(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2015-535342(P2015-535342A)
(43)【公表日】2015年12月10日
(54)【発明の名称】ハイパースペクトルイメージングシステム、モノリシック分光計及びモノリシック分光計を作製する方法
(51)【国際特許分類】
G01J 3/18 20060101AFI20151113BHJP
G01J 3/04 20060101ALI20151113BHJP
G01J 3/40 20060101ALI20151113BHJP
B23B 1/00 20060101ALI20151113BHJP
B23B 27/20 20060101ALI20151113BHJP
【FI】
G01J3/18
G01J3/04
G01J3/40
B23B1/00 Z
B23B27/20
【審査請求】未請求
【予備審査請求】未請求
【全頁数】34
(21)【出願番号】特願2015-539828(P2015-539828)
(86)(22)【出願日】2013年10月25日
(85)【翻訳文提出日】2015年6月29日
(86)【国際出願番号】US2013066763
(87)【国際公開番号】WO2014084995
(87)【国際公開日】20140605
(31)【優先権主張番号】61/720,658
(32)【優先日】2012年10月31日
(33)【優先権主張国】US
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
(71)【出願人】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【弁理士】
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100090468
【弁理士】
【氏名又は名称】佐久間 剛
(72)【発明者】
【氏名】コムストック,ロヴェル エルジン セカンド
(72)【発明者】
【氏名】ウィギンス,リチャード リントン
【テーマコード(参考)】
2G020
3C045
3C046
【Fターム(参考)】
2G020AA03
2G020AA04
2G020BA20
2G020CB04
2G020CC02
2G020CC05
2G020CC42
2G020CC63
2G020CD24
3C045AA10
3C046HH00
(57)【要約】
ハイパースペクトルイメージングシステム、モノリシックオフナー分光計及びモノリシックオフナー分光計を作製するための2つの方法が明細書に説明される。一実施形態において、モノリシックオフナー分光計102は、(1)不透明材料が被着されている入光面−不透明材料からはスリット108を形成する領域が除去されている、(2)第1ミラー114を形成するために第1の反射性コーティングが施されている第1の表面、(3)回折格子120を形成するために第2の反射性コーティングが施されている第2の表面、(4)第2ミラー124を形成するために第3の反射性コーティングが施されている第3の表面、及び(5)出光面130を有する、透光性材料101を有する。必要に応じて、透光性材料は第1折返しミラー105’を形成するために第4の反射性コーティングが施されている第4の表面111’も有することができる。さらに、透光性材料は第2折返しミラー140”を形成するために第5の反射性コーティングが施されている第5の表面144”も有することができる。
【特許請求の範囲】
【請求項1】
遠隔物体を撮像するためのハイパースペクトルイメージングシステム(100,100’,100”)において、前記ハイパースペクトルイメージングシステムが、
ハウジング(107,107’,107”)、
前記ハウジングに取り付けられた前置光学系(104,104’,104”)であって、前記遠隔物体からビーム(132,132”,132iv)を受け取るように構成された前置光学系、
前記ハウジングに取り付けられた検出器(106,106’,106”)、及び
前記ハウジングの内部に配置されたモノリシックオフナー分光計(102,102’,102”)、
を備え、
前記モノリシックオフナー分光計が、
透光性材料(101,101’,101”)、
を有し、前記透光性材料が、
前記前置光学系からビームを受け取り、前記前置光学系から受け取った前記ビームの一部を通過させるために構成された、スリット(108,108’,108”)を形成する開口を有する不透明材料(110,110’,110”)が被着されている、入光面(112,112’,112”)、
前記スリットを通過した前記ビームを受け取って反射するために構成された第1ミラー(114,114’,114”)を形成するために第1の反射性コーティング(116,116’,116”)が施されている、第1の表面(118,118’,118”)、
前記第1ミラーから前記ビームを受け取り、前記受け取ったビームを回折して反射するために構成された回折格子(120,120’,120”)を形成するために第2の反射性コーティング(121,121’,121”)が施されている、第2の表面(122,122’,122”)、
前記回折格子から前記回折ビーム(132’,132’’’,132v)を受け取って、前記受け取った回折ビームを反射するために構成された第2ミラー(124,124’,124”)を形成するために第3の反射性コーティング(126,126’,126”)が施されている、第3の表面(128,128’,128”)、
及び
前記第2ミラーから反射された前記回折ビームを前記検出器に向けて通過させるための、出光面(130,130’,130”)、
を有する、ハイパースペクトルイメージングシステム。
【請求項2】
前記透光性材料が、第1折返しミラー(105’)を形成するために第4の反射性コーティング(109’)が施されている第4の表面(111’)をさらに有し、前記第1折返しミラーが、前記スリットを通過した前記ビームを受け取り、前記受け取ったビームを前記第1ミラーに向けて反射するように、前記スリットと前記第1ミラーに対して配置されることを特徴とする請求項1に記載のハイパースペクトルイメージングシステム。
【請求項3】
前記透光性材料が、第2折返しミラー(140”)を形成するために第5の反射性コーティング(142”)が施されている第5の表面(144”)をさらに有し、前記第2折返しミラーが、前記第2ミラーから前記回折ビームを受け取り、前記受け取った回折ビームを前記出光面に向けて反射するように、前記第2ミラーと前記出光面に対して配置されることを特徴とする請求項2に記載のハイパースペクトルイメージングシステム。
【請求項4】
前記モノリシックオフナー分光計が式:
【数1】
にしたがって構成され、
ここで、
dx/dλは4〜200mm/μmの範囲にある線分散である、
fは、前記回折格子と前記焦点面検出器の間で測定される、10〜300mmの範囲にある焦点距離である、
dは3〜1000μmの範囲にある線格子の周期である、
nは1〜10の範囲にある回折次数である、
Φは1°〜30°の範囲にあるエバート角であり、入射光と法線の間で測定される、及び
θは0.2°〜45°の範囲にある回折角であり、0次光と回折光の間で測定される、
ことを特徴とする請求項1に記載のハイパースペクトルイメージングシステム。
【請求項5】
前記透光性材料が、フッ化バリウム、塩化銀または三硫化二ヒ素から選ばれることを特徴とする請求項1に記載のハイパースペクトルイメージングシステム。
【請求項6】
モノリシックオフナー分光計(102,102’,102”)において、
透光性材料(101,101’,101”)、
を有し、前記透光性材料が、
ビームを受け取り、前記ビームの一部を通過させるために構成されたスリット(108,108’,108”)を形成する、開口を有する不透明材料(110,110’,110”)が被着されている、入光面(112,112’,112”)、
前記スリットを通過した前記ビームを受け取って反射するために構成された第1ミラー(114,114’,114”)を形成するために第1の反射性コーティング(116,116’,116”)が施されている、第1の表面(118,118’,118”)、
前記第1ミラーから前記ビームを受け取り、前記受け取ったビームを回折して反射するために構成された回折格子(120,120’,120”)を形成するために第2の反射性コーティング(121,121’,121”)が施されている、第2の表面(122,122’,122”)、
前記回折格子から前記回折ビーム(132’,132’’’,132v)を受け取り、前記受け取った回折ビームを反射するために構成された第2ミラー(124,124’,124”)を形成するために第3の反射性コーティング(126,126’,126”)が施されている、第3の表面(128,128’,128”)、
及び
前記第2ミラーから反射された前記回折ビームを通過させるための、出光面(130,130’,130”)、
を有する、モノリシックオフナー分光計。
【請求項7】
モノリシックオフナー分光計(102,102’,102”)を作製する方法(200,800,1200)において、前記方法が、
透光性材料(101,101’,101”)に入光面(112,112’,112”)を形成するために前記透光性材料をダイアモンド加工し、前記入光面に不透明材料(110,110’,110”)を被着し、次いで、スリット(108,108’,108”)を形成するために前記不透明材料の一部を除去する工程(204,804,1204)、
前記透光性材料に第1の表面(118,118’,118”)を形成するために前記透光性材料をダイアモンド加工し、次いで、第1ミラー(114,114’,114”)を形成するために前記第2の表面に第1の反射性コーティング(116,116’,116”)を施す工程(206,806,1208)、
前記透光性材料に第2の表面(122,122’,122”)を形成するために前記透光性材料をダイアモンド加工し、次いで、回折格子(120,120’,120”)を形成するために前記第2の表面に第2の反射性コーティング(121,121’,121”)を施す工程(208,810,1210)、
前記透光性材料に第3の表面(128,128’,128”)を形成するために前記透光性材料をダイアモンド加工し、次いで、第2ミラー(124,124’,124”)を形成するために前記第3の表面に第3の反射性コーティング(126,126’,126”)を施す工程(210,812,1212)、及び
前記透光性材料に出光面(130,130’,130”)を形成するために前記透光性材料をダイアモンド加工する工程(212,814,1216)、
を含むことを特徴とする方法。
【請求項8】
前記入光面上に不透明材料を被着する工程、及び
前記スリットを形成するため、前記入光面上に被着された前記不透明材料に開口を加工する工程、
をさらに含むことを特徴とする請求項7に記載の方法。
【請求項9】
前記入光面上にマスクを施す工程、
前記入光面の露出部分及び前記マスクのいずれにも不透明材料を被着する工程、及び
