(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
本明細書では集合等間隔配置短パリンドロームリピート(CRISPR)/CRISPR随伴(Cas)9依拠系に関連する組成物、及び前記CRISPR/Cas9依拠系関連組成物を遺伝子発現及びゲノム操作のために使用する方法が開示される。本明細書ではまた、筋肉(例えば骨格筋及び心筋)での遺遺伝発現及び遺伝子操作のための組成物及び前記組成物の使用方法が開示される。
2つの異種ポリペプチドドメインを含む融合タンパク質であって、第一のポリペプチドドメインが、集合等間隔配置短パリンドローム配列リピート随伴(Cas)タンパク質を含み、第二のポリペプチドドメインが、転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性、デメチラーゼ活性から成る群から選択される活性を有する、前記融合タンパク質。
前記少なくとも1つのgRNAが、標的DNA配列の12−22塩基対の相補性ポリヌクレオチド配列とその後に続くプロトスペーサー隣接モチーフを含む、請求項11に記載のDNAターゲティング系。
前記少なくとも1つのgRNAが、遺伝子のプロモーター領域、遺伝子のエンハンサー領域、又は遺伝子の転写領域を標的とする、請求項11又は12に記載のDNAターゲティング系。
前記少なくとも1つのgRNAが、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2及びMYOD1から成る群から選択される遺伝子のプロモーター領域を標的とする、請求項11又は12に記載のDNAターゲティング系。
前記少なくとも1つのgRNAが、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含む、請求項10から16のいずれか1項に記載のDNAターゲティング系。
前記少なくとも1つのガイドRNAが、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含む、請求項18に記載のDNAターゲティング系。
細胞で哺乳動物遺伝子発現を調整する方法であって、細胞を請求項1から10のいずれか1項に記載の融合タンパク質、請求項11から22に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド、又は請求項24に記載のベクターと接触させる工程を含む、前記方法。
細胞をトランス分化させるか又は細胞の分化を誘発する方法であって、細胞を請求項1から10のいずれか1項に記載の融合タンパク質、請求項11から17のいずれか1項に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド、又は請求項24に記載のベクターと接触させる工程を含む、前記方法。
請求項11から20のいずれか1項に記載のDNAターゲティング系が細胞と接触され、少なくとも1つのgRNAが、ASCL1、BRN2、MYOD1及びMYT1Lから成る群から選択される少なくとも1つの遺伝子のプロモーター領域を標的とする、請求項28から30のいずれか1項に記載の方法。
DNAターゲティング系が、ASCL1遺伝子のプロモーター領域を標的とする少なくとも1つのgRNA、及びBRN2遺伝子のプロモーター領域を標的とする少なくとも1つのgRNAを含む、請求項31に記載の方法。
細胞で変異遺伝子を修正する方法であって、請求項11から22のいずれか1項に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド又は請求項24に記載のベクターを含む細胞に投与する工程を含む、前記方法。
変異遺伝子の修正が、未成熟終止コドンの欠失、スプライスアクセプター部位の破壊、1つ以上のエクソンの欠失又はスプライスドナー配列の破壊を含む、請求項37に記載の方法。
その必要がある変異ジストロフィン遺伝子保有対象動物を治療する方法であって、前記対象動物に請求項11から22のいずれか1項に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド又は請求項24に記載のベクターを投与する工程を含む、前記方法。
細胞で変異ジストロフィン遺伝子を修正する方法であって、変異ジストロフィン遺伝子を含む細胞に、請求項18から22のいずれか1項に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド、請求項24に記載のベクター、又は請求項25に記載の細胞を投与する工程を含む、前記方法。
変異ジストロフィン遺伝子が、未成熟終止コドン、遺伝子欠損により破壊されたリーディングフレーム、異常なスプライスアクセプター部位、又は異常なスプライスドナー部位を含み、標的領域が、前記未成熟終止コドン、破壊されたリーディングフレーム、異常なスプライスアクセプター部位又は異常なスプライスドナー部位の上流又は下流に存在する、請求項46に記載の方法。
変異ジストロフィン遺伝子の修正が、未成熟終止コドンの欠失、破壊されたリーディングフレームの修正、又はスプライスアクセプター部位の破壊若しくはスプライスドナー配列の破壊によるスプライシングの調整を含む、請求項46に記載の方法。
請求項1から10のいずれか1項に記載の融合タンパク質、請求項11から22に記載のDNAターゲティング系、請求項23に記載の単離ポリヌクレオチド、請求項24に記載のベクター、又は請求項25に記載の細胞を含むキット。
細胞で哺乳動物の遺伝子発現を調整する方法であって、DNAターゲティング系をコードするポリヌクレオチドと前記細胞を接触させる工程を含み、前記DNAターゲティング系が、請求項1から10のいずれか1項に記載の融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含む、前記方法。
少なくとも1つの標的領域が、ノンオープンクロマチン領域、オープンクロマチン領域、標的遺伝子のプロモーター領域、標的遺伝子のエンハンサー領域、標的遺伝子の転写領域、又は標的遺伝子の転写開始部位の上流領域内に存在する、請求項55から62のいずれか1項に記載の方法。
DNAターゲティング系が、2つの異なるgRNA、3つの異なるgRNA、4つの異なるgRNA、5つの異なるgRNA、6つの異なるgRNA、7つの異なるgRNA、8つの異なるgRNA、9つの異なるgRNA、又は10の異なるgRNAを含む、請求項55から62のいずれか1項に記載の方法。
少なくとも1つのガイドRNAが、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2及びMYOD1から成る群から選択される遺伝子のプロモーター領域を標的とする、請求項55から62のいずれか1項に記載の方法。
少なくとも1つのガイドRNAが、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含む、請求項55から68のいずれか1項に記載の方法。
細胞で哺乳動物の遺伝子発現を誘導する組成物であって、請求項1から10のいずれか1項に記載の融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含む、前記組成物。
細胞で哺乳動物の遺伝子発現を誘導する組成物であって、請求項1から10のいずれか1項に記載の融合タンパク質をコードする単離ポリヌクレオチド配列及び少なくとも1つのガイドRNA(gRNA)を含む、前記組成物。
少なくとも1つのガイドRNAが、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2及びMYOD1から成る群から選択される遺伝子のプロモーター領域を標的とする、請求項71又は72に記載の組成物。
前記少なくとも1つのガイドRNAが、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含む、請求項71又は72に記載の組成物。
対象動物の筋肉でゲノム編集する組成物であって、改変されたアデノ随伴ウイルス(AAV)ベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含み、該筋肉が骨格筋又は心筋である、前記組成物。
位置特異的ヌクレアーゼが、ジンクフィンガーヌクレアーゼ、TALエフェクターヌクレアーゼ、又はCRISPR/Cas9系を含む、請求項78又は79に記載の組成物。
対象動物の筋肉でゲノム編集する方法であって、請求項78から83のいずれか1項に記載の組成物を筋肉に投与する工程を含み、前記筋肉が骨格筋又は心筋である、前記方法。
対象動物を治療する方法であって、請求項78から83のいずれか1項に記載の組成物を対象動物の筋肉に投与する工程を含み、前記筋肉が骨格筋又は心筋である、前記方法。
対象動物で変異遺伝子を修正する方法であって、請求項78から83のいずれか1項に記載の組成物を対象動物の筋肉に投与する工程を含み、前記筋肉が骨格筋又は心筋である、前記方法。
請求項1から10のいずれか1項に記載の融合タンパク質をコードする第一のポリヌクレオチド配列及び少なくとも1つのsgRNAをコードする第二のポリヌクレオチド配列を含む、対象動物でゲノム編集する改変レンチウイルスベクター。
前記第一のプロモーターが構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターである、請求項97に記載の改変レンチウイルスベクター。
前記第二のポリヌクレオチド配列が、2つの異なるsgRNA、3つの異なるsgRNA、4つの異なるsgRNA、5つの異なるsgRNA、6つの異なるsgRNA、7つの異なるsgRNA、8つの異なるsgRNA、9つの異なるsgRNA、10の異なるsgRNAをコードする、請求項96から99のいずれか1項に記載の改変レンチウイルスベクター。
プロモーターが、構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターである、請求項101に記載の改変レンチウイルスベクター。
細胞で内因性遺伝子を活性化させる方法であって、細胞を請求項96から111のいずれか1項に記載の改変レンチウイルスベクターと接触させる工程を含む、前記方法。
細胞で少なくとも1つの標的遺伝子の遺伝子発現を調整する方法であって、細胞を請求項96から107のいずれか1項に記載の改変レンチウイルスベクターと接触させる工程を含む、前記方法。
少なくとも1つの標的遺伝子の正常な遺伝子発現レベルと比較して前記少なくとも1つの標的遺伝子の遺伝子発現レベルが増加又は低下するとき、前記少なくとも1つの標的遺伝子の遺伝子発現が調整される、請求項127に記載の方法。
【図面の簡単な説明】
【0017】
【
図1】RNAガイドiCas9-VP64によるヒトIL1RN遺伝子の活性化を示す。(a、b)不活化Cas9(iCas9, D10A/H840A)をVP64トランス活性化ドメインに融合させて、RNAガイド転写アクチベーターを作製した。iCas9-VP64は、ガイドRNA(gRNA)と20bpの標的配列とのハイブリダイゼーションを介してゲノムの標的部位を認識する。(c)IL1RNプロモーター中の配列を標的とする4つのgRNA又はcrRNA/tracrRNAのための発現プラスミドを、iCas9-VP64発現プラスミドとともにHEK293T細胞にコトランスフェクトした。IL1RN発現の活性化は、qRT-PCRによって判定した。(d)4つのgRNA発現プラスミドをiCas9-VP64と個々に又は一緒にしてコトランスフェクトした。旺盛な遺伝子活性化は、一緒にしたgRNAに対する応答でのみqRT-PCRで観察された。(e)IL1RN発現の活性化は、培養液へのIL-1ra遺伝子生成物の分泌をELISAで判定することによって確認された。IL-1raは、一緒にしたgRNAで処置した6つのサンプルの3つでのみ検出された。(c−e)については、データは平均±s.e.m.として示される(n=3つの独立した実験)。一緒にしたgRNAによる処置は、チューキー(Tukey)検定によって他のすべての処置と統計的に相違した(
*Pは0.02以下)。(f)RNA-seqを空発現ベクター処理サンプル(n=2)又はIL1RNを標的とするiCas9-VP64及び4つのgRNAのための発現プラスミドでコトランスフェクトしたサンプル(n=2)で実施した。これらの処置間における遺伝子発現の唯一の統計的に有意な変化は、4つのIL1RNアイソフォーム(偽発見率は3x10
-4以下)における増加及びIL32における減少(偽発見率=0.03)であった。
【
図2】細胞及び遺伝子療法、遺伝子再プログラミング、並びに再生医療と関連するヒト遺伝子のRNAガイド活性化を示す。HEK293T細胞にiCas9-VP64発現プラスミド及び4つのgRNAを個々に又は一緒にしてトランスフェクトした。標的遺伝子発現をqRT-PCRで測定し、GAPDH mRNAレベルで標準化した。データは平均±s.e.m.として示される(n=3つの独立した実験)。一緒にしたgRNAによる処置は、チューキー検定によって他のすべての処置と統計的に相違した(
*P<0.05)。
【
図3】iCas9-VP64の発現を示す。トランスフェクトされたHEK293細胞でのiCas9-VP64の発現は、N-末端Flagエピトープタグに対するウェスタンブロットによって確認した。wtCas9発現プラスミドはエピトープタグを含まない。
【
図4-1】ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。
【
図4-2】ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。
【
図4-3】ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。
【
図4-4】ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。
【
図5】iCas9-VP64によるヌクレアーゼ活性は存在しないことを示す。野生型Cas9又は不活化(D10A、H840A)iCas9-VP64発現プラスミドを、IL1RNプロモーターを標的とする4つの異なるガイドRNAのための発現プラスミドとともにコトランスフェクトした。ヌクレアーゼ活性はサーベイヤーアッセイによって決定した(Guschin et al., Methods Mol Biol 649, 247-256, 2010)。ヌクレアーゼ活性の指標である低分子量バンド及び非相同性末端接合によるDNA修繕は野生型Cas9による処置後でのみ存在し、iCas9-VP64によるヌクレアーゼ活性の停止を支持した。
【
図6】HBG1及びHBG2を標的とするgRNAで処置されたサンプルについてのRNA-seqを示す。RNA-seqは、コントロール空発現ベクターで処置したサンプル(n=3)、又はiCas9-VP64及びHBG1を標的とする4つのgRNAのための発現プラスミドをコトランスフェクトしたサンプル(n=2)で実施した。これらgRNAの3つはまたHBG2を標的とした。コントロールに対してHBG1及びHBG2の両方で増加が観察されたが、低い発現レベルのために統計的には有意ではなかった。これら処置間における遺伝子発現の唯一の統計的に有意な変化は、IL32(偽発見率=0.0007)及びTNFRS9(偽発見率=0.002)における減少であった。
【
図7】iCas9-VP64によるAscl1及びγ-グロビンのアップレギュレーションを示す。HEK293T細胞にiCas9-VP64及びASCL1又はHBG1プロモーターを標的とする4つのgRNAをトランスフェクトした。対応するAscl1及びγ-グロビンタンパク質レベルをウェスタンブロットで判定した。これらのタンパク質の低レベルがHEK293T細胞で検出でき、発現増加は2つの別個の実験でiCas9-VP64処置後に検出できた。
【
図8-1】iCas9-VP64で処置したネズミ胚線維芽細胞におけるAscl1の下流標的の活性化を示す。マウス胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びASCL1を標的とする4つのgRNA発現プラスミドを50:50又は75:25の比率でトランスフェクトした。(a)ヒトASCL1プロモーター(配列番号:3)のgRNA標的部位はマウスASCL1プロモーター(配列番号:4)で保存されている。標的部位は実線で示され、転写領域は点線で示される。
【
図8-2】iCas9-VP64で処置したネズミ胚線維芽細胞におけるAscl1の下流標的の活性化を示す。マウス胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びASCL1を標的とする4つのgRNA発現プラスミドを50:50又は75:25の比率でトランスフェクトした。(b)MEFにおけるASCL1発現は、qRT-PCRで決定したときiCas9-VP64/gRNA処置後2日で増加した。(c−h)神経誘導培地で10日後に、細胞をAscl1及びTuj1(ニューロン分化の初期マーカー)のために(c−d)、又はTuj1及びMAP2(より成熟したニューロン分化のマーカー)のために(d−f)染色した。いくつかのTuj1陽性細胞はニューロンの形態をとり(f−g)、単独細胞はTuj1及びMAP2陽性であることが見出された(g)。(h)Tuj1陽性細胞はiCas9-VP64/gRNA処置培養で容易に特定されたが(〜0.05%)、コントロールには存在しなかった。n=3つの独立実験でデータは平均±平均の標準誤差として示される。gRNA 75/25は、gRNA 50/50及びコントロールと有意に相違した(
*P<0.01、チューキー検定)。
【
図9A】(a)iCas9-VP64タンパク質配列(配列番号:1)を示す。
【
図9B】(b)U6プロモーターを有するgRNA発現カセットの配列(配列番号:2)を示す。
【
図10-1】qRT-PCRのための標準曲線を示す。各遺伝子について、最高の発現レベルを有する実験サンプルを標準曲線の作成のために希釈した。前記標準曲線を適切な動的範囲にわたって効率的な増幅を担保するためにqRT-PCRによってアッセイした。全増幅反応の効率は90−115%であった。
【
図10-2】qRT-PCRのための標準曲線を示す。各遺伝子について、最高の発現レベルを有する実験サンプルを標準曲線の作成のために希釈した。前記標準曲線を適切な動的範囲にわたって効率的な増幅を担保するためにqRT-PCRによってアッセイした。全増幅反応の効率は90−115%であった。
【
図11】
図11(a)−11(b)はRNAガイド修繕の有効性を示す。
図11(a)は、空ベクター(陰性コントロール)又はgRNAとともにCas9を細胞にコトランスフェクトしてから2日後に当該HEK293T細胞から採集したゲノムDNAのサーベイヤーアッセイの結果を示す。
図11(b)はgRNA標的の位置を示す。
図11(c)は各gRNAについて予想される切断サイズを示す。
【
図12】サーベイヤーアッセイによって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。
【
図13】全遺伝子座にわたってPCRによって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。野生型ジストロフィン遺伝子のPCRはサイズが1447bpのフラグメントを生じるが、DMD8036細胞株の変異遺伝子のPCRは約817bpの欠失を示す。CRISPR/Cas9依拠系の導入後の欠失バンドは約630bpであった。
【
図14】ウェスタンブロット(MANDYS8(抗ジストロフィン抗体)及びGAPDH抗体(陽性コントロール)を使用)によって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。
【
図15】IL1RNプロモーターを標的とするiCas9-VP64の特異的結合を示すChIP配列決定データを示す。HEK293T細胞にIL1RNプロモーターを標的とするiCas9-VP64がトランスフェクトされた。
【
図16】ジストロフィン遺伝子を標的とするCRISPR/Cas9を示す。(A)遺伝子編集が極めて多様な患者特異的変異から生じるジストロフィン発現を修復できるように、ジストロフィン遺伝子のエクソン45-55の変異ホットスポット領域中の配列と結合するsgRNA配列が設計された。イントロン内の矢印は、ゲノムから全エクソンを欠失させるために設計されたsgRNA標的を示す。エクソン内の矢印は、ジストロフィン遺伝子内に標的となるフレームシフトを作成するために設計されたsgRNA標的を示す。(B)CR3 sgRNAを用いるエクソン51のNHEJ DNA修繕による小さな挿入又は欠失に続くフレーム修正の例。(C)エクソン48−50の欠失を有する患者変異で、エクソン51を欠失させジストロフィンリーディングフレームを修復するために設計された複合sgRNA標的の模式図。(D)多様なDMD患者変異に対応できるように、全エクソン45-55領域を欠失させるために設計された複合sgRNA標的の模式図。
【
図17】表7の3日目遺伝子改変を測定するサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印は、ヌクレアーゼ活性の指標となる予想バンドサイズを示す。
【
図18】表7の10日目遺伝子改変を測定するサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印は、ヌクレアーゼ活性の指標となる予想バンドサイズを示す。
【
図19】遺伝的に改変されたDMD筋芽細胞を濃縮する蛍光活性化フロー選別を示す。(A)T2Aリボソームスキッピングペプチド配列を用いてGFPマーカーに連結されたヒトコドン最適化SpCas9タンパク質を発現するプラスミドを、sgRNA発現カセットを保持する1つ以上のプラスミドとともにヒトDMD筋芽細胞にコエレクトロポレートした。(B)表示のsgRNAを別個に、T2Aリボソームスキッピングペプチド配列によってSpCas9に連結されたGFPを有するSpCas9(下)又は前記のないSpCas9(上)を発現する別々のプラスミドとともにHEK239Tにコトランスフェクトした。遺伝子改変頻度をトランスフェクション3日後にサーベイヤーアッセイによって判定した。(C)ジストロフィン遺伝子のエクソン48-45の欠失を有するDMD筋芽細胞を、これらの患者細胞でジストロフィンリーディングフレームを修正するsgRNAで処置した。遺伝子改変は、エレクトロポレーション20日後に非選別(bulk)又はGFP+選別細胞で判定した。(D)表示の発現プラスミドによるエレクトロポレーション3日後のDMD筋芽細胞におけるGFPの発現。トランスフェクション効率及び選別細胞集団はゲート領域で示される。
【
図20】CRISPR/Cas9を用いてジストロフィンのリーディングフレームを修復する標的のフレームシフトを示す。(A)エクソン51の5’領域が、sgRNA CR3(最初のアウトフレーム(out-of-frame)終止コドンの直近上流と結合する)を用いて標的とされた。PAM:プロトスペーサー隣接モチーフ。(B)エクソン51遺伝子座を、SpCas9及びCR3発現カセットで処理したHEK293T細胞からPCR増幅した。個々のクローンの配列をサンガーシークェンシングで決定した。一番上の配列(太字、エクソンは赤色)は天然の未改変配列である。各配列のクローンの数は括弧内に示されている。(C)全遺伝子編集効率及び(B)に示した遺伝子改変から生じるリーディングフレーム変換の要旨。(D)ジストロフィンリーディングフレームを修復する標的誘導フレームシフトを生じるSpCas9及びCR3 sgRNA発現カセット(
図19C)で処理されたヒトDMD筋芽細胞でのジストロフィン発現についてのウェスタンブロット。ジストロフィン発現は、分化6日後にジストロフィンタンパク質のロッドドメインに対する抗体を用いて精査した。
【
図21】複合CRISPR/Cas9遺伝子編集を用いたヒトゲノムのエクソン51の欠失を示す。(A)エクソン48-50の欠失を有するヒトDMD筋芽細胞におけるエクソン51全体のエンドポイントゲノムPCR。一番上の矢印は完全長PCRアンプリコンの予想される位置を示し、下の2つの矢印は、表示のsgRNAの組み合わせによって生じる欠失を有するPCRアンプリコンの予想される位置を示す。(B)(A)のPCR生成物をクローニングし、個々のクローンの配列を決定して標的遺伝子座に存在する挿入及び欠失を決定した。一番上の列は野生型の未改変配列を示し、三角はSpCas9切断部位を示す。右側には予想される欠失連結配列を示す代表的なクロマトグラフィー図である。(C)表示のsgRNAで処理したCRISPR/Cas9改変ヒトΔ48-50 DMD筋芽細胞におけるジストロフィンmRNA転写物のエンドポイントRT-PCR分析である。予想される欠失PCR生成物の代表的なクロマトグラフィー図が右に示される。星印:欠失生成物鎖と未改変鎖とのハイブリダイゼーションから生じるバンド。(D)CRISPR/Cas9ゲノム編集によるジストロフィンタンパク質発現の回復が、ジストロフィンタンパク質に対するウェスタンブロット(ローディングコントロールとしてGAPDHを使用)によって判定された。矢印は予想される修復ジストロフィンタンパク質バンドを示す。
【
図22】複合CRISPR/Cas9遺伝子編集によるヒトDMD筋芽細胞における完全なエクソン45-55領域の欠失を示す。(A)表示のsgRNAによるHEK293T又はDMD筋芽細胞処理後のイントロン44とイントロン55の間の領域を検出する、ゲノムDNAのエンドポイントゲノムPCR。(B)(A)のDMD筋芽細胞由来の欠失のために予想されるサイズをもつPCR生成物の個々のクローンをサンガーシークェンシングで分析し、標的遺伝子座に存在するゲノムの欠失をもつ配列を決定した。下部は、予想される欠失連結配列を示す代表的なクロマトグラフィー図である。(C)表示のsgRNAで処理したCRISPR/Cas9改変ヒトΔ48-50 DMD筋芽細胞のジストロフィンmRNA転写物のエンドポイントRT-PCR分析。予想される欠失PCR生成物の代表的なクロマトグラフィー図は右に示されている。(D)イントロン44及び/又はイントロン55を標的とするsgRNAによるDMD筋芽細胞のエレクトロポレーション後のウェスタンブロットによる修復ジストロフィンタンパク質発現の分析。
【
図23】in vivo細胞移植実験で使用される遺伝子改変DMD筋芽細胞のフローサイトメトリーによる濃縮の証明を示す。DMD筋芽細胞をCR1及びCR5のためのsgRNA発現ベクターの存在下又は非存在下でCas9により処理し、フローサイトメトリーでGFP+細胞を選別した。エクソン51遺伝子座における欠失は該遺伝子座にフランキングするプライマーを用いてエンドポイントPCRによって検出した。Neg ctrl:DMD筋芽細胞をCas9のみで処理しGFP+細胞について選別した。
【
図24】CRISPR/Cas9処理ヒトDMD筋芽細胞の免疫不全マウスへの移植後に修復されたヒトジストロフィン発現を示す。ヒトΔ48-50DMD筋芽細胞をSpCas9、CR1及びCR5で処理しエクソン51を欠失させ、
図19に示すようにGFP発現について選別した。これらの選別細胞及び未処理コントロール細胞を免疫不全マウスの後肢に注射し、移植から4週間後に筋肉線維におけるヒト特異的タンパク質発現について判定した。凍結切片を、表示のように抗ヒトスペクトリン(スペクトリンはマウス筋線維と融合した未修正及び修正筋芽細胞の両方で発現される)又は抗ヒトジストロフィン抗体で染色した。白い矢印はヒトジストロフィン陽性の筋肉線維を示す。
【
図25】ヒトジストロフィン発現を精査したさらに別の免疫蛍光像を示す。抗ヒトスペクトリンで染色した連続切片は上部左に示される。(A−C)未処理ヒトDMD筋芽細胞を注射した筋肉の切片。(D−F)フローサイトメトリーで濃縮したCR1/5処理ヒトDMD筋芽細胞注射筋肉の切片。白い矢印はジストロフィン陽性線維を示す。
【
図26】ヒト細胞におけるCRISPR/Cas9毒性及びエクソン51のCR1/CR5媒介欠失のオフターゲット作用の評価を示す。(A)ヒト最適化SpCas9及び表示のsgRNA構築物で処理したHEK293T細胞における細胞傷害性アッセイの結果。細胞傷害性は、表示のヌクレアーゼをコトランスフェクトされるGFP陽性細胞の生存を基準とする。I-SceIは特徴がよく調べられている非毒性メガヌクレアーゼであり、GZF3は公知の有毒なジンクフィンガーヌクレアーゼである。(B)Cas9及び表示のsgRNAをコードする発現カセットで処理された選別hDMD細胞におけるオフターゲット部位のサーベイヤー分析。hDMD細胞で試験したこれらの3つのオフターゲット部位は、HEK293T細胞で試験した50の予想部位のパネル(
図27及び表4)から特定された。TGT:表示のsgRNAのオンターゲット遺伝子座。OT:オフターゲット遺伝子座。(C,D)Ca9及びCR1で処理したHEK293T細胞(C)又はCas9、CR1及びCR5で処理した選別hDMD細胞(D)で染色体転座を検出するエンドポイントネステッドPCR。模式図は、各転座事象のためにカスタマイズされたネステッドプライマー対の相対的な位置を示す。各バンドの予想されるサイズは、プライマーサイズ及び各遺伝子座における予想されるsgRNA切断部位の位置を基準に概算した。星印は予想サイズで検出されたバンドを示す。(C)のバンドの特定は各末端のサンガーシークェンシングによって立証した(
図30)。HEK293T細胞のP2/P5転座の代表的なクロマトグラフィー図が示されている。
【
図27】表4のオンターゲット及びオフターゲット遺伝子改変を測定するためにサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印はヌクレアーゼ活性の指標であるバンドの予想サイズを示す。
【
図28】ヒト細胞でCR3及びCR6/CR36に対してCRISPR/Cas9オフターゲット活性によってもたらされる染色体転座を検出するエンドポイントネステッドPCRを示す。ネステッドエンドポイントPCR分析を用いて、(A)表示のようにCas9及びCR3で処理したHEK239T又は選別hDMD細胞、(B)Cas9及びCR36単独で処理したHEK293T細胞、又は(C)Cas9、CR6及びCR36発現カセットで処理した選別hDMD細胞で転座を検出した。転座のための第二のネステッドPCR反応は、特異性を最大にするために各々予想される転座遺伝子座に対するカスタムプライマーを用いて増幅させた(表4参照)。模式図は、転座の存在について精査するために用いられるネステッドプライマー対の相対的位置を示す。各々可能な転座事象は、表示のsgRNAの存在下又は非存在下で処理した細胞から単離したゲノムDNAから第一に増幅された。第二のネステッドPCR反応は、転座から生じるであろうと予想されるPCRアンプリコン内のプライマーを用いて実施された。予想サイズは、表示のプライマー結合部位及び各遺伝子座の予想されるsgRNA切断部位を基準に概算した。*は、予想サイズで検出され、各末端のサンガーシークェンシングによって立証されたバンドを示す。#は、サンガーシークェンシングが予想した転座以外の配列を示した(おそらくはネステッドPCR時のミスプライミングの結果)アンプリコンを示す。
【
図29】Cas9及びCR3遺伝子カセットで処理したHEK239T細胞でCR3及びCR3-OT1(それぞれ染色体X及び1上に存在)間の転座から生じる
図28で検出されたバンドのサンガーシークェンシングクロマトグラフィー図を示す。矢印は、適切なsgRNAによってもたらされる予想される切断点近くの表示の染色体と相同性を有する領域を示す。配列決定の読みは、非相同性末端接合によるエラー多発性DNA修繕特性のために切断点近くでは一致しないことに留意されたい。
【
図30】
図26Cで検出されたバンドについてのサンガーシークェンシングクロマトグラフィー図を示す(前記バンドはCas9及びCR1遺伝子カセットで処理したHEK293T細胞のCR1及びCR1-OT1(それぞれ染色体X及び16に存在する)間の転座の結果である)。矢印は、適切なsgRNAによってもたらされる予想される切断点近くの表示染色体に対する相動性領域を示す。配列決定の読みは、非相同性末端接合によるエラー多発性DNA修繕特性のために切断点近くでは一致しないことに留意されたい。
【
図31】in vivoでのAAV注射及び組織採集の大要を示す。
【
図32】AAV-SASTG-ROSAデリバリー後の骨格筋におけるin vitro及びin vivoのRosa26 ZFN活性のサーベイヤー分析を示す。矢印はサーベイヤー切断から生じる予想されるバンドを示す。n.d.=検出されず。(a)増殖C2C12に表示の量のウイルスを形質導入し、感染4日後に採集した。矢印はサーベイヤー切断から生じる予想されるバンドサイズを示す。(b)C2C12を5日間分化培地でインキュベートし、続いて24ウェルプレートで表示の量のAAV-SASTG-ROSAウイルスを形質導入した。サンプルは形質導入10日後に収集した。(c)表示量のAAV-SASTG-ROSAをC57BL/6Jマウスの前脛骨筋に直接注射し、感染後4週間で筋肉を採集した。採集したTA筋をゲノムDNA分析のために8つの別々の細片に分けた。各々は別々のレーンに示されている。
【
