換器5は、制御装置4からのゲート信号に従って交流電力を発生する。
【0015】
図2は、単位変換器5の構成を示す回路ブロック図である。図2において、単位変換器5は、交流端子5a,5b、スイッチS7、インバータ10、直流ラインPL,NL、コンデンサ15、電圧検出器16、およびドライバ17を含む。
【0016】
アームA1〜A3の初段の単位変換器5の交流端子5aは、それぞれ、リアクトルL1〜L3を介して交流ラインUL,VL,WLの他方端子に接続される。アームA1〜A3の最終段の単位変換器5の交流端子5bは、それぞれ交流ラインVL,WL,ULの他方端子に接続される。他の各単位変換器5の交流端子5aは前段の単位変換器5の交流端子5bに接続され、交流端子5bは次段の単位変換器5の交流端子5aに接続される。
【0017】
スイッチS7は、交流端子5a,5b間に接続され、たとえば制御装置4によって制御される。スイッチS7は、対応する単位変換器5が正常である場合はオフされ、対応する単位変換器5が故障した場合はオンされる。スイッチS7がオンされると、交流端子5a,5b間が短絡され、対応する単位変換器5がバイパスされる。
【0018】
インバータ10は、IGBT(Insulated Gate Bipolar Transistor)11〜14およびダイオードD1〜D4を含む。IGBT11,12のコレクタはともに正側の直流ラインPLに接続され、それらのエミッタはそれぞれ交流端子5a,5bに接続される。IGBT13,14のコレクタはそれぞれ交流端子5a,5bに接続され、それらのエミッタはともに負側の直流ラインNLに接続される。IGBT11〜14の各々は、ドライバ17によってくどうされる。ダイオードD1〜D4は、それぞれIGBT11〜14に逆並列に接続される。アームA1〜A3の各々において、複数のインバータ10はカスケード接続されている。
【0019】
インバータ10は、制御装置4によって制御され、電力系統1とコンデンサ15との間で電力を授受する。コンデンサ15は、直流ラインPL,NL間に接続され、直流電力を蓄える。インバータ10は、コンデンサ15の直流電力を交流電力に変換して交流端子5a,5b間に出力する。インバータ10から交流端子5a,5b間に出力される交流電圧の振幅および位相は制御可能になっている。電圧検出器16は、コンデンサ15の端子間の直流電圧に応じた値の直流電圧VDCを制御装置4に出力する。
【0020】
ドライバ17は、直流ラインPL,NLに接続され、コンデンサ15に蓄えられた直流電力によって駆動される。ドライバ17は、制御装置4からのゲート信号に応答してインバータ10を運転する。
【0021】
図1に戻って、制御装置4は、外部からのテスト信号TE、活性化信号EN、および無効電力指令値Qrと、変圧器3からの交流電圧Vu,Vv,Vwと、電流検出器C1〜C3からの交流電流Iuv,Ivw,Iwuとに基づいて、3つのアームA1〜A3の各々(すなわち複数の単位変換器5の各々)を制御する。
【0022】
テスト信号TEは、電力変換装置が正常に動作するか否かをテストするテストモード時に活性化レベルの「H」レベルにされ、それ以外の場合は非活性化レベルの「L」レベルにされる信号である。活性化信号ENは、電力変換装置に通常動作を行なわせる通常モード時に活性化レベルの「H」レベルにされ、それ以外の場合は非活性化レベルの「L」レベルにされる信号である。
【0023】
テスト信号TEおよび活性化信号ENは、たとえば電力変換装置の使用者から制御装置4に与えられる。無効電力指令値Qrは、たとえば電力系統1の中央指令室(図示せず)から与えられる。電力変換装置は、通常動作時に、無効電力指令値Qrに応じた値の無効電力を電力系統1に供給する。
【0024】
図3は、制御装置4に含まれる循環電流制御部20の構成を示すブロック図である。図3において、循環電流制御部20は、Izrt発生部21、Izrn発生部22、演算器23、および減算器24,25を含む。
【0025】
Izrt発生部21は、テスト信号TEが「H」レベルにされた場合に活性化され、テストモード用の循環電流指令値Izrtを生成する。Izrn発生部22は、活性化信号ENが「H」レベルにされた場合に活性化され、通常モード用の循環電流指令値Izrnを生成する。
