(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2015-529093(P2015-529093A)
(43)【公表日】2015年10月5日
(54)【発明の名称】保存安定性が改善された全豆乳の製造方法
(51)【国際特許分類】
A23L 1/20 20060101AFI20150908BHJP
A23C 11/10 20060101ALI20150908BHJP
【FI】
A23L1/20 Z
A23C11/10
【審査請求】有
【予備審査請求】未請求
【全頁数】36
(21)【出願番号】特願2015-532949(P2015-532949)
(86)(22)【出願日】2013年9月11日
(85)【翻訳文提出日】2015年3月18日
(86)【国際出願番号】KR2013008227
(87)【国際公開番号】WO2014046416
(87)【国際公開日】20140327
(31)【優先権主張番号】10-2012-0104177
(32)【優先日】2012年9月19日
(33)【優先権主張国】KR
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KN,KP,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】315004764
【氏名又は名称】ハンミ メディケア インコーポレイティッド
(74)【代理人】
【識別番号】100121728
【弁理士】
【氏名又は名称】井関 勝守
(74)【代理人】
【識別番号】100165803
【弁理士】
【氏名又は名称】金子 修平
(72)【発明者】
【氏名】リム ジョンフン
(72)【発明者】
【氏名】チェ ビョング
【テーマコード(参考)】
4B001
4B020
【Fターム(参考)】
4B001AC20
4B001BC12
4B001BC99
4B001EC99
4B020LB18
4B020LC07
4B020LG01
4B020LQ01
4B020LQ03
4B020LQ06
(57)【要約】
本発明は、長期間保存しても粘度の変化がほとんどなく、優れた保存安定性を示す全豆乳の製造方法および前記方法により製造された全豆乳に関するものであり、本発明の方法によると、従来の全豆乳製造方法よりも簡単な工程のみで、小さい粒度の全豆乳を得ることが容易にできるので、豆乳の製造時間を短縮することができる。また、本発明の方法により製造された全豆乳は、おからと豆乳液をすべて含む従来の全豆乳が時間の経過によって粘度が上昇することとは異なり、長期間保存しても粘度の変化がほとんどないため、流通期限を大幅に延ばすことができる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
1)大豆を炒った後、剥皮させ剥皮大豆を得る段階と、
2)前記剥皮大豆を蒸して、蒸し大豆を得る段階と、
3)前記の蒸し大豆を粗粉砕して粗粉砕豆乳液を得る段階と、
4)前記粗粉砕豆乳液を、カット方式で粒子を微粉砕する機械的磨砕装置により微粉砕して全豆乳液を得る段階と、
5)前記全豆乳液を微細均質化する段階とを含む、全豆乳の製造方法
【請求項2】
前記段階1において、熱風(Hot air)方式、半熱風方式、直火方式、遠赤外線方式をもって大豆を炒ることを特徴とする、請求項1に記載の製造方法。
【請求項3】
前記直火方式は、ドラムロースター(drum roaster)を用いて、ロースター内部のドラム温度が150℃〜240℃、ドラムの回転速度が20rpm〜40rpmで、炒り時間は4分〜12分、大豆の投入および吐出量は、1分間に40Kg〜50Kgの条件で行われることを特徴とする、請求項2に記載の製造方法。
【請求項4】
前記熱風方式において、炒り温度は150℃〜200℃で、ロースターの内部容積に対して大豆の投入速度は30%〜70%、排出速度は60%〜95%で、炒り時間は40秒〜120秒の条件で行われることを特徴とする、請求項2に記載の製造方法。
【請求項5】
前記遠赤外線方式において、炒り温度は180℃〜230℃で、炒り時間は4分〜14分の条件で行われることを特徴とする、請求項2に記載の製造方法。
【請求項6】
前記段階2における蒸し工程は、熱水温度91℃〜99℃にて3分〜10分間行われることを特徴とする、請求項1に記載の製造方法。
【請求項7】