図33】Rosa T2A opt DNA配列(配列番号:434)及びRosa T2A optタンパク質配列(配列番号:435)を示す。
【
図34-1】SASTGキャプシドDNA配列(配列番号:436)を示す。
【
図34-2】SASTGキャプシドペプチド配列(配列番号:437)を示す。
【
図35】DZF16 ZFN標的部位配列(配列番号:442)、DZF16-L6左完全アミノ酸配列(配列番号:443)及びDZF16-R6右完全アミノ酸配列(配列番号:444)を示す。
【
図36】E51C3 ZFN標的部位配列(配列番号:445)、E51C3-3L左完全アミノ酸配列(配列番号:446)及びE51C3-3R右完全アミノ酸配列(配列番号:447)を示す。
【
図37】DZF15 ZFN標的部位配列(配列番号:448)、DZF15-L6左完全アミノ酸配列(配列番号:449)、DZF15-R6右完全アミノ酸配列(配列番号:450)、DZF15-L5左完全アミノ酸配列(配列番号:451)、DZF15-R5右完全アミノ酸配列(配列番号:452)を示す。
【
図38】E51C4 ZFN標的部位配列(配列番号:453)、E51C4-4L左完全アミノ酸配列(配列番号:454)及びE51C4-4R右完全アミノ酸配列(配列番号:455)を示す。
【
図39】“単一ベクター、複合CRISPR系”、“二重ベクター、複合CRISPR系”及び“単一ベクター、単一gRNA系”の模式図を示す。
【
図40】SaCas9-NLS(NLSには下線が付される)(配列番号:64)及びSaCas9 gRNA(配列番号:116)のヌクレオチド配列を示す。
【
図41】NmCas9(NLS1は下線で、NLS2は下線付き太字で、HAタグは太字示される)、NmCas9ショートヘアピン(出典:Thomson PNAS 2013)(配列番号:118)、及びNmCas9ロングヘアピン(出典:Church Nature Biotech 2013)(配列番号:119)を示す。
【
図42】sgRNA及びレンチウイルスCas9発現構築物の正当性の立証を示す。(a)AAVS1遺伝子座を標的とするsgRNAを発現する固有のPolIIIプロモーターをコードする構築物又は発現終止のために直後にポリ-チミジン(“ポリT”)が続くhU6プロモーターを含む構築物をHEK293T細胞にトランスフェクトした。エンドポイントRT-PCRを用いて、トランスフェクション2日後にそれぞれ表示のプロモーター/sgRNAの発現について精査した。-RT:逆転写酵素コントロール無し。(b)HEK293TにAAVS1ジンクフィンガーヌクレアーゼ又はCas9-T2A-GFPをコードする発現ベクター及び表示のプロモーター/sgRNA発現カセットをトランスフェクトし、トランスフェクション3日後にサーベイヤーアッセイを用いて遺伝子改変レベルを判定した。(c)表示のCas9-T2A-GFP構築物をコードするレンチウイルス構築物でsgRNAの非存在下にてHEK293T細胞を形質導入し、形質導入7日後にCas9タンパク質のN-末端のFLAGエピトープタグについて精査することによって、Cas9発現をウェスタンブロットで判定した。
【
図43】単一レンチウイルスCRISPR/Cas9発現カセットのゴールデンゲートアッセンブリーを示す。
【
図44】複合CRISPR/Cas9系の単一レンチウイルスデリバリーを示す。(a)別個のゲノム遺伝子座を標的とする4つのsgRNAを、活性なCas9ヌクレアーゼを発現するレンチウイルスベクターでクローニングした。(b)HEK293及び初代ヒト皮膚線維芽細胞を表示のsgRNAを発現するレンチウイルスで形質導入し、サーベイヤーアッセイを用いて切断事象についてアッセイした。HEK293細胞は形質導入7日後にアッセイした。ヒト線維芽細胞は形質導入10日後にアッセイした。
【
図45】dCas9-VP64を安定的に発現するHEK293Tにおける一過性遺伝子活性化を示す。HEK293Tにレンチウイルスを形質導入してdCas9-VP64を安定的に発現させ、続いて表示のsgRNAの組み合わせを発現するプラスミドをトランスフェクトした。デリバーされるsgRNAの数を変化させることによって、内因性IL1RN(a)及びHBG1(b)遺伝子座の調整可能な内因性遺伝子活性化がトランスフェクション3日後に達成された。内因性IL1RN(c)及びHBG1(d)のピークレベルはトランスフェクション後3−6日に観察され、活性化レベルは15から20日目にバックグラウンドレベルに復帰した。重要なことには、細胞株は第二のトランスフェクション後20日目に再活性化させることができたが、ただしレベルは以前に観察されたレベルより低かった。
【
図46】単一レンチウイルス複合dCas9-VP64ベクターを用いたHEK293Tにおける安定的な遺伝子活性化を示す。HEK293Tにレンチウイルスを形質導入してdCas9-VP64及び表示のgRNA組合せを安定的に発現させた。デリバーされるsgRNAの数を変化させることによって、内因性IL1RN(a)及びHBG1(b)遺伝子座の調整可能な内因性遺伝子活性化が形質導入7日後に達成された。内因性IL1RN(c)及びHBG1(d)のピークレベルは形質導入後6日で観察され、該活性化レベルは21日目まで持続した。
【
図48】BAMニューロン転写因子の異所性発現による線維芽細胞のニューロンへの直接変換を表す模式図を示す。
【
図49】(A)dCas9-VP64構築物の模式図を示す。dCas9-VP64は、VP16転写活性化ドメインのテトラマーに融合されたCas9タンパク質の触媒的に不活性な形である。(B)RNAによってガイドされるdCas9-VP64のゲノム標的への補充メカニズムを示す模式図である。(C)CRISPR/Cas9転写因子によりiNを生成する実験的プロトコルの模式図である。
【
図50】dCas9-VP64を形質導入し、さらにASCL1プロモーター、ASCL1 cDNA又はルシフェラーゼを標的とするgRNAをトランスフェクトしたMEFで、(A)qRT-PCR又は(B)免疫蛍光によって全ASCL1タンパク質を決定した3日目の内因性ASCL1発現を示す。アステリスク(*)は、4つのgRNAと比較して8つのgRNAの共同デリバリーによるASCL1発現における有意な(p<0.05)増加を示す。ASCL1の異所性発現は、dCas9-VP64及びASCL1プロモーターを標的とする8つのgRNAによって誘導されるタンパク質よりも多くのタンパク質を生成したが、培養では3日目までに内因性遺伝子座を活性化しなかった。
【
図51】異所性BAM因子によって又はdCas9-VP64及びBRN2とASCL1プロモーターを標的とするgRNAによって生じたTUJ1及びMAP2陽性細胞、(B)N3培地で11日目にhSyn-RFPレポーターを発現するニューロンの形態を有する細胞を示す。
【
図52-1】(A)培養液中でKClの存在下(下)又は非存在下(上)でGCaMP5カルシウムインジケーターについて陽性であるニューロンの形態を有する細胞を示す。
図52は、dCas9-VP64転写因子を用いて線維芽細胞をニューロンに変換したときのiCas9-VP64処理ネズミ胚線維芽細胞におけるAscl1及びBrn2(すなわちマスター調節遺伝子)の下流標的の活性化を示す。ネズミ胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びAsc11とBRN2を標的とする8つのgRNA発現プラスミドの組合せをトランスフェクトした。dCas9転写因子はウイルスによりデリバーした。神経誘導培地で10日後に、細胞をTuj1(ニューロン分化の初期マーカー)及びMAP2(より成熟したニューロンの分化マーカー)について染色した。ニューロンへの変換は効率的であった。
【
図52-2】(B)KClの添加に応答して細胞の脱分極を示す、時間経過における標準化蛍光強度の記録を示す。
図52は、dCas9-VP64転写因子を用いて線維芽細胞をニューロンに変換したときのiCas9-VP64処理ネズミ胚線維芽細胞におけるAscl1及びBrn2(すなわちマスター調節遺伝子)の下流標的の活性化を示す。ネズミ胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びAsc11とBRN2を標的とする8つのgRNA発現プラスミドの組合せをトランスフェクトした。dCas9転写因子はウイルスによりデリバーした。神経誘導培地で10日後に、細胞をTuj1(ニューロン分化の初期マーカー)及びMAP2(より成熟したニューロンの分化マーカー)について染色した。ニューロンへの変換は効率的であった。
【
図53】哺乳動物遺伝子の調節制御のためのCRISPR/Cas9プラットフォームを示す。A.Cas9系エフェクターは、Cas9と複合体を形成する定常領域(標的部位特異性を付与する交換可能な20bpのプロトスペーサーが先行する)から成るキメラgRNA分子の存在下でゲノム配列と結合する。B.Cas9系合成転写因子は、RNAポリメラーゼ活性と干渉することによって又はプロモーター内で結合して内因性転写因子の結合部位をブロックすることによって標的遺伝子の転写を抑制する。調節エレメント(例えばエンハンサー)を標的とすることはまた多数の遠位遺伝子の発現をブロックする可能性がある。
【
図54】CRISPR/dCas9-KRABを用いるHS2エンハンサーのターゲティングを示す。HS2領域は、10kbよりも下流のグロビン遺伝子の発現を遠位で調節できる強力なエンハンサーである。エンハンサー領域沿いの部位を標的とするために一組の単一gRNAを設計した。
【
図55-1】HS2エンハンサーを標的とする単一gRNAはグロビン遺伝子の強力な転写抑制をもたらすことを示す。A.dCas9及びdCas9-KRABリプレッサーはレンチウイルスベクターでデリバーされる。スクリーニングのために単一gRNAを一過性にトランスフェクトした。
【
図55-2】トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。
【
図55-3】トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。
【
図55-4】トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。
【
図55-5】D.dCas9又はdCas9-KRABを発現しかつCr4又はCr8で処理された細胞でのタンパク質発現は、β-アクチンコントロールと比較して、3日目にγ-グロビン発現の穏やかな抑制を示す。
【
図56A】以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:A.無レンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。
【
図56B】以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:B.dCas9レンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。
【
図56C】以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:C.dCas9-KRABレンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。
【
図57-1】dCas9-KRABとともに単一gRNAを安定的にデリバーしてグロビン遺伝子の発現をサイレント化することを示す。A.dCas9及びdCas9-KRABリプレッサーを、単一gRNAとともにレンチウイルスベクターで共同発現させた。形質導入後7日で定量的RT-PCRによってアッセイしたとき、dCas9-KRABを発現するK562は、レンチウイルス処理を受けなかったコントロール細胞と比較して、γ-グロビン(B)、ε-グロビン(C)及びβ-グロビン(D)の95%までの抑制を達成した。
【
図57-2】dCas9-KRABとともに単一gRNAを安定的にデリバーしてグロビン遺伝子の発現をサイレント化することを示す。A.dCas9及びdCas9-KRABリプレッサーを、単一gRNAとともにレンチウイルスベクターで共同発現させた。形質導入後7日で定量的RT-PCRによってアッセイしたとき、dCas9-KRABを発現するK562は、レンチウイルス処理を受けなかったコントロール細胞と比較して、γ-グロビン(B)、ε-グロビン(C)及びβ-グロビン(D)の95%までの抑制を達成した。
【
図58】dCas9融合物のみを介するヒストン標的後成的改変のためのp300HAT“コア”の単離を示す。
【
図59】化膿連鎖球菌(S.ピオゲネス(S. pyogenes))dCas9-VP64融合物(上)及びdCas9-p300コア融合物(下)の単純化模式図を示す。プロトスペーサー隣接モチーフ(PAM)は標的遺伝子の遺伝子座で矢印により示され、合成ガイドRNA(gRNA)は影付き矢印(hatched arrow)で示される。
【
図60A】60A−60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。
【
図60B】60A−60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。
【
図60C】60A−60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。
【
図62】HAT-dCas9-p300融合タンパク質は遺伝子発現を活性化できないことを示す。
【
図63】gRNAはまたdCas9-p300コアと相乗的に作用することを示す。
【
図64】dCas9-p300及びdCas9-VP64は、(異なる分子で)トランス活性化に累積的作用を全く持たない。
【
図65】dCas9-p300はMyoD遠位調節領域を非相乗的に活性化することを示す。
【
図66】ジストロフィン遺伝子に種々の欠損を保有するヒトDMD患者に由来する骨格筋芽細胞株のジストロフィンのDP427m骨格筋アイソフォームの5’UTRへのミニジストロフィンのTALEN媒介組込みを示す。DMD患者の細胞に5’UTRで活性なTALEN対をコードする構築物及びミニジストロフィン遺伝子を保有するドナー鋳型をエレクトロポレートした。(a)ミニジストロフィンが5’UTRにどのように組み込まれるかを示す模式図である。(b)ヒグロマイシン耐性クローン細胞株を単離し、(a)に示したプライマーを用いて5’UTRへの首尾よい位置特異的組込みについてPCRでスクリーニングした。星印は(c)での更なる分析のために選別されたクローンを示す。(c)組込み事象が検出されたクローン単離DMD筋芽細胞を6日間分化させ、ミニジストロフィンのC末端に融合させたHAタグの発現を判定した。
【発明を実施するための形態】
【0018】
詳細な説明
本明細書に記載するように、ある種の方法及び操作されたCRISPR/CRISPR随伴(Cas)9依拠系組成物は、遺伝子発現の変更、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用を修正又は軽減させるために有用であることが見出された。CRISPR/Cas9依拠系は、Cas9タンパク質及び少なくとも1つのガイドRNAを含む(ガイドRNAは当該系のDNAターゲティング特異性を提供する)。特に、本開示は、CRISPR/Cas9依拠系のDNA配列ターゲティング機能を追加の活性と一体化し、したがって遺伝子発現及び/又は後成的状況の変更を可能にするCas9融合タンパク質を記載する。この系はまたゲノム操作及び遺伝子変異による作用の修正又は軽減に用いられ得る。
【0019】
本開示はまた、CRISPR/CRISPR随伴(Cas)9依拠系及び1つ以上の内因性遺伝子を標的とする多種多様なgRNAをデリバーするある種の組成物及び方法を提供する。1つの単独プロモーターを標的とする多種多様なsgRNAのコトランスフェクションは相乗的活性化を可能にするが、しかしながら多種多様なプラスミドのコトランスフェクションはコピー数の相違のために各細胞で変動し得る発現レベルをもたらす。さらに、トランスフェクションに続く遺伝子活性化は、時間経過におけるプラスミドDNAの希釈のために一過性である。さらにまた、多くの細胞タイプが容易にはトランスフェクトされず、かつ一過性の遺伝子発現は治療効果を誘発するには十分ではないことがある。これらの制限に対応するために、別個のプロモーターからCas9及び4つまでのsgRNAを発現する単一レンチウイルス系が開発された。単一レンチウイルスベクターからCas9又はdCas9融合タンパク質及び4つまでのgRNAを発現するプラットフォームが開示される。このレンチウイルスベクターは、構成的又は誘導可能なCas9又はdCas9-VP64を、別個のプロモーターから発現される1つ、2つ、3つまたは4つのgRNAに加えて発現する。この系は、CRISPR/Cas9依拠遺伝子調節の規模及びタイミングの両方を制御することが可能である。さらにまた、該レンチウイルスプラットフォームは、初代細胞でのCRISPR/Cas9系の治療的利用を促進する強力で持続的な遺伝子発現レベルを提供する。最後に、この系は、多種多様な遺伝子を同時に編集するために(例えばいくつかのオンコジーンの同時ノックアウトのために)用いることができる。
【0020】
本開示はまた、改変アデノ随伴ウイルス(AAV)ベクターを用いて骨格筋及び心筋に位置特異的ヌクレアーゼをデリバーするある種の組成物及び方法を提供する。位置特異的ヌクレアーゼ(前記は操作可能である)は、遺伝子発現の変更、ゲノム操作、遺伝子疾患に関与する遺伝子における変異の作用の修正又は軽減、又は骨格筋若しくは心筋又は筋肉再生に影響する他の症状に関与する遺伝子のマニピュレーションに有用である。操作される位置特異的ヌクレアーゼにはジンクフィンガーヌクレアーゼ(ZFN)、TALエフェクターヌクレアーゼ(TALEN)、及び/又はゲノム編集用CRISPR/Cas9系が含まれ得る。本明細書に記載するように、骨格筋組織の遺伝子はこの固有のデリバリー系を用いてin vivoで首尾よく編集された。本開示発明は、治療的利用のためにヒトゲノム書き改める手段、及び基礎的科学利用のために標的モデル種を提供する。
遺伝子編集は、細胞周期及び複雑なDNA修繕経路(前記は組織毎に変化する)に大いに左右される。骨格筋は非常に複雑な環境であり、細胞当たり100を超える核を有する大きな筋線維から成る。一般的に遺伝子治療及び生物製剤は、in vivoデリバリーにおけるハードルのために数十年間制限されてきた。これらの難問には、in vivoにおける担体の安定性、望み通りの組織へのターゲティング、十分な遺伝子発現及び活性をもつ遺伝子生成物の獲得、並びに活性を凌駕する可能性がある毒性(前記は遺伝子編集ツールでは一般的である)の回避が含まれる。他のデリバリーベヒクル(例えばプラスミドDNAの直接注射)は、他の関係では骨格筋及び心筋での遺伝子発現のために機能するが、これら位置特異的ヌクレアーゼに関しては遺伝子編集の検出可能なレベルの達成のためには十分に機能しない。
【0021】
多くの遺伝子がAAVベクター中で不安定であり、したがってデリバリー不能であるが、これら位置特異的ヌクレアーゼは驚くべきことにAAVベクターで安定である。これら位置特異的ヌクレアーゼがデリバーされ発現されるとき、それらは骨格筋組織で活性を維持する。位置特異的ヌクレアーゼのタンパク質安定性及び活性は高度に組織タイプ及び細胞タイプ依存性である。活性が高くかつ安定なこれらのヌクレアーゼは骨格筋の複雑な環境で遺伝子配列を改変することができる。本発明は、このクラスの治療薬の活性形を骨格筋又は心筋にデリバーする方法を提供する。前記方法は効果的で効率的であり、かつ首尾よいゲノム改変を促進する。
本開示はまたある種の後成的エフェクター分子融合物、dCas9-p300融合タンパク質を提供する。前記タンパク質は、dCas9-VP64融合物と比較して、合成転写調整のために強力でかつ潜在的により広範囲に適用できるツールを提供する。標的遺伝子は、試験した全ての遺伝子座でdCas9-VP64融合タンパク質よりも実質的にはるかに強く活性化された。加えて、p300は固有の内因性活性をヒトゲノム内のエンハンサーで有する。dCas9-p300融合タンパク質は、内因性標的遺伝子プロモーター及びエンハンサー領域を活性化できるかもしれない。
dCas9-p300融合タンパク質をヒトの組織培養細胞株で用いて遺伝子発現を活性化できる。この融合タンパク質を用いてヒト細胞内の標的遺伝子座の後成的状況を正確さ及び予測性をもって指令して、分化の制御、細胞性調節の調整、及び刷新的で潜在能力を有する治療方法への応用をもたらすことができる。従来の技術は、活性化の強度並びに後成的調整の範囲及び持続性に限界があった(すなわち前記はこの新規な融合タンパク質の利用を介して除去することができる障害である)。
本セクションで用いられる見出し及び本セクションの全開示は単なる構成上の目的のためであり、制限を意図しない。
【0022】
1.定義
特段の指定がなければ、本明細書で用いられる全ての技術的及び学術的用語は、当業者が一般的に理解する意味と同じ意味を有する。矛盾する場合には、本文書(定義を含む)によって規制されるであろう。好ましい方法及び材料が下記に記載されるが、本明細書に記載するものと類似又は同等の方法及び材料も本発明の実施又は試験に用いることができる。全ての刊行物、特許出願、特許及び本明細書に記載する他の参考文献は参照によりそれらの全体が取り込まれる。本明細書に開示する材料、方法及び例は単なる例示であり、限定を意図しない。
本明細書で用いられる、“含む(comprise)”、“含む(include)”“有する(having)”、“有する(has)”、“できる(can)”、“含む(contain)” という用語及び前記の変形は、作用又は構造が追加される可能性を排除しない末端開放移行句、用語、又は単語である。単数形の“a”、“and”及び“the”は、文脈が明らかにそうでないことを示さない限り複数の対応語を含む。本開示は、明瞭に説明するしないに拘わらず、本明細書に提示する実施態様又は成分を“含む(comprising)”、前記成分“から成る(consisting of)”及び前記成分“から本質的に成る(consisting essentially of)”他の実施態様もまた意図する。
本明細書における数字による範囲の記載については、間に介在する各数字は同じ精密度により明確に意図される。例えば、6−9の範囲については7及び8の数字が6及び9に加えて意図され、6.0−7.0の範囲については、6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9及び7.0の数字が明確に意図される。
【0023】
“アデノ随伴ウイルス”又は“AAV”は本明細書では互換的に用いられ、ヒト及び他のいくつかの霊長類種に感染する、パルボウイルス科のデペンドウイルス属に属する小さなウイルスである。AAVはこれまで疾患を引き起こすことは知られてなく、結果としてこのウイルスは非常に穏やかな免疫応答を生じる。
本明細書で用いられる“結合領域”は、ヌクレアーゼが認識及び結合する、ヌクレアーゼ標的領域内の領域を指す。
本明細書で互換的に用いられる “心臓の筋肉(cardiac muscle, heart muscle)”は、心臓の壁及び組織学的土台で見出される不随意横紋筋の一タイプ、心筋を意味する。心臓の筋肉は心筋細胞(cardiomyocyte, myocardiocyte)で形成される。心筋細胞は骨格筋細胞の横紋と類似する横紋を示すが、多数の核を有する骨格筋細胞と異なりただ1つの固有核を含む。
本明細書で用いられる“心臓筋肉の症状”は、心筋に関連する症状、例えば心筋症、心不全、不整脈、及び炎症性心疾患を指す。
本明細書で用いられる“コード配列”又は“コード核酸”は、タンパク質をコードするヌクレオチド配列を含む核酸(RNA又はDNA分子)を意味する。コード配列はさらに開始及び終了シグナルを含むことができ、前記シグナルは、当該核酸が投与される個体又は哺乳動物の細胞で発現を指令することができる調節エレメント(プロモーター及びポリアデニル化シグナル)に作動可能に連結される。コード配列はコドン最適化され得る。
本明細書で用いられる“相補的”又は“相補性”は、核酸分子のヌクレオチド又はヌクレオチドアナローグ間でワトソン-クリック型(例えばA-T/U及びC-G)又はフーグスティーン型塩基対形成を作ることができる核酸を意味する。“相補性”は、2つの核酸配列を互にアンチパラレルに並べたとき、各位置のヌクレオチド塩基が相補性であるような、2つの核酸配列間で共有される特性を指す。
【0024】
本明細書で用いられる“修正”、“ゲノム編集”及び“修復”は、切端タンパク質をコードするか又はタンパク質を全くコードしない変異遺伝子を、完全長の機能的な又は部分的に完全長の機能的なタンパク質発現が得られるように変化させることを指す。変異遺伝子の修正又は修復は、変異を有する遺伝子の領域の取替え、又は修繕メカニズム(例えば相同性指向修繕(HDR))を用いる全変異遺伝子の無変異遺伝子コピーによる取替えを含むことができる。変異遺伝子の修正又は修復はまた、遺伝子に二本鎖切断を生成し続いて非相同性末端接合(NHEJ)を用いて前記を修繕することによる、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位を生じるフレームシフト変異の修繕を含むことができる。NHEJは修繕時に少なくとも1つの塩基対を付加又は欠失させることができ、前記は適切なリーディングフレームを修復し未成熟な終止コドンを除去することができる。変異遺伝子の修正又は修復はまた、異常なスプライスアクセプター部位又はスプライスドナー部位の破壊を含むことができる。変異遺伝子の修正又は回復はまた、同じDNA鎖で2つのヌクレアーゼを同時に作用させ2つのヌクレアーゼ標的部位間のDNAを除去して当該DNA切断をNHEJで修繕し適切なリーディングフレームを回復させることによる非本質的遺伝子セグメントの欠失を含むことができる。
本明細書で互換的に用いられる“ドナーDNA”、“ドナー鋳型”及び“修繕鋳型”は、問題の遺伝子の少なくとも一部分を含む二本鎖DNAフラグメント又は分子を指す。ドナーDNAは完全な機能的タンパク質又は部分的に機能的なタンパク質をコードすることができる。
【0025】
本明細書で互換的に用いられる“デュシェンヌ型筋ジストロフィー”又は“DMD”は、筋肉の変性及び最終的には死に至る、劣性の致死的X連鎖異常を指す。DMDは周知の遺伝性単一遺伝子疾患であり、3500人の男性の1人に発生する。DMDは、ジストロフィン遺伝子のナンセンス変異又はフレームシフト変異を生じる遺伝性又は偶発性変異の結果である。DMDを引き起こすジストロフィン変異の大半はエクソンの欠失であり、前記はジストロフィン遺伝子のリーディングフレームを破壊し、未成熟な翻訳終了を引き起こす。典型的にはDMD患者は小児期に彼ら自身を物理的に支える能力を失い、脆弱化は十代の間に進行し、二十代で死に至る。
本明細書で用いられる“ジストロフィン”はロッド状の細胞質タンパク質を指し、前記は、筋線維の細胞骨格を周囲の細胞外マトリックスに細胞膜を貫通して結びつけるタンパク質複合体の一部分である。ジストロフィンは、筋細胞の保全及び機能を調節するために重要である、細胞膜のジストログリカン複合体に構造的安定性を提供する。本明細書で互換的に用いられるジストロフィン遺伝子又は“DMD遺伝子”はXp21で2.2メガ塩基を占める。一次転写物は約2,400kbであり、成熟mRNAは約14kbである。79エクソンが3500アミノ酸を超えるタンパク質をコードする。
【0026】
本明細書で用いられる“エクソン51”はジストロフィン遺伝子の51番目のエクソンを指す。エクソン51はDMD患者のフレーム破壊欠失にしばしば隣接し、オリゴヌクレオチドによるエクソンスキッピングの臨床試験の標的となってきた。エクソン51スキッピング化合物エテプリルセンの臨床試験は最近、基準線と比べ平均して47%がジストロフィン陽性線維という、48週間にわたる顕著な機能的利点を報告した。エクソン51の変異は理想的にはNHEJに基づくゲノム編集による永久的修正がふさわしい。
本明細書で互換的に用いられる“フレームシフト”又は“フレームシフト変異”は、1つ以上のヌクレオチドの付加又は欠失がmRNA中のコドンのリーディングフレームにおいてシフトを生じる遺伝子変異の一タイプである。リーディングフレームにおけるシフトは、タンパク質翻訳時にアミノ酸配列の変更、例えばミスセンス変異又は未成熟終止コドンをもたらし得る。
本明細書で用いられる“機能的”及び“完全に機能的”は、生物学的活性を有するタンパク質をいう。“機能的な遺伝子”はmRNAに転写される遺伝子を指し、前記mRNAは機能的なタンパク質に翻訳される。
【0027】
本明細書で用いられる“融合タンパク質”は、本来は切り離されたタンパク質をコードする2つ以上の遺伝子の接合を介して作製されるキメラタンパク質を指す。融合遺伝子の翻訳は、本来のタンパク質の各々に由来する機能的特性を有する単一ポリペプチドを生じる。
本明細書で用いられる“遺伝的構築物”は、タンパク質をコードするヌクレオチド配列を含むDNA又はRNA分子を指す。コード配列は、調節エレメントに作動可能に連結された開始又は終了シグナルを含む(前記調節エレメントは当該核酸分子が投与される個体の細胞で発現を指令することができるプロモーター及びポリアデニル化シグナルを含む)。本明細書で用いられるように、“発現可能な形態”は、個体の細胞に存在するときに当該コード配列が発現されるように、該コード配列に作動可能に連結された必要な調節エレメントを含む遺伝子構築物を指す。
本明細書で用いられる“遺伝子疾患”は、部分的又は完全に、直接的又は間接的にゲノムの1つ以上の異常によって引き起こされる疾患、特に出生以来存在する症状を指す。前記異常は遺伝子のコード配列又はその調節配列に影響を与えることができる。遺伝子疾患は、DMD、血友病、嚢胞性線維症、ハンチントン舞踏病、家族性高コレステロール血症(LDL受容体欠損)、肝芽腫、ウィルソン病、先天性肝性ポルフィリン症、肝代謝の遺伝性異常、レッシュ・ナイハン症候群、鎌状赤血球貧血、サラセミア、色素性乾皮症、ファンコーニ貧血、色素性網膜炎、毛細血管拡張性運動失調、ブルーム症候群、網膜芽腫、及びテイ-サックス病であり得るが、ただしこれらに限定されない。
【0028】
本明細書で互換的に用いられる“相同性指向修繕”又は“HDR”は、(大半が細胞周期のG2及びS期の)核内に相同なDNA片が存在するときに二本鎖DNA損傷を修繕する細胞内メカニズムを指す。HDRはドナーDNA鋳型を使用して修繕を誘導し、さらにHDRを用いてゲノムに特異的な配列変化(標的誘導による全遺伝子の付加を含む)を創出することができる。ドナー鋳型が位置特異的ヌクレアーゼ(例えばCRISPR/Cas9依拠系)とともに供給されるならば、該細胞性機構は相同性組換えによって切断を修繕するであろう(前記組換えはDNA切断の存在で数桁強化される)。相同なDNA片が存在しないとき、非相同性末端接合が代わりに生じ得る。
本明細書で互換的に用いられる“ゲノム編集”は遺伝子の変更を指す。ゲノム編集は変異遺伝子の修正又は回復を含むことができる。ゲノム編集は遺伝子(例えば変異遺伝子又は正常遺伝子)のノックアウトを含むことができる。ゲノム編集を用いて、問題の遺伝子の変更により疾患を治療し又は筋肉の修繕を強化することができる。
2つ以上の核酸又はポリペプチド配列に関して本明細書で用いられる“同一”又は“同一性”は、当該配列が指定の領域にわたって指定のパーセンテージで同じ残基を有することを示す。パーセンテージは、2つの配列を最適に並べ、指定された領域にわたって当該2つの配列を比較し、同一残基が両配列で生じる位置の数を決定して一致する位置の数を入手し、一致する位置数を指定の領域の総位置数で割り、結果に100を乗じて配列同一性のパーセンテージを得ることによって計算できる。2つの配列の長さが異なるか又はアラインメントが1つ以上のずれた末端を生じて、指定の比較領域が単独配列のみを含む場合、単独配列の残基は計算の分母には含まれるが分子には含まれない。DNAとRNAを比較するとき、チミン(T)及びウラシル(U)は同等とみなすことができる。同一性は手動で又はコンピューター配列アルゴリズム(例えばBLAST又はBLAST2.0)を用いて実施できる。
【0029】
本明細書で互換的に用いられる“変異遺伝子”又は“変異した遺伝子”は、検出可能な変異を経た遺伝子を指す。変異遺伝子は変化(例えば遺伝物質の消失、獲得又は交換)を受けている(前記変化は遺伝子の正常な伝達及び発現に影響を及ぼす)。本明細書で用いられる“破壊された遺伝子”は、未成熟終止コドンを生じる変異を有する変異遺伝子を指す。破壊遺伝子生成物は完全長の非破壊遺伝子生成物と比較して切り詰められている。
本明細書で用いられる“非相同性末端接合(NHEJ)経路”は、相同性鋳型を必要とせずに切断末端の直接結合によりDNAの二本鎖切断を修繕する経路を指す。NHEJによるDNA末端の鋳型非依存性再結合は確率論的なエラー多発修繕プロセスであり、前記はDNA切断点にランダムな微細挿入及び微細欠失(インデル(indel))を導入する。この方法を用いて、標的とされる遺伝子配列のリーディングフレームを意図的に破壊、欠失又は変更することができる。NHEJは典型的には、修繕を誘導するために微細相同と称される短い相同性DNA配列を利用する。これらの微細相同はしばしば、二本鎖切断の末端の一本鎖オーバーハングに存在する。オーバーハングが好ましくは適合性であるとき、NHEJは通常当該切断を正確に修繕するが、ヌクレオチドの消失をもたらす不正確な修繕もまた生じ得る(ただし前記不正確な修繕はオーバーハングが適合性でないときにははるかに多い)。