前記被覆された入光面によって囲まれた前記スリットが残るように前記マスクを除去する工程、
をさらに含むことを特徴とする請求項7に記載の方法。
【請求項10】
モノリシックオフナー分光計(102,102’,102”)を作製する方法(300,900,1300)において、前記方法が、
第1の金型(402,1002,1402)に第1ミラー(114,114’,114”)及び第2ミラー(124,124’,124”)の鏡像(404,406,1004,1006,1404,1406)を形成するために前記第1の金型をダイアモンド加工する工程(304,904,1304)、
第2の金型(408,1008,1408)に入光面(112,112’,112”)、回折格子(120,120’,120”)及び出光面(130,130’,130”)の鏡像(410,412,414,1010,1014,1016,1410,1414,1416)を形成するために前記第2の金型をダイアモンド加工する工程(308,908,1308)、
金型キャビティ(416,1018,1420)の両端上に前記第1の金型及び前記第2の金型を取り付ける工程(310,910,1310)、
前記第1の金型、前記第2の金型及び前記金型キャビティを透光性材料(101,101’,101”)で満たす工程(312,912,1312)、
前記透光性材料を露出させるために前記第1の金型、前記第2の金型及び前記金型キャビティを取り外す工程(314,914,1314)、
前記入光面に対応する前記透光性材料の露出面(112,112’,112”)上にスリット(108,108’,108”)を形成する工程(316,916,1316)、及び
前記第1ミラー、前記回折格子及び前記第2ミラーを形成するために前記透光性材料の前記露出面(118,122,128,118’,122’,128’,118”,122”,128”)に反射性コーティング(116,121,126,116’,121’,126’,116”,121”,126”)を施す工程(318,918,1318)、
を含むことを特徴とする方法。
【発明の詳細な説明】
【0001】
本出願は2012年10月31日に出願された米国仮特許出願第61/720658号の恩典を主張する。この仮特許出願の明細書の内容は本明細書に参照として含められる。
【技術分野】
【0002】
本発明は、ハイパースペクトルイメージングシステム、モノリシックオフナー分光計及びモノリシックオフナー分光計を作製するための2つの方法に関する。
【背景技術】
【0003】
分光計は、光信号を入力として受け取り、入力光信号の、異なる波長成分、すなわち色にしたがい、空間において散開される、すなわち分散される、光信号を出力として生成する、装置である。分光計に取り付けられた検出器は、入力信号に存在するそれぞれの波長成分の強さを定量化するため、スペクトルと称される、出力信号を分析することができる。
【0004】
連続する狭スペクトル帯の範囲にわたって遠隔物体の画像を形成するために用いられ得る特定のタイプの分光計が、オフナー分光計として知られている。このタイプの撮像はハイパースペクトルイメージングとして知られ、近年、航空機または衛星からの偵察及びリモートセンシングに対する軍事/航空宇宙上の解決手段の重要な一要素として、出現した。基本的に、前置光学系、オフナー分光計、検出器及び先進データ処理技術を備えるハイパースペクトルイメージングシステムは、注目するシーン(遠隔物体)の、分光シグネチャデータが埋め込まれている、画像を形成することができる。このシグネチャデータは、(例えば)標的指示/認識、ミサイルプルーム識別及び地雷探査のような、広く様々な用途に有用である。
【0005】
さらに、ハイパースペクトルイメージングシステムは、(例えば)ガン早期発見、環境モニタリング、農業モニタリング及び鉱物探査のような、広く様々な民生用途にも用いることができる。ハイパースペクトルイメージングシステムは、軍事産業、航空宇宙産業及び民生産業に重要であるから、製造業者はオフナー分光計を作製及び改善するための新しく、一層優れた方法の開発に精力的に取り組んできた。例えば、共通に譲渡された特許の明細書(特許文献1)(その内容は本明細書に参照として含められる)は、従来のオフナー分光計に優る改善であったモノリシックオフナー分光計を備えるハイパースペクトルイメージングシステムを開示している。特許文献1にともなうモノリシックオフナー分光計は多くの用途でうまくはたらくが、新しいオフナー分光計を開発することが未だに望ましい。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第7697137B2号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の課題は、新しいモノリシックオフナー分光計を組み込んでいるハイパースペクトルイメージングシステム及び新しいモノリシックオフナー分光計を作製するためのいくつかの方法を提供することである。
【課題を解決するための手段】
【0008】
ハイパースペクトルイメージングシステム、モノリシックオフナー分光計及びモノリシックオフナー分光計を作製するための2つの方法が本出願の独立特許請求項に説明されている。ハイパースペクトルイメージングシステム、モノリシックオフナー分光計及びモノリシックオフナー分光計を作製するための2つの方法の有益な実施形態が従属特許請求項に説明されている。
【0009】
一態様において、本発明は遠隔物体を撮像するためのハイパースペクトルイメージングシステムを提供する。ハイパースペクトルイメージングシステムは、(a)ハウジング、(b)ハウジングに取り付けられた前置光学系であって、遠隔物体からビームを受け取るように構成された前置光学系、(c)ハウジングに取り付けられた検出器、及び(d)ハウジング内部に配置されたモノリシックオフナー分光計を備える。モノリシックオフナー分光計は(a)透光性材料を有し、透光性材料は、
(i)前置光学系からビームを受け取り、受け取ったビームの一部を通過させるように構成されたスリットを形成する開口を有する不透明材料が被着されている入光面、
(ii)スリットを通過したビームを受け取って反射するように構成された第1ミラーを形成するために第1の反射性コーティングが施されている、第1の表面、
(iii)第1ミラーからビームを受け取って、受け取ったビームを回折して反射するように構成された回折格子を形成するために第2の反射性コーティングが施されている、第2の表面、
(iv)回折格子から回折ビームを受け取って、受け取った回折ビームを反射するように構成された第2ミラーを形成するために第3の反射性コーティングが施されている、第3の表面、
及び
(v)第2ミラーから反射された回折ビームを検出器に向けて通過させるための出光面、
を有する。望ましければ、透光性材料は、第1折返しミラーを形成するために第4の反射性コーティングが施されている第4の表面を有することができ、第1折返しミラーは、スリットを通過したビームを受け取って、受け取ったビームを第1ミラーに向けて反射するように、スリット及び第1ミラーに対して配置される。さらに、透光性材料は、第2折返しミラーを形成するために第5の反射性コーティングが施されている第5の表面を有することができ、第2折返しミラーは、第2ミラーから回折ビームを受け取って、受け取った回折ビームを出光面に向けて反射するように、第2ミラー及び出光面に対して配置される。
【0010】
別の態様において、本発明はモノリシックオフナー分光計を提供する。モノリシックオフナー分光計は、
(i)ビームを受け取り、受け取ったビームの一部を通すように構成されたスリットを形成する開口を有する不透明材料が被着されている入光面、
(ii)スリットを通過したビームを受け取って反射するように構成された第1ミラーを形成するために第1の反射性コーティングが施されている、第1の表面、
(iii)第1ミラーからビームを受け取り、受け取ったビームを回折して反射するように構成された回折格子を形成するために第2の反射性コーティングが施されている、第2の表面、
(iv)回折格子から回折ビームを受け取って、受け取った回折ビームを反射するように構成された第2ミラーを形成するために第3の反射性コーティングが施されている、第3の表面、
及び
(v)第2ミラーから反射された回折ビームを通過させるための出光面、
を有する、透光性材料を有する。望ましければ、透光性材料は、第1折返しミラーを形成するために第4の反射性コーティングが施されている第4の表面を有することができ、第1折返しミラーは、スリットを通過したビームを受け取って、受け取ったビームを第1ミラーに向けて反射するように、スリット及び第1ミラーに対して配置される。さらに、透光性材料は、第2折返しミラーを形成するために第5の反射性コーティングが施されている第5の表面を有することができ、第2折返しミラーは、第2ミラーから回折ビームを受け取って、受け取った回折ビームを出光面に向けて反射するように、第2ミラー及び出光面に対して配置される。
【0011】
別の態様において、本発明はモノリシックオフナー分光計を作製する方法を提供する。方法は、
(i)透光性材料に、スリットが形成される領域を有する入光面を形成するために、透光性材料をダイアモンド加工する工程、
(ii)透光性材料に第1の表面を形成するために透光性材料をダイアモンド加工し、次いで第1ミラーを形成するために第1の表面に第1の反射性コーティングを形成する工程、
(iii)透光性材料に第2の表面を形成するために透光性材料をダイアモンド加工し、次いで回折格子を形成するために第2の表面に第2の反射性コーティングを形成する工程、
(iv)透光性材料に第3の表面を形成するために透光性材料をダイアモンド加工し、次いで第2ミラーを形成するために第3の表面に第3の反射性コーティングを形成する工程、及び
(v)透光性材料に出光面を形成するために透光性材料をダイアモンド加工する工程、
を含む。望ましければ、方法は、透光性材料に第4の表面を形成するために透光性材料をダイアモンド加工し、次いで第1折返しミラーを形成するために第4の表面に第4の反射性コーティングを形成する工程をさらに含むことができる。さらに、方法は、透光性材料に第5の表面を形成するために透光性材料をダイアモンド加工し、次いで第2折返しミラーを形成するために第5の表面に第5の反射性コーティングを形成する工程を含むことができる。
【0012】
また別の態様において、本発明は遠隔物体の一領域のハイパースペクトル画像を提供する方法を提供する。方法は、
(i)第1の金型に第1ミラー及び第2ミラーの鏡像を形成するために第1の金型をダイアモンド加工する工程、
(ii)第2の金型に入光面、回折格子及び出光面の鏡像を形成するために第2の金型をダイアモンド加工する工程、
(iii)金型キャビティの両端に第1の金型及び第2の金型を取り付ける工程、
(iv)第1の金型、第2の金型及び金型キャビティを透光性材料で満たす工程、
(v)透光性材料を露出させるため、第1の金型、第2の金型及び金型キャビティを取り外す工程、