【0026】
演算器23は、電流検出器C1〜C3からの三相交流電流Iuv,Ivw,Iwuに基づいてアームA1〜A3に流れる循環電流Izを求める。Izは、Iuv,Ivw,Iwuの平均値であり、数式Iz=(Iuv+Ivw+Iwu)/3に基づいて求められる。
【0027】
減算器24は、テストモード用の循環電流指令値Izrtと循環電流Izの偏差ΔIzt=Izrt−Izを出力する。減算器25は、通常モード用の循環電流指令値Izrnと循環電流Izの偏差ΔIzn=Izrn−Izを出力する。
【0028】
図4は、図3に示したIzrt発生部21の構成を示すブロック図である。図4において、Izrt発生部21は、パルス発生器31、台形波発生器32、出力設定器33、正弦波発生器34、乗算器35、および信号発生器36を含む。
【0029】
パルス発生器31は、テスト信号TEが非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げられたことに応じて正パルス信号PSを出力する。正パルス信号PSのパルス幅は、図5(A)に示すように、たとえば三相交流電力の1周期λの6倍の時間(=6λ)に設定される。6λは、たとえば0.1秒である。
【0030】
台形波発生器32は、正パルス信号PSの立ち上がりおよび立下りの傾きを鈍らせて台形波信号φ32を生成する。台形波信号φ32の最大値をHmとすると、台形波信号φ32のレベルは、図5(B)に示すように、たとえば、三相交流電力の1周期λの時間をかけて0からHmに立ち上げられ、1周期λの時間をかけてHmから0に立ち下げられる。この場合、台形波信号φ22の波形の底辺の幅は7λとなり、頂辺の幅は5λとなる。
【0031】
図4に戻って、出力設定器33は、台形波信号φ32の高さHmから循環電流Izの波高値を設定する。循環電流Izの波高値は、たとえば、定格値の20%に設定される。正弦波発生器34は、三相交流電力と同じ周期λの単位正弦波信号φ34を出力する。乗算器35は、出力設定器33の出力信号φ33と正弦波発生器34からの単位正弦波信号φ34とを乗算してテストモード用の循環電流指令値Izrtを生成する。信号発生器36は、正パルス信号PSに応答して、台形波信号φ32の底辺と同じパルス幅(7λ)のテストパルス信号TEPを出力する。
【0032】
図6は、制御装置4に含まれる直流電圧制御部40の構成を示すブロック図である。図6において、直流電圧制御部40は、モニタ電圧生成部41および減算器42を含む。モニタ電圧生成部41は、全単位変換器5から与えられる直流電圧VDCに基づいてモニタ電圧VMを生成する。モニタ電圧VMは、たとえば、全単位変換器5から与えられる直流電圧VDCの平均値にされる。減算器42は、一定値である直流電圧指令値VDCrとモニタ電圧VMとの偏差ΔVDC=VDCr−VMを生成する。
【0033】
図7は、制御装置4に含まれる無効電力制御部45の構成を示すブロック図である。図7において、無効電力制御部45は、演算器46、無効電力演算器47、および減算器48を含む。
【0034】
演算器46は、電流検出器C1〜C3からの交流電流Iuv,Ivw,Iwuに基づいて、交流ラインUL,VL,WLに流れる交流電流に応じたレベルの交流電流Iu,Iv,Iwを求める。ただし、Iu=Iuv−Iwu、Iv=Ivw−Iuv、Iw=Iwu−Ivwである。
【0035】
無効電力演算器47は、変圧器2からの三相交流電圧Vu,Vv,Vwと演算器46からの三相交流電流Iu,Iv,Iwとに基づいて無効電力Qを求める。減算器48は、無効電力指令値Qrと無効電力Qの偏差ΔQ=Qr−Qを求める。
【0036】
図8は、制御装置4に含まれる電圧指令部50の構成を示すブロック図である。図8において、電圧指令部50は、PI(Proportional Integral)制御部51〜53、セレクタ54、スイッチS11〜S13、および加算器55〜57を含む。
【0037】