【0030】
本明細書で用いられる“正常遺伝子”は、変化(例えば遺伝物質の消失、獲得、又は交換)を経ていない遺伝子を指す。正常遺伝子は正常な遺伝子伝達及び遺伝子発現を経る。
本明細書で用いられる“ヌクレアーゼ媒介NHEJ”は、ヌクレアーゼ(例えばCas9)が二本鎖DNAを切断した後で開始されるNHEJを指す。
本明細書で用いられる“核酸”又は“オリゴヌクレオチド”又は“ポリヌクレオチド”は、共有結合により一緒に連結された少なくとも2つのヌクレオチドを意味する。一本鎖の記述はまた相補鎖の配列を定める。したがって、核酸はまた記述された一本鎖の相補鎖を包含する。与えられた核酸と同じ目的のために多くの核酸変種を用いることができる。したがって、核酸はまた実質的に同一の核酸及び前記の相補物を包含する。一本鎖は、ストリンジェントなハイブリダイゼーション条件下で標的配列とハイブリダイズできるプローブを提供する。したがって、核酸はまたストリンジェントなハイブリダイゼーション条件下でハイブリダイズするプローブを包含する。
核酸は一本鎖でも二本鎖でもよく、また二本鎖及び一本鎖配列の両部分を含むことができる。核酸は、DNA(ゲノムDNA及びcDNAの両方)、RNA又はハイブリッドでもよく、ここで前記は、デオキシリボヌクレオチド及びリボヌクレオチドの組合せ、並びにウラシル、アデニン、チミン、シトシン、グアニン、イノシン、キサンチン、ヒポキサンチン、イソシトシン及びイソグアニンを含む塩基の組合せを含むことができる。核酸は、化学的合成方法又は組換え方法によって入手できる。
【0031】
本明細書で用いられる“作動可能に連結される”とは、遺伝子の発現が、当該遺伝子が空間的に一緒につながれているプロモーターの支配下にあることを意味する。プロモーターは、その制御下にある遺伝子の5’(上流)又は3’(下流)に配置できる。プロモーターと遺伝子の間の距離は、当該プロモーターが由来する遺伝子において当該プロモーターが制御する遺伝子と当該プロモーターとの間の距離とほぼ同じである。当業界で公知のように、この距離の多様性はプロモーターの機能を低下させることなく許容され得る。
本明細書で用いられる“部分的に機能的”とは、変異遺伝子によってコードされ、機能的タンパク質より生物学的活性が低いが無機能タンパク質より生物学的活性が高いタンパク質を指す。
本明細書で互換的に用いられる“未成熟終止コドン”又は“アウトフレーム終止コドン”はDNA配列におけるナンセンス変異を指し、前記は、野生型遺伝子では通常見出されない位置で終止コドンを生じる。未成熟終止コドンは、当該タンパク質の完全長型と比較して切端された又は短いタンパク質を生じる。
【0032】
本明細書で用いられる“プロモーター”は、細胞で核酸の発現を付与できるか、活性化できるか又は強化できる合成又は天然に誘導される分子を意味する。プロモーターは1つ以上の特異的な転写調節配列を含み、発現をさらに強化し、及び/又はその空間的な発現及び/又は一時的発現を変更することができる。プロモーターはまた、遠位エンハンサー又はリプレッサーエレメントを含むことができ、前記は転写開始部位から数千塩基対の位置に存在し得る。プロモーターは、ウイルス、細菌、カビ、植物、昆虫及び動物を含む供給源から誘導し得る。プロモーターは、遺伝子成分の発現を、構成的に、又は発現が生じる細胞、組織若しくは器官に関して又は発現が生じる発育期に関して弁別的に、又は外部刺激(例えば生理学的ストレス、病原体、金属イオン又は誘導薬剤)に応答して調節することができる。プロモーターの代表的な例には、バクテリオファージのT7プロモーター、バクテリオファージのT3プロモーター、SP6プロモーター、lacオペロン-プロモーター、tacプロモーター、SV40後期プロモーター、SV40初期プロモーター、RSV-LTRプロモーター、CMV IEプロモーター、SV40初期プロモーター又はSV40後期プロモーター及びCMV IEプロモーターが含まれる。
【0033】
本明細書で互換的に用いられる“反復可変性二残基(repeat variable diresidue)”又は“RVD”は、TALE DNA結合ドメインのDNA認識モチーフ(“RVDモジュール”としてもまた知られている、前記は33−35アミノ酸を含む)内の隣接する1対のアミノ酸残基を指す。RVDはRVDモジュールのヌクレオチド特異性を決定する。RVDモジュールは一緒になってRVD列を生じる。本明細書で用いられる“RVD列長”は、TALENによって認識されるTALEN標的領域(すなわち結合領域)内のヌクレオチド配列の長さと一致する、RVDモジュールの数を指す。
本明細書で用いられる“位置特異的ヌクレアーゼ”は、DNA配列を特異的に認識し切断することができる酵素を指す。位置特異的ヌクレアーゼは操作することができる。操作される位置特異的ヌクレアーゼの例にはジンクフィンガーヌクレアーゼ(ZFN)、TALエフェクターヌクレアーゼ(TALEN)、及びCRISPR/Cas9依拠系が含まれる。
本明細書で用いられる“骨格筋”は横紋筋の一タイプを指し、前記は体神経系の制御下にあり、テンドンとして知られているコラーゲン線維束によって骨に接着される。骨格筋は、筋細胞(myocyte)又は“筋肉細胞(muscle cell)”として知られる(時には口語で“筋肉繊維”と呼ばれる)個々の成分で形成される。筋細胞は、筋形成として知られるプロセス時の発育中筋芽細胞(筋肉細胞を生じる胚性始原細胞の一タイプ)の融合で形成される。これらの長い筒状の多核細胞は筋線維とも称される。
【0034】
本明細書で用いられる“骨格筋症状”は、骨格筋に関連する症状、例えば筋ジストロフィー、加齢、筋変性、創傷治癒、筋肉の脆弱又は萎縮を指す。
本明細書で互換的に用いられる“スペーサー”及び“スペーサー領域”はTALEN又はZFN標的領域内の領域を指し、前記は2つのTALEN又はZFNのための結合領域の間に存在するが、それらの部分ではない。
本明細書で互換的に用いられる“対象動物”及び“患者”は任意の脊椎動物を指し、前記動物には以下が含まれる(ただしこれらに限定されない):哺乳動物、例えば乳牛、ブタ、ラクダ、ラマ、ウマ、ヤギ、ウサギ、ヒツジ、ハムスター、モルモット、ネコ、イヌ、ラット及びマウス、非ヒト霊長類(例えばサル(例えばカニクイザル又はアカゲザル、チンパンジーなど)及びヒト)。いくつかの実施態様では、対象動物はヒト又は非ヒトであり得る。該対象動物又は患者は他の治療形を受けることができる。
本明細書で用いられる“標的遺伝子”は、既知の又は仮の遺伝子生成物をコードする任意のヌクレオチドを指す。標的遺伝子は遺伝子疾患に含まれる変異遺伝子でもよい。
本明細書で用いられる“標的領域”は、それに位置特異的ヌクレアーゼが結合して切断するように設計された当該標的遺伝子の領域を指す。
【0035】
本明細書で用いられる“転写アクチベーター様エフェクター”又は“TALE”は、特定のDNA配列を認識し結合するタンパク質構造を指す。“TALE DNA結合ドメイン”は、一列のタンデムな33−35アミノ酸リピートを含むDNA結合ドメイン(RVDモジュールとしても知られ、その各々はDNAの一塩基対認識する)を指す。RVDを任意の順序に整理して、指定配列を認識する一列をアッセンブリーできる。
TALE DNA結合ドメインの結合特異性は、20アミノ酸の単一切端リピートがその後に続くRVD列によって決定される。TALE DNA結合ドメインは12から27のRVDモジュールを有することができ、その各々はRVDを含み、DNAの一塩基対を認識する。4つの起こり得るDNAヌクレオチド(A、T、C及びG)の各々を認識する特異的なRVDが同定されている。TALE DNA結合ドメインはモジュールであるので、4つの異なるDNAヌクレオチドを認識するリピートが一緒に連結されて任意の個々のDNA配列を認識できる。これらの標的誘導されるDNA結合ドメインを続いて触媒ドメインと結合させて機能的な酵素を作製できる(前記には人工転写因子、メチルトランスフェラーゼ、インテグラーゼ、ヌクレアーゼ及びリコンビナーゼが含まれる)。
【0036】
本明細書で互換的に用いられる“転写アクチベーター様エフェクターヌクレアーゼ”又は“TALEN”は、ヌクレアーゼ(例えばエンドヌクレアーゼFokI)の触媒ドメイン及びカスタムDNA配列を標的とすることができるように設計されたTALE DNA結合ドメインの操作された融合タンパク質を指す。“TALENモノマー”は、触媒性ヌクレアーゼドメイン及び設計されたTALE DNA結合ドメインを有する操作された融合タンパク質を指す。2つのTALENモノマーを1つのTALEN標的領域を標的としこれを切断するように設計することができる。
本明細書で用いられる“トランスジーン”は、1つの生物から単離され異なる生物に導入される遺伝子配列を含む遺伝子又は遺伝物質を指す。この非天然DNAセグメントはトランスジェニック生物でRNA又はタンパク質を生成する能力を保持し得るか、又はトランスジェニック生物の遺伝コードの正常な機能を変更し得る。トランスジーンの導入は生物の表現型を変化させる潜在能力を有する。
核酸に関して本明細書で用いられる“変種”は以下を意味する:(i)言及されたヌクレオチド配列の部分又はフラグメント;(ii)言及されたヌクレオチド配列又はその部分の相補物;(iii)言及された核酸又はその相補物と実質的に同一である核酸;又は(iv)言及された核酸、その相補物又は前記と実質的に同一の配列とストリンジェントな条件下でハイブリダイズする核酸。
【0037】
ペプチド又はポリペプチド関する“変種”は、アミノ酸の挿入、欠失又は保存的置換によってアミノ酸配列が異なるが、少なくとも1つの生物学的活性を保持する。変種はまた、少なくとも1つの生物学的活性を保持するアミノ酸配列を有する言及されたタンパク質と実質的に同一のアミノ酸配列を有するタンパク質を意味する。アミノ酸の保存的置換(すなわちあるアミノ酸の類似する特性(例えば疎水性、荷電領域の程度及び分布)のアミノ酸による取替え)は、当業界では典型的に微小な変化を含むと認識される。これらの微小な変化は、当業界で理解されるように、アミノ酸のハイドロパシーインデックスを考慮することによって同定し得る(Kyte et al., J. Mol. Biol. 157:105-132, 1982)。アミノ酸のハイドロパシーインデックスはその疎水性及び電荷を考慮することによる。類似するハイドロパシーインデックスのアミノ酸を代用してもなおタンパク質機能を保持することは当業界では公知である。ある特徴では、±2のハイドロパシーインデックスを有するアミノ酸が代用される。アミノ酸の親水性もまた、生物学的機能を保持するタンパク質を生じる置換を示すために用いることができる。ペプチドの関係ではアミノ酸の親水性を考慮することによって、当該ペプチドの最大の局所平均親水性の算出が可能になる。置換は、互いに±2以内の親水性を有するアミノ酸で実施できる。アミノ酸の疎水性インデックス及び親水性値の両方が当該アミノ酸の個々の側鎖によって影響を受ける。そのような観察と一致して、生物学的機能と適合するアミノ酸置換は、疎水性、親水性、荷電、サイズ及び他の特性によって示されるように、アミノ酸の相対的類似性及び特にこれらアミノ酸の側鎖に左右されることが理解される。
【0038】
本明細書で用いられる“ベクター”は複製起点を含む核酸配列を意味する。ベクターはウイルスベクター、バクテリオファージ、細菌性人工染色体、又は酵母人工染色体であり得る。ベクターはDNAベクターでもRNAベクターでもよい。ベクターは自己複製型染色体外ベクター、好ましくはDNAプラスミドであり得る。例えば、ベクターは、配列番号:1のアミノ酸配列を含むiCas9-VP64融合タンパク質、又は配列番号:5-40、65−144、492−515、540−563、及び585−625のいずれか1つの少なくとも1つのgRNAヌクレオチド配列をコードすることができる。また別には、ベクターは、Cas9並びに、配列番号:5-40、65−144、492−515、540−563、及び585−625のいずれか1つの少なくとも1つのgRNAヌクレオチド配列をコードすることができる。
【0039】
本明細書で用いられる“ジンクフィンガー”はDNA配列を認識しこれと結合するタンパク質構造を指す。ジンクフィンガードメインはヒトプロテオームで最も一般的なDNA結合モチーフである。一ジンクフィンガーは約30アミノ酸を含み、典型的には該ドメインは、塩基対毎にただ1つのアミノ酸側鎖の相互作用を介してDNAの3つの連続する塩基対と結合することによって機能する。
本明細書で互換的に用いられる“ジンクフィンガーヌクレアーゼ”又は“ZFN”は、少なくとも1つのヌクレアーゼ又は完全にアッセンブリーされたときにDNAを切断できるヌクレアーゼの部分と有効に連結された少なくとも1つのジンクフィンガーDNA結合ドメインを含むキメラタンパク質分子を指す。
本明細書では特段の指定がなければ、本開示に関連して用いられる学術的及び技術的用語は、当業者が通常理解する意味を有する。例えば、本明細書に記載される細胞及び組織培養、分子生物学、免疫学、微生物学、遺伝学、並びにタンパク質及び核酸化学及びハイブリダイゼーションに関して用いられる用語体系及び技術は、当業界で周知でありかつ一般的に用いられるものである。用語の意味及び範囲は明瞭であるはずだが、しかしながら何らかの隠れた曖昧さが存在する場合には、本明細書に提供される定義が一切の辞典又は非本質的定義を超えて優先される。さらにまた、文脈が特段に要求しない限り、単数用語は複数を含み、複数用語は単数を含む。
【0040】
2.ゲノム編集のための組成物
本発明は、ゲノム編集、ゲノム改変又は標的遺伝子の遺伝子発現の変更のための組成物を目的とする。本組成物は、ウイルスベクター及び融合タンパク質(例えば位置特異的ヌクレアーゼ又はCRISPR/Cas9系)を少なくとも1つのgRNAとともに含むことができる。
a.筋肉でのゲノム編集のための組成物
本発明は、対象動物の骨格筋又は心筋で標的遺伝子をゲノム編集する組成物を目的とする。組成物は改変AAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。組成物は骨格筋又は心筋に位置特異的ヌクレアーゼの活性形をデリバーする。組成物はさらにドナーDNA又はトランスジーンを含むことができる。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患及び/又は骨格筋若しくは心筋の症状に関与する遺伝子における変異の作用の修正又は軽減で用いることができる。
標的遺伝子は、細胞の分化又は遺伝子の活性化、抑制若しくは破壊が所望され得る任意の他のプロセスに関与し得るか、又は標的遺伝子は、変異(例えば欠失、不レムシフト変異又はナンセンス変異)を有し得る。標的遺伝子が、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位を生じる変異を有する場合、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位の上流又は下流のヌクレオチド配列を認識し結合するように、位置特異的ヌクレアーゼを設計することができる。位置特異的ヌクレアーゼはまた、スプライスアクセプター及びドナーを標的として未成熟終止コドンのスキッピングを導入することにより正常な遺伝子スプライシングを破壊するか、又は破壊されたリーディングフレームを回復させるために用いることができる。位置特異的ヌクレアーゼは、ゲノムのタンパク質コード領域へのオフターゲット変化を媒介することもしないこともある。
【0041】
3.CRISPR系
本明細書で互換的に用いられる“集合等間隔配置短パリンドロームリピート”及び“CRISPR” は、配列決定した細菌の約40%及び配列決定した古細菌の約90%のゲノムで見出される多種多様な短い直接リピートを含む遺伝子座を指す。CRISPR系は、後天的免疫型を提供する侵入ファージ及びプラスミドに対抗する防御で必要とされる微生物のヌクレアーゼ系である。微生物宿主のCRISPR遺伝子座は、CRISPR随伴(Cas)遺伝子の組合せを、CRISPR媒介核酸切断の特異性をプログラミングすることができる非コードRNAエレメントと同様に含む。外来遺伝子の短いセグメント(スペーサーと称される)がCRISPRリピートの間でゲノムに取り込まれ、過去の暴露の‘記憶’として働く。Cas9はsgRNAの3’末端により複合体を形成し、このタンパク質-RNAペアは、sgRNA配列の5’末端と予め規定した20bpのDNA配列(プロトスペーサーとして知られる)との間の相補的塩基対形成によってそのゲノム標的を認識する。この複合体は、crRNA内でコードされた領域(すなわちプロトスペーサー)及び病原体ゲノム内のプロトスペーサー隣接モチーフ(PAM)を介して病原体DNAの相同な遺伝子座に誘導される。非コードCRISPR列は転写され、直接リピート内で個々のスペーサー配列を含む短いcrRNAに切断される(前記はCasヌクレアーゼを標的部位(プロトスペーサー)に誘導する)。発現されたsgRNAの20bpの認識配列を単純に交換することによって、Cas9ヌクレアーゼは新しいゲノム標的へ誘導され得る。CRISPRスペーサーを用いて、真核生物におけるRNAiと同様な態様で外因性遺伝エレメントを認識しサイレント化することができる。
【0042】
CRISPR系の3タイプ(I、II及びIII型エフェクター系)が知られている。II型エフェクター系は、標的誘導によるDNA二本鎖切断を4つの連続工程で単一エフェクター酵素Cas9をdsDNA切断に用いて実行する。I型及びIII型エフェクター系と比較して(前記系は複合体として作動する多種多様な別個のエフェクターを必要とする)、II型エフェクター系はまた別の環境(例えば真核細胞)で機能し得る。II型エフェクター系は、長い前-crRNA(スペーサー含有CRISPR遺伝子座から転写される)、Cas9タンパク質及びtracrRNA(前-crRNAプロセッシングに必要である)から成る。tracrRNAは、前-crRNAのスペーサーを引き離すリピート領域とハイブリダイズし、したがって内因性RNase IIIによるdsRNA切断を開始する。この切断の後に、Cas9による各スペーサー内の第二の切断事象が続き、tracrRNAとCas9に随伴したままの成熟crRNAを生じ、Cas9:crRNA-tracrRNA複合体を形成する。
【0043】
Cas9:crRNA-tracrRNA複合体はDNA二重鎖をほどいてcrRNAと一致する配列を検索して切断する。標的認識は、標的DNA内の“プロトスペーサー”配列とcrRNA内の残留スペーサー配列との間の相補性の検出に際して生じる。正確なプロトスペーサー隣接モチーフ(PAM)がまた該プロトスペーサーの3’末端に存在する場合に、Cas9は標的DNAの切断を媒介する。プロトスペーサーを標的とするために、当該配列のそのすぐ後に、プロトスペーサー隣接モチーフ(PAM)(DNA切断に必要なCas9ヌクレアーゼによって認識される短い配列)が続かねばならない。異なるII型系は異なるPAMを要求する。化膿連鎖球菌CRISPR系は、このCas9(SpCas9)のためのPAM配列を5’-NRG-3’として有し得る(ここでRはA又はGであり、ヒト細胞でのこの系の特異性を特徴づける)。CRISPR/Cas9系の固有の性能は、単一Cas9タンパク質を2つ以上のsgRNAとともに共同発現することによって多種多様な別個のゲノム遺伝子座を同時に標的とするこの直進的能力である。例えば、化膿連鎖球菌II型系は自然では“NGG”配列(“N”は任意のヌクレオチドでよい)の使用を優先するが、操作系では他のPAM配列(例えば“NAG”)もまた許容する(Hsu et al., Nature Biotechnology (2013) doi:10.1038/nbt.2647)。同様に、髄膜炎菌(Neisseria meningitidis)由来のCas9(NmCas9)は通常ではNNNNGATTの天然のPAMを有するが、多様なRAM(高度に縮退したNNNNGNNN PAMを含む)に対して活性を有する(Esvelt et al. Nature Methods (2013) doi:10.1038/nmeth.2681)。
【0044】
4.CRISPR/Cas9依拠系
化膿連鎖球菌II型エフェクター系の操作形はヒト細胞でゲノム編集機能を果たすことが示された。この系では、Cas9タンパク質は、合成により再構成された“ガイドRNA”(“gRNA”、前記はまた本明細書ではキメラ単一ガイドRNA(“sgRNA”)として互換的に用いられる)によってゲノムの標的部位に誘導された(前記ガイドRNAは、一般的にRNaseIII及びcrRNAプロセッシングの必要性を除去するcrRNA-tracrRNA融合物である(
図53A参照))。本明細書では、ゲノム編集及び遺伝子疾患治療で使用されるCRISPR/Cas依拠操作系が提供される。CRISPR/Cas9依拠操作系は任意の遺伝子を標的とするように設計できる。前記遺伝子には、遺伝子疾患、加齢、組織再生又は創傷治癒に必要な遺伝子が含まれる。CRISPR/Cas9依拠系はCas9タンパク質又はCas9融合タンパク質及び少なくとも1つのgRNAを含むことができる。Cas9融合タンパク質は、例えば異なる活性(Cas9にとって内因性である活性)を有するドメイン、例えばトランス活性化ドメインを含むことができる。
標的遺伝子は、細胞の分化又は遺伝子の活性化が所望され得る任意の他のプロセスに必要とされる得るか、又は変異(例えばフレームシフト変異又はナンセンス変異)を有し得る。標的遺伝子が未成熟終止コドン、異常なスプライスアクチベーター部位又は異常なスプライスドナー部位を生じる変異を有する場合、CRISPR/Cas9依拠系は、未成熟終止コドン、異常なスプライスアクチベーター部位又は異常なスプライスドナー部位の上流又は下流のヌクレオチド配列を認識しこれと結合するように設計できる。またCRISPR/Cas9依拠系を用いて、スプライスアクセプター及びドナーを標的にして未成熟終止コドンのスキッピングを導入して正常な遺伝子スプライシングを破壊するか又は破壊されたリーディングフレームを回復させることができる。CRISPR/Cas9依拠系は、ゲノムのタンパク質コード領域へのオフターゲット変化を媒介することもしないこともある。
【0045】
a.Cas9
CRISPR/Cas9依拠系はCas9タンパク質又はCas9融合タンパク質を含むことができる。Cas9タンパク質は核酸を切断するエンドヌクレアーゼであり、CRISPR遺伝子座によってコードされ、II型CRISPR系で必要とされる。Cas9タンパク質は任意の細菌又は古細菌種(例えば化膿連鎖球菌)に由来し得る。Cas9タンパク質は、ヌクレアーゼ活性が不活化されるように変異させることができる。エンドヌクレアーゼ活性をもたない、化膿連鎖球菌由来不活化Cas9タンパク質(iCas9、“dCas9”とも称される)は最近、gRNA によって細菌、酵母、及びヒト細胞の遺伝子を標的にし、立体的妨害を通り抜けて遺伝子発現をサイレント化した。本明細書で用いられる“iCas9”及び“dCas9”は共に、アミノ酸置換D10A及びH840Aを有し、そのヌクレアーゼ活性が不活化されたCas9タンパク質を指す。例えば、CRISPR/Cas9依拠系は配列番号:459又は461のCas9を含むことができる。
【0046】
b.Cas9融合タンパク質
CRISPR/Cas9依拠系は融合タンパク質を含むことができる。融合タンパク質は2つの異種ポリペプチドドメインを含むことができ、第一のポリペプチドドメインはCasタンパク質を含み、第二のポリペプチドドメインは、活性(例えば転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性又はデメチラーゼ活性)を有する。融合タンパク質はCas9タンパク質又は上記に記載の変異Cas9タンパク質を含むことができ、前記Cas9タンパク質は、例えば転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性、デメチラーゼ活性を有する第二のポリペプチドドメインに融合されてある。
(1)転写活性化活性
第二のポリペプチドドメインは転写活性化活性を有することができ、すなわちトランス活性化ドメインであり得る。例えば、内因性哺乳動物遺伝子(例えばヒト遺伝子)の遺伝子発現は、gRNAと一緒にiCas9とトランス活性化ドメインとの融合タンパク質を哺乳動物プロモーター標的に誘導することによって達成できる。トランス活性化ドメインは、1つのVP16タンパク質、多種多様なVP16タンパク質(例えばVP48ドメイン又はVP64ドメイン)、又はNFカッパB転写アクチベーター活性のp65ドメインを含むことができる。例えば、融合タンパク質はiCas9-VP64であり得る。
(2)転写抑制活性
第二のポリペプチドドメインは転写抑制活性を有することができる。第二のポリペプチドドメインは、クルッペル随伴ボックス活性(例えばKRABドメイン)、ERFリプレッサードメイン活性、Mxi1リプレッサードメイン活性、SID4Xリプレッサードメイン活性、Mad-SIDリプレッサードメイン活性、又はTATAボックス結合タンパク質活性を有することができる。例えば、融合タンパク質はdCas9-KRABであり得る。
【0047】
(3)転写解除因子活性
第二のポリペプチドドメインは転写解除因子活性を有することができる。第二のポリペプチドドメインは、真核細胞解除因子1(ERF1)又は真核細胞解除因子3(ERF3)活性を有することができる。
(4)ヒストン改変活性
第二のポリペプチドドメインはヒストン改変活性を有することができる。第二のポリペプチドドメインは、ヒストンデアセチラーゼ、ヒストンアセチルトランスフェラーゼ、ヒストンデメチラーゼ又はヒストンメチルトランスフェラーゼ活性を有することができる。ヒストンアセチルトランスフェラーゼは、p300又はCREB結合タンパク質(CBP)、又はそのフラグメントであり得る。例えば、融合タンパク質はdCas9-p300であり得る。
(5)ヌクレアーゼ活性
第二のポリペプチドドメインは、Cas9タンパク質のヌクレアーゼ活性とは異なるヌクレアーゼ活性を有することができる。ヌクレアーゼ又はヌクレアーゼ活性を有するタンパク質は、核酸のヌクレオチドサブユニット間のホスホジエステル結合を切断できる酵素である。通常ヌクレアーゼはさらにエンドヌクレアーゼ及びエクソヌクレアーゼに分割できるが、該酵素のいくつかは両方のカテゴリーに含まれ得る。周知のヌクレアーゼはデオキシリボヌクレアーゼ及びリボヌクレアーゼである。
【0048】
(6)核酸結合活性
第二のポリペプチドドメインは、核酸結合活性又は核酸結合タンパク質を有することができる。DNA結合ドメイン(DBD)は独立して折りたたまれるタンパク質ドメインであり、前記は二本鎖又は一本鎖DNAを認識する少なくとも1つのモチーフを含む。DBDは特異的なDNA配列(認識配列)を認識するか、又はDNAに対して一般的な親和性を有することができる。核酸結合領域は以下から成る群から選択される:ヘリックス-ターン-ヘリックス領域、ロイシンジッパー領域、翼状ヘリックス領域、翼状ヘリックス-ターン-ヘリックス領域、ヘリックス-ループ-ヘリックス領域、免疫グロブリンフォールド、B3ドメイン、ジンクフィンガー、HMG-ボックス、Wor3ドメイン、TALエフェクターDNA結合ドメイン。
(7)メチラーゼ活性
第二のポリペプチドドメインはメチラーゼ活性を有することができ、前記はメチル基のDNA、RNA、タンパク質、小分子、シトシン又はアデニンへの移転に関与する。第二のポリペプチドドメインはDNAメチルトランスフェラーゼを含むことができる。
(8)デメチラーゼ活性
第二のポリペプチドドメインはデメチラーゼ活性を有することができる。第二のポリペプチドドメインは、メチル(CH3-)基を核酸、タンパク質(特にヒストン)及び他の分子から除去する酵素を含むことができる。また別には、第二のポリペプチドは、DNAの脱メチル化のメカニズムでメチル基をヒドロキシメチルシトシンに変換することができる。第二のポリペプチドはこの反応を触媒することができる。例えば、この反応を触媒できる第二のポリペプチドはTet1であり得る。
【0049】
c.gRNA
gRNAはCRISPR/Cas9依拠系のターゲティングを提供する。gRNAは2つの非コードRNA(crRNA及びtracrRNA)の融合物である。sgRNAは、20bpのプロトスペーサー(所望のDNA標的との相補的な塩基対形成によりターゲティング特異性を付与する)をコードする配列を交換することによって所望される任意のDNA配列を標的とすることができる。gRNAは、天然に存在するcrRNA:tracrRNA複合体(II型エフェクター系に必要とされる)を模倣する。この二重体(例えば42ヌクレオチドのcrRNA及び75ヌクレオチドのtracrRNAを含むことができる)は、Cas9のためにガイドとして作用し、標的核酸を切断する。本明細書で互換的に用いられる“標的領域”、“標的配列”又は“プロトスペーサー”は、CRISPR/Cas9依拠系が標的とする標的遺伝子の領域を指す。CRISPR/Cas9依拠系は少なくとも1つのgRNAを含むことができ、ここでgRNAは異なるDNA配列を標的とする。標的DNA配列はオーバーラップしてもよい。標的配列又はプロトスペーサーは、該プロトスペーサーの3’末端にPAM配列を伴う。異なるII型系は異なるPAMを要求する。例えば、化膿連鎖球菌II型系は“NGG”配列を使用する(ここで“N”は任意のヌクレオチドであり得る)。
【0050】
細胞に投与されるgRNAの数は、少なくとも1つのgRNA、少なくとも2つの異なるgRNA、少なくとも3つの異なるgRNA、少なくとも4つの異なるgRNA、少なくとも5つの異なるgRNA、少なくとも6つの異なるgRNA、少なくとも7つの異なるgRNA、少なくとも8つの異なるgRNA、少なくとも9つの異なるgRNA、少なくとも10の異なるgRNA、少なくとも11の異なるgRNA、少なくとも12の異なるgRNA、少なくとも13の異なるgRNA、少なくとも14の異なるgRNA、少なくとも15の異なるgRNA、少なくとも16の異なるgRNA、少なくとも17の異なるgRNA、少なくとも18の異なるgRNA、少なくとも18の異なるgRNA、少なくとも20の異なるgRNA、少なくとも25の異なるgRNA、少なくとも30の異なるgRNA、少なくとも35の異なるgRNA、少なくとも40の異なるgRNA、少なくとも45の異なるgRNA、少なくとも50の異なるgRNAであり得る。細胞に投与されるgRNAの数は、少なくとも1つのgRNAから少なくとも50の異なるgRNA、少なくとも1つのgRNAから少なくとも45の異なるgRNA、少なくとも1つのgRNAから少なくとも40の異なるgRNA、少なくとも1つのgRNAから少なくとも35の異なるgRNA、少なくとも1つのgRNAから少なくとも30の異なるgRNA、少なくとも1つのgRNAから少なくとも25の異なるgRNA、少なくとも1つのgRNAから少なくとも20の異なるgRNA、少なくとも1つのgRNAから少なくとも16の異なるgRNA、少なくとも1つのgRNAから少なくとも12の異なるgRNA、少なくとも1つのgRNAから少なくとも8つの異なるgRNA、少なくとも1つのgRNAから少なくとも4つの異なるgRNA、少なくとも4つの異なるgRNAから少なくとも50の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも25の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも4つの異なるgRNAから少なくともの16の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも12の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも8つの異なるgRNA、少なくとも8つの異なるgRNAから少なくとも50の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも25の異なるgRNA、8つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも16の異なるgRNA、又は8つの異なるgRNAから少なくとも12の異なるgRNAであり得る。
【0051】
gRNAは、標的遺伝子配列の相補性ポリヌクレオチド配列とその後に続くPAM配列を含むことができる。gRNAは、該相補性ポリヌクレオチド配列の5’末端に“G”を含むことができる。gRNAは、標的DNA配列の少なくとも10塩基対、少なくとも11塩基対、少なくとも12塩基対、少なくとも13塩基対、少なくとも14塩基対、少なくとも15塩基対、少なくとも16塩基対、少なくとも17塩基対、少なくとも18塩基対、少なくとも19塩基対、少なくとも20塩基対、少なくとも21塩基対、少なくとも22塩基対、少なくとも23塩基対、少なくとも24塩基対、少なくとも25塩基対、少なくとも30塩基対、少なくとも35塩基対の相補性ポリヌクレオチド配列とその後に続くPAM配列を含むことができる。PAM配列は“NGG”でよく、ここで“N”は任意のヌクレオチドであり得る。gRNAは、標的遺伝子のプロモーター領域、エンハンサー領域又は転写領域の少なくとも1つを標的とすることができる。gRNAは、配列番号:5−40、65−144、492−515、540−563、585−625、462(
