(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
抗IL-6受容体抗体および/または好中球中和抗体を投与することにより、術後の侵襲部位における癒着形成、および手術による侵襲部位への好中球の遊走を抑制する。
【発明を実施するための形態】
【0017】
本発明の医薬組成物は、抗IL-6受容体抗体および/または抗好中球中和抗体を有効成分として含有し、対象に投与することにより、手術による侵襲部位における癒着形成を抑制することができる。したがって、本発明の医薬組成物は術後癒着(形成)抑制剤と表現することもできる。
また、本発明の医薬組成物は、対象に投与することにより、好中球の遊走を抑制することができ、ひいては手術による侵襲部位への好中球の浸潤を抑制することができる。したがって、本発明の医薬組成物は好中球遊走抑制剤と表現することもできる。
【0018】
本明細書において、「癒着」とは、互いに分離しているべき組織の表面が線維性の組織で連結または融合された状態のことをいう。外科的手術の後に生じる癒着は、腹部や胸部を始めあらゆる生体部位において生じることが知られており、具体的には、例えば、消化管(腸管(小腸及び大腸)、胃を含む)、肝臓、子宮、肺、心臓、腱等が挙げられる。
本発明の「癒着」の例としては「消化管癒着」があげられるが特にこれに限定されない。「消化管癒着」とは、消化管の一部と当該消化管の他の部位との癒着及び消化管と他の臓器との癒着を意味する。また、「癒着」の例としては、「肝臓癒着」があげられるが特にこれに限定されない。「肝臓癒着」とは、肝臓の一部と肝臓の他の部分の癒着及び肝臓と他の臓器との癒着を意味する。「癒着」の他の例としては「腸管癒着」があげられるが、特にこれに限定されない。「腸管癒着」とは、腸管の一部と当該腸管の他の部位との癒着及び腸管と他の臓器との癒着を意味する。一態様において、本発明の医薬組成物は、術後の腸管癒着を抑制するための医薬組成物(術後腸管癒着抑制剤)であり、腸管が侵襲される手術による腸管癒着の形成を抑制することができる。
【0019】
本明細書において「癒着の抑制」とは、癒着の形成を低減することをいう。癒着の抑制は、必ずしも癒着の形成を完全に防止することまでも必要とせず、本発明の医薬組成物を適用しなかった場合の状態と比較して、癒着の形成が低減されていればよい。すなわち「癒着の抑制」は癒着の軽減と言い換えてもよく、例えば、癒着の頻度、範囲および程度から選ばれる1つまたは複数が軽減されていることを指す。「癒着の抑制」は、公知の評価方法により評価することができる。そのような評価方法としては、例えば、本明細書の実施例に記載されているような、癒着スコア0〜5の6段階評価によるスコア判定により評価することができる。「癒着の抑制」には癒着の防止(予防)も含まれる。
【0020】
本明細書において「好中球の遊走の抑制」は、必ずしも好中球の遊走を完全に防止することまでも必要とせず、本発明の医薬組成物を適用しなかった場合の状態と比較して、好中球の遊走が低減されていればよい。一態様において、「好中球の遊走の抑制」は、手術による侵襲部位への好中球の遊走を抑制することを指す。別の態様において、「好中球の遊走の抑制」は、手術による侵襲部位における好中球の浸潤を抑制することを指す。「好中球の遊走の抑制」は公知の評価方法により評価することができる。そのような評価方法としては、例えば、本明細書の実施例に記載されているように、侵襲部位を含む組織切片を用いた好中球マーカー(ラットLy6G、ヒトCD177)の免疫染色により評価することができる。
【0021】
本明細書において「創傷治癒の抑制」とは、侵襲部位の創傷治癒を低減するまたは遅延させることをいう。創傷治癒の抑制は、必ずしも侵襲部位の創傷治癒を完全に防止することまでも必要としない。一態様において、本発明の医薬組成物を適用することによって、適用しなかった場合の状態と比較して、創傷治癒の有意な抑制効果は認められない。したがって、本発明の医薬組成物を適用することによって、手術後の癒着形成が抑制されるとともに侵襲部位の創傷治癒が達成される。創傷治癒の抑制効果は、本発明の医薬組成物を投与した患者の術後の皮膚縫合部(具体的には胸腹部皮膚縫合部)の創傷治癒を確認することにより、検証が可能である。
【0022】
本発明の医薬組成物は、有効成分である抗IL-6受容体抗体および/または抗好中球中和抗体が癒着を抑制することが可能な投与量で投与される。癒着の抑制は、例えば、実施例に記載したような癒着グレード評価法(Surgery 120:866-870, 1996参照)により評価することができ、本発明の医薬組成物を適用しなかった場合と比較して癒着グレード平均値が低い場合に、癒着が抑制されていることが示される。したがって、このような指標を用いることにより、本発明の医薬組成物の投与量を適宜調整することができる。
【0023】
一態様において、本発明の医薬組成物は、有効量の抗IL-6受容体抗体および/または抗好中球中和抗体を含有する単位投与剤形として製剤化されてもよい。本明細書において、「有効量」とは、所望の抑制または予防結果を達成するために有効である、必要な用量におけるおよび必要な期間にわたっての、量のことをいう。
【0024】
本発明の医薬組成物の投与量は、投与対象の状態、手術により受ける侵襲の程度、投与方法(例えば、投与回数、投与頻度、投与時期、投与経路)等に応じて適宜設定することができる。一態様において、1回の投与あたりの本発明の医薬組成物に含まれる抗IL-6受容体抗体の量の具体的な例としては、例えば、2-600mg/kg、120-600mg/kg、140-600mg/kg、160-600mg/kg、180-600mg/kg、200-600mg/kg、220-600mg/kg、240-600mg/kg、260-600mg/kg、280-600mg/kg、300-600mg/kg、320-600mg/kg、340-600mg/kg、360-600mg/kg、380-600mg/kg、400-600mg/kg、420-580mg/kg、440-560mg/kg、460-540mg/kg、480-520mg/kg、500mg/kg、2-40mg/kg、2-30mg/kg、10-40mg/kg、20-40mg/kg、2-20mg/kg、0.5-10mg/kg、2-10mg/kg、2-8mg/kg、8mg/kg、2mg/kgが、又は、50-800mg、10-240mg、50-300mg、100-300mg、120-250mg、150-200mg、80-200mg、80-160mg、162mg、120mgが挙げられるが、これらに限定されない。
【0025】
本発明の医薬組成物は、手術前に投与することが好ましく、そのような投与によって、手術による侵襲部位における癒着形成を予防することができる。したがって、本発明の医薬組成物は、術後の癒着(形成)を予防するための医薬組成物、術後癒着(形成)予防剤等と表現することもできる。
