特表2016-515026(P2016-515026A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デューク ユニバーシティの特許一覧

特表2016-515026電気刺激を適用して、脊髄刺激を最適化するシステム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2016-515026(P2016-515026A)
(43)【公表日】2016年5月26日
(54)【発明の名称】電気刺激を適用して、脊髄刺激を最適化するシステム及び方法
(51)【国際特許分類】
   A61N 1/36 20060101AFI20160422BHJP
【FI】
   A61N1/36
【審査請求】未請求
【予備審査請求】未請求
【全頁数】21
(21)【出願番号】特願2016-501846(P2016-501846)
(86)(22)【出願日】2014年3月13日
(85)【翻訳文提出日】2015年11月5日
(86)【国際出願番号】US2014025423
(87)【国際公開番号】WO2014159896
(87)【国際公開日】20141002
(31)【優先権主張番号】61/779,632
(32)【優先日】2013年3月13日
(33)【優先権主張国】US
(31)【優先権主張番号】61/779,554
(32)【優先日】2013年3月13日
(33)【優先権主張国】US
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.SMALLTALK
(71)【出願人】
【識別番号】507189666
【氏名又は名称】デューク ユニバーシティ
(74)【代理人】
【識別番号】100107364
【弁理士】
【氏名又は名称】斉藤 達也
(72)【発明者】
【氏名】グリル,ワレン,エム.
(72)【発明者】
【氏名】チャン,ティアン
【テーマコード(参考)】
4C053
【Fターム(参考)】
4C053CC10
4C053FF04
4C053JJ01
4C053JJ13
4C053JJ27
(57)【要約】
標的神経組織の異なる部分母集団に電気刺激を適用して、脊髄刺激を最適化するシステム及び方法が開示される。一態様によれば、方法は、第1のパターンの電気刺激を対象者の標的神経組織の第1の部分母集団に適用することを含む。本方法は、第2のパターンの電気刺激を対象者の標的神経組織の第2の部分母集団に適用することも含み、第2のパターンの電気刺激は、第1のパターンの電気刺激とは異なる周波数で適用される。
【特許請求の範囲】
【請求項1】
第1のパターンの電気刺激を対象者の標的神経組織の第1の部分母集団に適用することと、
第2のパターンの電気刺激を前記対象者の標的神経組織の第2の部分母集団に適用することであって、前記第2のパターンの電気刺激は、前記第1のパターンの電気刺激とは異なる周波数で適用される、適用することと、
刺激の効果を最適化するように、前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を制御することと、
を含む、方法。
【請求項2】
第1のパターンの電気刺激を適用することは、
第1の接点を前記標的神経組織の第1の部分母集団と電気的に連通させることと、
前記第1の接点を使用して、前記第1のパターンの電気刺激を前記標的神経組織の第1の部分母集団に適用することと、
を含む、請求項1に記載の方法。
【請求項3】
第2のパターンの電気刺激を適用することは、
第2の接点を前記標的神経組織の第2の部分母集団と電気的に連通させることと、
前記第2の接点を使用して、前記第2のパターンの電気刺激を前記標的神経組織の第2の部分母集団に適用することと、
を含む、請求項2に記載の方法。
【請求項4】
前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激は、異なるタイミングで適用される、請求項1に記載の方法。
【請求項5】
前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激の前記適用を制御するユーザ入力を受信することを更に含む、請求項1に記載の方法。
【請求項6】
前記第1のパターンの電気刺激の周波数は、前記第2のパターンの電気刺激の前記周波数の倍数である、請求項1に記載の方法。
【請求項7】
第1の接点及び第2の接点を備える電極を提供することと、
前記第1の接点及び前記第2の接点を前記標的神経組織の前記第1の部分母集団及び前記第2の部分母集団のそれぞれと電気的に連通させることと、
前記第1の接点を使用して、前記第1のパターンの電気刺激を前記標的神経組織の第1の部分母集団に適用することと、
前記第2の接点を使用して、前記第2のパターンの電気刺激を前記標的神経組織の第2の部分母集団に適用することと、
を更に含む、請求項1に記載の方法。
【請求項8】
前記標的神経組織は脊柱神経線維を含む、請求項1に記載の方法。
【請求項9】
WDRニューロン発射の抑制の最大化及び平均刺激周波数の最小化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含む、請求項1に記載の方法。
【請求項10】
痛みの抑制の最大化及び平均刺激周波数の最小化に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含む、請求項1に記載の方法。
【請求項11】
有効性の最大化及び効率の最大化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含み、
平均刺激周波数の最小化は、効率の代理であり、前のシミュレーションでのワイドダイナミックレンジニューロン発射の抑制は、有効性の代理である、請求項1に記載の方法。
【請求項12】
臨床使用中の患者の痛みの最小化及び装置消費電力の最小化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含む、請求項1に記載の方法。