前記段階3における粗粉砕は、蒸し大豆の重量を基準に2.4重量倍〜10重量倍の水を添加して粗粉砕することを特徴とする、請求項1に記載の製造方法。
【請求項8】
前記段階3で得られた粗粉砕豆乳液の固形分含量が5%〜15%であることを特徴とする、請求項1に記載の製造方法。
【請求項9】
前記段階4において、カット方式で粒子を微粉砕する機械的磨砕装置がコミトロール(Comitrol)であることを特徴とする、請求項1に記載の製造方法。
【請求項10】
前記段階4の微粉砕において、50個〜222個のブレードを含み、ブレードとブレードとの間隔が0.001インチ〜0.2214インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0012インチ〜0.0237インチであるコミトロールを用いて1次微細化および2次微細化する段階を含むことを特徴とする、請求項1に記載の製造方法。
【請求項11】
前記1次微細化の段階は、212個のブレードを含み、ブレードとブレードとの間隔が0.005インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0013インチであるコミトロールを用いることを特徴とする、請求項10に記載の製造方法。
【請求項12】
前記2次微細化の段階は、222個のブレードを含み、ブレードとブレードとの間隔が0.001インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0012インチであるコミトロールを用いることを特徴とする、請求項10に記載の製造方法。
【請求項13】
前記段階4の微粉砕において、172個〜241個のブレードを含み、ブレードとブレードとの間隔が0.00043インチ〜0.606インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0001インチ〜0.042インチであるコミトロールを用いて1次微細化および2次微細化を行う段階を含むことを特徴とする、請求項1に記載の製造方法。
【請求項14】
前記段階5において、前記段階4で得られた全豆乳液を、200bar〜300barの圧力で1次微細均質化する段階と、得られた全豆乳液を殺菌、冷却、および滅菌する段階と、前記滅菌全豆乳液を150bar〜300barの圧力で2次微細均質化する段階とを含むことを特徴とする、請求項1に記載の製造方法。
【請求項15】
請求項1〜14のいずれか1項に記載の方法により製造された全豆乳。
【請求項16】
前記全豆乳は、25μm〜35μmの平均粒度を有することを特徴とする、請求項15に記載の全豆乳。
【請求項17】
前記全豆乳の粘度は、34cP〜55cPであることを特徴とする、請求項15に記載の全豆乳。
【請求項18】
前記全豆乳を製品化して1℃〜35℃の室温で保存する際、22か月が経過しても粘度上昇値が12cP未満であることを特徴とする、請求項15に記載の全豆乳。
【請求項19】
請求項1〜14のいずれか1項に記載の方法により製造された全豆乳を食品学的に許容可能な食品および添加剤と配合した後、安定化、充填、滅菌、および冷却する段階を含む全豆乳製品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、長期間保存しても粘度の変化がほとんどなく、優れた保存安定性を示す全豆乳の製造方法に関するものである。
【背景技術】
【0002】
豆乳を製造する方法としては、ゆでた大豆や水にふやかした生大豆または大豆粉を加熱して粉砕して圧着搾汁とすることが普遍的である。通常の豆乳および豆腐の製造方法においては、原料大豆の重量の3分の1程度が副産物であるおからとして廃棄され、大豆から摂取可能な多くの食物繊維、脂質、アミノ酸、ミネラルなどの栄養成分や機能性物質などがおからとして流失された大豆食品が製造されてきた。
【0003】
このような栄養成分の流失問題を克服し大豆の栄養成分全体を含む豆乳(以下、「全豆乳」という)を製造する方法として、酵素を利用しておからを分解処理する方法(特許文献1)、超音波および熱処理を並行する方法(特許文献2および3)、高温高圧処理によりおから生成量を減少する方法(特許文献4)等が提示された。しかし、これらの方法は大部分、最終的豆乳の粒子の大きさが大きくて、豆乳が荒かったり豆乳粒子の沈積が起きたりして、おからの再処理によって生じるよくない味や香りの問題を克服できなく、産業化が難しいという欠点を有している。特に、酵素分解を利用した場合、大衆食品として低価で供給されている大豆食品の経済性に対し高価の酵素が投入されるので非経済的という短所を克服することができなかった。