PI制御部51は、テストパルス信号TEPが活性化レベルの「H」レベルである場合に活性化され、循環電流制御部20(図3)からの偏差ΔIztに比例した値と偏差ΔIztを積分した値とを加算してテストモード用の交流電圧指令値Vztを生成する。テストパルス信号TEPが非活性化レベルの「L」レベルである場合、PI制御部51は非活性化され、交流電圧指令値Vzrは0にリセットされる。
【0038】
PI制御部52は、活性化信号ENが活性化レベルの「H」レベルである場合に活性化され、循環電流制御部20(図3)からの偏差ΔIznに比例した値と偏差ΔIznを積分した値とを加算して通常モード用の交流電圧指令値Vznを生成する。活性化信号ENが非活性化レベルの「L」レベルである場合、PI制御部52は非活性化され、交流電圧指令値Vznは0にリセットされる。
【0039】
セレクタ54は、活性化信号ENが「L」レベルである場合はテストモード用の交流電圧指令値Vztを加算器55〜57の各々に与え、活性化信号ENが「H」レベルである場合は通常モード用の交流電圧指令値Vznを加算器55〜57の各々に与える。
【0040】
PI制御部53は、直流電圧制御部40(図6)からの偏差ΔVDCに比例した値と偏差ΔVDCを積分した値とを加算した値と、無効電力制御部45(図7)からの偏差ΔQに比例した値と偏差ΔQを積分した値とを加算した値とに基づいて、三相交流電圧指令値V1r,V2r,V3rを生成する。
【0041】
スイッチS11,S12,S13は、活性化信号ENが「H」レベルである場合は、三相交流電圧指令値V1r,V2r,V3rをそれぞれ加算器55,56,57に与え、活性化信号ENが「L」レベルである場合は加算器55,56,57に「0」の交流電圧指令値を与える。
【0042】
加算器55は、セレクタ54からの交流電圧指令値VznまたはVztとスイッチS11からの交流電圧指令値V1rまたは0とを加算して交流電圧指令値Vuvrを生成する。加算器56は、セレクタ54からの交流電圧指令値VznまたはVztとスイッチS12からの交流電圧指令値V2rまたは0とを加算して交流電圧指令値Vvwrを生成する。加算器57は、セレクタ54からの交流電圧指令値VznまたはVztとスイッチS13からの交流電圧指令値V3rまたは0とを加算して交流電圧指令値Vwurを生成する。
【0043】
したがって、通常モードにおける三相交流電圧指令値Vuvr,Vvwr,VwurはそれぞれVzn+V1r,Vzn+V2r,Vzn+V3rとなり、テストモードにおける三相交流電圧指令値Vuvr,Vvwr,VwurはともにVztとなる。
【0044】
図9(A),(B),(C)は、制御装置4に含まれるゲート信号発生回路60,70,80の構成を示す回路図である。ゲート信号発生回路60,70,80は、それぞれアームA1〜A3に属する単位変換器5のドライバ17に対応している。
【0045】
ゲート信号発生回路60は、図9(A)に示すように、比較器61、バッファ62、インバータ63、ORゲート64、およびANDゲート65,66を含む。比較器61は、交流電圧指令値Vuvrのレベルとキャリア信号Cuvのレベルとの高低を比較し、比較結果に応じたレベルの信号φ61を出力する。キャリア信号Cuvは、交流電圧指令値Vuvrよりも高い周波数を有し、交流電圧指令値Vuvrに同期した三角波信号である。
【0046】
Vuvr>Cuvである場合は信号φ61は「H」レベルとなり、Vuvr<Cuvである場合は信号φ61は「L」レベルとなる。バッファ62は、信号φ61を遅延させる。インバータ63は、信号φ61を反転させる。ORゲート64は、テストパルス信号TEPと活性化信号ENの論理和信号φ64を出力する。
【0047】
ANDゲート65は、バッファ62の出力信号とORゲート64の出力信号φ64との論理積信号をゲート信号Auvとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、バッファ62の出力信号がANDゲート65を通過してゲート信号Auvとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Auvは「L」レベルに固定される。
【0048】