【請求項13】
痛みの抑制を維持しながら、平均刺激周波数を最小化することに関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含む、請求項1に記載の方法。
【請求項14】
有効性及び効率の最適化;
前のシミュレーションでのワイドダイナミックレンジニューロンの活動の抑制(有効性)、
前のシミュレーションでの平均刺激周波数の最小化(効率)、
臨床実践での患者の痛み及び刺激周波数の最小化
に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択することを更に含む、請求項1に記載の方法。
【請求項15】
パルス生成器と、
1つ又は複数の電極と、
コントローラと、
を備え、前記コントローラは、
第1の電気信号を前記1つ又は複数の電極に出力して、第1のパターンの電気刺激を対象者の標的神経組織の第1の部分母集団に適用するように、前記パルス生成器を制御することと、
第2の電気信号を前記1つ又は複数の電極に出力して、第2のパターンの電気刺激を前記対象者の標的神経組織の第2の部分母集団に適用するように、前記パルス生成器を制御することであって、前記第2のパターンの電気刺激は、前記第1のパターンの電気刺激とは異なる周波数で適用される、制御することと、
刺激の効果を最適化するように、前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を制御することと、
を実行するように構成される、システム。
【請求項16】
前記1つ又は複数の電極は、前記標的神経組織の第1の部分母集団と電気的に連通して、前記第1のパターンの電気刺激を前記標的神経組織の第1の部分母集団に適用する第1の接点を備える、請求項15に記載のシステム。
【請求項17】
前記1つ又は複数の電極は、前記第2の部分母集団と電気的に連通して、前記第2のパターンの電気刺激を前記標的神経組織の第2の部分母集団に適用する第2の接点を備える、請求項16に記載のシステム。
【請求項18】
前記コントローラは、前記第1のパターンの複数の異なる周波数を異なるタイミングで適用すると共に、前記第2のパターンの複数の異なる周波数を異なるタイミングで適用するよう前記パルス生成器を制御するように構成される、請求項15に記載のシステム。
【請求項19】
前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激の前記適用を制御するユーザ入力を受信する為のユーザインタフェースを更に備える、請求項15に記載のシステム。
【請求項20】
前記第1のパターンの電気刺激の周波数は、前記第2のパターンの電気刺激の前記周波数の倍数である、請求項15に記載のシステム。
【請求項21】
前記1つ又は複数の電極は、第1の接点及び第2の接点を備え、前記第1の接点及び前記第2の接点は、前記標的神経組織の前記第1の部分母集団及び前記第2の部分母集団のそれぞれと電気的に連通するように位置決めされ、
前記コントローラは、
電気信号を前記第1の接点に出力して、前記第1のパターンの電気刺激を前記標的神経組織の第1の部分母集団に適用するよう前記パルス生成器を制御することと、
電気信号を前記第2の接点に出力して、前記第2のパターンの電気刺激を前記標的神経組織の第2の部分母集団に適用するよう前記パルス生成器を制御することと、
を実行するように構成される、請求項15に記載のシステム。
【請求項22】
前記標的神経組織は脊柱神経線維を含む、請求項15に記載のシステム。
【請求項23】
前記コントローラは、WDRニューロン発射の抑制(有効性)の最大化及び平均刺激周波数の最小化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成される、請求項15に記載のシステム。
【請求項24】
少なくとも1つのプロセッサ及びメモリは、痛みの抑制の最大化及び平均刺激周波数の最小化に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成される、請求項15に記載のシステム。
【請求項25】
少なくとも1つのプロセッサ及びメモリは、有効性の最大化及び効率の最大化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成され、
前のシミュレーションでの平均刺激周波数の最小化は、効率の代理であり、
前のシミュレーションでのワイドダイナミックレンジニューロン発射の抑制は、有効性の代理である、請求項15に記載のシステム。
【請求項26】
少なくとも1つのプロセッサ及びメモリは、臨床使用中の患者の痛みの最小化及び装置消費電力の最小化のうちの一方に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成される、請求項15に記載のシステム。
【請求項27】
少なくとも1つのプロセッサ及びメモリは、痛みの抑制を維持しながら、平均刺激周波数を最小化することに関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成される、請求項15に記載のシステム。
【請求項28】
前記第1のパターン及び前記第2のパターンの選択を受信する為のユーザインタフェースを含む計算装置を更に備える、請求項15に記載のシステム。
【請求項29】
少なくとも1つのプロセッサ及びメモリは、ワイドダイナミックレンジニューロンの活動の抑制の最適化に関して、他のパターンの中から前記第1のパターンの電気刺激及び前記第2のパターンの電気刺激を選択するように構成される、請求項15に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2013年3月13日に出願された「脊髄刺激を最適化するシステム及び方法(SYSTEMS AND METHODS FOR OPTIMIZING SPINAL CORD STIMULATION)」という名称の米国仮特許出願第61/779,632号明細書の利益を主張するものであり、この仮特許出願の開示内容全体を参照により本明細書に援用する。