【0004】
また、加工処理した生大豆粉末(特許文献5)を利用して、全豆乳を製造する方法などが報告されているが、大豆を粉体に処理するための前処理工程において大豆の一部の栄養成分が流失する問題を回避することができなく、大豆の栄養成分をそのまま利用しようとする観点からは適した技術ではない。
【0005】
一方、特許文献6には、次のような段階を含む全成分豆乳および豆腐の製造方法を開示している。丸大豆または剥皮大豆を常温水で約8時間〜15時間浸漬させ、これを粉砕機(クラッシャー)により1次粉砕した後、粉砕液に含まれている大豆の外皮や不純物を精製器(リファイナー)によって除去する精製工程を1回〜3回実施する。続いて微粉砕機(ウルトラマイザー)により2次粉砕した粉砕液を85℃〜90℃で1分〜2分間保持して粉砕液内の酵素を不活性化した後、超高圧均質化工程にて微細化することにより全豆乳を製造する。または、乳液セパレータにより豆乳液とおからとを分離して、分離されたおからを精製水と混合し、循環ミーリング機にて50℃〜60℃で約30分〜50分間再循環して、おから乳液を軟化させる。続いて、乳液分離機にて分離された豆乳液と、循環ミーリング機を経て軟化されたおから乳液との混合液を超高圧均質化工程により微細化することによって全豆乳を製造する。
【0006】
しかし、前記方法は、製品の製造後時間が経過するにつれ粘度が上昇してドロドロになる現象が生じるようになり、食感が良くなく、これによって賞味期限を長く設定できないという欠点がある。
【0007】
そこで、本発明者らは、粒度が小さく、長期間保存安定性に優れた全豆乳の経済的でかつ効率的な製造方法を開発するべく、鋭意研究した結果、大豆を炒った後、豆の蒸し工程を行い、従来の臼挽き方式の代わりにカット方式で粒子を微細化する方法により粒度が小さく、長期保存しても粘度の変化がほとんどない全豆乳を製造することにより、本発明を完成した。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】大韓民国特許公開10−2001−41120号公報
【特許文献2】大韓民国特許登録第41494号公報
【特許文献3】大韓民国特許登録第59907号公報
【特許文献4】大韓民国特許登録第86038号公報
【特許文献5】大韓民国特許登録第182829号公報
【特許文献6】大韓民国特許登録第822165号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
したがって、本発明の目的は、粒度が小さく、長期間保存しても粘度変化がほとんどない全豆乳の経済的かつ効率的な製造方法を提供することである。
【0010】
本発明の他の目的は、前記製造方法によって製造された全豆乳を提供することである
【課題を解決するための手段】
【0011】
前記目的を達成するために、本発明は、
1)大豆を炒った後、剥皮させ剥皮大豆を得る段階と、
2)前記の剥皮大豆を蒸して、蒸し大豆を得る段階と、
3)前記の蒸し大豆を粗粉砕して粗粉砕豆乳液を得る段階と、
4)前記粗粉砕豆乳液を、カット方式で粒子を微粉砕する機械的磨砕装置を用いてカット方式で微粉砕して全豆乳液を得る段階と、
5)前記全豆乳液を微細均質化する段階とを含む、全豆乳の製造方法を提供する。
【0012】
前記他の目的を達成するために、本発明は、前記方法で製造された全豆乳を提供する。
【発明の効果】
【0013】
本発明の方法は、既存の全豆乳製造方法よりも簡単な工程だけで小さな粒度の全豆乳を簡単に得られて豆乳の製造時間を短縮することができ、この方法で得られた全豆乳は、おからと豆乳液をすべて含む従来の全豆乳が時間の経過により粘度が上昇することとは異なり、長期間保存しても粘度の変化がほとんどないため、流通期限を大幅に延ばすことができる。
【図面の簡単な説明】
【0014】
【
図1】
図1は、本発明の製造工程の一例を図式化したものである。
【
図2】
図2は、本発明の微粉砕工程のうち1次微細化および2次微細化した後、豆乳液の粒度分析結果をそれぞれ示したものである。
【
図3】
図3は、本発明の微粉砕工程のうち1次微細化および2次微細化した後、豆乳液の粒度分析結果をそれぞれ示したものである。
【
図4】
図4は、本発明の1次微細均質化の後、豆乳液の粒度分析結果を示したものである。