本発明の医薬組成物を投与する時期は、投与対象の状態、手術により受ける侵襲の程度、投与方法等に応じて適宜設定することができるが、例えば外科的手術の48時間前から術後24時間までの間、例えば手術の36〜24時間前、または例えば手術の24時間前を挙げることができるが、これらに限定されない。
本発明の医薬組成物の投与回数および投与頻度は、投与対象の状態、手術により受ける侵襲の程度、投与方法(例えば、投与量、投与時期、投与経路)等に応じて適宜設定することができ、例えば外科的手術の48時間前から術後24時間までの間に1回または複数回、例えば手術の24時間前に1回投与され、そのような投与によって、手術による侵襲部位における癒着形成を予防することができる。
【0026】
本発明の医薬組成物の投与対象は哺乳動物である。哺乳動物は、これらに限定されるものではないが、飼育動物(例えば、ウシ、ヒツジ、ネコ、イヌ、ウマ)、霊長類(例えば、ヒト、およびサルなどの非ヒト霊長類)、ウサギ、ならびに、げっ歯類(例えば、マウスおよびラット)を含む。特定の態様では、本発明の医薬組成物の投与対象はヒトである。別の態様では、投与対象は非ヒト哺乳動物である。
【0027】
本発明の医薬組成物は、IL-6受容体に対する抗体および/または好中球に対する中和抗体を有効成分として含有する。
分子量約80kDのリガンド結合性蛋白質であるIL-6受容体は、IL-6と結合してIL-6/IL-6受容体複合体を形成し、次いで非リガンド結合性のシグナル伝達に係わる分子量約130kDの膜蛋白質gp130と結合することにより、IL-6の生物学的活性が細胞内に伝達される。
【0028】
別の実施態様において、本発明は、術後の癒着の抑制における使用のための抗IL-6受容体抗体に関する。あるいは、本発明は、有効量の抗IL-6受容体抗体を対象に投与することを含む、対象における術後の癒着の抑制方法、又は、当該方法における使用のための抗IL-6受容体抗体に関する。このような態様における「対象」は、外科的手術を受ける個体であって、好適にはヒトであるが、非ヒト哺乳動物であってもよい。このような態様の1つにおいて、当該方法は、当該対象に少なくとも1つの追加の薬剤(例えば、抗好中球抗体)の有効量を投与する工程を、さらに含む。抗IL-6受容体抗体と当該追加の薬剤の併用は、併用投与(2つ以上の薬剤が、同じまたは別々の製剤に含まれる)および個別投与を包含し、個別投与の場合、抗IL-6受容体抗体の投与が追加の薬剤の投与に先立って、と同時に、および/または、続いて、行われ得る。
あるいは、本発明は、有効量の抗IL-6受容体抗体を含む、術後の癒着の抑制のための医薬組成物に関する。あるいは、本発明は、術後の癒着の抑制のための医薬の製造における抗IL-6受容体抗体の使用に関する。あるいは本発明は、術後の癒着の抑制における抗IL-6受容体抗体の使用に関する。あるいは本発明は、抗IL-6受容体抗体と薬学的に許容される担体を混合する工程を含む、術後の癒着の抑制のための医薬組成物の製造方法に関する。このような医薬または医薬組成物は、抗IL-6受容体抗体および薬学的に許容される担体の他に、少なくとも1つの追加の薬剤(例えば、抗好中球抗体)を含んでもよい。
【0029】
さらなる実施態様において、本発明は、好中球の遊走の抑制における使用のための抗IL-6受容体抗体に関する。あるいは、本発明は、有効量の抗IL-6受容体抗体を対象に投与することを含む、対象における好中球の遊走の抑制方法、又は、当該方法における使用のための抗IL-6受容体抗体に関する。このような態様における「対象」は、外科的手術を受ける個体であって、好適にはヒトであるが、非ヒト哺乳動物であってもよい。このような態様の1つにおいて、当該方法は、当該対象における手術による侵襲部位への好中球の遊走(浸潤)を抑制する。このような態様の1つにおいて、当該方法は、当該対象に少なくとも1つの追加の薬剤(例えば、抗好中球抗体)の有効量を投与する工程を、さらに含む。抗IL-6受容体抗体と当該追加の薬剤の併用は、併用投与(2つ以上の薬剤が、同じまたは別々の製剤に含まれる)および個別投与を包含し、個別投与の場合、抗IL-6受容体抗体の投与が追加の薬剤の投与に先立って、と同時に、および/または、続いて、行われ得る。
あるいは、本発明は、有効量の抗IL-6受容体抗体を含む、好中球の遊走の抑制のための医薬組成物に関する。あるいは、本発明は、好中球の遊走の抑制のための医薬の製造における抗IL-6受容体抗体の使用に関する。あるいは本発明は、好中球の遊走の抑制における抗IL-6受容体抗体の使用に関する。あるいは本発明は、抗IL-6受容体抗体と薬学的に許容される担体を混合する工程を含む、好中球の遊走の抑制のための医薬組成物の製造方法に関する。このような医薬または医薬組成物は、抗IL-6受容体抗体および薬学的に許容される担体の他に、少なくとも1つの追加の薬剤(例えば、抗好中球抗体)を含んでもよい。
【0030】
本発明で使用される抗IL-6受容体抗体は、公知の手段を用いてポリクローナル又はモノクローナル抗体として得ることができる。本発明で使用される抗IL-6受容体抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル抗体としては、ハイブリドーマによって産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主によって産生されるものがある。この抗体はIL-6受容体と結合することにより、IL-6のIL-6受容体への結合を阻害してIL-6の生物学的活性の細胞内への伝達を遮断する。
このような抗体としては、MR16-1抗体(Tamura, T. et al. Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928)、PM-1抗体 (Hirata, Y. et al., J. Immunol. (1989) 143, 2900-2906)、AUK12-20抗体、AUK64-7抗体あるいはAUK146-15抗体(国際特許出願公開番号WO 92-19759)などが挙げられる。これらのうちで、ヒトIL-6受容体に対する好ましいモノクローナル抗体としてはPM-1抗体が例示され、またマウスIL-6受容体に対する好ましいモノクローナル抗体としてはMR16-1抗体が挙げられる。
【0031】
抗IL-6受容体モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、IL-6受容体を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。
具体的には、抗IL-6受容体抗体を作製するには次のようにすればよい。例えば、抗体取得の感作抗原として使用されるヒトIL-6受容体は、欧州特許出願公開番号EP 325474に、マウスIL-6受容体は日本特許出願公開番号特開平3-155795に開示されたIL-6受容体遺伝子/アミノ酸配列を用いることによって得られる。
【0032】