図40)、464(
図41)及び465(
図41)の少なくとも1つの核酸配列を含むことができる。
gRNAは任意の核酸配列を標的とすることができる。該核酸配列標的はDNAであり得る。該DNAは任意の遺伝子であり得る。例えば、gRNAは、遺伝子、例えばBRN2、MYT1L、ASCL1、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2、MYOD1、OCT4、及びDMDを標的とすることができる。
【0052】
(1)ジストロフィン
ジストロフィンはロッド状の細胞質タンパク質であり、筋線維の細胞質骨格を周囲の細胞外マトリックスと細胞膜を貫通して結びつけるタンパク質複合体の一部分である。ジストロフィンは、細胞膜のジストログリカン複合体に構造的安定性を提供する。ジストロフィン遺伝子はXp21遺伝子座で2.2メガ塩基を占める。一次転写物は約2,400kbであり、成熟mRNAは約14kbである。79エクソンが3500アミノ酸を超えるタンパク質をコードする。正常な骨格筋組織は少量のジストロフィンしか含まないが、異常発現における無ジストロフィンは重篤で治癒不能症状をもたらす。ジストロフィン遺伝子のいくつかの変異は、罹患患者で欠損ジストロフィンの産生及び重大なジストロフィン表現型をもたらす。ジストロフィン遺伝子のいくつかの変異は、罹患患者で部分的に機能するジストロフィンタンパク質及びはるかに穏やかなジストロフィン表現型をもたらす。
DMDはジストロフィン遺伝子のナンセンス変異又はフレームシフト変異を生じる遺伝性又は偶発性の変異の結果である。天然に存在する変異及びそれらの結果はDMDについては比較的よく理解されている。エクソン45-55領域で生じるインフレーム欠損は高度に機能的なジストロフィンタンパク質を生成することができ、多くのキャリアーが無症状であるか、又は軽度の症状を示す。さらにまた、理論的に60%を超える患者が、ジストロフィン遺伝子のこの領域のエクソンを標的とすることによって治療することが可能である。DMD患者の破壊されたジストロフィンのリーディングフレームを、mRNAスプライシング時に非本質的エクソンをスキッピングさせ、内部に欠損があるが機能的なジストロフィンタンパク質を生成することによって回復させる試みが実施されてきた。内部ジストロフィンエクソンの欠失は適切なリーディングフレームを保持するが、重篤性が軽減されたベッカー筋ジストロフィーを引き起こす。
【0053】
(2)ジストロフィンを標的とするCRISPR/Cas9依拠系
ジストロフィン遺伝子に特異的なCRISPR/Cas9依拠系が本明細書で開示される。該CRISPR/Cas9依拠系は、Cas9及びジストロフィン遺伝子を標的とする少なくとも1つのgRNAを含むことができる。CRISPR/Cas9依拠系は標的遺伝子と結合しこれを認識できる。標的領域は、修繕プロセス時の挿入又は欠失がフレーム変換によってジストロフィンリーディングフレームを回復させることができるように、存在し得るアウトフレーム終止コドンのすぐ上流で選択できる。標的領域はまた、修繕プロセス時の挿入又は欠失がスプライス部位の破壊及びエクソン除去によってスプライシングを破壊しジストロフィンリーディングフレームを回復することができるように、スプライスアクセプター部位又はスプライスドナー部位であってもよい。標的領域はまた、修繕プロセス時の挿入又は欠失が、終止コドンの除去又は破壊によってジストロフィンリーディングフレームを回復させることができるように異常な終止コドンであってもよい。
エクソン45-55の変異ホットスポットに狙いを定めて、エクソン内の小さな挿入及び欠失又は1つ以上のエクソンの大きな欠失のいずれかを導入することによって、単一又は複合sgRNAを設計しジストロフィンリーディングフレームを回復させることができる。Cas9及び1つ以上のsgRNAによる処置の後、ジストロフィン発現は、in vitroでデュシェンヌ型患者の筋肉細胞で回復させることができる。免疫不全マウスに遺伝的に修正された患者の細胞を移植した後、ヒトジストロフィンがin vivoで検出された。重大なことに、CRISPR/Cas9系のこの唯一無比の複合遺伝子編集性能は、汎用又は患者特異的遺伝子編集アプローチによって患者の変異の62%までを修正できるこの変異ホットスポット領域で大きな欠失を効率的に作出することを可能にする。
CRISPR/Cas9依拠系は種々の配列及び長さのgRNAを用いることができる。gRNAの例は表6で見つけることができる。CRISPR/Cas9依拠系は配列番号:65−144又はその相補物の核酸配列を標的とすることができる。gRNAは、配列番号:65−144又はその相補物から成る群から選択されるヌクレオチド配列を含むことができる。例えば、開示のCRISPR/Cas9依拠系を操作して、ジストロフィン遺伝子のエクソン51で高度に効率的な遺伝子編集が媒介された。これらのCRISPR/Cas9依拠系は、DMD患者由来の細胞でジストロフィンタンパク質の発現を回復させた。
【0054】
(a)エクソン51及び45-55
エクソン51はDMDでしばしばフレーム破壊欠損と隣接する。エクソンスキッピングによるジストロフィン転写物のエクソン51の除去を利用して、全DMD患者のほぼ15%を治療することができる。このクラスのDMD変異は、理想的にはNHEJ系ゲノム編集及びHDRによる永久的修正に適している。ヒトジストロフィン遺伝子のエクソン51の標的誘導改変のために、本明細書に記載するCRISPR/Cas9依拠系を発展させた。これらのCRISPR/Cas9依拠系をヒトDMD細胞にトランスフェクトし、効率的な遺伝子改変及び修正リーディングフレームへの変換を媒介させた。タンパク質の復元はフレーム回復に付随し、CRISPR/Cas9依拠系処理細胞の混合集団で検出された。同様に、ジストロフィン転写物におけるエクソン45-55の除去を用いて、全DMD患者のほぼ62%が治療された。
(3)AAV/CRISPR構築物
AAVを用いて、多様な構築物構造を利用するCRISPRをデリバーできる(
図39参照)。例えば、AAVはCas9及びgRNA発現カセットを別々のベクターでデリバーできる。また別には、小さなCas9タンパク質(黄色ブドウ球菌(Staphylococcus aureus)又は髄膜炎菌種に由来する)が用いられるならば、Cas9及び2つまでのgRNAカセットの両方を4.7kbのパッケージ制限内で単一AAVベクター中にまとめることができる(
図39参照)。
【0055】
5.複合CRISPR/Cas9依拠系
本開示は、CRISPR/Cas9依拠系(例えばCas9又はdCas9)及び1つ以上の内因性遺伝子を標的とする多種多様なgRNAを含む、複合CRISPR/Cas9依拠系を目的とする。このプラットフォームは便利なゴールデンゲートクローニング方法を利用して、4つまでの独立したsgRNA発現カセットを単一レンチウイルスベクターに迅速に取り込む。各sgRNAは効率的に発現され、不朽化及び初代ヒト細胞株で分散した遺伝子座において複合的な遺伝子編集を媒介することができた。安定的にdCas9-VP64を発現する細胞株における一過性の転写活性化は、1つから4つのsgRNAによる相乗的活性化によって調製できることが示された。さらにまた、単一レンチウイルスベクターは、不朽化及び初代ヒト細胞で持続的で長期の内因性遺伝子発現を誘導できる。この系は、モデル及び初代細胞株で効率的な複合的遺伝子編集を可能にする単一レンチウイルスベクターの迅速なアッセンブリーを可能にする。
複合CRISPR/Cas9依拠系は、転写活性化の潜在的能力及び転写活性化の調整可能な誘導を提供する。ゴールデンゲートアッセンブリーによって容易に生成したとき、最終的なベクターは、独立したプロモーターから発現される1つ、2つ、3つ又は4つのsgRNAに加えて構成的なCas9又はdCas9-VP64を発現する。各プロモーターはsgRNAを効率的に発現することができ、前記は類似レベルのCas9ヌクレアーゼ活性を誘導する。さらにまた、Cas9及び別個の遺伝子座を標的とする4つのsgRNAを発現する単一ベクターのレンチウイルス系デリバリーは、4つ全ての遺伝子座の同時複合遺伝子編集をもたらす。一過性及び安定的環境の両方で2つの内因性遺伝子の調整可能な転写活性化は、sgRNAを含む又はsgRNAを含まないCas9のレンチウイル系スデリバリーを用いて達成された。初代ヒト細胞で高度に効率的で長期の遺伝子活性化が達成される。この系は、したがってヒト細胞で複合的遺伝子編集及び長期の転写活性化を生じる有望で効率的な方法である。
【0056】
複合CRISPR/Cas9依拠系は、多種多様な遺伝子を同時に不活化する効率的な複合的遺伝子編集を可能にする。CRISPR/Cas9依拠系は、ただ1つのCas9タンパク質を2つ以上のsgRNAと共同発現することによって、多種多様な別個のゲノム遺伝子座を同時に標的とすることができ、この系を複合遺伝子編集又は相乗的活性化の応用に唯一無比のものにする。CRISPR/Cas9依拠系は、発現されるsgRNA 分子を単純に改変することによって、新しい部位への分子ターゲティングプロセスを大いに促進する。単一レンチウイルスベクターをこれらの成分の誘導可能な制御を達成する方法と(化学的又は光遺伝学的に)一緒にして、遺伝子調節の時間及び空間の両方における動的変化の解明を促進できる。
複合CRISPR/Cas9依拠系は、2つ以上の内因性遺伝子を転写的に活性化することができる。複合CRISPR/Cas9依拠系は、2つ以上の内因性遺伝子を転写的に抑制することができる。例えば、少なくとも2つの内因性遺伝子、少なくとも3つの内因性遺伝子、少なくとも4つの内因性遺伝子、少なくとも5つの内因性遺伝子、又は少なくとも10の内因性遺伝子を複合CRISPR/Cas9依拠系によって活性化又は抑制することができる。2つから15の遺伝子、2つから10の遺伝子、2つから5つの遺伝子、5つから15の遺伝子、又は5つから10の遺伝子を複合CRISPR/Cas9依拠系によって活性化又は抑制することができる。
【0057】
(1)改変レンチウイルスベクター
複合CRISPR/Cas9依拠系は改変レンチウイルスベクターを含むことができる。改変レンチウイルスベクターは、融合タンパク質をコードする第一のポリヌクレオチド配列及び少なくともの1つのsgRNAをコードする第二のポリヌクレオチド配列を含む。融合タンパク質は、上記に記載のCRISPR/Cas9依拠系の融合タンパク質であり得る。第一のポリヌクレオチド配列はプロモーターに作動可能に連結され得る。プロモーターは、構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターであり得る。
第二のポリヌクレオチド配列は少なくとも1つのsgRNAをコードする。例えば、第二のポリヌクレオチド配列は、少なくとも1つのsgRNA、少なくとも2つのsgRNA、少なくとも3つのsgRNA、少なくとも4つのsgRNA、少なくとも5つのsgRNA、少なくとも6つのsgRNA、少なくとも7つのsgRNA、少なくとも8つのsgRNA、少なくとも9つのsgRNA、少なくとも10のsgRNA、少なくとも11のsgRNA、少なくとも12のsgRNA、少なくとも13のsgRNA、少なくとも14のsgRNA、少なくとも15のsgRNA、少なくとも16のsgRNA、少なくとも17のsgRNA、少なくとも18のsgRNA、少なくとも19のsgRNA、少なくとも20のsgRNA、少なくとも25のsgRNA、少なくとも30のsgRNA、少なくとも35のsgRNA、少なくとも40のsgRNA、少なくとも45のsgRNA、少なくとも50のsgRNAをコードすることができる。第二のポリヌクレオチド配列は、1つのsgRNAから50のsgRNA、1つのsgRNAから45のsgRNA、1つのsgRNAから40のsgRNA、1つのsgRNAから35のsgRNA、1つのsgRNAから30のsgRNA、1つのsgRNAから異なる25のsgRNA、1つのsgRNAから20のsgRNA、1つのsgRNAから16のsgRNA、1つのsgRNAから8つの異なるsgRNA、4つの異なるsgRNAから50の異なるsgRNA、4つの異なるsgRNAから45の異なるsgRNA、4つの異なるsgRNAから40の異なるsgRNA、4つの異なるsgRNAから35の異なるsgRNA、4つの異なるsgRNAから30の異なるsgRNA、4つの異なるsgRNAから25の異なるsgRNA、4つの異なるsgRNAから20の異なるsgRNA、4つの異なるsgRNAから16の異なるsgRNA、4つの異なるsgRNAから8つの異なるsgRNA、8つの異なるsgRNAから50の異なるsgRNA、8つの異なるsgRNAから45の異なるsgRNA、8つの異なるsgRNAから40の異なるsgRNA、8つの異なるsgRNAから35の異なるsgRNA、8つの異なるsgRNAから30の異なるsgRNA、8つの異なるsgRNAから25の異なるsgRNA、8つの異なるsgRNAから20の異なるsgRNA、8つの異なるsgRNAから16の異なるsgRNA、16の異なるsgRNAから50の異なるsgRNA、16の異なるsgRNAから45の異なるsgRNA、16の異なるsgRNAから40の異なるsgRNA、16の異なるsgRNAから35の異なるsgRNA、16の異なるsgRNAから30の異なるsgRNA、16の異なるsgRNAから25の異なるsgRNA、16の異なるsgRNAから20の異なるsgRNAをコードすることができる。異なるsgRNAをコードするポリヌクレオチド配列の各々はプロモーターに作動可能に連結され得る。異なるsgRNAに作動可能に連結されるプロモーターは同じプロモーターでもよい。異なるsgRNAに作動可能に連結されるプロモーターは異なるプロモーターでもよい。プロモーターは、構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターであり得る。
少なくとも1つのsgRNAが標的遺伝子又は遺伝子座と結合できる。2つ以上のsgRNAが含まれる場合は、sgRNAの各々は1つの標的遺伝子座内の異なる標的領域と結合するか、又はsgRNAの各々は異なる遺伝子の遺伝子座内の異なる標的と結合する。融合タンパク質は、Cas9タンパク質又はiCas9-VP64タンパク質を含むことができる。融合タンパク質は、VP64ドメイン、p300ドメイン、又はKRABドメインを含むことができる。
【0058】
6.位置特異的ヌクレアーゼ
上記記載の組成物は、標的領域と結合しこれを切断する位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。位置特異的ヌクレアーゼは操作することができる。例えば、操作される位置特異的ヌクレアーゼはCRISPR/Cas9依拠系、ZFN又はTALENであり得る。位置特異的ヌクレアーゼは、骨格筋又は心筋の細胞のゲノムの遺伝子又は遺伝子座と結合しこれを切断できる。例えば、該遺伝子又は遺伝子座はRosa26遺伝子座又はジストロフィン遺伝子であり得る。
a.CRISPR/Cas9依拠系
上記に記載のCRISPR/Cas9依拠系を用いて標的誘導ゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。
b.ジンクフィンガーヌクレアーゼ(ZFN)
位置特異的ヌクレアーゼはZFNであり得る。単一ジンクフィンガーは約30アミノ酸を含み、該ドメインは、塩基対毎に一アミノ酸側鎖の相互作用を介してDNAの3つの連続する塩基対と結合することによって機能する。ジンクフィンガーモチーフのモジュール構造はいくつかのドメインの一連の結合を許容し、3ヌクレオチドの倍数の延長配列の認識及びターゲティングを可能にする。これらの標的誘導DNA結合ドメインをヌクレアーゼドメイン(例えばFokI)と一緒にして、位置特異的ヌクレアーゼを生成できる。前記は“ジンクフィンガーヌクレアーゼ”(ZFN)と称され、これを用いて標的誘導されたゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(NHEJ及びHDR)の一方をもたらす。例えば、ZFNは、Rosa26遺伝子座(Perez-Pinera et al. Nucleic Acids Research (2012) 40:3741-3752)又はジストロフィン遺伝子を標的とすることができる。ZFNの例は表1及び
図35−38に示される。表1では、DNA認識へリックスは下線が付され、“Fok ELD-S”及び“Fok KKR-S”はFokIヌクレアーゼドメインを指す(前記はジンクフィンガータンパク質DNA結合ドメインと融合される)。
図35−38では、標的部位(すなわち配列番号:442、445、448及び453)内の標的DNA配列及びZFNアミノ酸配列(すなわち配列番号:443、444、446、447、449−452及び455)内のDNA認識ヘリックスはそれぞれ下線が付されている。
【0060】
c.TALエフェクターヌクレアーゼ(TALEN)
TALENを用いて、位置特異的二本鎖切断を標的誘導ゲノム遺伝子座に導入することができる。位置特異的二本鎖切断は、2つの別個のTALENが近くのDNA配列に結合し、それによってFokIのダイマー化及び標的DNAの切断が許容されるときに生じる。TALENは、それらの遺伝子編集における高い成功率及び効率性によって遺伝子編集を進歩させた。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(相同性指向修繕(HDR)又は非相同性末端接合(NHEJ)経路)の一方をもたらす。TALENは、遺伝子疾患に関与する任意の遺伝子を標的とするように設計できる。
TALENは、ヌクレアーゼ及びTALEN標的領域内の標的遺伝子と結合するTALE DNA結合ドメインを含むことができる。標的遺伝子は変異(例えばフレームシフト変異又はナンセンス変異)を有することができる。標的遺伝子が未成熟終止コドンを生じる変異を有する場合、TALENは、未成熟終止コドンの上流又は下流のヌクレオチド配列を認識しこれと結合するように設計され得る。“TALEN標的領域”は2つのTALENのための結合領域及びスペーサー領域(前記は結合領域の間に存在する)を含む。2つのTALENはTALEN標的領域内の異なる結合領域と結合し、その後でTALEN標的領域は切断される。TALENの例は国際特許出願No.PCT/US2013/038536(前記文献は参照によりその全体が本明細書に含まれる)に記載されている。
【0061】
7.転写アクチベーター
上記記載の組成物は、標的遺伝子を活性化する転写アクチベーターをコードするヌクレオチド配列を含む。転写アクチベーターは操作することができる。例えば、操作された転写アクチベーターはCRISPR/Cas9依拠系、ジンクフィンガー融合タンパク質、又はTALE融合タンパク質であり得る。
a.CRISPR/Cas9依拠系
上記に記載のCRISPR/Cas9依拠系を用いて、RNAとともに標的遺伝子の転写を活性化できる。CRISPR/Cas9依拠系は上記記載の融合タンパク質を含むことができ、ここで第二のポリペプチドドメインは転写活性化活性又はヒストン改変活性を有する。例えば、第二のポリペプチドドメインはVP-64又はp300を含むことができる。
b.ジンクフィンガー融合タンパク質
転写アクチベーターはジンクフィンガー融合タンパク質であり得る。上記記載のジンクフィンガーの標的誘導DNA結合ドメインは、転写活性化活性又はヒストン改変活性を有するドメインと一緒にできる。例えば、該ドメインはVP64又はp300を含むことができる。
c.TALE融合タンパク質
TALE融合タンパク質を用いて標的遺伝子の転写を活性化できる。TALE融合タンパク質は、TALE DNA結合ドメイン及び転写活性化活性又はヒストン改変活性を有するドメインを含むことができる。例えば、該ドメインはVP64又はp300を含むことができる。
【0062】
8.組成物
本発明は、遺伝子発現の変更及び細胞若しくは対象動物のゲノムDNAの操作又は変更のための組成物を目的とする。該組成物はまたウイルスデリバリー系を含むことができる。
a.筋肉におけるゲノム編集のための組成物
本発明は、対象動物の骨格筋又は心筋で標的遺伝子をゲノム編集する組成物を目的とする。該組成物は、改変されたAAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。組成物は骨格筋又は心筋に位置特異的ヌクレアーゼの活性形をデリバーする。組成物はさらにドナーDNA又はトランスジーンを含むことができる。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患及び/又は他の骨格筋若しくは心筋の症状に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。
標的遺伝子は、細胞の分化又は任意の他のプロセス(前記プロセスでは遺伝子の活性化抑制又は破壊が所望される)に関与し得るか、又は変異(例えば欠失、フレームシフト変異又はナンセンス変異)を有し得る。標的遺伝子が、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位を有する場合、該位置特異的ヌクレアーゼは、該未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位から上流又は下流のヌクレオチド配列を認識してこれと結合するように設計され得る。また位置特異的ヌクレアーゼを用いて、スプライスアクセプター及びドナーを狙い撃ちして未成熟終止コドンのスキッピングを導入するか、又は破壊されたリーディングフレームを回復させることによって正常な遺伝子スプライシングを破壊することができる。位置特異的ヌクレアーゼは、オフターゲット変化をゲノムのタンパク質コード領域に媒介することもしないこともある。
【0063】
b.アデノ随伴ウイルスベクター
上記に記載の組成物は改変されたアデノ随伴ウイルス(AAV)ベクターを含む。改変AAVベクターは強化された心筋及び骨格筋向性を有することができる。改変AAVベクターは哺乳動物細胞に位置特異的ヌクレアーゼをデリバーし、これを発現することができる。例えば、改変AAVベクターはAAV-SASTGベクターであり得る(Piacentino et al. (2012) Human Gene Therapy 23:635-646)。改変AAVベクターは骨格筋及び心筋にヌクレアーゼをin vivoでデリバーできる。改変AAVベクターは、いくつかのキャプシド(AAV1、AAV2、AAV5、AAV6、AAV8及びAAV9を含む)の1つ以上を土台にすることができる。改変AAVベクターは、また別の筋向性AAVキャプシドを含むAAV2シュードタイプを土台にできる。前記は例えばAAV2/1、AAV2/6、AAV2/7、AAV2/8、AAV2/9、AAV2.5及びAAV/SASTGベクターであり、全身的デリバリー又は局所的デリバリーによって骨格筋又は心筋に効率的に形質導入する(Seto et al. Current Gene Therapy (2012) 12:139-151)。
c.CRISPR/Cas9依拠系
本開示はまた、上記に記載の少なくとも1つのCRISPR/Cas9依拠系のDNAターゲティング系又は組成物を提供する。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。該組成物はCRISPR/Cas9依拠系を含み、前記系は、上記に記載のCas9タンパク質又はCas9融合タンパク質を含む。CRISPR/Cas9依拠系はまた上記に記載の少なくとも1つのgRNAを含むことができる。
d.複合CRISPR/Cas9依拠系
本開示はまた上記に記載の複合CRISPR/Cas9依拠系を提供する。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。2つ以上の遺伝子を標的とするためにこれらの組成物を用いることができる。該組成物は改変レンチウイルスベクターを含み、前記ベクターは、上記に記載のCas9タンパク質又はCas9融合タンパク質を含むCRISPR/Cas9依拠系、及び上記に記載の2つ以上のgRNAを含む。
【0064】
9.使用方法
該組成物の可能な応用は科学及び生物工学の多くの領域にわたって広がっている。開示の組成物を用いて、疾患を引き起こす遺伝子変異を修繕することができる。開示の組成物を遺伝子の破壊に用いて、それにより遺伝子破壊は筋肉の再生又は筋力の強化、又は筋肉の加齢の減少をもたらすことができる。開示の組成物を用いて、骨格筋又は心筋から全身的に発現される治療遺伝子(例えば凝固因子又はモノクローナル抗体)を導入することができる。開示の組成物を用いて、哺乳動物の遺伝子発現を調整することができる。開示の組成物を用いて、細胞をトランス分化させるか若しくは分化を誘導するか、又は細胞で変異遺伝子を修正できる。細胞及び遺伝子治療に関連する遺伝子の活性化、遺伝的再プログラミング並びに再生医療の例が提供される。RNAによってガイドされる転写アクチベーターを用いて、細胞系列の細目を再プログラムすることができる。細胞の運命に関する重要な調節因子をコードする内因性遺伝子の活性化は、これら因子の強制的な過剰発現よりはむしろ、遺伝的再プログラミング、トランス分化及び/又は誘導分化のためにより迅速、効率的、安定的又は特異的な方法を潜在的にもたらし得る。
【0065】
10.筋肉でゲノム編集する方法
本開示は対象動物の骨格筋又は心筋でゲノム編集する方法を目的とする。該方法は、上記に記載の骨格筋又は心筋でゲノム編集する組成物を、対象動物の骨格筋又は心筋に投与する工程を含む。ゲノム編集は、変異遺伝子の修正又はトランスジーンの挿入を含むことができる。変異遺伝子の修正は、該変異遺伝子の欠失、再整理又は取替えを含むことができる。変異遺伝子の修正は、ヌクレアーゼ媒介NHEJ又はHDRを含むことができる。
【0066】
11.CRISPR/Cas9依拠系を使用する方法
CRISPR/Cas9依拠系の可能な応用は科学及び生物工学の多くの領域にわたって広がっている。開示されたCRISPR/Cas9依拠系を用いて、哺乳動物の遺伝子発現を調整することができる。開示のCRISPR/Cas9依拠系を用いて、細胞をトランス分化させるか若しくは分化を導入するか、又は細胞で変異遺伝子を修正することができる。細胞及び遺伝子治療に関連する遺伝子の活性化、遺伝的再プログラミング並びに再生医療の例が提供される。RNAによってガイドされる転写アクチベーターを用いて、細胞系列の細目を再プログラムすることができる。これらの実験では再プログラミングは不完全で非効率的であったが、この方法を改善し得る多くの方法が存在する。前記にはiCas9-VP64/gRNA組合せ物の反復トランスフェクション、前記因子の安定的な発現、及びニューロン表現型へのトランス分化のためにAscl1に加えて多種多様な遺伝子(例えばBrn2及びMytl1)の標的誘導が含まれる。細胞の運命に関する重要な調節因子をコードする内因性遺伝子の活性化は、これら因子の強制的な過剰発現よりはむしろ、遺伝的再プログラミング及び細胞のトランス分化又は誘導分化のためにより迅速、効率的、安定的又は特異的な方法を潜在的にもたらし得る。最後に、Cas9と他のドメイン(抑制的及び後成的改変ドメインを含む)との融合は、RNAによってガイドされる転写調節因子のはるかに大きな多様性を提供し、哺乳動物細胞操作のための他のRNA系ツールを補完し得よう。
【0067】
a.遺伝子発現を活性化する方法
本開示は、内因性遺伝子(例えば哺乳動物遺伝子)の発現を活性化するメカニズムを提供する。前記メカニズムは、上記に記載のCRISPR/Cas9依拠系を用いRNAを介して転写アクチベーターをプロモーターに標的誘導することによる。これは、以前に記載された配列特異的DNA結合タンパク質の操作による方法とは基本的に異なり、標的誘導遺伝子調節の機会を提供できる。gRNA 発現プラスミドの生成は単純に2つの短いカスタムオリゴヌクレオチドの合成及び一クローニング工程を必要とするので、多くの新規な遺伝子アクチベーターを迅速かつ経済的に生成することができる。gRNAはまたin vitro転写に続いて細胞に直接トランスフェクトすることができる。単一プロモーターに標的誘導される多種多様なgRNAを示したが、多種多様なプロモーターへの同時標的誘導もまた可能であり得よう。タンパク質ではなくRNAによるゲノム標的部位の認識はまた、後成的に改変される部位(例えばメチル化DNA)を標的とすることの限界を回避し得る。
DNA結合タンパク質の操作による従来の方法とは対照的に、転写活性化ドメインと融合させたCas9はガイドRNA分子と一緒にすることによって標的へ誘導され、内因性ヒト遺伝子の発現を誘導することができる。標的誘導遺伝子活性化のためのこの単刀直入的で万能性を有するアプローチは新規なタンパク質を操作する必要性を回避し、広範囲に分散する合成遺伝子の調節を可能にする。
本方法は、細胞又は対象動物に、上記記載のCRISPR/Cas9依拠系、前記CRISPR/Cas9依拠系をコードするポリヌクレオチド若しくはベクター、又は少なくとも1つのCRISPR/Cas9依拠系を含むDNAターゲティング系若しくは組成物を投与する工程を含むことができる。前記方法は、CRISPR/Cas9依拠系の投与、例えば転写活性化ドメインを含むCas9融合タンパク質又は前記Cas9融合タンパク質をコードするヌクレオチド配列の投与を含むことができる。Cas9融合タンパク質は、転写活性化ドメイン(例えばVP16タンパク質)又は転写コアクチベーター(例えばp300タンパク質)を含むことができる。
【0068】
(1)dCas9-VP16
Cas9融合タンパク質は、転写活性化ドメイン(例えばVP16タンパク質)を含むことができる。該転写活性化ドメインは、少なくとも1つのVP16タンパク質、少なくとも2つのVP16タンパク質、少なくとも3つのVP16タンパク質、少なくと4つのVP16タンパク質(すなわちVP64アクチベータードメイン)、少なくとも5つのVP16タンパク質、少なくとも6つのVP16タンパク質、少なくとも6つのVP16タンパク質、又は少なくとも10のVP16タンパク質を含むことができる。Cas9タンパク質は、ヌクレアーゼ活性が不活化されてあるCas9タンパク質でもよい。例えば、融合タンパク質のCas9タンパク質はiCas9(配列番号:1のアミノ酸36−1403)でもよく、前記はD10A及びH840Aのアミノ酸置換を含む。Cas9融合タンパク質はiCas9-VP64であり得る。
(2)dCas9-p300
Cas9融合タンパク質は転写共同活性化ドメイン(例えばp300タンパク質)を含むことができる。p300タンパク質(EP300又はE1A結合タンパク質p300としてもまた知られている)はEP300遺伝子によってコードされ、体中の組織の多くの遺伝子の活性を調節する。p300タンパク質は、細胞増殖及び分裂の調節、細胞の成熟及び特殊機能(分化)提示の促進、及び癌性腫瘍の増殖の予防で役割を果たす。p300タンパク質は、転写因子とタンパク質複合体(細胞の核内で転写を実行する)を結びつけることによって転写を活性化させる。p300の転写因子との相互作用は、1つ以上のp300ドメイン、すなわち核内受容体相互作用ドメイン(RID)、CREG及びMYB相互作用ドメイン(KIX)、システイン/ヒスチジン領域(TAZ1/CH1及びTAZ2/CH3)並びにインターフェロン応答結合ドメイン(IBiD)によって達成される。p300の最後の4つのドメイン(KIX、TAZ1、TAZ2及びIBiD)は、それぞれ転写因子p53の両トランス活性化ドメイン、9アミノ酸TADをまたぐ配列と固く結合する。前記タンパク質は、クロマチンリモデリングを介して転写を調節するヒストンアセチルトランスフェラーゼとして機能し、細胞増殖及び分化のプロセスで重要である。前記は、リン酸化CREBタンパク質と特異的に結合することによってcAMP遺伝子調節を媒介する。
【0069】
p300タンパク質は以下を活性化できる:MAD(Mothers against decapentaplegic)ホモローグ7、MAF、TSG101、ペルオキシソーム増殖因子活性化受容体アルファ、NPAS2、PAX6、DDX5、MYBL2、MADホモローグ1、MADホモローグ2、類リンパエンハンサー結合因子1、SNIP1、TRERF1、STAT3、EID1、RAR関連オーファン受容体アルファ、ELK1、HIF1A、ING5、ペルオキシソーム増殖因子活性化受容体ガンマ、SS18、TCF3、Zif268、エストロジェン受容体アルファ、GPS2、MyoD、YY1、ING4、PROX1、CITED1、HNF1A、MEF2C、MEF2D、MAML1、ツィスト転写因子、PTMA、IRF2、DTX1、フラップ構造特異的エンドヌクレアーゼ1、筋細胞特異的エンハンサー因子2A、CDX2、BRCA1、HNRPU、STAT6、CITED2、RELA、TGS1、CEBPB、Mdm2、NCOA6、NFATC2、甲状腺ホルモン受容体アルファ、BCL3、TFAP2A、PCNA、P53及びTAL1。