【
図5】
図5は、本発明の2次微細均質化の後、豆乳液の粒度分析結果を示したものである。
【
図6】
図6は、比較例1で製造した豆乳液の粒度分析結果を示したものである。
【
図7】
図7は、市販の豆乳製品Aの粒度分析結果を示したものである。
【
図8】
図8は、市販の豆乳製品Bの粒度分析結果を示したものである。
【
図9】
図9は、実施例1で製造した全豆乳の時間に伴う粘度変化を測定した結果を示したものである。
【
図10】
図10は、比較例1で製造した全豆乳の時間に伴う粘度変化を測定した結果を示したものである。
【発明を実施するための形態】
【0015】
本発明は、
1)大豆を炒った後、剥皮させ剥皮大豆を得る段階と、
2)前記の剥皮大豆を蒸して、蒸し大豆を得る段階と、
3)前記の蒸し大豆を粗粉砕して粗粉砕豆乳液を得る段階と、
4)前記粗粉砕豆乳液を、カット方式で粒子を微粉砕する機械的磨砕装置を用いて微粉砕して全豆乳液を得る段階と、
5)前記全豆乳液を微細均質化する段階とを含む、全豆乳の製造方法を提供する。
【0016】
本発明において、「全豆乳」とは、丸大豆または剥皮大豆から、既存の一般的な豆乳製造時におからなどとして廃棄されていた有用成分を除去せず、大豆の栄養成分全体を含有するように製造された豆乳のことを指す。
【0017】
本発明は、炒り工程を経た剥皮大豆を適正温度および時間を以て蒸した後、クラッシャー(Crusher)で粗粉砕し、カット方式で粒子を微粉砕する機械的磨砕装置、例えば、コミトロール(Comitrol)を以て微粉砕処理し、均質圧力を加え微細均質化することにより、小さな粒度を有しながら、長期間保存しても粘度の変化がほとんどない全豆乳を製造することができる。本発明は、具体的に下記のような工程を経て行える。
【0018】
1)大豆の精選
石抜機または精選機を用いて丸大豆から異物(例えば、鉄、石、木屑、他の穀物など)を除去する。
【0019】
2)炒り工程
本発明では、大豆の炒り工程を利用することにより全豆乳に香ばしい味を与えて、豆特有の生臭さとなる原因物質を事前に不活性化させ、最終的に製造された全豆乳液の粒度を改善することができる。
【0020】
上記炒り工程の方法としては、熱風(Hot air)方式、半熱風方式、直火方式、遠赤外線方式など、当業界に広く知られている方法であれば、いずれも使用することができる。炒り工程で使用されるロースターは、上記の各方法に応じて適宜選択することができ、直火方式による場合、例えば、ドラムロースター(drum roaster)を使用することができる。
【0021】
本発明で直火方式による炒り工程は、ドラムロースター(drum roaster)内部の温度、ドラムの回転速度および炒り時間が大豆の炒り加減と最終的に製造される豆乳液の粒度、粘度、官能とに影響を与え得る。良好な味の全豆乳を得るためには、ロースター内部のドラム温度は150℃〜240℃に、ドラムの回転速度は20rpm〜40rpmに、炒り時間は4分〜12分に、大豆の投入および吐出量は、1分間に40Kg〜50Kgにするのが好ましい。
【0022】
一例として、本発明では、ドラムロースターの場合、ドラム内部の温度およびドラムの回転速度を固定した状態で、炒り時間を調節することによって味を多様化させることができる。例えば、大豆投入直前のドラム内部の温度を約220℃、ドラムの回転速度は約27rpmに固定した状態で、4分〜8分の短時間で大豆を炒ることによってフレッシュな味を出すことができ、9分〜12分の長い時間で大豆を炒ることによって香ばしい味を出すことができる。
【0023】
本発明の一実施態様によると、精選された丸大豆を220℃の温度、および27rpmの回転速度で固定したドラムロースターで4分〜12分の間炒ることにより炒り工程を行うことができる。
【0024】
また、本発明の熱風方式による炒り工程において、炒り温度は150℃〜200℃に、大豆の投入速度は30%〜70%、排出速度は60%〜95%に、炒り時間は40秒〜120秒にすることが好ましく、遠赤外線方式による炒り工程においては、炒り温度を180℃〜230℃に、炒り時間を4分〜14分にすることが好ましい。
【0025】
3)剥皮工程
大豆の皮は、後に製造された最終的な全豆乳製品の粘度を上昇させ、官能上大豆皮特有の残味感(苦くて渋い味)を示す原因となり得るので、皮を除去することが望ましい。
【0026】