IL-6受容体蛋白質は、細胞膜上に発現しているものと細胞膜より離脱しているもの(可溶性IL-6受容体)(Yasukawa, K. et al., J. Biochem. (1990) 108, 673-676)との二種類がある。可溶性IL-6受容体は細胞膜に結合しているIL-6受容体の実質的に細胞外領域から構成されており、細胞膜貫通領域あるいは細胞膜貫通領域と細胞内領域が欠損している点で膜結合型IL-6受容体と異なっている。IL-6受容体蛋白質は、本発明で用いられる抗IL-6受容体抗体の作製の感作抗原として使用されうる限り、いずれのIL-6受容体を使用してもよい。
IL-6受容体の遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中又は、培養上清中から目的のIL-6受容体蛋白質を公知の方法で精製し、この精製IL-6受容体蛋白質を感作抗原として用いればよい。また、IL-6受容体を発現している細胞やIL-6受容体蛋白質と他の蛋白質との融合蛋白質を感作抗原として用いてもよい。
【0033】
感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター等が使用される。
感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内又は皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量混合し、乳化後、哺乳動物に4〜21日毎に数回投与するのが好ましい。また、感作抗原免疫時に適当な担体を使用することができる。
このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞が取り出され、細胞融合に付される。細胞融合に付される好ましい免疫細胞としては、特に脾細胞が挙げられる。
【0034】
前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞は、すでに、公知の種々の細胞株、例えば、P3X63Ag8.653(Kearney, J. F. et al. J. Immunol. (1979) 123, 1548-1550)、P3X63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7)、NS-1(Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 511-519)、MPC-11(Margulies. D. H. et al., Cell (1976) 8, 405-415 )、SP2/0(Shulman, M. et al., Nature (1978) 276, 269-270)、FO(de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35, 1-21 )、S194(Trowbridge, I. S. J. Exp. Med.(1978) 148, 313-323)、R210(Galfre, G. et al., Nature (1979) 277, 131-133)等が適宜使用される。
【0035】
前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、たとえば、ミルシュタインらの方法(Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46)等に準じて行うことができる。
より具体的には、前記細胞融合は例えば、細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては例えば、ポリエチレングリコール(PEG)、センダイウィルス(HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。
【0036】
免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して免疫細胞を1〜10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清(FCS)等の血清補液を併用することもできる。
【0037】
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め、37℃程度に加温したPEG溶液、例えば、平均分子量1000〜6000程度のPEG溶液を通常、30〜60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)が形成される。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去できる。
当該ハイブリドーマは、通常の選択培養液、例えば、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。当該HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、通常数日〜数週間継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよびクローニングが行われる。
【0038】
また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球をin vitroで所望の抗原蛋白質又は抗原発現細胞で感作し、感作Bリンパ球をヒトミエローマ細胞、例えばU266と融合させ、所望の抗原又は抗原発現細胞への結合活性を有する所望のヒト抗体を得ることもできる(特公平1-59878参照)。さらに、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物に抗原又は抗原発現細胞を投与し、前述の方法に従い所望のヒト抗体を取得してもよい(国際特許出願公開番号WO 93/12227、WO 92/03918、WO 94/02602、WO 94/25585、WO 96/34096、WO 96/33735参照)。
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが可能である。
【0039】
当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法にしたがい培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。
例えば、抗IL-6受容体抗体産生ハイブリドーマの作製は、特開平3-139293に開示された方法により行うことができる。PM-1抗体産生ハイブリドーマをBALB/cマウスの腹腔内に注入して腹水を得、この腹水からPM-1抗体を精製する方法や、本ハイブリドーマを適当な培地、例えば、10%ウシ胎児血清、5%BM-Condimed H1(Boehringer Mannheim製)含有RPMI1640培地、ハイブリドーマSFM培地(GIBCO-BRL製)、PFHM-II培地(GIBCO-BRL製)等で培養し、その培養上清からPM-1抗体を精製する方法で行うことができる。