【0002】
本明細書で開示される主題は、脊髄刺激に関し、より詳細には、電気刺激を適用して脊髄刺激(SCS:spinal cord stimulation)を最適化することに関する。
【背景技術】
【0003】
SCSは、運動(例えば、身体リハビリテーション)療法、薬物療法、及び外科療法が効果的ではなかった場合の慢性的な痛みに対する療法として登場した。しかし、1974年から1991年の間、研究によれば、SCSの臨床的成功は大きなばらつきがあり、平均54.2%、標準偏差20%であり、続く研究によって示された改善は極僅かであった。SCSの臨床有効性を改善する努力は、より空間的に選択的な電極の開発に焦点が合わせられてきたが、後角痛処理回路内のニューロンの活動へのSCSの時間パターニング又はSCSの効果については最小限しか注目されてこなかった。SCSに進展はあったが、SCSを最適化する改善された技法及びシステムに対する必要性が引き続き存在する。
【発明の概要】
【課題を解決するための手段】
【0004】
本明細書に開示されるのは、標的神経組織の異なる部分母集団に電気刺激を適用して、脊髄刺激を最適化するシステム及び方法である。一態様によれば、方法は、第1のパターンの電気刺激を対象者の標的神経組織の第1の部分母集団に適用することを含む。本方法は、第2のパターンの電気刺激を対象者の標的神経組織の第2の部分母集団に適用することも含み、第2のパターンの電気刺激は、第1のパターンの電気刺激とは異なる周波数で適用される。更に、本方法は、第1及び第2のパターンの電気刺激を制御し、ワイドダイナミックレンジ(WDR)ニューロンの活動の抑制を最適化して刺激の有効性を改善し、且つ/又は平均刺激周波数を低減して刺激の効率を改善することを含む。
【0005】
本主題の上記態様及び他の特徴は、添付図面に関連して行われる以下の説明において説明される。
【図面の簡単な説明】
【0006】
図1】本開示の実施形態による、人間対象者の標的神経組織を刺激するシステムの解剖学的図である。
図2】本開示の実施形態による、SCSの方法の一例のフローチャートである。
図3】異なる線維母集団を通して異なるタイミングでSCSを送達することにより、1Hz末梢入力に応答してより大きな有効性を生じさせることができることを示すグラフである。
図4】SCSの最適時間パターンのモデルベース設計及び評価についての計算モデルの一例の概略図である。
図5A】乃至
図5B】末梢一次求心性線維での活動のパターンの一例を示すグラフである。
図6A】乃至
図6B】非調和及び調和マルチ周波数SCSのそれぞれの1秒長例を示すグラフである。
図7】本開示の実施形態による各実験的実行の時系列である。
図8】マルチ周波数SCSを送達し得る時間期間中のWDRニューロンの活動例を示すラスタプロットである。
図9】1Hz調整入力に応答してのマルチ周波数SCSと固定周波数での従来のSCSとのSCS有効性及び効率の比較を示すラスタプロットである。
図10】神経病入力に応答してのマルチ周波数SCSと固定周波数での従来のSCSとのSCS有効性(WDRニューロン出力)及び効率(平均刺激周波数)の比較を示すラスタプロットである。
図11A】乃至
図11B】神経病入力に応答しての調和マルチ周波数SCSと固定周波数での従来のSCSとの幾つかの組み合わせでのSCS有効性(WDRニューロン出力)及び効率(平均刺激周波数)の比較を示すラスタプロットである。
図12】パルス間隔が時間的に一定である定期的な一定周波数刺激列と、パルス間隔が時間的に変動する非定期的時間刺激パターンの例との図である。
【発明を実施するための形態】
【0007】
本開示の原理の理解を促進する為に、これより、様々な実施形態を参照し、特定の用語を使用して様々な実施形態を説明する。それにも関わらず、本開示の範囲の限定がそれにより意図されず、本明細書に示されるような本開示のそのような変更形態及び更なる変形形態が、本開示が関連する技術分野の当業者が通常想到するものとして考えられることが理解されよう。
【0008】
冠詞「1つの(a)」及び「1つの(an)」は、本明細書では、冠詞の文法的目的語のうちの1つ又は2つ以上(即ち、少なくとも1つ)を指す為に使用される。例として、「1つの要素(an element)」は、少なくとも1つの要素を意味し、2つ以上の要素を含むことができる。
【0009】
本明細書で使用される場合、「対象者」及び「患者」という用語は、本明細書において同義で使用され、人間及び人間以外の動物の両方を指す。本開示の「人間以外の動物」という用語は、全ての脊椎動物、例えば、人間以外の霊長類、ヒツジ、イヌ、ネコ、ウマ、ウシ、ニワトリ、両生類、は虫類等のほ乳類及び非ほ乳類を含む。本明細書に提供される例では、対象者は、脊髄刺激を必要としている人間の患者である。
【0010】
本明細書で使用される場合、「神経疾患」という用語は、脳神経系及び/又は神経系に関連する任意の病態を指す。例としては、慢性及び急性神経障害痛、片頭痛、外傷等を含む痛みが挙げられるが、これらに限定されない。本明細書で使用される場合、「痛み」という用語は、身体的不快さ(例えば、チクチク感、ズキズキ感、うずき等)を特徴とし、通常、個人による回避行動に繋がる、むき出しの神経終末が受け取る、侵害刺激によって誘導される基本的な肉体感覚を指す。本明細書で使用される場合、痛みという用語は、慢性及び急性神経障害痛も含む。「慢性痛」及び「慢性神経障害痛」という用語は、同義で使用され、神経線維自体がダメージを受けるか、機能不全であるか、又は損傷し得る、通常は組織損傷が付随する複雑で慢性的な痛みの状態を指す。これらのダメージを受けた神経線維は、不正確な信号を他の痛みの中枢に送る。神経線維損傷の影響は、損傷部位及び損傷周囲部位の両方での神経機能の変更を含む。慢性神経障害痛は多くの場合、明白な原因を有さないように思われるが、幾つかの一般的な原因として、アルコール依存症、切断、背中、脚、及び臀部の問題、化学療法、糖尿病、顔面神経の問題、HIV感染又はAIDS、多発性硬化症、帯状疱疹、脊髄損傷等を挙げることができるが、これらに限定されない。例えば、神経障害痛は幻肢症候群を含み得、この症候群は、腕又は脚が病気又は損傷によって取り除かれたが、脳がなお、欠損した四肢からのインパルスを元々伝達していた神経から痛みのメッセージを受け取る場合に生じる。