(vi)入光面に対応する透光性材料の露出面上にスリットを形成する工程、
(vii)第1ミラー、回折格子及び第2ミラーを形成するため、透光性材料の露出面に反射性コーティングを施す工程、
を含む。望ましければ、方法は、第2の金型に第1折返しミラーの鏡像を形成するために第2の金型をダイアモンド加工する工程及び第1折返しミラーを形成するために透光性材料の露出面に反射性コーティングを施す工程をさらに含むことができる。さらに、方法は、第2の金型に第2折返しミラーの鏡像を形成するために第2の金型をダイアモンド加工する工程及び第2折返しミラーを形成するために透光性材料の露出面に反射性コーティングを施す工程を含むことができる。
【0013】
本発明のさらなる態様は、ある程度は、以下の詳細な説明、図面及びいずれかの特許請求項に述べられ、ある程度は、詳細な説明から導かれるであろうし、あるいは本発明の実施によって習得され得る。上述の全般的説明及び以下の詳細な説明のいずれもが例示及び説明に過ぎず、開示されるような本発明を限定するものではないことは当然である。
【0014】
添付図面とともになされた場合に、以下の詳細な説明の参照によって本発明の一層完璧な理解を得ることができる。
【図面の簡単な説明】
【0015】
【
図1】
図1は本発明の一実施形態にしたがって構成されたモノリシックオフナー分光計を組み込んでいるハイパースペクトルイメージングシステムのブロック図である。
【
図2】
図2は本発明の一実施形態にしたがう、
図1に示される、ハイパースペクトルイメージングシステムに組み込むことができる直接加工モノリシックオフナー分光計を作製する方法の一例の工程を示すフローチャートである。
【
図3】
図3は本発明の一実施形態にしたがう、
図1に示される、ハイパースペクトルイメージングシステムに組み込むことができるモールド成形モノリシックオフナー分光計を作製するための一例の方法の工程を示すフローチャートである。
【
図4】
図4は本発明の一実施形態にしたがう、
図3に示される、方法を用いるモールド成形モノリシックオフナー分光計を作製するために用いることができる3つの金型を示すブロック図である。
【
図5】
図5は本発明の別の実施形態にしたがって構成及び作製されたモノリシックオフナー分光計を組み込んでいるハイパースペクトルイメージングシステムの一例のブロック図である。
【
図6】
図6は本発明の一実施形態にしたがって構成されるような、
図5に示される、ハイパースペクトルイメージングシステムの例の、ただしハウジングがない、斜視図である。
【
図7】
図7は本発明の一実施形態にしたがって構成された、
図5に示される、モノリシックオフナー分光計の例の斜視図である。
【
図8】
図8は本発明の一実施形態にしたがう、
図5に示される、ハイパースペクトルイメージングシステムに組み込むことができる直接加工モノリシックオフナー分光計を作製する方法の一例の工程を示すフローチャートである。
【
図9】
図9は本発明の一実施形態にしたがう、
図5に示される、ハイパースペクトルイメージングシステムに組み込むことができるモールド成形モノリシックオフナー分光計を作製する方法の一例の工程を示すフローチャートである。
【
図10】
図10は本発明の一実施形態にしたがう、
図9に示される、方法を用いるモールド成形モノリシックオフナー分光計を作製するために用いることができる3つの金型を示すブロック図である。
【
図11】
図11は本発明のまた別の実施形態にしたがって構成及び作製されたモノリシックオフナー分光計を組み込んでいるハイパースペクトルイメージングシステムの一例のブロック図である。
【
図12】
図12は本発明の一実施形態にしたがう、
図11に示される、ハイパースペクトルイメージングシステムに組み込むことができる直接加工モノリシックオフナー分光計を作製する方法の一例の工程を示すフローチャートである。
【
図13】
図13は本発明の一実施形態にしたがう、
図11に示される、ハイパースペクトルイメージングシステムに組み込むことができるモールド成形モノリシックオフナー分光計を作製する方法の一例の工程を示すフローチャートである。
【
図14】
図14は本発明の一実施形態にしたがう、
図13に示される、方法を用いるモールド成形モノリシックオフナー分光計を作製するために用いることができる3つの金型を示すブロック図である。
【
図15】
図15は本発明の一実施形態にしたがう、
図1,5及び11に示される、モノリシックオフナー分光計上に形成されたスリットの一例の顕微鏡写真(倍率:374×)である。
【
図16】
図16は、その内面の影付き領域を、本発明の一実施形態にしたがう、
図1,5及び11に示されるモノリシックオフナー分光計の、第1ミラーまたは第2ミラーの、あるいは第1ミラー及び第2ミラーの両者の、形状とすることができる、トロイド(環状体)の略図である。
【
図17】
図17は本発明の一実施形態にしたがう、
図1,5及び11に示される、モノリシックオフナー分光計の回折格子の一例の詳細図である。
【
図18】
図18は本発明の一実施形態にしたがう、
図2,8及び12に示される、方法について透光性材料に回折格子を直接ダイアモンド加工する方法の一例の工程を示すフローチャートである。
【
図19】
図19は本発明の一実施形態にしたがう回折格子の一例と相互作用している光線を示す詳細図である。
【発明を実施するための形態】
【0016】
図1を参照すれば、本発明の一実施形態にしたがって構成及び作製されたモノリシックオフナー分光計102を組み込んでいるハイパースペクトルイメージングシステム100の一例のブロック図がある。ハイパースペクトルイメージングシステム100は、いずれもモノリシックオフナー分光計102と直接インターフェースする、前置光学系104及び検出器106を備える。ハイパースペクトルイメージングシステム100はモノリシックオフナー分光計102を保護するハウジング107を備えることもできる。例えば、ハウジング107は、モノリシックオフナー分光計102を保護するだけでなく、絶縁するためにもはたらく、標準の検出器デュワー瓶とすることができる。
【0017】
モノリシックオフナー分光計102は、
(1)(例えば、透光性材料101の露出領域112/入光面112に不透明材料110が被着され、次いでスリット108を形成するために不透明材料112の一部が除去されている場合に形成される(例えば、初めに(所望のスリット108と同じ寸法を有する)マスクが入光面112に施され、次いで不透明材料110が露出入光面112及びマスクのいずれにも被着されて、マスクが除去されると、被覆された入光面112によって囲まれたスリット108が残る場合に形成される))スリット108、
(2)(反射性コーティング116が透光性材料101の露出領域118/第1の表面118に施されたときに形成される)第1ミラー114、
(3)(反射性コーティング121が透光性材料101の露出領域122/第2の表面122に施されたときに形成される)回折格子120、
(4)(反射性コーティング126が透光性材料101の露出領域128/第3の表面128に施されたときに形成される)第2ミラー124、及び
(5)出光面130、
を有する、単一体の透光性材料101で作製された1対1光リレーである。ハイパースペクトルイメージングシステム100には当業者には周知の他のコンポーネントを組み込むことができるが、簡明さのため、ここでは、本発明を説明し、可能にするに必要な、これらのコンポーネント102,104,106,107,108,114,120及び124だけを詳細に論じる。
【0018】
ハイパースペクトルイメージングシステム100は、前置光学系104が遠隔物体(図示せず)からビーム132(光132)を受け取り、ビーム132を回折して回折ビーム132’(回折光132’)を検出器106に転送するモノリシックオフナー分光計102にビーム132を導く場合に、連続する狭スペクトル帯範囲にわたって遠隔物体の画像を形成するように動作する。詳しくは、前置光学系104がビーム132をスリット108に導く。第1ミラー114(例えば、球面ミラー114,トロイダルミラー114,トロイダル非球面ミラー114,自由曲面ミラー114)が、スリット108を通過したビーム132を受け取って、ビーム132を回折格子120(例えば、トロイダル回折格子120,トロイダル非球面回折格子120)に向けてビーム132を反射する。回折格子120はビーム132を受け取って回折し、回折ビーム132’を第2ミラー124(例えば、球面ミラー124,トロイダルミラー124,トロイダル非球面ミラー124,自由曲面ミラー124)に向けて反射する。第2ミラー124は回折ビーム132’を受け取って、回折ビーム132’を出光面130に向けて反射する。検出器106(例えば、二次元焦点面アレイ106(FPA106))が出光面130を通過した回折ビーム132’を受け取って処理する。モノリシックオフナー分光計102は
図2及び3に関して以下で論じられる2つの方法200及び300の内の1つを用いて作製することができる。
【0019】
図2を参照すれば、本発明の一実施形態にしたがう、直接加工モノリシックオフナー分光計102を作製するための一例の方法200の工程を示すフローチャートがある。工程202において、モノリシックオフナー分光計102を形成するために用いられるべき透光性材料101が選ばれる必要がある。モノリシックオフナー分光計102は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプのダイアモンド加工が可能な透光性(光屈折性)材料で作製することができるであろう。しかし、どのタイプの透光性材料101が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101の材料透過率(吸収係数)、及び透光性材料101の屈折率がある。
【0020】
透光性材料101が選ばれると、透光性材料101は、モノリシックオフナー分光計102を形成するためにダイアモンド工具を用いることができるような、コンピュータ数値制御(CNC)ダイアモンド旋盤に取り付けられて固定される。工程204において、透光性材料101をダイアモンド加工して、その一部にスリット108が形成される(
図15を参照)であろう入光面112を形成するためにダイアモンド工具が用いられる。工程206において、透光性材料101をダイアモンド加工して、第1ミラー114になるであろう露出領域118を形成するためにダイアモンド工具が用いられる。工程208において、透光性材料101をダイアモンド加工して、回折格子120になる(