【0040】
本発明には、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生させた組換え型抗体を用いることができる(例えば、Borrebaeck C. A. K. and Larrick J. W. THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。
具体的には、目的とする抗体を産生する細胞、例えばハイブリドーマから、抗体の可変(V)領域をコードするmRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299 )、AGPC法(Chomczynski, P. et al., Anal. Biochem. (1987)162, 156-159)等により全RNA を調製し、mRNA Purification Kit (Pharmacia製)等を使用してmRNAを調製する。また、QuickPrep mRNA Purification Kit(Pharmacia製)を用いることによりmRNAを直接調製することができる。
【0041】
得られたmRNAから逆転写酵素を用いて抗体V領域のcDNAを合成する。cDNAの合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit等を用いて行うことができる。また、cDNAの合成および増幅を行うには5'-Ampli FINDER RACE Kit(Clontech製)およびPCRを用いた5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA(1988)85, 8998-9002;Belyavsky, A. et al., Nucleic Acids Res.(1989)17, 2919-2932)を使用することができる。得られたPCR産物から目的とするDNA断片を精製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列を公知の方法、例えば、ジデオキシ法により確認する。
目的とする抗体のV領域をコードするDNAが得られれば、これを所望の抗体定常領域(C領域)をコードするDNAと連結し、これを発現ベクターへ組み込む。又は、抗体のV領域をコードするDNAを、抗体C領域のDNAを含む発現ベクターへ組み込んでもよい。
【0042】
本発明で使用される抗体を製造するには、後述のように抗体遺伝子を発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させることができる。
【0043】
本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体、ヒト(human)抗体を使用できる。これらの改変抗体は、既知の方法を用いて製造することができる。
【0044】
キメラ抗体は、前記のようにして得た抗体V領域をコードするDNAを、ヒト抗体C領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得られる(欧州特許出願公開番号EP 125023、国際特許出願公開番号WO 92-19759参照)。この既知の方法を用いて、本発明に有用なキメラ抗体を得ることができる。
【0045】
ヒト化抗体は、再構成(reshaped)ヒト抗体またはヒト型化抗体とも称され、ヒト以外の哺乳動物、例えばマウス抗体の相補性決定領域(CDR)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている(欧州特許出願公開番号EP 125023、国際特許出願公開番号WO 92-19759参照)。
具体的には、マウス抗体のCDRとヒト抗体のフレームワーク領域(FR; framework region)を連結するように設計したDNA配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR法により合成する。得られたDNAを、ヒト抗体C領域をコードするDNAと連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番号EP 239400、国際特許出願公開番号WO 92-19759参照)。
CDRを介して連結されるヒト抗体のFRは、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res. (1993) 53, 851-856)。
【0046】
キメラ抗体、ヒト化抗体には、ヒト抗体C領域が使用される。ヒト抗体C領域としては、Cγが挙げられ、例えば、Cγ1、Cγ2、Cγ3又はCγ4を使用することができる。また、抗体又はその産生の安定性を改善するために、ヒト抗体C領域を修飾してもよい。
キメラ抗体はヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来のC領域からなり、またヒト化抗体はヒト以外の哺乳動物由来抗体の相補性決定領域とヒト抗体由来のフレームワーク領域およびC領域からなり、両者はヒト体内における抗原性が低下しているため、本発明に使用される抗体として有用である。
【0047】
本発明に使用されるヒト化抗体の好ましい具体例としては、ヒト化PM-1抗体が挙げられる(国際特許出願公開番号WO 92-19759参照)。
また、ヒト抗体の取得方法としては先に述べた方法のほか、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択することもできる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を含む適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、WO92/01047、WO 92/20791、WO 93/06213、WO 93/11236、WO 93/19172、WO 95/01438、WO 95/15388を参考にすることができる。
【0048】
前記のように構築した抗体遺伝子は、公知の方法により発現させることができる。哺乳類細胞を用いた場合、常用される有用なプロモーター、発現される抗体遺伝子、その3'側下流にポリAシグナルを機能的に結合させたDNAあるいはそれを含むベクターにより発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウィルス前期プロモーター/エンハンサー(human cytomegalovirus immediate early promoter/enhancer)を挙げることができる。
また、その他に本発明で使用される抗体発現に使用できるプロモーター/エンハンサーとして、レトロウィルス、ポリオーマウィルス、アデノウィルス、シミアンウィルス40(SV40)等のウィルスプロモーター/エンハンサーやヒトエロンゲーションファクター1α(HEF1α)などの哺乳類細胞由来のプロモーター/エンハンサーを用いればよい。