ANDゲート66は、インバータ63の出力信号とORゲート64の出力信号φ64との論理積信号をゲート信号Buvとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、インバータ63の出力信号がANDゲート66を通過してゲート信号Buvとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Buvは「L」レベルに固定される。
【0049】
ゲート信号発生回路70は、図9(B)に示すように、比較器71、バッファ72、インバータ73、ORゲート74、およびANDゲート75,76を含む。比較器71は、交流電圧指令値Vvwrのレベルとキャリア信号Cvwのレベルとの高低を比較し、比較結果に応じたレベルの信号φ71を出力する。キャリア信号Cvwは、交流電圧指令値Vvwrよりも高い周波数を有し、交流電圧指令値Vvwrに同期した三角波信号である。
【0050】
Vvwr>Cvwである場合は信号φ71は「H」レベルとなり、Vvwr<Cvwである場合は信号φ71は「L」レベルとなる。バッファ72は、信号φ71を遅延させる。インバータ73は、信号φ71を反転させる。ORゲート74は、テストパルス信号TEPと活性化信号ENの論理和信号φ74を出力する。
【0051】
ANDゲート75は、バッファ72の出力信号とORゲート74の出力信号φ74との論理積信号をゲート信号Avwとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、バッファ72の出力信号がANDゲート75を通過してゲート信号Avwとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Avwは「L」レベルに固定される。
【0052】
ANDゲート76は、インバータ73の出力信号とORゲート74の出力信号φ74との論理積信号をゲート信号Bvwとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、インバータ73の出力信号がANDゲート76を通過してゲート信号Bvwとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Bvwは「L」レベルに固定される。
【0053】
ゲート信号発生回路80は、図9(C)に示すように、比較器81、バッファ82、インバータ83、ORゲート84、およびANDゲート85,86を含む。比較器81は、交流電圧指令値Vwurのレベルとキャリア信号Cwuのレベルとの高低を比較し、比較結果に応じたレベルの信号φ81を出力する。キャリア信号Cwuは、交流電圧指令値Vwurよりも高い周波数を有し、交流電圧指令値Vwurに同期した三角波信号である。
【0054】
Vwur>Cwuである場合は信号φ81は「H」レベルとなり、Vwur<Cwuである場合は信号φ81は「L」レベルとなる。バッファ82は、信号φ81を遅延させる。インバータ83は、信号φ81を反転させる。ORゲート84は、テストパルス信号TEPと活性化信号ENの論理和信号φ84を出力する。
【0055】
ANDゲート85は、バッファ82の出力信号とORゲート84の出力信号φ84との論理積信号をゲート信号Awuとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、バッファ82の出力信号がANDゲート85を通過してゲート信号Awuとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Awuは「L」レベルに固定される。
【0056】
ANDゲート86は、インバータ83の出力信号とORゲート84の出力信号φ84との論理積信号をゲート信号Bwuとして出力する。テストパルス信号TEPおよび活性化信号ENのいずれか一方の信号が「H」レベルである場合は、インバータ83の出力信号がANDゲート86を通過してゲート信号Bwuとなる。テストパルス信号TEPおよび活性化信号ENがともに「L」レベルである場合は、ゲート信号Bwuは「L」レベルに固定される。
【0057】