【0011】
本明細書で言及される場合、「施す」という用語は、電気インパルス/信号/周波数を対象者に送達し、それにより、神経、神経線維、又は神経線維群に刺激を生じさせることを指す。例えば、電気インパルス/信号/周波数は、例えば、脊柱神経線維の部分母集団等の標的神経組織領域と電気的に連通する1つ又は複数の電極の使用によって適用し得る。
【0012】
別段のことが定義される場合を除き、本明細書で使用される全ての技術用語は、本開示が属する技術分野の当業者によって一般に理解される意味と同じ意味を有する。
【0013】
本開示の実施形態によれば、SCSを最適化するシステム及び方法が開示される。SCSを対象者に送達するシステムは、パルス生成器を含むことができる。パルス生成器は、対象者の標的神経組織に送達される電気信号を生成するように構成し得る。システムは、パルス生成器の出力と電気的に連通する1つ又は複数のSCS電極を含むこともできる。接点は、標的神経組織に接触して配置し得る。システムのコントローラは、標的神経組織に所定のパターンの電気刺激を生成するようにパルス生成器を制御し得る。パターンは、モデルワイドダイナミックレンジ(WDR)ニューロンの活動の抑制を最適化した前のシミュレーションに基づいて制御して、治療の有効性を改善し得る。パターンは、平均刺激周波数を低減して、治療の効率を改善するように制御し得る。
【0014】
図1は、本開示の実施形態による、人間対象者の標的神経組織を刺激するシステムの解剖学的図である。対象者は、慢性痛等の神経疾患を有し得る。図1を参照すると、システムは、SCS装置100と、電気コード102と、全体的に104として示される電極アレイとを含む。システムは、対象者に移植されているものとして示される。特に、電極アレイ104は、対象者の脊柱108の硬膜上腔106内に動作可能に位置決めされる。電極アレイ104は、例えば、脊柱110に沿った刺激の標的である神経の部位に位置決めされる。代替的には、電極アレイ104は、標的神経組織の所望の電気刺激の為の任意の他のロケーションに適宜位置決めし得る。コード102は、異なる又は同じ電気信号を電極アレイ104の接点に提供することができるような複数の線又は線維を含み得る。SCS装置100は、腹部又は臀部内への移植等であるが、これらに限定されない対象者内に適宜移植し得る。電気コード102は、SCS装置100の出力を電極アレイ104に動作可能に接続し得る。
【0015】
SCS装置100は、コントローラ112と、パルス生成器114とを含み得る。コントローラ112は、本明細書に記載される機能を実装するハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせを含み得る。例えば、コントローラ112は、1つ又は複数のプロセッサ及びメモリによって実装し得る。コントローラ112は、パルス生成器114に動作可能に接続して、パルス生成器114を制御して、標的神経組織に電気刺激のパターンを適用する為の電気信号を生成し得る。出力信号は、電気コード102によって受信し、電極アレイ104に伝えられ、標的神経組織を電気的に刺激し得る。SCS装置100は、コントローラ112及びパルス生成器114に電力を供給する、電池等の電源116を含み得る。
【0016】
本システムは、対象者内に移植されていない外部計算装置118を含むこともできる。計算装置は、任意の適する通信リンク(例えば、有線、無線、又は光学通信リンク)を介してSCS装置100と通信し得る。通信リンクは、電池の再充電に役立つこともできる。臨床医は、計算装置のユーザインタフェースと対話して、各電極接点を介して各部分母集団に適用されるアクティブな電極、刺激パルス振幅、刺激パルス持続時間、刺激パターン(パルス反復周波数を含む)等を含め、移植されたパルス生成器114の出力をプログラミングし得る。
【0017】
更に、本開示の実施形態によれば、計算装置118は、所定のWDRニューロン出力及び刺激活動を生じさせる1つ又は複数の非定期的時間パターンを決定し得る。計算装置118は、SCS装置100に時間パターンを与える情報を通信し得、次に、SCS装置100は、電気刺激の非定期的時間パターンを対象者の標的神経組織に適用し得る。
【0018】
患者は、計算装置118のユーザインタフェースと対話することもできる。この実施形態では、患者は、1組の予めプログラムされる刺激パラメータセットの中から選択する為のユーザインタフェースと対話し得る。これらのセットは、臨床医によってプログラム又は他に設定し、コントローラ112に記憶し得る。
【0019】
図2は、本開示の実施形態によるSCSの方法の一例のフローチャートを示す。方法例は、図1に示されるシステム及び構成によって実施されるものとして説明されるが、本方法を、代替として任意の他の適する構成で任意の他の適するシステムによって実施してもよいことを理解されたい。
【0020】
図2を参照すると、方法は、第1のパターンの電気刺激を対象者の標的神経組織の第1の部分母集団に適用すること(200)を含む。例えば、コントローラ112は、脊柱神経線維の特定の部分母集団に予め定義されるパターンの電気刺激を生成する電気信号を生成するよう、パルス生成器114を制御するように構成され得る。電極アレイ104の1つ又は複数の接点は、脊柱神経線維の部分母集団と電気的に連通するように配置し得ると共に、電気刺激を脊柱神経線維の母集団に適用する位置に配置し得る。電気刺激のパターンは、定期的時間パターンの刺激(即ち、一定パルス間隔)又は非定期的時間パターンの刺激(即ち、時間変化するパルス間隔)を含み得る。