図17を参照)であろう露出領域122を形成するためにダイアモンド工具が用いられる。工程210において、透光性材料101をダイアモンド加工して、第2ミラー124になるであろう露出領域128を形成するためにダイアモンド工具が用いられる。工程212において、透光性材料101をダイアモンド加工して、出光面130を形成するためにダイアモンド工具が用いられる。いかなる所望の順序でも完了させることができる、工程204,206,208,210及び212が完了すると、入光面112の一部にスリット108が形成される工程214が実施される。一例において、スリット108は、入光面112に不透明材料110を被着し、次いでスリット108を形成するために不透明材料110の一部を取り除くことによって、形成することができる。別の例において、スリット108は、入光面112に(所望のスリット108と同じ寸法を有する)マスクを施し、露出入光面112及びマスクのいずれにも不透明材料112を被着し、次いで被覆入光面112にスリット108が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程216において、第1ミラー110、回折格子120及び第2ミラー114を形成するため、ダイアモンド加工された透光性材料101の露出領域118,122及び128に反射性コーティング116,121及び126が被着される。例えば、不透明材料110並びに反射性コーティング116,121及び126は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110並びに反射性コーティング116,121及び126は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、直接加工モノリシックオフナー分光計102が作製された。
【0021】
図3を参照すれば、本発明の一実施形態にしたがう、モールド成形モノリシックオフナー分光計102を作製するための一例の方法300の工程を示すフローチャートがある。工程302において、(ニッケルで作製することができるであろう)第1の金型402がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第1の金型402をダイアモンド加工して、第1の金型402にそれぞれが第1ミラー114及び第2ミラー124になるべき領域に関わる鏡像404及び406を形成するために、ダイアモンド工具が用いられる(工程304)。
図4は、それぞれが第1ミラー114及び第2ミラー124になるべき領域に関わる鏡像404及び406が形成されている第1の金型402の一例を示す略図である。
【0022】
工程306において、(ニッケルで作製することができるであろう)第2の金型408がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第2の金型408をダイアモンド加工して、第2の金型408にそれぞれが入光面112,回折格子120及び出光面130になるべき領域に関わる鏡像410,412及び414を形成するために、ダイアモンド工具が用いられる(工程308)。
図4は、それぞれが入光面112,回折格子120及び出光面130になるべき領域に関わる鏡像410,412及び414が形成されている第2の金型408の一例を示す略図である。
【0023】
工程310において、第1の金型402及び第2の金型408がそれぞれ金型キャビティ416の両端に連結/取付けされる(
図4を参照)。工程312において、第1の金型402,第2の金型408及び金型キャビティ416内に形成されたキャビティに透光性材料101が注入/圧入される。例えば、工程312は、射出成形プロセス、圧縮成形プロセスまたは注入成形プロセスの一部とすることができるであろう。透光性材料101は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプの屈折光学材料とすることができる。しかし、どのタイプの透光性材料101が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101の材料透過率(吸収係数)、及び透光性材料101の屈折率がある。
【0024】
工程314において、第1の金型402,第2の金型408及び金型キャビティ416が相互に分離されて、モールド成形された透光性材料101が露出される。次いで、入光面112の一部にスリット108が形成される工程316が実施される。一例において、スリット108は、入光面112に不透明材料110を被着し、次いでスリット108を形成するために不透明材料110の一部を取り除くことによって、形成することができる。別の例において、スリット108は、入光面112に(所望のスリット108と同じ寸法を有する)マスクを施し、露出入光面112及びマスクのいずれにも不透明材料112を被着し、次いで被覆入光面112にスリット108が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程318において、第1ミラー110、回折格子120及び第2ミラー114を形成するため、透光性材料101の露出領域118,122及び128に反射性コーティング116,121及び126が被着される。例えば、不透明材料110並びに反射性コーティング116,121及び126は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110並びに反射性コーティング116,121及び126は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、モールド成形モノリシックオフナー分光計102が作製された。
【0025】
図5を参照すれば、本発明の別の実施形態にしたがって構成及び作製されたモノリシックオフナー分光計102’を組み込んでいるハイパースペクトルイメージングシステム100’の一例のブロック図がある。ハイパースペクトルイメージングシステム100’は前置光学系104’及び検出器106’を備える。この例において、前置光学系104’はモノリシックオフナー分光計102’と直接インターフェースする。また、検出器106’は(
図1に比較して)モノリシックオフナー分光計102’から所望の距離をとって配置される。図示されるように、検出器106’とモノリシックオフナー分光計102’の間に透光性ブロック103’が配置されている。透光性ブロック103’とモノリシックオフナー分光計102’の間には空間131’があり、この空間131’は検出器106’に焦点を合わせるに有用である。透光性ブロック103’はモノリシックオフナー分光計102’の作製に用いられる材料と同じ材料で作製することができるであろう。または、透光性ブロック103’はモノリシックオフナー分光計102’の作製に用いられる材料とは異なる材料で作製することができるであろう。あるいは、検出器106’とモノリシックオフナー分光計102’の間は、透光性ブロック103’がない、ただの空間とすることができる。また別の代替形態において、透光性材料103’の代わりをするように、モノリシックオフナー分光計102’の作製に用いられる透光性材料101’を延長することができ、この場合には今示されているような空間131’がないであろう。ハイパースペクトルイメージングシステム100’はモノリシックオフナー分光計102’を保護するハウジング107’を備えることもできる。例えば、ハウジング107’は、モノリシックオフナー分光計102’を保護するだけでなく、絶縁するためにもはたらく、標準の検出器デュワー瓶とすることができる。
【0026】
モノリシックオフナー分光計102’は、
(1)(例えば、透光性材料101’の露出領域112’/入光面112’に不透明材料110’が被着され、次いでスリット108’を形成するために不透明材料112’の一部が除去されている場合に形成される(例えば、初めに(所望のスリット108と同じ寸法を有する)マスクが入光面112’に施され、次いで不透明材料110’が露出入光面112’及びマスクのいずれにも被着されて、マスクが除去されると、被覆された入光面112’によって囲まれたスリット108’が残る場合に形成される))スリット108’、
(2)(反射性コーティング116’が透光性材料101’の露出領域118’/第1の表面118’に施されたときに形成される)第1ミラー114’、
(3)(反射性コーティング121’が透光性材料101’の露出領域122’/第2の表面122’に施されたときに形成される)回折格子120’、
(4)(反射性コーティング126’が透光性材料101’の露出領域128’/第3の表面128’に施されたときに形成される)第2ミラー124’、
(5)(反射性コーティング109’が透光性材料101’の露出領域111’/第4の表面111’に施されたときに形成される)折返しミラー105’、及び
(6)出光面130’、
を有する、単一体の透光性材料101’で作製された1対1光リレーである。ハイパースペクトルイメージングシステム100’には当業者には周知の他のコンポーネントを組み込むことができるが、簡明さのため、ここでは、本発明を説明し、可能にするに必要な、これらのコンポーネント102’,104’,106’,107’,108’,105’,114’,120’及び124’だけを詳細に論じる。
図6〜7はそれぞれ、本例の(ハウジング107’を除く)ハイパースペクトルイメージングシステム100’及び本例のモノリシックオフナー分光計102’の斜視図を示す。
【0027】
ハイパースペクトルイメージングシステム100’は、前置光学系104’が遠隔物体(図示せず)からビーム132”(光132”)を受け取り、ビーム132”を回折して回折ビーム132’’’(回折光132’’’)を検出器106’に転送するモノリシックオフナー分光計102’にビーム132”を導く場合に、連続する狭スペクトル帯範囲にわたって遠隔物体の画像を形成するように動作する。詳しくは、前置光学系104’がビーム132”をスリット108’に導く。折返しミラー105’が、スリット108’を通過したビーム132”を受け取って、ビーム132”を第1ミラー114’に向けて反射する。第1ミラー114’(例えば、球面ミラー114’,トロイダルミラー114’,トロイダル非球面ミラー114’,自由曲面ミラー114’)が、スリット108’を通過したビーム132”を受け取って、ビーム132”を回折格子120’(例えば、トロイダル回折格子120’,トロイダル非球面回折格子120’)に向けて反射する。回折格子120’はビーム132”を受け取って回折し、回折ビーム132’’’を第2ミラー124’(例えば、球面ミラー124’,トロイダルミラー124’,トロイダル非球面ミラー124’,自由曲面ミラー124’)に向けて反射する。第2ミラー124’は回折ビーム132’’’を受け取って、回折ビーム132’’’を出光面130’に向けて反射する。検出器106’(例えば、二次元焦点面アレイ106’(FPA106’))が出光面130’及び(用いられていれば)透光性ブロック103’のいずれも通過した回折ビーム132’’’を受け取って処理する。モノリシックオフナー分光計102’は
図8及び9に関して以下で論じられる2つの方法800及び900の内の1つを用いて作製することができる。
【0028】