これにより、上記において炒り工程を経た大豆を40℃以下、好ましくは20℃〜30℃に急冷却してから、粒度選別機をもってサイズ別に大豆を選別した後、剥皮機を用いて、大豆の皮を除去し半割する。
【0027】
4)蒸し工程
剥皮工程を経て半割された剥皮大豆を熱水温度91℃〜99℃、好ましくは95℃〜99℃(例えば98℃)で3分〜10分(例えば4分)間蒸す。
【0028】
このような蒸し工程は、豆特有の生臭さの発生原因となる物質を不活性化させ全豆乳液の官能を効果的に改善し、大豆組織を軟化させ後に行われる粗粉砕工程で粉砕を容易にして、全豆乳液の粒度改善に役立つことだけでなく、最終的に製造される全豆乳液に深い味を与える役割ができる。また、従来の全豆乳製造方法にて行われていた約8時間〜15時間と長時間におよぶ浸漬工程および酵素失活工程(98℃で5分間実行)を省略できるようになり、生産性を向上することができる。
【0029】
5)粗粉砕工程
上記蒸し大豆をクラッシャー(crusher)のような粉砕機により粗粉砕する。
【0030】
この工程では、蒸し大豆に2.4重量倍〜10重量倍の水を加えて粗粉砕することができる。このような粗粉砕工程により得た全豆乳液の固形分含有量が高いほど、後の磨砕(微細化)工程において目的とする粒度を得ることが難しいため、本発明では、粗粉砕工程を経て得た豆乳液の固形分含有量が5%〜15%になるようにするのが好ましい。
【0031】
本発明の粗粉砕工程で使用できる機器として、通過網の大きさが1Φ〜4Φ、例えば1.5Φクラッシャーを挙げることができる。
【0032】
6)微粉砕工程
上記粗粉砕工程で得られた粗粉砕豆乳液をカッティング(Cutting)方式で粒子を微粉砕する機械的磨砕装置であるコミトロール(Comitrol)をもって微粉砕することにより、大豆の粒子を微細化させることができる。
【0033】
本発明おいて用いられるコミトロールは、粒子を微細切断する主要装置として、円形のヘッド(Head)と、ヘッド中央に位置し高速回転する刃が取り付けられたインペラ(Impeller)とで構成される。
【0034】
コミトロールに装着される円形ヘッドの種類は、カッティングヘッドアセンブリ(Cutting Head Assembly)、マイクロカットヘッドアセンブリ(Microcut Head Assembly)、スライスヘッドアセンブリ(Slicing Head Assembly)などがあり、本発明では、マイクロカットヘッドアセンブリを用いることができる。本発明で用いられるマイクロカットヘッドアセンブリの主な構成要素は、複数のブレード(blade)と、複数のブレードを固定させる円形の上・下段ブレード固定リング(Upper and Under Blade Holding Ring)とで構成される。
【0035】
コミトロールが粒子を切断して微細化する原理は次の通りである。つまり、刃が取り付けられたインペラが高速で回転しながら粒子をカットし、この際発生した遠心力およびマイクロカットヘッドアセンブリと高速回転するインペラとの隙間から生じる強い圧縮力等により、粒子が再びマイクロカットヘッドアセンブリに装着されたブレードの切断面にぶつかることによって粒子がカットされ、徐々に微細化される。このようにして微細化された粒子は、ブレードとブレードとの間隔(opening)より小さい粒子のみが通過され、通れなかった大きい粒子の微細化は、繰り返し行われる。
【0036】
前記マイクロカットヘッドアセンブリは、装着されるブレードの数に応じて粒度を調整することができる。つまり、装着されるブレードの数が多いほど、ブレードとブレードとの間隔が狭くなり、より微細化された粒子のみが通過することができる。また、マイクロカットヘッドアセンブリは、形状が円形であるため、上下の固定板に装着されたブレードがすぐ横の側面に位置するブレードと装着された位置が一直線上に位置しないようになり、カット面の深さの差(Depth Of Cut)が生じる。こうして作られたカッティング面の深さの違いが粒子を切断する効率を極めさせることができる。
【0037】
具体的に、本発明の微粉砕工程は、前記粗粉砕豆乳液をコミトロールにより1次微細化および2次微細化する段階を含む。この時、前記コミトロールは50個〜222個のブレードを含み、ブレードとブレードとの間隔が0.001インチ〜0.2214インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0012インチ〜0.0237インチであるコミトロールを利用することができる。