例えば、SV40プロモーター/エンハンサーを使用する場合、Mulliganらの方法(Mulligan, R. C. et al., Nature (1979) 277, 108-114) 、また、HEF1αプロモーター/エンハンサーを使用する場合、Mizushimaらの方法(Mizushima, S. and Nagata, S. Nucleic Acids Res. (1990) 18, 5322 )に従えば容易に実施することができる。
【0049】
大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列、発現させる抗体遺伝子を機能的に結合させて発現させることができる。例えばプロモーターとしては、lacZプロモーター、araBプロモーターを挙げることができる。lacZプロモーターを使用する場合、Wardらの方法(Ward, E. S. et al., Nature (1989) 341, 544-546;Ward, E. S. et al. FASEB J. (1992) 6, 2422-2427 )、araBプロモーターを使用する場合、Betterらの方法(Better, M. et al. Science (1988) 240, 1041-1043 )に従えばよい。
抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379-4383)を使用すればよい。ペリプラズムに産生された抗体を分離した後、抗体の構造を適切にリフォールド(refold)して使用する(例えば、WO96/30394を参照)。
【0050】
複製起源としては、SV40、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドホスホトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
【0051】
本発明で使用される抗体の製造のために、任意の産生系を使用することができる。抗体製造のための産生系は、in vitroおよびin vivoの産生系がある。in vitroの産生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。
【0052】
真核細胞を使用する場合、動物細胞、植物細胞、又は真菌細胞を用いる産生系がある。動物細胞としては、(1)哺乳類細胞、例えば、CHO、COS、ミエローマ、BHK(baby hamster kidney)、HeLa、Veroなど、(2)両生類細胞、例えば、アフリカツメガエル卵母細胞、あるいは(3)昆虫細胞、例えば、sf9、sf21、Tn5などが知られている。植物細胞としては、ニコチアナ・タバクム(Nicotiana tabacum)由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、糸状菌、例えばアスペルギルス属(Aspergillus)属、例えばアスペルギルス・ニガー(Aspergillus niger)などが知られている。
【0053】
原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌(E.coli)、枯草菌が知られている。
【0054】
これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞をin vitroで培養することにより抗体が得られる。培養は、公知の方法に従い行う。例えば、培養液として、DMEM、MEM、RPMI1640、IMDMを使用することができ、牛胎児血清(FCS)等の血清補液を併用することもできる。また、抗体遺伝子を導入した細胞を動物の腹腔等へ移すことにより、in vivoにて抗体を産生してもよい。
【0055】
一方、in vivoの産生系としては、動物を使用する産生系や植物を使用する産生系が挙げられる。動物を使用する場合、哺乳類動物、昆虫を用いる産生系などがある。
哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシなどを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、昆虫としては、カイコを用いることができる。植物を使用する場合、例えばタバコを用いることができる。
これらの動物又は植物に抗体遺伝子を導入し、動物又は植物の体内で抗体を産生させ、回収する。例えば、抗体遺伝子をヤギβカゼインのような乳汁中に固有に産生される蛋白質をコードする遺伝子の途中に挿入して融合遺伝子として調製する。抗体遺伝子が挿入された融合遺伝子を含むDNA断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が産生する乳汁から所望の抗体を得る。トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい。(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702)。
また、カイコを用いる場合、目的の抗体遺伝子を挿入したバキュロウィルスをカイコに感染させ、このカイコの体液より所望の抗体を得る(Maeda, S. et al., Nature (1985) 315, 592-594)。さらに、タバコを用いる場合、目的の抗体遺伝子を植物発現用ベクター、例えばpMON530に挿入し、このベクターをAgrobacterium tumefaciensのようなバクテリアに導入する。このバクテリアをタバコ、例えばNicotiana tabacumに感染させ、本タバコの葉より所望の抗体を得る(Julian, K.-C. Ma et al., Eur. J. Immunol.(1994)24, 131-138)。
【0056】
上述のようにin vitro又はin vivoの産生系にて抗体を産生する場合、抗体重鎖(H鎖)又は軽鎖(L鎖)をコードするDNAを別々に発現ベクターに組み込んで宿主を同時形質転換させてもよいし、あるいはH鎖およびL鎖をコードするDNAを単一の発現ベクターに組み込んで、宿主を形質転換させてもよい(国際特許出願公開番号WO 94-11523参照)。
【0057】
本発明で使用される抗体は、本発明に好適に使用され得るかぎり、抗体の断片やその修飾物であってよい。例えば、抗体の断片としては、Fab、F(ab')2、Fv又はH鎖とL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。