図8を参照すれば、本発明の一実施形態にしたがう、直接加工モノリシックオフナー分光計102’を作製するための一例の方法800の工程を示すフローチャートがある。工程802において、モノリシックオフナー分光計102’を形成するために用いられる透光性材料101’が選ばれる必要がある。モノリシックオフナー分光計102’は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプのダイアモンド加工が可能な透光性(光屈折性)材料で作製することができるであろう。しかし、どのタイプの透光性材料101’が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101’の材料透過率(吸収係数)、及び透光性材料101’の屈折率がある。
【0029】
透光性材料101’が選ばれると、透光性材料101’は、モノリシックオフナー分光計102’を形成するためにダイアモンド工具を用いることができるような、コンピュータ数値制御(CNC)ダイアモンド旋盤に取り付けられて固定される。工程804において、透光性材料101’をダイアモンド加工して、その一部にスリット108’が形成される(
図15を参照)であろう入光面112’を形成するためにダイアモンド工具が用いられる。工程806において、透光性材料101’をダイアモンド加工して、折返しミラー105’になるであろう露出領域111’を形成するためにダイアモンド工具が用いられる。工程808において、透光性材料101’をダイアモンド加工して、第1ミラー114’になるであろう露出領域118’を形成するためにダイアモンド工具が用いられる。工程810において、透光性材料101’をダイアモンド加工して、回折格子120’になる(
図17を参照)であろう露出領域122’を形成するためにダイアモンド工具が用いられる。工程812において、透光性材料101’をダイアモンド加工して、第2ミラー124’になるであろう露出領域128’を形成するためにダイアモンド工具が用いられる。工程814において、透光性材料101’をダイアモンド加工して、出光面130’を形成するためにダイアモンド工具が用いられる。いかなる所望の順序でも完了させることができる、工程804,806,808,810,812及び814が完了すると、入光面112’の一部にスリット108’が形成される工程816が実施される。一例において、スリット108’は、入光面112’に不透明材料110’を被着し、次いでスリット108’を形成するために不透明材料110’の一部を取り除くことによって、形成することができる。別の例において、スリット108’は、入光面112’に(所望のスリット108’と同じ寸法を有する)マスクを施し、露出入光面112’及びマスクのいずれにも不透明材料112’を被着し、次いで被覆入光面112’にスリット108’が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程818において、折返しミラー105’,第1ミラー110’、回折格子120’及び第2ミラー114’を形成するため、ダイアモンド加工された透光性材料101’の露出領域111’,118’,122’及び128’に反射性コーティング109’,116’,121’及び126’が被着される。例えば、不透明材料110’並びに反射性コーティング109’,116’,121’及び126’は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110’並びに反射性コーティング109’,116’,121’及び126’は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、直接加工モノリシックオフナー分光計102’が作製された。
【0030】
図9を参照すれば、本発明の一実施形態にしたがう、モールド成形モノリシックオフナー分光計102’を作製するための一例の方法900の工程を示すフローチャートがある。工程902において、(ニッケルで作製することができるであろう)第1の金型1002がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第1の金型1002をダイアモンド加工して、第1の金型1002にそれぞれが第1ミラー114’及び第2ミラー124’になるべき領域に関わる鏡像1004及び1006を形成するために、ダイアモンド工具が用いられる(工程904)。
図10は、それぞれが第1ミラー114’及び第2ミラー124’になるべき領域に関わる鏡像1004及び1006が形成されている第1の金型1002の一例を示す略図である。
【0031】
工程906において、(ニッケルで作製することができるであろう)第2の金型1008がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第2の金型1008をダイアモンド加工して、第2の金型1008にそれぞれが入光面112’,折返しミラー105’,回折格子120’及び出光面130’になるべき領域に関わる鏡像1010,1012,1014及び1016を形成するために、ダイアモンド工具が用いられる(工程908)。
図10は、それぞれが入光面112’,折返しミラー105’,回折格子120’及び出光面130’になるべき領域に関わる鏡像1010,1012,1014及び1016が形成されている第2の金型1008の一例を示す略図である。
【0032】
工程910において、第1の金型1002及び第2の金型1008がそれぞれ金型キャビティ1018の両端に連結/取付けされる(
図10を参照)。工程912において、第1の金型1002,第2の金型1008及び金型キャビティ1018内に形成されたキャビティに透光性材料101’が注入/圧入される。例えば、工程912は、射出成形プロセス、圧縮成形プロセスまたは注入成形プロセスの一部とすることができるであろう。透光性材料101’は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプの光屈折性材料とすることができる。しかし、どのタイプの透光性材料101’が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101’の材料透過率(吸収係数)、及び透光性材料101’の屈折率がある。
【0033】
工程914において、第1の金型1002,第2の金型1008及び金型キャビティ1018が相互に分離されて、モールド成形された透光性材料101’が露出される。次いで、入光面112’の一部にスリット108’が形成される工程916が実施される。一例において、スリット108’は、入光面112’に不透明材料110’を被着し、次いでスリット108’を形成するために不透明材料110’の一部を取り除くことによって、形成することができる。別の例において、スリット108’は、入光面112’に(所望のスリット108’と同じ寸法を有する)マスクを施し、露出入光面112’及びマスクのいずれにも不透明材料112’を被着し、次いで被覆入光面112’にスリット108’が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程918において、折返しミラー105’,第1ミラー110’、回折格子120’及び第2ミラー114’を形成するため、透光性材料101’の露出領域111’,118’,122’及び128’に反射性コーティング109’,116’,121’及び126’が被着される。例えば、不透明材料110’並びに反射性コーティング109’,116’,121’及び126’は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110並びに反射性コーティング116,121及び126は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、モールド成形モノリシックオフナー分光計102’が作製された。
【0034】
図11を参照すれば、本発明のまた別の実施形態にしたがって構成及び作製されたモノリシックオフナー分光計102”を組み込んでいるハイパースペクトルイメージングシステム100”の一例のブロック図がある。ハイパースペクトルイメージングシステム100”は前置光学系104”及び検出器106”を備える。この例において、前置光学系104”はモノリシックオフナー分光計102”と直接インターフェースする。また、検出器106”は(
図1及び5に比較して)モノリシックオフナー分光計102”から所望の距離をとって配置される。ハイパースペクトルイメージングシステム100”はモノリシックオフナー分光計102”を保護するハウジング107”を備えることもできる。例えば、ハウジング107”は、モノリシックオフナー分光計102”を保護するだけでなく、絶縁するためにもはたらく、標準の検出器デュワー瓶とすることができる。
【0035】
モノリシックオフナー分光計102”は、
(1)(例えば、透光性材料101”の露出領域112”/入光面112”に不透明材料110が被着され”、次いでスリット108”を形成するために不透明材料112”の一部が除去されている場合に形成される(例えば、初めに(所望のスリット108”と同じ寸法を有する)マスクが入光面112”に施され、次いで不透明材料110”が露出入光面112”及びマスクのいずれにも被着されて、マスクが除去されると、被覆された入光面112”によって囲まれたスリット108”が残る場合に形成される))スリット108”、
(2)(反射性コーティング116”が透光性材料101”の露出領域118”/第1の表面118”に施されたときに形成される)第1ミラー114”、
(3)(反射性コーティング121”が透光性材料101”の露出領域122”/第2の表面122”に施されたときに形成される)回折格子120”、
(4)(反射性コーティング126”が透光性材料101”の露出領域128”/第3の表面128”に施されたときに形成される)第2ミラー124”、
(5)(反射性コーティング109”が透光性材料101”の露出領域111”/第4の表面111”に施されたときに形成される)第1折返しミラー105”、
(6)(反射性コーティング142”が透光性材料101”の露出領域144”/第5の表面144”に施されたときに形成される)第2折返しミラー140”、及び
(7)出光面130”、
を有する、単一体の透光性材料101”で作製された1対1光リレーである。ハイパースペクトルイメージングシステム100”には当業者には周知の他のコンポーネントを組み込むことができるが、簡明さのため、ここでは、本発明を説明し、可能にするに必要な、これらのコンポーネント102”,104”,106”,107”,108”,105”,114”,120”,124”及び140”だけを詳細に論じる。
【0036】
ハイパースペクトルイメージングシステム100”は、前置光学系104”が遠隔物体(図示せず)からビーム132
iv(光132
iv)を受け取り、ビーム132
ivを回折して回折ビーム132
v(回折光132
v)を検出器106”に転送するモノリシックオフナー分光計102”にビーム132