【0038】
本発明の具体的な実施態様によると、前記1次微細化段階は、212個のブレードを含み、ブレードとブレードとの間隔が0.005インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0013インチであるコミトロール(例えば、Comitrol Processor Model 1700、Urschel Lab.,Inc.米国)を利用することができて、前記2次微細化段階は、222個のブレードを含み、ブレードとブレードとの間隔が0.001インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0012インチであるコミトロール(例えば、Comitrol Processor Model1500、Urschel Lab.,Inc.米国)を利用することができる。
【0039】
上記1次微細化により得られた大豆粒子の平均粒度は、約80μm〜100μmを示し、2次微細化により得られた大豆粒子の平均粒度は約60μm〜70μmを示す。
【0040】
一方、本発明による微粉砕工程にて処理する粗粉砕全豆乳液の量が多いか、またはより微細な粒度を有する全豆乳液を製造するためには、他のモデルのコミトロール(例えば、Comitrol Processor Model 9300 with Feeder、Urschel Lab.,Inc.)を使用して、1次および2次微細化工程を行うことができる。このようなコミトロールは、172個〜241個のブレードを含み、ブレードとブレードとの間隔が0.00043インチ〜0.606インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0001インチ〜0.042インチであるものを用いることができる。
【0041】
既存の全豆乳製造方法のうち磨砕工程は、ウルトラマイザー(ultramizer)および反応器(reactor)を用いて、臼挽き方式によって粒子をつぶす方法で微細化し、これによる大豆粒子の平均粒度は約130μm〜150μmの示す。一方、本発明においては、コミトロールを使用し、刃によって粒子をカットすることで粒子を微細化することにより、従来の方式よりも小さい平均粒度(約60μm〜70μm)の全豆乳が得られる。本発明の方法によれば、粒子の大きさが大きいおから成分が大幅に減少して、工程中におから成分の水和が十分に起こるようになるので、時間が経過してもおから成分の追加的水和が起こらなくなる。これにより、最終的に製造される全豆乳の粘性が安定化する結果を示し、保存安定性に寄与することができる。それに加え、ウルトラマイザーおよび反応器のような別の処理装置を用いらないため、工程が簡略化されるので有用である。
【0042】
7)微細均質化工程
本発明において微細均質化工程は、前記磨砕工程で製造された全豆乳液を200bar〜300barの均質圧力(例えば、300bar)で1次微細均質化する段階と、得られた全豆乳液を殺菌、冷却、および滅菌する段階と、前記滅菌全豆乳液を150bar〜300bar(例えば、300bar)の均質圧力で2次微細均質化する段階とを含む。
【0043】
このとき、1次微細均質化段階で300barを超える均質圧力を適用すると、粘度上昇により好ましくない食感を示すことがあり、機械設備の負荷による設備寿命が短くなったり、作業場の騒音が大きくなったりするという問題が発生することがあるので、1次均質化段階の均質圧力は300bar以下が望ましい。1次微細均質化段階で得られた全豆乳液の平均粒度は、45μm〜55μmを示す。
【0044】
続いて、1次微細均質化段階で得られた全豆乳液は、熱交換器(例えば、プレート式熱交換器)にて95℃〜99℃(例えば、約98℃)で30秒〜60秒(例えば、約30秒)間殺菌した後、引き続き冷却器において10℃以下(例えば、約5℃)に冷却させる。以降、滅菌装置に移して熱交換器(例えば、スチームインフュージョン方式の熱交換器)にて135℃〜151℃(例えば、150℃)で3秒〜200秒間(例えば、約5秒)滅菌させてもよい。
【0045】
上記工程を経て得られた滅菌された全豆乳液を150bar〜300bar(例えば、300bar)の均質圧力で2次微細均質化を実施する。このような2次微細均質化段階で得られた全豆乳液の平均粒度は25μm〜35μmを示す。
【0046】