転写共同活性化ドメインはヒトp300タンパク質又はそのフラグメントを含むことができる。転写共同活性化ドメインは、野生型ヒトp300タンパク質若しくは変異ヒトp300タンパク質、又は前記のフラグメントを含むことができる。転写共同活性化ドメインは、ヒトp300タンパク質の中心リジンアセチルトランスフェラーゼドメイン、すなわちp300HATコア(“p300WTコア”としてもまた知られている、
図58参照)を含むことができる。Cas9タンパク質は、ヌクレアーゼ活性が不活化されてあるCas9タンパク質でもよい。例えば、融合タンパク質のCas9タンパク質はiCas9(配列番号:1のアミノ酸36−1403)でもよく、前記はD10A及びH840Aのアミノ酸置換を含む。Cas9融合タンパク質はiCas9-p300WTコアであり得る。
【0070】
(3)gRNA
本方法はまた細胞又は対象動物にCRISPR/Cas9依拠系少なくとも1つのgRNAを投与する工程を含み、ここで該gRNAは異なるDNA配列を標的とする。標的DNA配列はオーバーラップしていてもよい。細胞に投与されるgRNAの数は、少なくとも1つのgRNA、少なくとも2つの異なるgRNA、少なくとも3つの異なるgRNA、少なくとも4つの異なるgRNA、少なくとも5つの異なるgRNA、少なくとも6つの異なるgRNA、少なくとも7つの異なるgRNA、少なくとも8つの異なるgRNA、少なくとも9つの異なるgRNA、少なくとも10の異なるgRNA、少なくとも11の異なるgRNA、少なくとも12の異なるgRNA、少なくとも13の異なるgRNA、少なくとも14の異なるgRNA、少なくとも15の異なるgRNA、少なくとも16の異なるgRNA、少なくとも17の異なるgRNA、少なくとも18の異なるgRNA、少なくとも18の異なるgRNA、少なくとも20の異なるgRNA、少なくとも25の異なるgRNA、少なくとも30の異なるgRNA、少なくとも35の異なるgRNA、少なくとも40の異なるgRNA、少なくとも45の異なるgRNA、少なくとも50の異なるgRNAであり得る。細胞に投与されるgRNAの数は、少なくとも1つのgRNAから少なくとも50の異なるgRNA、少なくとも1つのgRNAから少なくとも45の異なるgRNA、少なくとも1つのgRNAから少なくとも40の異なるgRNA、少なくとも1つのgRNAから少なくとも35の異なるgRNA、少なくとも1つのgRNAから少なくとも30の異なるgRNA、少なくとも1つのgRNAから少なくとも25の異なるgRNA、少なくとも1つのgRNAから少なくとも20の異なるgRNA、少なくとも1つのgRNAから少なくとも16の異なるgRNA、少なくとも1つのgRNAから少なくとも12の異なるgRNA、少なくとも1つのgRNAから少なくとも8つの異なるgRNA、少なくとも1つのgRNAから少なくとも4つの異なるgRNA、少なくとも4つのgRNAから少なくとも50の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも25の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも4つの異なるgRNAから少なくともの16の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも12の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも8つの異なるgRNA、少なくとも8つの異なるgRNAから少なくとも50の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも25の異なるgRNA、8つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも16の異なるgRNA、8つの異なるgRNAから少なくとも12の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも8つの異なるgRNAであり得る。
gRNAは、標的DNA配列の相補性ポリヌクレオチド配列とその後に続くNGGを含むことができる。gRNAは、該相補性ポリヌクレオチド配列の5’末端に“G”を含むことができる。gRNAは、標的DNA配列の少なくとも10塩基対、少なくとも11塩基対、少なくとも12塩基対、少なくとも13塩基対、少なくとも14塩基対、少なくとも15塩基対、少なくとも16塩基対、少なくとも17塩基対、少なくとも18塩基対、少なくとも19塩基対、少なくとも20塩基対、少なくとも21塩基対、少なくとも22塩基対、少なくとも23塩基対、少なくとも24塩基対、少なくとも25塩基対、少なくとも30塩基対、少なくとも35塩基対の相補性ポリヌクレオチド配列とその後に続くNGGを含むことができる。gRNAは、標的遺伝子のプロモーター領域、エンハンサー領域又は転写領域の少なくとも1つを標的とすることができる。gRNAは、配列番号:5−40、65−144、492−515、540−563及び585−625の少なくとも1つの核酸配列を含むことができる。
【0071】
b.遺伝子発現を抑制する方法
本開示は、内因性遺伝子(例えば哺乳動物遺伝子)の発現を抑制するメカニズムを提供する。前記メカニズムは、上記に記載のCRISPR/Cas9依拠系を用いRNAを介してゲノム調節エレメント(例えば遠位エンハンサー)を標的誘導することによる。Cas9融合タンパク質は、転写リプレッサー(例えばKRABリプレッサー)を含むことができる。Cas9融合タンパク質はdCas9-KRABであり得る。dCas9-KRABは、ヘテロクロマチン形成因子を標的誘導遺伝子座に補充することによって、後成的な遺伝子調節にさらに影響を与えることができる。CRISPR/Cas9-KRAB系を用いて遺伝子の転写を抑制できるが、また前記を用いてゲノム調節エレメントを標的とすることができる(前記調節エレメントには伝統的な抑制方法(例えばRNA干渉)ではこれまでアクセス不能であった)(
図53B)。gRNAとともに遠位エンハンサーに標的誘導されるdCas9-KRABのデリバリーは、標的誘導エンハンサーによって調節される多種多様な遺伝子の発現を破壊することができる(
図53C参照)。標的誘導されるエンハンサーは遺伝子の任意のエンハンサー(例えばHS2エンハンサー)であり得る。
【0072】
a.トランス分化又は誘導分化の方法
本開示は、上記に記載のCRISPR/Cas9依拠系を用いRNAを介して内因性遺伝子を活性化することによって、細胞をトランス分化させるか、又は細胞の分化を誘導するメカニズムを提供する。
(1)トランス分化
CRISPR/Cas9依拠系を用いて細胞をトランス分化させることができる。トランス分化(系列の再プログラミング又は直接変換としてもまた知られている)は、細胞が1つの分化細胞タイプから別の細胞タイプへ中間の多能性状態又は始原細胞タイプを経ることなく変換するプロセスである。前記は化生の一タイプであり、前記は全ての細胞の運命の切換えを含み、幹細胞の相互転換が含まれる。細胞のトランス分化は、疾患のモデリング、薬剤の発見、遺伝子治療、及び再生医療で潜在的に有用である。上記記載のCRISPR/Cas9依拠系を用いれば、内因性遺伝子(例えばBRN2、MYT1L、ASCL1、NANOG及び/又はMYOD1)の活性化はいくつかの細胞タイプ(例えば線維芽細胞、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞又は平滑筋細胞)のそれぞれニューロン性又は筋原性表現型へのトランス分化をもたらすことができる。
【0073】
(2)誘導分化
CRISPR/Cas9依拠系を用いて、細胞(例えば幹細胞、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞又は平滑筋細胞)の分化を誘導することができる。例えば、幹細胞(例えば胚性幹細胞又は多能性幹細胞)を誘導して、筋細胞又は血管内皮細胞に分化させる(すなわちニューロン性又は筋原性分化を誘導する)ことができる。
12.複合CRISPR/Cas9依拠系の使用
複合CRISPR/Cas9依拠系はsgRNA設計の平易さ及び低コストを利用し、さらにCRISPR/Cas9技術を用いて高処理効率のゲノム研究における進歩の促進に有用であり得る。例えば、本明細書に記載する単一レンチウイルスは、種々の細胞株(例えば本明細書に記載する初代線維芽細胞)でCas9及び多数のsgRNAの発現に有用である(
図47)。複合CRISPR/Cas9依拠系を上記に記載のCRISPR/Cas9依拠系と同じ態様で用いることができる。
記載した転写活性化及びヌクレアーゼの機能性に加えて、この系は、多様な目的(ゲノム構造及び内因性遺伝子調節の経路の調査を含む)のために後成的改変を制御する他の新規なCas9系エフェクターの発現に有用であろう。内因性遺伝子調節は多種多様な酵素間での微妙な均衡を要するので、種々の機能性をもつ複合Cas9系は、種々の調節シグナル間における複雑な相互作用の試験を可能にするであろう。本明細書に記載するベクターは、アプタマー改変sgRNA及び直交性Cas9適合と適合し、単一セットのsgRNAを用いる別個の遺伝子操作を可能にするはずである。
【0074】
複合CRISPR/Cas9依拠系を用いて、細胞で少なくとも1つの内因性遺伝子を活性化できる。本方法は細胞を改変レンチウイルスベクターと接触させる工程を含む。内因性遺伝子は一過性に活性化されるか、又は安定的に活性化され得る。内因性遺伝子は一過性に抑制されるか、又は安定的に抑制され得る。融合タンパク質はsgRNAと類似のレベルで発現され得る。融合タンパク質はsgRNAと比較して異なるレベルで発現され得る。細胞は初代ヒト細胞であり得る。
複合CRISPR/Cas9依拠系は細胞の複合遺伝子編集の方法で用いることができる。本方法は、細胞を改変レンチウイルスベクターと接触させる工程を含む。複合遺伝子編集は変異遺伝子の修正又はトランスジーンの挿入を含むことができる。変異遺伝子の修正は、変異遺伝子の欠失、再整理、又は取替えを含むことができる。変異遺伝子の修正は、ヌクレアーゼ媒介非相同性末端接合又は相同性指向修繕を含むことができる。複合遺伝子編集は少なくとも1つの遺伝子の欠失又は修正を含むことができ、ここで該遺伝子は内因性正常遺伝子又は変異遺伝子である。複合遺伝子編集は少なくとも2つの遺伝子の欠失又は修正を含むことができる。例えば、少なくとも2つの遺伝子、少なくとも3つの遺伝子、少なくとも4つの遺伝子、少なくとも5つの遺伝子、少なくとも6つの遺伝子、少なくとも7つの遺伝子、少なくとも8つの遺伝子、少なくとも9つの遺伝子、少なくとも10の遺伝子を欠失させ又は修正することができる。
複合CRISPR/Cas9依拠系は細胞で遺伝子発現を複合調整する方法で用いることができる。本方法は、細胞を改変レンチウイルスベクターと接触させる工程を含む。本方法は少なくとも1つの遺伝子の遺伝子発現レベルの調整を含むことができる。すくなくとも1つの標的遺伝子の遺伝子発現は、該少なくとも1つの標的遺伝子の遺伝子発現レベルが、前記少なくとも1つの標的遺伝子に対する正常遺伝子の発現レベルと比較して増加又は低下するとき調整される。遺伝子発現レベルはRNA又はタンパク質レベルである。
【0075】
13.変異遺伝子を修正し対象動物を治療する方法。
本開示はまた、対象動物で変異遺伝子を修正する方法を目的とする。本方法は、上記に記載の骨格筋又は心筋でゲノム編集する組成物を対象動物の骨格筋又は心筋に投与する工程を含む。修繕鋳型又はドナーDNAと一緒に、骨格筋又は心筋に位置特異的ヌクレアーゼをデリバーする組成物の使用は、完全な機能又は部分的な機能を有するタンパク質の発現を回復させることができる(前記鋳型又はDNAは変異を含む全遺伝子又は領域を取替えることができる)。位置特異的ヌクレアーゼを用いて、標的ゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。位置特異的二本鎖切断は、位置特異的ヌクレアーゼが標的DNA配列と結合しそれによって標的DNAの切断を許容するときに切断される。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(相同性指向修繕(HDR)又は非相同性末端接合(NHEJ)経路)の一方をもたらすことができる。
本開示は、修繕鋳型の非存在下での位置特異的ヌクレアーゼによるゲノム編集を目的とする(前記は効率的にリーディングフレームを修正し、遺伝子疾患に関与する機能的タンパク質の発現を回復させることができる)。開示の位置特異的ヌクレアーゼは、相同性指向修繕又は非相同性末端接合(NHEJ)系修正アプローチを利用して関与することができる(前記アプローチは、相同性組換え又は選別依拠遺伝子修正になじみにくい増殖制限初代細胞株での効率的な修正を可能にする)。本対処方法は、活性部位特異的ヌクレアーゼの迅速で強靭なアッセンブリーを、非本質的コード領域の変異(フレームシフト、未成熟な終止コドン、異常なスプライスドナー部位又は異常なスプライスアクセプター部位を生じる)によって生じる遺伝子疾患の治療のための効率的遺伝子編集と統合する。
【0076】
a.ヌクレアーゼ媒介非相同性末端接合
内因性変異遺伝子のタンパク質発現の回復は、無鋳型NHEJ媒介DNA修繕を介することができる。標的遺伝子のRNAを標的とする一過性の方法とは対照的に、一過性に発現される位置特異的ヌクレアーゼによるゲノム内の標的遺伝子リーディングフレームの修正は、各改変細胞及びその子孫の全てによる標的遺伝子発現の永久的回復をもたらすことができる。
ヌクレアーゼ媒介NHEJ遺伝子修正は変異した標的遺伝子を修正することができ、HDR経路を超えるいくつかの潜在的利点を提供する。例えば、NHEJはドナー鋳型を必要としない(ドナー鋳型は非特異的挿入による変異導入を生じ得る)。HDRとは対照的に、NHEJは全細胞周期で効率的に作動し、したがって周期内細胞及び有糸分裂後細胞(例えば筋線維)の両方で効率的に利用され得る。これは、終止コドンのオリゴヌクレオチド依拠エクソンスキッピング又は薬理学的に強制されるリードスルーに代わる強靭で永久的な遺伝子回復を提供し、さらに理論的には一薬剤治療と同じ数少ない工程を必要とし得よう。CRISPR/Cas9依拠系を用いるNHEJ系遺伝子修正は、メガヌクレアーゼ及びジンクフィンガーヌクレアーゼを含む他の操作ヌクレアーゼと同様に、細胞及び遺伝子系治療のための他の既存のex vivo及びin vivoプラットフォームを、本明細書に記載のプラスミドエレクトロポレーションアプローチに加えて一緒に用いることができる。例えば、mRNA系遺伝子移転によるか又は精製細胞透過性タンパク質としてのCRISPR/Cas9依拠系のデリバリーは、挿入による変位導入の可能性を一切回避する無DNAゲノム編集アプローチを可能にし得よう。
【0077】
b.相同性指向修繕
内因性変異遺伝子のタンパク質発現の修復は相同性指向修繕を含むことができる。上記に記載の方法はさらに細胞へのドナー鋳型の投与を含む。ドナー鋳型は、完全に機能的なタンパク質又は部分的に機能的なタンパク質をコードするヌクレオチドを含むことができる。例えば、ドナー鋳型は、小型化ジストロフィン構築物(ミニジストロフィン(“ミニジス(minidys)”と称される)、変異ジストロフィン遺伝子の回復のために完全に機能的なジストロフィン構築物、又はジストロフィン遺伝子のフラグメント(相同性指向修繕後に変異ジストロフィン遺伝子の回復をもたらす)を含むことができる。
【0078】
c.CRISPR/Cas9を用いて変異遺伝子を修正し対象動物を治療する方法
本開示はまた、修繕鋳型又はドナーDNA(前記は完全な遺伝子又は変異を含む領域を取替えることができる)を用いて、完全に機能的な又は部分的に機能的なタンパク質の発現を回復させるためにCRISPR/Cas9依拠系を用いるゲノム編集を目的とする。CRISPR/Cas9依拠系を用いて、標的のゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。位置特異的二本鎖切断は、CRISPR/Cas9依拠系がgRNAを用いて標的DNA配列と結合しそれによって標的DNAの切断を許容するときに生じる。CRISPR/Cas9依拠系は、首尾の良い効率的なそれらの高率の遺伝子改変により進歩的なゲノム編集の利点を有する。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(相同性指向修繕(HDR)又は非相同性末端接合(NHEJ)経路)の一方をもたらす。例えば、ジストロフィン遺伝子に誘導されるCRISPR/Cas9依拠系は、配列番号:65−115のいずれか1つの核酸配列を有するgRNAを含むことができる。
本開示は、修繕鋳型を用いないCRISPR/Cas9依拠系によるゲノム編集を目的とし、前記は、リーディングフレームを効率的に修正し、遺伝子疾患に関与する機能的タンパク質の発現を回復することができる。開示されたCRISPR/Cas9依拠系及び方法は、相同性指向修繕又はヌクレアーゼ媒介非相同性末端接合(NHEJ)系修正アプローチを用いる工程を含むことができる(前記は、相同性組換え又は選別依拠遺伝子修正になじみにくい増殖制限初代細胞株での効率的な修正を可能にする)。本対処方法は、活性なCRISPR/Cas9依拠系の迅速で強靭なアッセンブリーを、非本質的コード領域の変異(フレームシフト、未成熟な終止コドン、異常なスプライスドナー部位又は異常なスプライスアクセプター部位を生じる)によって生じる遺伝子疾患の治療のための効率的遺伝子編集と統合する。
【0079】
本開示は、細胞で変異遺伝子を修正して遺伝子疾患(例えばDMD)を罹患する患者を治療する方法を提供する。本方法は、上記に記載のCRISPR/Cas9依拠系、前記CRISPR/Cas9依拠系をコードするポリヌクレオチド若しくはベクター、又は前記CRISPR/Cas9依拠系の組成物を細胞又は対象動物に投与する工程を含む。本方法は、CRISPR/Cas9依拠系を投与する工程、例えばCas9タンパク質又はヌクレアーゼ活性を有する第二のドメインを含むCas9融合タンパク質、前記Cas9タンパク質又はCas9融合タンパク質をコードするヌクレオチド、及び/又は少なくとも1つのgRNA(gRNAは異なるDNA配列を標的とする)を投与する工程を含むことができる。標的DNA配列はオーバーラップしてもよい。細胞に投与されるgRNAの数は、上記に記載された、少なくとも1つのgRNA、少なくとも2つの異なるgRNA、少なくとも3つの異なるgRNA、少なくとも4つの異なるgRNA、少なくとも5つの異なるgRNA、少なくとも6つの異なるgRNA、少なくとも7つの異なるgRNA、少なくとも8つの異なるgRNA、少なくとも9つの異なるgRNA、少なくとも10の異なるgRNA、少なくとも15の異なるgRNA、少なくとも20の異なるgRNA、少なくとも30の異なるgRNA、又は少なくとも50の異なるgRNAであり得る。gRNAは配列番号:65−115の少なくとも1つの核酸配列を含むことができる。本方法は、相同性指向修繕又は非相同性末端接合を含むことができる。
【0080】
14.疾患を治療する方法
本開示はその必要がある対象動物を治療する方法を目的とする。本方法は、上記記載の細胞又は対象動物のゲノム編集で、遺伝子発現を変更及びゲノムDNAを操作又は変更する組成物を対象動物の組織に投与する工程を含む。本方法は、上記記載の骨格筋又は心筋でゲノム編集する組成物を、対象動物の骨格筋又は心筋に投与する工程を含む。対象動物は、変性若しくは脆弱を引き起こす骨格筋又は心筋の症状又は遺伝子疾患を罹患し得る。例えば、対象動物は上記に記載のデュシェンヌ型筋ジストロフィーを罹患し得る。
a.デュシェンヌ型筋ジストロフィー
上記に記載の方法を用いて、ジストロフィン遺伝子を修正し、前記変異ジストロフィン遺伝子の完全に機能的な又は部分的に機能的なタンパク質の発現を回復させることができる。いくつかの特徴及び実施態様では、本開示は、患者のDMDの影響(例えば臨床症状/徴候)を軽減する方法を提供する。いくつかの特徴及び実施態様では、本開示は患者でDMDを治療する方法を提供する。いくつかの特徴及び実施態様では、本開示は患者でDMDを予防する方法を提供する。いくつかの特徴及び実施態様では、本開示は患者でDMDの更なる進行を予防する方法を提供する。
【0081】
15.構築物及びプラスミド
上記に記載の組成物は、上記に記載のCRISPR/Cas9依拠系をコードする遺伝子構築物を含むことができる。該遺伝子構築物(例えばプラスミド)は、CRISPR/Cas9依拠系、例えばCas9タンパク質及びCas9融合タンパク質をコードする核酸、及び/又は少なくとも1つのgRNAを含むことができる。上記に記載の組成物は、改変AAVをコードする遺伝子構築物、及び上記に記載の位置特異的ヌクレアーゼをコードする核酸配列を含むことができる。該遺伝子構築物、例えばプラスミドは位置特異的ヌクレアーゼをコードする核酸を含むことができる。上記に記載の組成物は、本明細書に記載の改変レンチウイルスベクターをコードする遺伝子構築物を含むことができる。該遺伝子構築物、例えばプラスミドは、Cas9融合タンパク質をコードする核酸及び少なくとも1つのsgRNAを含むことができる。遺伝子構築物は機能性染色体外分子として細胞内に存在し得る。遺伝子構築物は、セントロメア、テロメアを含む線状ミニ染色体又はプラスミド若しくはコスミドであり得る。
遺伝子構築物はまた、組換えウイルスベクター(組換えレンチウイルス、組換えアデノウイルス、及び組換えアデノウイルス随伴ウイルスを含む)のゲノムの一部分であり得る。遺伝子構築物は、弱毒生微生物の遺伝物質の部分又は細胞内で生存している組換え微生物ベクターであり得る。遺伝子構築物は、該核酸のコード配列の遺伝子発現のための調節エレメントを含むことができる。調節エレメントはプロモーター、エンハンサー、開始コドン、終止コドン、又はポリアデニル化シグナルであり得る。
核酸配列は、ベクターであり得る遺伝子構築物を形成することができる。ベクターは、融合タンパク質、例えばCas9融合タンパク質又は位置特異的ヌクレアーゼを発現する能力を有し得る。ベクターは組換え体であり得る。ベクターは、融合タンパク質、例えばCas9融合タンパク質又は位置特異的ヌクレアーゼをコードする異種核酸を含むことができる。ベクターは、Cas9融合タンパク質又は位置特異的ヌクレアーゼをコードする核酸を細胞にトランスフェクトするために有用で、ここで形質転換宿主細胞は、Cas9融合タンパク質又は位置特異的ヌクレアーゼ系の発現が生じる条件下で培養及び維持される。
コード配列は、安定性及び高レベル発現のために最適化され得る。いくつかの事例では、RNAの二次構造形成(例えば分子内結合のために形成される)を軽減するようにコドンが選択される。
【0082】
ベクターはCRISPR/Cas9依拠系又は位置特異的ヌクレアーゼをコードする異種核酸を含むことができ、さらにまた開始コドンを含むことができる(前記はCRISPR/Cas9依拠系又は位置特異的ヌクレアーゼコード配列の下流に存在し得る)。開始及び終止コドンは、CRISPR/Cas9依拠系又は位置特異的ヌクレアーゼコード配列とともにインフレームで存在し得る。ベクターはまた、CRISPR/Cas9依拠系又は位置特異的ヌクレアーゼコード配列に作動可能に連結されるプロモーターを含むことができる。CRISPR/Cas9依拠系又は位置特異的ヌクレアーゼコード配列に作動可能に連結されるプロモーターは、シミアンウイルス40(SV40)由来プロモーター、マウス乳がんウイルス(MMTV)プロモーター、ヒト免疫不全ウイルス(HIV)プロモーター、例えばウシ免疫不全ウイルス(BIV)ロングターミナルリピート(LTR)プロモーター、モロニーウイルスプロモーター、トリ白血病ウイルス(ALV)プロモーター、サイトメガロウイルス(CMV)プロモーター(例えばCMV最初期プロモーター)、エプスタイン-バーウイルス(EBV)プロモーター、又はラウス肉腫ウイルス(RSV)プロモーターであり得る。プロモーターはまた、ヒト遺伝子(例えばヒトユビキチンC(hUbC)、ヒトアクチン、ヒトミオシン、ヒトヘモグロビン、ヒト筋肉クレアチン、又はヒトメタロチオネイン)由来プロモーターでもよい。プロモーターはまた、組織特異的プロモーター、例えば筋肉若しくは皮膚特異的プロモーター、天然又は合成であり得る。そのようなプロモーターの例は米国特許出願公開広報No.US20040175727(前記文献は参照によりその全体が本明細書に含まれる)に記載されている。
ベクターはまたポリアデニル化シグナルを含むことができ、前記はCRISPR/Cas9依拠系又は位置特異的ヌクレオチドの下流に存在し得る。ポリアデニル化シグナルは、SV40ポリアデニル化シグナル、LTRポリアデニル化シグナル、ウシ成長ホルモン(bGH)ポリアデニル化シグナル、ヒト成長ホルモン(hGH)ポリアデニル化シグナル、又はヒトβ-グロビンポリアデニル化シグナルであり得る。SV40ポリアデニル化シグナルはpCEP4ベクター(Invitrogen, San Diego, CA)由来のポリアデニル化シグナルであり得る。
【0083】
ベクターはまた、CRISPR/Cas9依拠系、すなわちCas9タンパク質又はCas9融合タンパク質又はsgRNA、又は位置特異的ヌクレアーゼの上流にエンハンサーを含むことができる。エンハンサーはDNA発現に必要であり得る。エンハンサーは、ヒトアクチン、ヒトミオシン、ヒトヘモグロビン、ヒト筋肉クレアチン又はウイルスエンハンサー(例えばCMV、HA、RSV又はEBV由来のエンハンサー)であり得る。ポリヌクレオチド機能エンハンサーは米国特許5,593,972号、5,962,428号及びWO94/016737に記載されている(各々の内容は参照により本明細書に含まれる)。ベクターはまた、染色体外にベクターを維持するために、及び細胞内でベクターの多数のコピーを生成するために哺乳動物の複製起点を含むことができる。ベクターはまた調節配列を含むことができ、前記配列は、ベクターが投与される哺乳動物細胞又はヒト細胞での遺伝子発現に良好に適合され得る。ベクターはまた、レポーター遺伝子(例えば緑色蛍光タンパク質(“GFP”))及び/又は選別可能マーカー(例えばヒグロマイシン(“Hygro”))を含むことができる。
ベクターは、日常的な技術及び容易に入手できる出発材料によるタンパク質製造のための発現ベクター又は発現系であり得る(前記は以下の文献に含まれる:Sambrook et al., Molecular Cloning and Laboratory Manual, Second Ed., Cold Spring Harbor, 1989(前記文献は参照によりその全体が本明細書に含まれる))。いくつかの実施態様では、ベクターはCRISPR/Cas9依拠系をコードする核酸配列(Cas9タンパク質又はCas9融合タンパク質をコードする核酸配列を含む)、及び配列番号:5−40、65−144、492−515、540−563及び585−625の少なくとも1つの核酸配列を含む少なくとも1つのgRNAをコードする核酸配列を含むことができる。
【0084】
16.医薬組成物
組成物は医薬組成物であり得る。医薬組成物は、CRISPR/Cas9依拠系又はCRISPR/Cas9依拠系タンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするDNAの約1ngから約10mgを含むことができる。医薬組成物は、改変AAVベクターのDNA及び位置特異的ヌクレアーゼをコードするヌクレオチドの約1ngから約10mgを含むことができる。医薬組成物は、改変レンチウイルスベクターのDNAの約1ngから約10mgを含むことができる。本発明の医薬組成物は、用いられる投与態様にしたがって処方される。医薬組成物が注射可能な医薬組成物である場合には、それらは、無菌的で発熱因子フリー、及び粒状物フリーである。好ましくは等張性処方物が用いられる。一般的は、等張性のための添加物には塩化ナトリウム、デキストロース、マンニトール、ソルビトール及びラクトースが含まれる。いくつかの事例では、等張性溶液(例えばリン酸緩衝食塩水)が好まれる。安定化剤にはゼラチン及びアルブミンが含まれる。いくつかの実施態様では、血管収縮剤が処方物に転嫁される。
【0085】
組成物はさらに医薬的に許容できる賦形剤を含むことができる。医薬的に許容できる賦形剤は、ベヒクル、アジュバント、担体、又は希釈剤として機能的な分子であり得る。医薬的に許容できる賦形剤はトランスフェクション促進剤を含むことができ、前記には以下が含まれる:表面活性剤、例えば免疫刺激複合体(ISCOMS)、フロイント不完全アジュバント、LPSアナローグ(モノホスホリル脂質Aを含む)、ムラミルペプチド、キノンアナローグ、小胞(例えばスクォラン及びスクァレン)、ヒアルロン酸、脂質、リポソーム、カルシウムイオン、ウイルスタンパク質、多価陰イオン、多価陽イオン、又はナノ粒子、又は他の公知のトランスフェクション促進剤。
トランスフェクション促進剤は、多価陰イオン、多価陽イオン(ポリ-L-グルタメート(LGS)を含む)又は脂質である。トランスフェクション促進剤はポリ-L-グルタメートであり、より好ましくは、ポリ-L-グルタメートは、6mg/mL未満の濃度で骨格筋又は心筋でゲノム編集する組成物中に存在する。トランスフェクション促進剤はまた、表面活性剤、例えば免疫刺激複合体(ISCOMS)、フロイント不完全アジュバント、LPSアナローグ(モノホスホリル脂質Aを含む)、ムラミルペプチド、キノンアナローグ及び小胞(例えばスクォラン及びスクァレン)を含むことができ、さらにヒアルロン酸もまた、遺伝子構築物と一緒に投与に用いられ得る。いくつかの実施態様では、組成物をコードするDNAベクターはまた、トランスフェクション促進剤、例えば脂質、リポソーム(レシチンリポソーム又は当業界で公知の他のリポソームを含む)、DNA-リポソーム混合物(例えばW09324640参照)、カルシウムイオン、ウイルスタンパク質、多価陰イオン、多価陽イオン、又はナノ粒子、又は他の公知のトランスフェクション促進剤を含むことができる。好ましくは、トランスフェクション促進剤は多価陰イオン、多価陽イオン(ポリ-L-グルタメート(LGS)を含む)、又は脂質である。
【0086】
17.デリバリーの方法
本明細書で提供されるものは、遺伝子構築物を提供するための医薬処方物(好ましくは上記記載の組成物)をデリバリーする方法である。組成物のデリバリーは、細胞で発現され当該細胞の表面にデリバーされる核酸分子としての組成物のトランスフェクション又はエレクトロポレーションであり得る。該核酸分子は、バイオラドジーンパルサーXセル(BioRad Gene Pulser Xcell)又はアマクサヌクレオフェクターIIb(Amaxa Nucleofector IIb)装置を用いてエレクトロポレートすることができる。以下を含むいくつかの異なる緩衝液を用いることができる:バイオラドエレクトロポレーション溶液、シグマリン酸緩衝食塩水製品番号#D8537(PBS)、インビトロゲンオプチMEM(Invitrogen OptiMEM I)(OM)、又はアマクサヌクレオフェクター溶液V(N.V.)。トランスフェクションはトランスフェクション試薬(例えばリポフェクタミン(Lipofectamine)2000)を含むことができる。
組成物の組織へのさらにその後の哺乳動物細胞へのベクターのデリバリーに際して、トランスフェクトされた細胞は、融合タンパク質、例えばCRISPR/Cas9依拠系及び/又は位置特異的ヌクレアーゼを発現するであろう。組成物を哺乳動物に投与して、遺伝子発現を変更するか、又はゲノムを再操作若しくは変更することができる。例えば、組成物を哺乳動物に投与して、哺乳動物でジストロフィン遺伝子を修正することができる。哺乳動物は、ヒト、非ヒト霊長類、乳牛、ブタ、ヒツジ、ヤギ、アンテロープ、バイソン、水牛、ウシ属の動物、シカ、ハリネズミ、ゾウ、ラマ、アルパカ、マウス、ラット、又はニワトリであり得る。哺乳動物は好ましくはヒト、乳牛、ブタ、又はニワトリであり得る。
【0087】
a.CRISPR/Cas9依拠系
CRISPR/Cas9依拠系タンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするベクターは、DNA注射(DNAワクチン免疫とも称される)によって哺乳動物にデリバーすることができ、前記は、in vivoエレクトロポレーション、リポソーム媒介、ナノ粒子支援、及び/又は組換えベクターを利用する場合もしない場合もある。組換えベクターは任意のウイルス系態様によってデリバーできる。ウイルス系態様は組換えレンチウイルス、組換えアデノウイルス、及び/又は組換えアデノ随伴ウイルスであり得る。