【0021】
図2の方法は、第2のパターンの電気刺激を対象者の標的神経組織の第2の部分母集団に適用すること(202)を含む。ステップ200及び202が同時に行われてもよく、又は順次行われてもよいことに留意されたい。第2のパターンの電気刺激は、第1のパターンの電気刺激とは異なる周波数で適用し得る。例えば、コントローラ112は、予め定義されるパターンの電気刺激を脊柱神経線維の別の部分母集団に生成する電気信号を生成するよう、パルス生成器114を制御するように構成し得る。電極アレイ104の別の1つ又は複数の接点は、脊柱神経線維の別の部分母集団と電気的に連通するように配置し得ると共に、その別の部分母集団に電気刺激を適用する位置に配置し得る。電気刺激パターンは、複数の異なる周波数で、且つ異なるタイミングで適用し得る。更に、例えば、パターンは、互いの倍数である異なる周波数で適用し得る。パターンは、定期的時間パターンの刺激(即ち、一定パルス間隔)又は非定期的時間パターンの刺激(即ち、時間変化するパルス間隔)を含み得る。
【0022】
図2の方法は、刺激の効果を最適化するように、第1のパターンの電気刺激及び第2のパターンの電気刺激を制御すること(204)を含む。例えば、パターンは、WDRニューロンの活動の抑制を最適化し、それにより、痛みの除去を達成し得る。例えば、コントローラ112は、パルス生成器114を制御して、電気信号を電極アレイ104に出力し、WDRニューロンの活動の抑制を最適化し得る。一例では、コントローラ112は、最適化する為にアルゴリズムを実装し得る。別の例では、コントローラ112は、電気刺激のパターンの適用を制御するユーザ入力を受信し得る。
【0023】
実施形態によれば、本明細書に開示されるシステムは、マルチ周波数マルチ線維SCSを提供して、脊髄からの侵害情報の抑制を達成し得る。計算モデリングの研究により、侵害情報(即ち、痛み信号)を脳に伝送する脊髄内WDRニューロンの活動が、同じ同等の周波数での均一な刺激よりも、異なるタイミングでの脊柱神経線維の部分母集団の刺激によってより良く抑制することができることが示された。例えば、図3は、異なる線維母集団を通して異なるタイミングでSCSを送達することにより、1Hz末梢入力に応答してより大きな有効性を生じさせることができることを示すグラフを示す。図3を参照すると、右に示される2つの母集団入力セットを使用して適用されるSCSは、WDRニューロンに相対してSCS電極の幾つかの刺激位置にわたり、左に示される均一入力セットを使用するSCSの適用よりも大きな程度で、且つ広い周波数範囲にわたり、脳への侵害(痛み)情報の中継を担当するWDRニューロンの活動を低減する。点線は、SCSが適用されなかった場合のWDRニューロンの活動の平均周波数を示す。この発見は、複数の周波数のSCSを後根線維の複数の部分母集団に送達することにより、一定周波数刺激より効果的な(WDR発射の低減)又はより効率的な(送達されるSCSパルス数がより少なく、それにより、消費電力がより低い)SCSがもたらされることを示す。
【0024】
図4は、SCSのパターンのモデルベースの設計及び評価の計算モデルの一例の概略図を示す。図4を参照すると、計算モデルは、接続されて、後角痛処理ネットワークを表す生物物理学的ニューロンネットワークを含み得る。モデルへの入力は、末梢からの情報を伝達する30A及び30C一次求心性線維を含み、SCSは、A線維を介してネットワークに送達されて、脊柱線維活性化を刺激し得る。複数のA/C線維及び興奮性介在ニューロンを使用して、ニューロン活動への時間的合算の効果を説明すると共に、変動性を入力に追加し得る。更に、末梢又は脊柱神経線維からの現実的な信号伝搬をシミュレートする為に、A線維及びC線維の伝導速度に基づく伝搬遅延を全てのシミュレーションの全ての入力に組み込み得る。図4では、「IN」ノードは抑制介在ニューロンを表し、「EX」ノードは興奮性介在ニューロンを表し、「WDR」ノードはWDR発射ニューロンを表す。シナプス400は興奮接続部を示す。シナプス402は抑制接続部を示す。最適化アルゴリズムを使用するSCSは、A線維入力を介して送達し得る。
【0025】
図5A及び図5Bは、末梢一次求心性線維での活動のパターン例を示すグラフを示す。図5Aを参照すると、グラフは代表的な均一1Hz入力を示す。図5Bは、神経腫を表すランダム入力を示す。全ての線維入力(y軸、A線維及びC線維で分けられる)で、5秒間隔(x軸)がそれぞれ示されている。グラフ上の各黒点は、スパイクが、モデルへの対応する入力によって示される時点を表す。図5Bでは、A線維入力の30%がバースト挙動を示す。マルチ周波数SCS中、バースト入力は、これらの入力の半分が1つの周波数の刺激を受け取り、一方、残りの半分が他方の周波数を受け取るように分割された。
【0026】
計算実験は、本主題の有用性を実証する為に行われた。例えば、図6A及び図6Bは、非調和(即ち、部分母集団1に適用される第1の刺激周波数及び部分母集団2に適用される第2の刺激周波数は、互いの整数倍ではなかった)及び調和(即ち、部分母集団1に適用される第1の刺激周波数及び部分母集団2に適用される第2の刺激周波数は、互いの整数倍であった)マルチ周波数SCSのそれぞれの1秒長例を示すグラフを示す。手短に言えば、1秒のシミュレーション時間を経過させ、それにより、モデルを初期化することができ、全ての線維にわたって同期された一定の1Hzパルス列又は特徴が末梢神経腫の発射挙動からとられるものに一致するポアソンプロセスに基づくランダムスパイク列のいずれかを含む末梢感覚入力(図5A及び図5Bに示される)が次に、15秒間、送達された。