図10(A),(B),(C)は、図9(A)に示した交流電圧指令値Vuvr、キャリア信号Cuv、およびゲート信号Auv,Buvの波形を示すタイムチャートである。ただし、ORゲート64の出力信号φ64は「H」レベルにされているものとする。
【0058】
図10(A)に示すように、交流電圧指令値Vuvrは正弦波信号であり、キャリア信号Cuvは三角波信号である。キャリア信号Cuvの周期は交流電圧指令値Vuvrの周期よりも短く、キャリア信号Cuvの振幅は交流電圧指令値Vuvrの振幅よりも大きい。
【0059】
図10(A),(B)に示すように、キャリア信号Cuvのレベルが交流電圧指令値Vuvrよりも高い場合はゲート信号Auvは「L」レベルになり、キャリア信号Cuvのレベルが交流電圧指令値Vuvrよりも低い場合はゲート信号Auvは「H」レベルになる。ゲート信号Auvは、正パルス信号列となる。交流電圧指令値Vuvrが正極性である期間ではゲート信号Auvのパルス幅は大きく、交流電圧指令値Vuvrが負極性である期間ではゲート信号Auvのパルス幅は小さい。図10(B),(C)に示すように、ゲート信号Buvはゲート信号Auvの反転信号となる。
【0060】
ゲート信号Auv,Buvがそれぞれ「H」レベルおよび「L」レベルである場合は、対応のインバータ10に含まれるIGBT11,14がオンするとともにIGBT12,13がオフする。この場合は図2において、コンデンサ15の正側端子(正側直流ラインPL)がIGBT11を介して交流端子5aに接続されるとともに、交流端子5bがIGBT14を介してコンデンサ15の負側端子(負側直流ラインNL)に接続され、交流端子5a,5b間にコンデンサ15の端子間電圧が出力される。すなわち、交流端子5a,5b間に正の直流電圧が出力される。
【0061】
ゲート信号Auv,Buvがそれぞれ「L」レベルおよび「H」レベルである場合は、対応のインバータ10に含まれるIGBT12,13がオンするとともにIGBT11,14がオフする。この場合は、コンデンサ15の正側端子(正側直流ラインPL)がIGBT12を介して交流端子5bに接続されるとともに、交流端子5aがIGBT13を介してコンデンサ15の負側端子(負側直流ラインNL)に接続され、交流端子5b,5a間にコンデンサ15の端子間電圧が出力される。すなわち、交流端子5a,5b間に負の直流電圧が出力される。
【0062】
図10(B),(C)に示すようにゲート信号Auv,Buvの波形が変化すると、図10(A)に示した交流電圧指令値Vuvrと同じ位相の交流電圧が交流端子5a,5b間に出力される。アームA1では複数の単位変換器5がカスケード接続されているので、複数の単位変換器5の交流端子5a,5b間に現れる交流電圧を加算した値の交流電圧がアームA1の端子間に現れる。
【0063】
なお、ORゲート64の出力信号φ64が「L」である場合、ゲート信号Auv,Buvはともに「L」レベルにされ、対応するインバータ10のIGBT11〜14はともにオフされ、インバータ10の運転が停止される。
【0064】
図9(B)に示した交流電圧指令値Vvwr、キャリア信号Cvw、およびゲート信号Avw,Bvwの波形と、図9(C)に示した交流電圧指令値Vwur、キャリア信号Cwu、およびゲート信号Awu,Bwuの波形とについては、図10(A)〜(C)に示した交流電圧指令値Vuvr、キャリア信号Cuv、およびゲート信号Auv,Buvの波形と同様であるので、その説明は繰り返さない。
【0065】
図11(A)〜(F)は、図1図10に示した電力変換装置の動作を示すタイムチャートである。特に、図11(A)はテスト信号TEの波形を示し、図11(B)はスイッチS1〜S3のオン/オフ状態を示し、図11(C)はスイッチS4〜S6のオン/オフ状態を示し、図11(D)はコンデンサ15の直流電圧VDCを示し、図11(E)はテストパルス信号TEPの波形を示し、図11(F)は循環電流Izの波形を示している。
【0066】
図1で示したように、スイッチS1〜S3の一方端子はそれぞれ電力系統1の三相の送電線1u,1v,1wに接続されているものとする。この状態でスイッチS1〜S3およびスイッチS4〜S6を順次オンして各単位変換器5のコンデンサ15を充電した後、アームA1〜A3の通常運転を直ぐに開始すると、もし電力変換装置が故障していた場合には電力系統1に悪影響が及ぶ。