具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M.S. et al., J. Immunol. (1994) 152, 2968-2976、Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496 、Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 497-515 、Lamoyi, E., Methods in Enzymology (1989) 121, 652-663 、Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-66、Bird, R. E. et al., TIBTECH (1991) 9, 132-137参照)。
【0058】
scFvは、抗体のH鎖V領域とL鎖V領域を連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域はリンカー、好ましくは、ペプチドリンカーを介して連結される(Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、上記抗体として記載されたもののいずれの由来であってもよい。V領域を連結するペプチドリンカーとしては、例えばアミノ酸12-19残基からなる任意の一本鎖ペプチドが用いられる。
【0059】
scFvをコードするDNAは、前記抗体のH鎖又はH鎖V領域をコードするDNA、およびL鎖又はL鎖V領域をコードするDNAを鋳型とし、それらの配列のうちの所望のアミノ酸配列をコードするDNA部分を、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカー部分をコードするDNAおよびその両端を各々H鎖、L鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。
また、一旦scFvをコードするDNAが作製されれば、それらを含有する発現ベクター、および該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いて常法に従って、scFvを得ることができる。
これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により産生させることができる。本発明でいう「抗体」にはこれらの抗体の断片も包含される。
【0060】
抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。本発明でいう「抗体」にはこれらの抗体修飾物も包含される。このような抗体修飾物を得るには、得られた抗体に化学的な修飾を施すことによって得ることができる。これらの方法はこの分野においてすでに確立されている。
【0061】
前記のように産生、発現された抗体は、細胞内外、宿主から分離し均一にまで精製することができる。本発明で使用される抗体の分離、精製はアフィニティークロマトグラフィーにより行うことができる。アフィニティークロマトグラフィーに用いるカラムとしては、例えば、プロテインAカラム、プロテインGカラムが挙げられる。プロテインAカラムに用いる担体として、例えば、HyperD、POROS、SepharoseF.F.等が挙げられる。その他、通常のタンパク質で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。
例えば、上記アフィニティークロマトグラフィー以外のクロマトグラフィー、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせれば、本発明で使用される抗体を分離、精製することができる。クロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲルろ過等が挙げられる。これらのクロマトグラフィーはHPLC(High performance liquid chromatography)に適用し得る。また、逆相HPLC(reverse phase HPLC)を用いてもよい。
【0062】
上記で得られた抗体の濃度測定は吸光度の測定又はELISA等により行うことができる。すなわち、吸光度の測定による場合には、PBS(-)で適当に希釈した後、280nmの吸光度を測定し、1mg/mlを1.35ODとして算出する。また、ELISAによる場合は以下のように測定することができる。すなわち、0.1M重炭酸緩衝液(pH9.6)で1μg/mlに希釈したヤギ抗ヒトIgG(TAG製)100μlを96穴プレート(Nunc製)に加え、4℃で一晩インキュベーションし、抗体を固相化する。ブロッキングの後、適宜希釈した本発明で使用される抗体又は抗体を含むサンプル、あるいは標品としてヒトIgG(CAPPEL製)100μlを添加し、室温にて1時間インキュベーションする。
【0063】
洗浄後、5000倍希釈したアルカリフォスファターゼ標識抗ヒトIgG(BIO SOURCE製)100μlを加え、室温にて1時間インキュベートする。洗浄後、基質溶液を加えインキュベーションの後、MICROPLATE READER Model 3550(Bio-Rad製)を用いて405nmでの吸光度を測定し、目的の抗体の濃度を算出する。
【0064】
本発明に使用する抗体は、ポリエチレングリコール(PEG)、放射性物質、トキシン等の各種分子と結合したコンジュゲート抗体でもよい。このようなコンジュゲート抗体は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野においてすでに確立されている。本発明における「抗体」にはこれらのコンジュゲート抗体も包含される。
【0065】
本発明における「IL-6受容体抗体」の好ましい例としては、ヒト化抗IL-6レセプターIgG1抗体であるトシリズマブ、及びトシリズマブの可変領域及び定常領域の改変を行ったヒト化抗IL-6レセプター抗体が挙げられ、具体的には配列番号:1の配列を含む重鎖可変領域および配列番号:2の配列を含む軽鎖可変領域を含む抗体が挙げられる。さらに好ましくは、配列番号:3の配列を含む重鎖(SA237の重鎖)及び配列番号:4の配列を含む軽鎖(SA237の軽鎖)を含む抗体である。特にSA237が好ましい。
【0066】
このような抗体は、例えばWO2010/035769、WO2010/107108、WO2010/106812などに記載の方法に従って取得することができる。具体的には、上記IL-6受容体抗体の配列を基に、当業者に公知の遺伝子組換え技術を用いて抗体を作製することが可能である(例えば、Borrebaeck CAK and Larrick JW, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990 参照)。組換え型抗体は、それをコードするDNAをハイブリドーマ、または抗体を産生する感作リンパ球等の抗体産生細胞からクローニングし、適当なベクターに組み込んで、これを宿主(宿主細胞)に導入し産生させて得ることができる。
【0067】
このような抗体の分離、精製は、通常の抗体の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせれば抗体を分離、精製することができる。
【0068】