2つの周波数 − 入力A線維の半分が一方の周波数を受け取り(第1の部分母集団が第1の刺激周波数を受け取る)、残りの半分が他方の周波数を受け取る(第2の部分母集団が第2の刺激周波数を受け取る) − が次に、残りの5秒間にわたって送達され、その間、WDRニューロンの出力が記録された。これらの周波数は、調和又は非調和であり得る(例えば、図7参照)。調和マルチ周波数SCSでは、より高い周波数(40Hz)の刺激が、より低い周波数(10Hz)の刺激の整数倍であるように設定された。非調和マルチ周波数SCSでは、低い周波数は、40Hz〜50Hzの範囲の均一ランダム分布から引き出され、高い周波数が低い周波数の整数倍ではないことを保証することがチェックされた。WDRニューロンの出力及び刺激中に使用されるパルス数を、全てのA線維に送達された第1の低周波数SCS、全てのA線維に送達される2つの適用周波数の平均、及び全てのA線維に送達される第2の高周波数から生じる対応する尺度と比較した。図6A及び図6Bでは、グラフ上の各黒点は、図7に示される時間期間中、SCSスパイクが、計算モデルへのA線維ユニットに供給される時点を表し、図7は、本開示の実施形態による各実験的実行の時系列を示す。非調和及び調和の両方の場合で、A線維の半分は低周波数を受け取り、一方、A線維の残りの半分は高周波数を受け取る。
【0027】
図7を参照すると、SCSは、短いモデル初期化期間と、一定の1Hz又は生きた標本の神経腫から記録されたものと同様のランダム入力のいずれかを使用する15秒の調整刺激とに続き、送達される。WDRニューロンの出力及び送達されるSCSの平均周波数 − 消費電力の測定値 − を使用して、マルチ周波数SCS(即ち、第1の刺激周波数が神経線維の第1の部分母集団に適用され、第2の刺激周波数が神経線維の第2の部分母集団に適用される)と従来のSCS(1つの刺激周波数が全ての神経線維に送達される)との有効性及び効率のそれぞれを評価する。
【0028】
実験では、本明細書に開示される技法及びシステムが、痛みの計算モデルを使用するプロトタイプアルゴリズムのテストを通しての高周波数刺激と比較して、WDRニューロン挙動の抑制において効果的であると共に、送達されるパルス(消費電力)に関して効率的であることが示された。実験では、非調和及び調和マルチ周波数SCSの適用が、SCSが適用されなかった場合と比較して、WDRニューロンの活動を抑制することが示された。12Hz/42Hz非調和SCSの適用は、1Hz入力に応答してWDRニューロンの活動を92.7%低減し(41Hzから3Hz)、神経病入力に応答して88.0%低減した(73Hzから8.8Hz)。10Hz/50Hz調和SCSの適用は、1Hz入力に応答してWDRニューロンの活動を91.5%低減し(41Hzから3.5Hz)、神経病入力に応答して90.8%低減した(73Hzから6.75Hz)。例えば、図8は、マルチ周波数SCSを送達し得る時間期間中の、図4に示されるようなものなどのWDRニューロンの活動例を示すラスタプロットを示す。図8を参照すると、グラフ上の各黒線は、スパイクがWDRニューロンによって出力される時点を表す。上の行は、SCSが無い間の1Hz入力及び神経病入力に応答したWDRニューロンの活動を示す。中間行は、非調和(12Hz/42Hz)マルチ周波数SCS中のこれらの入力に応答してのWDRニューロンの活動を示す。下の行は、調和周波数(10Hz/42Hz)マルチ周波数SCS中のこれらの入力に応答してのWDRニューロンの活動を示す。
【0029】
更に、実験では、非調和SCS及び調和SCSの両方が、低周波数での単一の周波数刺激と比較して、WDRニューロン活動の抑制においてより効果的であると共に、1Hz末梢入力中の高周波数での単一の周波数刺激と比較して、WDRニューロン活動の抑制においてより効率的であることが実証された。例えば、図9は、1Hz調整入力に応答してのマルチ周波数SCSと固定周波数での従来のSCSとのSCS有効性及び効率の比較を示すラスタプロットを示す。各黒線は、スパイクがWDRニューロンによって出力される時点を表す。所与の刺激周波数対からの出力は、低周波数(12Hz、10Hz − 上)及び高周波数(42Hz、40Hz − 下)での刺激に起因する出力と比較される。非調和及び調和SCSは両方とも、1Hz入力に応答して、低周波数(図9の上)において一定周波数刺激と比較してWDRニューロンの活動を大幅に低減する(92.7%対17.1% − 非調和;90.8%対15.9% − 調和)。より高い周波数を使用した刺激は、わずかにより大きな程度、WDRニューロンの活動を低減するが、マルチ周波数SCSは、刺激周波数が消費電力の直接測定としてとられる場合、使用電力の35.7%低減(非調和)及び37.5%低減(調和)に対応する、高周波数のSCSよりも15Hz低い平均周波数を使用して(27Hz対42Hz非調和;25Hz対40Hz調和)、同等の結果(92.7%非調和及び90.8%調和の低減対各単一周波数刺激中の97.0%及び96.3%低減)を達成することが可能である(図9の下)。
【0030】
上記で観測されたトレンドは、計算モデルへの神経病入力中にSCSが適用される場合も同様に該当する。非調和及び調和SCSは両方とも、より低いものにおいて一定周波数刺激と比較して、WDRニューロンの活動を大幅に低減する(88.0%対47.7% − 非調和;90.8%対38.0% − 調和 − 図10の上参照)。更に、マルチ周波数SCSは、高周波数のSCSよりも15Hz低い平均周波数を使用して(35.7%(非調和)及び37.5%(調和)の電力低減 − 図10の下参照)、同等の結果(88.0%非調和及び90.8%調和の低減対各単一周波数刺激中の88.7%及び90.8%低減)を達成することが可能である。図10は、神経病入力に応答してのマルチ周波数SCSと固定周波数での従来のSCSとのSCS有効性(WDRニューロン出力)及び効率(平均刺激周波数)の比較を示すラスタプロットを示す。グラフ上の各黒線は、スパイクがWDRニューロンによって出力される時点を表す。所与の刺激周波数対からの出力は、低周波数(12Hz、10Hz − 上)及び高周波数(42Hz、40Hz − 下)での刺激に起因する出力と比較される。