【0067】
そこで、本実施の形態では、アームA1〜A3の通常運転を開始する前に、電力系統1とアームA1〜A3との間が遮断された状態でアームA1〜A3に循環電流Izを流し、アームA1〜A3が正常に動作するか否かをテストする。
【0068】
すなわち、図11(A)〜(F)において、初期状態(時刻t0)では、スイッチS1〜S6はオフされており、電力系統1とアームA1〜A3の間は遮断されている。また、コンデンサ15の直流電圧VDCは0Vであり、テスト信号TEおよびテストパルス信号TEPはともに非活性化レベルの「L」レベルにされ、循環電流Izは0Aである。また、活性化信号ENは非活性化レベルの「L」レベルにされている。
【0069】
ある時刻t1において、スイッチS1〜S3がオンされる。これにより、電力系統1からスイッチS1〜S3、変圧器3、限流抵抗器R1〜R3、交流ラインUL,VL,WL、リアクトルL1〜L3、各インバータ10のダイオードD1〜D4を介してコンデンサ15に電流が流れ、コンデンサ15の直流電圧VDCが徐々に上昇する。
【0070】
次に、時刻t2においてスイッチS4〜S6がオンされる。これにより、限流抵抗器R1〜R3がバイパスされ、コンデンサ15の直流電圧VDCが最大値に到達する。なお、コンデンサ15の直流電圧VDCが最大値よりも低い場合でも単位変換器5のドライバ17は動作するので、スイッチS4〜S6をオフ状態に固定してテストしても構わない。
【0071】
時刻t3において、テスト信号TEが非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げられ、スイッチS1〜S3がオフされ、電力系統1とアームA1〜A3との間が遮断される。
【0072】
テスト信号TEが「H」レベルに立ち上げられると、循環電流制御部20(図3)およびIzrt発生部21(図4)において、正パルス信号PS、台形波信号φ22、テストパルス信号TEP、循環電流指令値Izrt、偏差ΔIztが生成される。テスト信号TEに応答してテストパルス信号TEPが「H」レベルにされると、電圧指令部50(図8)において、PI制御部51が活性化され、循環電流偏差ΔIztがPI制御されて交流電圧指令値Vztが生成される。
【0073】
また、活性化信号ENが非活性化レベルの「L」レベルにされているので、PI制御部52が非活性化され、スイッチS11〜S13によって「0」の交流電圧指令値が加算器55〜57に与えられる。PI制御部52で生成された交流電圧指令値Vztは、セレクタ54および加算器55,56,57を通過して三相交流電圧指令値Vuvr,Vvwr,Vwurとなる。
【0074】
ゲート信号発生回路60,70,80(図9(A)〜(C))では、テストパルス信号TEPが「H」レベルにされている期間、ORゲート64,74,84の出力信号φ64,φ74,φ84が「H」レベルになり、ANDゲート65,66,75,76,85,86の各々はバッファとして動作する。
【0075】
比較器61,71,81によって三相交流電圧指令値Vuvr,Vvwr,Vwurとキャリア信号Cuv,Cvw,Cwuとの高低が比較されて信号φ61,φ71,φ81が生成される。信号φ61,φ71,φ81は、バッファ62,72,82によって遅延され、ANDゲート65,75,85を通過してゲート信号Auv,Avw,Awuとなる。信号φ61,φ71,φ81は、インバータ63,73,83によって反転され、ANDゲート66,76,86を通過してゲート信号Buv,Bvw,Bwuとなる。
【0076】
それらのゲート信号Auv,Buv,Avw,Bvw,Awu,BwuによってアームA1〜A3の全インバータ10が運転され、循環電流Izが循環電流指令値Izrtにされる。循環電流Izは、図11(F)の時刻t3〜t4に示すように、徐々に増大した後に徐々に減少するように制御される。
【0077】