ivを導く場合に、連続する狭スペクトル帯範囲にわたって遠隔物体の画像を形成するように動作する。詳しくは、前置光学系104”がビーム132”をスリット108”に導く。第1折返しミラー105”がスリット108”を通過したビーム132
ivを受け取って、ビーム132
ivを第1ミラー114”に向けて反射する。第1ミラー114”(例えば、球面ミラー114”,トロイダルミラー114”,トロイダル非球面ミラー114”,自由曲面ミラー114”)が、スリット108”を通過したビーム132
ivを受け取って、ビーム132
ivを回折格子120”(例えば、トロイダル回折格子120”,トロイダル非球面回折格子120”)に向けて反射する。回折格子120”はビーム132
ivを受け取って回折し、回折ビーム132
vを第2ミラー124”(例えば、球面ミラー124”,トロイダルミラー124”,トロイダル非球面ミラー124”,自由曲面ミラー124”)に向けて反射する。第2ミラー124”は回折ビーム132
vを受け取って、回折ビーム132
vを第2折返しミラー140”に向けて反射する。第2ミラー124”は次いで回折ビーム132
vを出光面130”に向けて反射する。検出器106”(例えば、二次元焦点面アレイ106”(FPA106”))が出光面130”を通過した回折ビーム132
vを受け取って処理する。モノリシックオフナー分光計102”は
図12及び13に関して以下で論じられる2つの方法1200及び1300の内の1つを用いて作製することができる。
【0037】
図12を参照すれば、本発明の一実施形態にしたがう、直接加工モノリシックオフナー分光計102”を作製するための一例の方法1200の工程を示すフローチャートがある。工程1202において、モノリシックオフナー分光計102”を形成するために用いられる透光性材料101”が選ばれる必要がある。モノリシックオフナー分光計102”は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプのダイアモンド加工が可能な透光性(光屈折性)材料で作製することができるであろう。しかし、どのタイプの透光性材料101”が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101”の材料透過率(吸収係数)、及び透光性材料101”の屈折率がある。
【0038】
透光性材料101”が選ばれると、透光性材料101”は、モノリシックオフナー分光計102”を形成するためにダイアモンド工具を用いることができるような、コンピュータ数値制御(CNC)ダイアモンド旋盤に取り付けられて固定される。工程1204において、透光性材料101”をダイアモンド加工して、その一部にスリット108”が形成される(
図15を参照)入光面112”を形成するためにダイアモンド工具が用いられる。工程1206において、透光性材料101”をダイアモンド加工して、第1折返しミラー105”になるであろう露出領域111”を形成するためにダイアモンド工具が用いられる。工程1208において、透光性材料101”をダイアモンド加工して、第1ミラー114”になるであろう露出領域118”を形成するためにダイアモンド工具が用いられる。工程1210において、透光性材料101”をダイアモンド加工して、回折格子120”になる(
図17を参照)であろう露出領域122”を形成するためにダイアモンド工具が用いられる。工程1212において、透光性材料101”をダイアモンド加工して、第2ミラー124”になるであろう露出領域128”を形成するためにダイアモンド工具が用いられる。工程1214において、透光性材料101”をダイアモンド加工して、第2折返しミラー140”になるであろう露出領域144”を形成するためにダイアモンド工具が用いられる。工程1216において、透光性材料101”をダイアモンド加工して、出光面130”を形成するためにダイアモンド工具が用いられる。いかなる所望の順序でも完了させることができる、工程1204,1206,1208,1210,1212,1214及び1216が完了すると、入光面112”の一部にスリット108”が形成される工程1218が実施される。一例において、スリット108”は、入光面112”に不透明材料110”を被着し、次いでスリット108”を形成するために不透明材料110”の一部を取り除くことによって、形成することができる。別の例において、スリット108”は、入光面112”に(所望のスリット108”と同じ寸法を有する)マスクを施し、露出入光面112”及びマスクのいずれにも不透明材料112”を被着し、次いで被覆入光面112”にスリット108”が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程1220において、第1折返しミラー105”,第1ミラー110”、回折格子120”,第2ミラー114”及び第2折返しミラー140”を形成するため、ダイアモンド加工された透光性材料101”の露出領域111”,118”,122”,128”及び144”に反射性コーティング109”,116”,121”,126”及び142”が被着される。例えば、不透明材料110”並びに反射性コーティング109”,116”,121”,126”及び142”は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110”並びに反射性コーティング109”,116”,121”,126”及び142”は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、直接加工モノリシックオフナー分光計102”が作製された。
【0039】
図13を参照すれば、本発明の一実施形態にしたがう、モールド成形モノリシックオフナー分光計102”を作製するための一例の方法1300の工程を示すフローチャートがある。工程1302において、(ニッケルで作製することができるであろう)第1の金型1402がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第1の金型1402をダイアモンド加工して、第1の金型1402にそれぞれが第1ミラー114”及び第2ミラー124”になるべき領域に関わる鏡像1404及び1406を形成するために、ダイアモンド工具が用いられる(工程1304)。
図14は、それぞれが第1ミラー114”及び第2ミラー124”になるべき領域に関わる鏡像1404及び1406が形成されている第1の金型1402の一例を示す略図である。
【0040】
工程1306において、(ニッケルで作製することができるであろう)第2の金型1408がCNCダイアモンド旋盤に取り付けられて、固定される。次いで第2の金型1408をダイアモンド加工して、第2の金型1408にそれぞれが入光面112”,第1折返しミラー105”,回折格子120”,出光面130”及び第2折返しミラー140”になるべき領域に関わる鏡像1410,1412,1414,1416及び1418を形成するために、ダイアモンド工具が用いられる(工程1308)。
図14は、それぞれが入光面112”,第1折返しミラー150”,回折格子120”,出光面130”及び第2折返しミラー140”になるべき領域に関わる鏡像1410,1412,1414,1416及び1418が形成されている第2の金型1408の一例を示す略図である。
【0041】
工程1310において、第1の金型1402及び第2の金型1408がそれぞれ金型キャビティ1420の両端に連結/取付けされる(
図14を参照)。工程1312において、第1の金型1402,第2の金型1408及び金型キャビティ1420内に形成されたキャビティに透光性材料101”が注入/圧入される。例えば、工程1312は、射出成形プロセス、圧縮成形プロセスまたは注入成形プロセスの一部とすることができるであろう。透光性材料101”は、(例えば)ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート、シリコン、ゲルマニウム、セレン化亜鉛、硫化亜鉛、フッ化バリウム、塩化銀または三硫化二ヒ素のような、いずれかのタイプの屈折光学材料とすることができる。しかし、どのタイプの透光性材料101”が選ばれるべきかにおいて役割を果たし得るいくつかの要因があり、これらの要因には、寸法安定性、低波面誤差、小表面粗さ、特定の応用に対して重要なスペクトル領域、透光性材料101”の材料透過率(吸収係数)、及び透光性材料101”の屈折率がある。
【0042】
工程1314において、第1の金型1402,第2の金型1408及び金型キャビティ1420が相互に分離されて、モールド成形された透光性材料101”が露出される。次いで、入光面112”の一部にスリット108”が形成される工程1316が実施される。一例において、スリット108”は、入光面112”に不透明材料110”を被着し、次いでスリット108”を形成するために不透明材料110”の一部を取り除くことによって、形成することができる。別の例において、スリット108”は、入光面112”に(所望のスリット108”と同じ寸法を有する)マスクを施し、露出入光面112”及びマスクのいずれにも不透明材料112”を被着し、次いで被覆入光面112”にスリット108”が形成されるようにマスクを除去することによって、形成することができる。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクは、フォトマスク及びリソグラフィ法を用いることで被着することができるであろう。工程1318において、第1折返しミラー105”,第1ミラー110”、回折格子120”、第2ミラー114”及び第2折返しミラー140”を形成するため、透光性材料101”の露出領域111”,118”,122”,128”及び144”に反射性コーティング109”,116”,121”,126”及び142”が被着される。例えば、不透明材料110”並びに反射性コーティング109”,116”,121”,126”及び142”は、光学工業で普通に用いられる真空手法のいずれかを用いることで被着することができるであろう。また、不透明材料110”並びに反射性コーティング109”,116”,121”,126”及び142”は同じ工程中に被着することができ、(例えば)アルミニウム、金、銀またはニッケルのような、同じ材料とすることができるであろう。この時点において、モールド成形モノリシックオフナー分光計102”が作製された。
【0043】
上述したハイパースペクトルイメージングシステム100/100’/100”及び対応するモノリシックオフナー分光計102/102’/102”は、以下でさらに詳細に論じられる、いくつかのコンポーネント及び望ましい小型構成(例えば、焦点距離、線分散)
I.スリット108/108’/108”,
II.第1ミラー114/114’/114”及び第2ミラー124/124’/124”,
III.回折格子120/120’/120”,
IV.透光性材料101/101’/101”,
V.モノリシックオフナー分光計102/102’/102”の小型構成,