【0031】
更に、調和マルチ周波数刺激が、神経病入力中、WDRニューロン活動の抑制においてより有効的であると共に、より効率的であることが実験で示された(例えば、図11A及び図11B参照)。この為に、調和SCSの3つの組み合わせを神経病入力と突き合わせてテストし − 10/20Hz、10/30Hz、及び10/40HzSCS −、低周波数(10Hz)及び平均周波数(15Hz、25Hz、35Hz)での刺激と突き合わせて有効性(WDRニューロン出力)を比較すると共に、高周波数(20Hz、30Hz、40Hz)と突き合わせて効率を比較した。全ての場合で、調和マルチ周波数SCSは、低周波数での単一周波数刺激よりも大きな程度、WDRニューロン活動を抑制した(即ち、より効果的である)(56.5% − 10/20Hz、82.9% − 10/30Hz、88.0% − 10/40Hz対38.0% 10Hz)。更に、マルチ周波数SCSは、高周波数での刺激よりも効率的でもあり、幾つかの場合では、より効果的であった:10/20Hz、10/30Hz、及び10/40Hzを使用した刺激はそれぞれ、20Hz、30Hz、及び40Hzを使用した刺激による61.0%、60.3%、及び88%の低減と比較して、WDRニューロンの活動をそれぞれ56.5%、82.9%、及び88.0%低減したが、10/20Hz、10/30Hz、及び10/40Hzを使用した刺激は、20Hz、30Hz、及び40Hzを単独で使用する刺激よりも25.0%、33.3%、及び37.5%効率的であった。最後に、調和周波数を使用した刺激(即ち、等しい消費電力を使用する単一の周波数刺激):10/20Hz刺激は、20Hz一定刺激を使用した61.0%と比較してWDR活動を82.9%抑制し、10/40Hz刺激は、25Hz一定刺激を使用する68.2%と比較してWDR活動を88.0%抑制した。
【0032】
図11A及び図11Bは、神経病入力に応答しての調和マルチ周波数SCSと固定周波数での従来のSCSとの幾つかの組み合わせでのSCS有効性(WDRニューロン出力)及び効率(平均刺激周波数)の比較を示すラスタプロットを示す。グラフ上の各黒線は、スパイクがWDRニューロンによって出力される時点を表す。所与の刺激周波数対からの出力は、低周波数(10Hz − 上)、平均周波数(15Hz、20Hz、25Hz − 中間)、及び高周波数(20Hz、30Hz、40Hz − 下)での刺激に起因する出力と比較される。
【0033】
実施形態によれば、本開示のシステム及び方法は、SCSパルス生成器装置内のアルゴリズムとして実装し得る。オンボードコントローラは、異なる出力チャネルを通してマルチ周波数のSCSを脊髄刺激電極上の異なる接点に送達し得る。複数の接点を通しての刺激により、脊柱を通る軸索の異なる母集団(例えば、脊柱神経線維の部分母集団)は、異なる周波数で活性化し得、その結果、侵害情報を脳に伝送することを担当するニューロンがより大きく抑制される。刺激周波数の値及びこれらの周波数が送達される電極は、ユーザインタフェースを通して医師又は患者のいずれかによって入力することができる。代替的には、装置に、使用する周波数の特定の組み合わせを予めプログラムすることができる。適用される周波数は、互いの倍数であってもよく(調和)、又は倍数でなくてもよく(非調和)、刺激の開始時に互いからオフセットされていてもよく、されていなくてもよい。更に、マルチ周波数SCSは2つの周波数に限定し得ず、その理由は、刺激技術により可能になる限り、多くの周波数及び軸索母集団を患者に送達可能である為である。アルゴリズムは、医師若しくは患者のいずれかによりオン及びオフをトグルで切り換えてもよく(例えば、マルチ周波数及び単一周波数SCSの間で)、又は内部フィードバック駆動アルゴリズムに結合して自動制御することもできる。
【0034】
図12は、パルス間隔が時間的に一定である定期的な一定周波数刺激列と、パルス間隔が時間的に変動する非定期的時間刺激パターンの例とを示す。
【0035】
本主題は、SCS装置、スマートフォン、タブレットコンピュータ等で実装されるシステム、方法、及び/又はコンピュータプログラム製品であり得る。コンピュータプログラム製品は、本主題の1つの態様をプロセッサに実行させるコンピュータ可読プログラム命令を有する1つ又は複数のコンピュータ可読記憶媒体を含み得る。
【0036】
コンピュータ可読記憶媒体は、命令実行装置による使用の為に命令を保持し記憶することができる有形装置であることができる。コンピュータ可読記憶媒体は、例えば、電子記憶装置、磁気記憶装置、光学記憶装置、電磁記憶装置、半導体記憶装置、又は上記の任意の適する組み合わせであり得るが、これらに限定されない。コンピュータ可読記憶媒体のより具体的な例の非排他的なリストは、以下を含む:ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、消去可能プログラマブル読み取り専用メモリ(EPROM又はフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM)、ポータブルコンパクトディスク読み取り専用メモリ(CD−ROM)、デジタル多用途ディスク(DVD)、メモリスティック、フロッピー(登録商標)ディスク、命令が記録されたパンチカード又は溝内の隆起構造体等の機械的符号化装置、及び上記の任意の適する組み合わせ。コンピュータ可読記憶媒体は、本明細書で使用される場合、電波又は他の自由伝搬電磁波、導波管若しくは他の伝送媒体を通って伝搬する電磁波(例えば、光ファイバケーブルを通る光パルス)、又はワイヤを通って伝送する電気信号等のそれ自体が一過性の信号であるものとして解釈されるべきではない。
【0037】