ドライバ17が動作して循環電流Izが流れると、コンデンサ15の直流電力が消費され、直流電圧VDCが徐々に低下する。時刻t5においてテスト信号TEが「H」レベルから「L」レベルに立ち下げられて、電力変換装置のテストが終了する。
【0078】
電力変換装置の使用者は、たとえば波形記憶装置およびモニタ装置を用いて、循環電流Izの波形(振幅、位相)を観察し、その波形が正常である場合は電力変換装置は正常であると判定し、その波形が正常でない場合は電力変換装置は正常でないと判定する。たとえば、電流検出器C1〜C3のうちのいずれか1つが誤って逆向きに接続されている場合には、異常な循環電流Izが流れ、電力変換装置は正常でないと判定される。
【0079】
図12(A),(B)は、テスト期間における電流指令値Izrtおよび循環電流Izのシミュレーション結果を示すタイムチャートである。特に、図12(A)は循環電流Izの波形を示し、図12(B)は電流指令値Izrtおよび循環電流Izの波形を示している。このシミュレーションでは、テスト期間におけるコンデンサ15の直流電圧VDCを一定値に維持した。
【0080】
時刻t1〜t2において、最初の1周期(λ)の間に電流指令値Izrtの振幅を0から最大値まで徐々に増大させ、次の5周期(5λ)の間に電流指令値Izrtの振幅を最大値に維持し、最後の1周期(λ)の間に電流指令値Izrtの振幅を最大値から0まで徐々に減少させた。図12(A),(B)に示すように、循環電流Izの振幅および位相は、電流指令値Izrtの振幅および位相に追従して変化した。
【0081】
電力変換装置が正常である場合は、図12(B)に示すように、循環電流Izは電流指令値Izrtと同様に変化する。電力変換装置が正常でない場合は、循環電流Izは電流指令値Izrtと同様に変化しない。したがって、循環電流Izの波形を観察することにより、電力変換装置が正常であるか否かを判定することができる。
【0082】
なお、電流指令値Izrtの振幅を0から最大値まで徐々に増大させ、電流指令値Izrtの振幅を最大値から0まで徐々に減少させることにより、アームA1〜A3に過大な循環電流Izが流れることを防止している。
【0083】
テストの結果、電力変換装置が正常でないと判定した場合には、故障箇所を見付けて修理する。電力変換装置が正常に動作するまで、修理とテストを繰り返す。電力変換装置が正常であると判定した場合には、電力変換装置に通常動作を行なわせる。
【0084】
電力変換装置に通常動作を行なわせる場合には、図11(B),(C)に示したように、スイッチS1〜S3およびスイッチS4〜S6を順次オンさせてコンデンサ15を充電する。コンデンサ15の初期充電が終了したら、活性化信号ENを「L」レベルから「H」レベルに立ち上げて通常動作を開始させる。通常動作では、コンデンサ15の初期充電の終了後もスイッチS1〜S6はオン状態に維持され、電力系統1とアームA1〜A3の間が導通状態に維持される。図2のドライバ17は、コンデンサ15の直流電力によって駆動される。
【0085】
無効電力制御部45(図7)において、演算器46および無効電力演算器47によって無効電力Qが求められ、減算器48によって無効電力指令値Qrと無効電力Qの偏差ΔQが求められる。
【0086】
直流電圧制御部40(図6)では、減算器42によって直流電圧指令値VDCrと直流電圧VDCとの偏差ΔVDCが求められる。電圧指令部(図8)では、PI制御部52が活性化され、循環電流偏差ΔIznがPI制御されて交流電圧指令値Vznが生成される。交流電圧指令値Vznは、セレクタ54を通過して加算器55〜57の各々に与えられる。PI制御部51は非活性化され、交流電圧指令値Vztは0に維持される。
【0087】
また、PI制御部53では、偏差ΔVDC,ΔQがPI制御されて三相交流電圧指令値V1r〜V3rが生成される。加算器55では、交流電圧指令値V1rと交流電圧指令値Vznが加算されて交流電圧指令値Vuvrが生成される。加算器56では、交流電圧指令値V2rと交流電圧指令値Vznが加算されて交流電圧指令値Vvwrが生成される。加算器57では、交流電圧指令値V3rと交流電圧指令値Vznが加算されて交流電圧指令値Vvwrが生成される。