CRISPR/Cas9依拠系タンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするヌクレオチドを細胞に導入して、標的遺伝子を遺伝的に修正するか、又は遺伝子の遺伝子発現を変更する(例えば内因性遺伝子を活性化又は抑制する)ことができる。例えば、gRNAによって変異ジストロフィン遺伝子へ誘導される、CRISPR/Cas9依拠系タンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするヌクレオチドをDMD患者の筋芽細胞に導入できる。また別には、それらをDMD患者の線維芽細胞に導入し、遺伝的に修正された線維芽細胞をMyoDで処理して筋芽細胞への分化を誘導することができる(前記を対象動物(例えば対象動物の損傷筋肉)に移植して修正ジストロフィンタンパク質が機能的であることを立証するか、及び/又は対象動物を治療することができる)。改変される細胞は、幹細胞(例えば人工多能性幹細胞)、骨髄由来始原細胞、骨格筋始原細胞、DMD患者のヒト骨格筋筋芽細胞、CD133+細胞、メゾアンギオブラスト、及びMyoD-又はPax7-形質導入細胞、又は他の筋原性始原細胞でもよい。例えば、CRISPR/Cas9依拠系は、人工多能性細胞のニューロン分化又は筋原性分化を惹起することができる。
【0088】
18.投与経路
組成物は対象動物に種々の経路で投与できる。前記経路には、経口、非経口、舌下、経皮、直腸、局所、吸入、頬部投与、胸腔内、静脈内、動脈内、腹腔内、皮下、筋肉内、鼻内、髄腔内、及び関節内、又は前記の組合せが含まれる。獣医の使用については、組成物は、通常の獣医の施術にしたがって適切に許容され得る処方物として投与できる。獣医師は、個々の動物に最も適切な投与レジメン及び投与経路を容易に決定できる。組成物は、伝統的な注射筒、無針注射装置、“微粒子銃(microprojectile bombardment gone gun)”又は物理的方法(例えばエレクトロポレーション(“EP”)、“流体力利用法”又は超音波)によって投与できる。
組成物は以下を含むいくつかの技術によって哺乳動物にデリバーできる:DNA注射(DNAワクチン免疫とも称される)(in vitroエレクトロポレーションを利用する場合しない場合がある)、リポソーム媒介、ナノ粒子支援、組換えベクター(例えば組換えレンチウイルス、組換えアデノウイルス、及び組換えアデノ随伴ウイルス)。組成物は骨格筋又は心筋に注射できる。例えば、組成物は前脛骨筋に注射できる。
【0089】
19.細胞タイプ
これらのデリバリー方法及び/又は投与経路のいずれも、無数の細胞タイプ(例えば現在細胞系療法に関して研究されている細胞タイプ)に用いることができよう。細胞タイプは、線維芽細胞、多能性幹細胞、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞、平滑筋細胞、又はK562ヒト赤血球系白血病細胞株であり得る。
a.DMD
DMDの細胞系療法に関して現在研究されている細胞タイプには、不朽化筋芽細胞(例えば野生型及びDMD患者由来株、例えばΔ48-50DMD、DMD8036(dell48-50)、C25C14及びDMD-7796細胞株)、初代DMD皮膚線維芽細胞、人工多能性幹細胞、骨髄由来始原細胞、骨格筋始原細胞、DMD患者のヒト骨格筋筋芽細胞、CD133+細胞、メゾアンギオブラスト、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞、平滑筋細胞、及びMyoD-又はPax7-形質導入細胞、又は他の筋原性始原細胞が含まれる。遺伝的に修正された筋原性細胞のクローン誘導のために、ヒト筋原性細胞の不朽化を利用することができる。細胞をex vivoで改変して、不朽化DMD筋芽細胞のクローン集団を単離及び増殖させることができる(前記クローン集団は遺伝的に修正されたジストロフィン遺伝子を含み、該ゲノムのタンパク質コード領域に他のヌクレアーゼ導入変異を持たない)。また別に、非ウイルス系又は非組込みウイルス系遺伝子移転による、又は精製タンパク質及び細胞侵入モチーフを含むgRNAの直接デリバリーによるヌクレアーゼの一過性in vivoデリバリーは、外因性DNA組込みのリスクを最小限にするか、又はそのリスクが完全に存在しない高度に特異的なin situ修正を可能にすることができる。
【0090】
20.キット
本明細書で提供されるものはキットであり、前記を用いて骨格筋又は心筋でゲノムを編集(例えば変異遺伝子を修正)することができる。キットは、上記に記載の骨格筋又は心筋でゲノム編集する組成物、及び前記組成物を使用する指示を含む。キットに含まれる指示は包装材料に添付さるか、又はパッケージ挿入物として含まれ得る。指示は典型的にはタイプ打ち又は印刷物であるが、ただしそのようなものに限定されない。本開示では、そのような指示を保存でき、さらに末端ユーザーにそれら指示を伝えることができる任意の媒体が意図される。そのような媒体には、電子保存媒体(例えば磁気ディスク、テープ、カートリッジ、チップ)、光学媒体(例えばCD ROM)などが含まれるが、ただし前記に限定されない。本明細書で用いられる“指示”という用語は当該指示を提供する対象サイトのアドレスを含むことができる。
骨格筋又は心筋でゲノム編集する組成物は、上記に記載の改変AAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含むことができる。該位置特異的ヌクレアーゼは、上記記載のZFN、TALEN又はCRISPR/Cas9依拠系を含むことができ、前記は特異的に変異遺伝子に結合しこれを切断する。上記に記載の位置特異的ヌクレアーゼは該キットに含まれ、変異遺伝子の特定の領域に特異的に結合しこれを標的とすることができる。位置特異的ヌクレアーゼは、上記に記載の変異ジストロフィン遺伝子に特異的であり得る。キットはさらに、上記に記載のドナーDNA、gRNA又はトランスジーンを含むことができる。
【0091】
a.CRISPR/Cas9依拠系
本明細書で提供されるものはキットであり、前記を用いて変異遺伝子を修正することができる。キットは、変異遺伝子を修正する少なくとも1つの成分、及びCRISPR/Cas9依拠系を使用する指示を含む。キットに含まれる指示は包装材料に添付さるか、又はパッケージ挿入物として含まれ得る。指示は典型的にはタイプ打ち又は印刷物であるが、ただしそのようなものに限定されない。本開示では、そのような指示を保存でき、さらに末端ユーザーにそれら指示を伝えることができる任意の媒体が意図される。そのような媒体には、電子保存媒体(例えば磁気ディスク、テープ、カートリッジ、チップ)、光学媒体(例えばCD ROM)などが含まれるが、ただし前記に限定されない。本明細書で用いられる“指示”という用語は当該指示を提供する対象サイトのアドレスを含むことができる。
少なくとも1つの成分は上記に記載の少なくとも1つのCRISPR/Cas9依拠系を含むことができ、前記は遺伝子を特異的に標的とする。キットは、Cas9タンパク質又はCas9融合タンパク質、前記Cas9又はCas9融合タンパク質をコードするヌクレオチド配列、及び/又は少なくとも1つのgRNAを含むことができる。上記に記載のCRISPR/Cas9依拠系は該キットに含まれ、標的遺伝子のコード領域の上流、その中又は下流の特定の標的領域を標的とすることができる。例えば、CRISPR/Cas9依拠系は標的遺伝子のプロモーター領域に特異的であり得るか、又はCRISPR/Cas9依拠系は変異遺伝子(例えば上記に記載の変異ジストロフィン遺伝子)に特異的であり得る。キットは上記に記載のドナーDNAを含むことができる。
【0092】
21.実施例
本明細書に記載の開示方法の他の適切な改変及び応用は容易に適用できかつ評価することが可能であること、さらにそれら改変及び応用は本開示の範囲又は本明細書に開示する特徴及び実施態様を逸脱することなく適切な等価物を用いて容易に為し得ることは、当業者には極めて明白であろう。本開示をこれまで述べてきたが、前記は以下の実施例を参照してより明確に理解されるであろう(当該実施例は本開示のいくつかの特徴及び実施態様を例示することを単に目的としているだけで、本開示の範囲を制限するものと解されるべきではない)。全ての参考文献、米国特許、及び本明細書に引用される刊行物の開示は参照によりその全体が本明細書に含まれる。
本発明は、下記の非限定的な実施例によって例示されるように多種多様な特徴を有する。
【0093】
[実施例1]
材料と方法
細胞培養及びトランスフェクション:HEK293T細胞をデューク大学癌センター施設(Duke University Cancer Center Facilities)を介して米国組織細胞集積所(American Tissue Collection Center(ATCC))から入手し、10%ウシ胎児血清及び1%ペニシリン/ストレプトマイシン補充DMEMで5%CO
2下にて37℃で維持した。HEK293T細胞は製造業者の指示に従いリポフェクタミン2000を用いてトランスフェクトされた。トランスフェクション効率は、コントロールのeGFP発現プラスミドのデリバリーに続いて蛍光顕微鏡で決定したとき、日常的に80%を超えていた。Cas9発現プラスミドは、個々のgRNA発現プラスミド又は同一量のgRNA発現プラスミド(等量の4つのgRNAの混合物から成る)に対して3:1の質量比でトランスフェクトされた。
初代マウス胚線維芽細胞(PMEF-HL, Millipore, Billerica, MA)を24ウェルのTCPSプレート(BD, Franklin Lakes, NJ)にシードし(7500/ウェル)、37℃及び5%CO
2で下記(10%プレニアセレクトFBS(Atlanta Biologicals, Lawrenceville, GA)、25μg/mLのゲンタマイシン(Invitrogen)、1xGlutaMAX、非必須アミノ酸、ピルビン酸ナトリウム、及びβ-メルカプトエタノール(Invitrogen))を補充した高グルコースDMEMから成る完全MEF培養液で維持した。MEFのトランスフェクションは、1μgcm
-2の単一用量の全プラスミドDNAを用いて実施し、以前に記載されたように(Adler et al. Molecular therapy. Nucleic acids 1, e32, 2012)、血清及び抗生物質フリーOptiMEM中でポリ(CBA-ABOL)による静電気濃縮に続いて陽イオンナノ複合体としてデリバーした。OptiMEMはトランスフェクションの4時間後に完全MEF培養液と取替えた。トランスフェクション後48時間して、MEFをqRT-PCRのために処理するか、又は完全MEF培養液は下記を含むN3神経誘導培養液と取替えられた:DMEM/F-12(Invitrogen)、1xN-2サプリメント(Invitrogen)、10ng/mLヒトbFGF2(Stemgent, Cambridge, MA)、及び25μg/mLゲンタマイシン(Invitrogen)。GFPレポーターベクター(pmax-GFP, 3486 bp, Amaxa, Cologne, Germany)を用い、トランスフェクション条件を最適化した。Cas9発現プラスミドは、4つのgRNA発現プラスミドの等混合物に対して3:1又は1:1の質量比でトランスフェクトされた。
【0094】
プラスミド:野生型及びH804AのCas9をコードするプラスミドをアッドジーン(Addgene, プラスミド#39312及びプラスミド#39316;Jinek, et al. Science 337, 816-821, 2012)から入手した。H840A Cas9は、N-末端のFLAGエピトープタグ及び核内局在配列(NLS)に関してインフレームで、D10A変異を導入するプライマー対を用いてベクターpcDNA3.1でクローニングした。VP64ドメイン、NLS及びHAエピトープは、C-末端のCas9 ORFに関してインフレームでクローニングした(
図1a、
図9a)。TracrRNA及びcrRNA発現カセット(Cong et al. Science 339, 819-823, 2013)はgBlockとして注文し(Integrated DNA Technologies, IDT)、KpnI及びSacII部位を用いてpZDonorプラスミド(Sigma)でクローニングした。キメラガイドRNA発現カセット(Mali et al. Science 339, 823-826, 2013)もまたgBlockとして注文し、BbsI制限部位を含むように改変して新規なガイドRNAスペーサー配列の迅速なクローニングを容易にした(
図9b)。標的配列を含むオリゴヌクレオチドはIDTから入手し、ハイブリダイズさせ、リン酸化し、BbsI部位を用いて適切なプラスミドでクローニングした。標的配列は表2に提供される。
【0096】
ウェスタンブロット:50mMトリス-Cl(pH7.4)、150mM NaCl、0.5%トリトンX-100及び0.1%SDSを用いて細胞を溶解した。溶解物をローディング緩衝液と混合して5分間沸騰させ、等体積のタンパク質をNuPAGE(商標)Novex4−12%又は10%Bis-Tris Gelポリアクリルアミドゲルで泳動し、ニトロセルロース膜に移した。非特異的抗体結合は、5%脱脂乳を加えた50mMトリス/150mM NaCl/0.1%トゥイーン-20(TBS-T)を30分用いてブロックした。この膜を下記の一次抗体とともにインキュベートし(TBS-T中の5%BSAで1:1000に希釈したHRP結合抗Flag(Cell Signaling, Cat#2044)で一晩;TBS-T中の5%ミルクで1:5000に希釈した抗GAPDH(Cell Signaling, クローン14C10)で30分;1:500に5%BSAで希釈した抗ASCL1(Santa Cruz, クローンsc-48449);又は1:500に5%ミルクで希釈した抗g-グロビン(Santa Cruz, クローン51-7))、膜をTBS-Tで洗浄した。一次抗体で標識した膜を、1:5000に希釈した抗ウサギHRP結合抗体(Sigma-Aldrich)で30分、又は抗ヤギ抗体(1:3000)、又は抗マウス抗体(1:5000)でインキュベートし、さらにTBS-Tで30分洗浄した。Immun-Star WesternC
TMキット(Bio-Rad)を用いて膜を可視化し、ChemiDoc
TM XRS+Systemを用いて画像を捕捉し、ImageLabソフト(Bio-Rad)を用いて加工した。
【0097】
ELISA:無血清培養液(OPTI-MEM)を収集して-80℃で凍結した。培養液へのヒトIL-1ra分泌を酵素結合免疫吸着アッセイ(ELISA)で製造業者のプロトコル(R&D Systems, Cat. No. DY280)にしたがい定量した。組換えヒトIL-1raをOPTI-MEMで希釈して標準曲線を調製し、培養液中のIL-1raは希釈せずに測定した。3kDaのMWCOフィルター(Amicon Ultra, Cat # UFC500396)から20分間遠心分離することにより、サンプルを約8倍濃縮した。報告した値は各サンプルの濃縮係数により修正された。
光学濃度は450nmで測定した(540nmで波長修正)。各標準物及びサンプルは2回ずつアッセイした。2回の読みを平均し、平均ゼロ標準物の光学濃度を差し引いて標準化した。標準曲線は、データをログ変換し、IL-1ra濃度の光学濃度に対する線形回帰を実施することによって作成した。報告した値は、3つの別個の実験(n=3)の平均及び当該平均の標準誤差である(前記3つの実験は、技術的に同じものを用いて異なる日に実施され、各実験について平均された)。
qRT-PCR:RNeasy Plus RNA単離キット(Qiagen)を用いて全RNAを単離した。cDNA合成は、SuperScript(商標)VILO
TM cDNA合成キット(Invitrogen)を用いて実施した。PerfeCTa(商標) SYBR(商標) Green FastMixを用いるリアルタイムPCRは、表3に報告するオリゴヌクレオチドプライマーを用いてCFX96リアルタイムPCR検出系(Bio-Rad)により実施した。前記プライマーはPrimer3Plusソフトを用いて設計され、IDTから購入した。
【0098】
【表3】
プライマーの特異性はアガロースゲル電気泳動及び融解曲線によって確認された。適切な動的範囲にわたる反応効率を計算して、標準曲線の直線性を担保した(
図10)。結果は、ΔΔC
T方法によってGAPDH発現に対して標準化した問題の遺伝子のmRNA発現の倍数増加として表される。報告した値は、3つの別個の実験(n=3)の平均及び当該平均の標準誤差である(前記3つの実験は、技術的に同じものを用いて異なる日に実施され、各実験について平均された)。
【0099】
RNA-seq:RNA seqライブラリーを構築する。簡単に記せば、オリゴdT Dynabead(商標)捕捉mRNAからSuperScript(商標)VILOTM cDNA合成キット(Invitrogen)を用いて第一鎖cDNAを合成した。第二鎖はDNAポリメラーゼI(New England Biolabs)を用いて合成した。Agencourt AMPure XPビーズ(Beckman Coulter)を用いてcDNAを精製し、前記cDNAをNexteraトランスポラーゼ(Illumina;55℃で5分)を用いて同時にフラグメント化してシークェンシングプライマーを該二本鎖cDNAに挿入した。移転反応はQG緩衝液(Qiagen)を用いて停止させ、フラグメント化cDNAをAMPure XPビーズ上で精製した。インデックス付加シークェンシングライブラリーを6サイクルPCRによって生成した。
二レーンのIllumina HiSeq 2000の装置での50bp単一端の読取りを用いてライブラリーの配列を決定し、ライブラリー当たり29百万から74百万の読取りを作製した。Bowtie(Langmeadet al. Genome biology 10, R25, 2009)を用いて、読取りとヒトRefSeq転写物とのアラインメントを実施した。DESeq(Anders et al. Genome biology 11, R106, 2010)を用いて、弁別的発現の統計的有意差(多種多様な仮説試験の修正を含む)を計算した。未加工RNA-seqの読取り及び各RefSeq転写物とのアラインメントを実施した読取りの数はGene Expression Omnibus(GEO)の公開アクセスに付託した(アクセッション番号は現在調整中)。
【0100】
免疫蛍光染色:Tuj1及びMAP2発現の検出のために、トランスフェクトしたMEFを4%PFA(EMS, Hatfield, PA)含有N3培養液中での培養10日目に室温(RT)で20分間固定した。続いて細胞をブロック緩衝液(以下を含む:0.2%トリトンX-100、3%w/v BSA及び10%ヤギ血清(Sigma-Aldrich, Saint Louis, MO)中でウサギ抗Tuj1(Covance, Princeton, New Jersey、クローンTUJ1 1-15-79、1:500)又はマウス抗MAP2(BD、クローンAp20、1:500)とともに室温で2時間、又はマウス抗Ascl1(BD、クローン24B72D11.1、1:100)とともにさらに24時間4℃でインキュベートした。続いて細胞をPBSで3回洗浄し、ブロック緩衝液中でAlexa Fluor 488ヤギ抗マウスIgG及びAlexa Fluor 594ヤギ抗ウサギIgG(Invitrogen、1:200)とともに室温で1時間インキュベートし、さらにPBSで3回洗浄した。続いて染色されたMEFを、ProScanII電動ステージ(Prior Scientific, Rockland, MA)搭載Nikon Eclipse TE2000-U倒立蛍光顕微鏡でスキャンして、それぞれ完全な培養領域のモザイク画像を作成した。FIJIマクロを用いてこれらのモザイクを加工し、局所のコントラストにしたがって自動的かつ均質に閾値を整理し、小さなデブリを除去し、各ウェルのTuj1+細胞の数を数えた。
統計:統計分析は、JMP 10 Proでの0.05と等価のアルファを用いチューキー検定によって実施した。
【0101】
[実施例2]
結果
CRISPR/Cas9依拠転写活性化系を作製するために、Cas9(D10A,H840A)の触媒性残基を変異させてiCas9を生成し、さらにC-末端VP64酸性トランス活性化ドメインと融合させた(
図1a、b)。N-末端Flagエピトープタグのウェスタンブロットによって、活発なiCas9-VP64の発現がヒト胚腎(HEK)293T細胞でトランスフェクトされたプラスミドから観察された(
図3)。CRISPR系は、gRNA中の20bp配列と相補性DNA標的との塩基対形成によりその標的を認識する(前記相補性DNA標的の後にはNGGプロトスペーサー隣接モチーフ(PAM)配列が続き、ここでNは任意の塩基対である)。内因性ヒトプロモーターに標的誘導される合成転写因子の組合せは相乗的で活発な遺伝子発現の活性化をもたらす。したがって、NGG PAM配列がその後に続く4つのgRNAが、転写開始部位の500bp以内でIL1RN遺伝子のプロモーターで同定された(
図4、表2)。crRNA-及びgRNA-依拠ターゲティング方法を比較するために、4つの標的部位配列をcrRNA及びgRNA発現プラスミド
17に導入し、iCas9-VP64発現プラスミドとともにHEK293T細胞にトランスフェクトした。実質的なIL1RN発現誘導はcrRNA組合せ処理サンプルのqRT-PCRでは観察されなかったが、gRNA組合せでははるかに高いレベルが達成された(
図1c)。gRNA及びVP64を含まないiCas9の発現プラスミドで処理された細胞では遺伝子発現の変化は観察されず、遺伝子発現調整における活性化ドメインの決定的役割を示した(
図1c)。これらの標的部位におけるヌクレアーゼ活性はiCas9-VP64系では停止していることがサーベイヤーアッセイを実施することによって確認された(前記アッセイはiCas9-VP64及び野生型Cas9で処理されたサンプルでDNA修繕事象を検出する)(
図5)。4つのgRNAの各々を個々に又は一緒にしてトランスフェクトすることによって、gRNA組合せ物によるプロモーター中の多種多様な部位への標的誘導は遺伝子発現の激しい増加を示した(
図1d)。高レベルのIL1RN発現は、操作された転写因子の他のクラスで観察されたように、gRNA組合せ物がiCas9-VP64とともにコトランスフェクトされた時だけ観察された(
図1d)。同様に、IL1RN遺伝子によってコードされるIL-1受容体アンタゴニスト(IL-1ra)タンパク質の生成は、3つの別個の実験を通してgRNA組合せ物で処理した6サンプルのうち3つで観察されただけであったが、単一のgRNA又はコントロールプラスミドで処理されたサンプルでは全く検出されなかった(
図1e)。iCas9-VP64による遺伝子活性化の特異性を調べるために、RNA-seqにより4つのgRNAの組合せ物で処理したHEK293T細胞の包括的遺伝子発現を判定した(
図1f)。注目すべきことには、コントロールに対して有意に発現が増加したただ1つの遺伝子(偽発見率は3x10
-4以下)は、IL1RN遺伝子座から発現された4つのアイソフォームであり(
図4)、高レベルの遺伝子活性化の特異性が示された。
【0102】
この系の汎用性を示すために、医学及び生物工学に関係がある他の8つの遺伝子(ASCL1、NANOG、HBG1/2、MYOD1、VEGFA、TERT、IL1B及びIL1R2を含む)のプロモーターの各々を標的とするように、4つのgRNAを設計した(
図4、表2)。ASCL1及びMYOD1の強制発現は、いくつかの細胞タイプからニューロン性及び筋原性表現型へのトランス分化をそれぞれもたらす。NANOGは多能性のマーカーであり、前記はまた遺伝的再プログラミング方法で用いられる。ホモローグHBG1及びHBG2(胎児発育期にγ-グロビンをコードする)の活性化は、鎌状細胞疾患におけるβ-グロビン変異に対する治療方法として用いることができる。合成転写因子によるVEGFAのアップレギュレーションは、組織再生及び創傷治癒を強化する方法として探求されてきた。テロメラーゼ(TERT遺伝子によってコードされる)の強制発現は、細胞株の不朽化に用いることができる。IL1Bは、炎症及び自己免疫を媒介するIL-1βサイトカインをコードす。IL-1βシグナリングは、IL-1ra又はおとり受容体(IL1R2によってコードされる)の発現によってブロックされ得る。これら遺伝子の各々の発現は、qRT-PCRによって決定されたように、iCas9-VP64及び4つのgRNAのための発現プラスミドのHEK293T細胞へのコトランスフェクションによって強化された(
図2)。いくつかの事例では、単一gRNAの発現は遺伝子発現の誘導に十分であったが、全ての事例で、4つのgRNAのコトランスフェクションは相乗的作用をもたらした(
図2a−d)。注目すべきことには、DNase-seqによって決定されるクロマチンへの近づきやすさは遺伝子活性化成功の予想因子ではなかった(
図4)。iCas9-VP64及び4つのgRNA(HBG1を標的としそのうちの3つはHBG2も標的とする)をトランスフェクトした細胞でRNA-seqを実施した。これは、特異的で再現性のあるHBG1及びHBG2双方(RNA-seqでは区別できない)の発現増加を示したが、ただし統計的有意は低い総発現レベルのために得られなかった(
図6)。iCas9-VP64及び4つのgRNAによる処理の後で、Ascl1及びγ-グロビンのタンパク質発現の増加がウェスタンブロットで検出され(
図7)、qRT-PCRによって観察されるより高いmRNAレベル(
図2)を裏付けた。Ascl1及びγ-グロビンタンパク質の低い基準線レベルは空ベクターコントロールで検出可能であった。iCas9-VP64による遺伝子標的の活性化は遺伝子ネットワーク及び細胞表現型における二次的変化をもたらし得るということの予備的証拠として、iCas9-VP64及びASCL1を標的とする4つのgRNAのための発現プラスミドをネズミ胚線維芽細胞(MEF)にコトランスフェクトした(
図8)。MEFにおけるAscl1の強制発現は、ニューロン遺伝子ネットワーク(下流標的Tuj1を含む)を部分的に活性化することが示された。gRNA標的部位はヒト及びマウスASCL1プロモーターで保存されているので(
図8a)、ASCL1発現の活性化はまたiCas9-VP64及び4つのgRNAをコードするプラスミドで処理されたMEFで観察された(
図8b)。さらにまた、Ascl1及びニューロンマーカーTuj1を発現する細胞は、トランスフェクション後12日の免疫蛍光によってiCas9-VP64/gRNA処理サンプルで容易に検出された(
図8c−h)。Tuj1陽性細胞はコントロールプラスミド処理細胞では観察されなかった。
【0103】
これまでのところ、哺乳動物細胞でのCas9/CRISPR活性の特異性に関する包括的な調査は全くなかった。RNA-seqを用いて、標的誘導された遺伝子の活性化は極めて特異的であり、オフターゲット遺伝子の活性化は検出できないことが示された(
図1f、
図6)。IL1RN及びHBG1/2は、その遺伝子生成物(IL-1ra及びγ-グロビン)がHEK293T細胞で遺伝子発現に二次的作用を生じ得ないのでこの特異性分析のために選択された。ただ1つの強力なアクチベーターの使用とは対照的に、多種多様な弱い転写アクチベーターの相乗活性の利用は特異的な遺伝子調節を高める可能性がある。なぜならば、多種多様な隣接オフターゲット部位が別の遺伝子座に存在する可能性は少ないからである。興味深いことに、IL32遺伝子は、iCas9-VP64及びIL1RN標的誘導又はHBG1/2標的誘導gRNAで処理されたサンプルの両方で、空発現プラスミドのみで処理されたコントロールサンプルと比較して適度にダウンレギュレートされた(偽発見率<0.03)(
図1f、
図6)。IL1RN標的誘導及びHBG1/2標的誘導サンプルの両方が同様に影響を受けたので、これが該標的配列の同一性に関係するオフターゲットiCas9-VP64活性の結果であるという可能性は低い。
iCas9-VP64が該ゲノムと結合する特異性を評価するために、iCas9-VP64及びIL1RNプロモーターを標的とする4つのgRNAにより処理した細胞で抗HA抗体を用いて、ChIPシークェンシングを実施した。実験は、iCas9はIL1RNプロモーターを標的とすることを示した(
図15)。さらにまた、実験は極めて高レベルの特異性を示した(
図15)。iCas9はわずかに10の潜在的オフターゲット結合部位を有した(FDR<5%)。特異性をさらに調査するために、RNAシークェンシング実験をiCas9 EGEMで実施し、IL1RN遺伝子アイソフォームのみがコントロールと比較して発現を増加させることが見出された(FDRは3x10.4以下)。
【0104】
[実施例3]
ジストロフィン遺伝子を標的とするCRISPR−材料と方法
プラスミド構築物:以前に記載したように(Perez-Pinera et al., Nat Methods 10:973-976, 2013)、化膿連鎖球菌sgRNA及びヒトコドン最適化Cas9(hCas9)ヌクレアーゼの発現カセットを用いた。CRISPR/Cas9改変細胞を濃縮する蛍光レポーター系を作製するために、ジーンブロック(GeneBlok:IDT)を合成し、続いてhCas9発現ベクターでクローニングした(前記ジーンブロックは、マルチクローニング部位のすぐ上流のT2Aスキッピングペプチドに融合されたCas9コード配列の3’末端の一部分を含んでいる)。続いてeGFPレポーター遺伝子をT2Aベクターでクローニングして、Cas9及びeGFPタンパク質を同じ発現ベクター(hCas9-T2A-GFP、配列番号:116)から一緒に翻訳させた。
細胞培養及びトランスフェクション:デューク細胞培養施設(Duke Cell Culture Facility)を介して米国組織細胞集積所(ATCC)からHEK293T細胞を入手し、10%仔ウシ血清及び1%ペニシリン/ストレプトマイシン補充DMEMで維持した。不朽化筋芽細胞(Mamchaoui, K. et al. Skelet Muscle 1, 1-11, 2011)(1つは野生型ドナー由来、2つはΔ48-50DMD患者由来株)は、下記を補充した骨格筋培養液(PromoCell)で維持した:20%仔ウシ血清(Sigma)、50μg/mLフェチュイン、10ng/mLヒト上皮成長因子(Sigma)、1ng/mLヒト基底膜線維芽細胞成長因子(Sigma)、10μg/mLヒトインスリン(Sigma)、1%GlutaMAX(Invitrogen)、及び1%ペニシリン/ストレプトマイシン(Invitrogen)。初代DMD皮膚線維芽細胞はコリエル細胞集積所(Coriell Cell repository)(GM05162A、Δ46-50)から入手し、10%ウシ胎児血清、1ng/mLヒト基底膜線維芽細胞成長因子、及び1%ペニシリン/ストレプトマイシンを補充したDMEMで維持した。全ての細胞株は37℃及び5%CO
2で維持した。
リポフェクタミン2000(Invirogen)を用いて、24ウェルプレートのHEK293T細胞に400ngの各発現ベクターを製造業者のプロトコルにしたがってトランスフェクトした。不朽化筋芽細胞及び初代線維芽細胞には、Gene Pulser XCell(BioRad)を用いてエレクトロポレーションによって5μgの各発現ベクターをトランスフェクトし、各株について最適化条件を用いエレクトロポレーション緩衝液としてPBSを使用した(
図1)(Ousterout et al. Mol Ther 21:1718-1726, 2013)。トランスフェクション効率は、eGFP発現プラスミド(pmaxGFP, Clontech)のデリバリー及びフローサイトメトリーの使用によって測定した。これらの効率は日常的にHEK293T細胞で95%以上、初代線維芽細胞及び不朽化筋芽細胞で70%以上であった。エレクトロポレートされたプラスミドの表示の質量は、各CRISPR/Cas9依拠系について用いられた量と一致する。
【0105】
内因性遺伝子改変のCel-I定量(サーベイヤーアッセイ):内因性標的部位におけるCRISPR/Cas9依拠系誘導損傷は、サーベイヤーヌクレアーゼアッセイ(Guschin, D.Y. et al. Meth Mol Biol 649, 247-256, 2010)によって定量した(前記アッセイはヌクレアーゼ媒介NHEJの変異の特徴を検出できる)。トランスフェクション後に、細胞を3から10日間37℃でインキュベートし、ゲノムDNAをDNeasy血液組織キット(Qiagen)により抽出した。標的遺伝子座をAccuPrime High Fidelity PCRキット(Invitrogen)で35サイクルのPCRによって増幅した。各遺伝子座に特異的なプライマー、例えば、5’-GAGTTTGGCTCAAATTGTTACTCTT-3’(配列番号:60)及び5’-GGGAAATGGTCTAGGAGAGTAAAGT-3’(配列番号:61)を用いた(表4参照)。
【0108】
得られたPCR生成物をサーマルサイクラーで以下のプログラムを用い無作為に融解及び再アニーリングした:95℃で240秒、続いて85℃で60秒、75℃で60秒、65℃で60秒、55℃で60秒、45℃で60秒、35℃で60秒、及び25℃で60秒(工程間の速度は-0.3℃/秒である)。再アニーリングに続いて、8μLのPCR生成物を1μLのサーベイヤーヌクレアーゼS及び1μLのエンハンサーS(Transgenomic)と混合し、42℃で1時間インキュベートした。インキュベーションの後で、6μLの消化生成物を10%TBEポリアクリルアミドゲルにロードし、200Vで30分泳動した。ゲルを臭化エチジウムで染色し、以前に記載されたように(Guschin, et al. Meth Mol Biol 649, 247-256, 2010)、ImageLab(Bio-Rad)を用いデンシトメトリーによって定量した。