本明細書において、好中球に対する中和抗体(抗好中球中和抗体)の例として、好中球上で発現する抗原に結合する抗体が挙げられる。具体的な例としては、マウスの好中球に存在するLy6Gに対する抗体が挙げられるがこれに限定されない。他の例としては、ヒトの好中球上で発現するCD177(Blood. 2012 Aug 16; 120(7): 1489-1498)に対する抗体が挙げられる。
【0069】
本明細書において、用語「医薬組成物」および「抑制剤」は、その中に含まれた有効成分の生物学的活性が効果を発揮し得るような形態にある調製物であって、かつ製剤が投与される対象に許容できない程度に毒性のある追加の要素を含んでいない、調製物のことをいう。本発明の医薬組成物は、その抑制または予防目的のために必要であれば1つより多くの有効成分を含んでもよい。互いに悪影響を与えあわない相補的な活性を伴うものが好ましい。例えば、本発明の医薬組成物は、抗IL-6受容体抗体と共に抗好中球中和抗体を有効成分として含有してもよい。このような有効成分は、意図された目的のために有効である量で、好適に組み合わせられて存在する。
【0070】
抑制または予防目的で使用される本発明の医薬組成物は、必要に応じて、適当な薬学的に許容される担体、媒体等と混和して調製し、凍結乾燥製剤又は溶液製剤とすることができる。適当な薬学的に許容される担体、媒体としては、例えば、滅菌水や生理食塩水、安定剤、賦形剤、酸化防止剤(アスコルビン酸等)、緩衝剤(リン酸、クエン酸、ヒスチジン、他の有機酸等)、防腐剤、界面活性剤(PEG、Tween等)、キレート剤(EDTA等)、結合剤等を挙げることができる。また、その他の低分子量のポリペプチド、血清アルブミン、ゼラチンや免疫グロブリン等の蛋白質、グリシン、グルタミン、アスパラギン、グルタミン酸、アスパラギン酸、メチオニン、アルギニン及びリシン等のアミノ酸、多糖及び単糖等の糖類や炭水化物、マンニトールやソルビトール等の糖アルコールを含んでいてもよい。注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、PEG等)、非イオン性界面活性剤(ポリソルベート80、ポリソルベート20、ポロキサマー188、HCO-50)等と併用してもよい。また、製剤中にヒアルロニダーゼ(hyaluronidase)を混合することによって、より大きな液量を皮下投与することも可能である(Expert Opin Drug Deliv. 2007 Jul;4(4):427-40.)。また、本発明の医薬組成物は予め注射筒に入れられていてもよい。尚、溶液製剤はWO2011/090088に記載の方法に従って作製することができる。
【0071】
また、必要に応じ本発明の医薬組成物をマイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入したり、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子及びナノカプセル等)とすることもできる("Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)等参照)。さらに、薬剤を徐放性の薬剤とする方法も公知であり、本発明の医薬組成物に適用し得る(Langer et al., J.Biomed. Mater.Res. 15: 267-277 (1981); Langer, Chemtech. 12: 98-105 (1982);米国特許第3,773,919号;欧州特許出願公開(EP)第58,481号; Sidman et al., Biopolymers 22: 547-556 (1983);EP第133,988号)。
【0072】
本発明の医薬組成物の投与は、任意の適切な経路を介して患者に投与することができる。例えば、ボーラスとしてまたは一定期間にわたる持続注入による静脈内、筋肉内、腹腔内、脳脊髄内、経皮、皮下、関節内、舌下、滑液内、経口、吸入、局所または外用による経路により患者に投与される。一態様において、本発明の医薬組成物の投与は全身投与であり、全身の外科的侵襲部位に癒着抑制効果を示す。
【0073】
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
【実施例1】
【0074】
〔実験結果の要旨〕
マウス術後腸管癒着モデルを用いて抗IL-6抗体(MP5-20F3)および抗IL-6受容体抗体(MR16-1)による癒着抑制効果につき検証した。マウス癒着モデルはマウス盲腸に対するバイポーラ電気メスによる短時間アブレーションによるモデルであり、術後7日目の腹腔内癒着形成度によりグレード0〜5の6段階(癒着スコア)に分けられた。抗IL-6抗体を術前1日に腹腔内投与(100μg/mouse投与群および1mg/mouse投与群)し、7日目に癒着を検証した。癒着スコア(M±SEM)はPBS投与群では5.00±0.00であり、抗IL-6抗体投与群では4.67±0.648(100μg/mouse投与群)、5.00±0.00 (1mg/mouse投与群)、であり抗体量を増加しても癒着抑制効果は認められなかった。次に抗IL-6受容体抗体(MR16-1)を用いて癒着抑制効果を検証した。術前1日にMR16-1(10mg/mouse)を投与すると、癒着スコアはPBS投与群で4.83±0.17、MR16-1投与群では2.25±0.65と有意に(p=0.006)癒着抑制効果を認めた。さらにコントロール群としてラットIgG (10mg/mouse)を使用して検証すると、癒着スコアはラットIgG群で5.00±0.00、MR16-1投与群では1.00±0.00と有意に(p=0.00005)癒着抑制効果を認めた。病理組織学的検討ではPBS群で認められた腸管癒着部位における線維組織・コラーゲン組織形成、および好中球を中心とする炎症細胞浸潤の著明な減少をMR16-1投与群で認め、癒着スコア改善の肉眼所見と一致していた。また術後1日目の障害腸管組織における好中球誘導ケモカイン(CXCL、CXCL2)の著明な減少を認めた。さらに好中球に対する中和抗体(抗Ly6G抗体)を用いて同様の実験を実施すると抗Ly6G抗体投与群では著明な癒着抑制(p=0.0004)が認められた。これらの結果より抗IL-6受容体抗体(MR16-1)のマウス腸管癒着モデルにおける癒着抑制効果が実証された。
以下、これらの実証結果を詳細に説明する。
【0075】
〔材料と方法〕
マウスは10週齢の雌BALB/cマウス(1匹あたりの体重:20g)を用いた。腸管癒着モデルはマウス盲腸に対するバイポーラ電気メス焼却法を用いた(Nat Med. 14:437-441, 2008参照)。簡潔に述べると、5 mmの腹部正中切開創より盲腸を体外に露出、バイポーラ電気メスにて約1秒間接触(30W, 500kHz,150Ω)、焼却後ただちに腹腔内に盲腸を戻し、腹壁は一層縫合、4-0プロリン糸にて閉腹した。腸管癒着の評価は術後7日目にマウスを犠死させ、肉眼的に癒着スコア0〜5の6段階評価にてスコア判定を実施した(Surgery 120:866-870, 1996参照)。スコア0〜5の内容は以下のとおりである。