本明細書に記載されるコンピュータ可読プログラム命令は、コンピュータ可読記憶媒体から各計算/処理装置に、又はネットワーク、例えば、インターネット、ローカルエリアネットワーク、広域ネットワーク、及び/又は無線ネットワークを介して外部コンピュータ若しくは外部記憶装置にダウンロードすることができる。ネットワークは、銅伝送ケーブル、光学伝送ファイバ、無線伝送、ルータ、ファイアウォール、交換機、ゲートウェイコンピュータ、及び/又はエッジサーバを含み得る。各計算/処理装置内のネットワークアダプタカード又はネットワークインタフェースは、コンピュータ可読プログラム命令をネットワークから受信し、コンピュータ可読プログラム命令を各計算/処理装置内のコンピュータ可読記憶媒体に記憶する為に転送する。
【0038】
本主題の動作を実行するコンピュータ可読プログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はジャバ(Java)(登録商標)、スモールトーク(Smalltalk)、C++等のオブジェクト指向プログラミング言語及び「C」プログラミング言語又は同様のプログラミング言語等の従来の手続き型プログラミング言語を含む1つ若しくは複数のプログラミング言語の任意の組み合わせで書かれたソースコード若しくはオブジェクトコードのいずれかであり得る。コンピュータ可読プログラム命令は、全体的にユーザのコンピュータで、部分的にユーザのコンピュータで、独立したソフトウェアパッケージとして、部分的にユーザのコンピュータ及び部分的にリモートコンピュータで、又は全体的にリモートコンピュータ若しくはサーバで実行し得る。全体的にリモートコンピュータ又はサーバで実行される状況では、リモートコンピュータは、ローカルエリアネットワーク(LAN)若しくは広域ネットワーク(WAN)を含め、任意のタイプのネットワークを通してユーザのコンピュータに接続し得、又は接続は、外部コンピュータに対して行い得る(例えば、インターネットサービスプロバイダを使用してインターネットを通して)。幾つかの実施形態では、例えば、プログラマブル論理回路、フィールドプログラマブルゲートアレイ(FPGA)、又はプログラマブル論理アレイ(PLA)を含む電子回路は、コンピュータ可読プログラム命令の状態情報を利用することによってコンピュータ可読プログラム命令を実行して、電子回路を個人化し、本主題の態様を実行し得る。
【0039】
本主題の態様は、本主題の実施形態による方法、装置(システム)、及びコンピュータプログラム製品のフローチャート図及び/又はブロック図を参照して本明細書で説明されている。フローチャート図及び/又はブロック図の各ブロック及びフローチャート図及び/又はブロック図内のブロックの組み合わせが、コンピュータ可読プログラム命令によって実施可能であることが理解されよう。
【0040】
これらのコンピュータ可読プログラム命令は、汎用コンピュータ、専用コンピュータ、又は他のプログラマブルデータ処理装置のプロセッサに提供して、コンピュータ又は他のプログラマブルデータ処理装置のプロセッサを介して実行される命令が、フローチャート及び/又はブロック図の1つ又は複数のブロックに指定される機能/動作を実施する手段を生成するような機械を生成し得る。これらのコンピュータ可読プログラム命令は、命令を記憶したコンピュータ可読記憶媒体が、フローチャート及び/又はブロック図の1つ又は複数のブロックに指定される機能/動作の態様を実施する命令を含む製品を備えるよう特定の方法で機能するように、コンピュータ、プログラマブルデータ処理装置、及び/又は他の装置に指示することができるコンピュータ可読記憶媒体に記憶することもできる。
【0041】
コンピュータ可読プログラム命令は、コンピュータ、他のプログラマブルデータ処理装置、又は他の装置にロードして、一連の動作ステップをコンピュータ、他のプログラマブル装置、又は他の装置で実行させて、コンピュータ、他のプログラマブル装置、又は他の装置で実行される命令がフローチャート及び/又はブロック図の1つ又は複数のブロックに指定される機能/動作を実施するようなコンピュータ実施プロセスを生成することもできる。
【0042】
図中のフローチャート及びブロック図は、本主題の様々な実施形態によるシステム、方法、及びコンピュータプログラム製品の可能な実装形態のアーキテクチャ、機能、及び動作を示す。これに関して、フローチャート又はブロック図内の各ブロックは、指定された論理機能を実装する1つ又は複数の実行可能命令を含むモジュール、セグメント、又は命令の部分を表し得る。幾つかの代替の実装形態では、ブロックに記される機能は、図に記される順序以外の順序で行われ得る。例えば、関わる機能に応じて、連続して示される2つのブロックは、実際には、略同時に実行されてもよく、又はそれらのブロックが逆の順序で実行されてもよいことがある。ブロック図及び/又はフローチャート図の各ブロック及びブロック図及び/又はフローチャート図内のブロックの組み合わせが、指定された機能若しくは動作を実行するか、又は専用ハードウェア命令及びコンピュータ命令の組み合わせを実行する専用ハードウェアベースのシステムによって実施可能なことにも留意されたい。
【0043】
本明細書で言及される任意の特許又は刊行物は、本主題が関連する技術分野の当業者のレベルを示す。これらの特許及び刊行物は、あたかも個々の各刊行物が特に且つ個々に参照により援用されることが示されるのと同じ程度で、参照により本明細書に援用される。
【0044】
本主題が、目的を遂行し、上述した結果及び利点並びにそれらに固有の結果及び利点を得るように上手く適合されることを当業者は容易に理解されよう。本例は、本明細書に記載される方法と共に、様々な実施形態の現在の代表であり、例示的なものであり、本主題の範囲に対する限定として意図されていない。本例での変更形態及び他の使用は当業者に想到され、それらの変更形態及び他の使用は、特許請求の範囲によって規定される本主題の趣旨内に包含される。
図1
図2
図3
図4
図5A-B】
図6A-B】
図7
図8
図9
図10
図11A
図11B
図12
【国際調査報告】