筋芽細胞の蛍光活性化細胞選別:DMD筋芽細胞に各々5マイクログラムのhCas9-T2A-GFP及びsgRNA発現ベクターをエレクトロポレートし、37℃及び5%CO
2下でインキュベートした。エレクトロポレーションの3日後に、細胞をトリプシン消化してFACSvantage II選別装置を用いるFACS選別のために収集した。GFP陽性細胞を収集して分析のために増殖させた。
ゲノム欠損を検出するPCR依拠アッセイ:エクソン51又はエクソン45-55遺伝子座をPCR(nvitrogen AccuPrime High Fidelity PCRキット)によってゲノムDNAから増幅した(各遺伝子座にフランキングするプライマーを用いた)。フランキングプライマーは、エクソン51分析についてはCelI-CR1/2-F及びCelI-CR5-R、又はエクソン45-55分析についてはCelI-CR6-F及びCelI-CR36-Rであった(表4)。PCR生成物はTAEアガロースゲルで分離し、分析のために臭化エチジウムで染色した。
【0109】
転座のPCR依拠検出:予想される可能な転座を有する遺伝子座を、Cas9単独(コントロール)又はsgRNAと一緒にCas9をトランスフェクトした細胞のゲノムDNAの二工程ネステッドPCR(各工程についてInvitrogen AccuPrime High Fidelity PCRキット)によって増幅した。第一の工程では、各オンターゲット及びオフターゲットsgRNA標的部位で生じ得る転座を35サイクルのPCRによって増幅した。各遺伝子座のためのサーベイヤープライマーの組合せ物が用いられ、前記はクローニング及び配列決定分析を促進するために制限部位を含むように改変された(表4)。各PCR反応物の1マイクロリットルを35サイクルのPCRによって第二巡の増幅に付し、それぞれ個々の予想される転座のためにカスタム設計したネステッドプライマーセットが用いられた(表4)。第二のネステッドPCRプライマーの各々は一次アンプリコン内のほぼ同じ領域と結合するが、各ペアはPrimer3オンラインバイオインフォーマティクスソフトを用いて最適化され、各転座の特異的検出を担保させた。予想される転座の予想される長さと一致し、かつsgRNAと一緒に処理された細胞にのみ存在するPCRアンプリコンを精製し(QIAGENゲル抽出キット)、サンガーシークェンシングによって分析した。
【0110】
mRNA分析: 1%インスリン-トランスフェリン-セレニウム(Invitrogen #51500056)及び1%ペニシリン/ストレプトマイシン(Invitrogen #15140)を補充したDMEMで増殖培地を5日間取替えることによって、不朽化筋芽細胞を筋線維に分化させた後、細胞をトリプシン消化して収集した。RNeasy Plus Miniキット(QIAGEN)を製造業者の指示に従って用い、前記細胞から全RNAを単離した。VILO cDNA合成キット(Life Technologies #11754)及び1.5マイクログラムのRNAを製造業者の指示にしたがって2時間42℃で用いて、 RNAをcDNAに逆転写した。AccuPrime High Fidelity PCRキット(Invitrogen)を用い、35サイクルのPCRによって標的遺伝子座を増幅した。CR1/5又はCR2/5によるエクソン51の検出のためにはエクソン44及びエクソン52とアニールするプライマー、又はCR6/36による検出のためにはエクソン44及び60とアニールするプライマーを用いた(表4)。PCR生成物はTAEアガロースゲルで泳動し、分析のために臭化エチジウムで染色した。分解したPCRバンドをクローニングしてサンガーシークェンシングによって分析し、予想されるエクソン連結を確認した。表5は実施例4で使用されるプライマー配列リストである。
【0115】
ウェスタンブロット分析:
ジストロフィンタンパク質発現を判定するために、1%インスリン-トランスフェリン-セレニウム(Invitrogen)及び1%抗生物質/抗真菌薬(Invitrogen)を補充したDMEMで増殖培地を4−7日間(例えば6又は7日間)取替えることによって不朽化筋芽細胞を筋線維に分化させた。線維芽細胞は、MyoD過剰発現を誘導し、さらに1%インスリン-トランスフェリン-セレニウム(Invitrogen)、1%抗生物質/抗真菌薬(Invitrogen)及び3μg/mLのドキシサイクリンを補充したDMEMで細胞を15日間インキュベートすることによってトランス分化させた。ジストロフィン発現はHEK293T細胞のトランスフェクション後3日で判定した。細胞をトリプシン消化して収集し、プロテアーゼ阻害剤カクテル(Sigma)を補充したRIPA緩衝液(Sigma)中で溶解した。総タンパク質量は、ビシンコニン酸アッセイを用い製造業者(Pierce)の指示に従って定量した。続いてサンプルをNuPAGEローディング緩衝液(Invitrogen)及び5%β-メルカプトエタノールとともに混合し、85℃で10分間加熱した。25マイクログラムのタンパク質を4−12%のNuPAGEビス-トリスゲル(Invitrogen)上でMES緩衝液(Invirogen)を用い分離した。タンパク質を、10−20%メタノール(例えば10%メタノール)及び0.01%SDSを含むトランスファー緩衝液中で1−2時間ニトロセルロース膜に移した。続いてブロットを5%ミルク-TBSTで室温にて1時間ブロックした。ブロットを以下の一次抗体を用いて精査した:ジストロフィン検出にはMANDYS8(1:100、Sigma D8168)及びウサギ抗GAPDH(1:5000、Cell Signaling 2118S)。続いてブロットをマウス又はウサギセイヨウワサビペルオキシダーゼ結合二次抗体(Santa Cruz)とともにインキュベートし、さらにChemiDoc化学発光系(BioRad)及びウェスタン-C ECL基質(BioRad)を用いて可視化した。
免疫不全マウスへの移植:全ての動物実験は、本院委員会(Duke Institutional Animal Care & Use Committee)が承認したプロトコルにしたがって実施された。細胞をトリプシン消化して収集し、1xハンクス緩衝塩類溶液(HBBS, Sigma)で洗浄した。2百万細胞をペレットにし、注射直前にカルヂオトキシン(Sigma #C9759)を補充した5μLの1xHBBS(Sigma)に再懸濁した。筋肉内注射により前記細胞をNOD.SCID.ガンマ(NSG)マウス(Duke CCIF Breeding Core)の後肢前脛骨筋に移植した。注射から4週間後に、マウスを安楽死させTA筋を採集した。
【0116】
免疫蛍光染色:採集TA筋を4℃にて一晩30%グリセロール中でインキュベートした後、OCT化合物(Optimal Cutting Temperature化合物)中でマウントし凍結した。包埋筋組織を-20℃で凍結分割することによって連続10ミクロン切片を得た。続いて凍結切片をPBSで洗浄してOCT化合物を除去し、続いて室温にて30−60分、スペクトリン検出のために10%熱不活化ウシ胎児血清含有PBS中で、又はジストロフィン検出のために5%熱不活化ウシ胎児血清含有PBSでブロックした。凍結切片をヒトエピトープにのみ特異的な以下の一次抗体で4℃にて一晩インキュベートした:抗スペクトリン(1:20、Leica NCL-SPEC1)又は抗ジストロフィン(1:2, Leica NCL-DYS3)。一次染色後、スペクトリン又はジストロフィン発現は、チラミド依拠免疫蛍光シグナル増幅検出キット(Life Technologies, TSA Kit #22, カタログ#T-20932)を用いて検出した。簡単に記せば、凍結切片を1:200のヤギ抗マウスビオチン-XX二次抗体(Life Technologies #B2763)とともにブロック緩衝液中で室温にて1時間インキュベートした。続いてストレプトアビジン-HRP結合物(1:100、TSAキット)を用いてブロック緩衝液中で室温にて1時間シグナルを増幅させた。最後に、凍結切片をチラミド-AlexaFluor488結合物(1:100、TSAキット)とともに製造業者提供の増幅緩衝液中で室温にて10分間インキュベートした。続いて染色された凍結切片をプロロングアンチフェード(ProLong AntiFade)(Life Technologies #P36934)中でマウントし、通常の蛍光顕微鏡で可視化した。
細胞傷害性アッセイ:潜在的なsgRNA又はSpCas9ヌクレアーゼ付随細胞傷害性を定量的に判定するために、リポフェクタミン2000を製造業者(Invitrogen)の指示にしたがって用いて、HEK293T細胞に10ngのGFPレポーター及び100ngのSpCas9発現ベクター及び100ngのsgRNA発現ベクターをトランスフェクトした。GFP陽性細胞のパーセンテージを2及び5日目にフローサイトメトリーで判定した。生存率を2日目から5日目におけるGFP陽性細胞の減少として計算し、記載(Cornu et al., Meth Mol Biol 649:237-245, 2010)のように空ヌクレアーゼ発現ベクターをトランスフェクトした細胞に対して標準化した。
【0117】
[実施例3]
ジストロフィ遺伝子を標的とするCRISPR−結果
ジストロフィン遺伝子を標的とするようにCRISPR/Cas9依拠系を設計した。ヒト及びマウスジストロフィン遺伝子の種々の領域を標的とするように、NNNNN NNNNN NNNNN NNNNN NGG及びGNNNN NNNNN NNNNN NNNNN NGGを土台にして多様なgRNAを選択した(表6、7及び8参照)。
【0122】
特に400ngのCas9をHEK293T細胞に、400ngの空ベクター又はgRNA(エクソン51を包含する領域(すなわちCR1、CR2、CR3、CR4及びCR5)を標的とする)とともにコトランスフェクトした(
図11(b)参照)。トランスフェクションの2日後にゲノムDNAを採集し、サーベイヤーアッセイを用いて分析した(
図11(a)及び
図11(c)参照)。
CRISPR/Cas9依拠系をDMD8036(del48-50)細胞で用いて、当該系が変異ジストロフィン遺伝子を修繕できるか否かを決定した。5μgのCas9を7.5μgの空ベクター又はgRNAとともにDMD8036(del48-50)細胞にコトランスフェクトした。特に、7.5μgのCR1(“DCR1”)、7.5μgのCR5(“DCR5”)、15μgのCR3(“DCR3”)又は7.5μgのCR1及びCR5(DCR1+DCR5)の組合せを用いた。トランスフェクションの3日後にゲノムDNAを採集し、サーベイヤーアッセイ(
図12)又は全遺伝子座にわたってPCR分析(
図13)を用いて分析した。この遺伝子座をPCRによって増幅した。CR1及びCR5のためのゲノム標的を含む領域にフランキングするプライマー(フォワードプライマー:5’-gagaggttatgtggctttacca(配列番号:457)、リバースプライマー:5’-ctgcgtagtgccaaaacaaa(配列番号:458))を用い、野生型遺伝子座のために1447bpバンド、又は欠失遺伝子座のためにほぼ630bpの予想のサイズが得られた。分化7日後には、処理細胞のウェスタンブロットはジストロフィンタンパク質の発現を示す(
図14参照)。
【0123】
[実施例5]
ヒトジストロフィン遺伝子のホットスポットへのCRISPR/Cas9の標的誘導
広範囲のジストロフィン変異の修正にCRISPR/Cas9遺伝子編集プラットフォームを利用するために、エクソン45-55間のホットスポット変異領域に標的誘導される多数のsgRNAを作製した(
図16)。ヒトコドン最適化SpCas9ヌクレアーゼ及び効率的な位置特異的遺伝子編集をガイドするキメラ単一ガイドRNA(gRNA)を利用する化膿連鎖球菌系を用いた。実施例4のTALENによるエクソン51への標的誘導と同様に、エクソン45から55の5’及び3’末端を標的とするためにプロトスペーサーが選択された(前記はSpCas9の5’-NRG-3’PAM要求を満たす)。これらのエクソン内におけるNHEJ系DNA修繕によって生じる小さな挿入又は欠失は、標的誘導されたフレームシフト変異を生じることができる(前記変異は各エクソン周囲の多様なジストロフィン変異に対応する)(
図16A−16B)。例えば、CR3は、小さな挿入又は欠失をエクソン51の5'末端に導入して下流のジストロフィンリーディングフレームを回復させることによって、エクソン51周囲のジストロフィン変異又は欠失を修正するように設計された(
図16B)。加えて、sgRNAは、オリゴヌクレオチドによるエクソンスキッピングの方法と同様に、CRISPR/Cas9系の複合的性能を利用し、さらに個々のエクソン又は一連のエクソンを特異的に欠失させてジストロフィンリーディングフレームを修復した。この目的のために、sgRNAは、エクソン51(
図16C)又はエクソン45-55(
図16D)周囲のイントロン領域を標的とした。これらのsgRNAは、生成転写物に含まれることが意図される下流又は上流のエクソンに最も近い部位を意図的に標的とし、バックグラウンドの患者欠失がイントロンのsgRNA標的部位を含む確率を最小限に抑えた。
【0124】
[実施例6]
ヒト細胞でジストロフィン遺伝子を標的とするsgRNAのスクリーニング
ヒトHEK293T細胞における遺伝子編集頻度を判定して、種々のsgRNAターゲティング効率を迅速に決定した。HEK293T細胞にヒトコドン最適化SpCas9及び表示のsgRNAをコードする構築物をトランスフェクトした。各sgRNAは、表示のようにジストロフィン遺伝子を改変するように設計された。トランスフェクション後3日目又は10日目の遺伝子改変頻度をサーベイヤーアッセイで決定した。3日目及び10日目の測定されたサーベイヤーシグナルの比を計算して、ヒト細胞における各sgRNAのための遺伝子編集の安定性を定量した。トランスフェクション後3日のサーベイヤーアッセイで定量されたように、試験したsgRNAの29/32(〜90%)が意図された遺伝子座で高度に有効な遺伝子改変を媒介できた(表9、
図17)。遺伝子編集は殆どすべてのsgRNAについて安定で(3日目から10日目のシグナル変化は25%未満、表9、
図18)、それぞれ個々のsgRNAによって媒介される遺伝子編集は良好に許容されることを示した。顕著な例外はCR33であり、前記は10日目には検出可能な活性を示さなかった(ただし活性はサーベイヤーアッセイの感受性より低い可能性がある(概算〜1%))。
【0126】
[実施例7]
蛍光依拠レポーター系を用いる遺伝子編集細胞の濃縮
DMD患者の筋芽細胞株で特異的変異を修正するためにsgRNAを選択した。DMD筋芽細胞のトランスフェクション後に、予想に反して低い又は検出不能の遺伝子改変活性がサーベイヤーアッセイによる測定で観察された(
図19C、混合集団)。フローサイトメトリーを用いて、SpCas9タンパク質に連結された2Aリボソームスキッピングペプチドを介してGFPを共発現するトランスフェクト細胞を選別した(
図19A)。この蛍光レポーターのSpCas9発現ベクターへの付加は、HEK293T細胞における遺伝子編集活性に顕著な影響を与えるようには見えなかった(
図19B)。コントロールGFP発現プラスミドの高いトランスフェクション効率(典型的には70%を超える、
図19D、pmaxGFP)にもかかわらず、低いパーセンテージのトランスフェクト筋芽細胞(〜0.5−2%)がエレクトロポレーションの3日後に蛍光レポーターを発現した。トランスフェクションが容易なHEK293T細胞では高レベルのCRISPR/Cas9活性が所与のものであるとするならば、DMD細胞へのSpCas9-T2A-GFP及びsgRNA構築物のエレクトロポレーション後の非効率的なトランスジーン発現は、未選別細胞で観察された低い遺伝子編集効率を説明できる。GFP陽性DMD筋芽細胞選別後に、大半のsgRNA標的遺伝子座で検出可能な活性の実質的増加が観察された(
図19C)。したがって、その後の全ての実験は、この蛍光レポーターの発現によってSpCas9発現について選別した細胞を用いた。
【0127】
[実施例8]
標的誘導フレームシフトによるジストロフィン遺伝子の修復
NHEJ DNA修繕によって生じる小さな挿入及び欠失を用いて標的誘導されるフレームシフトを作出し、異常なリーディングフレームを修正することができる。sgRNA,CR3を設計して、エクソン51内に小さな挿入及び欠失を導入することによりジストロフィンのリーディングフレームを修正した(
図16B、20A)。この遺伝子座でCRISPR/Cas9によって生成される挿入及び欠失のタイプは、SpCas9及びCR3 sgRNAのための発現プラスミドをコトランスフェクトしたHEK293T細胞のゲノムDNAに由来する対立遺伝子のサンガーシークェンシングによって判定した(
図20B)。注目に値することには、挿入及び欠失は3つのリーディングフレーム全てに対する変換をもたらした(
図20B、20C)。関連する患者細胞株における遺伝子修正を示すために、SpCas9及びCR3 sgRNAのための発現プラスミドをエクソン48-50の欠失を有するDMD筋芽細胞株にエレクトロポレートした(前記欠失はエクソン51でフレームシフトを生成することによって修正できる)。処理細胞を選別してサーベイヤーアッセイによって遺伝子改変活性を有することを立証し(CR3、
図19C選別集団)、さらに筋管に分化させてジストロフィン発現修復について試験した。ジストロフィンタンパク質の発現は、検出可能なヌクレアーゼ活性に付随して観察された(
図20D)。化膿連鎖球菌CRISPR/Cas9系は、標的誘導フレームシフトを迅速に生成し、多様な患者変異に対応してヒトジストロフィン遺伝子の発現を修復する強力な方法を提供する。
【0128】
[実施例9]
複合CRISPR/Cas9遺伝子編集はエクソン51の遺伝子欠失を媒介し、ジストロフィンタンパク質発現を回復させる
CRISPR/Cas9系の複合的性能は、標的誘導修正のために固有のエクソンの遺伝子欠失を効率的に生成する新規な方法を提供する。エクソン51スキッピングによって修正できるバックグラウンド欠失を有するDMD患者筋芽細胞を、エクソン51とフランキングするsgRNAの2つの組合せ(CR1/CR5又はCR2/CR5)で処理し、
図19のように遺伝子編集細胞を濃縮するために選別した。これらの処理細胞のゲノムDNAのエンドポイントPCRによって検出されたように、予想されるゲノム欠失は、SpCas9を有する細胞に両sgRNAがエレクトロポレートされたときにのみ存在した(
図21A)。サンガーシークェンシングによって、両欠失について遠位染色体セグメントの予想される連結が確認された(
図21B)。選別筋芽細胞を分化させた後、mRNA転写物からエクソン51の欠失は両sgRNAで処理した細胞でのみ検出された(
図21C)。最後に、ジストロフィンタンパク質発現の修復は、エクソン51のゲノムレベル及びmRNAレベルの欠失の観察に付随して処理細胞で検出された(
図21D)。
【0129】
[実施例10]
マルチエクソン大ゲノム欠失によるジストロフィンの回復
患者に特異的な変異に対応することはCRISPR/Cas9系の強力な用途であるが、多数のありふれた患者欠失に対応できる単一方法を開発することは有益であろう。例えば、有望な方法は、既知の患者欠失の62%までを修正する方法としてエクソン45-55の全領域の除去である。複合CRISPR/Cas9依拠遺伝子編集を試験して、前記がヒト細胞でエクソン45-55の効率的欠失を生じる能力を有し得るか否かを決定した。HEK239T細胞へのトランスフェクション後に、〜336,000bpの予想される欠失がゲノムDNAのPCRによって検出された(
図22A)。同様にこの欠失は、エクソン48-50の未知の長さのバックグラウンド欠失を保持するDMD患者のSpCas9/sgRNA処理細胞のゲノムDNAのPCRによって検出された(
図22A)。処理DMD細胞のゲノムDNAに由来するこの欠失バンドのサンガーシークェンシングは、sgRNA標的部位の直ぐそばに隣接するイントロン44とイントロン55の予想される連結を明示した(
図22B)。処理DMDの分化後に、エクソン45-55の予想される欠失がジストロフィンmRNA転写物で検出され、サンガーシークェンシングによるエクソン44と56の融合であることが立証された(
図22C)。修復されたタンパク質発現が、選別細胞集団(CRISPR/Cas9に誘導されたゲノムからのエクソン45-55の欠失及びその結果のmRNA転写物を含む)でウェスタンブロットによって観察された(
図22D)。これらのデータは、複合CRISPR/Cas9編集は、DMD患者の60%を超える変異でジストロフィンリーディングフレームを修復する汎用単一方法を提供することを示している。
【0130】
[実施例11]
修正筋芽細胞の免疫不全マウスへの移植
DMD治療のための有望な方法は、患者自身の筋肉始原細胞集団を修正することである(前記を当該患者の骨格筋に移植してジストロフィン発現を回復することができる)。修正細胞のヒトジストロフィンのin vivo発現能力を示すために、以前のように、sgRNA CR1及びCR5(エクソン51にフランキングする)で処理したDMD筋芽細胞集団を移植し、GFP発現について選別した(
図19、
図23)。4週間後、ヒトスペクトリン(修正及び未修正細胞の両方で発現される)陽性筋線維が注入したマウス組織の凍結切片で検出された(
図24)。これらの線維の多くはまた、筋細胞膜に局在して発現されるヒトジストロフィンについて陽性であり、これらの細胞における機能的な遺伝子修正を示した(
図24、
図25)。ヒトジストロフィン陽性線維は、未処理DMD筋芽細胞を注入したマウスの切片では観察されず(
図24、
図25)、CRISPR/Cas9改変細胞がヒトジストロフィン発現の供給源であることを示した。
【0131】
[実施例12]
オフターゲット及び細胞傷害性活性
以前に記載されたように(Ousterout et al., Mol Ther 21:1718-1726, 2013)フローサイトメトリー依拠GFP保持アッセイを適用して、CRISPR/Cas9系の相対的細胞傷害性を精選sgRNAのためにヒト細胞で判定した。最小限の細胞傷害性が、ヒト細胞のトランスフェクション後にsgRNAとともに又はsgRNA無しに発現されたSpCas9について観察された(
図26A)。sgRNAプロトスペーサー配列内のあるミスマッチの予想される位置的偏り及び意図される標的部位とのミスマッチの総数を基準にしてオフターゲットにおける潜在的CRISPR/Cas9活性を判定し重要なものから順に並べるために公的に利用できるツールが利用可能である(Hsu et al., Nat Biotechnol 31:827-826, 2013)。この公的なウェブサーバーを用いて、本実験でジストロフィン遺伝子を修正するために用いられるsgRNAについてもっともありそうなオフターゲット部位を予想した(表4)。上位10のオフターゲット部位を、SPCas9及びCR1、CR3、CR5、CR6又はCR36のための個々のsgRNA発現カセットで処理したHEK293T細胞でサーベイヤーアッセイによって判定した。CR1、CR3及びCR36はこれら10の予想されるオフターゲット遺伝子座の1つを有し、前記は有意なレベルの遺伝子改変を示す(表4及び
図27)。興味深いことに、CR3オフターゲット配列は、意図されるオンターゲットに対して実質的な相同性及び同様な改変頻度を有した(OT-1で9.3%に対して意図される部位で13.3%)(表4及び
図27)。注目すべきことには、CR3-OT1は、これら3つのオフターゲットのうちサーベイヤーアッセイによって選別hDMD細胞で有意なレベルの活性を示すただ1つのものであった(
図26B)。
オフターゲット部位におけるヌクレアーゼ活性は、切断される標的と別箇の染色体上のオフターゲット遺伝子座との間の遠位再連結によって、意図しない染色体再整理を引き起こし得る。これは、2つ以上のヌクレアーゼを用いることによる(例えば複合CRISPR/Cas9遺伝子編集で)潜在的オフターゲット活性の増加のために、欠失依拠遺伝子修正方法について重大な懸念を生じる。非常に鋭敏なネステッドゲノムPCRアッセイを用いるために潜在的転座を精査し、単一CRISPR/Cas9及び複合CRISPR/Cas9編集方法の両方法で、実証済みオフターゲット遺伝子座で転座を検出した。このアッセイを用いて、モデルHEK293T細胞株でオンターゲット及びオフターゲット部位間で転座が容易に検出された(前記はまた高レベルのオフターゲット活性を示す)(
図26C及び
図28A、28B)。PCRアンプリコンのサンガーシークェンシングによって、各プライマーペアについて予想される転座事象の同一性が確認された(
図29−30)。HEK293T細胞で検出された転座サブセットはまた、選別hDMD筋芽細胞でネステッドPCRによって検出可能であったが、ただしシグナルは顕著に弱く、配列同一性は生成物収量が低いために確認されなかった(
図26D及び
図28A、28C)。転座は、それぞれCR6又はCR6/CR36で処理したHEK293T細胞又は選別hDMD細胞ではこのアッセイを用いたときは検出されず(
図28)、前記は低レベルのオフターゲット活性をHEK293T細胞でのみCR6-OT3で有した(表4)。これらの結果は、(特に複合編集の適用のために)高度に特異的なsgRNAを選択することの重要性を強調し、このアプローチはCRISPR/Cas9系の特異性の改善のために現在進行中の研鑽から利益を得ることができることを示している。これらのデータは、選択されたsgRNAは、有意な毒性を示すことなく、かつ検出可能レベルの活性をもつはっきりと予想されるただ1つのオフターゲット部位を有する、ジストロフィン遺伝子修正能力を有することを提唱している。
【0132】
[実施例13]
考察
ゲノム編集は遺伝子疾患を修正する強力なツールであり、CRISPR/Cas9系の最近の開発はこの分野で劇的な速度で進行している。DMD(現在のところ承認された治療選択肢がないもっともありふれた遺伝子疾患)の修正を提示した。DMDのための多くの遺伝子依拠及び細胞依拠治療が前臨床開発及び臨床試験の段階で、ゲノム編集方法はこれらのアプローチの多くと適合し得る。例えば、ゲノム編集は患者特異的DMD用細胞依拠治療方法と組み合わせることができる。CRISPR/Cas9系は、ヒト多能性幹細胞及び他のヒト細胞株だけでなく、提示のようにヒト骨格筋の筋芽細胞で機能し得る。重要なことには、CRISPR/Cas9による遺伝子編集は、in vitro及び免疫不全マウスへの移植後のin vivoでの効率的なジストロフィン発現によって示されるように、これらの細胞の筋形成能力を停止させない。したがって、この対処方法はDMD用細胞依拠治療方法と適合するはずである。
加えて、遺伝子修正細胞の濃縮プールは、免疫不全マウスへの移植に続いてin vivoでヒトジストロフィン発現を示した。CRISPR/Cas9遺伝子編集は、安定的な遺伝子編集頻度及びいくつかのsgRNAの最小限の細胞傷害性によって観察されるようにヒト筋芽細胞で顕著に有害な作用を持たない。しかしながら、遺伝子編集活性は、5つのsgRNA全体で50の予想されるオフターゲット部位のうち3つで確認され、オンターゲット及びオフターゲット部位間のCRISPR/Cas9誘導染色体転座を検出し得た。CRISPR/Cas9技術は、ジストロフィン変異の顕著な部分を修正する効率的で万能の方法であり、遺伝子疾患治療のための汎用プラットフォームとして供することができる。
加えて、本明細書で用いられるプラスミド依拠デリバリー方法と対照的に、sgRNA及びCas9 mRNAの直接的トランスフェクションを用いて、Cas9発現持続時間を短縮することにより、及びランダムなプラスミド組込みの可能性を排除することにより特異性及び安全性を高めることができる。また別には、in vivoゲノム編集及びこのアプローチの翻案のために、ウイルス、プラスミド又はRNAデリバリーベクターによる骨格筋及び/又は心筋へのCRISPR/Cas9系の直接デリバリーを用いることができる。化膿連鎖球菌Cas9遺伝子の大きなサイズ(〜4.2キロベース)はサイズが限定されるアデノ随伴ウイルスベクターでの前記の使用に対し難問を提示する。しかしながら、他の種(例えば髄膜炎菌及びS.サーモフィルス(thermophilus))由来のCas9遺伝子は、in vivo遺伝子編集への応用でCas9及びsgRNA発現カセットの両方を一AAVベクターに効率的に梱包するために十分に短い。
【0133】
CRISPR/Cas9系は被験標的のほぼ90%の効率的な改変を可能にし、多様な遺伝子座におけるこの系の活発な活性に関する他の報告と一致する。この技術の強力さ及び万能性は患者に特異的な遺伝子編集の自由自在な実施に向けて極めて大きな進歩である。低レベルのジストロフィン(わずかに4%の野生型発現を含む)が、マウスモデルで生存率、運動機能及び心筋機能の改善に十分であり得る。このCRISPR/Cas9活性レベルは治療的利益として十分であり得る。
エクソンの欠失に複合CRISPR/Cas9を使用することはまた機会と挑戦の固有の組合せを提供する。単一ヌクレアーゼの作用に続くNHEJ系DNA修復によって生成される小さなインデルによるジストロフィン遺伝子のリーディングフレームの修復とは対照的に、ジストロフィン発現を修復するためにゲノムの完全なエクソンの欠失が実施された。編集された遺伝子のタンパク質生成物は予想することが可能であり、天然に存在する欠失を有するベッカー筋ジストロフィー患者では既に特徴が明らかであるが、対照的に、単一ヌクレアーゼのエクソン内での作用によって生じるランダムなインデルは、それぞれのDNA修復事象に由来する新規なエピトープの生成をもたらすであろう。さらにまた、エクソン欠失から生じる生成物は遺伝子編集の成功毎に修復されたジストロフィンをもたらし、一方、エクソン内のランダムなインデルによる遺伝子の改変は、正確なリーディングフレームをもたらす編集事象の1/3で当該リーディングフレームを修復するだけであろう。
試験したsgRNAの全てが、ヒト細胞で顕著な細胞傷害性作用を随伴するわけではなかった。使用した5つのsgRNAについて検査した50の全部位のうち3つの潜在的オフターゲット部位がジストロフィン発現を修復することが認定された。さらにまた。意図されたオンターゲット部位とこれらのオフターゲット部位間の染色体転座が、高レベルのCas9及びsgRNAを発現するHEK293T細胞で極めて感度が高いネステッドPCRアッセイによって検出可能であった。注目すべきことには、HEK293T細胞(不朽化され、非常に高レベルのCas9及びsgRNAを発現する異数性細胞株)で認定されたオフターゲット活性及び転座は高レベルでは発生せず、hDMD筋芽細胞のいくつかの事例では検出不能であった。重要なことには、この特異性レベルは、DMDの重篤性、ヒト細胞での明白な細胞傷害性の欠如を所与のものとすれば許容され得よう。
【0134】
[実施例14]
操作したAAVキャプシド(SASTGと称する(配列番号:436及び437))が心筋及び骨格筋組織向性の強化のために開発された(Piacentino et al. (2012) Human Gene Therapy 23:635-646)。Rosa26遺伝子座を標的とするZFN(“Rosa26 ZFN”、
図33;配列番号:434及び435)はマウス細胞で高度に活性を有することが示された(Perez-Pinera et al. Nucleic Acids Research (2012) 40:3741-3752)。Rosa26 ZFNタンパク質をコードするAAV-SASTGベクターを設計し続いて作製し、さらにUNCウイルスベクターコアによって精製した。サーベイヤーアッセイ(Guschin et al., Methods Mol Biol 649, 247-256, 2010)を用いて、培養C2C12筋芽細胞(活発な細胞周期の繰り返し又は血清除去による分化の強制下にあった)でAAV-SASTG Rosa26 ZFNのデリバリーに続いてRosa26遺伝子座におけるNHEJ変異導入が示された(データは示されていない)。
成人の有糸分裂後の骨格筋はAAV移入後にRosa26 ZFNによって標的誘導されることを立証するために、Rosa26 ZFNをコードするAAV-SASTGベクターを1e10ベクターゲノム(vg)又は2.5e10vg/筋の力価で6週齢C57BL6/Jマウスの前脛骨筋に直接注射した。注射から4週間後にマウスをサクリファイスし、TA筋を採集し、ゲノムDNA抽出及び分析のためにいくつかのフラグメントに分けた(
図31)。ゲノムDNAをPCR増幅してサーベイヤーアッセイに付し、Rosa26標的部位におけるZFN変異導入のNHEJ変異の特徴を検出した(
図32)。
図32は、AAV-SASTG-ROSAのデリバリーに続く骨格筋におけるin vitro及びin vivoのRosa26 ZFN活性のサーベイヤー分析を示す。増殖C2C12を表示の量のウイルスで形質導入し、感染後4日で採集した(
図32a)。C2C12を分化培養液で5日間インキュベートし、続いて表示の量のAAV-SASTG-ROSAウイルスを用いて24ウェルプレートで形質導入した(