VI.ハウジング107/107’/107”,
を有する。
【0044】
I.スリット108/108’/108”
上掲の特許文献1に説明されるハイパースペクトルイメージングシステムは、ハウジングに配置され、モノリシックオフナー分光計から物理的に分離された、スリットを有する。対照的に、ハイパースペクトルイメージングシステム100/100’/100”は、モノリシックオフナー分光計102/102’/102”の入光面112/112’/112”上に直接に形成されたスリット108/108’/108”を有する。一例において、スリット108/108’/108”は、透光性材料101/101’/101”の入光面112/112’/112”上に不透明材料110/110’/110”を被着し、次いで、透光性材料101/101’/101”の入光面112/112’/112”上に被着されている不透明材料110/110’/110”に開口を加工することで、形成される。別の例において、スリット108/108’/108”は、初めに入光面112/112’/112”に(所望のスリット108/108’/108”と同じ寸法を有する)マスクを施し、次いで露出入光面112/112’/112”及びマスクのいずれにも不透明材料110/110’/110”を被着し、マスクが除去されると被覆入光面112/112’/112”で囲まれたスリット108/108’/108”が残ることによって、形成される。マスクは、例えば、細いワイアのような、機械的マスクとすることができるであろう。または、マスクはフォトマスク及びリソグラフィ手法を用いることで被着できるであろう。了解され得るであろうように、スリット108/108’/108”は多くのプロセスの内のいずれによっても形成することができる。望ましければ、不透明材料110/110’/110”は、それぞれが、(用いられれば)第1折返しミラー105’,第1ミラー114/114’/114”,回折格子120/120’/120”,第2ミラー124/124’/124”及び(用いられれば)第2折返しミラー140”を形成する、反射性コーティング109’,116/116’/116”,121/121’/121”,126/126’/126”及び142”と同じ材料(例えば、アルミニウム、金、銀またはニッケル)と同じ材料とすることができる。加えて、不透明材料110/110’/110”は、それぞれが、(用いられれば)第1折返しミラー105’,第1ミラー114/114’/114”,回折格子120/120’/120”,第2ミラー124/124’/124”及び(用いられれば)第2折返しミラー140”を形成する、反射性コーティング109’,116/116’/116”,121/121’/121”,126/126’/126”及び142”が透光性材料101/101’/101”上に被着されると同時に、透光性材料101/101’/101”上に被着され得る。この態様においては、透光性材料101/101’/101”上への単一光学コーティング工程を実施することで、生産効率が改善される。
【0045】
図15を参照すれば、本発明の一実施形態にしたがう、モノリシックオフナー分光計102/102’/102”上に形成された一例のスリット108/108’/108”の顕微鏡写真(倍率:374×)がある。この例において、不透明材料110/110’/110”は、透光性材料101/101’/101”の入光面112/112’/112”上に被着された、アルミニウムの薄層であった。次いで、不透明材料110/110’/110”(アルミニウム)を貫通する「スロット」を加工してスリット108/108’/108”を形成するためにダイアモンド加工プロセスを用いた。スリット108/108’/108”は次いでビーム132/132”/132
ivがスリット108/108’/108”を通過して透光性材料101/101’/101”に入ることを可能にし、透光性材料101/101’/101”内でビーム132/132”/132
ivは回折されて、回折ビーム132’,132’’’,132
vは検出器106/106’/106”に導かれる(
図1,5及び11を参照)。図示される例のスリット108/108’/108”の幅は2μm、長さは8mmである。
【0046】
II.第1ミラー114/114’/114”及び第2ミラー124/124’/124”
モノリシックオフナー分光計102/102’/102”は、球面ミラー、(収差補正のための)トロイダルミラー、(収差補正のための)トロイダル非球面ミラーまたは自由曲面ミラーである、第1ミラー114/114’/114”及び第2ミラー124/124’/124”を有することができる。例えば、第1ミラー114/114’/114”及び第2ミラー124/124’/124”はいずれもトロイダルミラーまたはトロイダル非球面ミラーとすることができる。または、第1ミラー114/114’/114”をトロイダルミラーとすることができ、第2ミラー124/124’/124”をトロイダル非球面ミラーとすることができる。あるいは、第1ミラー114/114’/114”をトロイダル非球面ミラーとすることができ、第2ミラー124/124’/124”をトロイダルミラーとすることができる。モノリシック分光計におけるトロイダルミラー114/114’/114”及び124/124’/124”(またはトロイダル非球面ミラー114/114’/114”及び124/124’/124”)の使用は、製作が困難なため、従来はなされていなかった。しかし、ダイアモンド加工プロセスを用いたモノリシックオフナー分光計102/102’/102”では、製造コストを増やさずに、トロイダルミラー114/114’/114”及び124/124’/124”(またはトロイダル非球面ミラー114/114’/114”及び124/124’/124”)の利用が可能である。
【0047】
図16を参照すれば、内面の影付き領域1604を、第1ミラー114/114’/114”または第2ミラー124/124’/124”の形状に、あるいは第1ミラー114/114’/114”及び第2ミラー124/124’/124”のいずれの形状ともすることができる、トロイド(環状体)1602の略図がある。トロイド形の第1ミラー114/114’/114”及び第2ミラー124/124’/124”の使用により、球面ミラーの使用と比較して、より優れた光学補正が可能になる。2つの一般的なトロイド形状は、「ラグビーボール」形及び「ドーナツ」形である。図示される例のトロイド1602は、長半径(Ry)が短半径(Rx)の周りを回転している、「ラグビーボール」形トロイドである。Ryが例として円または楕円から逸れる、非球面トロイドも可能である。第1ミラー114/114’/114”及び第2ミラー124/124’/124”に対称性は必要とされない。自由曲面は、数学的に、ある軸の一方の側では負であり、同じ軸の逆側では正である寄与を「奇数」冪の項が生じる多項式で一般に表される。
【0048】
III.回折格子120/120’/120”
モノリシックオフナー分光計102/102’/102”は、収差補正のため、トロイダル回折格子120/120’/120”またはトロイダル非球面回折格子120/120’/120”を利用することができる。モノリシック分光計におけるトロイダル回折格子120/120’/120”またはトロイダル非球面回折格子120/120’/120”の使用は、製作が困難なため、従来はなされていなかった。しかし、ダイアモンド加工プロセスを用いたモノリシックオフナー分光計102/102’/102”では、製造コストを増やさずに、トロイダル回折格子120/120’/120”(またはトロイダル非球面回折格子120/120’/120”)の利用が可能である(一例のトロイド形を示す
図16を参照)。
【0049】
図17を参照すれば、本発明の一実施形態にしたがって構成された一例の回折格子120/120’/120”の詳細図がある。図示されるように、回折格子120/120’/120”は、有倍率面1704(例えば、球面1704,トロイダル面1704,トロイダル非球面1704)内に形成された非常に多くの線格子1702を有する。それぞれの線格子1702は、有倍率面1704内で変化するブレーズ角にしたがって傾けられたブレーズ面(または二重ファセットブレーズ面1704aまたは有倍率ブレーズ面1708b)を有する。ブレーズ角1710はブレーズファセットと局所接表面の間で測定して0.1°〜20°の範囲にある。それぞれの線格子1702は2本のけい線1714a及び1714bの間の距離で定められる周期1712を有する。周期1712は0.0005mm〜5mmの範囲とすることができる。それぞれのけい線1714a及び1714bは本明細書でブレーズリセット1716と称される領域を有する。ブレーズリセット1716は0.2〜10μmの範囲の高さを有する。ブレーズリセット1716はブレーズ面1708に対して垂直とすることができ、あるいはブレーズリセットと局所表面法線の間で測定して±20°の範囲にある角度で配向させることができる。回折格子120/120’/120”をどのようにして透光性材料101/101’/101”に直接ダイアモンド加工することができるかについての議論は
図18に関して以下で与えられる。
【0050】
図18を参照すれば、本発明の一実施形態にしたがう回折格子120/120’/120”を透光性材料101/101’/101”に直接ダイアモンド加工するための一例の方法1800の工程を示すフローチャートがある(注:これは、
図2の工程208,
図8の工程810及び
図12の工程1210を実施するための一方法に関するさらに詳細な議論である)。工程1802において、透光性材料101/101’/101”がCNCダイアモンド旋盤に取り付けられて固定される。工程1804において、線格子1704及び有倍率面1704(湾曲面1704)(
図17を参照)を形成するため、格子プロファイルによって定められる行路にかけて(ブレーズリセット1716より小さい半径を有することが好ましい)ダイアモンド工具1720の動作及び移動をCNCプログラムが制御する。有倍率面1704に沿うブレーズ角1710の変化もCNCプログラムによって制御される。このプロセスは、数μmから数mmの範囲にある格子周期1712を形成するために用いることができる。
【0051】
一実施形態において、ダイアモンド工具1720は半径が0.5μmから20μmの範囲にある先端を有する。ダイアモンド工具の先端半径は非常に小さいから、CNCダイアモンド旋盤は、所望の光学仕上げを得るため、非常に緩やかな送り速度を有する必要がある。加えて、CNCダイアモンド旋盤は10nmより小さいフィードバック分解能で動作する必要がある。このタイプの製造プロセスは長時間かかることができ、この結果、格子周期1712の一様性はCNCダイアモンド旋盤の熱安定性に非常に敏感になり得る。この問題に対処するため、初めにブレーズ面1708/ブレーズ角1710を加工し、次いで時間効率が一層高い別のCNCプログラムを用いて(格子周期1712を定める)ブレーズリセット1716を加工することができるであろう。これがなされれば、回折格子120/120’/120”は、粗さ(Ra)が〜1nmの、反復する特性「指紋」をもつ表面仕上げを有することになる。この特性「指紋」の反復構造は、回折格子が本発明にしたがって作製されているものか否かを判定するために用いることができるであろう、一指標である。