また、本発明は、前記製造方法により製造された全豆乳を提供する。
【0047】
本発明による全豆乳の物性は、25μm〜35μm内外の粒度を示し、34cP〜55cPの粘度を示す。このような粘度は時間が経過しても変化がほとんどなく、保存安定性に優れており、製品化して室温(約1℃〜35℃)で保存する時、22ヶ月が経過した後も粘度の上昇値が12cP未満であることを特徴とする。
【0048】
このように製造された全豆乳を液状での常温流通を可能にするために、前記全豆乳に食品学的に許容可能な食品および微量の添加剤を混合および配合した後、通常の大豆製品の包装過程を経て全豆乳の豆乳製品を製造することができる。
【0049】
これにより、本発明は、前記全豆乳に食品学的に許容可能な食品および微量の添加剤を混合および配合した後、通常の方法で安定化、充填、滅菌、および冷却させる段階を含む、全豆乳製品の製造方法を提供する。
【0050】
上記豆乳製品の製造時には、全豆乳に香味成分を添加することにより、最終的な大豆製品の香りや味を増進させることができ、使用可能な香味成分として、果物、フルーツピューレ、ジュース、濃縮液、粉末、およびこれらの混合物を挙げることができる。
【0051】
また、健康増進を目的として、前記全豆乳に牛乳カルシウムまたは様々な天然食品、例えば、ゴマ、黒ゴマ、ニンジン、ほうれん草、緑茶、紅茶、桑の葉、葛、ハーブ、高麗人参、紅参、桔梗などの抽出物または粉末などを適量添加して、全豆乳製品を製造することもできる。
【0052】
全豆乳は、粘度が80cPを超えるとドロっとした感じが強いので、官能評価の際に抵抗感を感じさせる。本発明の一実施態様によれば、従来の浸漬式工程(大韓民国特許登録第822165号)に基づいて製造された全豆乳製品は、時間が経過するほど粘度がますます上昇し、約80日後には粘度が80cPを超えて約180日後には100cPを超える。しかし、本発明の方法により製造された全豆乳製品は、製造後9ヶ月が経過しても粘度の上昇がほとんどなく、むしろ製造当時の粘度よりも約5cP〜18cP程度減少する結果を示した。また、製品の製造後22ヶ月が経過するまででも粘度上昇値は、最大11.5cP程度と、粘度変化がほとんどない。したがって、本発明の方法により製造された全豆乳製品は、従来の浸漬式工程によって製造された全豆乳製品よりも賞味期限を長く設定することができる。
【0053】
(実施例)
以下本発明を、下記実施例をもって、より詳細に説明する。但し、下記実施例は、本発明を例示するためにあるのみであって、本発明の範囲がこれらに限定されるものではない。
【0054】
[実施例1:全豆乳の製造]
大豆を精選して異物を除去した後、炒り機(ドラムロースター、入手先:韓国エネルギー技術)を利用して、大豆投入直前のドラム内部の温度約220℃およびドラムの回転速度は約27rpmに固定した後、10分間直火方式で大豆を炒った。上記炒り大豆を約30℃に急冷却した後、粒度選別機を用いて、サイズごとに選別した後、剥皮機を用いて皮を除去し半割した。
【0055】
上記剥皮された半割大豆を蒸し機において熱水温度98℃で約4分間に亘って通過させ蒸した。得られた蒸し大豆に7.45重量倍の水を添加した後、1.5Φの通過網を有するクラッシャー(精研社、日本)に通過させて粗粉砕した。
【0056】
上記で得られた粗粉砕豆乳液を微粉砕するために、212個のブレードを含み、ブレードとブレードとの間隔が0.005インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0013インチであるコミトロール(Comitrol Processor Model1700、Urschel Lab.、Inc.)でカットして、1次微細化を行った。1次微細化過程を経て得られた豆乳液の平均粒度を粒度分析器(Microtrac S−3000、Microtrac Inc.,米国)を用いて測定した結果、80.99μmであった(
図2および表1を参照)。
【0058】
続いて、上記1次微細化した豆乳液を、222個のブレードを含み、ブレードとブレードとの間隔が0.001インチであり、ブレードとすぐ横の側面ブレードとのカット面の深さ差が0.0012インチであるコミトロール(Comitrol ProcessorModel1500、Urschel Lab.、Inc.)でカットして2次微細化を行った。2次微細化過程を経て得られた豆乳液の大豆の平均粒度を上記と同じ方法で測定した結果、63.23μmであることを確認した(