図32b)。形質導入後10日でサンプルを収集した。標示の量のAAV-SASTG-ROSAをC57BL6/Jマウスの前脛骨筋に直接注射し、筋肉を感染後4週間で採集した。採集TA筋をゲノムDNA分析のために8つの別々の細片に分けた(各々は別々のレーンに示されている)(
図32c)。注目すべきことには、高レベルの遺伝子改変が最高用量(2.5e10vg)で全フラグメントにおいて検出された。
【0135】
[実施例15]
変異ジストロフィン遺伝子を標的とするAAV-CRISPR構築物
デュシェンヌ型筋ジストロフィー並びに骨格筋及び心筋の変性を引き起こすジストロフィン遺伝子の治療的修正のために、AAV構築物を設計した。AAVを用いてCRISPR/Cas9系をデリバーし、エクソン51の欠失、エクソン45-55の欠失、スプライスドナー又はアクセプター部位の破壊、又はエクソン51内におけるフレームシフトの生成によってジストロフィンリーディングフレームを修復し(Ousterout et al., Molecular Therapy 2013)、ジストロフィンリーディングフレーム及びタンパク質発現を修復することができる。CRISPR/Cas9系は配列番号:64又は114の配列を有するCas9を含むであろう(
図40及び41参照)。これらのCas9と組み合わせることができるgRNA(それらの対応するPAM配列を標的とする)が提供される(
図40及び41参照、表2及び3もまた参照されたい)。
【0136】
[実施例16]
誘導ニューロン(iN)の生成
他の細胞系列から誘導ニューロン(iN)を生成することは、再生医療及び神経学的疾患の研究において潜在的な応用性を有する。マウス胚線維芽細胞(MEF)の機能的ニューロン細胞への直接変換は、3つのニューロン転写因子(BRN2、ASCL1及びMYT1L)のカクテル(BAM因子、
図48)のデリバリーにより生じ得る。他の方法は、多様なサブタイプを誘導するために追加の因子を含むことができる。これらの実験は、転写因子の異所性デリバリー及びニューロン表現型の維持に対応する内因性遺伝子座の活性化を必要とする。RNAガイドメカニズムによりゲノム内の任意のプロモーターを標的とする性能を有し、哺乳動物細胞で内因性遺伝子を活性化する万能性転写因子としてCRISPR/Cas9系を操作した(
図49A、49B)。
材料と方法:CRISPR/Cas9転写因子を用いて、ASCL1及びBRN2をコードする内因性遺伝子を活性化し、MEFを機能的な誘導ニューロンに直接再プログラムした。
細胞培養:24ウェルTCPSプレート又はポリD-リジン/ラミニン被覆カバースリップにMEFをシードした。dCas9-VP64の形質導入及びgRNAのトランスフェクション(gRNAの配列については表10及び11参照)に続いて、細胞をMEF培養液(Adler et al. Mol Ther Nucleic Acids 1:e32, 2012)で24時間培養し、続いてN3神経誘導培養液(Vierbuchen et al. Nature 463:1035-1041 (2010)に実験の間ずっと移した(
図49B)。
【0139】
qRT-PCR及びIF:内因性ASCL1の活性化は、qRT-PCR及びMEFの免疫蛍光(dCas9-VP64及びgRNA、ASCL1 cDNA又はルシフェラーゼをコードする陰性コントロールのデリバリー後3日目)で判定した。iNの発生は、TUJ1及びMAP2の共同染色並びにニューロン状形態及び伸長突起を有する細胞の認定によって評価した。
生細胞レポーター:N3培養液中で7−8日後に、ポリD-リジン/ラミニン被覆カバースリップ上で培養したMEFを、hSyn-REP及びMAP2-GCamP5レポーターを保持するウイルスで形質導入し、カルシウム画像化及び電気生理学により機能的特徴についてもっとも成熟したiNを同定した(
図49B)。
結果:dCas9-VP64及びgRNA(ASCL1プロモーターを標的とする)はMEFで内因性遺伝子を活性化した。8つのgRNAの共同デリバリーは内因性遺伝子を400倍活性化した。これは、4つのgRNAの共同デリバリーにより誘導される100倍の活性化を超える有意な増加である(p<0.05)。核内局在Ascl1タンパク質はMEFで免疫蛍光によって検出された。異所性Ascl1発現は、どちらのgRNAカクテルと併せたdCas9-VP64よりも多くのAscl1タンパク質を生じたが、3日目までには内因性遺伝子座を活性化させなかった(
図50A、50B)。伸長突起を有するTUJ1及びMAP2共同陽性細胞が、dCas9-VP64並びにASCL1及びBRN2プロモーターターゲティングgRNAのデリバリーに続いて、神経形成培養液中で13日後に同定された(
図4A第一列)。同様な数のTUJ1及びMAP2共同陽性細胞がBAM因子の異所性発現で同定された(
図51A第二列)。hSyn-RFPレポーターを発現するニューロン状形態を有する細胞は、神経形成培養液で早くも11日目の培養で見ることができた(
図51B)。MAP2-GCaMP5カルシウムインジケーターを発現する細胞は、蛍光顕微鏡で検出されるKCl誘発脱分極を示した(
図52A、52B)。
マウス胚線維芽細胞のニューロン状形態を有するTUJ1及びMAP2共同陽性細胞への直接変換は、CRISPR/Cas9依拠転写因子による内因性BRN2及びASCL1の活性化を通して達成された。dCas9-VP64はASCL1の異所性発現よりも少ないタンパク質を生じるが(
図50B)、ニューロン様細胞の発生は同様である。内因性遺伝子座の活性化は、異所性発現により生じる事象とは機構的に同一ではない事象の再プログラミングカスケードを誘導することができる。
dCas9-VP64はヘテロクロマチンを貫通して安定的にサイレントな内因性遺伝子を活性化できた(“パイオニア”転写因子のサブセットのみの特徴)。結果として、CRISPR/Cas9転写因子を有する細胞系列の変換は、特に再プログラミングが困難な細胞タイプ(例えば成人細胞)で、転写因子の異所性発現よりも良好に再プログラミングの後成的障壁を克服できる。このことは再生医療の分野では臨床的に重要であり得る。なぜならば、細胞交換療法では自己由来のものの使用がしばしば所望されるからである。
【0140】
[実施例17]
複合CRISPR/Cas9依拠ゲノム編集−材料と方法
プラスミド構築物:化膿連鎖球菌sgRNA及びヒトコドン最適化Cas9(hCas9)のための発現カセットを上記に記載のように用いた。以下の追加のプロモーターをジーンブロック(GeneBlock(IDT))を用いて合成し(mU6(Ohshima et al., Nucleic Acids Res 9:5145-5158, 1981)、H1(Myslinski et al., Nucleic Acids Res 29:2502-2509, 2001)、及び7SK(Murphy et al., Cell 51:81-87, 1987)pol-IIIプロモーター)、hU6 sgRNA発現カセットの代わりにクローニングした。ジーンブロック(IDT)をCas9コード配列の3’末端でクローニングし、ベクターの発現をモニターするためにCas9のすぐ後ろでT2Aスキッピングペプチド及びeGFP遺伝子に融合した。hCas9-T2A-GFP(配列番号:145)のためのコード領域を続いてレンチウイルス発現ベクターに移した。前記レンチウイルスベクターは、hCas9-T2A-GFPの発現を駆動するヒトユビキチンC(hUbC)プロモーター、及びsgRNA発現カセットのゴールデンゲート(Golden Gate)クローニングを促進する制限部位をhUbcプロモーターのすぐ上流に含んでいた(
図42A)。
カスタムレンチウイルスベクターのアッセンブリープロトコル:選択した4つまでのsgRNA及び活性なCas9、dCas9又はdCas9-VP64を発現するカスタムレンチウイルスベクターのアッセンブリーを5日未満で達成した。クローニング方法はゴールデンゲートクローニング及びIIS型制限酵素を利用した(前記制限酵素はそれらの認識配列の外側を切断して固有のオーバーハングを生じる)。ゴールデンゲートアッセンブリーは、4つの発現カセットの全てが最終的なレンチウイルスベクターに一工程で連結されるのでクローニングを促進した。レンチウイルスベクターは、活性なCas9、cCas9又はdCas9-VP64を、1つ、2つ、3つ又は4つのsgRNA(独立したプロモーターから発現される)に加えて発現した。
【0141】
工程1:それぞれ20bpのプロトスペーサーを含む一本鎖オリゴを、粘着末端を生じる態様でアニーリングし、所望のpZDonor-プロモーターベクターに連結した。それぞれ所望のゲノム標的のために2つの一本鎖オリゴをオーダーする。相補性オリゴをアニーリングさせるために、以下を混合する:8μLのセンスオリゴ+8μLのアンチセンスオリゴ(両方とも10mM)+2μLの10xリガーゼ緩衝液。前記オリゴを融解し、PCR装置で以下のプログラムに従って再アニーリングさせる:96℃で300秒、続いて85℃で20秒、75℃で20秒、65℃で20秒、55℃で20秒、45℃で20秒、35℃で20秒、及び25℃で20秒(工程間の速度は-0.3℃/秒である)。粘着末端のリン酸化のために、1μLの25mM ATP+1マイクロリットルのT4ポリヌクレオチドキナーゼ(NEB)を添加し、37℃で60分インキュベートし、続いて65℃で20分により酵素を熱不活化した。T4 DNAリガーゼ(NEB)を用い16℃で60分インキュベートして、所望の発現ベクターに各プロトスペーサーを連結した(50ngのベクター及び1μLのアニーリングされたオリゴヌクレオチドを10μLの反応体積中で製造業者の指示にしたがって用いた)。各連結物の5マイクロリットルでXL1ブルー化学的コンピテント細菌(Agilent)を製造業者の指示に従って形質転換した。形質転換物をLB寒天プレート(50μg/mLカナマイシン(Sigma)を含む)にプレートし、一晩37℃でインキュベートした。我々の経験では、90%を超えるコロニーが所望の連結生成物を含むであろう。M13リバーススタンダードシークェンシングプライマーを用いる配列決定を実施して、工程2に移る前に最終的なsgRNA構築物の各々を立証した。
【0142】
工程2:ゴールデンゲートアッセンブリーを用いる4つのプロモーター-gRNAカセットのレンチウイルスデスチネーションベクターへの構築:工程1の完了後、4つの独立したプラスミドが存在し、前記は各々異なるプロモーターから異なるsgRNAを発現する。この4つの異なるプロモーター-sgRNA構築物を所望のデスチネーションベクターへアッセンブリングするために、各sgRNA発現プラスミド及び所望のレンチウイルスデスチネーションベクターの200ngを、1μLのT4 DNAリガーゼ(NEB)、1μLのBsmBI FastDigest(Fisher Scientific)、及び2μLの10xT4リガーゼ緩衝液(NEB)とともに20μLの反応体積中で混合する。反応物を以下の通りインキュベートする:37℃で10分、16℃で15分、37℃で30分、80℃で5分。5μLの連結反応物でSURE2化学的コンピテント細胞(Agilent)を製造業者の指示に従って形質転換する。形質転換物をLB寒天プレート(100μg/mLのアンピシリンを含む)にプレートし、37℃で一晩インキュベートする。場合によって、IPTG及びX-galを用いるlacZ系青色/白色スクリーニングによってコロニーをスクリーニングしてもよいが、我々の経験では、90%を超える形質転換体が適切な連結生成物を含む。反対のsgRNA発現カセットによって形成される逆転リピートのために、最終的構築物は不安定であり、したがってこれらのプラスミドをSURE2細胞株で維持し、センスプライマー(5’-TCGGGTTTATTACAGGGACAGCAG-3’(配列番号:464))及びアンチセンスプライマー(5’-TCTAAGGCCGAGTCTTATGAGCAG-3’(配列番号:465))を用いて最終的プラスミドをスクリーニングすることを我々は推奨する。これらのプライマーは4つのプロモーター-gRNA領域にわたって増幅する。その反復性特性のために、異なるバンド形成パターンが、サイズがほぼ1800bpの最大生成物とともに観察されるはずである。
【0143】
細胞培養及びトランスフェクション:デューク大学癌センター施設を介してHEK293T細胞を米国組織細胞集積所(ATCC, Manassas, VA)から入手し、10%FBS及び1%ペニシリン/ストレプトマイシン補充DMEMで維持した。初代ヒト皮膚線維芽細胞(カタログID:GM03348)はコリエルインスチチュート(Coriell Institute, Camden, New Jersey)から入手し、10%FBS及び1%ペニシリン/ストレプトマイシン補充DMEMで維持した。全ての細胞を37℃、5%CO
2下で培養した。リポフェクチン2000(Life Technologies)を用い、HEK293T細胞に200ngの各sgRNA発現カセット(800ngの総pDNA)を製造業者の指示に従って24ウェルプレートでトランスフェクトした。
ウイルス製造及び形質導入:本実験で使用した全てのレンチウイルスベクターは第二世代であり、標準的なウイルス製造方法を用いて製造された。簡単に記せば、10cmのディッシュにつき3.500.000個のHEK293T細胞をプレートした。次の日に、リン酸カルシウムトランスフェクション方法によって、20μgのトランスファーベクター、6μgのpMD2G及び10μgのpsPAX2を細胞にトランスフェクトした。トランスフェクション後12−14時間で培養液を交換した。前記培養液交換後の24及び48時間にウイルス上清を収集し、0.45ミクロンのフィルターに通してプールした。形質導入のために、細胞培養液をウイルス上清(4μg/mLのポリブレンを補充)と取替えた。前記ウイルス上清を12−24時間後に新しい培養液に交換した。
逆転写PCR:miRNeasy Mini RNA単離キット(Qiagen)を用いてRNAを単離した。DNA-freeキット(Applied Biosystems)を用いてDNase消化を実施した。SuperScript VILO cDNA合成キット(Invitrogen)を用いてcDNA合成を実施した。Taq DNAポリメラーゼ(NEB)を用いてcDNAを増幅し、得られた生成物をTAEアガロースゲルで泳動させた。ChemiDoc XRS+Systemを用いて画像を捕捉し、ImageLabソフト(Bio-Rad)を用いて加工した。
【0144】
定量的リアルタイムPCR:RNeasy Plus RNA単離キット(Qiagen)を用いてRNAを単離した。SuperScript VILO cDNA合成キット(Invitrogen)を用いてcDNA合成を実施した。PerfeCTa SYBR Green FastMix(Quanta Biosciences)によるリアルタイムPCRをCFX96リアルタイムPCR検出系(Bio-Rad)で実施した。プライマー特異性は、アガロースゲル電気泳動及び融解曲線分析で確認した。適切な動態範囲にわたる反応効率を計算して、標準曲線の直線性を担保した。結果は、ΔΔCt方法を用いて、β-アクチン発現に対して標準化した問題の遺伝子のmRNA発現増加の倍数として表される。報告の値は、2つの別個の実験から得られた平均及びS.E.M.であり(n=2)、ここで技術的複製実験(technical replicate)は各実験について平均された。
ウェスタンブロット:プロテアーゼンカクテル(Sigma)を補充したRIPA緩衝液(Sigma)で細胞を溶解した。タンパク質濃度は、BCAタンパク質アッセイ試薬(Thermo Scientific)及びBioTek Synergy 2 Multi-Modeマイクロプレートリーダーを用いて測定した。溶解物をローディング緩衝液と混合して5分間煮沸し、25μgのタンパク質をNuPage 10%Bis-Tris Gelポリアクリルアミドゲル(Bio-Rad)で泳動し、ニトロセルロース膜に移した。非特異的抗体結合を、5%の脱脂乳を含むTBST(50mM Tris、150mM NaCl及び0.1%Tween-20)により室温で1時間ブロックした。前記膜を以下の一次抗体とともにインキュベートした:5%BSA中の1:250の抗Myogenin(Santa Cruz Sc-32758)、TBST中で4℃にて一晩;5%ミルク中の1:1000の抗FLAF-HRP(Cell Signaling 2044)、TBST中で室温にて60分;5%ミルク中の1:5000の抗GAPDH(Santa Cruz Sc-32758)、TBST中で室温にて30分。続いて膜をTBSTで3回合計15分間洗浄した。膜を抗ウサギHRP結合抗体(Sigma, A6154)又は抗マウスHRP結合抗体(Santa Cruz, SC-2005)(1:5000希釈)とともにインキュベートし、TBSで3回(各回15分)洗浄した。Immun-Star WesternC
TM化学発光キット(Bio-Rad)を用いて膜を可視化し、ChemiDoc
TM XRS+Systemを用いて画像を捕捉し、ImageLabソフト(Bio-Rad)を用いて加工した。
【0145】
内因性遺伝子改変のCel-I定量:サーベイヤーアッセイを用いて、内因性標的部位におけるCRISPR/Cas9ヌクレアーゼ損傷を定量した(前記アッセイはヌクレアーゼ媒介NHEJの変異の特徴を検出できる)。トランスフェクション又は形質導入後に、細胞を3から10日間37℃でインキュベートし、ゲノムDNAをDNeasy血液組織キット(Qiagen)により抽出した。標的遺伝子座をAccuPrime High Fidelity PCRキット(Invitrogen)で35サイクルのPCRによって増幅した。得られたPCR生成物を無作為に融解し、以下のプログラムを用いPCR装置で再アニーリングさせた:95℃で240秒、続いて85℃で60秒、75℃で60秒、65℃で60秒、55℃で60秒、45℃で60秒、35℃で60秒、及び25℃で60秒(工程間の速度は-0.3℃/秒)。再アニーリングに続いて、8μLのPCR生成物を1μLのサーベイヤーヌクレアーゼS及び1μLのエンハンサーS(Transgenomic)と混合し、42℃で1時間インキュベートした。インキュベーションの後で、6μLの消化生成物を10%TBEポリアクリルアミドゲルにロードし、200Vで30分泳動した。ゲルを臭化エチジウムで染色し、ImageLab(Bio-Rad)を用いデンシトメトリーによって定量した(Perez-Pinera et al., Nucleic Acids Res 40:3741-3751, 2012)。
統計分析:少なくとも2つの別個の実験を平均及び平均の標準誤差としてコンパイルした。作用を多変量ANOVA及びJMP10Proを用いるダンネットのポストホック検定により評価した。
【0146】
[実施例18]
複合CRISPR/Cas9適用のための単一レンチウイルスベクターの開発
従来のCRISPR/Cas9遺伝子編集系(特にトランスアクチベーター系)の限界は、複合的遺伝子編集及び相乗的遺伝子活性化で、特にトランスフェクションが困難な細胞タイプで用いられる多種多様なsgRNA及びCas9タンパク質の同時かつ効率的なデリバリーである。この限界を克服するために、我々は、Cas9及び4つまでのsgRNAを効率的に発現する単一レンチウイルスベクターを開発した。各sgRNAの発現効率を最大にするために、このベクターは4つの独立したpol IIIプロモーター(ヒトU6プロモーター、マウスU6プロモーター、7SK、及びH1)から4つのsgRNAを発現する。我々は、エンドポイントRT-PCRを用いてAAVS1遺伝子座を標的とするsgRNAを検出して、各プロモーターからsgRNAが発現されることを立証した(
図42A)。各sgRNA発現構築物の活性を試験するために、我々は、AAVS1を標的とするsgRNAを独立して発現する各プロモーター構築物を活性なCas9発現構築物とともにヒトHEK293T細胞にコトランスフェクトした。注目すべきことには、我々は、一定で高レベルの遺伝子改変を各sgRNAの標的遺伝子座で検出した(前記改変はAAVS1遺伝子座で高い活性を有し特徴が詳細に示されているジンクフィンガーヌクレアーゼに匹敵する)(
図42B)。さらにまた、種々のCas9依拠構築物(活性なCas9ヌクレアーゼ、活性のない(dead)Cas9、及びVP64トランス活性化ドメインと融合された活性のないCas9を含む)のレンチウイルスデリバリーは、ウェスタンブロットで決定されるように、HEK293T細胞で完全長のCas9タンパク質の発現をもたらした(
図42C)。
【0147】
これらの成分を用いて、我々はゴールデンゲートクローニング方法を開発し、多種多様なsgRNA発現カセットを所望のCas9エフェクターを発現する単一レンチウイルスベクターでの迅速かつ効率的なクローニングを促進した(
図43)。第一の工程では、sgRNAプロトスペーサー配列をコードするオリゴヌクレオチドを種々の発現ベクター(各々はsgRNA発現を駆動する別個のプロモーターを有する)で別個にクローニングする。第二の工程では、各sgRNA発現構築物を選択したレンチウイルスCas9発現ベクターでゴールデンゲートアッセンブリーによってサブクローニングする。この方法は、遺伝子編集又は遺伝子活性化で用いるために、4つまでのsgRNAの単一レンチウイルスベクターでの活発で迅速なクローニングを可能にする。4つ未満のsgRNAを発現させるために、ポリTターミネーター配列を未使用プロモーターの下流でクローニングして、未使用プロモーターからの転写を防ぐ。各ベクターは、2Aスキッピングペプチドを介して選択したCas9をeGFPと共同発現し、高感染数を有する細胞の蛍光活性化フロー選別及び濃縮を可能にする。最後に、sgRNA及びCas9発現カセットを含む全領域はloxP部位にフランキングされてCre-lox切り出しによる除去を媒介する。
【0148】
[実施例19]
単一レンチウイルスsgRNA/Cas9発現ベクターの複合ゲノム操作における有効性の立証
各sgRNAの独立した活性を立証するために、我々は、活性なCas9及び4つのsgRNA(各々別個の遺伝子座を標的とする)を発現する単一レンチウイルスベクターをアッセンブリングした(
図44A)。コントロールベクターとして、我々は、ただ1つのsgRNAをそれ以外の3つの位置にポリTプロトスペーサーとともに発現する構築物をアッセンブリングした。我々は、HEK293T細胞及び初代線維芽細胞に表示のsgRNAを発現するレンチウイルスを形質導入し、形質導入後7又は10日後に遺伝子改変頻度をそれぞれモニターした(
図44b)。両細胞タイプで、単一レンチウイルスベクターは、4つの遺伝子座全てで高度に効率的な複合遺伝子編集を媒介した(
図44B)。興味深いことには、線維芽細胞の4遺伝子座のうち3つで、4つのsgRNA全部が一緒の発現は単一sgRNA単独よりも高い改変頻度をもたらした(
図44B)。我々は線維芽細胞で効率的な複合遺伝子編集を観察した(線維芽細胞はトランスフェクションが一般的に困難な細胞タイプである)。これらのデータは、単一レンチウイルスは4つの活性なsgRNAを効率的に発現すること、及びこのレンチウイルスプラットフォームを用いて、4つの別個の遺伝子座を複合CRISPR/Cas9遺伝子編集のための標的にできることを示している。
【0149】
[実施例20]
レンチウイルスCas9依拠トランスアクチベーターを安定的に発現する細胞株の一過性RNAガイド遺伝子活性化
次に、我々は、安定的にCas9を発現するモデル細胞株にsgRNAをトランスフェクトすることによって一過性遺伝子活性化を可能にする系の開発に興味をもった。HEK293Tに異なるCas9-T2A-GFPを形質導入し、フローサイトメトリーを用いてGFP発現をモニターした。2−3日毎の正常な継代後に、各細胞株は形質導入後35日まで安定なGFP発現を示した。続いて、形質導入HEK293Tに1つから4つの別々のsgRNA発現構築物(IL1RN又はHBG1プロモーターのどちらかを標的とする)をトランスフェクトした。安定的なdCas9-VP64発現細胞株におけるこれらsgRNA構築物の一過性トランスフェクションは、調節可能な内因性遺伝子活性化をもたらした(
図45A、45B)。dCas9-VP64を発現する細胞株のsgRNA構築物の一過性トランスフェクションに続く遺伝子活性化は、トランスフェクション後ほぼ3−6で最大活性化レベルに達し、トランスフェクション後20日までに検出不能レベルに降下した(
図45C、45D)。さらにまた、我々は、各プロモーターを標的とする4つのsgRNA全ての第二のトランスフェクションによって各遺伝子を再活性化することができたが、ただし活性化レベルは第一のトランスフェクションで観察されたレベルより顕著に低かった(
図45C、45D)。第二のトランスフェクション後の活性の低下は、ベクターの発現の低下又は非形質導入細胞の競合的増殖のためかもしれない。それにもかかわらず、これらのデータは、一過性sgRNAデリバリーと組み合わせたレンチウイルスCas9を万能系として用いて、Cas9を安定的に形質導入した細胞株で調節可能でかつ一過性に標的遺伝子を活性化及び再活性化できることを示している。
【0150】
[実施例21]
単一レンチウイルスsgRNA/Cas9トランスアクチベーター発現ベクターを用いるHEK293T細胞の安定的遺伝子活性化
レンチウイルスデリバリーは、CRISPR/Cas9トランス活性化によって安定で長期的な遺伝子活性化を可能にし得る。このことを試験するために、dCas9-VP64及び1から4つのsgRNA発現カセットをコードする単一レンチウイルスベクターを用いてHEK293Tに形質導入した。我々の一過性トランスフェクションの結果(
図45)と同様に、我々は、内因性IL1RN及びHBG1遺伝子の発現を調節可能でかつ旺盛に活性化することができた(
図46A、46B)。dCas9-VP64及び4つのsgRNA(IL1RN及びHBG1プロモーターを標的とする)によるHEK293T細胞のコトランスフェクションによって誘導された遺伝子活性化は、トランスフェクション後3−5日でピークに達し、さらに遺伝子発現はトランスフェクション後15−20日でバックグラウンドレベルに復帰した(
図4c)。対照的に、dCas9-VP64及び同じ4つのIL1RN又はHBG1標的sgRNAのレンチウイルスデリバリーは、形質導入後20日よりも長く持続する遺伝子活性化を誘導した(
図46C、46D)。したがって、複合dCas9-VP64トランスアクチベーターの単一レンチウイルスデリバリーは、効率的かつ安定的に標的内因性遺伝子をアップレギュレートするために有用なプラットフォームである。
【0151】
[実施例22]
HS2エンハンサーを標的とするdCas9-KRAB
HS2エンハンサーは、グロビン遺伝子座の活性化に必要な、特徴がよく調べられた遠位調節エレメントである。HS2エンハンサーを標的とするgRNAとともにdCas9-KRABをデリバーして、この系がK562ヒト赤血球系白血病細胞株でγ-、ε-及びβ-グロビン発現を抑制するか否かを決定した(
図54)。HS2エンハンサー(配列番号:467)のコア領域とともに種々の部位を標的とする一組のgRNAを作製した。表12を参照されたい。
【0153】
CRISPR/Cas9によるグロビン遺伝子座における単一gRNAのスクリーニング:U6-sgRNA発現をコードする5μgのプラスミドをエレクトロポレートする5−8日前、レンチウイルスによりdCas9及びdCas9-KRABエフェクターをデリバーした(
図55A)。gRNAをエレクトロポレートしなかった細胞(no gRNA)及び異なる遺伝子座を標的とするgRNAで処理した細胞(IL1RN)をコントロールとして加えた。多種多様なgRNAが、トランスフェクション後3日でアッセイしたときε-、γ-及びβ-グロビン遺伝子の強力な抑制を示し、80%までのノックダウンを達成した(
図55B、55C、55D)。dCas9又はdCas9-KRABと一緒にgRNAを発現することによってグロビン遺伝子座の遺伝子発現は抑制された。概して、dCas9-KRABによる処理は、dCas9単独と比較して与えられたgRNAに対してより強い抑制をもたらし、抑制を強化するヘテロクロマチン因子の補充におけるKRABドメインの重要な役割を示唆した。達成される抑制レベルは、dCas9-KRAB処理細胞でのみトランスフェクションでデリバーされるgRNAプラスミドの量に左右される(
図56A、56B、56C)。Cr4 gRNAプラスミドの用量の10μgまでの増加は、dCas9-KRAB処理細胞におけるグロビン遺伝子のサイレンシングレベルを増加させる。
dCas9-KRABによるグロビン遺伝子の安定なサイレンシング:dCas9/dCas9-KRABを単一gRNAとともにレンチウイルスによりK562で共同発現させた(
図57A)。レンチウイルスで処理しなかった細胞(NT)、gRNA無しにdCas9/dCas9-KRABで処理した細胞(no gRNA)、並びにdCas9/dCas9-KRAB及び異なる遺伝子座を標的とするgRNAで処理した細胞(IL1RN)をコントロールとして加えた。レンチウイルス処理細胞を4から7日で選択した。多種多様なgRNAが、形質導入後7日でアッセイしたときε-、γ-及びβ-グロビン遺伝子の強力な転写抑制を示し、95%までのノックダウンを達成した(
図57B、57C、57D)。ε-グロビンの発現は、HS2エンハンサーを標的とするgRNAに応答して最も強くサイレンシングされた。gRNA及びdCas9-KRABによる処理は、dCas9及びgRNAによる処理よりも劇的に強い抑制をもたらした。
これらの発見は、gRNAによってHS2エンハンサーに標的誘導されるdCas9-KRABは遠位グロビン遺伝子の強力な抑制を達成することを示している。これは、哺乳動物細胞におけるCRISPR/Cas9系による遠位調節エレメントの後成的な標的誘導制御の最初の例である。エンハンサーは発生及び疾患を調節し、本開示はエンハンサー機能を精査及び制御する方法を提供し、さらに前記を用いてdCas9-KRABの特定の場所のクロマチンへの接近能力及びゲノムワイド発現における作用を決定できる。
【0154】
[実施例23]
dCas9-p300
dCas9-p300融合タンパク質を設計し、dCas9-VP64融合タンパク質と比較した(
図59参照)。dCas9構造のアミノ酸構築物は
図61A−61Cに示されている。ヒト胚腎の組織培養株HEK293T(ATCC;CRL-11268)を、1.5e5細胞/ウェルの密度で24ウェル組織培養皿にトランスフェクション(リポフェクタミン2000トランスフェクション試薬(Life Technologies)を使用)の1日前にシードした。24時間後に、細胞に1μLのリポフェクタミン2000、375ngのdCas9発現構築物(それぞれdCas9、dCas9VP64又はdCas9p300)、及びプールした125ngのgRNA発現プラスミド(各4つを等モル比で)をトランスフェクトした。表13はgRNAに関する情報を示す。
【0156】
トランスフェクション後3日で細胞を採集し、mRNA発現についてRT-PCRによってアッセイした。RT-PCRプライマー配列は表14に示されている。
【0158】
RT-QPCRは、ΔΔC
1方法を用いてGAPDH発現に対して標準化した。結果は、DNAをトランスフェクトしないでリポフェクタミンのみで処理した細胞(“NO DNA”)に対する、問題の遺伝子発現の倍数増加として表される(
図60A−60C)。
図62は、p300HATドメインの変異残基は遺伝子の発現を活性化させるその能力を失わせることを示している。
図63は、dCas9-VP64で示されたように、多種多様なgRNAがdCas9-p300と相乗的に機能することを示している。
【0159】
[実施例24]
図66は、ジストロフィン遺伝子に種々の欠失を保持するヒトDMD患者由来の骨格筋筋芽細胞で、ジストロフィンのDp427m骨格筋アイソフォームの5’UTRへのミニジストロフィン組込みをTALENが媒介することを示している。5’UTR 遺伝子座で活性なTALENペアをコードする構築物及びミニジストロフィン遺伝子を保持するドナー鋳型がDMD患者細胞にトランスフェクトされた。
図66(a)は、ミニジストロフィンがどのように5’UTRに組み込まれたかを示す模式図である。
図66(b)は、ヒグロマイシン耐性クローン細胞株の単離、及び
図66(a)に示したプライマーを用いた5’UTRにおける首尾よい位置特異的組込みのPCRによるスクリーニングを示す。星印は
図66(c)での更なる分析のために選択したクローンを示す。
図66(c)は、検出された組込み事象を有するクローン単離DMD筋芽細胞を6日間分化させ、ミニジストロフィンのC末端に融合させたHAタグの発現について判定したことを示している。
【0160】
前述の詳細な記載及び随伴する実施例は単なる例示であり、本発明の範囲(前記は添付の特許請求の範囲及びそれらの等価物によってのみ範囲が決定される)の制限と解されるべきではないことは理解されよう。
開示の実施態様に対する多様な変更及び改変は当業者には明白であろう。そのような変更及び改変(化学構造、置換基、誘導体、中間体、合成、組成、処方、又は本発明の使用方法に関するものを含むが、ただしこれらに限定されない)は、本発明の趣旨及び範囲を逸脱することなく成し得る。
補遺