【0052】
上述した作製方法1800及び作製された回折格子120/120’/120”はいくつかの望ましい特徴及び利点を有し、それらのいくつかが以下に論じられる:
・作製方法1800は凸面も凹面も作製するために用いることができ、このことは上述した回折格子120/120’/120”を組み込んでいるモノリシックオフナー分光計102/102’/102”を多数複製するための金型を作製できる(例えば、
図4,10及び14を参照)ことを意味する。これは、モールド成形モノリシックオフナー分光計102/102’/102”を、民生用途に必要な、高い費用効率で大量に作製することができるから、望ましい;
・回折格子120/120’/120”は、その外形が透光性材料101/101’/101”または金型408,1008及び1408(
図4,10及び14を参照)に直接に加工されるから、機械的及び環境的に安定である;
・CNCプログラム及び小形ダイアモンド工具が一緒に作用して、有倍率面1704上の特定の点における特定の光入射角に整合するようにブレーズ角1710の変化が加工されることを保証する。このブレーズ角1710の変化は効率を向上させる。さらに、このブレーズ角1710の変化は、従来は利用できなかった追加の設計自由度である;
・ブレーズ面1708は1つの波長に最適化されたブレーズ角1710をもつ平坦面である必要はない。代わりに、ブレーズ面1708は、拡張された動作波長範囲にわたって性能を最適化するために、ファセットを形成するかまたは「有倍率」とすることができる。
図17は一例の二重ファセットブレーズ面1708a及び一例の有倍率ブレーズ面1708bを示す;
・設計者は、光学収差を補正するため、作製プロセスを制御して周期1712を変えることができる。または、設計者は周期を変えることができ、よって共通基板上に異なる周期をもつ複数の開口を用いることができる;
・ブレーズ面1708間のブレーズリセット1716はブレーズ角1710の変化と同様の変化を示す角度を有することができる。しかし、これは本発明の要件ではない。小形ダイアモンド工具1720により、工具1720がブレーズ面1708に付随するブレーズ角1710とは異なる角度にブレーズリセット1716の角度を変えることができる能力を有するように、工具1720上の同じ点を用いることが可能になる。これは、従来はブレーズ面とブレーズリセットを同時に形成するために比較的大きな工具が用いられたであろうから、顕著な改善である。
【0053】
IV.透光性材料101/101’/101”
モノリシックオフナー分光計102/102’/102”を作製するために用いられる透光性材料101/101’/101”のタイプは事実上、検出器106/106’/106”のタイプ及び、特に、遠隔物体の画像を生成するために用いられる検出器106/106’/106”の波長(色)感度を規定するであろう。例えば、モノリシックオフナー分光計102/102’/102”がプラスチック(例えば、ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリカーボネート)でつくられていれば、波長は可視光領域にあり、検出器106/106’/106”は相補型金属−酸化物−半導体(CMOS)ビデオカメラ106/106’/106”とすることができるであろう。モノリシックオフナー分光計102/102’/102”が赤外光透光性材料(例えば、フッ化バリウム、塩化銀または三硫化二ヒ素)でつくられていれば、検出器106/106’/106”は、テルル化水銀カドミウム(HgCdTe)またはアンチモン化インジウム(InSb)に基づくことができる赤外線(IR)検出器であろう。
【0054】
赤外光透光性材料−フッ化バリウム、塩化銀及び三硫化二ヒ素−は、良好な寸法安定性をもって容易にダイアモンド旋盤で加工され、回折構造を作製する場合に有用な低波面誤差、小表面粗さ及び高忠実度を有するから、この特定の用途において望ましい。特に、フッ化バリウムは、広い高透過波長範囲(0.38〜12.0μm)を有するから、モノリシックオフナー分光計102/102’/102”に非常に有用な材料である。三硫化二ヒ素の透過波長範囲はより狭い(0.68〜11.0μm)が、屈折率がn=2.45と高いことから、一層小型のモノリシックオフナー分光計102/102’/102”をつくるために用いることができる。塩化銀も高屈折率(n=2.00)を有し、さらに遠IR波長(0.5〜22μm)まで透過させ、これは小型モノリシックオフナー分光計102/102’/102”の作製に有用である。
【0055】
V.モノリシックオフナー分光計102/102’/102”の小型構成
モノリシックオフナー分光計102/102’/102”は下の式1及び諸元:
【0057】
ここで、
dx/dλは4〜200mm/μmの範囲にある線分散である、
fは、回折格子120/120’/120”と焦点面検出器106/106’/106”の間で測定される、10〜300mmの範囲にある焦点距離である、
dは3〜1000μmの範囲にある線格子の周期である、
nは1〜10の範囲にある回折次数である、
Φは、入射光と法線の間で測定される、1°〜30°の範囲にあるエバート角である、及び
θは、入射光と得られるn次数回折光の間で測定される、0.2°〜45°の範囲にある回折角である、
にしたがって構成することができる。
【0058】
図19を参照すれば、式1のエバート角Φ、異なる次数の回折光(例えば)1902a,1902b,1902c,1902d及び1902e,及び回折角θを示すために用いられる、回折格子120/120’/120”の一部が示されている。図示されるように、入射ビーム1904は回折格子120/120’/120”上に導かれ、格子がなければ、0次回折(反射)光1902bは、反射された入射ビーム1904’が進むであろう光路をとる。他方で、格子が存在すれば、反射された入射ビーム1904’は、格子の構造に依存して、−1次回折光1902a,1次回折光1902c、2次回折光1902d、3次回折光1902e、等となって進む。この例においては、−1次回折光1902aの光路上を進む、反射された入射ビーム1904’が図示されている。エバート角Φは入射光1904と表面法線1906の間で測定されるとして示される。回折角θは表面法線1906と、この例では1次回折光1902cである、生じた回折光の間で測定されるとして示される。
【0059】
モノリシックオフナー分光計102/102’/102”が式1及び随伴する諸元にしたがって構成されていれば、「小型」モノリシックオフナー分光計102/102’/102”であると見なされるであろう。次に論じられるように、上述した諸元にしたがって作製された「小型」モノリシックオフナー分光計102/102’/102”は、従来の「小型」オフナー分光計に優る改善である。
【0060】
より長い(例えば50〜1500mmの)焦点距離(f)を用いてより大きな(例えば4〜200mm/μmの)線分散(dx/dλ)を達成するための従来のオフナー分光計は、短い(例えば5〜200μmの)格子周期を有するであろう。そのような短い周期は作成が困難であり、したがって、製造業者等は回折格子をポリマーで複製しなければならず、次いで複製された回折格子をモノリスに取り付けなければならなかった。これには、ポリマーとモノリスの間の屈折率不整合が迷反射光を生じさせ、また、代表的なポリマーにおける大きな吸収によりスペクトル範囲が制限されるから、問題があった。
【0061】
新規の回折格子120/120’/120”においては、格子周期が長く(例えば3〜1000μm)、よって透光性材料101/101’/101”に直接ダイアモンド加工するかまたは金型408,108及び1408内で複製することで、容易に作製することができるが、(d/n)が比較的小さいままであるように回折次数(例えば1〜10)が選ばれる。格子溝の外形は選ばれた回折次数において所望の回折効率が得られるように設計される。
【0062】
VI.ハウジング107/107’/107”
赤外(IR)スペクトル領域における「小型」モノリシックオフナー分光計102/102’/102”の重要な利点は、小寸であることによって、標準の検出器デュワー瓶107/107’/107”(ハウジング107/107’/107”)内に組み込むことが可能になることである。従来は改良型ダイソン分光計が標準の検出器デュワー瓶に組み込まれていたが、「小型」モノリシックオフナー分光計102/102’/102”では、モノリシック構造によって温度無依存になり、ダイソン構造では迷光を避けるために必要であった無反射(AR)コーティングを必要としないから、優れている。
【0063】
本発明の複数の実施形態を添付図面に示し、上記の詳細な説明で説明したが、本発明が開示された実施形態に限定されず、添付される特許請求の範囲に述べられ、定められるような本発明を逸脱することなく、数多くの再構成、改変及び置換が可能であることは当然である。本明細書に用いられる「本発明」または「発明」が実施形態例に関しており、添付される特許請求の範囲に包含される全ての実施形態に関しているとは限らないことにも注意すべきである。
【符号の説明】
【0064】
100,100’,100” ハイパースペクトルイメージングシステム
101,101’,101”透光性材料
102,102’,102” モノリシックオフナー分光計
103’ 透光性ブロック
104,104’,104” 前置光学系
105’,106” (第1)折返しミラー
106,106’,106” 検出器
107,107’,107” ハウジング
108,108’,108” スリット
109’,109”,116,116’,116”,121,121’,121”,126,126’,126”,142” 反射性コーティング
110,110’,110” 不透明材料
111’ 露出領域/第4の表面
112,112’,112” 露出領域/入光面
114,114’,114” 第1ミラー
118,118’,118” 露出領域/第1の表面
120,120’,120” 回折格子
122,122’,122” 露出領域/第2の表面
124,124’,124” 第2ミラー
128,128’,128” 露出領域/第3の表面
130,130’,130” 出光面
132,132”,132
iv ビーム(光)
132’,132’’’,132
v 回折ビーム(回折光)
140” 第2折返しミラー
144” 露出領域/第5の表面
402,408,1002,1008,1402,1408 金型
404,406,410,412,414,1004,1006,1010,1012,1014,1016,1404,1406,1410,1412,1414,1416,1418 鏡像
416,1018,1420 金型キャビティ
【国際調査報告】