図3及び表2参照)。
【0060】
上記微細化工程を経て得られた全豆乳液を、均質化装置(Homogenizer、東亜均質、中国)を用いて、300barの圧力で1次微細均質化した。得られた全豆乳液の平均粒度を上記と同じ方法で測定した結果、47.54μmであることを確認した(
図4及び表3参照)。
【0062】
続いて、上記1次微細均質化段階で得た全豆乳液を、プレート式熱交換器を用いて約98℃で30秒間殺菌した後、引き続きプレート式熱交換器にて約5℃に冷却した。以降、滅菌装置に移してスチームインフュージョン方式の熱交換器により約150℃で5秒間滅菌処理した。
【0063】
上記工程を経て得た滅菌された全豆乳液を、300barの圧力で2次微細均質化を行った。2次微細均質化段階で得られた全豆乳液の平均粒度は、29.52μmであることを確認した(
図5および表4参照)。
【0065】
[比較例1:全豆乳の製造]
大韓民国特許登録第822165号に記載された方法により全豆乳を製造した。
【0066】
具体的には、大豆を精選して異物を除去した後、大豆330kgを18℃の水に約10時間浸漬した。上記浸漬済大豆を、粉砕機(クラッシャー、精研社、日本)を用いて、精製水を加えながら1次粉砕した。粉砕後、粉砕液に含まれている大豆外皮や不純物を、精製器(ベルトチ社、イタリア)を利用して除去する工程を3回実施した。以降、微粉砕機(ウルトラマイザー)により2次粉砕を実施した。2次粉砕された全豆乳液の平均粒度は、450μmであることを確認した。
【0067】
続いて、粉砕液を90℃で2分間保持して粉砕液内の酵素を不活性化させた後、下部にコロイドミルなどの機械的磨砕装置と再循環装置が備えられている循環フライス盤(ハンソン粉体機械社 韓国)により微細化して全豆乳液を製造した。前記全豆乳液の粒度は約130μmであることを確認した。
【0068】
このように製造された全豆乳液を超高圧均質機(ホモジナイザー、東亜均質、中国)にて各400barの圧力で連続2回均質化した後、4℃まで冷却させた。再び第3次として400barでの圧力で均質化した後、150℃で3秒間滅菌して全豆乳液を製造した。製造された全豆乳の最終的な平均粒度は、77.42μmであった(
図6及び表5参照)。
【0070】
[実験例1:全豆乳の特徴]
前記実施例1および比較例1、並びに市販の豆乳製品AおよびBの粒度と粘度とをそれぞれ粒度分析器(Microtrac S−3000、Microtrac Inc.,米国)、および粘度測定器(Brookfield Viscometer LVDVE230E5871、スピンドルNo.1(S61)、スピンドル回転速度:20rpm)を用いて測定し、その結果を下記表6に示した。
【0071】
また、比較例1、市販豆乳製品AおよびBの粒度分析結果をそれぞれ
図6〜8(表5、7、および8)に示した。
【0075】
[実験例2:時間経過による粘度変化の測定]
前記実施例1および比較例1において製造された全豆乳を150℃で3秒〜5秒間滅菌処理した後、無菌自動包装機(Combibloc−filling machine CFA112−32、SIG Combibloc)で包装して製品化した。
【0076】
製品の保存期間に応じる粘度変化を測定するために、上記実施例1および比較例1の各製品を室温で保存しながら、保存期間に応じる粘度の増加値を上記実験例1と同じ方法で測定した。その結果を、それぞれ下記表9および10、並びに
図9及び10に示した。
【0079】
上記表9および10、並びに
図9及び10に示すように、実施例1の全豆乳は、製品の製造後9ヶ月が経過しても粘度上昇がなく、むしろ製造当時の粘度よりも5cP〜18cP程度減少する結果を示した。それだけでなく、製品の製造後22ヶ月が経過するまででも粘度上昇値は、最大11.5cPと、粘度変化がほとんどない。
【0080】
一方、比較例1の全豆乳は、製品の製造後時間が経過するほど粘度がますます上昇して、約80日が経過すると全豆乳の粘度は80cPを超え、約180日が経過すると粘度が100cPを超えている。
【0081】
全豆乳は、粘度が80cPを超えると、ドロっとした感じが強いため官能評価の際に抵抗を感じさせる。上記の結果から、実施例1の全豆乳を用いた製品が比較例1の全豆乳を用いた製品に比べて、味の変化もなく、より長期間の保存が可能であることが分かる。
【国際調査報告】