0:癒着無し。
1:1ケ所の薄い膜状癒着形成。
2:2ケ所以上の薄い膜状癒着形成。
3:局所的な厚い癒着形成。
4:播種状に付着した厚い癒着形成または2ケ所以上の厚い癒着形成。
5:極めて厚く血管新生を伴う癒着形成または2ケ所以上の局所的に厚い癒着形成。
【0076】
抗IL-6抗体(MP5-20F3)はSouthernBiotech社より購入した。抗IL-6受容体抗体はMR16-1を用いた。抗好中球中和抗体(抗Ly6G)およびラットIgGはBio X Cell社より購入した。抗IL-6抗体(MP5-20F3)効果判定実験では、1 mlのPBS (n=4)、または100μg/ml/mouse(n=3)もしくは1mg/ml/mouse(n=4)の抗IL-6抗体MP5-20F3を、術前24時間前に腹腔内投与した。また、抗IL-6受容体抗体(MR16-1)実験では、1 ml/mouseのPBS(n=10)、10mg/ml/mouseのラットIgG(n=4)、2mg/ml/mouseの抗IL-6受容体抗体MR16-1(n=3)、または10mg/ml/mouseのMR16-1(n=11)を、術前24時間前に腹腔内投与した。好中球中和抗体実験では、isotype(n=5)は500μg、抗Ly6G抗体は500μg(n=6)を腹腔内投与した。
【0077】
術後7日目に癒着腸管を含む病理検体を摂取し、ホルマリンまたは亜鉛液固定後、パラフィンブロックを作成し、その薄切切片を用いてHematoxylin-Eosin(HE)染色を実施した。また線維化の評価はAzan Mallory/ Sirius Red染色にて実施した。好中球の組織への浸潤・集積の評価はLy6G免疫染色(抗Ly6G抗体はBD Pharmingen社より購入)にて実施した。また検体よりmRNAを精製した。そして精製したmRNAサンプルをreal time PCRに供してCXCL1、CXCL2の発現量を測定した。
【0078】
統計学的解析はすべての実験において、Student's t検定を用い、P<0.05をもって有意差ありと判定した。
【0079】
〔結果1〕抗IL-6抗体(MP5-20F3)投与実験
PBS投与群においては、MP5-20F3 100μg/mouse投与群に対するコントロール群としてのPBS投与群(n=4)、およびMP5-20F3 1mg/mouse投与群に対するコントロール群としてのPBS投与群(n=4)のいずれにおいても、癒着スコア5の強度の癒着が認められた(
図1)。MP5-20F3投与群の癒着スコアは、4.67±0.648(100μg/mouse投与群: n=3)および5.00±0.00 (1mg/mouse投与群: n=4)であり、抗体量を増加しても癒着抑制効果は認められなかった(
図2、
図3)。
【0080】
〔結果2〕抗IL-6受容体抗体(MR16-1)投与実験
コントロール群としてのPBS投与群(n=10)の癒着スコア4.83±0.167、10mg/ml/mouse のMR16-1投与群(n=8)の癒着スコアは2.25±0.648であり、10mg/ml/mouse のMR16-1投与による有意な(p=0.006)癒着抑制効果が認められた(
図4、
図5)。
さらにコントロール群としてラットIgG(10mg/mouse)を使用して検証したところ、ラットIgG投与群(n=4)の癒着スコアは5.00±0.00、10mg/ml/mouse のMR16-1投与群(n=3)の癒着スコアは1.00±0.00であり、10mg/ml/mouse のMR16-1投与による有意な(p=0.00005)癒着抑制効果が認められた(
図6)。
以上のMR16-1投与実験の結果をまとめると(
図7)、10mg/ml/mouseのMR16-1投与群(n=11)はPBS投与群(n=10)に比較して有意に(p=0.00002)癒着抑制効果を認め、またラットIgGの10mg投与群(n=4)に比較しても有意に(p=0.003)癒着抑制効果を認めた。
【0081】
〔結果3〕癒着部腸管組織の病理組織学的検討と組織中ケモカイン測定
MR16-1投与群では、HE染色でも線維免疫染色でも著明な炎症所見・線維組織の減少が認められた。好中球の組織浸潤を免疫染色(Ly-6G染色)で検討したところ、PBS投与群(
図8)に比べて、10mg/ml/mouseのMR16-1投与群(
図9)では、腸管癒着部・非癒着部のいずれにおいても、好中球の組織浸潤の著明な減少が認められた。
また、好中球遊走に関するケモカインであるCXCL1/CXCL2の障害腸管部におけるmRNA発現をreal time PCRで測定したところ、術後1日目、7日目のいずれにおいても、MR16-1の10mg/mouse投与群において、CXCL1/CXCL2発現量の著明な減少が認められた(
図10、
図11)。
【0082】
〔結果4〕好中球中和抗体(抗Ly-6G抗体)投与による腸管癒着抑制実験
ラットIgG投与群(n=6)の癒着スコアは4.83±0.24であったが、抗Ly-6G抗体投与群(n=6)の癒着スコアは2.17±0.67であり、抗Ly-6G抗体投与による有意な(p=0.0004)癒着抑制効果が認められた(
図12)。
【実施例2】
【0083】
(目的)
MR16-1の創傷治癒抑制効果を、皮膚生検パンチを用いた皮膚全層欠損モデルで調べた。
(方法)
動物はBalbcマウス(♂,8週齢)を用い、生検パンチを用いた皮膚欠損処置を行う24時間前に、Rat IgG 10mgを腹腔内投与するコントロール群( n=4 )、MR16-1(10mg)を腹腔内投与する対象群( n=4 ) を作成した。皮膚欠損処置はイソフルラン(濃度:3%,キャリアガス:酸素30%,笑気ガス70%)吸入麻酔下に背部を剃毛し、消毒用エタノールを用いて清拭した後、皮膚生検パンチ(二プロ株式会社、大阪)を用いて、直径約5mmの皮膚を摘出した。処置当日より経時的に皮膚欠損部の面積を測定し、創傷治癒の評価を行い、Rat IgG 投与群とMR16-1投与群との比較によりMR16-1の創傷治癒抑制効果を調べた。 なお、面積測定は、皮膚欠損部を写真に取った後、J-image ( free soft from NIH) にて測定した。
(結果)
処置当日のRat IgG投与群およびMR16-1投与群の皮膚欠損の面積は19.68±0.75mm
2、19.20±0.53mm
2であった( Fig.1 and 2 )。処置後3日目および7日目のRat IgG投与群およびMR16-1投与群の皮膚欠損面積は9.98±1.11mm
2、10.21±0.65mm
2 (3日目) 1.6±0.291.11mm
2、1.07±0.09mm
2 (7日目)で、両群に創傷治癒における有意差は認めなかった(
図13及び
図14)。以上の結果より、MR16-1による皮膚欠損創傷治癒の有意な抑制効果は認めなかった。
したがって、IL-6受容体抗体を投与することにより、手術後の癒着形成が抑制されるとともに侵襲部位の創傷治癒が達成されることが期待される。