【0088】
ゲート信号発生回路60,70,80(図9(A)〜(C))では、活性化信号ENが「H」レベルにされたのでORゲート64,74,84の出力信号φ64,φ74,φ84が「H」レベルになり、ANDゲート65,66,75,76,85,86の各々はバッファとして動作する。
【0089】
比較器61,71,81によって三相交流電圧指令値Vuvr,Vvwr,Vwurとキャリア信号Cuv,Cvw,Cwuとの高低が比較されて信号φ61,φ71,φ81が生成される。信号φ61,φ71,φ81は、バッファ62,72,82によって遅延され、ANDゲート65,75,85を通過してゲート信号Auv,Avw,Awuとなる。信号φ61,φ71,φ81は、インバータ63,73,83によって反転され、ANDゲート66,76,86を通過してゲート信号Buv,Bvw,Bwuとなる。
【0090】
それらのゲート信号Auv,Buv,Avw,Bvw,Awu,BwuによってアームA1〜A3の全インバータ10が運転され、循環電流Izが循環電流指令値Izrnにされ、直流電圧VDCが直流電圧指令値VDCrにされるとともに、無効電力Qが無効電力指令値Qrにされる。
【0091】
以上のように、この実施の形態では、電力系統1と3個のアームA1〜A3との間が遮断されている期間(図11の時刻t3〜t4)に、3個のアームA1〜A3の循環電流Izが循環電流指令値Izrtになるように、3個のアームA1〜A3の各々のインバータ10が制御され、その期間における循環電流Izに基づいて電力変換装置が正常であるか否かが判定される。したがって、電力系統1に影響することなく電力変換装置が正常であるか否かを判定することができる。
【0092】
なお、本実施の形態では、アームA1〜A3の各々が複数段の単位変換器5を含む場合について説明したが、本願発明は、アームA1〜A3の各々が1段の単位変換器5のみを含む場合にも適用することができる。
【0093】
図13は、実施の形態の変更例を示すブロック図である。図13において、この変更例は、上記の電力変換装置に判定器90を追加したものである。判定器90は、テストモード時における循環電流指令値Izrtと循環電流Izの偏差ΔIzt(図3)が上限値を超えているか否かを判定し、判定結果を示す信号φ90を出力する。偏差ΔIztが上限値よりも小さい場合、信号φ90は「L」レベルにされる。偏差ΔIztが上限値よりも大きい場合、信号φ90は「H」レベルにされる。電力変換装置の使用者は、信号φ90が「L」レベルである場合は電力変換装置は正常であると判定し、信号φ90が「H」レベルである場合は電力変換装置は正常でないと判定する。この変更例では、電力変換装置が正常であるか否かを容易に判定することができる。
【0094】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0095】
1 電力系統、1u,1v,1w 送電線、S1〜S6,S11〜S13 スイッチ、2,3 変圧器、R1〜R3 限流抵抗器、UL,VL,WL 交流ライン、C1〜C3 電流検出器、L1〜L3 リアクトル、A1〜A3 アーム、4 制御装置、5 単位変換器、5a,5b 交流端子、10,63,73,83 インバータ、PL,NL 直流ライン、11〜14 IGBT、15 コンデンサ、16 電圧検出器、17 ドライバ、20 循環電流制御部、21 Izrt発生部、22 Izrn発生部、23,46 演算器、24,25,42,48 減算器、31 パルス発生器、32 台形波発生器、33 出力設定器、34 正弦波発生器、35 乗算器、36 信号発生器、40 直流電圧制御部、41 モニタ電圧生成部、45 無効電力制御部、47 無効電力演算器、50 電圧指令部、51〜53 PI制御部、54 セレクタ、55〜57 加算器、60,70,80 ゲート信号発生回路、61,71,81 比較器、62,72,82 バッファ、64,74,84 ORゲート、65,66,75,76,85,86 ANDゲート、90 判定器。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
【国際調査報告】